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Abstract

Bipedal robots can operate in more restricted environments than multi-legged and wheeled robots, and most
conventional bipedal robots are driven by actuators at each joint with precise joint angle control to follow a target
trajectory for walking motion. In typical motion control methods for bipedal robots, the ZMP (zero moment point),
the point at which the combined forces of gravity and inertia are projected onto the road, is the standard for stable
walking, but it is commonly noted that this control method does not make excellent use of its own EI (embodied
intelligence) to improve walking efficiency and to obtain a natural gait. Moreover, the robot requires precise real-
time feedback control to achieve stable walking in a fully-actuated manner, which results in huge energy loss and
cannot be sustained for long periods of time in real-world environments. Therefore, in recent years, numerous
researchers have focused on how to use body dynamics to control robots to maintain efficient motion. The most
significant challenge in this research direction is to improve walking efficiency while having available robustness.

By exploiting the dynamics dictated by the robot’s body structure, the robot can not only considerably improve
the efficiency of its motion but also considerably reduce its computational effort and thus the difficulty of control.
Nonetheless, the fundamental problem with this approach is that the expected behavior of the system is highly
dependent on environmental conditions, which leads to a lack of robustness. For example, a passive walking robot
could use its body dynamics to walk down a slope in a deep natural way without any input. However, it can
only function under the constraints of a suitable slope angle and ground friction. Another example is the CPG
(central pattern generator), a local oscillatory network composed of neurons, which generates stable phase-locking
relationships through mutual inhibition between neurons and produces rhythmic movements at relevant parts of
the soma through self-excited oscillations. The CPG-based approach to motion control simulates the temporal
sequencing of animal walking, which is a more natural approach for robotic motion control problems. However,
an extremely large number of term conditions typically require attention when constructing CPG models, resulting
in control methods that are still not concise enough.

In this paper, the author aims to explore more underlying mechanisms of walking and achieve a more simple
and more efficient method of motion control for bipedal robots. We can draw on two signal systems acquired by
humans during evolution, namely the first and the second signal system. A similar classification of signal systems
can be made for the generation of robotic motion. The former is used to reliably generate and maintain elementary
motions, while the latter is used to adapt flexibly to complex environments where each system operates in a shared
and coordinated manner. First, a minimalist compass-like bipedal robot where only the hip torque can be applied,
so the robot is an underactuated system. Here the bipedal robot can be made to walk efficiently and stably on
downhill as well as horizontal surfaces by means of entrainment effects, using a reasonable feedforward input
waveform (e.g., a sine wave). It can be regarded as the motion generation of the control signal (first signal system)
generated at the level of human reflexes without any feedback control, which greatly reduces the cost of control.
At the same time, step length, walking frequency, and walking speed, which are important indicators of walking
within the entrainment range, can be simply tuned by controlling the parameters.

To ensure the practical feasibility of the proposed method, it is necessary to conduct an experimental study
to verify whether entrainment effects can successfully control a robot to generate dynamic walking in a realistic
environment. A bipedal walker was designed and fabricated to allow for practical experiments. The control method
is consistent with that used in the simulation, where a designed planetary gear mechanism is used to complete gait
generation on a horizontal road surface by feeding a preset feed-forward waveform through a hip-only servo motor.
It should be noted that in order to avoid gait failure due to foot scuffing while swinging the leg, the rotator foot
is designed to circumvent it. Although the 1:1 entrainment between the input waveform frequency and the actual
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walk frequency is only achieved due to hardware conditions, the experimental results are in good agreement with
the numerical simulations.

In order to pursue higher walking performance, such as high-speed walking, and to obtain the highest energy
utilization while limiting the walking speed, the author performs a global optimization of the control parameters,
as well as the physical parameters of the robot itself, by means of Bayesian optimization. The results show that
the fastest walking speed occurs in a 2:1 entrainment waveform when only the control parameters are changed,
while the fastest walking speed can be achieved in a 1:1 entrainment waveform after optimizing the foot shape,
which indicates that the structural design of the robot itself, such as the foot shape and the overall center of gravity
distribution, is also important. The results for walking efficiency show that while maintaining a walking speed of
0.5 [m/s] or more, SR can be as low as 0.007 (lower values indicate higher walking efficiency) by the proposed
control method, which is much lower than the current robots by conventional control methods and even better than
humans.

In bipedal dynamic walking, one also usually expects the gait to converge to a limit cycle gait. From another
point of view, the most basic requirement for achieving stable bipedal walking is not to fall, which requires a
large BOA (basin of attraction) to tolerate disturbances. Chaotic oscillators tend to have larger basins of attraction
compared to the limit cycle. Correspondingly, it is hypothesized in this paper that a properly generated chaotic
bipedal gait due to entrainment effects may be more robust to perturbations such as walking on uneven ground.
Based on this consideration, a chaotic gait is generated by employing a typical chaotic oscillator Rössler attractor.
It was shown that the chaotic bipedal gait has a larger BOA than the limiting periodic walk with the same input
strength, and the domain of stable walking was further explored by varying the control parameters of the chaotic
bipedal gait.

Work so far has focused on exploring the robot’s walking conditions under the first signal system and gener-
ating relatively stable and efficient gaits. The judgment of more complex road conditions requires advanced signal
processing capabilities corresponding to a second signaling system. The present work lays the groundwork for
further research, not only by enabling bipedal walking on uneven ground with extremely simple control methods
but also by showing the positive side of chaos in dynamic walking and providing a new perspective on the stability
of bipedal gait.

Keywords: Bipedal robot, Passive walking, Entrainment, Rimless wheel, Semicircular feet, Chaotic gait, Stability,

Efficiency
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1.2.3 Rössler attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Modeling, Control, and Analysis of Rimless Wheel Walking on Horizontal Road

Surface Based on Periodic Input Signal 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

x



2.2 Dynamics Modeling and Control Method . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Equation of collision . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Control methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Numerical Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Motion generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Analysis of time-symmetric control input . . . . . . . . . . . . . . . . 20

2.3.3 Analysis of time-asymmetric control input . . . . . . . . . . . . . . . . 21

2.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Motion Analysis of Quasi-passive Dynamic Walking Robot Based on Entrainment

Effect 25

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Dynamics Modeling and Control Method . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Equation of collision . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Control methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Quasi-passive Dynamic Walking Based on the First Signal System . . . . . . . 31

3.3.1 Gait generation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Energy change observation . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Feasibility analysis of entrainment control . . . . . . . . . . . . . . . . 35

3.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Nonlinear Analysis of Semicircular-footed Bipedal Robot Walking on Horizontal

Road Surface with Entrainment Effect 38

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Simplified Modeling and Control Method . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Equation of collision . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 Control method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Numerical Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Motion generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



4.3.2 Influence of 𝐴𝑚 and 𝑓𝑐 on gait . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Effect of excitation wave . . . . . . . . . . . . . . . . . . . . . . . . . 51
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Chapter 1

Introduction

1.1 Background

With the rapid development of modern science and technology, especially the maturing of

robotics, the use of robots to assist human workers has become increasingly close to reality

[1]. Although mature robotics and applications are still mainly focused on robotic arms and

wheeled mobile robots, most people’s first impression of robots should still be like the bionic

anthropomorphic form of the classic Japanese anime Iron Arm Astro Boy, which is believed

to be the original intention of numerous robotics researchers. Bipedal robots benefit from their

human-like body structure and are expected to walk on a variety of surfaces, something that

alternative methods of locomotion cannot replace. One of the main control methods thus far

is the standard one with Zero Moment Point(ZMP), defined by Vukobratović et al. [2]. ZMP

refers to the point on the sole of the foot where the combined forces acting on the sole of the

foot are applied. For a motion to be realizable, the ZMP must be guaranteed to lie within the

support polygon, a common stability criterion for footed robots. ASIMO [3], which Honda

has announced it is discontinuing development of, is a prime example of a vehicle based on

this traditional control approach. However, the ZMP control approach requires the use of a

variety of high-precision sensors to acquire data in real-time, a high-performance chip to quickly

compute the robot’s center of gravity and position, and finally a costly actuator to precisely track

the target trajectory and thus stabilize the gait. This results in severely elevated control costs

and extremely inefficient walking, while we humans walk in ordinary road conditions, with

near-unconscious movements, and do not need to precisely control the swing speed and angle
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of our legs. Thus, humans are approximately 16 times more efficient than ASIMO walkers.

Therefore, from the point of view of natural dynamics, it is desirable to have a natural and

efficient control method that can completely exploit the inherent dynamical properties of bipedal

robots. Specifically, underdriven robot control requires that the dynamics of the robot be utilized

more in the controller design rather than ignored [4, 5].

Passive walking was proposed by McGeer et al. in 1990 [6] to mimic a human gait with no

input during downhill, relying only on the conversion between gravitational potential energy and

kinetic energy. Since then, people inspired by passive dynamic walking have devised various

efficient gait control methods based on passive walking. Goswami et al., and Collins et al.

also made great contributions to the performance analysis of passive walking [7–11]. Although

passive walking has far-reaching implications and impacts on optimizing the walking efficiency

of walking robots. However, in practical walks, it is not possible to achieve input-free. Even if

only the gravitational potential energy is used in the descent, only a single gait can be generated,

and it is not possible to modify the speed, stride length, or obstacle crossing. Thus, while this

concept is well accepted theoretically by walking robotics scholars, it is difficult to be applied

and promoted in the real world with sincerity and effectiveness. In order to make the passive

walking theory applicable to ordinary road surfaces, robotics researchers have also conducted

a lot of research, such as the torque compensation-based approach by Spong et al. [12, 13],

the energy constraint-based control approach proposed by Asano et al. [14, 15], an efficient

walking method based on parametric excitation by Harata et al. and applied to a robot with

knees [16, 17].

Moreover, another similar method is CPG (Central pattern generator), which is a local oscil-

latory network of neurons that can generate stable phase-locking relationships through mutual

inhibition between neurons and generate rhythmic movements in the relevant parts of the soma

through self-excited oscillations [18, 19]. Furthermore, the output properties of the CPG can

be modulated by the animal’s abundant feedback network and higher-level neural centers, so

that the CPG can output rhythmic control signals adapted to the environment. The CPG-based

approach to humanoid robot motion control, which mimics the time-series properties of bipedal

walking, is also a more natural approach to the robot motion control problem, but still requires

angle-based feedback and the control cost is still not low enough.

One of the most fundamental issues that need to be addressed when controlling bipedal
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Figure 1.1: Fully-actuated and underactuated

robots with ease and efficiency based on the above ideas is overcoming underactuation without

feedback. When the center of gravity changes at any time, it is clear that methods based on

precise angular control cannot take full advantage of the dynamic characteristics of the bipedal

robot, and only appropriate moment-based feedforward control can do so [20, 21]. This idea

has also been proven by dynamical principles and mathematical means [22].

1.1.1 Fully actuated and underactuated

Fully actuated systems refer to a class of mechanical systems in which the number of con-

trol inputs in the system is equal to the number of controlled degrees of freedom, and it should

be noted that the number of controlled degrees of freedom is not the number of system states.

The corresponding two types of systems are underactuated systems (where the number of con-

trol inputs is less than the number of controlled degrees of freedom) [12] and over-actuated

systems (where the number of control inputs is greater than the number of controlled degrees

of freedom) [23]. For a given mechanical system, the driving case is normally determined by

the configuration of the specific actuation structure. As shown in Fig. 1.1, the left side uses a
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Figure 1.2: Static and dynamic walking

2-rod system as an example, by fixing the bottom to the ground, when the system has only two

degrees of freedom and there are two inputs in the system corresponding to each of these two

degrees of freedom, the system becomes a fully actuated system. The right side adds a foot to

the left to simulate a human leg. At this time, the number of inputs does not alter (𝑢2 can not

work), but the degree of freedom has increased by one, so it becomes an underactuated system.

In general, unless the feet can be forcibly constrained to the ground, bipedal walking robots

are underactuated systems, which makes it extremely difficult to efficiently and stably control a

bipedal robot to achieve the desired motion [24–26].

1.1.2 Static and dynamic walking

Static walking is walking so that with each step the center of gravity of the body is constantly

within the range of the soles of the feet (as shown on the left side of Fig. 1.2). For example,

a large number of older people also have static walking, they shift their weight carefully, their

step length is short, and their walking speed is moderate. In the early days of bipedal robotics
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research, most of them used the static walking method [27], including the toys of bipedal robots

that are now sold on the market, which makes the sole of the foot extremely large, which makes

the grounding area extremely wide and makes it easier to keep the center of gravity within the

sole of the foot. When a normal human walks, he or she has a dynamic walking in which

the center of gravity is constantly moving forward (As shown on the right side of Fig. 1.2).

Dynamical walking [28] is a perfect combination of various factors, such as the relationship

between gravity and center of gravity shift, the maintenance of balance, and the parameters of

the body that allow us to walk in a stable manner. In other words, in dynamic walking, which

uses the body’s momentum to move smoothly, the center of gravity is not always on the sole of

the foot. It is necessary to increase walking speed and also to achieve dynamic walking when

considering walking over uneven or sloping surfaces or any other type of ground. The specific

differences between static and dynamic walking are shown in Table 1.1.

1.1.3 Zero moment point

When the robot is walking, it is subject to gravitational forces from the Earth and inertial

forces from the acceleration and deceleration of the walk. These combined forces are called

total inertial forces. On the other hand, the robot’s landing foot is subject to the ground reaction

force as a reaction from the ground. The intersection of the axis of total inertia force and the

Table 1.1: Difference between the static and dynamic walking

Static walking Dynamic walking

Balance Walking with constant balance Intermittently shifts weight by

off-balance

Environment Only can walk on flat ground Can walk stably on slopes, stairs,

uneven floor surfaces, etc

Speed Slow Fast

Stop Can be stopped at any time Cannot be stopped in the middle

Motion Walking with upper body move

back or forward

Walking with Upper body usually

remains fixed
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ground is called the Zero Moment Point(ZMP) because the moment of total inertia force is zero.

The point where the ground reaction force acts are called the ground reaction force action point.

For example, if we focus on our toes, we can stand on our toes or we can stand on our heels. In

the former case, the ZMP is located at the toe, and in the latter case, the ZMP is located at the

heel.

Simplifying the bipedal robot to a Cart-Table model would be more convenient for dealing

with the ZMP problem [29]. As shown in Fig. 1.3, there is a cart moving along the surface of the

table on the horizontal ground, and the table presents a top-heavy situation and is prone to tip

over due to the limited area of support in contact with the table and the ground. However, the car

can be controlled to perform an accelerated motion on the tabletop, generating a corresponding

acceleration, relying on inertial forces to obtain an instantaneous equilibrium of the table, at

which point the ZMP is within the range of the table support legs. The figure shows a car model

moving along the horizontal direction of 𝑋 . In the 3D setting, a car model moving along the

𝑌 direction is also required, and the situation is similar, so the car moving in the horizontal

direction is used here as an example for analysis. Since we require that the moment around the
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Figure 1.4: Entrainment effect

ZMP must be zero (otherwise it would cause the table to tip over), therefore,

𝜏ZMP = 𝑚𝑔(𝑥 − 𝑝𝑥) − 𝑚 ¥𝑥𝑧𝑐 = 0. (1.1)

The equation implies that the acceleration generated by the car is equivalent to the moment

effect at the ZMP in order to be able to cancel the moment effect at the ZMP after the mass of

the car has been subjected to gravity, thus ensuring that the table is balanced.

1.2 Research Methodology

1.2.1 Entrainment effect

It is an Entrainment effect two oscillators, which, if no external force were applied, should

have their own natural frequencies, are compelled to vibrate in concert when their frequencies

are close to each other, and to synchronize at a common frequency slightly deviating from

7



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

-10

0

10

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Estimated 2  value range based on test data

True function

Points at which function is sampled

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

10-10

100

A
c
q
u
is

ti
o
n
 f
u
n
c
ti
o
n

Probability that function is over threshold

Next sampling point

Figure 1.5: Bayesian optimization

their original natural frequency [30,31]. For example, if two metronomes with slightly different

frequencies are placed on the same table, they will move at the same frequency. Humans operate

on a 24-hour cycle (the original biological clock is about a 25-hour cycle, but it is entrained to

the sun). As shown in Fig. 1.4, the two oscillators can be represented as Out-of-phase, In-phase,

Multiple-In-phase, and Anti-phase. If the two oscillators are linear systems, then an accurate

algebraic model can be constructed such that the state of the system can be predicted from

the solution of the model. However, it is common that most of the oscillators, in reality, are

nonlinear systems, which require the use of nonlinear mechanics for analysis.

1.2.2 Bayesian optimization

BO (bayesian optimization) is effective in finding global maxima or minima in the case

of high-dimensional parameter spaces and unknown or non-reducible cost functions [32]. The

specific process is as follows:
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• Gaussian process

– Definition: express the cost function/function to be optimized as a probability dis-

tribution and update the probability distribution using the observed values

– Purpose: to obtain the optimal value by iteration

– Inputs: combinations of parameters

– Outputs: vector of means, the covariance matrix

• Collection function

– Definition: function used to evaluate the probability of a favorable performing ob-

servation (a function that predicts which set of parameters will yield the optimal

value)

– Purpose: to select the next point of observation

– Inputs: vector of means, the covariance matrix

– Outputs: current combination of parameters

• Procedure

– Randomly set the initial value of the Gaussian process (combination of parameters),

then substitute into the unknown function to get the observed value, after using the

newly obtained Gaussian distribution (mean vector covariance matrix) to substitute

into the sampling function, through the sampling function to get the next observation

of the combination of parameters finally brought into the original function, and thus

on, until the global maximum or minimum value is found.

Since the bipedal robot needs to optimize numerous parameters, not only the input parameters

but also the physical parameters of the system itself, it is excellent to use Bayesian optimization

when doing high-dimensional parameter optimization, and the algorithm part of this paper,

referring to the previous work of Saar et al. [33].

1.2.3 Rössler attractor

Currently, chaotic phenomena are mostly believed to have a negative effect on bipedal walk-

ing. Therefore, some work has been carried out to avoid the creation of chaotic gaits or to
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control chaotic gaits directly to limit cycle walking [34, 35]. However, from another point of

view, the most fundamental requirement for bipedal walking is the ability to continue walking

without falling, and thus larger BOA (basin of attraction) is required to tolerate external pertur-

bations. In this sense, chaotic oscillators tend to have larger BOA compared to the limit cycle.

With these considerations in mind, a reasonably generated chaotic bipedal gait may be more ro-

bust to perturbations. To investigate the performance of chaotic gaits, the Rössler attractor [36]

generates a chaotic control waveform suitable as a robot input torque.

1.3 Research Aim

Simultaneously achieving natural and efficient gait generation and robust adaptation to the

environment is a challenging problem for bipedal robots. The current, mature approach to

bipedal robot control, like ZMP, enables real-time feedback control of poses by using a large

number of sensors and high-priced high-performance actuators. Although stability and walking

speed are guaranteed to some extent, walking efficiency is particularly low. In reality, working

hours are too short and the energy consumption is overly steep, a problem that cannot be ig-

nored. Therefore, it is extremely essential to apply a reasonable torque control so that the robot

can take full advantage of the inherent dynamics and achieve an efficient and controllable gait.

The purpose of this study is to advocate an efficient and robust theory of motion generation

for bipedal robots. Such as a biped robot, to which only hip torque can be applied, can continue

to walk stably on a horizontal surface by devising a mechanism (foot shape, mass balance, etc.)

to reduce kinetic energy loss during a swing leg collision. Moreover, when stepping over low

steps, the hip torque can be correctly set to break the potential barrier in the mid-step phase.

These can be viewed as motion generation by control signals generated at the human reflex level

(first signal system). However, a bipedal robot without sufficient DOF (degrees of freedom) is

practically incapable of adapting to more complex environments, forcing it to add additional

DOF or integrate with advanced signaling systems. This study aims to address the properties

of the first signal system needed to generate bipedal locomotion and the optimization problem

of the control signals it generates. The stable and efficient motion of an underactuated bipedal

robot using an entrainment control method. Therefore, nonlinear analysis on numerical simu-

lations, experimental validation in realistic environments, and optimization of the entrainment

waveform should be performed.
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On the other hand, it is also essential to generate chaotic gaits similar to human walking

and investigate their properties. In this study, the author indirectly generated chaotic gaits by

Rössler attractor to compare single-cycle limit cycle gait, which provides a basis for additional

characterization of chaotic gaits in the future.

1.4 Organization of Dissertation

This dissertation consists of 3 main parts. The first part uses a nonlinear analysis approach

for the feasibility of entrainment control and validates it with different pavements, correspond-

ing to chap. 2, 3, and 4. The second part is devoted to experimental validation and parameter

optimization, corresponding to chap. 5 and 6. The third part investigates whether the chaotic

gait achieved by the entrainment method can achieve stable and efficient motion in comparison

with the limit cycle gait, corresponding to Chapter 7. The details are described below.

Chapter 2 : By using the rimless wheel as the simplest example, explored the possibility of

gait generation by applying periodic inputs through the reaction wheel and analyzed it through

numerical simulations. It was clarified that it is only possible for a rimless wheel to walk on

a horizontal surface when equipped with extremely circular feet and that varying the input fre-

quency does not effectively affect the rimless wheel’s walking frequency, providing a reference

for general bipedal robots in the sequel.

Chapter 3 : The entrainment control method is presented and illustrated using a passive

walking robot as an example, and a typical nonlinear analysis is performed through numerical

simulations. Demonstrates the effectiveness of entrainment control in a general bipedal robot

model. Preparations were made for the next application on non-downhill surfaces.

Chapter 4 : Detailed gait analysis of the biped robot was used to verify the effect of entrain-

ment on level ground as well as on uneven ground. Efficiency and stability are also evaluated

for the generated gait. It was found that the walk performance can be effectively improved in

the entrainment range by using a time-symmetric input signal.

Chapter 5 : The effectiveness of the proposed control method was demonstrated through

fabrication and experiments on real machines, where a robot using the same method was able

to successfully walk on a horizontal road surface in a real environment. The difference be-

tween experiment and simulation is illustrated by comparing the experimental results with the

simulation results.
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Chapter 6 : By using a BO approach, the control and physical parameters of the entire

system are optimized, mainly for walking speed and walking efficiency. The results show that

the walking performance of the robot can be enhanced by both its own physical and control

parameters.

Chapter 7 : To investigate whether a reasonably generated chaotic bipedal gait might be

more stable. The Rössler attractor is used to generate chaotic control waveforms suitable for

use as robot input torques, and the differences between the generated chaotic gaits and the limit

cycle gaits are analyzed to clarify that the rationally generated chaotic gaits are in some cases

more robust.

Chapter 8 : Summarize the dissertation and lead to the next work.
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Chapter 2

Modeling, Control, and Analysis of

Rimless Wheel Walking on Horizontal

Road Surface Based on Periodic Input

Signal

2.1 Overview

Limit cycle walking [7, 9] inspired by passive walking is a favorable way for biped robots.

Various types of limit cycle walkers such as biped [37–39], quadruped [40–42], and multilegged

robots [43,44] have been studied and developed. The easiest way to achieve efficient horizontal

walking is to add a slight torque input to the passive walker. Because of its inherent stability,

the resulting gait will converge to a stable periodic orbit in most cases. From previous work, it

is not difficult to generate a stable limit cycle, but how to effectively control the gait of the robot

through only one periodic input has not been explored. The rimless wheel, as the simplest model

that can simulate biped walking, is a great example to study the characteristics and mechanism

of limit cycle walking, such as efficiency [45], stability [46, 47], and gait symmetry [48, 49].

In this chapter, the author studies the gait generation of the rimless wheel on a horizontal

surface by applying periodic input. First of all, the numerical simulation shows that when

the input signal is time symmetrical (that is, the time integral of each walking cycle is 0), the

rimless wheel with a large sufficiently semicircular foot is needed to generate the limit cycle
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gait, and the larger the radius of the semicircular foot is, the greater the walking speed is.

Moreover, the walking frequency of RW is practically not affected by the input frequency, so

the entrainment effect is difficult to produce. When the input signal is time asymmetry (that is,

the time integral of each walking cycle is greater than 0), the radius of the smaller semicircular

foot can also generate the limit cycle gait. At this time, although part of the input frequency

is consistent with the walking frequency, the walking performance has not been significantly

improved. Therefore, periodic input does not bring obvious advantages when using the RW

model.

2.2 Dynamics Modeling and Control Method
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Figure 2.1: Underactuated rimless wheel with semicircular feet driven by reaction wheel

The mathematical model is shown in Fig. 2.1, which is specified as:

• The angular position of the stance leg to the vertical direction is 𝜃1 [rad]. The rimless
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wheel has 8 identical legs, and the length of each leg is 𝐿 [m]. So the angle of each two

legs is 𝜋/4 [rad].

• The radius of semicircular feet is 𝑅 [m] and the position of the midpoint of the semi-

circular feet is (𝑥, 𝑧). The coordinate of the grounding point of the stance leg is set to

(𝑥𝑐, 𝑧𝑐).

• The masses of each leg are 𝑚 [kg] and the inertial moment of the RW is 𝐼1 [kg·m2]. The

weight of the reaction wheel is 𝑚𝑅 [kg] and the inertial moment of the reaction wheel is

𝐼2 [kg·m2].

• The only control input 𝑢 [N·m] acts between the RW and the reaction wheel.

2.2.1 Equation of motion

The generalized coordinate vectors is set to q =

[
𝑥 𝑧 𝜃1 𝜃2

]T
. The equation of motion

about the robot then becomes

M ¥q + h = JTλ + S𝑢, (2.1)

J ¤q = 02×1, (2.2)

where M represents the inertia matrix, h is the combination of the central force, Coriolis force,

and gravity terms. On the right side of Eq. (2.1), JTλ is the holonomic constraint. In addition,

the driving vector becomes

S =

[
0 0 1 −1

]T
. (2.3)

The author assumes that the robot is in non-sliding contact with the ground. Due to the semi-

circular feet, the velocity constraint at the contact point between the stance leg and the ground

during the walking period should satisfy the following conditions:

¤𝑥𝑐 = 𝑅 ¤𝜃1, ¤𝑧𝑐 = 0. (2.4)

Therefore, the location of the grounding point can be obtained by the following equation:
𝑥𝑐

𝑧𝑐

 =


𝑥 + 𝑅 sin 𝜃1

𝑧 + 𝑅 cos 𝜃1 − 𝑅

 . (2.5)
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After differentiation, we can obtain the velocity of the point as:

d
d𝑡


𝑥𝑐

𝑧𝑐

 =

¤𝑥 + 𝑅 ¤𝜃1 cos 𝜃1

¤𝑧 − 𝑅 ¤𝜃1 sin 𝜃1

 . (2.6)

Therefore, Jacobians J are determined as

J =


1 0 𝑅 cos 𝜃1 − 𝑅 0

0 1 −𝑅 sin 𝜃1 0

 . (2.7)

In addition, the ground reaction force λ [N] is the simultaneous solution of Eqs. (2.1) and (2.2)

as follows:

λ = −X−1(JM−1(S𝑢 − h) + ¤J ¤q), (2.8)

X := JM−1JT.

The ground reaction force must always be positive during walking, otherwise, a normal walking

gait cannot be generated. By substituting Eq. (2.8) into Eq. (2.1), we can obtain

¥q = M−1Y (S𝑢 − h), (2.9)

Y := I4 − JTX−1JM−1,

where I4 is the identity matrix of size 4.

2.2.2 Equation of collision

According to the inelastic collision model, the foreleg neither slides nor bounces when it

touches the ground. Therefore, the foreleg and rear leg are immediately exchanged at the mo-

ment of ground-contacting. Since each leg is identical, the zero crossing of the following func-

tion becomes:

𝑓 (𝜃1) := 𝜃1 − 𝛼/2, (2.10)

The transition that occurs before and after the collision is shown below:

M ¤q+ = M ¤q− + JT
𝐼 λ𝐼 (2.11)

J𝐼 ¤q+ = 02×1. (2.12)

Here, the superscripts “−” and “+” mean immediately before and after a collision. Due to the

semicircular feet, When the leg change condition is triggered, the foreleg is grounded at the

16



point of the foot as (𝑥𝑐, 𝑧𝑐). Therefore, the velocity constraint condition for the landing point of

the forefoot is determined as

¤̄𝑥𝑐+ = 𝑅 ¤𝜃2, ¤̄𝑧𝑐+ = 0, (2.13)

with the details of

d
d𝑡


𝑥𝑐

𝑧𝑐


+

=
d
d𝑡


𝑥 + 𝐿 sin 𝜃1 + (𝐿 − 𝑅) sin (𝛼 − 𝜃1)

𝑧 + 𝐿 cos 𝜃1 − (𝐿 + 𝑅) cos (𝛼 − 𝜃1) − 𝑅


+

Accordingly, the velocity constraint J𝐼 can be derived as

JT
𝐼 =



1 0

0 1

(−𝐿 + 𝑅) cos (𝛼 − 𝜃−1 ) + 𝐿 cos 𝜃1 − 𝑅 −𝐿 sin 𝜃−1 − (𝐿 − 𝑅) sin (𝛼 − 𝜃−1 )

0 0


. (2.14)

By solving Eqs. (2.11) and (2.12) simultaneously, the Lagrange multiplier vector λ𝐼 ∈ R2 can

be derived as

λ𝐼 = −X−1
𝐼 J𝐼 ¤q−, (2.15)

X𝐼 := J𝐼M
−1JT

𝐼 .

By substituting Eq. (2.15) into Eq. (2.11), we can also obtain

¤q+ =

(
I4 −M−1JT

𝐼 X
−1
𝐼 J𝐼

)
¤q−. (2.16)

2.2.3 Control methods

To take advantage of the inherent dynamics of the robot as much as possible, the feedforward

periodic input waveform is used in this chapter, as shown below.

𝑢(𝑡) = 𝑢0 + 𝐴𝑚sin(2𝜋 𝑓𝑐𝑡) (2.17)

where 𝐴𝑚 [N·m] and 𝑓𝑐 [Hz] are the amplitude and frequency of the sine wave, respectively.

It is essential to note here that this input signal is time-symmetric when 𝑢0 = 0, i.e., the time

integral of each walking cycle is 0, as shown below.∫ 𝑇

0
𝑢(𝑡)d𝑡 = 0. (2.18)
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At this point, the energy compensated by the input must be greater than 0 for the robot to

generate a gait after each collision with the ground. The details are as follows,

Δ𝐸 =

∫ 𝑇

0
¤𝜃1𝑢d𝑡 =

∫ 𝛼/2

−𝛼/2
𝑢(𝜃1)d𝜃1 > 0. (2.19)

If this condition cannot be met, RW will not be able to cross the potential barrier.

2.3 Numerical Simulation Results

2.3.1 Motion generation

Numerical simulation needs to use the physical and control parameters shown in Table 2.1.

Here, it should be noted that the location of the grounding point of the foot is not the generalized

coordinate system in 𝑥, 𝑧 but 𝑥𝑐 and 𝑧𝑐, so the need to calculate the actual role of the arc foot

through the geometric relationship to the initial conditions of the ground. The easiest way to do

that is to start at 0 [rad] so that 𝑥, 𝑧 can also start at 0 as shown below.

q(0) =
[

0 0 0 0
]T

¤q(0) =
[

0 0 1 0
]T

(2.20)

Since the initial state gives the right angle as well as sufficient speed, the robot can cross the

potential barrier.

Figure 2.2 shows the simulation results of the limit cycle walking of the RW for the first 10

seconds. In Fig. 2.2(a), it can be seen that RW is affected by the initial velocity and the input

Table 2.1: Physical and Control Parameters

Symbol Value Unit

𝑚 1 kg

𝑚𝑅 1 kg

𝐿 1 m

𝑅 0.1 m

𝛼 𝜋/4 rad

𝑔 9.81 m/s2

Symbol Value Unit

𝐼1 0.25 kg·m2

𝐼2 0.09 kg·m2

𝑢0 1 N·m

𝐴𝑚 1 N·m

𝑓𝑐 1 Hz
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Figure 2.2: Simulation results of typical gait generation where 𝑢0 > 0

waveform, which first becomes slower and then gradually stabilizes. Moreover, since RW is a

fixed step, the angular magnitude of each step is also fixed. The shift of RW angular velocity

can be observed in Fig. 2.2(b), it is also found that it decelerates first and then tends to shift at a

uniform speed. Fig. 2.2(c) shows the variation of the torque given by the sine input. Note that

𝑢0 is not zero, so the input signal is not time-symmetric. The last Fig. 2.2(d) shows the time

variation of the vertical ground reaction force. Since the weight of the whole system is 2 [kg],
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Figure 2.3: Phase plane plot of RW where 𝑢0 > 0

the ground reaction force is thought to correspond to it. In addition, the value of the vertical

ground reaction force is consistently positive, indicating that the stance leg does not leave the

ground.

To confirm that the robot converges to a stable limit cycle gait after applying this input

signal, the phase plane diagram of the gait after a sufficient time (after 300 [s]) is shown in Fig.

2.3. The five-pointed star in the figure represents the initial position. It can be seen that the RW

is able to converge to the limit cycle gait on the horizontal pavement with the application of a

time-asymmetric sinusoidal input signal.

2.3.2 Analysis of time-symmetric control input

In the previous subsection, the authors successfully generated the limit-loop gait by a time-

asymmetric input signal. Then, whether RW can also generate a stable gait when 𝑢0 = 0,

i.e., when the input signal is time-symmetric, needs to be verified by numerical simulations.

According to Algorithm 1, the results are shown in Fig. 2.4. Figure 2.4(a) indicates the size of

𝑅 for which the limit cycle gait can be generated for a radius 𝑅 of the semicircular foot in the

range from 0 to 1 [m]. We can find that the only way to walk successfully is when 𝑅 is greater
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Algorithm 1 Calculate walking frequency 𝑓𝑤 and walkable 𝑅

Require: The walking frequency 𝑓𝑤 of the bipedal robot when it gets stabilized

Input: Initial state q(0), ¤q(0), 𝐴m and 𝑓c

Output: Walking frequency 𝑓𝑤 of the next 30 steps after 100 seconds

1: Initialization 𝑓𝑤 [𝑙] [𝑚] [30] = 0 , 𝑓c = 1 , 𝐴m = 0.1

2: for 𝑖 = 1; 𝑖 <= 𝑙 : 𝑖 + + do

3: for 𝑗 = 1; 𝑗 <= 𝑚 : 𝑗 + + do

4: Run simulation for 100 seconds.

5: Save the next 30 walking frequency to 𝑓

6: 𝑓𝑤 [𝑖] [ 𝑗] = 𝑓

7: 𝑓𝑐 = 𝑓𝑐 + 0.05

8: end

9: 𝑅 = 𝑅 + 0.05

10: end

11: Return 𝑓𝑤

than 0.86 [m]. This is extremely demanding, and the leg length of RW is only 1 [m]. It is easier

to walk because when RW has a large semicircular foot radius, which considerably reduces the

location of the potential barriers. Figure 2.4(b) is the result of the effect of changing the input

frequency on the walking frequency when set to the smallest radius that can generate a gait.

The circles represent 30 gait steps, and the middle dots indicate the average value, and it can be

seen that the RW can walk even at extremely minor input frequencies, but by changing the input

frequency, the walking frequency of the RW does not alter significantly and does not produce

the expected entrainment phenomenon. In the Fig. 2.4(c), the author takes the 𝑅 close to the leg

length to explore the effect of the input frequency on the walking frequency, and although the

same entrainment phenomenon is not observed, the variance of the walking frequency becomes

smaller for each input frequency.

2.3.3 Analysis of time-asymmetric control input

For comparative analysis, when 𝑢0 is greater than 0, the simulation results are shown in Fig.

2.5. In Fig. 2.5(a), each dashed line represents the case where 𝑓𝑤: 𝑓𝑐 is 1: 𝑛 (𝑛 is a positive inte-

ger), respectively. When the input signal is time-asymmetric, i.e., both 𝑢0 and 𝐴𝑚 are 1 [N·m],
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(b) Walking frequency where 𝑅=0.86 [m]
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(c) Walking frequency where 𝑅=0.98 [m]

Figure 2.4: Walkable 𝑅 and walking frequency by the sine wave input where 𝑢0 = 0

at this time, by varying the input frequency, we can find that the entrainment phenomenon is
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0 1 2 3 4 5 6 7 8 9 10

 f
c
  [Hz]

1.2

1.3

1.4

1.5

1.6

1.7

 f
w

  
[H

z
]

(b) Walking frequency where 𝑅=0.1 [m] and 𝑢0=1.5 [N·m]

Figure 2.5: Walking frequency by the sine wave input where 𝑢0 > 0

generated sequentially, but the individual entrainment ranges are tiny. In the entrainment range

of 1:1, there is a slight increase in the walking frequency and a corresponding slight increase

in the walking speed due to the fixed step characteristic of RW. The subsequent entrainment

intervals did not show any significant shift in walking performance. The simulation results for

increasing 𝑢0 to 1.5 [N·m] are shown in Fig. 2.5(b). Compared with Fig. 2.5(a), the overall av-

erage walking frequency of the RW increases due to the larger input torque, and the gait can be

generated at a smaller input frequency. However, the entrainment effect is not satisfactory at this

point, and changing the input frequency does not bring significant performance improvement.
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2.4 Summary and Discussions

In this chapter, to investigate the walking characteristics of a bipedal walking robot under

periodic input signals, a minimal model RW is used and simulates the swing leg motion of

an ordinary bipedal robot by carrying a reaction wheel. The simulation results show that the

RW requires an extremely large semicircular foot to generate a limit cycle gait under a time-

symmetric input signal, and the walking frequency of the RW is not well affected by changing

the input frequency at this time. In contrast, with a time-asymmetric input signal, the RW

can easily cross the potential barrier when paired with a smaller semicircular foot. A weak

entrainment effect is generated at this point, but the walking performance of RW cannot be

significantly improved within each entrainment interval.

Due to the fixed step length nature of the RW, the fewer the legs, the more energy is re-

quired to break through the potential barrier after each impact on the ground, and in a general

bipedal walking robot, the author speculates that this control method is more advantageous in

a compass-like bipedal robot due to the presence of swinging leg, thus extending this control

method to a more general bipedal robot is necessary. The next chapter is dedicated to dis-

cussing whether this method can be used to produce a stable and controllable gait when the

robot is walking on a slope.
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Chapter 3

Motion Analysis of Quasi-passive Dynamic

Walking Robot Based on Entrainment

Effect

3.1 Overview

If we want to generalize the idea of passive walking, the most crucial and difficult point is to

actively exploit the natural dynamics of the system. That is, the effect of the control input on the

system should be efficiently coupled with the dynamics of the system itself. Inspired by resonant

phenomena in nature, Asano and Tokuda proposed an indirectly controlled connected rimless

wheel walk system consisting of two connected rimless wheels and a wobbling mass [50].

This system is characterized by the fact that there is no conventional torque input between the

rimless wheels and the connecting rod, yet the wobbling mass can be controlled to oscillate

periodically. Li et al. additionally analyzed this mechanism based on the fact that it allows for

efficient walking by actively exploiting the natural dynamics of the system [51–53] and the fact

that periodic oscillations of the oscillator induce resonances in the robot, offering the possibility

of convergence to a steady state.

Connected rimless wheel systems are inherently stable, and it is extremely difficult to

achieve similar results in bipedal robots. However, from the point of view of the signal sys-

tem, a human unconsciously and periodically steps forward during a normal walk. Then it

seems feasible to use only a suitable torque applied to the hip. If a constant torque is given to
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make the legs step forward, it can be achieved. Still, the bipedal robot has zero dynamics for

both legs with only one feed-forward input torque and based on the fact that the walking action

is a periodic motion, it is critical to design a reasonable input waveform. In Chap. 3, the author

explores the feasibility of entrainment control using the feed-forward torque exerted by the sine

wave like in Chap. 2. Moreover, explore the advantages of a compass liked biped robot under

this input condition.

3.2 Dynamics Modeling and Control Method
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Figure 3.1: Quasi-passive dynamic bipedal robot with semicircular feet

To facilitate comparison with previous studies, the widely studied compass-like bipedal

robot is used in this paper. In order to reduce the energy loss due to conflict and increase the

virtual gravity effect due to rolling, the model uses semi-circular feet with adjustable radii. The

mathematical model is shown in Fig. 3.1, which is specified as:
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• The angular positions of the stance and swing legs to the vertical direction are 𝜃1 and 𝜃2

[rad] respectively. The length of each leg is 𝐿 (= 𝑎 + 𝑏) [m].

• The radius of semicircular feet is 𝑅 [m] and the position of the midpoint of the semi-

circular feet is (𝑥, 𝑧). The coordinate of the grounding point of the stance leg is set to

(𝑥𝑐, 𝑧𝑐).

• The masses of two identical rigid legs are 𝑚1 and 𝑚2 [kg] and the inertial moment of

the legs is ignored. The weight of the hip is 𝑚𝐻 [kg] and the friction of the hip joint is

neglected.

• The angle of the downslope is set as 𝜙 [rad]. The only control input 𝑢 [N·m] for this

underactuated bipedal robot is applied to the hip joint.

3.2.1 Equation of motion

The generalized coordinate vectors is set to q =

[
𝑥 𝑧 𝜃1 𝜃2

]T
. The equation of motion

about the robot then becomes

M ¥q + h = JTλ + S𝑢, (3.1)

J ¤q = 02×1, (3.2)

where M represents the inertia matrix, h is the combination of the central force, Coriolis force,

and gravity terms. Moreover, the details about M and h can be calculated as follows:

M =



𝑀11 0 𝑀13 −𝑏𝑚2 cos 𝜃2

𝑀22 𝑀23 𝑏𝑚2 sin 𝜃2

𝑀33 −𝑏(𝑎 + 𝑏)𝑚2 cos (𝜃1 − 𝜃2)

Sym. 𝑏2𝑚2


,

𝑀11 = 𝑀22 = 𝑚1 + 𝑚2 + 𝑚𝐻 ,

𝑀13 = (𝑏(𝑚2 + 𝑚𝐻) + 𝑎(𝑚1 + 𝑚2 + 𝑚𝐻)) cos 𝜃1,

𝑀23 = −(𝑏(𝑚2 + 𝑚𝐻) + 𝑎(𝑚1 + 𝑚2 + 𝑚𝐻)) sin 𝜃1,

𝑀33 = 2𝑎𝑏(𝑚2 + 𝑚𝐻) + 𝑏2(𝑚2 + 𝑚𝐻)

+𝑎2(𝑚1 + 𝑚2 + 𝑚𝐻).
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h =

[
ℎ1 ℎ2 ℎ3 ℎ4

]T
,

ℎ1 = − ¤𝜃1
2(𝑏(𝑚2 + 𝑚𝐻) + 𝑎(𝑚1 + 𝑚2 + 𝑚𝐻)) sin 𝜃1

+𝑏 ¤𝜃2
2
𝑚2 sin 𝜃2,

ℎ2 = 𝑔(𝑚1 + 𝑚2 + 𝑚𝐻) − ¤𝜃1
2(𝑏(𝑚2 + 𝑚𝐻)

+𝑎(𝑚1 + 𝑚2 + 𝑚𝐻)) cos 𝜃1 + 𝑏 ¤𝜃2
2
𝑚2 cos 𝜃2,

ℎ3 = −𝑔(𝑏(𝑚2 + 𝑚𝐻) + 𝑎(𝑚1 + 𝑚2 + 𝑚𝐻)) sin 𝜃1

−𝑏(𝑎 + 𝑏) ¤𝜃2
2
𝑚2 sin (𝜃1 − 𝜃2),

ℎ4 = 𝑏𝑚2((𝑎 + 𝑏) ¤𝜃1
2 sin (𝜃1 − 𝜃2) + 𝑔 sin 𝜃2).

On the right side of Eq. (3.1), JTλ is the holonomic constraint. In addition, by letting 𝑢 be the

only control input applied to the hip joint, the driving vector becomes

S =

[
0 0 1 −1

]T
. (3.3)

The author assumes that the robot is in non-sliding contact with the ground. Due to the semi-

circular feet, the velocity constraint at the contact point between the stance leg and the ground

during the walking period should satisfy the following conditions:

¤𝑥𝑐 = 𝑅 ¤𝜃1 cos 𝜙, ¤𝑧𝑐 = −𝑅 ¤𝜃1 sin 𝜙. (3.4)

Therefore, the location of the grounding point can be obtained by the following equation:
𝑥𝑐

𝑧𝑐

 =

𝑥 + 𝑅 sin 𝜃1 − 𝑅 sin 𝜙

𝑧 + 𝑅 cos 𝜃1 − 𝑅 cos 𝜙

 . (3.5)

After differentiation, we can obtain the velocity of the point as:

d
d𝑡


𝑥𝑐

𝑧𝑐

 =

¤𝑥 + 𝑅 ¤𝜃1 cos 𝜃1

¤𝑧 − 𝑅 ¤𝜃1 sin 𝜃1

 . (3.6)

Therefore, Jacobians J are determined as

J =


1 0 𝑅 cos 𝜃1 − 𝑅 cos 𝜙 0

0 1 −𝑅 sin 𝜃1 + 𝑅 sin 𝜙 0

 . (3.7)
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3.2.2 Equation of collision

According to the inelastic collision model, the swing leg neither slides nor bounces when

it touches the ground. Therefore, the swing and stance legs are immediately exchanged at

the moment of ground-contacting. Since the two legs are identical, the zero crossing of the

following function becomes:

𝑓 (𝜃1, 𝜃2) := 𝜃1 + 𝜃2 − 2𝜙, (3.8)

Moreover, it requires d
d𝑡 𝑓 (𝜃1, 𝜃2) := ¤𝜃1 + ¤𝜃2 > 0 to detect collision. The transition that occurs

before and after the collision is shown below:

M ¤q+ = M ¤q− + JT
𝐼 λ𝐼 (3.9)

J𝐼 ¤q+ = 02×1. (3.10)

Here, the superscripts “−” and “+” mean immediately before and after a collision. Due to the

semicircular feet, When the leg change condition is triggered, the foreleg is grounded at the

point of the foot as (𝑥𝑐, 𝑧𝑐). Therefore, the velocity constraint condition for the landing point of

the forefoot is determined as

¤̄𝑥𝑐+ = 𝑅 ¤𝜃2 cos 𝜙, ¤̄𝑧𝑐+ = −𝑅 ¤𝜃2 sin 𝜙, (3.11)

with the details of

d
d𝑡


𝑥𝑐

𝑧𝑐


+

=
d
d𝑡


𝑥 + 𝐿 sin 𝜃1 − (𝐿 − 𝑅) sin 𝜃2 − 𝑅 sin 𝜙

𝑧 + 𝐿 cos 𝜃1 − (𝐿 − 𝑅) cos 𝜃2 − 𝑅 cos 𝜙


+

=


1 0 𝐿 cos 𝜃−1 −(𝐿 − 𝑅) cos 𝜃−2
0 1 −𝐿 sin 𝜃−1 (𝐿 − 𝑅) sin 𝜃−2

 ¤q+. (3.12)

Accordingly, the velocity constraint J𝐼 can be derived as

JT
𝐼 =



1 0

0 1

𝐿 cos 𝜃−1 −𝐿 sin 𝜃−1
(𝑅 − 𝐿) cos 𝜃−2 − 𝑅 cos 𝜙 (𝐿 − 𝑅) sin 𝜃−2 + 𝑅 sin 𝜙


. (3.13)

By solving Eqs. (3.9) and (3.10) simultaneously, the Lagrange multiplier vector λ𝐼 ∈ R2 can be

derived as

λ𝐼 = −X−1
𝐼 J𝐼 ¤q−, (3.14)

X𝐼 := J𝐼M
−1JT

𝐼 .
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By substituting Eq. (3.14) into Eq. (3.9), we can also obtain

¤q+ =

(
I4 −M−1JT

𝐼 X
−1
𝐼 J𝐼

)
¤q−. (3.15)

According to the expression (3.15), when after each collision for leg exchange, the status of the

stance and swing leg will be switched. We should reset each velocity ¤q+ as

¤q+ =



¤𝑥+ + 𝐿 ¤𝜃+1 cos 𝜃−1 − 𝐿 ¤𝜃+2 cos 𝜃−2
¤𝑧+ − 𝐿 ¤𝜃+1 sin 𝜃−1 + 𝐿 ¤𝜃+2 sin 𝜃−2

¤𝜃+2
¤𝜃+1


. (3.16)

On the other hand, each position q+ is reset as

q+ =



𝑥− + 𝐿 sin 𝜃−1 − 𝐿 sin 𝜃−2
𝑧− + 𝐿 cos 𝜃−1 − 𝐿 cos 𝜃−2

𝜃−2

𝜃−1


. (3.17)

3.2.3 Control methods

In this study, a gait model with a minimum number of degrees of freedom is introduced, and

the simplest periodic waveform (sine wave) is used to generate a gait with a minimum periodic

input, which is applied to the hip joint. In order to affect the dynamics of the robot itself as

little as possible, the control waveform has to be applied using a smaller torque control instead

of real-time angular feedback, where a feed-forward torque input waveform is shown below.

𝑢(𝑡) = 𝐴𝑚sin(2𝜋 𝑓𝑐𝑡) (3.18)

where 𝐴𝑚 [N·m] and 𝑓𝑐 [Hz] are the amplitude and frequency of the sine wave, respectively.

When the input is applied to the robot, the amplitude determines the maximum torque given,

and the frequency is the number of times the torque is repeated per unit of time. The onset of

the entrainment phenomenon is determined as the convergence of the robot’s walking frequency

to the input frequency after the robot has reached a stable state over time.
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3.3 Quasi-passive Dynamic Walking Based on the First Sig-

nal System

Numerical simulation needs to use the physical and control parameters shown in Table 3.1.

Here it should be noted that the location of the grounding point of the foot is not the generalized

coordinate system in 𝑥, 𝑧 but 𝑥𝑐 and 𝑧𝑐, so the need to calculate the actual role of the arc foot

through the geometric relationship to the initial conditions of the ground, as shown below.

q(0) =

[
−0.0149 0.0019 0.2 −0.25

]T
(3.19)

¤q(0) =

[
0 0 1 −0.2

]T

Since the initial state gives the right angle as well as sufficient speed, the robot can walk along

the slope successfully.

3.3.1 Gait generation test

Figure 3.2 shows the simulation results for the first 10 seconds when the hip input torque

follows a generally sinusoidal waveform. Fig. 3.2(a) is the center position (𝑥, 𝑧) of the semicir-

cular foot of the support leg, and the coordinate position 𝑧 is enlarged in the figure for a total

Table 3.1: Physical and Control Parameters

Symbol Value Unit

𝑚𝐻 10 kg

𝑚1 = 𝑚2 5 kg

𝐿 1 m

𝑎 = 𝑏 0.5 m

𝑅 0.1 m

𝜙 0.05 rad

𝑔 9.81 m/s2

𝐴𝑚 0.5 N·m

𝑓𝑐 1.4 Hz
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(d) Control input
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(e) Vertical ground reaction force

Figure 3.2: Simulation results of typical gait generation

descent of 0.4 m along the ramp for 10 seconds. Fig. 3.2(b) and Fig. 3.2(c) show the angular

variation of the two legs and the angular velocity over time. It can be seen that the robot moves
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Figure 3.3: Phase plane plot of steady period-1 gait

forward at a relatively constant speed, even in the first few steps. Here the input torque magni-

tude is only 0.5 [N·m] and the oscillation of both legs increases slightly with time and finally

stabilizes gradually. Figure 3.2(d) shows the variation of the torque given by the input. The last

Fig. 3.2(e) shows the time variation of the vertical ground reaction force. It varies drastically

due to the larger effect of the gravitational potential energy of walking on the slope. However,

the value of the vertical ground reaction force is always positive, indicating that the stance leg

does not leave the ground.

Without input from the hip, the robot will passively walk along a suitable ramp angle and

will eventually generate a limit-cycle gait or a chaotic gait. To confirm whether the robot can

converge to a stable limit-cycle gait after applying entrainment control, a phase plane plot of the

gait after the sufficient time (after 100 [s]) is shown in Fig. 3.3. It can be seen that the robot is

able to generate a period-1 limit-cycle gait on a downhill slope with a sinusoidal torque applied.
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(b) Energy loss

Figure 3.4: Simulation results of energy change with feed-forward control

3.3.2 Energy change observation

We can observe the actual energy shift by calculating the mechanical energy of the robot.

Moreover, the total mechanical energy of the robot is determined by the sum of its kinetic and

potential energy and hence is solved by the following equation.

𝐸𝑡𝑜𝑡𝑎𝑙 =
1
2
¤qTM ¤q + 𝑃. (3.20)

Note that 𝑃 is the potential energy. In this numerical simulation, the mechanical energy of the

robot is only lost when the legs hit the ground because external influences such as air resistance

are neglected. Therefore, the missing mechanical energy can be calculated by the following

condition.

𝐸𝑙𝑜𝑠𝑠 =
1
2
¤q+TM ¤q+ − 1

2
¤q−TM ¤q−. (3.21)

Figure 3.4 shows the energy changes that occur in the robot walk with entrainment control

induced. Figure 3.4(a) shows the change in the overall mechanical energy. Since the applied

input torque is very small, only 0.5 [N·m], the mechanical energy change is not significant

during each walking cycle. In Fig. 3.4(b), it is possible to observe the kinetic energy that is
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consumed after the foot strikes the ground. Depending on the initial conditions, the energy

consumed thereafter is almost constant except for the first few steps. This is due to the gradual

transition of the robot to a stable walking condition.

3.3.3 Feasibility analysis of entrainment control

The previous simulation results demonstrate that the robot can walk into a limit-cycle gait

with smaller feed-forward period input conditions. In order to verify the feasibility of the en-

trainment theory and to investigate whether the robot’s walking frequency can be forcibly en-

trained by the input frequency under varying input frequency and input torque, simulations were

performed according to the following Algorithm 2. Two ramp angles, smaller and general, are

tried here, with 𝜙 set to 0.02 and 0.05 [rad], respectively. The input frequency and torque were

adjusted at each angle, and the results of each simulation were analyzed by taking 20 steps after

the robot had successfully walked for 100 seconds, and recording the frequency of these 20

steps. To systematically analyze this forced entrainment property, the Arnold tongue is used to

quantify the overall entrainment range of the system. In nonlinear dynamics, Arnold tongue is

used to evaluate the relationship between two oscillatory systems whose phases are affected by

each other [54, 55].

The measured Arnold tongue is shown in Fig. 3.5. The generation of entrainment is iden-

tified when | 𝑓𝑤 − 𝑓𝑐 | < 0.01 [Hz]. The robot exhibits a typical Arnold tongue at both slopes,

where the walking frequency is forced to be entrained by the input frequency as it approaches

the robot’s natural walking frequency, and the range of successful entrainment is marked by

the pentagon. Figure 3.5(a) shows an Arnold tongue at a slope angle of 𝜙 = 0.02 [rad]; the

entrainment range increases as the torque increases, but the robot begins to move out of the

entrainment range when the torque exceeds 0.45 [N·m]. In Fig. 3.5(b), roughly the same trend

exists when the slope angle 𝜙 is set to 0.05 [rad]. However, the entrainment range at the same

torque becomes significantly smaller, presumably because the compensation for the conversion

of the robot’s gravitational potential energy into kinetic energy becomes larger as the slope

angle becomes larger, and a smaller torque can hardly affect the dynamics of the whole system.
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Algorithm 2 Calculate walking frequency 𝑓𝑤

Require: The walking frequency 𝑓𝑤 of the bipedal robot when it gets stabilized

Input: Initial state q(0), ¤q(0), 𝜙, 𝐴𝑚 and 𝑓𝑐

Output: Walking frequency 𝑓𝑤 of the next 20 steps after 100 seconds

1: Initialization 𝑓𝑤 [𝑙] [𝑚] [20] = 0 , 𝑓𝑐 = 1 , 𝐴𝑚 = 0.1

2: for 𝑖 = 1; 𝑖 <= 𝑙 : 𝑖 + + do

3: for 𝑗 = 1; 𝑗 <= 𝑚 : 𝑗 + + do

4: Run simulation for 100 seconds.

5: Save the next 20 walking frequency to 𝑓

6: 𝑓𝑤 [𝑖] [ 𝑗] = 𝑓

7: 𝑓𝑐 = 𝑓𝑐 + 0.01

8: end

9: 𝐴m = 𝐴m + 0.05

10: end

11: Return 𝑓𝑤

3.4 Summary and Discussions

In this chapter, a nonlinear analysis is performed on a compass liked bipedal robot with

semicircular feet in order to understand the motion mechanism of a passive walking robot under

entrainment control. It was found that a minimal periodic torque input was able to influence the

dynamics of the robot’s passive walk successfully. It successfully entrains the robot from natural

walking frequencies to input frequencies. From the analysis of Arnold tongue, it was found that

the entrainment range is positively correlated with the magnitude of the input amplitude. The

results of walking on different slopes show that the range of entrainment is considerably wider

at smaller slopes. To make the robot workable in practice, passive walking on downhill slopes

alone is not sufficient, and it is not known whether the method can be successfully followed

on horizontal surfaces, so extending this controlling method to more general road conditions is

necessary. The next chapter is devoted to the question of whether this method can be used to

produce a stable and controllable gait when the robot walks on a horizontal surface.
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Figure 3.5: Arnold tongues concerning frequency and amplitude of input

37



Chapter 4

Nonlinear Analysis of Semicircular-footed

Bipedal Robot Walking on Horizontal

Road Surface with Entrainment Effect

4.1 Overview

In Chap. 3, a simple and efficient method is successfully used to make the walking cycle

of a biped robot controllable on a downhill slope. In this chapter, still based on the first signal

system, a single feed-forward waveform is used to issue a minimal forward walk command to

the robot to explore whether the robot can successfully combine the idea of entrainment to come

out with a reasonable gait on a horizontal road surface. This requires the robot to continuously

overcome potential barriers in the gravity field to achieve a gait similar to that of a human.

Based on this, the nonlinear nature of the method needs to be further elucidated. The nonlinear

analysis performed in this chapter helps to deepen the understanding of the dynamics of the

entrainment-controlled bipedal robotic system, which is beneficial for further optimization and

extension to follow.

This chapter is organized as follows. Section 2 presents the simplified equations of motion

and velocity constraints under the horizontal road surface, based on the control method in Chap.

3 with the addition of a sinusoidal basis with singular subdivisions to make the torque at the in-

put more prominent. Section 3 begins with a numerical simulation to demonstrate the feasibility

of this control method. After successfully stepping out of the limit cycle gait, the size of the
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Figure 4.1: Mathematical model of a biped robot with semicircular feet walking on the hori-

zontal road surface.

entrainment range is tested by adjusting the input parameters and analyzing the robot’s walking

performance in this state. Finally, the stability of the system is analyzed using the Poincaré

map.

4.2 Simplified Modeling and Control Method

The model of the compass-like biped robot with semicircular feet walking on the horizontal

road surface with single feed-forward control is illustrated in Fig. 4.1. The specific model

details are the same as in Chap. 2.
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4.2.1 Equation of motion

Let q =

[
𝑥 𝑧 𝜃1 𝜃2

]T
be the generalized coordinate vectors. The equation of motion

about the robot then becomes

M ¥q + h = JTλ + S𝑢, (4.1)

J ¤q = 02×1. (4.2)

Assuming that this model is on a horizontal road surface without sliding, the stance foot is

rolling along the semi-circular arc during the walking cycle. Therefore, The velocity constraint

at the position where the robot stance leg is in contact with the ground point is

¤𝑥𝑐 = 𝑅 ¤𝜃1, ¤𝑧𝑐 = 0. (4.3)

Therefore, Jacobians J are determined as

J =


1 0 𝑅 cos 𝜃1 − 𝑅 0

0 1 −𝑅 sin 𝜃1 0

 . (4.4)

4.2.2 Equation of collision

In this model, the author still assumes that the swinging leg neither slides nor bounces when

it hits the ground. When the swinging leg neglects contact with the ground during the swing,

and when the final swinging leg forms an isosceles triangle with the stance leg based on the

ground, the states of the two legs are immediately interchanged. Since the two legs are the

same, the zero crossing of the following functions:

𝑓 (𝜃1, 𝜃2) := 𝜃1 + 𝜃2, (4.5)

starting from negative number, it requires 𝑑
𝑑𝑡
𝑓 (𝜃1, 𝜃2) := ¤𝜃1 + ¤𝜃2 > 0 to detect collision. The

equation of collision is as follows:

M ¤q+ = M ¤q− + JT
𝐼 λ𝐼 , (4.6)

J𝐼 ¤q+ = 02×1. (4.7)

Here, the superscripts “−” and “+” mean immediately before and after immediately a collision.

Due to the robot has one pair of half-semicircular feet, when each time the leg is changed, the
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fore leg is grounded at the point (𝑥𝑐, 𝑧𝑐) of the foot. The velocity constraint condition for the

landing point of the forefoot is determined as

¤̄𝑥𝑐+ = 𝑅 ¤𝜃2
+
, ¤̄𝑧𝑐+ = 0. (4.8)

These are detailed as

d
d𝑡


𝑥𝑐

𝑧𝑐


+

=
d
d𝑡


𝑥+𝐿 sin 𝜃1−(𝐿−𝑅) sin 𝜃2

𝑧+𝐿 cos 𝜃1−(𝐿−𝑅) cos 𝜃2


+

=


1 0 𝐿 cos 𝜃−1 (𝑅−𝐿) cos 𝜃−2
0 1 −𝐿 sin 𝜃−1 (𝐿−𝑅) sin 𝜃−2

 ¤q+. (4.9)

Therefore, we can obtain the velocity constraint JT
𝐼

as

JT
𝐼 =



1 0

0 1

𝐿 cos 𝜃−1 −𝐿 sin 𝜃−1
−𝑅 − (𝐿 − 𝑅) cos 𝜃−2 (𝐿 − 𝑅) sin 𝜃−2


. (4.10)

4.2.3 Control method

In this section, although there is no constant conversion of gravitational potential energy into

kinetic energy as in passive walking, the author still wants to take advantage of the dynamics

of the model itself as much as possible, so the author cannot use any angle tracking to control

the motion of the robot and only apply minimal torque control. To smoothly affect the robot

dynamics, the torque waveform acting on the hip input is still set to a sinusoidal trajectory as

follows.

𝑢(𝑡) = 𝐴𝑚sin𝛾 (2𝜋 𝑓𝑐𝑡). (4.11)

where 𝐴𝑚 [N·m] and 𝑓𝑐 [Hz] represent the magnitude and frequency of the input, respectively.

Furthermore, sinusoidal and square waves are often used as typical waveforms in nonlinear

dynamics. However, the torque control of servo motors is difficult to track square waves directly

in the real world. Based on previous results on indirect entrainment [52], the fastest indirect

entrainment waveforms derived by mathematical means are similar to excitation waves. In this

paper, the author uses a sine wave and adjusts the odd power of the sine wave to simulate the

excitation wave, where 𝛾 is the odd power of the sine wave. The larger this value, the stronger

the tendency of the waveform to approximate a discrete imposed input waveform.
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4.3 Numerical Simulation Results

4.3.1 Motion generation

Table 4.1 shows the control and physical parameters to conduct the following process. It

should be noted here that the size of the input torque is generally determined based on the size

and weight of the model, but due to the wind resistance in the real environment, the mechanical

vibration caused when the support leg hits the ground and other effects are neglected in the

simulation environment. Thus, the minimum input torque required for the simulation is much

smaller than that of the real environment, and the initial conditions are set as

q(0) =

[
0 0.0015 0.1745 −0.1745

]T
,

¤q(0) =

[
0 0 0.75 0

]T
. (4.12)

Since there is only one feed-forward input, the initial conditions are chosen relatively harshly.

Here, when the applied input torque is extremely small, the angles between the stance and swing

legs in the initial conditions are set to 10 and -10 degrees, so that the robot triggers collision

detection at the beginning of the simulation. And since it is a semicircular leg, when the 𝑧𝑐 of

the contact point is 0, the 𝑧 coordinate needs to be calculated based on the current angle.

Figure 4.2 shows the gait generated according to the appropriate initial state as well as the

control parameters. Fig. 4.2(a) is the position of the centroid of the semicircular foot of the

stance leg (𝑥, 𝑧). Since the angular velocity given by the initial conditions is large enough, the

robot starts with a slightly larger stride for the first few steps, but gradually converges over the

next few seconds to move forward with a relatively constant stride. The figure zooms in to show

Table 4.1: Physical and control parameters

Symbol Value Unit

𝑚𝐻 10 kg

𝑚1 5 kg

𝑚2 5 kg

𝑎 0.5 m

𝑏 0.5 m

Symbol Value Unit

𝐿 1 m

𝑅 0.1 m

𝑔 9.81 m/s2

𝐴𝑚 0.5 N·m

𝑓𝑐 1.5 Hz
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(c) Angular velocity
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(d) Vertical ground reaction force

Figure 4.2: Simulation results of motion generation with feed-forward control

the variation of 𝑧 coordinates, and it is found that the robot rolls nicely along the circular foot

during walking, and the larger the stride length, the longer the rolling distance. In Fig. 4.2(b)

and Fig. 4.2(c), the angular position and angular velocity of the two legs are shown as a function
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Figure 4.3: Phase plane plot of generated motion where 𝐴𝑚=0.5 [N·m] and 𝑓𝑐=1.5 [Hz]

of time. Because the input torque is really slight relative to the overall mass of the robot, after

the first few collisions with the ground, we can see that the swing of the legs becomes extremely

slight, only about 0.2 [rad]. Fig. 4.2(d) shows the time variation of the vertical ground reaction

force. In contrast to the passive walk in Chap. 2, where the effect of the gravitational potential

is reduced, the variation of the reaction force of the bed is not intense and the value is always

approximately equal to the full mass of the robot. Moreover, we can see that these values remain

continuously positive. This may be justified by the fact that the supporting foot never leaves the

ground, and the resulting gait is reasonable.

To observe the state of the robot’s long-term motion, a phase plane plot of the gait generated

over 100 seconds is shown in Fig. 4.3. The initial state is marked with a firestar. The results

show that although the limit loop of the robot keeps shrinking due to the minor applied torque,

the robot can gradually converge to a relatively stable limit loop gait while walking on flat
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ground without relying on any posture feedback by applying only a sinusoidal torque input to

the robot’s hips.

Figure 4.4 shows the input as well as the energy variation of the robot while walking. Fig.

4.4(a) is the torque variation with time. The torque magnitude is 0.5 [N·m] and the frequency is

1.5 [Hz]. Fig. 4.4(b) represents the total mechanical energy, which initially increases when the

swing leg collides with the ground until the next collision, then decreases in order to overcome

the potential energy barrier, and increases again after breaking the potential energy barrier be-

cause of gravitational potential energy. This illustrates that the idea of torque control based on

entrainment allows for smooth transitions in the dynamics of the robot itself. After each colli-

sion of the swing leg, we can see the consumption of kinetic energy as shown in Fig. 4.4(c).

After waiting for the kinetic energy given by the initial state to be offset by several collisions,

the energy consumption afterward is extremely low. It is not difficult to find that at 10 seconds,

the robot has taken exactly 15 steps, which is consistent with the input frequency of 1.5 [Hz] in

the control parameters. It can be assumed that the entrainment control still has an effect on the

horizontal road surface, which paves the way for additional analysis of nonlinear phenomena to

follow.

4.3.2 Influence of 𝐴𝑚 and 𝑓𝑐 on gait

This subsection uses 𝐴𝑚 [N·m] and 𝑓𝑐 [Hz], which control the input sine wave, as variables

to study their effects on the robot gait, such as walking frequency, step length, walking speed,

and energy efficiency. In the following Algorithm 3, only 𝑓𝑐 [Hz] is used as an example. Each

time, the 30 steps that could successfully generate a gait after 100 seconds were taken for

numerical analysis.

The SR (Specific Resistance) is a dimensionless quantity used to evaluate the efficiency of

walking. It expresses the energy consumption required to move a 1 [kg] mass by 1 [m], and the

lower this value is, the more efficient it is to move, defined as

𝑆𝑅 :=
𝑝

𝑚𝑎𝑙𝑙𝑔 |𝑉𝑥 |
. (4.13)

Here, 𝑚𝑎𝑙𝑙 [kg] is the mass of the whole robot, 𝑔 [m/s2] is the gravitational acceleration, and 𝑝

[J/s] is the average input power, defined as

𝑝 := 𝑓𝑤

∫ 100+ 1
𝑓𝑤

100

��( ¤𝜃1 − ¤𝜃2)𝑢
�� d𝑡. (4.14)
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Figure 4.4: Simulation results of energy change with feed-forward control

𝑓𝑤 represents the walking frequency. |𝑉𝑥 | is the absolute value of the average walking speed, is

then defined as

𝑉𝑥 := 𝑓𝑤 × 𝑆𝑙 . (4.15)

Here, 𝑆𝑙 [m] represents the step length of the biped robot. Since the robots collide in an isosceles

triangle, we can easily compute the step size at each step.

First, by fixing the remaining parameters and changing only the input frequency, the simu-

lation results for 𝑓𝑐 from 0.1 to 10 [Hz] are shown in Fig. 4.5 and Fig. 4.6, where the robot can

successfully walk to keep from falling down for input frequencies 𝑓𝑐 starting at 0.72 [Hz]. Be-

cause the author intercepted 30 steps of the gait after 100 seconds each time for analysis, there

are really 30 hollow circles on each vertical axis in the figure to represent the magnitude of
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Algorithm 3 Calculate 𝑓𝑤 and 𝑆𝐿

Require: The walking frequency 𝑓𝑤 and step length 𝑆𝐿 of the Robot when they get stabilized

Input: Initial state q(0), ¤q(0), 𝐴𝑚 and 𝑓𝑐

Output: The walking frequency 𝑓𝑤 and step length 𝑆𝐿 of the next 30 steps after 100 steps

1: Initialization 𝑓𝑤 [𝑙] [30] = 0 , 𝑆𝐿 [𝑙] [30] = 0, 𝑓c = 0.1

2: for 𝑖 = 1; 𝑖 <= 𝑙 : 𝑖 + + do

3: Run simulation for 130 steps.

4: Save the last 30 step walking frequency to 𝑓 and the last 30 step length to 𝐿

5: 𝑓𝑤 [𝑖] = 𝑓

6: 𝑆𝐿 [𝑖] = 𝐿

7: 𝑓c = 𝑓c + 0.02

8: end

9: Return 𝑓𝑤 and 𝑆𝐿

the 30-step values. Moreover, when the gait converges into a single limit ring, these 30 hollow

circles overlap. In addition, the author uses solid points to indicate the mean values.

Fig. 4.5 (a) shows the shift of walking frequency when changing the input frequency. It can

be noticed that, for example, from 1.28 to 1.56 [Hz], from 2.72 to 3.16 [Hz], and other ranges

marked with light yellow intervals, the walking frequency invariably coincides with a multiple

of the frequency of the input sine wave, which indicates that it is completely entrained in this

interval. Setting the relationship between 𝑓𝑐: 𝑓𝑤 to 𝑛:1 (𝑛 is a positive integer) yields entrainment

ranges from 1:1 all the way up to 7:1. It is worth noting, however, that the input frequency

following the 1:1 and 2:1 entrainment frequencies does not allow the robot to successfully

generate a gait. Instead, as shown in Fig. 4.5 (b), we can see that for each 𝑛:1 entrainment

range, the step length first becomes progressively longer and then continuously shorter as the

frequency increases, and a local maximum is generated.

The results for walking speed and walking efficiency are shown in Fig. 4.6, Fig. 4.6(c)

showing the effect of varying the frequency on walking speed. The walking speed, on the

other hand, is proportional to the product of stride width and walking frequency, which also

yields a local maximum walking speed in each entrainment range. The results for the walking

efficiency in Fig. 4.6(d) show that when the input torque is kept constant, there is a minor shift

in the walking efficiency with increasing input frequency only. Because the 𝐴𝑚 set is extremely
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Figure 4.5: Gait performance versus frequency of the sine wave

modest compared to the weight of the robot, 𝑆𝑅 is always stabilized at an extremely modest

value.

The effect of the input torque magnitude 𝐴𝑚 on the gait performance is shown in Fig. 4.7

and Fig. 4.8. Since the simulation conditions ignore much of the energy that needs to be

consumed in real situations, it is possible to generate a stable gait with 𝐴𝑚 while keeping highly

modest values. Moreover, when the torque exceeds 18.2 [N·m], an attractive phenomenon of

multi-cycle divergence is generated, which typically only occurs in passive bipedal walking. It

is when the applied torque exceeds 20.5 [N·m] that the robot falls.

48



1 2 3 4 5 6 7 8 9 10

 f
c
  [Hz]

0

0.05

0.1

0.15

0.2

0.25

 V
x
  
[m

/s
]

(c) Walking speed

1 2 3 4 5 6 7 8 9 10

 f
c
  [Hz]

0

0.002

0.004

0.006

0.008

0.01

 S
R

  
[-

]

(d) Specific resistance

Figure 4.6: Gait performance versus frequency of the sine wave

Figure 4.7 (a) represents the variation of the walking frequency. When the input frequency

is kept constant, entrainment is maintained except for values with too slight or too large an

amplitude due to entrainment effects. Figure 4.7(b) shows the variation of the stride length,

which makes the stride amplitude follow as the input torque increases when the swing leg is

swinging. It is worth noting that the growth rate of the step size with torque is not linear, but

instead resembles a logarithmic function of the curve.

In Fig. 4.8 (c), it is observed that the walking speed increases approximately monotonically

as the torque becomes larger. However, there is an upper bound on the walking speed based on
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Figure 4.7: Gait performance versus amplitude of the sine wave

a fixed input frequency. In Fig. 4.8(d), we can observe that as 𝐴𝑚 increases, the value of 𝑆𝑅

also becomes progressively larger. However, until the torque increases until the robot falls, the

value of 𝑆𝑅 is also much below 1. It indicates that the robot’s walking efficiency is excellent

with this method.
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Figure 4.8: Gait performance versus amplitude of the sine wave

4.3.3 Effect of excitation wave

Figure 4.9 shows the excitation wave simulated by adjusting the sine wave to the singular

power. As the value of the singular quadrature becomes larger, the input waveform becomes

closer to the shock and the input torque appears to be applied discretely within each input period.

In Fig. 4.10 and Fig. 4.11, the author also investigates the effect of the excitation wave-

form on the gait pattern. Without changing the input frequency beyond the torque, the walking

frequency remains the same as the input frequency. Although the walking efficiency becomes
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Figure 4.9: Control input by adjusting sinusoidal trajectory

better as the odd power 𝛾 increases, this also sacrifices part of the walking speed. Specifically,

because the applied input torque, as well as the frequency, do not alter, the greater the 𝛾, the

less kinetic energy is input to the robot per unit cycle, and thus the efficiency becomes better.

This subsection uses an entrainment control approach to stabilize the robot’s walk. When

the given torque is within a reasonable range and remains constant, the control frequency only

affects the speed of the leg swing, and overly quick or too low control frequency will cause the

robot legs to touch the ground earlier or later, resulting in errors between the walking frequency

and the input frequency, and the resulting gait then becomes multi-cycle or chaotic. In contrast,

in the entrainment interval, the robot can be controlled to achieve a periodically forgotten gait by

changing only the parameters of the feedforward input. It requires prior modeling and nonlinear

analysis of the robot.

4.3.4 Poincaré map

Although the robot can converge to a periodic-1 limit cycle gait with the same input fre-

quency under the approach of entrainment control, the robustness of the system has not been

explored. The existence of steady-state phases in passive dynamic walking has been thoroughly

investigated in some past studies [8, 9]. Moreover, limit cycle gait is normally checked by the

following Poincaré map [56, 57]:

Q𝑛+1 = P (Q𝑛). (4.16)

Here, Q𝑛 is the state vector at the beginning of the 𝑛𝑡ℎ step. This is because the Poincaré section

of the Poincaré map of the leg motion is usually defined as the instant immediately after the leg
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Figure 4.10: Gait performance versus the excitation wave

collision. In addition, P is the Poincaré map of the state vector Q from the current step 𝑛 to the

next step 𝑛 + 1, and the state vectors are chosen as follows.

Q∗ = P (Q∗). (4.17)

For periodic motion, the states are mapped to themselves and the number of steps is neglected.

When a slight disturbance is applied to the steady-state dimension 𝑖𝑡ℎ, the output of the Poincaré

map is determined as follows

Q∗ + δ𝑖1 = P (Q∗ + δ𝑖0) ≈ P (Q∗) + 𝜕P

𝜕Q

����
Q∗

δ𝑖0 (4.18)
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Figure 4.11: Gait performance versus the excitation wave

Here, the perturbations in the steady-state 𝑖𝑡ℎ dimension are represented by the vector δ𝑖0 and

the resulting deviation is defined as δ𝑖1. Thus, the gradient matrix can be obtained by replacing

the equation (4.17) with the equation (4.18) and then applying it to the perturbations in each

dimension separately.

𝜕P

𝜕Q

����
Q∗

≈
[
δ1

1 δ2
1 · · · δ𝑛1

] [
δ1

0 δ2
0 · · · δ𝑛0

]−1
(4.19)

For 𝜆𝑖, which defines the eigenvalue of 𝑖𝑡ℎ in the matrix 𝜕P
𝜕Q

����
Q∗

, the gait is locally stable if

max |𝜆𝑖 | < 1. Therefore we can conclude that the gait of the robot under entrainment control
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Figure 4.12: Stability versus frequency of the sine wave

is stable if max |𝜆𝑖 | is calculated to be smaller than one by applying a slight perturbation at the

moment after the leg collision.

With entrainment control, it is particularly crucial to observe the shift in the stability of the

robot system as the input frequency changes. Figure 4.12 shows the relationship between the

input frequency and walking stability in the entrainment range (yellow region). In contrast,

most gaits outside the entrainment region are chaotic gaits, so it is not possible to analyze them

using the Poincaré map. From left to right, the entrainment ranges from 1:1 to 𝑛:1. The robot is

constantly stable (max|𝜆i | is less than 1) throughout the 1:1 entrainment region, and the value

of max|𝜆i | starts to decrease as the input frequency increases, reaching a minimum at 1.32 [Hz]

and then gradually increasing again. It is extremely remarkable that in each entrainment range,

the most stable place is precisely the input frequency applied when the robot has the largest

stride and the fastest speed in that range. It can be assumed that in each isometric entrainment

range, the robot has an optimal control parameter under which all performances are excellent.

In contrast, in the entrainment range beyond 1:1, not all gaits are stable, especially when the

multiplier 𝑛 is increasing, and virtually more than half of the input frequencies are unstable.

55



Therefore, it can be assumed that for better control of the robot, it is better to use 1:1 or 2:1

control parameters.

4.3.5 Random uphill and downhill stability tests

From the point of view of practicality in realistic environments, the ability of a robot to

penetrate mildly uneven terrain is an indispensable capability. Here, the author verifies whether

current methods of entrainment control can help the robot to successfully walk by randomly

generating the angle of the up and down slope every few steps.

Figure 4.13 shows the results of the robot successfully passing a randomly generated uneven

surface in 50 seconds. Figure 4.13(a) represents the random shift in the tilt angle of the ground

for every 5 steps taken by the robot, and each shift is set to within 0.3 [rad]. 15 changes are

made in 50 seconds, and it should be noted that the simulation sets the robot’s leg shift condition

to be triggered when 𝑧𝑐 is 0, thus the simulated surface is a potholed one. Figure 4.13(b) is the

input waveform applied by the robot with a torque magnitude of 5 [N·m] and a frequency of 1.5

[Hz]. Figure 4.13(c) is the bed reaction force in the vertical direction of the stance leg, which

varies with the terrain on the way. The total mechanical energy of the robot changes as shown

in Fig. 4.13(d), and the energy consumed in each collision is shown in Fig. 4.13(e); it can be

found that the bipedal robot walked 75 steps in 50 seconds at an input frequency of 1.5 [Hz],

which can illustrate the robustness of the entrainment effect.

If walking on horizontal ground, the robot’s gait can converge to a periodic-1 limit-cycle

gait. However, the robot continuously changes its state inside the basin of attraction due to

the ground angle shift every 5 steps. Fig. 4.14 shows the phase plane plot for all 50 seconds,

and it can be observed that the robot forms a sizable basin of attraction during walking without

changing the control parameters under the entrainment control approach. Within this basin of

attraction, the robot can successfully continuously walk under the changing terrain.

4.4 Summary and Discussions

In this chapter, the author assumes that the bipedal robot has only one input at the hip joint,

and instead of using the usual feedback control, a default waveform torque is applied as input.

The author shows through numerical simulations that it is possible to generate a gait on a flat
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surface. The adjustable range of frequencies and amplitudes for a given sine wave has also

been explored under the assumption that gait generation is possible. Moreover, the effect of

different frequencies, amplitudes, and excitation waves on gait performance is observed. With

entrainment control, the robot can be adequately controlled to achieve the desired gait without

posing feedback in an efficient and easy-to-implement situation.

In the next chapter, the author plans to verify on a real machine whether the proposed method

can bring the gait period closer to the input frequency through the entrainment effect, and choose

an optimal detection method to measure the gait data. Parameters for matching the numerical

simulation will be set and observed on a real machine to confirm the difference between the real

environment and the simulation. In addition, optimization is required for additional improve-

ments in gait stability.
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Figure 4.13: Simulation results of biped robot walking on the random uphill and downhill based

on entrainment effect
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Figure 4.14: Phase portrait of generated motion by changing 𝜙 randomly where 𝐴𝑚=5 [N·m]

and 𝑓𝑐=1.5 [Hz]
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Chapter 5

Experimental Verification of Entrainment

Effect for a Bipedal Robot with Half

Semicircular Feet

5.1 Overview

To validate the results of the numerical analysis presented thus far. Therefore, it is necessary

to develop an experimental machine that implements the ensemble specification. In this chapter,

an underactuated bipedal robot is fabricated and an entrainment-based control method is sin-

cerely introduced [58]: a unique input is used to simulate a predetermined waveform without

any feedback control. Specifically, the bipedal walking robot is approximated as an oscillator

that can be entrained by a periodic input from the input frequency. Since the model in the sim-

ulation does not have knees, the shape of the feet is modified to avoid foot scuffing during the

swinging of the legs in a realistic environment. The designed individual experimental robot is

shown in Fig. 5.1.

5.2 Dynamics for Real Machine

5.2.1 Model of robot

Compared with the previous simulation model, here only the shape of the foot is changed

from a complete semicircular foot to half, which causes the velocity constraint and collision
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Figure 5.1: Model of an underactuated biped robot with half-semicircular feet

detection to modify, so it is necessary to re-model and simulate first. Fig. 5.2 illustrates the

mathematical model of the underactuated biped walking robot.

5.2.2 Equation of motion

Let q =

[
𝑥 𝑧 𝜃1 𝜃2

]T
be the generalized coordinate vector. The robot equation of mo-

tion then becomes

M ¥q + h = JTλ + S𝑢, (5.1)

where M represents the inertia matrix, h is the combination of the central force, Coriolis force,

and gravity terms. On the right side, JTλ is the holonomic constraint. In addition, by letting 𝑢

be the only control input applied to the hip joint, the driving vector becomes

S =

[
0 0 1 −1

]T
. (5.2)

The author assumes that the robot is in non-sliding contact with the ground. Due to the semi-

circular feet, the velocity constraint at the contact point between the stance leg and the ground
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Figure 5.2: Mathematical model of an underactuated biped robot with half-semicircular feet

during the walking period should satisfy the following conditions: when the angle of stance leg

𝜃1 is larger than zero,

¤𝑥𝑐 = 𝑅 ¤𝜃1, ¤𝑧𝑐 = 0. (5.3)

Otherwise,

¤𝑥𝑐 = ¤𝑥 = 0, ¤𝑧𝑐 = ¤𝑧 = 0. (5.4)

Therefore, Jacobians J are determined as:

J1 =


1 0 𝑅 cos 𝜃1 − 𝑅 0

0 1 −𝑅 sin 𝜃1 0

 , or J2 =


1 0 0 0

0 1 0 0

 , (5.5)

where the conditions of 𝜃1 > 0 or 𝜃1 ≤ 0, respectively. Refer to the previous Chap. 2 for other

details.

5.2.3 Equation of collision

According to the inelastic collision model, the swing leg neither slides nor bounces when it

touches the ground. Therefore, the swing and stand legs are immediately exchanged at the mo-

ment of ground-contacting. Since the two legs are identical, the zero crossing of the following
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function becomes:

𝑓 (𝜃1, 𝜃2) := 𝑧𝑐, (5.6)

The transition that occurs before and after the collision is shown below:

M ¤q+ = M ¤q− + JT
𝐼 λ𝐼 , (5.7)

where the superscripts “+” and “−” represent the instant immediately after and before the col-

lision, respectively, and 𝐽𝐼 and 𝜆𝐼 represent the constraint matrix and constraint forces vector

at the landing instant. Due to the robot having one pair of half-semicircular feet, when each

time the leg is changed, the foot is grounded at the center point (𝑥, 𝑧). The velocity constraint

condition for the landing point of the forefoot is determined as

¤̄𝑥+ = 0, ¤̄𝑧+ = 0. (5.8)

The constraint equation at landing instant is therefore summarized as:

J𝐼 ¤q+ =


1 0 𝐿 cos 𝜃−1 −𝐿 cos 𝜃−2
0 1 −𝐿 sin 𝜃−1 𝐿 sin 𝜃−2

 ¤q+ = 02×1. (5.9)

That is when the heel of the swinging leg touches the ground at the moment when the leg

exchange occurs.

5.2.4 Entrainment control method

Since the control method does not change, see the previous chapter for details.

5.3 Numerical Simulation Results

Due to the changing shape of the foot, the model corresponds to a combination of a pointed

foot and a semicircular foot, just in time to verify the generalizability of the proposed control

method with the aid of the current model.
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5.3.1 Typical gait generation

The physical and control parameters as listed in Table 5.1 to conduct the following process.

Set the initial conditions as

q(0) =

[
0 0 −0.209 0.209

]T
,

¤q(0) =

[
0 0 1 −0.2

]T
. (5.10)

Therefore, walking starts from the state immediately after the leg collides with sufficient kinetic

energy.

Fig. 5.3 are the results of the simulation in which the input torque is set to a generally

sinusoidal waveform. Figure 5.3(a) is the center point position (𝑥, 𝑧) of the semicircular foot

of the stance leg. We can see that the first few steps are slightly longer than the last, but they

gradually converge over the course of a few seconds, moving forward at a relatively constant

pace. In Fig. 5.3(b) and Fig. 5.3(c), the positions of the biped angles and the time variation of

the angular velocity are shown. Since the input torque is only 0.5 [N·m], after a period of time,

we can see that the swing of both feet is very small. Figure 5.3(d) shows the time variation of

the vertical ground reaction force, which varies violently for the first step. This value is then

approximately equal to the mass of the walker. In addition, we can notice that the values always

remain positive. It can be assumed that the foot is not off the ground.

To verify that the robot motion can converge, the author shows in Fig. 5.4 the phase plane

portrait of the gait that has passed (intercepting the data from the beginning of the walk to the

300 [s]). We can find that the robot shows a tendency to converge even after changing the foot

reach shape.

Table 5.1: Physical and Control Parameters

Symbol Value Unit

𝑚𝐻 10 kg

𝑚1 = 𝑚2 5 kg

𝑎 = 𝑏 0.5 m

𝐿 1 m

Symbol Value Unit

𝑅 0.1 m

𝑔 9.81 m/s2

𝐴𝑚 0.5 N·m

𝑓𝑐 1.5 Hz
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(d) Vertical ground reaction force

Figure 5.3: Simulation results of motion generation with half-semicircular feet

Figure 5.5 shows the shift of the robot energy with time. Figure 5.5(a) indicates the total

mechanical energy shift, and at the moment after the foot collision, we can see the kinetic
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Figure 5.4: Phase portrait of limit-cycle walking gait

energy consumption as shown in Fig. 5.5(b). Compared with the complete semicircular foot in

the previous chapter 4, this model has a higher energy loss than before because it is similar to

the pointed foot at the time of the collision. This also confirms previous results that rounded

corners are more conducive to producing efficient gaits [59].

5.3.2 Parametric study

The control input frequency 𝑓𝑐 [Hz] is also simulated in the following procedure in order to

investigate the entrainment effect on gait performance. In the following Algorithm 4, each time,

the 20 steps that could successfully generate a gait after 100 seconds were taken for numerical

analysis.

The simulation results in Fig. 5.6 show the walking frequency, walking speed, and specific

resistance for this robot with respect to 𝑓𝑐. Gait generation is possible for the sinusoidal fre-

quency 𝑓𝑐 from 0.98[Hz]. It is obvious that not all subsequent frequencies can generate a stable

gait, there are many breakpoints within these frequencies. Figure 5.6(a) shows the effect of
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Figure 5.5: Simulation results of energy change with feed-forward control

walking frequency and sine wave frequency. As the area marked in light yellow in Fig. 5.6, due

to the effects of entrainment, within the range from 1.16 to 1.62 [Hz], the walking frequency is

always in line with the frequency of the input sine wave. It is worth noting that entrainment ef-

fects occur not only at 1:1 input and walk frequencies, but also at 𝑛:1. As shown in Fig. 5.6(b),

we can see the effect of input frequency on walking speed. One can observe that there exists

local-maxima walking speed within each of the entrainment regions (light yellow), and reaches

a global maximum value of 0.23 [m/s] at the input frequency of 1.34 [Hz]. From Fig. 5.6(c),

we can see that the walking efficiency gradually is not strongly affected by the velocity since

𝑆𝑅 is small in the whole range.

Overall numerical simulation results show that an underactuated bipedal robot, which can-

not stand in place, can achieve a stable walking state with feed-forward control combined with

its own gravity and inertial effects. The parameters of the feed-forward control can be finitely

tuned to achieve controlled walking performance. These results provide the feasibility of the

next experiment.
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Algorithm 4 Calculate 𝑇 and 𝑆𝐿

Require: The step period 𝑇 and step length 𝑆𝐿 of the Robot when they get stabilized

Input: Initial state q(0), ¤q(0), 𝐴𝑚 and 𝑓c

Output: Step period 𝑇 and step length 𝑆𝐿 of the next 20 steps after 100 seconds

1: Initialization 𝑇 [𝑙] [20] = 0 , 𝑆𝐿 [𝑙] [20] = 0, 𝑓c = 0.1

2: for 𝑖 = 1; 𝑖 <= 𝑙 : 𝑖 + + do

3: Run simulation for 100 seconds.

4: Save the next 20 step periods to 𝑡 and the next 20 step length to 𝐿

5: 𝑇 [𝑖] = 𝑡

6: 𝑆𝐿 [𝑖] = 𝐿

7: 𝑓c = 𝑓c + 0.02

8: end

9: Return 𝑇 and 𝑆𝐿

5.4 Experimental Verification

5.4.1 Hardware and software

The designed experimental system is based on a compass-type biped, as shown in Fig.

5.7. Its total height is about 0.55 [m] (0.44 [m] for the legs) and its total mass, including the

controller system, is 3.5 kg. Unlike most conventional real-world machines that use weights

concentrated at the waist [60], this allows the overall weight of the robot to be distributed

relatively evenly. All body frames are made from metal materials such as aluminum, resulting

in superior machining accuracy and durability. The dark blue and red sections of the legs allow

for easy adjustment of leg length.

Because all sensing and computation are performed on board, the robot does not require

a boom or tether and only requires a 12V power adapter to power it [61]. The outer pair of

legs move together as one leg, as does the inner leg. Each leg has one foot and one ankle joint

(three in total). The inner legs move together through a servo motor connection; the outer leg

moves together through two servo motors (set to follow mode with each other). The bipedal

robot has three DOFs (hip and ankle pairs), and the three motors on the ankle joints are not

directly involved in the forward motion of the robot, but merely to avoid the feet scuffing during

walking. The motor acting on the hip joint is the most essential part, allowing the use of a
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planetary gear mechanism to move the legs against each other, thus mimicking the control

method in the Founder.

All servo motors are powered by servo motors (Robotis Dynamixel) with a gear ratio of

272.5:1. With the exception of the hip joint, which requires a slightly higher torque to drive

the leg swing, the ankle joint requires only a slight torque. Regarding the mode of operation,

the hip uses a current control mode to mimic the torque mode, while the ankle uses a position

control mode.

To avoid foot scuffing, a deterministic program was written to enable the servo motor on

each foot to turn the half-semicircular foot according to the angle of the servo motor at the hip

joint, thus achieving the act of lifting the foot during walking. The main control loop runs on

a microcontroller (Arduino Uno), using a pre-written program, and burned in, thus simulating

full feed-forward control of the simulation. The controller for the servo motor is mounted on

the microcontroller and the protocol type is RS485 (synchronous serial communication, 8-bit,

1-stop, no parity). The servo motor itself is equipped with various types of sensors, including a

non-contact absolute encoder (12-bit), voltage sensors, and current sensors. It is able to sample

data from the inner ankle motor, the outer ankle motor, and the hip motor at a rate of 20 per

second, making it easy to calculate angular position, angular velocity, and power. Although the

motor does not have torque sensors, the torque calculation formula allows us to calculate torque

based on power as well as speed.

5.4.2 Experimental result

When all the preparations are completed, the validation is performed on the experimental

robot based on the entrainment control method. Initially, the author found that the robot could

not reliably walk in this open-loop mode and always fell after a few segments. By examining

the data displayed on the sensor’s output, it is found that the oscillations of the outer leg are

smaller than those of the inner leg. Further physical measurements confirmed that this is because

the outer leg is heavier and has a higher moment of inertia than the inner leg. To bring the

experimental machine as close as possible to the simulation model, the asymmetry of the two-

body oscillations was reduced by adjusting the counterweights. In Fig. 5.8, we can see that

the bias in the hip angle can be reduced very effectively by increasing the counterweight. This

is very important because once the center of gravity and the weight of the legs are not close
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enough, the bipedal robot itself has a tiny basin of attraction and is even less likely to be able

to walk stably. Another point to note is that the sine wave frequency is set to 1/2 of that of the

simulated case due to the planetary gearing between the legs; for example, if the author sets the

input frequency to 0.9 [Hz], it corresponds to 1.8 [Hz] in the simulation. Eventually, by tuning

the input parameters, the robot is able to walk on horizontal ground.

First, the tracking performance of the motor to the input can be observed in Fig. 5.9. The

author must recognize the difference between conditions in the real environment and the simu-

lation; The observations here were made with the robot walking, and although there is a partial

perturbation in the actual current, it is within acceptable limits. The cause of this perturbation is

the small jitter in the signal from the servo motor whenever the leg collides with the ground dur-

ing each input cycle. By using a current of only 0.48 [A] for the hip joint, the input frequency

was 1.8 [Hz]. By looking at the video after the experiment, it can be seen that the robot took 24

steps in about 13.5 seconds, it illustrates the effective entrainment effect that can be produced

at this input frequency, and the robot walks at a walking frequency equal to the input frequency,

creating a limit cycle gait.

Unlike simulations where the phase planes of the supporting and swinging legs are described

separately, in the experiments, the author uses the angles and angular velocities between the legs

for approximate analysis since the absolute angles and angular velocities of each leg cannot be

measured accurately in real time. Fig. 5.10 shows the phase plane of the generated walking gait.

After the initial 6 steps (blue), the robot can converge to a relatively stable limit cycle (yellow).

Finally, in Fig. 5.11, it shows the variation of the foot-lifting action over two walking cycles,

in order, with the inner foot touching the ground, the outer foot lifting, followed by the outer

foot touching the ground, the inner foot lifting, and finally returning to the inner foot touching

the ground.

5.4.3 More details

The shape of the foot has a great influence on the gait [62]. This robot is designed to be

between a pointed foot and a semicircular foot because the pointed foot consumes part of the

kinetic energy after a collision to reduce the instantaneous tendency to fall forward and stabilize

the center of gravity, followed by the semicircular foot to smooth the gait, and here the radius

of the semicircular foot is adjusted to achieve a smoother gait.
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The reason why the author does not use SEA (Series Elastic Actuator) [63, 64], which is

an elastic actuator with improved impact resistance, commonly used in legged robots, but since

the control method in this study is to apply the output torque to an actuator mounted on the

hip joint to execute the default torque waveform, this requires a high-frequency response servo

motor combined with torque control to achieve this. The proprioceptive actuator [65] meets our

requirements with elevated frequency response and more accurate torque feedback and will be

tried in the future if available.

5.5 Summary and Discussions

In this chapter, the simulations are re-validated based on the model applied to the experi-

ments, and the results show that bipedal walking robots are still feasible using the previously

proposed approach. A tunable range of control input frequencies within the entrainment range

has also been explored for this purpose, with observed performance in gait. In addition, to

verify the feasibility of the proposed control method for the simulated model, a bipedal walk-

ing robot is designed and constructed to be as consistent as possible with the simulation, and

the corresponding experiments are conducted. The experimental results show that the control

method can also exhibit the same gait trend (convergence to limit cycle walking) in a real robot.

With these verifications, it is safe to believe that entrainment effects occur in this fully feed-

forward control system. In the following chapter, it is necessary to optimize based on this

control approach to improve the overall performance.
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(a) Walking frequency

(b) Walking speed

(c) Specific resistance

Figure 5.6: Gait performance versus frequency of the sine wave
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Figure 5.7: 3D model of an underactuated biped robot with half-semicircular feet
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Figure 5.10: Experimental result about phase plane defined by hip angle and angular velocity
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Figure 5.11: Diagram of the operation of each servo motor under walking
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Chapter 6

Optimal Entrainment Input and

Parameters of Robot by Bayesian

Optimization

6.1 Overview

In the previous chapters, the effectiveness of the entrainment-based control has been val-

idated by simulations and experiments. However, the optimization of the parameters using

enumerative methods is extremely difficult due to the large number of physical parameters of

the robot coupled with a large number of input parameters. It requires efficient alternatives to

perform a deeper search for optimal parameters. The idea of Bayesian optimization is to first

generate an initial set of candidate solutions, then find the next most likely extreme value point

based on these points, add that point to the set, and repeat this step until the iteration terminates.

Finally, the point with the largest value of the function from these points is found as the solution

to the problem. Since the solution process uses information from previously searched points, it

is more efficient than grid search and random search. This chapter explores the optimal perfor-

mance of the proposed control method by using Bayesian optimization of the system’s control

parameters as well as physical parameters.
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Figure 6.1: A Bayesian optimization process for bipedal robots

6.2 Parameter Setting and Optimization Process

6.2.1 Parameter setting

The object of Bayesian optimization is set to be the robot model of Chap. 4. When applying

Bayesian optimization, it is necessary to give prior data in order to reduce the convergence time

of the results and to bring the objective function closer to the true one. For the a priori given

data set, the system parameters, and initial values are referred to in the previous Chap. 4.
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6.2.2 Evaluation functions and constraints

Figure 6.1 illustrates the Bayesian optimization process for a bipedal robot. where the spe-

cific meaning is as follows.

• P denotes the set of parameters involved in the optimization, containing the 𝐴𝑚 and 𝑓𝑐

of the control inputs, the radius 𝑅 of the semicircular foot of the robot, and the center-of-

mass position 𝑎 of the leg

• 𝑁 denotes the number of iterations

• 𝑓 denotes the optimization function

• 𝜇 and 𝜎 represent the expectation and standard deviation

This chapter addresses the optimization of the robot’s movement speed and energy efficiency.

The author refers the reader to Eq. 4.15 and 4.13 of Chap. 4 for the calculation of the walking

velocity and energy efficiency of the motion. The evaluation functions regarding the optimiza-

tion of both are shown below.

P̂ = arg max
P ∗∈P

𝑉𝑥 (P ), (6.1)

P̂ = arg max
P ∗∈P

1
𝑆𝑅

(P ). (6.2)

P̂ denotes the set of parameters that have been optimized. Since the optimization is performed

using the method of finding the maximum value, and the lower value of 𝑆𝑅 indicates more

efficient robot motion, the inverse form is used. The following conditions must be satisfied in

the optimization process.

• Each set of parameters was simulated for more than 100 seconds, and 20 steps after

stabilization were taken for the calculation

• If the ground reaction force 𝜆 < 0, the data is directly judged invalid

• Only take the result that the input frequency 𝑓𝑐 and walking frequency 𝑓𝑤 are equal

It is also essential to note here that a certain minimum speed limit must be given when exploring

the optimal energy efficiency, otherwise, in most cases, the system defaults to the minimum

value of 𝐴𝑚 in the custom input parameter range, and all the best energy efficiencies in the next

result analysis are optimized based on a walking speed that minimally satisfies 0.5 [m/s].
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(b) Optimal energy efficiency (limit minimum speed)

Figure 6.2: Optimal gait performance versus the control input

6.3 Bayesian Optimization Results

Figure 6.2 shows the results of the Bayesian optimization for the control parameters. The

upper parameters colormap shows the specific changes in the optimized parameters during the

optimization process, with the right-hand side corresponding to the custom adjustable range.

The fitness function at the bottom indicates the optimal point found at each iteration. The
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values stabilize as the objective function converges to a solution close to the global optimum.

The results of the optimization for the control inputs 𝐴𝑚 and 𝑓𝑐 only are shown in Table 6.1.

Without optimizing the robot’s own physical parameters, the fastest walking speed is desired

and the input torque reaches a maximum value of 25 [N·m] in the pre-set parameter range,

where the input frequency exhibits a 2:1 entrainment relation to the actual walking frequency.

The optimal walking efficiency is 0.0658 while maintaining a walking speed of 0.5 [m/s] or

more, which is already a low value.

Based on Fig. 6.2, an optimization parameter, i.e., the radius of the semicircular foot, is

added. The exploration process is shown in Fig. 6.3, and the specific results are shown in Table

6.2. It can be found that when the radius of the semicircular foot becomes larger (initially set

Table 6.1: Bayesian optimization results versus the control input

𝐴𝑚 [N·m] 𝑓𝑐 [Hz] Performance

25 3.0851 0.7087 [m/s] (𝑉𝑥)

9.7566 2.9286 0.0658 [-] (𝑆𝑅)

Table 6.2: Bayesian optimization results versus the control input and radius of the semicircular

foot

𝐴𝑚 [N·m] 𝑓𝑐 [Hz] 𝑅 [m] Performance

22.1769 1.4263 0.5 1.046 [m/s] (𝑉𝑥)

1.6356 1.3077 0.4682 0.011 [-] (𝑆𝑅)

Table 6.3: Bayesian optimization results versus the control input, radius of the semicircular

foot, and center of mass distribution

𝐴𝑚 [N·m] 𝑓𝑐 [Hz] 𝑅 [m] 𝑎 [m] Performance

19.4667 1.6728 0.5 0.6037 1.0569 [m/s] (𝑉𝑥)

1.0122 1.5426 0.4998 0.6602 0.007 [-] (𝑆𝑅)
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(b) Optimal energy efficiency (limit minimum speed)

Figure 6.3: Optimal gait performance versus the control input and radius of the semicircular

foot

to 0.1m), only a smaller input torque is required to reach a faster walking speed, and the en-

trainment relationship between the input frequency and walking frequency becomes 1:1. When

looking at the walking efficiency, it can also be found that an additional optimization of the foot

radius improves the energy efficiency by a factor of 6 when maintaining the same speed of 0.5

[m/s] or more.
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Figure 6.4: Optimal gait performance versus the control input, Radius of the semicircular foot,

and center of mass distribution

Finally, Fig. 6.4 shows the optimization process of the parameter 𝑎 for the additional ad-

justment of the center of gravity position of the legs, and the results are shown in Table 6.3. It

can be found that the results of the exploration of the radius of the feet have been the same as

Fig. 6.3, and the maximum walking speed becomes slightly faster when the center of gravity

position of the legs is shifted slightly upward, but the required input torque becomes smaller
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again, and the entrainment relationship between the input frequency and the walking frequency

is also 1:1 at this time. When both the control parameters and the physical parameters of the

robot are optimized, the walking efficiency reaches 0.007.

6.4 Summary and Discussions

In this chapter, a Bayesian optimization approach is used to optimize the control parameters

and physical parameters of the robot, and all the results are based on the successful entrain-

ment of the gait. The optimized results are excellent. The energy efficiency, in particular, is

considerably higher than for robots using conventional control methods. Thus far, qualitative

and quantitative analysis of the limit cycle gait that can be entrained has been performed, but in

addition to the limit cycle gait, there is also a chaotic gait based on this control method, which

needs to be analyzed and discussed further.
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Chapter 7

Gait Generation and Analysis of Chaotic

Biped Walking Based on Rössler Attractor

7.1 Overview

It is difficult to maintain its walking stability due to the fact that the bipedal robots are

nonlinear dynamical systems containing both continuous and discrete states [66], making its

basin of attraction extremely limited. In addition to periodic limit-cycle gait [67], it has been

found that the gait becomes fractal and eventually leads to chaotic gait when the slope increases

to a certain level [68]. At the present, there is a unanimous agreement that chaotic phenomena

bring only negative effects to bipedal walking. Therefore, several works have been conducted

to avoid chaotic gait generation or directly control chaotic gait to limit-cycle walking [35] [34].

However, from another point of view, the most fundamental requirement for bipedal walking

is the ability to keep walking, and therefore a larger basin of attraction is required to tolerate

external perturbations. In this sense, chaotic oscillators tend to have larger basins of attraction

compared to limit cycles. Moreover, the human walking process indeed shows chaotic behavior,

as observed in previous works [69]. Considering these factors, the author hypothesizes that a

reasonably generated chaotic bipedal gait is likely to be more robust to perturbations.

In order to study the performance of chaotic gait, in this chapter, the author adopts a conve-

nient control idea based on a compass-like bipedal walker. First, the author exploits the Rössler

attractor [36] to generate chaotic control waveforms suitable as input torque to the robot. Ac-

cordingly, chaotic gait is generated via entrained to the input waveform, and the stability domain
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is explored by tuning the control parameters. The observed phenomena suggest that chaotic in-

put waveforms bring large stability domains with pure open-loop control. Finally, the author

puts this chaotic walking on uneven terrain. Unlike typical works which actively resist dis-

turbances, our results show that the walker passively tolerates disturbance, thanks to its chaotic

behavior. The proposed control concept paves the way for additional understanding of the prop-

erties of chaotic gait. The findings not only confirm the positive role of chaotic gait but may

also help to design more stable bipedal control systems.

7.2 Chaotic Input Design

Previous studies have pointed out that for a continuous nonlinear dynamical system to gen-

erate chaotic attractors, there must be at least two nonlinear modes of motion and non-strictly

periodic transitions between the two modes of motion. Over time, the gradual separation of

neighboring states moving in the same mode of motion and the non-simultaneous transitions

between different modes of motion lead to a sensitive dependence of the motion of the chaotic

system on the initial value. Therefore, it is not easy to find a suitable chaotic waveform as input.

In this paper, the author adopts the Rössler attractor [36], one of the well-known attractors, to

model chaotic input waveforms with the following equations:
d
d𝑡 𝑅𝑥 = −𝑅𝑦 − 𝑅𝑧,

d
d𝑡 𝑅𝑦 = 𝑅𝑥 + 𝛼𝑅𝑦,

d
d𝑡 𝑅𝑧 = 𝛽 + 𝑅𝑧 (𝑅𝑥 − 𝛾).

(7.1)

Here, the author designed chaotic input based on the Rössler attractor using predetermined

constant parameters. Subsequently, by observing the trajectory of 𝑢 := 𝑅𝑥 , a suitable initial

value is found and the generated chaotic waveform is directly used as the torque input to the

robot crotch joint (it is necessary to ensure that the initial torque is approximately half of the

overall size so that the point can be set as the origin). Based on the entrainment theory in which

two interacting oscillating systems exhibit the same period, the author attempts to generate

chaotic gaits with the same period by chaotic input waveforms, more details will be mentioned

in the next section.
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(d) Control input by Rössler attractor
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Figure 7.1: Simulation results of typical gait generation by a chaotic control input
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Figure 7.2: Normalization of sinusoidal and chaotic input waveforms

7.3 Numerical Simulation Results

This section describes the driving method used to generate a stable chaotic walking gait.

Chaotic input waveforms are generated based on the characteristics of the Rössler attractor,

and the input is directly used as a torque waveform for the hip motor drive using an open-

loop control method. The advantage of torque control is that it potentially exploits the inherent

dynamics of the robot. In addition, the walking performance can be controlled by appropriately
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Figure 7.3: Phase-plane plots of the robot on a horizontal surface by comparing periodic input

with chaotic input
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Figure 7.4: Basin of attraction (Number of initial conditions that can be successfully walked)

tuning the parameters of the chaotic waveform.

7.3.1 Typical gait generation

Table 7.1 shows the physical and control parameters to conduct the following process. It

should be noted here that since the chaotic waveform generated by the time-dependent Rössler

attractor cannot change the frequency, the coefficients 𝜁 and 𝛿 used here compress the frequency
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and the amplitude. The author sets the initial conditions as

q(0) =

[
0 0.0015 0.1745 −0.1745

]T
,

¤q(0) =

[
0 0 0.75 0

]T
. (7.2)

Here, since the robot with a semicircular foot, the 𝑧 coordinate needs to be calculated based on

the angle of the stance leg when the height of contact point 𝑧𝑐 is 0 [m]. The initial condition

has the same angle as the stance leg and the swing leg. Thus, the walking is simply initialized

at the collision condition.

Figure 7.1 shows a typical gait generated by the biped walker based on chaotic inputs. The

centroid position (𝑥, 𝑧) of the semicircular foot of the stan leg is shown in Fig. 7.1(a), because

the frequency and torque of the chaotic input are not fixed, it cannot converge to the same step

length and step frequency. The author zooms in on the variation in 𝑧-coordinate to distinctly see

the circular foot rolling on the ground. In Fig. 7.1(b) and (c), we can see the angular position and

angular velocity of the two legs. Because of the chaotic input, the legs swing asymmetrically,

and so is the angular velocity. The input waveform generated based on the parameters listed in

Table 7.1 is shown in Fig. 7.1(d), where the frequency and amplitude are not fixed, but vary in

a certain range. Figure 7.1(e) shows the variation of the vertical ground reaction force with an

average value approximately equal to the entire robot mass. Moreover, these values constantly

remain positive. It can be shown that the stance leg never leaves the ground and the resulting

gait is reasonable. Figure 7.1(f) shows the energy consumed by the robot at each step when a

collision occurs, and since the swing leg does not smash into the ground at the same speed each

time, the kinetic energy consumed is therefore continuously changing.

Table 7.1: Physical and Control Parameters

Symbol Value Unit

𝑚𝐻 10 kg

𝑚1=𝑚2 5 kg

𝑎=𝑏 0.5 m

𝐿 1 m

𝑅 0.1 m

Symbol Value Unit

𝑔 9.81 m/s2

𝛼=𝛽 0.1

𝛾 9

𝛿 1

𝜁 9.5
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7.3.2 Compare with limit cycle gait

Previous results [70] have shown that a bipedal walking robot can converge to a limit-cycle

gait while walking horizontally on the ground, even without any feedback control, provided a

sinusoidal torque input is given. To verify the stability of the generated chaotic gait, the author

compares it with the limit-cycle gait. In Fig. 7.3, the author compares the phase planes of the

same robot for the conditions of periodic and chaotic inputs, respectively, and it is essential

to note that for a fair comparison, we need to normalize the waveforms of both, as shown in

Fig. 7.2, where the sinusoidal input has the same total input energy as the chaotic one. The

author uniformly lets the robot walk for 100 [s]. In Fig. 7.3 (a) and (b), the sine wave input and

the chaotic input are used respectively, and the robot intercepts the phase plane from the 50th

to the 100th second after walking for 50 [s]. We can see that the robot in 7.3(a) generates a

period-1 limit-cycle gait, while 7.3(b) has a chaotic gait. Figure 7.4 shows a comparison of the

explored BOA sizes. The author divided the angles of the feet and the angular velocities of the

combined four initial conditions into nine equal parts, and they range from 𝜃1 from -0.5 to 0.5

[rad], ¤𝜃1 from -1 to 2 [rad/s], 𝜃2 from -0.7 to 0.3 [rad], and ¤𝜃2 from -5 to 6 [rad/s]. This implies

that there are 104 combinations of initial conditions. It was shown that 395 initial states can be

successfully walked for more than 50 seconds when periodic inputs are used. It was expanded

to 515 groups when chaotic wave input was used.

7.3.3 Effect of chaotic control input

The author initially explained the chaotic gait based on the Rössler attractor. However, the

range of inputs that can provide stable walks remains to be examined, and thus the goal of

this subsection is to explore the effect of chaotic input waveform parameters and explore the

possible walk dynamics induced by the proposed control method. The method for exploring the

stability domain is as Algorithm 5.

The explored stability domains are shown in Fig. 7.5 and Fig. 7.6, with two non-connected

size stability domains present. In general, as open-loop control, the domain is sufficiently broad.

In contrast, the gait generated by the chaotic controller is essentially influenced not only by the

frequency coefficient 𝜁 but also by the amplitude coefficient 𝛿. Fig. 7.5(a) represents the vari-

ation of the walking frequency, a performance metric that is roughly linearly related to the

frequency coefficients in the input, with a gradual increase in walking frequency as the input
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Figure 7.5: Gait performance versus the chaotic control input

frequency increases. Although the chaotic input does not have a fixed frequency, it invariably

approximates the walking frequency. The variation of the step length is shown in Fig. 7.5(b).

Compared with the walking frequency, the step length is more influenced by the input ampli-
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Figure 7.6: Gait performance versus the chaotic control input

tude coefficient, and the longest step length comes to approximately 0.32 [m] at larger torques.

However, even though the amplitude parameter varies considerably, it is around 0.25 [m] most

of the time. The walking speed is obtained by multiplying the walking frequency by the step
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Algorithm 5 Calculate 𝑇 and 𝑆𝐿

Require: The step period 𝑇 and step length 𝑆𝐿 of the Robot when they get stabilized

Input: Initial state q(0), ¤q(0), 𝜁 and 𝛿

Output: Step period 𝑇 and step length 𝑆𝐿 of the next 20 steps after 50 seconds

1: Initialization 𝑇 [𝑙] [𝑚] [20] = 0 , 𝑆𝐿 [𝑙] [𝑚] [20] = 0 , 𝜁 = 0.1 , 𝛿 = 0.1

2: for 𝑖 = 1; 𝑖 <= 𝑙 : 𝑖 + + do

3: for 𝑗 = 1; 𝑗 <= 𝑚 : 𝑗 + + do

4: Run simulation for 50 seconds.

5: Save the next 20 step periods to 𝑡 and the next 20 step length to 𝐿

6: 𝐿 [𝑖] [ 𝑗] = 𝑡

7: 𝑆𝐿 [𝑖] [ 𝑗] = 𝑆𝐿

8: 𝜁 = 𝜁 + 0.05

9: end

10: 𝛿 = 𝛿 + 0.025

11: end

12: Return 𝑇 and 𝑆𝐿

2 3 4 5 6 7 8

x [m]

-0.2

0

0.2

0.4

0.6

z
 [

m
]

Figure 7.7: Biped robot walking on uneven terrain with chaotic input

length. In Fig. 7.6, it is easy to see from Fig. 7.6(c) that a larger torque complemented by

a larger input frequency gives the fastest walking speed. Finally, Fig. 7.6(d) as an important

indicator of bipedal walking, the walking efficiency stays below 0.3 most of the time, which is

better than the vast majority of walking robots and is closer to human walking efficiency.

Finally, the author generated a section of uneven terrain to verify the stability of the proposed

method, and the walk results are shown in Fig. 7.7, and it illustrates a screenshot from the walk

animation, intercepted at intervals according to the input period because the walking frequency

is known to converge with the input frequency. The initial 2 [m] is a horizontal surface, and
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Figure 7.8: CAD of a compass bipedal walking robot designed to conform to the simulation

style

when the robot is faced with an uphill slope, the step length and walking frequency become

significantly smaller due to the fact that the semicircular foot is more difficult to cross the

potential energy barrier during the uphill slope. Eventually, the robot walked the entire distance.

Based on these results, the author conjectures that the proposed approach helps one to more

easily study chaotic gait in passive walking.

7.4 Summary and Discussions

In this chapter, the author hypothesizes that a reasonably generated chaotic bipedal gait is

potentially more robust to perturbations than a limit-cycle gait under equivalent road conditions.

Numerical simulations have shown that it is possible to generate gaits on the horizontal ground

using chaotic input waveforms generated based on Rössler attractors. Although the simple
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control method is open-loop, the author explores a relatively large stability domain, and by

comparing periodic gaits, our method provides a larger basin of attraction. In addition, the

author observed the effect of different control parameters on gait performance and successfully

applied the method to uneven terrain. Our results confirm that there are positive aspects of chaos

in bipedal walking, and the proposed concept of chaotic control may offer new possibilities

for understanding bipedal dynamic walking. While only constructive results are available, the

author plan to delve into the logic behind chaotic gaits. Moreover, for future work, the author

will use an improved bipedal robot based on the one that has been made so far, Fig. 7.8 shows

the design of the improved robot and will be validated in a real-world environment.
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Chapter 8

Conclusion and Future Works

8.1 Summary

From the perspective of making full use of the robot’s inherent dynamics, traditional control

means relying solely on feedback is discarded. In order to achieve efficient and stable motion of

bipedal robots using the entrainment control mechanism on level ground as well as on uneven

ground, the following work is carried out in this dissertation:

• The advantages of the compass robot are analyzed and demonstrated by RW under time-

symmetric and asymmetric input signals.

• The nonlinear characteristics of a passive bipedal robot based on entrainment control are

analyzed and the range of successful entrainment is observed by Arnold tongue.

• The entrainment principle was successfully applied to pavements other than downhill,

and a large number of observations on walking speed, efficiency, and entrainment range

were made by varying the control parameters, and the system stability was analyzed by

means of the Poincaré map.

• Based on the entrainment control theory, an experimental machine was designed and built,

and the experimental results successfully verified the feasibility of the theory.

• Using Bayesian optimization theory, the optimal control parameters and physical param-

eters of the robot under entrainment control are optimized for walking speed and walking

efficiency.
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• In addition to the periodic limit cycle gait, the chaotic gait is designed by using the char-

acteristics of the chaotic attractor with a large attraction basin, and the above results are

combined to successfully expand the basin of attraction of the gait.

8.2 Conclusion

Conventional robots generally require precise real-time feedback control to achieve stable

walking, which leads to significant energy losses that cannot be sustained for long periods of

time in realistic environments. In this paper, the aim is to explore further intrinsic mechanisms

of walking and to realize a simpler and more efficient method of motion control for bipedal

robots. Two signaling systems, the first and the second, acquired by humans during evolution

are borrowed. A similar classification of signal systems can be done for robot motion gener-

ation. The former is used to reliably generate and maintain basic motions, while the latter is

used to adapt flexibly to complex environments, where each system operates in a shared and

coordinated manner.

In the case of a compass bipedal robot, for example, the use of a reasonable feedforward

input waveform, based on the entrainment effect, allows the bipedal robot to walk efficiently

and stably on downhill as well as horizontal surfaces. It can be viewed as the motion gener-

ation of control signals (first signal system) generated at the level of human reflexes without

any feedback control, which considerably reduces the cost of control. At the same time, step

length, walking frequency, and walking speed, which are critical indicators of walking within

the entrainment range, can be simply tuned by the control parameters. To verify whether the

entrainment control method can successfully control a robot to generate dynamic walking in

a realistic environment, a bipedal walker was designed and fabricated. Although only a 1:1

entrainment between the input waveform frequency and the actual walking frequency can be

achieved due to hardware conditions, the experimental results demonstrate the feasibility of the

proposed method.

In order to pursue higher walking performance, such as superior walking speed, and to ob-

tain the highest energy utilization while limiting the walking speed, the control parameters as

well as the physical parameters of the robot itself are globally optimized by Bayesian optimiza-

tion. The results show that the fastest walking speed occurs in a 2:1 entrainment waveform

when only the control parameters are changed, while the fastest walking speed can be achieved
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in a 1:1 entrainment waveform after optimizing the foot shape, which indicates that the struc-

tural design of the robot itself is also significant. The results of walking efficiency show that SR

can be as low as 0.007 (better than human) with the proposed control method while maintaining

a walking speed of 0.5 [m/s] or more.

Moreover, in bipedal dynamic walking, it is common to expect the gait to converge to a limit

cycle gait. However, from another point of view, the most essential requirement to achieve sta-

ble bipedal walking is not to fall, which requires a large BOA to tolerate disturbances. Chaotic

oscillators tend to have large basins of attraction compared to the limit cycle. Accordingly, it

is hypothesized in this paper that a chaotic bipedal gait correctly generated due to entrainment

effects may be more robust to perturbations (e.g., walking on uneven ground). Based on this

consideration, chaotic gaits are generated by employing a Rossler attractor, which is typical of

chaotic oscillators. It was shown that chaotic bipedal gait has a larger BOA than restricted peri-

odic walking for the same input strength, and the domain of stable walking was further explored

by varying the control parameters of chaotic bipedal gait.

8.3 Contribution

This dissertation presents a theoretical analysis of the control of entrainment-based bipedal

walking robots from a nonlinear dynamics perspective. It was initially found that limit cycle

gaits can be generated on both RW and compass-like bipedal robots using time-symmetric in-

put waveforms, but RW requires extremely large semicircular feet and entrainment is difficult

to occur. Compass-like bipedal robots, on the other hand, are also applicable and have a larger

range of entrainment due to the presence of a swinging leg, which can effectively improve walk-

ing performance when entrained. When time-asymmetric input waveforms are used, RW can

produce an entrainment effect, but the improvement in walking performance is not sufficiently

obvious, so the control method is more appropriate for compass-like bipedal robots.

Moreover, its applicability in realistic environments is verified by designed experimental

machines. In addition, global optimization of the system is performed based on theoretical

analysis. More importantly, the positive aspects of the chaotic gait are revealed. Thus, the

control theory advocated in this dissertation can significantly improve the energy efficiency

of realistic robots. Moreover, the proposed concept of chaotic control may provide different

possibilities for understanding bipedal dynamic walking.

98



𝑢 𝑡 = 𝐴𝑛𝑜𝑚 + 𝐴𝑒𝑐 𝐹(𝜔𝑡 + 𝛽)

𝐹(𝜔𝑡) = 𝑎0 + Σ𝑛=1
𝑁 𝑎𝑛sin(𝑛𝜔𝑡 + 𝜓𝑛)

max 𝐴𝑎𝑙𝑙 = 𝑎1 𝐴𝑎𝑙𝑙 = {𝑎1, … , 𝑎𝑛, … 𝑎𝑁}

𝐹∗: large BOA(basin of attraction)

smooth transition among attractors (overlap)

Find

s.t. 𝐹2 = 𝑐 𝐴𝑒𝑐 = Π(𝜙Δ)

First signal 

system control

Second signal 

system control

Figure 8.1: Migration of attractors through fusion and optimization of signal systems

8.4 Future Works

Currently, the control method proposed in the paper is only applicable to the first signal

system, and although it can substantially improve walking efficiency, its adaptability to different

road environments still needs to be improved. Here it is necessary to use a second signal system,

based on the feed-forward ground state, for partial compensation. As shown in Fig. 8.1, keeping

the system with only a single input 𝑢(𝑡) and without adding additional degrees of freedom, F

(based on Fourier transform) achieves the maximum area of the attraction basin when walking

on a horizontal road surface is first found by Bayesian optimization. Then, error compensation

is introduced to ensure the stability of the system in the case of complex pavements. Here, 𝐴𝑛𝑜𝑚

denotes the parameter that determines the input size when walking on a horizontal pavement,

𝐴𝑒𝑐 denotes the error compensation parameter, and 𝛽 denotes the phase change parameter. In

terms of phase space, both 𝐴𝑒𝑐 and 𝛽 are zero when it is not out of the initial area of the BOA,

which means that the robot moves forward only under the control of the first signal system; once

the ground conditions change and the system is out of the initial BOA, the 𝐴𝑒𝑐 and 𝛽, which

act as the control of the second signal system, is introduced to make the robot stabilize in the

new BOA and gradually migrate to the initial BOA. In this way, a higher walking performance

is expected to be achieved with the combination of the first and second signal systems.
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[2] M. Vukobratović and B. Borovac, “Zero-moment point—thirty five years of its life,” In-

ternational journal of humanoid robotics, vol. 1, no. 01, pp. 157–173, 2004.

[3] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The

intelligent asimo: System overview and integration,” IEEE/RSJ international conference

on intelligent robots and systems, vol. 3, pp. 2478–2483, 2002.

[4] F. Iida, G. Gomez, and R. Pfeifer, “Exploiting body dynamics for controlling a running

quadruped robot,” ICAR ’05. Proceedings., 12th International Conference on Advanced

Robotics, 2005., pp. 229–235, 2005.

[5] F. Iida and R. Tedrake, “Minimalistic control of biped walking in rough terrain,” Au-

tonomous Robots, vol. 28, no. 3, pp. 355–368, 2010.

[6] T. McGeer, “Passive dynamic walking,” The International Journal of Robotics Research,

vol. 9, no. 2, pp. 62–82, 1990.

[7] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles and their stability in a passive

bipedal gait,” vol. 1, pp. 246–251, IEEE, 1996.

[8] A. Goswami, B. Thuilot, and B. Espiau, “Compass-like biped robot part i: Stability and

bifurcation of passive gaits,” tech. rep., INRIA, 1996.

100



[9] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in a passive compass gait biped

and passivity-mimicking control laws,” Autonomous Robots, vol. 4, no. 3, pp. 273–286,

1997.

[10] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-

dynamic walkers,” Science, vol. 307, no. 5712, pp. 1082–1085, 2005.

[11] S. Collins and A. Ruina, “A bipedal walking robot with efficient and human-like gait,”

pp. 1983–1988, IEEE, 2005.

[12] M. W. Spong, “Energy based control of a class of underactuated mechanical systems,”

Proceedings of the 1996 IFAC World Congress, pp. 431–435, 1996.

[13] M. W. Spong and F. Bullo, “Controlled symmetries and passive walking,” IEEE Transac-

tions on Automatic Control, vol. 50, no. 7, pp. 1025–1031, 2005.

[14] F. Asano, M. Yamakita, N. Kamamichi, and Z. Luo, “A novel gait generation for biped

walking robots based on mechanical energy constraint,” IEEE Transactions on Robotics

and Automation, vol. 20, no. 3, pp. 565–573, 2004.

[15] F. Asano, M. Yamakita, N. Kamamichi, and Z. Luo, “A novel gait generation for biped

walking robots based on mechanical energy constraint,” IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, vol. 3, pp. 2637–2644 vol.3, 2002.

[16] Y. Harata, F. Asano, Z. Luo, K. Taji, and Y. Uno, “Biped gait generation based on para-

metric excitation by knee-joint actuation,” Robotica, vol. 27, no. 7, pp. 1063–1073, 2009.

[17] Y. Harata, F. Asano, K. Taji, and Y. Uno, “Efficient parametric excitation walking with

delayed feedback control,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1327–1335, 2012.

[18] G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of bipedal locomotion

by neural oscillators in unpredictable environment,” Biological Cybernetics, vol. 65, no. 3,

pp. 147–159, 1991.

[19] S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo, “Three dimensional bipedal step-

ping motion using neural oscillators—towards humanoid motion in the real world—,”

Journal of the Robotics Society of Japan, vol. 18, no. 1, pp. 87–93, 2000.

101



[20] R. Altendorfer, D. E. Koditschek, and P. Holmes, “Stability analysis of a clock-driven

rigid-body slip model for rhex,” The International Journal of Robotics Research, vol. 23,

no. 10-11, pp. 1001–1012, 2004.

[21] K. D. Mombaur, R. W. Longman, H. G. Bock, and J. P. Schlöder, “Open-loop stable
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