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Abstract

Microcontrollers are small computers specially designed for embedded systems.
Since they were introduced, microcontrollers have been used in a wide range
of applications, including mission-critical applications such as satellite rockets,
automotive systems, and medical devices. Hence, it is essential to ensure the
reliability of microcontroller-based applications. When developing these applica-
tions, hardware-dependent features must be considered in addition to standard C
language features. For hardware-dependent features, a hardware manual is pro-
vided for each microcontroller. In this manual, information that requires special
attention as coding rules are emphasized, along with the explanation of the fea-
tures of the hardware. Currently, the process of verifying these coding rules is
performed manually, as no single tool can directly handle this task. The reason
is that the coding rules are non-standard while existing verification tools often
support standard coding rules only. Verifying the coding rules is time-consuming
and laborious as both the volume of the embedded source code (e.g., thousands of
lines of code) and the number of coding rules are often large (e.g., the hardware
manual of a popular microcontroller contains 2415 pages and 492 fragments that
describe notes or cautions).

Several researchers tried to handle this task. In general, they tended to create
new tools or extend existing tools. Implementing new tools or extensions is a
heavy and inflexible solution. Additionally, new hardware models are frequently
introduced. It is impractical to introduce one verification tool for each model.

This research aims to automate these coding rules’ verification processes by
proposing a flexible approach. Specifically, we proposed a verification frame-
work that utilizes advanced techniques in program analysis and model-driven
engineering. Firstly, the program analysis techniques (i.e., pattern matching, ab-
stract interpretation-based static program analysis, bounded model checking, and
counterexample-guided abstract refinement) are combined to analyze C programs
effectively. Secondly, heuristic-based natural language processing techniques
are employed to analyze the hardware manual and extract hardware knowledge.
Thirdly, model-driven engineering techniques are employed for comprehensively
modeling the hardware, compiler, and source code of microcontroller-based sys-
tems. Finally, model querying techniques enable flexibly verifying the system
against the target coding rules.

The approach was evaluated by applying to handle a benchmark source code
and an industrial source code. The experiment with the benchmark source code
showed that the approach is feasible in verifying microcontroller-based systems
against the register-access coding rules. Although the benchmark was a small-size



source code only, the source code represented different ways for violations to occur.
The approach analyzed the source code successfully and detected all expected
violations of the target register-access coding rules. We even find violations that
senior developers miss. The experiment with the industrial source code showed
that our verification framework was applicable to a real product. The precision in
this experiment was 0.8, as two false warnings were detected. The recall was 1, as
all expected violations were found.

This research contributes a practical solution for an important problem in
the industry. Formal verification theory is highly established through a long
history of development. Many methods proposed in academics could work well
with small benchmark source code, but not many are applicable to industrial
applications. The industrial setting is much more complex in comparison with
laboratory environments. Among needs in the industry, verifying systems against
microcontroller-specific coding rules is a heavy yet critical task. There is an
emergency call for automated solutions. In response, our work is expected to be a
practical and effective solution to judge the conformance of the coding rules and
a tool for other tasks like source code understanding. The proposed verification
framework promises to reduce the huge amount of manual tasks in the current
verification process in practice.

Keywords: Microcontroller-specific coding rules, C programs, Program anal-
ysis, Knowledge modeling, Program verification
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Chapter 1

Introduction

1.1 Background
A microcontroller is a small computer usually containing one or more CPUs
with memory and input/output peripherals. Microcontrollers were introduced in
the 1970s as cost-efficient for embedded systems. Nowadays, microcontrollers
have become popular in a wide range of electronic devices. We can easily find
microcontrollers in a wide range of electrical systems, from simple systems, such
as children’s toys or remote control, to safety-critical systems, such as medical
devices [2] and automotive systems [3]. As microcontrollers are used in safety-
critical systems, the reliability ofmicrocontroller-based systems is crucial. Wemay
accept that the remote control in our house is broken with a little uncomfortable
feeling, but we never want to sit with software bugs in a car or even live with faulty
software implanted in our bodies.

Historically, there have been noticeable bugs in the embedded system with
serious consequences, such as the Ariane 5 disaster in 1996 [4], or the recall of
Toyota Prius [5]. Additionally, as manufacturers can only update some systems,
faulty systems can become nearly useless due to the high cost of recalling and
updating at the factory. Hence, we need to ensure the safety of the systems written
on top of the hardware besides the reliability of the hardware itself.

Each microcontroller usually comes with a hardware manual for specifying
the correct usage of the hardware. This manual contains explanations of the
microcontroller’s features. Along with each feature, important requirements are
emphasized to require special attention from users. In this research, we call these
requirements as microcontroller-specific coding rules.

To develop microcontroller-based systems, we must consider standard pro-
gramming language features and microcontroller-specific coding rules. For in-
stance, assume we have a microcontroller with two registers named register_1
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1
2 void main ( void ) {
3 unsigned long ∗ r e g i s t e r _ 1 = ( unsigned long ∗) 0

xFFE20244 ;
4 unsigned long ∗ r e g i s t e r _ 2 = ( unsigned long ∗) 0

xFFE51094 ;
5 unsigned long v a l = 0x11001100 ;
6 unsigned long mask = 0x4 ;
7 ∗ r e g i s t e r _ 1 = v a l ;
8 i f (∗ r e g i s t e r _ 1 & mask != 0) {
9 ∗ r e g i s t e r _ 2 = 0x11001100 ;

10 }
11 }

Figure 1.1: Example microcontroller-based source code

and register_2; the addresses of these two registers are 0xFFE20244 and
0xFFE51094; there is a coding rule which requires that "The written value of
the two registers must not be 0x11001100 at the same time.". Figure 1.1 shows a
sample microcontroller-based source code written on top of the hardware. There
is a violation of the coding rule as at lines 7 and 9, register_1 and register_2
are written to 0x11001100, respectively.

Several works [6, 7, 8] have proposed to solve this problem. In [7], Schlich et
al. created a tool for verifying the assembly code of a microcontroller by applying
model checking. In [6] and [8], existing static analysis tools were extended for
microcontroller-specific coding rules. In general, existing works introduced new
or extended tools to handle several microcontrollers’ coding rules. However, these
works were hard to be extended for other coding rules. To handle other rules, it
is necessary to modify the tools directly. Additionally, different microcontrollers
may have different features. Sometimes, we must rewrite the tool or the extension
for nearly every microcontroller. Adjusting the tool/extension to adapt to a new
microcontroller model requires professional skills in both the microcontroller and
the verification tool.

1.2 Research problem and objective
Currently, verifying those coding rules is an entirely manual process. This manual
process makes the verification phase the most time-consuming phase in the devel-
opment process. Additionally, as microcontroller-based systems are often large
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and complex, human inspection is inadequate to ensure the absence of defects.
Automated tools are expected to be a great support for the development process.
Companies like Aisin Software Co., Ltd (AISW) are seeking automatic solutions.
However, currently, there is no industry-strength tool to handle this problem.

In this research, we aim to automate the process of verifying themicrocontroller-
based systems against the microcontroller-specific coding rules. Multiple sources
of information are needed for this verification task, including the information on
the microcontroller, the behaviors of the target source code, and the used compiler.
The information about a microcontroller can be found in its hardware manual, as
discussed previously. The information on the behaviors of the target source code
can be obtained by analyzing the semantics of the source code. Several settings
of the used compiler, such as pairs of types and data sizes, can be found in the
compiler manual.

Assuming that the settings of the used compiler are provided, we propose
to extract, model, and use the hardware and source code information for the
verification objective. To achieve this objective, there are four tasks to be solved.
The first task is to analyze the hardware manual to get information about the coding
rules. The main difficulty in analyzing the hardware manual is the ambiguity of
natural language. The second task is to analyze the target source code and extract
information about related code fragments to the coding rules. The difficulty in
analyzing source code is the increasing complexity of embedded systems. The
third task is to model the extracted information from the two sources above for
the verification task. The difficulty of modeling the extracted knowledge is that
the knowledge size is expected to be large, and the relations among the knowledge
components are complex. The fourth task is to effectively use the represented
information to verify the target source code against the coding rules. The difficulty
of verifying the systems against the target coding rules is the huge number of
microcontroller-specific coding rules.

1.3 Proposed solution
Figure 1.2 shows the overview of the proposed framework to solve the four tasks
mentioned above. This approach has four phases corresponding with solutions for
the tasks. The solutions to these tasks are illustrated in the four boxes namedHard-
ware Knowledge Extraction, Software Knowledge Extraction, Knowledge Model-
ing, and Knowledge Querying.

Hardware Knowledge Extraction is a phase to extract information from the
hardware manual. The input of this phase is a Hardware manual in Portable Doc-
ument Format (PDF) format. The output is the Formalized hardware knowledge
extracted from this manual. For formally describing the hardware knowledge, we

3



Figure 1.2: Overview of proposed framework

propose Specification language of hardware knowledge. Detail of this specification
language can be found in Section 3.3. In the current verification process, develop-
ers read the manual and extract the coding rules based on several special keywords
such as "note" or "caution". This research partially automates this process. We
apply heuristics based on keywords and the documents’ syntactic features to ex-
tract the coding rules’ semantics. Details of the approach for handling hardware
manuals can be found in Chapter 3.

Software Knowledge Extraction is a phase for analyzing C programs by com-
bining four program analysis techniques. The inputs of this phase are the Source
code and the Formalized hardware knowledge extracted in the first phase. The
output is Formalized software knowledge. For formally describing the software
knowledge, we propose Specification language of software knowledge. Detail of
the specification language can be found in Section 4.3. Automatically analyzing
the source code and extracting the software knowledge requires a certain level
of flexibility and sophistication. Flexibility is necessary because the knowledge
to be extracted depends on the target coding rules, which have many possible
variations. Additionally, the solution should easily adapt to new coding rules or
hardware. Sophistication is required because embedded systems have grown in
size and complexity. Additionally, extracting several types of knowledge requires

4



deep analyses of the systems. As it is difficult for a single technique to be flexi-
ble and sophisticated, integrating multiple techniques with different strengths and
weaknesses is a promising approach. This work proposes an algorithm combin-
ing four well-established program analysis techniques to extract the behaviors of
source code. These program analysis techniques include pattern matching (PM),
abstract interpretation-based static program analysis (AI), bounded model check-
ing (BMC), and counterexample-guided abstract refinement (CEGAR). First, PM
is employed in the form of code patterns to detect potentially related expressions
of coding rules in the target source code. Secondly, AI, BMC, and CEGAR are
employed to examine whether the potentially related expressions relate to a violate
the coding rules. The approach to analyzing the C program can be found in Chapter
4.

Knowledge Modeling is a phase for modeling hardware knowledge and results
of program analysis tools. The input of this phase is the Formalized hardware
knowledge extracted in the first phase, the Formalized software knowledge ex-
tracted in the second phase, Formalized compiler knowledge of the used compiler,
and a Meta-model which defines a structure to model the input knowledge. The
specification language of the Formalized compiler knowledge can be found in
Definition 5.1.1. The Meta-model can be found in Section 5.2. The output is a
Knowledge model which models the three kinds of knowledge. Embedded sys-
tems are the integration of hardware and software components. Verifying these
systems usually requires the combination of multiple sources of information, i.e.,
source code analysis results, hardware, and compiler knowledge. Additionally,
multiple program analysis techniques/ tools for obtaining software information
have different strengths and weaknesses. However, handling the analysis results
of these techniques/tools is difficult as their outputs are usually different in both
format and content. We propose a meta-model that systematically gathers the
knowledge of hardware, compiler, and analysis results of program analysis tools.
The meta-model is designed to adapt to different output formats of multiple knowl-
edge extraction techniques/ tools. Ecore format, which is equivalent to a subset
of Unified Modeling Language (UML) notations, is employed for designing and
representing themeta-model. There aremultiple advantages to applying the knowl-
edge models for verifying hardware-dependent properties. The first advantage is
that the knowledge models can be reused for other purposes, such as system un-
derstanding. The second advantage is that the meta-model is flexible in handling
outputs of other program analysis tools/ techniques and easy to extend for other
types of hardware-dependent knowledge. The details of this phase can be found
in Chapter 5.

Lastly, Knowledge Querying is a verification process that utilizes the extracted
knowledge and the meta-model for verifying the target system against the coding
rules. The input in this phase is a Knowledge model which is generated from
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the previous phase, a Coding rule in the form of a Query, a list of Pre-defined
queries. The output of this phase is the Verification result of the target coding
rule. Specifically, we apply queries over the Knowledge model to check for the
target coding rules. As the coding rules can be categorized into several groups,
pre-defined queries for the target categories of coding rules are proposed. Details
of the verification approach are shown in Chapter 6.

1.4 Contribution
This research has four main contributions. The first contribution is in analyzing C
programs, inwhichwe proposed a combination of four programanalysis techniques
for analyzingC programs. The second contribution is inmodelingmicrocontroller-
based systems, in which we proposed a meta-model for modeling the extracted
information from a hardware manual and source code. The third contribution is
in verifying the target coding rules, in which we proposed a program verification
framework for verifying the embedded system against the microcontroller-specific
coding rules. The fourth contribution is in implementing the approach, in which
we proposed an industrial-strength tool based on the verification framework.

Our first contribution is an effective combination of four program analysis
techniques for analyzing embedded source code, enabling program verification
for microcontroller-specific coding rules. Automatically verifying these coding
rules requires a certain level of sophistication. Sophistication is required because
software systems have grown in size and complexity. Additionally, verifying many
coding rules requires deep analyses of the systems. While many theories and
techniques have been proposed for handling hardware-dependent systems, there
is a gap in practical usage for these specific coding rules. This work proposes
a new algorithm combining four well-established program analysis techniques to
handle a practical problem (i.e., analyzing the microcontroller-based source code).
This combination successfully handled an industrial source code in the automotive
field.

Our second contribution is a meta-model for modeling and verifying the com-
pliance of microcontroller-specific coding rules. There are several works in repre-
senting information of programs, such as a fine-grained database for representing
general information of source code. However, to the best of our knowledge, there
is no existing solution for microcontroller-specific systems. Although we target a
specific problem, this is a significant contribution when considering the population
and importance of microcontroller-based systems.

Our third contribution is a program verification framework for verifying the
compliance of microcontroller-specific coding rules. This framework gathers
the strengths of multiple program analysis tools and model-driven engineering
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techniques. In general, existing works tend to create new tools or extend existing
tools. This task is very time-consuming. Developing a new industrial-strength tool
from scratch for properties with a huge number of variations, like microcontroller-
specific coding rules, is not practical. Our program verification framework is more
lightweight and flexible than previous works.

Our fourth contribution is an industrial-strength tool for verifying embed-
ded systems against microcontroller-specific coding rules. Innovation in science
is discovering new knowledge and how we can collaborate and implement this
knowledge in practice to improve the quality of human life. By contributing a
tool to solve an urgent problem in practice, we have brought advances in software
verification to solve practical problems. Software verification theory is highly
established through a long history of development. However, there is a big gap
between theory and practice. An industrial setting is much more complex in
comparison with laboratory environments. Many methods proposed in academics
could work well with small benchmark source codes, but not many are applicable
to industrial applications. Despite that, we succeeded in applying the software ver-
ification to the source codes developed and used in a company. Our work can be
considered one of the efforts to push software verification further in its evolution.

1.5 Dissertation organization
In chapter 1 (this chapter), we first introduce the research background and the
research problems in focusing on microcontroller-based systems and handling
microcontroller-specific coding rules. Then, we explain the overview of our pro-
posed solutions and summarize our contributions.

Chapter 2 describes the background of this research. This section first intro-
duces important features of microcontroller-specific systems. Next, we introduce
the techniques and tools used in this research.

Chapter 3 describes the approach for analyzing hardware manuals and ex-
tracting hardware knowledge. This chapter first defines the formalized format of
hardware knowledge. Then the approach for automatically extracting the target
hardware manual is explained.

Chapter 4 focuses on the task of extracting knowledge from microcontroller-
based source code. In this chapter, we first compare the selected techniques in terms
of well-suitedness and the employed approximation approach. Then, we define
the formalized format of software knowledge. Next, we explain the proposed
algorithm, which combines these techniques for extracting the target knowledge.

Chapter 5 presents the approach for representing knowledge ofmicrocontroller-
based systems. This chapter explains our meta-model for representing the hard-
ware, compiler, and software knowledge in the form of a knowledge model.

7



Chapter 6 details how the knowledgemodel is used for verifyingmicrocontroller-
specific coding rules. In this chapter, we first explain the overview of verification
processes using this model. Then, we explain the pre-defined queries for the target
categories of coding rules.

Chapter 7 focuses on an verification tool developed based on the proposed
solution. In this chapter, we explain the implementation architecture. External
tools and programming languages used in this implementation are described as
well.

Chapter 8 is for evaluating the proposed approach. This chapter shows the
experiments result of applying the approach to handle a benchmark source code
and an industrial source code. Then we discuss several aspects of the approach.

Chapter 9 discusses the related works. We discuss the related research in three
main issues: analyzing hardware manuals, analyzing and modeling source code
knowledge, and verifying microcontroller-based systems. We also compare our
verification tool with several existing tools for C programs.

Chapter 10 consists of conclusions and future directions. We first conclude the
results of the overall dissertation. In the end, we discuss open problems and draw
work that should be considered in the future.
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Chapter 2

Preliminaries

This chapter explains concepts and techniques which are primarily needed to un-
derstand the proposed verification framework. As this research targets a type of
coding rules for embedded systems written in C programming language, Section
2.1 first explores other well-known coding standards for these systems. Secondly,
Section 2.2 introduces our target coding rules and compares our target with the
well-known coding standards. Thirdly, Section 2.3 discusses the current verifi-
cation process for the target coding rules. Fourthly, Section 2.4 explains how to
perform an essential task in developing microcontroller-based systems, which is
accessing registers. Fifthly, Section 2.5 and Section 2.6 introduce the employed
techniques in the verification framework, including program analysis and model-
driven engineering techniques. Finally, Section 2.7 introduces other notations
used, including Backus-Naur from and linear temporal logic.

2.1 Coding standards for embedded systems
As C programming language is frequently used for safety-critical systems, several
coding standards should be followedwhen designing and developing these systems.
These standards are designed to improve code readability, ensure the code is
efficient, and facilitate the development and debugging process. In this section,
we discuss two common coding standards for embedded systems: the MISRA C
2012 coding standard [9] and the CERT C [10].

The MISRA C 2012 [9] is a set of coding guidelines developed by the Motor
Industry Software Reliability Association (MISRA) consortium to provide rec-
ommendations for improving the safety and reliability of software developed in
the C programming language. Initially, MISRA C targeted automotive systems.
However, the coding standard has evolved to a wide range of embedded systems.
Adhering to this standard can help ensure the quality and reliability of code written
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for embedded systems. The MISRA C 2012 is the latest version of this guideline.
This edition contains 143 rules and 16 directives, which were classified asManda-
tory, Required, or Advisory. These rules and directives were also categorized
based on the rules and directives’ contents, such as declarations and definitions,
naming conventions and commenting, or pointers and arrays. Among the standard
categories, the categories related to using pointers are close to our target coding
rules.

While MISRA C focuses on the safety of embedded systems, CERT C Secure
Coding Standard [10] is a standard on the security aspect of these systems. The
CERT C standard follows a community-based development process managed by
the Software Engineering Institute (SEI). The CERT C guidelines can be found on
the CERT Secure Coding wiki [10]. CERT C guidelines are classified as Rules
and Recommendations [11]. A guideline is considered a Rule if the following three
conditions are met. The first condition is that a violation of this guideline will
likely cause a defect. The second condition is that conformance can be established
without requiring additional assumptions. The third condition is that the guide-
line can be checked using automated analysis or manual inspection techniques.
A guideline is considered a Recommendation if the conformance of this guide-
line likely improves the safety, reliability, or security of software systems, and
additional requirements may be needed to confirm a violation of this guideline.

These coding standards can be checked manually in the code review phase or
automatically using static program analysis tools. Many program analysis tools
support checking the standards. We sample three popular static program analysis
tools which implement different techniques. These tools are Flawfinder [12] - a
lexical program analysis tool, PolySpace Bug Finder [13] - a data flow analysis
tool, and CodeQL [14] - a code query tool.

Flawfinder [12] is a lexical program analysis tool to identify potential security
flaws. This tool builds and uses a database of C functions with well-known
problems, such as buffer overflow risks, race conditions, and poor random number
acquisition. The database is built using a syntactic feature of the source code only;
sophisticated analyses such as data flow analysis are not performed. This tool does
not directly support MISRA c 2012 and CERT C. However, syntactic-based and
several semantic-based coding rules can be checked by issuing queries over the
built database.

PolySpace Bug Finder [13] is a sophisticated static program analysis tool that
detects and prevents software defects and security risks in code. This tool supports
checking coding rule standards such as MISRA C 2012 and CERT C.

CodeQL [14] combines a sophisticated query language with multiple analyses
to identify potential flaws and unexpected behaviors. This tool first analyzes the
source code and creates a database, including a representation of the abstract
syntax tree, the data flow graph, and the control flow graph. Then, queries can be
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issued to check for target coding rules. Queries are supporting MISRA c 2012 and
CERT C.

One of the problems of static program analysis tools is that the tools often
generate many false warnings [15]. Lexical program analysis tools like Flawfinder
may report many false positives due to the simplicity of the technique [16]. Hence
these tools are usually used for a quick look at the source code only. Data-flow
analysis tools like PolySpace Bug Finder is more sophisticated. However, these
tools usually try to reduce the number of false positives by over-approximating the
data and control flow. This approach may lead to the analysis of some infeasible
paths. CodeQL also provides a sophisticated analysis of source code. Additionally,
query techniques are provided to enable writing custom checks. Custom queries
written by users may help to reduce the number of false negatives, as the users
usually have a good understanding of the source code. However, there is still a
trade-off between false positives and false negatives. Generic queries may detect
more actual bugs but also generate many false positives [17].

2.2 Microcontroller-specific coding rules
Amicrocontroller is a chip that integrates a processor(s), memory, and several pro-
grammable input/output peripherals. Building microcontroller-based applications
is building a system at a low level. Specifically, developers must directly access
the microcontroller’s hardware components, such as registers or I/0 services. This
process requires an understanding of hardware-dependent features. Microcon-
trollers are usually supplied with a hardware manual that describes these features
carefully. Hardware manuals are documents to understand the microcontrollers’
correct usage clearly. The hardware manual is written in natural language and
often contains thousands of pages. The content of the hardware manual is mainly
the explanation of the functions of the microcontrollers. Through the explanation
for each function, notes and coding rules are emphasized to require special at-
tention in using the function. Besides the coding standards such as MISRA C or
CERT C, microcontroller-based systems must follow these notes and coding rules.
This section gives an introduction to the microcontroller-specific coding rule using
several microcontroller-specific examples. A deeper analysis of the coding rules
can be found later in Chapter 3.

2.2.1 Examples of microcontroller-specific coding rules
Figure 2.1 shows several coding rules in the investigated hardware manual. They
are typical examples of coding rules obtained from the hardware manual of the
target register. These examples are actual coding rules; however, the name of
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1. Bits at indexes from 0 to 1 of register1 are reserved bits. When reading a
reserved bit of registers, an undefined value is returned.

2. Bits at index 15 of register2 is an unused bit. The value after reset of this bit
is 0. When reading an unused bit, the value after reset is returned. When
writing to an unused bit of registers, write the value after reset.

3. When register3[4] is set to 1, register4[21:20] and register4[5:4] should be
set to 11B and 00B, respectively.

4. After selecting the alternative function by setting the register5[n] to 1, reg-
ister6[n] to 1, and register7[n] to 1, set the register8[n] bit to "1".

5. When using register9[n] as an alternative output function (register10[n] =
1, register11[n] = 0), the level of the register9[n] pin can be read at the
register12[n] bit by enabling bidirectional mode (register13[n] = 1).

6. When the RESETOUT function is selected for the register14[0] pin, regis-
ter14[0] pin outputs a low-level while a reset is asserted and continues to
output low level after the reset is released.

Figure 2.1: Example of coding rules
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1 # de f i n e REG_1_ADD 0xFFF10300
2 # de f i n e INIT_VALUE 0x00000000
3
4 void f u n c_w r i t e _32 ( unsigned long add , unsigned long

d a t a ) {
5 ( ∗ ( ( unsigned long ∗) add ) ) = ( unsigned long ) d a t a ;
6 }
7
8 void main ( void ) {
9 unsigned long ∗ r e g i s t e r _ 1 = ( unsigned long ∗) 0

xFFF10300 ;
10 f un c_wr i t e _32 (REG_1_ADD, INIT_VALUE) ;
11 unsigned long s h i f t E x p r e s s i o n = 1 ;
12 unsigned long maskExpres s ion = 1 ;
13 i f ( ! ( ( ∗ r e g i s t e r _ 1 >> s h i f t E x p r e s s i o n ) &

maskExpres s ion ) )
14 ∗ r e g i s t e r _ 1 | = 0x00000010 ;
15 }

Figure 2.2: Example of code violating the first coding rule in Figure 2.1

the registers are changed, and the functionalities of the registers are hidden. We
will explain these coding rules one by one. With each coding rule, an example
of source code that violates the coding rule is provided (if any) to facilitate the
understanding of the coding rule.

The first coding rule is the requirement related to reserved bits of a register. In
the microcontroller, reserved bits are bits that are not used for any function in the
current version of this microcontroller. These bits are used for future processors
and the functionality of them have a future effect that is unpredictable at this
moment. When a reserved bit is read, the undefined value or the value after the
reset of this bit is returned. Performing this task is dangerous since it can lead
to unexpected behaviors of the application. In the coding rule, the bit at index 0
and 1 of the register which is named register1 are reserved bits. If these bits are
read, an undefined value is returned. Hence, software that is written on top of the
microcontroller should not perform read-access on these bits. Figure 2.2 shows an
example of a non-compliant code. In which, line 13 tries to read the value of the
bit at index 1 of register1. Hence, this line violates the coding rule.

The second coding rule is the requirement related to write-access. In the
microcontroller, the unused bit is the other name of the reserved bit. The bit at
index 15 of register2 is an unused bit. However, if we read from this bit, the value
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1 # de f i n e REGISTER_2_ADD 0xFFF10500
2 # de f i n e INIT_VALUE 0x0000
3
4 void f u n c_w r i t e _16 ( unsigned shor t add , unsigned shor t

d a t a ) {
5 ( ∗ ( ( unsigned shor t ∗) add ) ) = ( unsigned shor t ) d a t a ;
6 }
7
8 void main ( void ) {
9 f un c_wr i t e _16 (REGISTER_2_ADD , INIT_VALUE) ;

10 unsigned shor t ∗ r e g i s t e r _ 2 = ( unsigned shor t ∗)
REGISTER_2_ADD ;

11 ∗ r e g i s t e r _ 2 = 0xFFFE ;
12 }

Figure 2.3: Example of code violating the second coding rule in Figure 2.1

after reset of this bit is returned. If we write to this bit, the valid written value is
the value after reset. In this case, the value after reset of this bit is zero. Figure
2.3 shows an example of a non-compliant code. In this example, line 11 tries to
change the value of register2. In which, the value of the bit at index 15 is set to 1.
Hence, this line is a violation of the coding rule.

The third coding rule is a coding rule related to writing access too. However,
there is a requirement for two registers instead of one register. The two registers
in this coding rule are register3 and register4. This coding rule requires that when
the bit at index 4 of register3 is set to 1, we need to set the bit at index 21, 20, 5,
and 4 to 1, 1, 0, and 0 respectively. The order of accessing these registers is not
restricted. Figure 2.4 shows an example of a non-compliant code. In this example,
after the bit at index 4 of register3 is set to 1 at line 12, the value of register4 is
changed at line 6. In which the values of bits at index 4 and 5 are set to 1. As
this is the invalid value for this bit, this line violated the coding rule. In the case
that the bit at index 4 of register3 is set to 1; however, there is no statement in the
source code that set the value of the four bits of register3 to their expected value,
the source code also violates the coding rule.

The fourth coding rule is the third coding rule related to performing write-
access in the list of examples of coding rules. In this coding rule, there is a
constraint on accessing four registers. The four registers are register5, register6,
register7, and register8. In which, the requirement on the written value of register8
depends on the value written to register5, register6, and register7. Specifically,
when the bits at index n of register5, register6, and register7 are all set to 1, we
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1 # de f i n e REGISTER_3_ADD 0xFFF20338
2 # de f i n e REGISTER_4_ADD 0xFFF20304
3 # de f i n e INIT_VALUE 0x00000000
4
5 void f u n c_w r i t e _32 ( unsigned long add , unsigned long

d a t a ) {
6 ( ∗ ( ( unsigned long ∗) add ) ) = ( unsigned long ) d a t a ;
7 }
8
9 void main ( void ) {

10 ∗( unsigned long ∗) 0xFFF20338 = ( unsigned long )
INIT_VALUE ;

11 unsigned long ∗ r e g i s t e r 3 = ( unsigned long ∗)
REGISTER_3_ADD ;

12 ∗ r e g i s t e r 3 = 0x00000010 ;
13 f un c_wr i t e _32 (REGISTER_4_ADD , 0xEFFFFFFF ) ;
14 }

Figure 2.4: Example of code violating the third coding rule in Figure 2.1

need to set the bit at the same index of register8 to 1. In this example, the order of
accessing these registers is restricted. That is, register8 must be accessed before
register5, register6, and register7. Figure 2.5 shows an example of a non-compliant
code. In this example, after the values of the bits at index 0 of register5, register6,
and register7 are set to 1 at lines 12, 13, and 14, the value of bit 0 of register8
is set to 0 by calling "func_write_32" at line 16. As this is the invalid value for
register8, this line violated the coding rule. Similar to the coding rule number 3
in Figure 2.1, for this coding rule, if a source code contains statements that set the
bit at index 1 of register5, register6, and register7 to 1; however, no statements that
set the bit at index 1 of register8 to 1, this is also a non-compliant source code.

The fifth coding rule is a guideline to use register9, register11, register12,
and register13. Specifically, register12 has several roles. One of the roles is that
register12[n] is used to get the level of register9[n] when register9[n] is used as an
alternative output function (i.e., when register10[n] is set to 1 and register11[n] is
set to 0). To use register12 with this purpose, one has to enable bidirectional mode
(i.e., set the corresponding bit in register13 to 1). To verify this coding rule, it is
necessary to know the developers’ intentions regarding the role used for register12.
The source code in Figure 2.6 shows a source code that violates the coding rule
in the case that the register12[0] is used to get the level of register9[0] when this
register is used as an alternative function. In this example, after register10[0] is
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1 # de f i n e REGISTER_5_ADD 0xFFF20100
2 # de f i n e REGISTER_6_ADD 0xFFF20200
3 # de f i n e REGISTER_7_ADD 0xFFF20300
4 # de f i n e REGISTER_8_ADD 0xFFF20400
5 # de f i n e INIT_VALUE 0x00000000
6
7 void f u n c_w r i t e _32 ( unsigned long add , unsigned long

d a t a ) {
8 ( ∗ ( ( unsigned long ∗) add ) ) = ( unsigned long ) d a t a ;
9 }

10
11 void main ( void ) {
12 ∗( unsigned long ∗) REGISTER_5_ADD = ( unsigned long )

0 x00000001 ;
13 ∗( unsigned long ∗) REGISTER_6_ADD = ( unsigned long )

0 x00000001 ;
14 ∗( unsigned long ∗) REGISTER_7_ADD = ( unsigned long )

0 x00000001 ;
15
16 f un c_wr i t e _32 (REGISTER_8_ADD , INIT_VALUE) ;
17 }

Figure 2.5: Example of code violating the fourth coding rule in Figure 2.1
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1 # de f i n e REGISTER_9_ADD 0xFFF20500
2 # de f i n e REGISTER_10_ADD 0xFFF20600
3 # de f i n e REGISTER_11_ADD 0xFFF20700
4 # de f i n e REGISTER_12_ADD 0xFFF20800
5 # de f i n e REGISTER_13_ADD 0xFFF20900
6 # de f i n e INIT_VALUE 0x00000000
7
8 void f u n c_w r i t e _32 ( unsigned long add , unsigned long

d a t a ) {
9 ( ∗ ( ( v o l a t i l e unsigned long ∗) add ) ) = ( unsigned long

) d a t a ;
10 }
11
12 i n t main ( void ) {
13 f un c_wr i t e _32 (REGISTER_10_ADD , 0x00000001 ) ;
14 f un c_wr i t e _32 (REGISTER_11_ADD , 0x00000000 ) ;
15 i n t l e v e l = r e g i s t e r 1 2 [ 0 ] & 1 ;
16 re turn l e v e l ;
17 }

Figure 2.6: Example of code may violating the fifth coding rule in Figure 2.1

17



set to 1 at line 13, and register11[0] is set to 0 at line 14, register9[0] is used as an
alternative output function. However, line 15 tries to read the value of register12[0]
without setting register13[0] to 1. This will be a violation if the intention of line
15 is to get the level of register9[0].

The sixth coding rule is a note on the behavior of register14[0] when the
RESETOUT function is selected for register14[0]. Specifically, when register14[0]
is used as the RESETOUT function, register14[0] outputs a low-level while reset
is asserted and released. No property needs to be examined in this coding rule.

2.2.2 Comparing with coding standards
The difference between the coding standards in Section 2.1 and our target coding
rules is that the coding standards focus on the features of the used programming
language while our target focuses on features of the used hardware.

In our target coding rules, we focus on special expressions of pointer-access
(i.e., register-access) and the values in these expressions. The coding standards
have coding rules for the safe usage of pointers in C language. MISRA C 2012
and CERT C have rules for using pointers (e.g., the conversion of pointers and
integers, MISRA C 2012 Rule 11.4 and CERT C INT36-C) or value analysis (e.g.,
divide by zero, MISRA C 2012 Dir 4.1 and CERT C INT33-C).

Rule 11.4 and INT36-C require that a pointer not be converted into an integer
and vice visa as these conversions may result in undefined behavior. Figure
2.7 shows an example source code that violates Rule 11.4 and INT36-C. At the
right-hand side of line 2, a uint32_t typed number is converted to a uint16_t
typed pointer. There is a case where the number and the pointer are not correctly
aligned. At line 3, a pointer p is converted to a uint16_t number. The size of a
pointer can be greater than the size of uint16_t as the size of a pointer can be 64
bits in some implementations. Hence, this line violates the coding rules in these
implementations.

A part of Dir 4.1 and INT33-C require that "Ensure that division and remainder
operations do not result in divide-by-zero errors". Line 7 in Figure 2.7 violates
this coding rule as the value of n1 at this line is 0.

If this source code in Figure 2.7 is implemented on hardware with a coding rule
"0x0000 should not be written to REG", line 4 violates this rule. As we can see,
the coding standards define a safe way of using pointers in C language. Differently,
our target coding rules are how to implement hardware features using C language
correctly.

The similar difficulty in handling the coding standards and our target is that
we have to handle complex operators in C programs such as loops or pointer
analysis. However, handling our rules is easier regarding the set of expressions
to be examined as we only need to focus on the limited set of expressions and
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1 u i n t 3 2 _ t REG = 0xFFFFFFFF ;
2 u i n t 1 6 _ t ∗p = ( u i n t 1 6 _ t ∗ ) REG; / / Noncompl ian t
3 u i n t 1 6 _ t number = ( u i n t 1 6 _ t ) p ; / / Noncompl ian t
4 ∗p = 0x0000 ;
5 u i n t 1 6 _ t n2 = 0x0001 ;
6 u i n t 1 6 _ t n1 = ∗p ;
7 u i n t 1 6 _ t n3 = n2 / n1 ;

Figure 2.7: Example code of violating Rule 11.4 and INT36-C

Figure 2.8: Manual verification process

these expressions have some common formats. However, the more difficult task is
that we need to check these expressions with a large variance of properties which
depends on the used hardware. It means that our solution must be able to adapt to
different hardware models.

On the other hand, our target is how to correctly perform register-access, which
is related to pointer-access, on a hardware model. Specifically, we focus on special
forms of pointer-access operators and how these operators are correctly used for
performing register-access regarding the hardware used. The main difficulty in
automatically handling the two coding standards is the complexity of C language.
We also need to handle this difficulty for our target. However, adding to this
difficulty, we need to handle various hardware models too.

2.3 Current verification process formicrocontroller-
specific coding rules

Currently, verifying those coding rules is an entirely manual process. Figure
2.8 shows this manual verification process for the coding rules. There are three
phases: Coding Rules Extraction, SC Info Extraction, and Discussion. In the
Coding Rules Extraction phase, a developer first extracts a coding rule with its
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related parts in the HW Manual (i.e., hardware manual). The coding rules are
often marked with the keywords "note" or "caution" and usually relate to other
parts of the manual. The result of this phase is Coding Rules Info File - a file
that contains the target coding rule and the related parts. For instance, as the
example coding rules above refers to register_1 and register_2, the Coding
Rules Info File in this case contains the coding rule and the information of these
two registers. In the SC Info Extraction phase, a developer manually examines
every statement in the source code and marks all statements related to the target
coding rule. We take the source code in Figure 1.1 and the example coding rule
above to explain this process. Specifically, the developer analyzes the source code,
finds lines that access related registers of the coding rules (e.g., lines 7 and 9), and
stores the source code annotated with the information about register-access in the
Source Code Info File. In theDiscussion phase, a group of developers gathers and
discusses whether the source code violates the coding rule based on the source
code info file. The manual verification process is time-consuming and costly in
terms of human resources, as the participants must have a solid knowledge of
both the source code and the microcontroller. This manual process makes the
verification phase the most time-consuming phase in the development process.

2.4 Manipulating registers of micorocontrollers
An important task in implementing a microcontroller-based system is to manip-
ulate the registers. There are several methods for manipulating the registers of
microcontrollers [18]. The first method is memory-mapped I/O in which the
device registers are mapped to conventional data space. The second method
is port-mapped I/O, in which control and data registers are mapped to separate
small data spaces. Additionally, several microcontroller families provide special
methods of accessing and manipulating the memory via the I/O mapped.

Among the methods for manipulating the registers, the memory-mapped I/O is
usually performed using C or C++ programming language. The two other methods
usually require non-standard language or special library features. We limit our
research to microcontroller-based systems written in C programming language, so
we only explain the memory manipulation method using this language.

Microcontroller-based systems are usually written in C and assembly. The
majority are usually implemented in C as writing in assemble tediously and error-
prone [19]. In C programming language, registers are represented as normal data.
The language has several features which support implementing embedded systems,
such as pointers for declaring the addresses and values of registers or bitwise
operators for manipulating specific bits in registers. For example, in Figure 2.9,
the register at address 0xFF70 is represented by a variable named pcr. The size
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1 t ypede f unsigned shor t c o n t r o l ;
2 # de f i n e ENABLE 0x0080 /∗ b i t 7 : ready mode ∗/
3
4 c o n t r o l ∗ cons t pc r = ( c o n t r o l ∗ ) 0xFF70 ;
5
6 ∗ pc r &= ~ENABLE;

Figure 2.9: Example code of manipulating registers

of this register is represented by the data type unsigned short. Assume that the
size of the register at 0xFF70 is 16 bits and unsigned short is 16 bits datatype
in the compiler of this system, unsigned shortwill be the representation for the
size of this register. The register is manipulated in line 6 to clear the ready bit in
this example.

Microcontroller-based systems can be large. However, in most cases, only
some fragments of code are related to a specific coding rule. One idea is to
narrow down the focus to a small set of code fragments for each coding rule.
In this research, we need to find program fragments that are related to register
access. The difficulty in finding these fragments is variants of C source code on
reading/writing registers. In an embedded system, register access operators are
usually performed by directly accessing the addresses of hardware registers. The C
programming language provides several features to support manipulating hardware
such as pointer operator, volatile qualifier, const qualifier, and bitwise operator.
In order to perform read/write register operators, we need to consider how to
use C language to represent hardware registers first. In [18], Dan Saks explains
methods for representing hardware registers involve individual bit manipulation.
The first method is using macros to represent the addresses of hardware registers.
The source code below is an example of using macro symbols to represent the
hardware register. In this example, ADDRESS represents a register in which its
address is (0x1200000 + 0x00) and its size is 8 bits.

1 # de f i n e BASE 0x1200000
2 # de f i n e ADDRESS ( v o l a t i l e unsigned char ∗) (BASE + 0

x0000 )

Registers can be represented as variables in C source code as in the following
example.
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1 # de f i n e BASE 0x1200000
2 # de f i n e REGISTER ∗ ( ( v o l a t i l e unsigned char ∗) (BASE +

0x0000 ) )
3 # de f i n e MASK 0x0001
4 i f ( ( REGISTER >> 6) & MASK) {
5 / / do some th ing i f b i t 6 t h i s 1
6 }

(a) Example 1

1 unsigned char ∗ r e g i s t e r = ( v o l a t i l e unsigned char ∗)
(0 x1200000 + 0x0000 ) ;

2 i f ( ( ∗ r e g i s t e r >> 6) & MASK) {
3 / / do some th ing i f b i t 6 t h i s 1
4 }

(b) Example 2

Figure 2.10: Example of read-access operators

1 ∗( unsigned char ∗) 0x1200000 = 0x00 ;

(a) Example 1

1 unsigned char∗ r e g i s t e r = ( unsigned char ∗) 0x1200000 ;
2 ∗ r e g i s t e r = 0x00 ;

(b) Example 2

Figure 2.11: Example of write-access operators
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1 unsigned long BASE = 0x1200000 ;
2 unsigned char ∗ ADDRESS = ( ( v o l a t i l e unsigned char ∗)

(BASE + 0x0000 ) ) ;

For manipulating individual bits, bitmask operators can be used, as in the
following example. In this example, the bitmask BIT6 is used to check the value
of the bit number 6 in the register ADDRESS.

1 # de f i n e BASE 0x1200000
2 # de f i n e ADDRESS ( v o l a t i l e unsigned char ∗) (BASE + 0

x0000 )
3 # de f i n e BIT6 0x0040
4 i f (ADDRESS & BIT6 ) {
5 / / do some th ing i f b i t 6 t h i s 1
6 }

Several devices prefer grouping semantically related registers such as a control
and a data register, structure in C language can be used like the following example.

1 # de f i n e BASE 0x1200000
2 s t r u c t p o r t {
3 v o l a t i l e unsigned char CONTROL;
4 v o l a t i l e unsigned char DATA;
5 }
6 # de f i n e PORT ( p o r t ∗ ) BASE
7 PORT−>CONTROL = 0x00 ;

As member CONTROL is a register at offset zero within the port struct, the
expression “PORT− >CONTROL” is equivalence with an expression “(*(volatile
unsigned char *) BASE)”. By using structure in C language, we can also represent
hardware as bitfields as in the following example.

1 s t r u c t r eg {
2 unsigned char en ab l e : 1 ;
3 unsigned char unused : 7 ;
4 }
5 r eg v o l a t i l e ∗ reg1 = ( r eg ∗) 0x1200000 ;
6 r eg1 . e n ab l e = 0 ;
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In the example above, the most significant bit (assume that the first bit is the
most significant bit in the target platform) of the register at address 0x1200000 can
be accessed as in line 6.

After representing registers in C language, we can access registers via their
representations. In this research, we device register access operators into two
groups: read-access andwrite-access. For read-access, the popular way to perform
read-access operators is using shift operators and using a bitmask. Figure 2.10
shows examples of using the shift operator and bitmask for reading the bit at index
6 of a register.

For write-access, most embedded systems use memory-mapped I/O, which
maps registers to fixed addresses in the conventional memory space so that we
can modify the values of specific locations [18]. Figure 2.11 shows examples of
writing a value to an address using memory-mapped I/O. In these examples, the
value 0x00 is written to a register inwhich the address of this register is 0x1200000.

In addition to using C language to perform register-access, some particular
devices provide special instructions. This method requires using a non-standard
language or specific libraries. As it is outside the C language standard, we do not
consider this method in this research.

2.5 Program analysis techniques and tools
Program analysis is a field of computer science that focuses on understanding and
analyzing the behavior of computer programs. It is used to detect errors, opti-
mize performance, and verify program correctness. Program analysis techniques
use static and dynamic methods to analyze a program and its behavior. Static
analysis techniques are used to analyze a program without actually running it,
while dynamic analysis techniques analyze a program while it is running. After
a long development history, various static program analysis techniques were in-
troduced; many were successfully employed in practice. We select four highly
established techniques in the field to extract knowledge of microcontroller-based
systems. They are pattern matching, abstract interpretation-based static program
analysis, bounded model checking, and counterexample-guided abstract refine-
ment. Many verification tools were employed based on these techniques. Among
these tools, we select a popular tool with industrial strength for each technique. A
brief introduction to the selected techniques and tools is provided in this section.

2.5.1 Pattern matching (PM) and Cobra
Pattern matching (PM) is a technique used in computer science to determine if a
given input matches a predefined pattern. It is often used in parsers, interpreters,
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and databases. The main idea behind pattern matching is to provide a method
for testing whether a given input, for example, a string, matches a given pattern.
The pattern is usually defined as a set of rules that describe how the input should
be structured. Pattern-matching algorithms can then determine if a given input
follows the pattern. The patterns can have the form of regular expression or
context-free grammar.

Regular expression matching is used to find strings that match a given pattern
in the form of regular expressions [20]. This technique represents a string as a list
of characters and scans over this list to detect matching sequences of characters.
Currently, the regular expression function for this purpose is widely implemented
in programming languages such as C, Java, and Python. In this research, regular
expression-based pattern matching is employed for analyzing hardware manuals
and extracting the knowledge of the target hardware.

On the other hand, pattern matching using context-free grammar is a technique
where the patterns are described in context-free grammar [21]. In this research,
this technique is used to analyze source code and extract fragments of code that
relate to register-access. In program analysis, pattern matching is a lightweight
technique. This technique is fast and flexible. However, it is imprecise as related
fragments may bemissed, and unrelated fragments may be detected. As examining
all expressions in the source code is unnecessary and impractical, the extraction
focus is narrowed down to expressions potentially related to the target knowledge.
We consider PM suitable for this task.

Cobra [22, 23] is a structural source code analyzer introduced in 2015. This
tool analyzes programs by applying the pattern-matching technique over lexical
tokens. Lexical tokens are C language tokens annotated with other information
like token types. In general, the principle of the tool is to build a data structure
(that is, the linked lists of lexical tokens) to represent a source code and provide
an interface for querying the source code to check target properties. The tool
can quickly deal with a large source code because of its simplicity [23]. In this
research, Cobra can handle the task of detecting expressions that may relate to
register-access.

2.5.2 Abstract interpretation-based static programanalysis (AI)
and Eva plugin of Frama-C

Abstract interpretation is a theory that approximates the behaviors of programs
and interprets this program based on this approximated behavior instead of the
concrete one [24]. Abstract interpretation-based static program analysis (AI) can
facilitate the value abstraction of the program’s expressions. As for the target of
analyzing expressions in the program and extracting knowledge related to register-
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access, AI can calculate possible values for expressions that may be related to our
target. This approach is sound but may generate a large number of false warnings
as over-approximation is employed [25].

Eva plugin [26] is an abstract interpreter which combines multiple abstractions
in the abstract interpretation theory to provide value and state abstractions. The
value abstractions are suitable for our target of calculating possible values of
expressions in programs to extract knowledge related to register-access. The state
abstractions are abstractions of memory states where both low-level concepts of
memory states (e.g., bit fields) and high-level ones (e.g., array) are presented [27].
These abstractions are also suitable for our target of analyzing hardware-dependent
source code where bitfields and arrays are frequently used.

2.5.3 Bounded model checking (BMC) and CBMC
Model checking is a method to verify a property against a finite state machine
and can be used to verify a program. Bounded model checking (BMC) is a
technique that limits the state space to be searched and looks for a counterexample
of a target property [28]. This method provides an under-approximation of the
analyzed program. There are no false warnings generated. However, the safety is
not ensured outside the searched space. This method can be used to reconfirm the
results of analysis techniques that employ over-approximation. Additionally, BMC
provides explanations for detected warnings in the form of counterexamples.

CBMC [29] is a bounded model checker for low-level C programs. The tool
is well-suited for handling microcontroller-based systems. Additionally, it can
be used as a complement with Eva plugin as these two tools implement different
approximation approaches.

2.5.4 Counterexample-guidedabstraction refinement (CEGAR)
and SatAbs

Counterexample-guided abstraction refinement (CEGAR) [30] is an automatic
iterative abstraction-refinement technique where the abstract model is an over-
approximation of the concrete behavior of a program. This model may generate
erroneous counterexamples. Symbolic execution is employed to eliminate these
erroneous counterexamples and refine the abstract model. CEGAR is sound and
does not report false warnings. However, this technique is heavy because of the
iterative abstraction-refinement steps. Similar to BMC, CEGAR is suitable for
providing explanations. BMC and CEGAR are expected to be the complement in
handling this task.

SatAbs [31, 32] is a model checking tool which employs CEGAR. Specifically,
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this tool implements a predicate abstraction and a refinement process to cope with
erroneous counterexamples. Similar to CBMC, SatAbs can be used to explain the
extracted knowledge.

2.5.5 Under-approximation and over-approximation
Program analysis is often executed in the abstractions of programs as it is tough
to examine the concrete semantics of programs. Approximation techniques are
introduced to handle this case. Approximation techniques can be divided into the
under-approximation approach and the over-approximation approach.

The under-approximation approach contains techniques that under-approximate
the state space of programs. Applying these techniques can analyze an important
but incomplete subset of the state space. The main advantage of this approach is
that the cost of analyzing programs can be reduced. However, the disadvantage of
this approach is that the possibility of missing bugs is high as it is not an exhaustive
approach.

By contrast, over-approximation contains techniques that over-approximate
the state space of a program. The state space generated by this approach is
often broader than the actual state space (i.e., includes unreachable states). The
advantage of this technique is that the coverage in detecting bugs may increase.
However, the disadvantage is that false warnings may be reported.

2.6 Model-driven engineering techniques and tools
In this research, we apply several model-driven engineering (MDE) techniques
for representing the knowledge of microcontroller-based systems and verifying
these systems against the target coding rules. Data models are centric for MDE.
In MDE, a model is usually described by domain experts first. Subsequently,
model transformation techniques will transform the model to a different format
based on the target application. The MDE techniques employed in this research
include the Unified Modeling Language (UML) as the language for describing
the model, QVT operational mappings for transforming the model, and the Eclip
modeling framework as the toolsets for implementing the process of describing
and transforming the model.

2.6.1 Unified Modeling Language
The Unified Modeling Language (UML) is a general-purpose, developmental
modeling language in software engineering that is intended to provide a standard
way to visualize the design of a system [33, 34]. UML provides facilities for
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creating diagrams and documents for a software system. As a modeling language,
UML can be used to communicate the requirement of the system and how the
system can be implemented. UML is often used in the requirements phase to
provide developers with a clear understanding of user needs.

There are several kinds of UML diagrams [35] such as use case diagrams,
class diagrams, object diagrams, activity diagrams, sequence diagrams, and de-
ployment diagrams. The use case diagram can be used to describe the functional
requirements of the system. The class diagram can explain the classes of object
components and relations among these objects in the systems. The object diagram
is similar to the class diagram but with concrete values for each object. This dia-
gram represents specific examples for the instance of classes in the class diagram.
The sequence diagram presents the message passing among objects in the systems.
The deployment diagram is used to describe the software components as well as
hardware devices that install these components in the actual environment. In this
research, we employ the class diagram to represent the structure knowledge of
microcontroller-based systems.

2.6.2 Eclipse Modeling Framework
EclipseModeling Framework (EMF) [36, 37] is amodeling framework for building
applications based on a structured data model. EMF can be used as the foundation
for interoperating among different toolsets and model-based applications. This
framework consists of a set of Eclipse plugins that can be used for creating,
editing, and visualizing the data model, making the model from a specification
in XML Metadata Interchange (XMI), and generating Java source code from the
data model. Two important terms to be distinguished in EMF are meta-model and
model. A meta-model is used to describe the structure of the data model, while a
model is a concrete instance of the meta-model. EMF provides several methods
for creating the meta-model, including using XMI, Java assertions, UML, or an
XML scheme. After creating a meta-model, instances of this meta-model can be
generated using the appropriate data.

In this research, we employEMFas the framework formodeling the information
extracted from the hardware manual and analyzing source code using the four
program analysis tools. We selected EMF for our task because this framework can
handle a large amount of data, and the implemented UML subset is sufficient for
describing the target knowledge.

2.6.3 QVT operational mapping
QVT operational mappings (QVTo) is an imperative language specified in 2007
by the Object Management Group (OMG) for model-to-model transformation
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[38, 39]. In a QVTo transformation, we must first specify the source and target
metamodels for the mapping. Then, the mapping among objects from instances of
the two metamodels also needs to be described.

Like other general programming languages, QVTo provides imperative con-
struction such as for and while loops, variables with scope, switch, break and
return statements. Additionally, there are two popular used utilities in QVTo
named query and helper. A query is a function to obtain data from objects of the
input metamodel. For example, a query can be used as a filter to obtain the objects
with a constraint. An important characteristic of queries is that they do not have
side effects on their parameters. On the other hand, helpers are similar to queries
but may have side effects.

2.7 Other notations

2.7.1 Backus–Naur Form
Backus–Naur Form (BNF) is a meta-language to define the syntax for a program-
ming language. John Backus and Peter Naur originally introduced BNF to describe
the syntax of ALGOL [40, 41].

According to the way BNF is used to define the ALGOL 60 [41], a BNF
specification is a set of derivation rules. A derivation rule is in the following form:

<symbol> ::= expression, in which

• <symbol> is a non-terminal symbol that appears on the left-hand side and
is enclosed between the pair of angle brackets.

• expression is a sequence of either terminal or non-terminal symbols;

• ::= means "is defined as";

• A terminal symbol is a symbol that does not appear on the left-hand side.

Table 2.1 shows a list of notations for BNF used in this research. In this
table, notations except the double quotation marks (i.e., notions numbers 0-3) are
originally used in [41]. Double quotation marks are added to allow the notation
numbers 0-3 to appear in terminal symbols. In this research, BNF is used to define
the code patterns for loops and register-access.

2.7.2 Linear temporal logic
Linear temporal logic (LTL) [42] is a formalism for specifying a property in which
time is considered linear. PLTL [43] is an extension of LTL with past operators.
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Table 2.1: Notations used for Backus–Naur Form (BNF) specifications

Number Notation Usage

0 ::= definition
1 ; termination
2 | alternation
3 <...> non-terminal
4 "..." terminal symbol

The past operator is a symbol used in LTL to refer to an event that already occurred
in the past. In this research, the temporal properties are represented using a subset
of PLTL operators [44] including:

• G: Always, Gϕ is true iff ϕ is true for all points in the time sequence;

• F: Eventually, Fϕ is true iff ϕ is true at some points in the future (including
the present);

• X: Next, Xϕ is true iff ϕ is true at the next point;

• O: Once, Oϕ is true iff ϕ is true at some points in the past (including the
present);

• Y: Yesterday, Yϕ is true iff ϕ is true at the previous point.

This subset is used to represent the temporal properties in the target coding
rules.
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Chapter 3

Analyzing hardware manual

3.1 Approach overview
Microcontrollers usually come with manuals for describing the desired usage. The
coding rules of these microcontrollers are usually highlighted in these manuals as
notes or coding rules to call for special attention in using the hardware. As this
research aims to verify the coding rules, a sufficient understanding of the hardware
manual and coding rules is required.

To understand the specific characteristics of the manuals and target coding
rules, we first investigate themanual of a popular microcontroller in the automotive
field. This manual consists of 38 chapters and 2415 pages. The investigation
was conducted in my Master’s course [1]. Specifically, developers of embedded
systems roughly scanned the manual and extracted the coding rules by looking for
fragments with special keywords such as "note" or "caution". Subsequently, we
selected two chapters that contained a sufficient number of coding rules, analyzed
the coding rules, and categorized these coding rules into several groups. The
result of this investigation is detailed in Section 3.2. Based on this investigation,
we found that coding rules related to register-access are frequently required in the
hardware manual.

In these manuals, there are sections describing the microcontroller’s registers;
each group of microcontrollers is in one separate section. The physical and
logical information about a register is described in a register section. The physical
information of the register includes the access size, the address, the value after
reset, the names of bits, and the accessibility of bits. The logical information is
the coding rules of using these registers.

Hardware manuals are semi-structured documents. The physical information
of the registers is described in fixed formats, while the coding rules are described
in natural language as the examples in Figure 2.1. We can not reveal the structure
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Figure 3.1: Overview of the proposed approach

of the targeted manual in this research due to the policy of AISW. However,
other microcontrollers also share the regulation of describing register information
in a structured format. Figure 3.2 shows examples of register sections in the
manual of ATmega328, STM32F101xx, and PIC16F87XA families. We can see
that although the register information is described in different formats for each
microcontroller family, this information is all in structured formats. Additionally,
tables are mainly used to show the information of individual bits in these examples.
As our target is to verify systems against microcontroller-specific coding rules (i.e.,
coding rules related to register-access), we need to extract the information about
registers, such as the register’s addresses, register names.

There are two technical difficulties in extracting and describing the knowledge
from the hardwaremanual. The first difficulty comes from the non-structure format
of the hardware manual. The hardware manual is written in natural language,
which is difficult to verify automatically. The second difficulty comes from the
ambiguity of the coding rules. As coding rules of microcontrollers are written in
natural language, there exists the case that one expression has several meanings.

To handle the two difficulties above, we propose a semi-automated approach
that extracts and transforms the natural language requirements into formalized
ones. Figure 3.1 shows the overview of the approach for analyzing the hardware
manual. The input of the approach is Hardware manual which is a hardware
manual in PDF format. The output is Formalized hardware manual which is the
formalized knowledge related to registers. There are two steps in this approach.
The first step is to analyze the hardware manual and extract knowledge on registers.
The input of this step is a Hardware manual; the output is a Hardware knowledge
in any format. This step involves manual effort and the automated process using
natural language processing techniques. The automated process is proposed to
handle the first difficulty mentioned above partly. Details of the automated process
can be found in Section 3.4. The second step is to describe the extracted hardware
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(a) ATmega328P1

1Source: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-
Microcontrollers-ATmega328P_Datasheet.pdf

(b) STM32F101xx1

1Source: https://www.keil.com/dd/docs/datashts/st/stm32f10xxx.pdf

(c) PIC16F87XA1

1Source: http://ww1.microchip.com/downloads/en/devicedoc/39582c.pdf

Figure 3.2: Examples of register sections
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Table 3.1: Categories of coding rules of a microcontroller in two sections [1]

Category of coding rules Number
of coding
rules

Verifiable

Read-access 4

Write-access

Non-conditional-case 24

Conditional-case
Before 15

After 11

Before-or-after 13

Unverifiable Depend on developers’ intention 4

Just a note 14

knowledge in a formalized format. The input of this step is the extractedHardware
knowledge in the first step and a Specification language of hardware knowledge.
The Specification language of hardware knowledge is partly proposed during
my Master’s course [1]. This specification language is proposed to overcome
the second difficulty mentioned above. The output of this step is a Formalized
hardware manual which is the Hardware manual described in the Specification
language of hardware knowledge.

In the remaining of this chapter, we first explain the investigation results of
the target hardware manual. Specifically, the categories of coding rules and the
specification language for formally describing the hardware knowledge will be
explained in Section 3.2. Secondly, the approach for automatically analyzing the
hardware manual is explained in Section 3.4.

3.2 Categories of coding rules
One of the problems in verifying the coding rules is that the number of coding
rules of a microcontroller can be large (e.g., 492 fragments that describe notes
or cautions in the target microcontroller). However, several coding rules share
the same properties; for example, some coding rules are related to the register
read-access while others are related to the register write-access. Coding rules
which have the same properties may require similar approaches to handle. It is
easier to handle coding rules by groups of similar coding rules than by each coding
rule individually. Hence, we categorized coding rules which require a similar
verification approach into the same groups.
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We analyzed and categorized the coding rules extracted from two sections
that contain a considerable number of coding rules in the target hardware manual.
Specifically, we investigated 85 coding rules (i.e., 17% of the total number of
coding rules) in these two sections. The two sections relate to the pin function and
clock controller, which are two important microcontroller settings.

Table 3.1 shows the categories in the investigated part of the two sections.
These categories were published in [1]. There are two groups in these 85 coding
rules: verifiable and unverifiable. The unverifiable group contains coding rules
that cannot be verified by analyzing the program only. The first reason is that,
in some cases, we need to know the developers’ intention to decide whether the
program violates the coding rule. For this reason, the fifth example in Figure 2.1 is
an example of the unverifiable group. The second reason is that some coding rules
are just notes on the microcontroller’s behavior or performance in specific cases.
Hence, there is no property to be examined. For this reason, the last example in
Figure 2.1 is an example of the unverifiable group.

Our focus is on the verifiable group, which can be verified by analyzing the
source code. This group is divided into two sub-groups: read-access and write-
access. Read-access are coding rules of the readability of registers and their bits.
Reading a write-only or reserved bit must be avoided as it may lead to unexpected
behaviors. The first coding rule in Figure 2.1 is an example that belongs to
the read-access category, in which reading from reserved bits of register1 is
prohibited.

Write-access is the major category containing 72% (61 coding rules) of the
investigated part. Based on the structure of coding rules, this category is divided
into two sub-categories: non-conditional-case and conditional-case. The non-
conditional-case coding rules are coding rules on using an individual register. The
conditional-case coding rules are coding rules in which constraints of a register
depending on the value of at least one register. There are three types of constraints
on the written value of a register: on the written value of the whole register, on the
written value at a bit, and on the size of the written value. The second example
in Figure 2.1 is an example of a non-conditional-case coding rule in which the
written values of several bits in register2 are restricted as they are unused bits.
The third example in Figure 2.1 is an example of a conditional-case coding rule
where constraints on written values of several bit of register4 depend on the
written value of a bit of register3. The fourth example in Figure 2.1 is also
an example of a conditional-case coding rule where constraints on the written
value of a bit of register8 depend on the written value of bits of register5,
register6, and register7 at the same index with the bit of register8.

In the write-access, one may need to consider the order of accessing registers
if there are requirements for accessing more than one register (i.e., in the case of
the conditional-case coding rules). For example, the third coding rule in Figure
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2.1 does not have any requirement on the order of accessing register3 and
register4; however, the fourth coding rule in this figure requires that register8
must be accessed after register5, register6, and register7 are accessed.

In Table 3.1, we categorized the types of accessing order into three groups:
after, before, and before-or-after. After means that a register must be accessed
after the time that other registers are accessed; beforemeans that a register must be
accessed before the time that other registers are accessed; before-or-after means
that the order is not restricted. Hence, it is necessary to provide methods to
describe and verify these properties.

3.3 Specification language for hardware knowledge
As the required hardware knowledge for the verification process are the registers
and coding rules on accessing these registers, we define hardware knowledge as a
triple tuple of name, register_info and coding_rules as follows.

Definition 3.3.1 (Hardware knowledge) A hardware knowledge structure HWK
is a tuple HWK = <name, register_info, coding_rules>, where

name ∈ S;
register_info = [reg_info_1, .., reg_info_n], n ∈ N∗;
reg_info_i = <regName, regAdd>;
regName ∈ S; S is the set of strings;
regAdd ∈ H; H is the set of hexadecimal numbers;

coding_rules = [coding_rule_1, .., coding_rule_n], n ∈ N∗;
coding_rule_i ∈ SFCR; SFCR is the set of formalized coding rules.

The hardware knowledge includes registers’ information and coding rules for
using these registers. A name and an address represent a register. For example, the
representation of a register named register_1 with the address is 0xFFE20244
is: <register_1, 0xFFE20244>. The representation of hardware named micro-
controller1 with register_1 with the address is 0xFFE20244 and register_2
with the address is 0xFFE51094 is as below.

• <microcontroller1, [<register_1, 0xFFE20244>, <register_2,
0xFFE51094>]>

Coding rules related to register-access are represented in a format of formal-
ized coding rules. A formalized coding rule is a double tuple of category and
requirement as follows.

36



Definition 3.3.2 (Coding rule) A coding rule CR is a tuple

CR = <category, requirement>, where

category = read-access | non-conditional-case | conditional-case;

requirement = read-access-constraint | p | p before q | p after q| p before-or-
after q;
p = write-access-constraint;
q = write-access-constraint | q ∧ q;

read-access-constraint =NotReadable |NotReadableBit | ReadValidSize | Read-
InvalidSize;
NotReadable = Register regName is not readable;
NotReadableBit = regName[i] is not readable; i∈[0,..,regSize - 1];
ReadValidSize = Read size of register regName belongs to [size0, ..,sizen]; sizei
∈ {8, 16, 32, 64};
ReadInvalidSize = Read size of register regName does not belong to [size0,
..,sizen]; sizei ∈ {8, 16, 32, 64};

write-access-constraint = ValidValue | InvalidValue | WriteValidSize | WriteIn-
validSize | ValidValueBit | NotWritable | NotWritableBit;
ValidValue = Written value of register regName belongsto [val0, ..,valn]; vali ∈
N;
InvalidValue = Written value of register regName does not belong to [val0,
..,valn]; vali ∈ N;
WriteValidSize = Written size of register regName belongs to [size0, ..,sizen];
sizei ∈ {8, 16, 32, 64};
WriteInvalidSize = Written size of register regName does not belong to [size0,
..,sizen]; sizei ∈ {8, 16, 32, 64};
ValidValueBit = [regName[i] is valBit | i∈[0,..,regSize - 1]; valBit∈{0,1};]
NotWritable = Register regName not writable;
NotWritableBit = regName[i] is not writable; i∈[0,..,regSize - 1];

Definition 3.3.3 (Temporal properties) The temporal properties are defined as
follow:
p before q : G (q ⇒ O Y p);
p after q : G (q ⇒ ♦ X p);
p before-or-after q: G (q ⇒ (O Y p) ∨ (F X p)).
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The category element indicates how to verify a coding rule, as different veri-
fication algorithms are provided for different categories. There are three possible
values for this element corresponding with categories of the coding rules: read-
access, non-conditional-case, and conditional-case corresponding with categories
defined in Table 3.1. The non-conditional-case and conditional-case are for write-
access. In Figure 2.1, the value of this part for the first coding rule is read-access;
for the second coding rule is non-conditional-case; for the third and fourth coding
rules is condition-case.

The requirement element indicates the required properties of a coding rule.
For each coding rule category, corresponding formats are provided to describe
the requirement element. For the read-access category, there are three kinds
of requirements: the readability of a whole register, the readability of a bit of a
register, and the access sizes of a register. The requirement can be expressed as a list
of valid access sizes or a list of invalid access sizes for access sizes. For example,
the requirement part of the first coding rule in Figure 2.1 is register1[15] is
not readable. The full formalized coding rule, in this case, is as follows.

• <read-access, register1[0] is not readable>

• <read-access, register1[1] is not readable>

For thewrite-access, there are five kinds of requirements: on the written values
of a whole register, on the written values of a bit of a register, on the access sizes
of a register, on the writability of a whole register, and the writability of a bit of
a register. For the written value (or the access size of a register), the requirement
can express a list of valid values or a list of invalid values (or a list of valid access
sizes or a list of invalid access sizes).

For the non-conditional-case coding rule in the write-access category, the
requirement element is used to describe the constraint on how a write-access
performed on a register. The requirement can be on the size of the written value,
the written value, or the written value of a bit. For example, the requirement
part of the second coding rule in Figure 2.1 is register2[15] is 0. The full
formalized coding rule, in this case, is as follows.

• <non-conditional-case, register2[15] is 0>

For conditional-case coding rules, there are two parts: the condition and the
requirement. For example, in the third coding rule in Figure 2.1, the condition
is that register3[4] is set to 1; the requirement is that register4[21:20]
and register4[5:4] are set to 11B and 00B respectively. The condition and
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requirement parts can be represented in the same formats as the non-conditional-
case coding rules. However, for the conditional-case coding rule, one must
consider the temporal properties to represent the relationship between the condition
and requirement parts. The temporal properties are defined in Definition 3.3.3.
These properties are defined using a subset of PLTL operators (LTL with past
operators) [44] includingG: Always, F: Eventually, X: Next, O: Once, Y: Yesterday.
This subset is sufficient to represent the coding rules with their temporal properties
(i.e., before, after, before-or-after).

As the coding rule example is split into four conditional-case coding rules:
When register3[4] is set to 1, register4[21] should be set to 1, When
register3[4] is set to 1, register4[20] should be set to 1,Whenregister3[4]
is set to 1, register4[5] should be set to 0, When register3[4] is set to 1,
register4[4] should be set to 1, we take the first coding rule as the example to
show how to represent the requirement part for this category. The requirement
part of the first coding rule is register4[21] is 1 before-or-after register3[4]
is 1. The full formalized coding rule, in this case, is as follows.

• <conditional-case, register4[21] is 1 before-or-after register3[4] is
1>

Similar to the third coding rule in Figure 2.1, the fourth coding rule is also
a conditional-case, however, with three conditions. The difference is that the
condition part in the fourth coding rule is the conjunction of multiple conditions.
For the last coding rule in Figure 2.1, taking n is 0, the requirement part is
written as register8[0] is 1 after (register5[0] is 1 ∧ register6[0] is 1 ∧
register7[0] is 1). The full formalized coding rule, in this case, is as follows.

• <conditional-case, register8[0] is 1 after (register5[0] is 1 ∧
register6[0] is 1 ∧ register7[0] is 1)>

The full formalization of the hardware with register1 and the first coding in
Figure 2.1 is as follows.

• <microcontroller, [<register1, 0xFFF10300>], [<read-access,
register1[0] is not readable>, <read-access, register1[1] is not

readable>]>

The full formalization of the hardware with register2 and the second coding
in Figure 2.1 is as follows.

• <microcontroller, [<register2, 0xFFF10500>], [<non-conditional-case,
register2[15] is 0>]>
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The full formalization of the hardware with register3 and register4 and
the third coding in Figure 2.1 is as follows.

• <microcontroller, [<register3, 0xFFF20338>, <register4,
0xFFF20304>], [<conditional-case, register4[21] is 1 before-or-after

register3[4] is 1>]>

The full formalization of the hardwarewithregister5, register6, register7,
and register8, and the fourth coding in Figure 2.1 is as follows.

• <microcontroller1, [<register5, 0xFFF20100>, <register6,
0xFFF20200>, <register7, 0xFFF20300>, <register8,
0xFFF20400>], [<conditional-case, register8[0] is 1 after

(register5[0] is 1 ∧ register6[0] is 1 ∧ register7[0] is 1)>]>

3.3.1 Discussion
As the specification language can be considered as a specification language for
describing a microcontroller. We discuss the specification language’s precision,
organization, and content completeness as we consider these important criteria.

The precision of the specification language for hardware knowledge

We discuss the precision of the specification language to examine whether the
specification language is unambiguous [45]. As the proposed specification lan-
guage describes hardware with two parts (i.e., a list of registers and a list of coding
rules), we will discuss the precision of the language in describing these two parts.
As fixed formats are provided for each part, there is no chance to provide an ex-
pression with multiple meanings. For the coding rule part, temporal properties
are described using formal mathematical logic (i.e., PLTL formula), and other
expressions are specified in fixed formats; this part has no ambiguity.

The organization of the specification language for hardware knowledge

The organization criteria examine whether a specification language is easy to
understand and use [45]. As the proposed specification language is close to the
natural language, the programmer can express their desired properties naturally.
Although the temporal properties in this specification language are expressed in
PLTL formulas, these formulas are represented by natural language terms (i.e.,
before, after, before-or-after). Hence, users without knowledge of PLTL operators
can still read and write a specification in this specification language. To understand
and use this specification language, only basic knowledge about registers and
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Figure 3.3: Approach for automatically analyzing hardware manual

microcontrollers is required. As the target users of the specification language are
developers of embedded systems, this specification language is suitable for our
purpose.

The content completeness of the specification language for hardware knowl-
edge

The content completeness criteria examine whether the specification language is
comprehensive to describe properties in the domain [45]. All notations in the
specification language are necessary to specify coding rules belonging to defined
categories in Table 3.1. Hence, the specification language is sufficient to cover the
properties of our problem.

3.4 Automatically analyzing hardware manual
One of the difficulties in manually analyzing the hardware manual is the volume of
the hardware manual. The target manual consists of 2415 pages and 641 register
groups with 12,149 registers. Automating the extraction process will help to
reduce the burden of manual tasks.

As discussed previously, hardware manuals are semi-structured in PDF. Phys-
ical information of registers is usually described in tables – which are structured
formats. Coding rules of using register are described in normal sentences - which
are non-structured formats. The idea to automatically analyze is first to convert the
PDF file to plain text format; secondly, to extract physical information of registers
by applying heuristics based on the structures of tables for the target information;
lastly, to extract the target coding rules by applying heuristics based on keywords
and syntactic features of the documents.

Figure 3.3 shows the proposed process for analyzing hardware manuals and
extracting information for constructing formalized hardware knowledge. The input
of this process is a hardware manual in PDF format. The output is a list of extracted
registers and a list of coding rules.
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There are two main phases in this process. In the first phase, the PDF file is
converted to text. In the hardware manual, tables are usually used for describ-
ing important information. Especially fragments in the document that show the
register’s physical information are usually described in fixed formats in the table
style. The table structure may present some semantics of the table data, like the
relations among data components. The difficulty in converting PDF to text is that
the solution should preserve to avoid the loss of information. In this research, we
tried to use several settings to convert PDF documents to text and then select the
best setting for our target. Specifically, we tried three settings. The first setting
uses pdftotext 1 - a PDF text extraction implemented in python. The second setting
is using Soda PDF 2 - a tool for opening, viewing, creating, converting, and editing
PDF files - to convert PDF hardware manual to text. The third setting is to apply
Soda PDF with Microsoft Word 3. Specifically, Soda PDF is applied to convert
PDF documents to word documents. Microsoft Word is used to convert word
documents to text. In our experiment, we found that using pdftotxt, the format
of the tables is not preferred well. Using Soda PDF, only the table format is pre-
served, but the information is presented, which is hard for later processing. Using
Soda PDF and MS Word, even though the table format is not well visualized, the
presentation of the information is more manageable for later processing. Finally,
we choose the combination of Soda PDF with Microsoft Word as this is the best
option among the three options to be easier to process later.

The second phase is for extracting information. The input in this phase is
the hardware manual in text. The output is a list of extracted registers and a list
of coding rules. There are two steps in this phase. In the first step, we extract
physical information about the registers. The second step is to extract the coding
rule related to register-access. The detail of this phase is shown in Section 3.4.1.

1https://pypi.org/project/pdftotext/
2https://www.sodapdf.com/
3https://www.microsoft.com/en-ww/microsoft-365/word?market=af
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3.4.1 Extract information

Algorithm 1Algorithm for extracting register information and coding rules related
to register-access
1: Input: HardwareManualInText, ListOfPattern
2: Output: ListOfRegisterObj, ListOfCodingRules
3: Procedure:
4: // 1. Extract register physical information
5: ListOfRegisterObj = getRegisterObjs(HardwareManualInText,

ListOfPattern[1-12])
6: // 2. Extract register-access coding rules
7: ListOfCodingRules = getCodingRules(HardwareManualInText,

ListOfPattern[13-14])
8: return ListOfRegisterObj, ListOfCodingRules

This section handles the tasks of extracting the physical information and coding
rules of registers. The approach for performing these tasks is to apply a heuristic
based on the observation of the manual. Specifically, patterns in the regular
expression are proposed to extract the target information. Table 3.2 summarizes
the patterns used in this section. These are 14 patterns in total for different tasks.
Pattern1 and Pattern2 for identifying register sections; Pattern3 is for identifying
the areas of physical information; Pattern4 and Pattern5 are for extracting access
sizes; Pattern6 for extracting the addresses; Pattern7 and Pattern8 are for extracting
values after reset; Pattern9, Pattern10, and Pattern11 are for extracting the bit
names; Pattern12 is for extracting the bit accessibilities; Pattern13 and Pattern14
are for extracting the coding rules related to written values. The usage of each
pattern will be explained along each step in analyzing the hardware manual.

Algorithm 1 shows the procedure for extracting hardware knowledge. The
input of this algorithm is HardwareManualInText - the hardware manual in text,
ListOfPattern - patterns in Table 3.2. The output is
textttListOfRegisterObj are ListOfCodingRules. There are two steps. The first
step is identifying the register subsections and extracting physical information
about the registers. Details of this step are presented in Section 3.4.1. The second
step is extracting coding rules related to register-access. This step is discussed in
Section 3.4.1.
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Table 3.2: Patterns for extract register information

Task Pattern Name
Identify
register
sections

^[0-9.()]+[ ]+([a-zA-Z][a-zA-Z0-9 \/_<>]+)[ ]*—[ ]*(.*))$ Pattern1

^[0-9]+.[0-9.]+[0-9][ ]+([a-zA-Z][a-zA-Z0-9\/_<>]+)([^—\n]*)Register Pattern2
Identify areas
of physical
info

(.+?(?=Access:))(.+?(?=Address:))(.+?(?=Value after reset:|Value after
power-on:))(.+?(?=Bit))(.+?(?=Note|Table|When))(.*)

Pattern3

Extract access
size

[: ].+?(?=(1-|8-|16-|32-)).+?(?=\.|$|(1-|8-|16-|32-)) Pattern4

Access:(.*)[ \t]*These registers.+?(?=(1-|8-|16-|32-)).+?(?=\.|$|(1-|8-|16-|32-)) Pattern5
Extract access
address

Address:(.*) Pattern6

Extract value
after reset

([0-9A-Z x]+?(?=H)) Pattern7

REGISTER_NAME: ([0-9A-Zx]+?(?=H)) Pattern8
Extract bit
name

(.+?(?=Value after reset :|Value after power-on :)) Pattern9

(.+?(?=Value after reset))(.+?(?=MARK))(.+?(?=Value after reset)) Pattern10
(.*)\[([0-9]+):([0-9]+)\] Pattern11

Extract bit
accessibility

( R | R\/W | W | R\*[0-9] | R\/W\*[0-9] | W\*[0-9] | RW) Pattern12

Extract
written value
coding rules

(Set |Specify |Do not )(.+?)(?= to ) to ([0-9]*[BH]|0|1|0.|1.|0|1) (in|to) (.*) Pattern13

(.*?)(?=The |This |Thus )(.+?)(?=should |should not |must |must not )(.+?)(?=
to ) to (([0-9]*[BH]|0 |1 |0.|1.) or ([0-9]*[BH]|0 |1 |0.|1.|0|1)|([0-9]*[BH]|0 |1
|0.|1.|0|1))

Pattern14
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2.9.2.1 Register1 / Register2— Port Mode Control Register
2.13.4.1 Register3_<name> — Filter Control Register
3.3.3.4 Register4— Interrupt Function Setting
28.2.1.1 Register15 Register

Figure 3.4: Examples of titles for register sections

Identifying register information subsections and extract physical information
of registers based on heuristic

Each section of the hardware manual contains subsections for describing the sec-
tion’s related registers. Each subsection usually describes a group of registers. The
titles of these sections and register information are usually described in several
common formats as examples of several microcontrollers in Figure 3.2.

The manual of the target microcontroller also has a common format for the
register section titles. Figure 3.4 shows several examples of titles of registers in
the target hardware manual.

We can see that the titles are described in common formats, including a sec-
tion number, the abbreviation name of the register group, and sometimes a short
description/ name of the registers. Based on our observation, the title of the sub-
section either contains "—"in themiddle of the "register" keyword. However, some
sections contain "register" but do not for describing the physical information of the
register groups. For example, the subsection "2.7.4.3 Writing to the Register6
Register" is used to describe the method to write to register Register6, not the
information of the register.

Physical information of registers, including the register name, address, ac-
cessed size, the value after reset, and bit information, is important in creating
formalized specifications. In subsections for describing registers, the physical
information of registers is usually described in a structured format as shown in
Figure 3.2.
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Algorithm 2 Algorithm for identifying register sections and extracting register
objects
1: Input: HardwareManualInText, ListOfPattern
2: Output: ListOfRegisterObj
3: Procedure:
4: // 1. Identify register subsections
5: listOfRegisterObj = []
6: listOfRegisterSectionTitle = match(ListOfPattern[1] | ListOfPattern[2],

hardwareManualInText)
7: for i in range(0, listOfRegisterSectionTitle.len) do
8: m1 = listOfRegisterSectionTitle[i]
9: m2 = listOfRegisterSectionTitle[i + 1]
10: if "\nAdress:" in HardwareManualInText[m1.endIndex : m2.startIndex]

then
11: // 2. Extract register physical information
12: for m in match(ListOfPattern[3],

HardwareManualInText[m1.endIndex : m2.startIndex]) do
13: registerObject = new RegisterObj()
14: registerObject.accessSize = match(ListOfPattern[4] |

ListOfPattern[5], m.group(2))
15: registerObject.accessAddress = match(ListOfPattern[6] |

ListOfPattern[7], m.group(3))
16: registerObject.valueAfterReset = match(ListOfPattern[8] |

ListOfPattern[9], m.group(4))
17: registerObject.bitName = match(ListOfPattern[10] |

ListOfPattern[11], m.group(5))
18: registerObject.bitAccessibility = match(ListOfPattern[12],

m.group(5)) listOfRegisterObj.add(registerObject)
19: end for
20: end if
21: end for
22: return listOfRegisterObj

Algorithm2 shows the procedure for extracting register subsections and register
information. Heuristics can handle this task. The input of this algorithm is
HardwareManualInText - a hardware manual in text, ListOfPattern - patterns
1-12 in Table 3.2. The output of this algorithm is listOfRegisterObj - a list of
register objects with physical information, including the access size, address, value
after reset, bit names, and bit accessibility. The procedure has two steps: identify
the register sections and extract register physical information. In Algorithm 2,
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lines 6-10 in this algorithm is for the first step; lines 12-18 is for the second step.
The first step is conducted based on our observations on sections about registers

in the targeted manual. There are two conditions to consider a section as a
register section. The first condition is that the section title matches one of the
following patterns for register section titles: Pattern1 or Pattern2. Line 6 in the
algorithm checks this condition. As for presenting a register in the Definition
3.3.1, the name and the address are needed. Hence, the second condition is that
the section describes the address as for reg of the content of the subsection contains
"\nAddress:" which is the fixed format to describe the register address. Line 10
check whether the content among two titles found in line 6 contains this keyword.
If yes, this is the register section.

Heuristics can handle the second step too. Based on our observations on
subsections about registers, we create Patterns3 for detecting the register’s physical
information. Pattern3 has five matched groups for finding register size, register
address, the value after reset, bit names, and bit accessibility. Line 12 applies
Pattern3 to find fragments in the area between the pairs of closest register titles
found in the first step.

Next, at line 14, we get the accessed sizes in the area containing characters that
match group 2 of Pattern3. Three cases can occur. The first case is that if "Ac-
cessing from the user program is prohibited." or "This register is not accessible."
appears in the accessed size area, the register group is not accessible by software.
The second case is that if the accessed size is the same for all registers in the group,
the accessed size will match group 1 of Pattern4. For example, "Access:\tThis reg-
ister can be read or written in 16-bit units." matches the pattern. The third case is
that if the accessed sizes are different for registers in the group, the accessed size
will match group 1 of Pattern5. For example, "Access:\tREGISTERNAME register
can be read or written in 32-bit units. REGISTERNAME1 register can be read or
written in 16-bit units. REGISTERNAME2 register can be read or written in 8-bit
units." matches the pattern.

The next step is at line 15 to get the accessed address in the area containing
characters that match group 3 of Pattern3. If the text in the area is "Address: —",
it means the register group is not accessible by software. Otherwise, we need to
apply Pattern6 or Pattern7 over the matched group 3 of Pattern3. If the address
match group 1 of Pattern6, the accessed address or address formula is the same
for all registers in the group. For example, “Address:\t<REGISTERNAME_base>
+ 44H” matches the pattern. If the accessed address match group 1 of Pattern7,
the accessed addresses or address formulas are different for registers in the group.
For example, “Address: REGISTERNAME1n: <REGISTERNAME1n_base> +
0300H + n × 4 (n = 0, 1, 2, 8, 9, 10, 11, 12, 18, 20) REGISTERNAME2n:
<REGISTERNAME2n_base> + 03C8H + n × 4 (n = 0, 1) REGISTERNAME3:
<REGISTERNAME3_base> + 0030H*1” matches the pattern.
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The next step is at line 16 to get the value after reset in the area containing
characters that match group 4 of Pattern3. We apply Pattern8 and Pattern9 over
this matched group. If the value after reset is the same for all registers in the group,
the value after reset will march the group 1 of Pattern8. For example, "Value after
reset:\t00H" matches the pattern. If the value after reset is different for registers
in the group, the value after reset will match group 1 of Pattern9. For example,
“Value after reset: \tREGISTER0: FFFF FFFFH REGISTER20: FFFF FFFFH
REGISTER30: FFFF FFFFH” matches the pattern.

The next step at line 17 is to set the bit name in the area containing characters
that match group 5 of Pattern3. We apply Pattern10 and Pattern11 over this
matched group. If the accessed size is 8 or 16, the bit name will match group 1 of
Pattern10. If the accessed size is 32, the bit name will match the combination of
groups 1 and 3 of Pattern11.

The final step at line 18 is to get bit accessibility (readable/ writeable) in the
area containing characters that match group 5 of Pattern3. We apply Pattern12
over this matched group. The bit accessibility will match group 1 of Pattern12.

Extracting coding rules using registers

Currently, we only target non-conditional coding rules. There are three groups of
coding rules from the viewpoint of the information needed to extract. The first
group contains coding rules related to the access size of the register. An example
of this group is that "This register can be read or written in 32-bit units.". The
second group is coding rules related to accessibility, including readability and
writeability of individual bits in the registers. An example of this group is that
"Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R R R R R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W". The third group of coding rules is coding
rules related to written values. An example of this group is that "The BITNAME
bit in REGISTERNAME register should be set to 0000B or 1111B ."

Coding rules are written in the free format using natural languages. There are
many possible ways to express the coding rules. However, the coding rules usually
contain some special keywords such as "must", "must not", "should", "should not".

The general idea is to use heuristics based on the syntactic and linguistic
features of the document. Specifically, the process of extracting the coding rules
consists of four steps. The first step is preprocessing. In this step, we first break
the documents into sentences using "." as the splitter. Subsequently, we apply the
following techniques for each sentence: tokenizing, stemming, and part-of-speech
tagging. In the second step, we apply Pattern13 and Pattern14 to get potential
coding rules sentences: For example, "The BITNAME bit in REGISTERNAME
register should be set to 0000B or 1111B ." matches Pattern14. In the third
step, we obtain "NN", "NNP" tokens in the area containing characters that match
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group 2 of Pattern13 and Pattern14. Lastly, among "NN" and "NNP" tokens, we
check whether they are a bit name or register name. For example, BITNAME
and REGISTERNAME are tagged as NNP and found as a bit name and a register
name.
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Chapter 4

Analyzing microcontroller-based
software

4.1 Approach overview
Analyzing the source code and extracting knowledge related to register-access is
essential for verifying the source code against the microcontroller-specific cod-
ing rules. For example, Figure 4.2 shows a microcontroller-based source code.
In this program, write-access operators are performed at lines 19, 24, and 26.
We can check for coding rules related to write-access to registers at addresses
0x020E0004, 0x020E0008, 0x020E000C, 0x020E0010, and 0xFFF20300 if we
know the information of thesewrite-accesses. Knowledge related to register-access
includes register-access expressions (i.e., locations in the source code where the
accesses are performed), register-access details (i.e., accessed registers, accessed
sizes, written values, or accessed bits), relations among register-access expressions
(i.e., execution orders between register-access expressions).

However, there are two difficulties in analyzing the C program for extracting
the target knowledge. The first difficulty comes from the large number of variations
of the coding rules, which can be several hundred. Additionally, the coding rules
can be updated, or new coding rules can be introduced. Hence, if a solution is not
flexible enough, it will soon become useless. The second difficulty comes from
the size and complexity of the systems. Nowadays, embedded systems can be very
large with complex functionalities implemented. Hence, the solution should be
sophisticated enough to handle large and complex source code.

There is an additional requirement that the target knowledge contains both
syntactic such as the location of register-accesses in the source code, and semantic
features of the systems, such as the written value in a write-access. Sallow analysis,
like text-based analysis, is effective for syntactic properties; however, deep system
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Figure 4.1: Overview of the process for analyzing C source code

analysis, such as pointer analysis, is required for syntactic properties. Hence, the
solution should be effective in extracting both types of knowledge.

As it is difficult for a single technique to be both flexible and sophisticated, inte-
grating multiple techniques with different strengths and weaknesses is a promising
approach. We propose an algorithm combining four well-established program
analysis techniques to extract the behaviors of source code. These program analy-
sis techniques include PM, AI, BMC, and CEGAR. First, PM is employed in the
form of code patterns to detect potentially related expressions of coding rules in
the target source code. Secondly, AI, BMC, and CEGAR are employed to examine
whether the potentially related expressions relate to or violate the coding rules.

This chapter first compares the four selected techniques in Section 4.2. Then,
we explain the process for analyzing the source code using the algorithm which
combines the selected techniques. Figure 4.1 shows an overview of this process.
The input of this process is Source code - a C source code, Formalized hardware
knowledge - the formalized hardware knowledge explained in the previous chapter,
and Specification language of software knowledge. Similar to the Specification lan-
guage of hardware knowledge discussed in Chapter 3, the specification language
of software knowledge is proposed to precisely describe the extracted knowledge
and enable the automated verification process. The definition of the specification
language of software knowledge is explained in Section 4.3. The output is the for-
malized information, which is extracted from this source code, called Formalized
software knowledge. Details of the algorithm to combine the four programming
analysis techniques for extracting the target knowledge are shown in Section 4.4.
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1 t ypede f s t r u c t s t r u c t _ r e g _ l o n g _ d a t a {
2 unsigned long a d d r e s s ;
3 unsigned long va l u e ;
4 } StRegLongData ;
5 cons t StRegLongData s t_ type01_02_0E [ 4 ] = {
6 { 0x020E0004 , 0xF7317BDE} ,
7 { 0x020E0008 , 0xF7313BDE} ,
8 { 0x020E000C , 0xFFFF5A5A} ,
9 { 0x020E0010 , 0xFFF05A5A}
10 } ;
11
12 s t a t i c vo id main ( ) {
13 i n t c n t ;
14 cons t StRegLongData ∗ p t _ s t ;
15 unsigned long mask = 0x4 ;
16
17 p t _ s t = &s t_ type01_02_0E [ 0 ] ;
18 f o r ( c n t = 0 ; c n t < 4 ; c n t ++) {
19 ( ∗ ( ( unsigned long ∗) p t _ s t −>add r e s s ) ) = ( unsigned long )

p t _ s t −>va l u e ;
20 p t _ s t ++;
21 }
22
23 unsigned long ∗ r e g i s t e r _ 1 = ( unsigned long ∗) 0xFFF20300 ;
24 ∗ r e g i s t e r _ 1 = 0x00000010 ;
25 whi le (∗ r e g i s t e r _ 1 & mask != 0) {
26 ∗ r e g i s t e r _ 1 = foo ( ) ;
27 }
28
29 re turn ;
30 }

Figure 4.2: Motivation example for extracting knowledge from C program

As stated in Section 1.2, the target source code in this research is the C
programs; assembly code is not taken into account. The second assumption is
that we do not consider multiple thread systems and interruptions. The proposed
approach in this chapter was published in [46, 47].

4.2 Comparison of selected techniques
Each selected technique has different strengths and weaknesses. Table 4.1 sum-
marizes these techniques in two aspects: the well-suitedness and the employed
approximation approach. For the first aspect, PM is good at handling syntactic
properties; AI, BMC, and CEGAR can handle semantic properties; BMC and CE-
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Table 4.1: Comparison of selected program analysis techniques

Well-suitedness Approximation approach

syntactic semantic explanation over under
properties properties

PM yes no no no no
AI no yes no yes no
BMC no yes yes no yes
CEGAR no yes yes yes yes

GARcan provide explanations for detected errors. Techniques that target analyzing
syntactic properties are often lightweight and flexible but imprecise. Techniques
that target at analyzing semantic properties are often sophisticated but require a
great amount of time and memory. For the second aspect, PM does not follow
any particular approximation approach; AI employs the over-approximation; BMC
follows the under-approximation; CEGAR implements both over- (the abstraction)
and under-approximation (the refinement). Techniques which follow the over-
approximation approach are sound but may generate false warnings. Techniques
that follow under-approximation do not report false warnings but may miss ac-
tual bugs. CEGAR is an exception where both approximation approaches are
implemented. Hence, this technique is sound and does not generate false warn-
ings. However, because of multiple abstraction and refinement steps, CEGARmay
consume a great amount of time and memory.

These four techniques can be combined to effectively extract knowledge related
to register-accesses in source code. This knowledge includes syntactic properties
(e.g., locations of the accesses in source code), semantic properties (e.g., accessed
sizes of the accesses), and explanations for the accesses. Specifically, PM is
employed to handle syntactic properties; AI and BMC are used to extract semantic
properties; BMC and CEGAR are in charge of explaining the accesses. CEGAR is
also good at handling semantic properties. However, after considering its high cost,
we select CEGAR to handle the task of explaining only. Thanks to the different
approximation approach employed, the selected techniques can complement each
other to fulfill our target.

4.3 Formalization of software knowledge
This section defines the knowledge to be extracted from the source code. The
first obvious knowledge for verifying systems against the target coding rules is
knowledge related to register-access. In addition, handling loops is one technical
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difficulty in analyzing microcontroller-based systems. In these systems, loops are
frequently used to access a list of registers. For example, the for loop starting
at line 18 in Figure 4.2 is used to access four registers at addresses 0x020E0004,
0x020E0008, 0x020E000C, and 0x020E0010.

Inmany cases, we need to know the number of loop iterations to decidewhether
an expression inside the loop access a register. Loop unwinding, in which a loop is
unrolled with a fixed number of iterations, is the most intuitive and simple way to
handle a loop. This technique can be easily applied to every loop in the program,
even when we have little information about the target program. The disadvantage
of this technique is that if the number of unrolled iterations is less than the actual
number, this technique is unsound (i.e., a property is not ensured to hold outside of
the bound). Loop unwinding can be appliedwith other program analysis techniques
such as AI and BMC. However, the bound is normally a guessed number as there
is usually insufficient information to make this selection.

Additionally, unrolling all loops in the source code can be expensive but
unnecessary sometimes. For example, in Figure 4.2, the number of iterations of
the for loop starting from line 18 decides which registers are accessed at line
19. The loop starting from line 25 is irrelevant to the access at line 19. Hence,
unrolling the loop starting from line 18 only is a resource-efficient approach to
checking the target access.

In this research, we extract themaximum number of loop iterations beforehand.
This knowledge can support the process of extracting knowledge related to register-
access. To sum up, there are two kinds of knowledge to be extracted: knowledge
related to loops and knowledge related to register-access. We define software
knowledge as a triple tuple as follows.

Definition 4.3.1 (Software knowledge) A software knowledge SWK is a tuple
SWK = <name, listOfLoopObjects, listOfRegisterAccessObjects>, where

name ∈ S; S is the set of strings;
listOfLoopObjects = [loop_info_1, .., loop_info_n]; n ∈ N∗;
listOfRegisterAccessObjects = [access_info_1, .., access_info_n], n ∈ N∗;
loop_info_1 ∈ SFL, SFL is a set of formalized loops;
access_info_1 ∈ SFRA, SFRA is a set of formalized loops;

A source code is represented by a name - the name of the source code, a
listOfLoopObjects, and a listOfRegisterAccessObjects. Objects in listOfLoopOb-
jects are described in the specification language shown in Section 4.3.1. Similarly,
objects in listOfRegisterAccessObjects follow the specification language in Sec-
tion 4.3.2. As the loop objects and register-access objects are extracted using
program analysis techniques/ tools, the output formats of these techniques/ tools
are considered for defining the formalization of these objects.
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4.3.1 Specification language for loop object
We define a loop object as the tuple of id, syntacticInfo, loopType, and maxNu-
mOfIteration as follow.

Definition 4.3.2 (Loop object) A loop L is a tuple L = <id, syntacticInfo, loop-
Type, maxNumOfIteration>, where

id ∈ N,

syntacticInfo = <fName, funcName, lineNumberStart, lineNumberEnd>;
fName ∈ FNAME; funcName ∈ FUNCNAME;
lineNumberStart, lineNumberEnd ∈ [0..MAXLINE-1];
lineNumberEnd >= lineNumberStart;

loopType ∈ {for, while};
maxNumOfIteration ∈ { val, unknown}, val ∈ N;

FNAME is a set of names of files in source code;
FUNCNAME is a set of names of functions in a file named fName;
MAXLINE is the maximum line number in a file named fName.

Each loop includes an id for identifying the object, a syntacticInfo to locate
the loop, a loopType to specify the type of loops, and a maxNumOfIteration to
store the maximum number of iterations. There are two types of loops handled:
for and while. In C language, there are several methods for constructing loops:
for statements, while statements, goto statements, and recursive functions. As
using goto statements and recursive functions are not recommended in practice,
we only handle for statements and while statements. ThemaxNumOfIteration
may not be available for all for and while loops. At this moment, only loops in
which the executing condition is controlled by one variable and the value of this
variable is updated by a constant after each iteration are supported.

For example, the for loop starting at line 18 of Figure 4.2 is supported.
However, the while loop starting at line 25 is not supported as this loop is
controlled by the return value of function foo, which is outside of the loop. If
the maximum number of iterations of the loop beginning at line 18 is calculated,
this loop will be represented as <0, <main.c, main, 18, 21, for, 4>. As the
loop beginning at line 25 is not supported, the representation for this loop is <1,
<main.c, main, 25, 27>, while, unknown>.
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4.3.2 Specification language for register-access object
We define a register-access object as the tuple of id, syntacticKnowledge, se-
manticKnowledge as follows.

Definition 4.3.3 (Register-access object) A register-access RegA is a tuple RegA
= <id, syntacticKnowledge, semanticKnowledge>, where

id ∈ N;

syntacticKnowledge = < locationInfo, accessType>;
locationInfo = <fileName, functionName, lineNumberStart, lineNumberEnd>;
fileName ∈ FNAME , functionName ∈ FUNCNAME;
lineNumberStart; lineNumberEnd ∈ [0..MAXLINE-1]; lineNumberEnd >=
lineNumberStart;
accessType ∈ {read-access, write-access};

semanticKnowledge = < registerName, accessDetail, relations, <status, pre-
cision>, explanation>;
registerName ∈ REGISTER_NAME_LIST;
REGISTER_NAME_LIST is the list of register names in the used hardware;

accessDetail =
{
< accessedBits, accessedSize > f or read-access,
< writtenValue, accessedSize > f or write-access;

accessedBits = integerSet;
writtenValue = integerSet;

integerSet=


interval; interval =< l, u >; l, u ∈ N;
periodicityInterval; periodicityInterval =< l, u,m, r >; l, u,m, r ∈ N;
enum; enum = [n0, .., ni]; ni =< val, precision, explanation >;

val ∈ N;
accessedSize ∈ {8, 16, 32, 64};
relations = {<id, <executionOrder, precision, explanation> > | id ∈ N};
executionOrder ∈ {before, after};
status = {accessed, notAccessed, dead};
precision = {confirmed, maybe, unknown};
explanation ∈ {executionSequencen, notAvailable}, n ∈ N;
executionSequencen ={<s0.threadNum, s0.lineNum, s0.fileName>, .. , <si .threadNum,
si .lineNum, si .fileName>, .. <sn.threadNum, sn.lineNum, sn.fileName>};
s0 is the program entry point; threadNum ∈N; lineNum ∈N; fileName ∈ FNAME;
FNAME is a set of names of files in source code;
FUNCNAME is a set of names of functions in a file named fileName;
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MAXLINE is the maximum line number in a file named fileName.

Each register-access contains an id and two kinds of knowledge: syntactic-
Knowledge and semanticKnowledge. The syntacticKnowledge includes the
locationInfo in the source code and the accessType. The locationInfo of a
register-access is presented by the fileName, functionName, lineNumberStart
and lineNumberEnd to present where the access is performed. The accessType
may be read-access or write-access. We consider the access type an element of
syntacticKnowledge as read-access and write-access can be identified by exam-
ining the syntactical features of the source code. For example, if a C expression
contains an assignment operator, it is a write-access. For example, the syntactic-
Knowledge for the write-access at line 19 of Figure 4.2 is as follow.

< <main.c, main, 19, 19>, write-access>

The semanticKnowledge includes the accessed registerName, an accessDe-
tail which is accessed size and bits for read-access and accessed size and written
value forwrite-access, relationswith other accesses, which are the execution order
among these accesses, an status which is either accessed, notAccessed, or dead,
and an explanationwhich is an execution trace from the beginning of the program
to the accessed point.

In the accessDetail, the accessBits, and writternValue are represented by an
integerSet. The accessBits and writternValue can be calculated by checking the
values of C expressions. For example, the written value of the write-access at
line 19 of Figure 4.2 can be obtained by calculating the values of the expression
(unsigned long)pt_st->value. Another example is the accessed bits of the
read-access at line 26. In this example, the accessed bits can be obtained by
calculating the value of the expression mask. Using AI, BMC, and CEGAR, the
value of these expressions ((unsigned long)pt_st->value and mask) can be
calculated by checking the over-approximated value set or checking whether the
expression has a particular value. Hence, the calculated value can be a single
value or a set of possible values. Hence, we use a integerSet for presenting these
values. Inspired by the integer set representation of the Eva plugin of Frama-C1,
we represent a integerSet in one of three formats: interval, periodicityInterval,
and enum. A interval <l, u> represents all the integers between l and u, including
the bound. For example, <1, 3> is the set of {1, 2, 3}. A periodicityInterval
<l, u, r, m> represents the set of values between l and u whose remainder in the
Euclidean division by m is equal to r. For example, <2,42,2,10> represents the set
that contains 2, 12, 22, 32, and 42. A enum represents an integer set by listing the

1https://frama-c.com/fc-plugins/eva.html
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value one by one. However, the value in this set is a triple tuple of val, precision,
and explanation. The val is the value itself, and the precision represents the
certainty level of whether the value is actually used in at least one reachable
execution path of the program. There are three levels of certainty: confirmed -
100% confident, maybe - less than 100% confident, and unknown - we do not have
any information. The accessSize represents the size of the access which can be
either 8, 16, 32, or 64.

The relation represents the temporal properties among the register-access
object and other register-access objects in the source code. A relations is the list
of double tuples. A tuple has an id - id of another register-access object and a tuple
of executionOrder, precision, and explanation. The value of executionOrder
can be either before or after. Similar to the precision in the enum, the precision
here also represents the level of certainty of the executionOrder. The explanation
represents a sequence of states to show that the order is reachable in the execution.

The status of a register-access is the answer to a yes/no question: whether
the specific expression accesses the particular register. For example, an access
status can answer the following question: Does the expression at line 19 in Figure
4.2 access register at the address 0x020E0008? The answer to this question may
fall into three cases: yes (accessed) - this is a register-access; reachable and no
(notAccessed) - this is not a register-access; unreachable (dead) - the expression
is not reachable.

The precision in a register-access is decided based on the approximation
approaches (i.e., over and under) implemented in the employed program analysis
techniques. Inspired by the Kripke structure used in model checking [48], a Kripke
structure is defined to represent the actual behavior, and two Kripke structures are
defined to represent the approximated behaviors of the analyzed program. Let
A, Aunder , Aover be sets of atomic propositions about register-access where Aunder
⊆ A ⊆ Aover . K = <S, R, L> be a Kripke structure over A for representing the
concrete behavior of the analyzed program; Kunder = <Sunder , Runder , Lunder> be
a Kripke structure over Aunder for representing an under-approximated behavior
of the analyzed program; Kover = <Sover , Rover , Lover> be a Kripke structure over
Aover for representing an over-approximated behavior of the analyzed program. S,
Sunder , and Sover be finite sets of states so that Sunder ⊆ S ⊆ Sover . R ⊆ S x S, Runder
⊆ Sunder x Sunder , and Rover ⊆ Sover x Sover be sets of transitions. L: S → 2A,
Lunder : Sunder → 2Aunder , and Lover : Sover → 2Aover be functions which map each
state to a set of atomic propositions about register-access. Let ra be a state where
a register-access is performed, p be an atomic proposition that represents that ra is
reachable. Let s0 be the entry point of the analyzed program, and the five possible
statuses of a register-access ra are defined in CT L∗ [49] as below:

Definition 4.3.4 (Register-access precision) A register-access precision is one of
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the five values:

confirmed ⇐⇒ Kunder, s0 |= EFp or Kover, s0 |= AFp

confirmedNot ⇐⇒ Kover, s0 2 EFp

maybe ⇐⇒ Kover, s0 |= EF p

dead ⇐⇒ � s, s ∈ Sover ∧ s.syntacticIn f o = ra.syntacticIn f o

unknown ⇐⇒ otherwise

There are five possible values of precision for a register-access object when
analyzing the source code with the four program analysis techniques: confirmed,
confirmedNot, maybe, dead, and unknown. However, only register- confirmed,
maybe, unknown

The explanation provides evidence of the reachability of a register-access
object. As briefly explained above, an explanation is an execution trace from
the beginning of the program to the accessed point. The formal definition of
an explanation is an ordered set of triple tuples in the form of <si .threadNum,
si .lineNum, si .fileName> represents an execution point with a thread number, a
line number, and a file name. Although currently, we only handle single thread
programs, the threadNum is preferred for easily extending the approach to handle
multiple thread programs. Now, threadNum is always 0. The explanation
is available for register-access objects detected using the under-approximation
approach (i.e., BMC and CEGAR).

For example, assume that the register’s name at address 0x020E0004 is
registerA. If the write-access expression at line 19 to registerA in Figure
4.2 is confirmed by BMC, the semanticKnowledgewill be represented as follows.

<registerA, < <[<4147215326, maybe, notAvailable>, <4147198942,
maybe, notAvailable>, <4294924890,maybe, notAvailable>, <4293941850,
maybe, notAvailable>], 32>, {<1, <before,maybe, notAvailable>>, <2, <be-
fore,maybe, notAvailable> >, <3, <before,maybe, notAvailable> >, <4, <be-
fore, maybe, notAvailable> >}, <accessed, confirmed>, {<0, 1, main.c>,
<0, 2, main.c>, <0, 3, main.c>, <0, 4, main.c>, <0, 5, main.c>, <0,
6, main.c>, <0, 7, main.c>, <0, 8, main.c>, <0, 9, main.c>, <0, 10,
main.c>, <0, 11, main.c>, <0, 12, main.c>, <0, 13, main.c>, <0, 14,
main.c>, <0, 15, main.c>, <0, 16, main.c>, <0, 17, main.c>, <0, 18,
main.c>, <0, 19, main.c>} >
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In which, registerA is the registerName; <[<4147215326, maybe, no-
tAvailable>, <4147198942, maybe, notAvailable>, <4294924890, maybe, no-
tAvailable>, <4293941850, maybe, notAvailable>], 32> is the accessDetail; {<1,
<before, maybe, notAvailable> >, <2, <before, maybe, notAvailable> >, <3, <be-
fore, maybe, notAvailable> >, <4, <before, maybe, notAvailable> >} is the rela-
tions; <accessed, confirmed> is the <status, precise>; {<0, 1, main.c>, <0, 2,
main.c>, <0, 3, main.c>, <0, 4, main.c>, <0, 5, main.c>, <0, 6, main.c>, <0,
7, main.c>, <0, 8, main.c>, <0, 9, main.c>, <0, 10, main.c>, <0, 11, main.c>,
<0, 12, main.c>, <0, 13, main.c>, <0, 14, main.c>, <0, 15, main.c>, <0, 16,
main.c>, <0, 17, main.c>, <0, 18, main.c>, <0, 19, main.c>} is the explana-
tion.

The full formalization of the write-access at line 19 to registerA in Figure
4.2 is shown as follows.

• <0, <<main.c, main, 19, 19>,write-access><registerA, < <[<4147215326,
maybe, notAvailable>, <4147198942,maybe, notAvailable>, <4294924890,
maybe, notAvailable>, <4293941850, maybe, notAvailable>], 32>, {<1,
<before, maybe, notAvailable> >, <2, <before, maybe, notAvailable> >, <3,
<before, maybe, notAvailable> >, <4, <before, maybe, notAvailable> >},
<accessed, confirmed>, {<0, 1, main.c>, <0, 2, main.c>, <0, 3, main.c>,
<0, 4, main.c>, <0, 5, main.c>, <0, 6, main.c>, <0, 7, main.c>, <0,
8, main.c>, <0, 9, main.c>, <0, 10, main.c>, <0, 11, main.c>, <0, 12,
main.c>, <0, 13, main.c>, <0, 14, main.c>, <0, 15, main.c>, <0, 16,
main.c>, <0, 17, main.c>, <0, 18, main.c>, <0, 19, main.c>} > >
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4.4 Automatically extracting source code knowledge

4.4.1 Approach overview

Algorithm 3 Extracting knowledge related to register-access
Input: SC, PatternRegAccess, ListOfRegs, PatternAllLoop,
PatternSupportedLoop
Output: ListOfAccObjs
Procedure:
/* Step 1: Extract loop objects in source code */
ListOfLoopObjs = extractLoopObj(SC, PatternAllLoop,
PatternSupportedLoop)
/* Step 2: Extract register-access objects in source code */
ListOfAccObjs = detectRegAccObj(SC, PatternRegAccess, ListOfRegs,
ListOfLoopObjs)
/* Step 3: Extract access detail for register-access objects*/
ListOfAccObjs.updateAccDetail(extractAccDetail(SC, ListOfLoopObj,
ListOfAccObjs))
/* Step 4: Extract relations between register-access objects */
ListOfAccObjs.updateAccRelation(extractRelations(SC, ListOfLoopObj,
ListOfAccObjs))
return ListOfAccObjs

Details of the process to extract register-access knowledge are shown in Algorithm
3. The inputs of this process areSC - a target source code, PatternRegAccess - the
code patterns for register-access which are shown in Definition 4.4.1, ListOfRegs
- the list of registers in the target hardware, PatternAllLoop - the code patterns for
for andwhile loopswhich are shown inDefinition 4.4.2, PatternSupportedLoop
- the code patterns for supported loops which are also shown in Definition 4.4.2.
The PatternRegAccess, which is shown in Section 4.4.2, focuses on detecting
several forms of pointer access as using a pointer is one of the most common
methods for performing register-access [18]. The PatternAllLoop simply de-
tects all for and while loops. The PatternSupportedLoop detects for and
while loops where the executing condition is controlled by one variable, and the
value of this variable is updated by a constant after each iteration.

The process consists of four steps. The first step is to extract knowledge related
to loops in the target source code. The output of this step is the list of loop objects
in the formalized form, which is shown in Section 4.3.1. The second step is to
detect register-access objects in the source code. By the end of this step, a list of
register-access objects is obtained. However, the information about access detail
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and relations among these objects has not been available. The detail of this step
can be found in Section 4.4.4. The next two steps extract the knowledge about
access detail and relations among these objects. By the end of this process, we
obtain ListOfAccObjs - a list of register-access objects in the formalized form,
which is shown in Section 4.3.2.

4.4.2 Code patterns for register-access
Although a microcontroller-based application may have thousands of lines of
code, only several fragments of this source code are related to a coding rule.
Inspecting all lines is unnecessary and even costly. Narrowing down the focus on
potentially related fragments is a resource-efficient solution. There is a concern
about the precision in the case that the actually related fragments are not inspected.
However, each company may have coding conventions for performing a specific
task. When we need to verify whether a task is performed correctly, inspecting
fragments, which follow these coding conventions for this task, is sufficient. Hence,
a solution can be both effective in terms of consumed resources and precision if
flexible enough to adjust for different coding styles easily.

In this research, we focus on the coding rules related to register-access and
source code written in the C programming language. Register-access expressions
are expressions in which the address of a register is accessed. This property dis-
tinguishes register-access expressions from normal access expressions, which also
access an address (e.g., the address of a variable) but not a register address. In this
research, the read-access and the write-access refer to register-access, not normal
access. In [18], Saks explained several methods for register-access operators using
the C language. As it is hard to cover all variations of register-access in C source
code, we target only popular variations in this research. Additionally, companies
usually have their conventions to perform register-access as this is a common task
in embedded software. In this research, we discussed with developers of AISW
the frequently used methods for register-access at their company. Based on these
discussions, we proposed code patterns for covering these methods. As the code
patterns are proposed based on the discussions with people of AISW only, one
may argue that these patterns are biased to the methods used at this company.
However, even if the code patterns only fit with the coding style at AISW, the
proposed approach is flexible enough so that other register-access methods can be
introduced easily as new patterns.

The code patterns for register-access are defined in BNF as follows. Differently
from the original BNF, the definition is shown in a top-down style for easier
following.

Definition 4.4.1 (Code patterns for register-access) The code pattern for read-
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access operators is:

<assignment-operator> ::= "=" | "&=" | "|=" | "ˆ =" | "+=" | "-=" |
"*=" | "/=" | "%=" | "»=" | "«="
<pre-side-effect-oper> ::= "++" | "–"
<post-side-effect-oper> ::= "++" | "–"
<not-equal-sign> is any valid token in C program other than "=";
<expression> is a valid expression in C program;
<not-number-or-type> is not a number or a C primitive data type;

<read-access-pattern> ::=<pointer-access-expression><not-equal-sign> (1)
| <pointer-access-expression> "&" <expression> (2)
| (<pointer-access-expression> "«" <expression>) "&" <expression> (3)
| (<pointer-access-expression> "»" <expression>) "&" <expression> (4)
| (<pointer-access-expression> "&" <expression>) "»" <expression> (5)
| (<pointer-access-expression> "&" <expression>) "»" <expression> (6)

The code pattern for write-access operators is:

<write-access-pattern> ::=
<pointer-access-expression> <assignment-operator> <expression> (1)
| <pre-side-effect-oper> <pointer-access-expression> (2)
| <pointer-access-expression> <post-side-effect-oper> (3)

<pointer-access-expression> ::= <not-number-or-type> "*" <expression> (1)
| <expression> "->" <expression> (2)
| ( "*"<expression>) "." <expression> (3)

These code patterns are proposed for checking the coding rules related to
register-access. For read-access, code pattern number (1) is used to check the
properties related to the readability of a whole register and the access size. This
pattern will extract pointer-access expressions which match the <pointer-access-
expression> pattern but not follow by the equal sign (i.e., "="). If an expression is
followed by the equal sign, it is a write-access expression, not a read-access one.
There are two expressions at line 13 (i.e., "*register_3" and "*register_1")
and an expression at line 14 (i.e., "*register_4") of the source code in Figure
4.3 match this code pattern. Code pattern number (2), (3), (4), (5), and (6) are
used to check the properties related to the readability of a bit in a register as
bitmask is often used for reading specific bits. There are two expressions at line 13
(i.e., "(*register_3 » 4) & 1" and "(*register_1 » 1) & 1)" in Figure
4.3 match the read-access code pattern number (4).
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1 # de f i n e REGISTER_1_ADD 0xFFF20300
2 # de f i n e REGISTER_3_ADD 0xFFF20304
3 # de f i n e REGISTER_4_ADD 0xFFF20338
4 void f u n c_w r i t e _32 ( unsigned long add , unsigned long d a t a ) {
5 ( ∗ ( ( unsigned long ∗) add ) ) = ( unsigned long ) d a t a ;
6 }
7 void main ( void ) {
8 f un c_w r i t e _32 (REGISTER_3_ADD , 0x00000000 ) ;
9 f u n c_w r i t e _32 (REGISTER_4_ADD , 0x00000000 ) ;
10 unsigned long ∗ r e g i s t e r _ 1 = ( unsigned long ∗) REGISTER_1_ADD ;
11 unsigned long ∗ r e g i s t e r _ 3 = ( unsigned long ∗) REGISTER_3_ADD ;
12 unsigned long ∗ r e g i s t e r _ 4 = ( unsigned long ∗) REGISTER_4_ADD ;
13 i f ( ! ( ( ∗ r e g i s t e r _ 3 >> 4) & 1) & ( ( ∗ r e g i s t e r _ 1 >> 1) & 1) )
14 ∗ r e g i s t e r _ 4 | = 0x00000010 ;
15 f un c_w r i t e _32 (REGISTER_4_ADD , 0xEFFFFFFF ) ;
16 }

Figure 4.3: Example program containing matched expressions of the code patterns
for register-access

For the write-access, all three code patterns are used to check for properties
related to the access size and the written values of a whole register or a bit in a
register. The code pattern number (1) is an assignment that assigns a value of the
<expression> in the right-hand side to the <pointer-access-expression> on the
left-hand side. There are two expressions (at line 5 and line 14) in Figure 4.3 that
match this code pattern. Code pattern for the write-access number (2) and (3) are
used to detect expressions where a <pointer-access-expression> is modified using
pre/post side effect operators. There is no expression in Figure 4.3 that matches
these code patterns.

There are three code patterns for pointer-access. The code pattern number (1)
is used to detect expressions that contain an asterisk sign which is followed by an
expression. However, there must be no token which is a number or a primitive
data type, before the asterisk sign. If there is a number before the asterisk sign,
the asterisk sign is not the pointer sign but the multiplication operator. If there
is a data type before the asterisk sign, it is a definition of a pointer variable
but not our target (e.g., line number 10, 11 and 12 in Figure 4.3). There are
four expressions in Figure 4.3 match with the code pattern (1) of pointer-access:
"*((unsigned long*)add)" at line 5, *register_3 and *register_1 at line
13, *register_4 at line 14. Code pattern (2) and (3) for pointer-access are
semantically equivalent. They both are used to detect expressions that access
elements of structures or unions. There is no expression in Figure 4.3 that matches
these code patterns.

The code patterns are expressed using theExtendedBackus-Naur Form (EBNF)
[50]. In fact, the code patterns represent a subset of the syntax of the C pro-
gramming language; BNF (and several context information) is also employed for
expressing this syntax [51]. In this research, we employed Cobra for describing
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code patterns and extracting expressions that match these code patterns.
This section described how to extract fragments of code that potentially relate

to the coding rules. The next section will show how to evaluate these extracted
fragments to know whether they actually relate to or violate the coding rules.

4.4.3 Algorithm to extract loop objects

Algorithm 4 Extracting knowledge related to loops
1: Input: SC, PatternAllLoop, PatternSupportedLoop
2: Output: ListOfLoopObjs
3: Procedure:
4: supportedLoops = []
5: for exp in SC do
6: (isMatched, loopInfo) = PM.match(exp, PatternSupportedLoop)
7: if isMatched == TRUE then
8: supportedLoops.add(loopInfo)
9: else
10: (isMatched, loopInfo) = PM.match(exp, PatternAllLoop)
11: if isMatched == TRUE then ListOfLoopObjs.add(loopInfo, supported = FALSE)
12: end if
13: end if
14: end for
15: annotatedSC = attachAnnotationForCalLoopIter(SC, supportedLoops)
16: (loopObjs, numsOfIter) = AI.analyze(annotatedSC)
17: for i in [0, len(loopObjs)) do
18: ListOfLoopObjs.add(loopObjs[i], numsOfIter[i], supported = TRUE)
19: end for
20: return ListOfLoopObjs

This section explains the procedure for extracting knowledge about loops in source
code. Algorithm 4 shows detail of this process. The input of this process is SC -
the target source code, PatternAllLoop - the code patterns for detecting all for
and while loop, and PatternSupportedLoop - the code patterns for detecting
supported loops which we can calculate the maximum number of iterations. The
code patterns for loops are defined in BNF as follows. Differently from the original
BNF, the definition is shown in a top-down style for easier following.

Definition 4.4.2 (Code patterns for loops) The code pattern for allfor andwhile
loops is:
<all-loop-pattern> ::= for ( .* ) { .* } | while ( .* ) { .* }

The code pattern for supported loops is:
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<supported-loop-pattern> ::= <simple-for-pattern> | <simple-while-pattern>

<simple-for-pattern> ::= for ( <ident> = <const>; <ident> <compare-oper>
<exp>; <update-exp> ) { .* <update-exp>? .* }
<simple-while-pattern> ::= while ( <ident> <compare-oper> <exp> ) { .*
<update-exp> .* }

<update-exp> ::= <pre-side-effect-oper> <ident> | <ident> <post-side-effect-
oper>
| <ident> <assignment-operator> <const> | <ident> = <ident> <operator>
<const>
| <ident> = <const> <operator> <ident>
<compare-oper> := "<" | "<=" | ">" | ">=" | "!="
<operator> := "+" | "-" | "*" | "/" | "%"
<assignment-operator> := "ˆ =" | "+=" | "-=" | "*=" | "/=" | "%=" | "»="
| "«="
<pre-side-effect-oper>, <post-side-effect-oper> := "++" | "- -"
<exp> is a valid expression in C program;

At this moment we only calculate the maximum number of iterations for simple
loops. Definition 4.4.2 shows thePatternAllLoop and thePatternSupportedLoop.
The PatternAllLoop detects all expressions with the keyword for or while.
The PatternSupportedLoop detects simple for and while loops which are
controlled by one identifier and the identifier is updated inside the loops only. The
output of this process is ListOfLoopObjs. The format of a loop object is de-
fined in Section 4.3.1. The extraction process is done by combining two program
analysis techniques (i.e., PM and AI). Specifically, PM is in charge of detecting
loop expressions in the source code. AI is in charge of calculating the values of
these loop expressions so that we can decide the maximum number of iterations
for these loops.
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4.4.4 Algorithm to detect register-access objects

Algorithm 5 Extract register-access objects
1: Input: SC, PatternRegAcc, ListOfRegs, ListOfLoopObjs
2: Output: ListOfAccObjs
3: Procedure:
4: assertForm = ["NotEqual", "Equal"]
5: /* 1. Extract potential register-access expressions */
6: ListOfPotentialRegAcc = []
7: for exp in SC do
8: (status, regAccInfo) = PM .match(exp, PatternRegAcc)
9: if status == TRUE then ListOfPotentialRegAcc.add(regAccInfo) end if
10: end for
11:
12: /* 2. Extract actual register-access objects and provide explanations */
13: /* 2.1. AI-NotEqual-No loop unwind */
14: annotatedSC = attachAssertion(SC, ListOfPotentialRegAcc, ListOfReg, assertForm[0])
15: (confirmedNotObjs, maybeObjs, unknownObjs) = AI.analyze(annotatedSC)
16: for obj in maybeObjs do ListOfAccObjs.add(obj, "maybe") end for
17: for obj in unknownObjs do ListOfAccObjs.add(obj, "unknown") end for
18:
19: /* 2.2. AI-NotEqual-Loop unwind */
20: unknownObjs = []
21: for obj in ListOfAccObjs do
22: if obj.status == "unknown" then unknownObjs.add(obj) end if
23: end for
24: annotatedSC = attachAssertion(SC, unknownObjs, assertForm[0], ListOfLoopObjs)
25: (confirmedNotObjs, maybeObjs, unknownObjs) = AI.analyze(annotatedSC)
26: for obj in maybeObj do ListOfAccObjs.update(obj, "maybe") end for
27: for obj in confirmedNotObjs do ListOfAccObjs.remove(obj) end for
28:
29: /* 2.3. AI-Equal-No loop unwind */
30: maybeObjs = []
31: for obj in ListOfAccObjs do
32: if obj.status == "maybe" then maybeObjs.add(obj) end if
33: end for
34: annotatedSC = attachAssertion(SC, maybeObjs, assertForm[1])
35: (confirmedObjs, unknownObjs) = AI.analyze(annotatedSC)
36: for obj in confirmedObjs do ListOfAccObjs.update(obj, "confirmed") end for
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37:
38: /* 2.4. AI-Equal-Loop unwind */
39: maybeObjs = []
40: for obj in ListOfAccObjs do
41: if obj.status == "maybe" then maybeObjs.add(obj) end if
42: end for
43: annotatedSC = attachAssertion(SC, maybeObjs, assertForm[1], ListOfLoopObjs)
44: (confirmedObjs, unknownObjs) = AI.analyze(annotatedSC)
45: for obj in confirmedObjs do ListOfAccObjs.update(obj, "confirmed") end for
46:
47: /* 2.5. BMC-NotEqual-Loop unwind */
48: maybeUnknownObjs = []
49: for obj in ListOfAccObjs do
50: if obj.status == "maybe" or obj.status == "unknown" then maybeUnknownObjs.add(obj)

end if
51: end for
52: annotatedSC = attachAssertion(SC, maybeUnknownObjs, assertForm[0], ListOfLoopObjs)
53: ((confirmedObjs, explanations), unknownObjs) = BMC.analyze(annotatedSC)
54: for i in [0, len(confirmedObjs)] do
55: ListOfAccObjs.update(confirmedObjs[i], "confirmed", explanations[i])
56: end for
57:
58: /* 2.6. BMC-Equal-Loop unwind */
59: maybeUnknownObjs = []
60: for obj in ListOfAccObjs do
61: if obj.status == "maybe" or obj.status == "unknown" then maybeUnknownObjs.add(obj)

end if
62: end for
63: annotatedSC = attachAssertion(SC, maybeUnknownObjs, assertForm[1], ListOfLoopObjs)
64: (confirmedObjs, unknownObjs) = BMC.analyze(annotatedSC)
65: for obj in confirmedObjs do ListOfAccObjs.update(obj, "confirmed") end for
66:
67: /* 2.7. CEGAR-NotEqual*/
68: notExplainedObjs = []
69: for obj in ListOfAccObjs do
70: if obj.status != "unknown" and obj.explanation == "" then notExplainedObjs.add(obj) end

if
71: end for
72: annotatedSC = attachAssertion(SC, notExplainedObjs, assertForm[0])
73: (confirmedObjs, explanations) = CEGAR.analyze(annotatedSC)
74: for i in [0, len(confirmedObjs)) do
75: ListOfAccObjs.update(confirmedObjs[i], "confirmed", explanations[i])
76: end for
77: return ListOfAccObjs

This section explains the procedure for detecting register-access objects in source
code (i.e., the second step in Algorithm 3) by combining PM, AI, BMC, and
CEGAR. Algorithm 5 shows this process. The input of the process is SC - the
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1 ∗( unsigned long ∗) va r = 0x00000000 ;
2 /∗@ a s s e r t not_access_BKP_CR : ( un s i gned long ∗) var != ( un s i gned long ∗) (0 x40006C30 )

; ∗ /

(a) NotEqual assertion for Eva plugin
1 ∗( unsigned long ∗) va r = 0x00000000 ;
2 /∗@ a s s e r t access_BKP_CR : ( un s i gned long ∗) var == ( uns i gned long ∗) (0 x40006C30 ) ; ∗ /

(b) Equal assertion for Eva plugin

Figure 4.4: Examples of assertions for extracting actual register-access objects

target source code, PatternRegrAcc - the code patterns for register-access which
are shown in Figure 4.4.1, ListOfRegs - list of registers in the target hardware
where each register is described using a name, a valid accessed size, and an address,
ListOfLoopObjs - information of loops in the target source code. The output is
ListOfAccObj - a list of the register-access objects which are defined formally
in Figure 4.3.3. However, at this step only id, accessType, register, syntacticInfo,
status, explanation are extracted; accessDetail, relationswill be extracted latter as
explained in Section 4.4.1.

The process of detecting register-access objects includes twomain steps. Lines
from 5 to 9 show the first step. This step is to detect potential register-access
expressions. In this step, expressions in the target source code are scanned using
the PatternRegisterAccess. Thematched expressions are considered potential
register-access expressions.

Lines from 11 to 75 show the second step. This step is to detect actual
register-access expressions among the potential ones. The general idea is to attach
assertions after the positions of the potential expressions and execute these asser-
tions to question whether these expressions are actual register-access expressions.

There are two formats of assertions declared at line 4. These two formats are:
NotEqual - assert whether an expression does not access the address of a register,
Equal - assert whether an expression access the address of a register. Examples
of assertions in these two formats can be found in Figure 4.4. The two formats
of assertions bring different meanings if they are executed by different approxi-
mation approaches. If a NotEqual assertion is executed by an over-approximated
approach (e.g., AI), the valid result means the expression is a confirmedNot
register-access (i.e., Kover, s0 2 EF p ⇐⇒ confirmedNot); the invalid result
means the expression is a maybe register-access (i.e., Kover, s0 |= EF p ⇐⇒

maybe). However, if this assertion is executed by an under-approximation ap-
proach (e.g., BMC), the valid result has no meaning; the invalid result means
the expression is a confirmed register-access (i.e., Kunder, s0 |= EF p ⇐⇒

confirmed). If an Equal assertion is executed by an over-approximated approach
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(e.g., AI), the valid result means the expression is a confirmed register-access
(i.e., Kover, s0 |= AF p ⇐⇒ confirmed); the invalid result has no meaning.
However, if the assertion is executed by the under-approximation approach (e.g.,
BMC), the valid result means the expression is a confirmed register-access (i.e.,
Kunder, s0 |= AF p =⇒ Kunder, s0 |= EF p ⇐⇒ confirmed ); the invalid
result has no meaning. In this algorithm, the NotEqual assertion format is applied
before the Equal format because the NotEqual format can be analyzed by AI to
exclude confirmedNot register-access objects. By excluding these objects, the
computational burden is reduced for the latter steps.

Based on the two formats of assertions, we detect and explain actual register-
access objects using AI, BMC, and CEGAR sequentially. The principle is that
unsolved assertions by the former tools are left to the latter ones. As executing
BMC takes more time and memory than AI, and executing CEGAR takes a greater
amount of time than BMC, we apply the heavier ones later to reduce the amount
of computation.

There are seven sub-steps in the second step. Steps 2.1 to 2.4 are to apply
AI with different settings. In steps 2.1 and 2.2, executing NotEqual assertions by
AI can detect confirmedNot register-access in cases the results of the assertions
are valid or maybe register-access in cases the results of the assertions are invalid.
In steps 2.3 and 2.4, executing Equal assertions by AI can confirm the maybe
register-access detected by steps 2.1 and 2.2 in cases the results of the assertions
are valid. Unknown assertions of AI are then examined by BMC in steps 2.5 and
2.6. BMC can detect confirmed register-access objects in cases the results of
the NotEqual assertions are invalid or the results of the Equal assertions are valid.
The remaining cases are marked as unknown. Counterexamples are generated if
the status of the NotEqual assertions are invalid. These counterexamples are used
as explanations for the register-access objects. Similarly, NotEqual assertions are
employed in step 2.7 which applies CEGAR to explain the remaining register-
access objects that BMC has not explained. For steps 2.2 and 2.4, only several
loops, which directly affect a target expression, are unrolled. If the number of
iterations for a loop is available in the ListOfLoopObjs, this number is used.
Otherwise, the biggest number of iterations calculated in the ListOfLoopObjs is
used. In this case, we only count on valid assertions if these loops are completely
unrolled. Because these valid assertions have no meaning if the loops are partially
unrolled. For steps 2.5 and 2.6, all loops are unrolled as is required by BMC.

We assume that loops in the same source code may share several properties.
Hence, the biggest number of iterations calculated in the source code is applied
for unrolling loops with unknown number of iterations.
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Chapter 5

Meta-modeling
microcontroller-based systems

5.1 Approach overview
In Chapter 3 and Chapter 4, we explained how to analyze and extract knowledge
from the hardware manual and source code. Verifying the target coding rules
usually requires the combination of multiple sources of information from both
hardware and software. Since there are multiple sources of knowledge and the
knowledge can be extracted by different techniques/ tools, there is a need tomanage
the knowledge to fulfill the verification target.

In this chapter, we explain how to applymodel-driven engineering (MDE) tech-
niques to represent the knowledge and verify the coding rules related to register-
access. Specifically, we propose a meta-model in unified modeling language
(UML) [34] to describe the structure of the three types of knowledge. Knowl-
edge models of microcontroller-based systems are generated by instantiating the
meta-model using the extracted knowledge from the source code and hardware
manual. We use the Eclipse modeling framework (EMF), and the Ecore modeling
tool [37] to design the meta-model and generate the Java code for instantiating
these knowledge models. The knowledge models can be questioned systematically
to verify the target coding rules.

Using the knowledge models for verifying the target coding rules has several
advantages. The first advantage is that the power of multiple techniques can be
systematically gathered. The second advantage is that the knowledge can be reused
to check multiple coding rules. The third advantage is that once the knowledge
models are available, the coding rule can be interactively checked. Details of the
knowledge meta-model can be found in Section 5.2.

Figure 5.1 shows the overview of the approach for modeling the knowledge.
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Figure 5.1: Overview of the process for modeling knowledge

The input of the modeling process is the knowledge to be modeled (i.e., Formal-
ized hardware knowledge, Formalized compiler knowledge, Formalized software
knowledge) and a meta-model to present the structure of the input knowledge. The
output of the modeling process is a knowledge model. Among the three types
of knowledge, Formalized hardware knowledge is described in Chapter 3, and
Formalized software knowledge is described in Section 4.3. Here, we define the
Formalized compiler knowledge.

In a compiler, data type, size, and range informationwill decide the presentation
of registers in a C program. In C language, sizes of registers are represented by
data types (e.g., (unsigned long*) 0xFFF20338 is the representation of a 32-
bit register in some compiler). For different compilers, the sizes of data types may
be different. Hence, it is necessary to provide this information in advance. We
define the compiler knowledge as follows.

Definition 5.1.1 (Compiler knowledge) A compiler knowledge CK is a tuple CK
= <id, name, pairOfTypeAndSize>, where

id ∈ N;
name ∈ S;
pairOfTypeAndSize = [pairOfTypeAndSize_0, .., pairOfTypeAndSize_n];
n ∈ N
pairOfTypeAndSize_i = <dataType, size, lowerBound, upperBound>
dataType ∈ S; S is a set of strings,
size ∈ N∗, lowerBound is N, upperBound is N

For example, the formalization of a compiler named sampleCompiler with
three datatypes used to represent register, unsigned long - 32 bits, unsigned
short - 16 bits, and unsigned char - 8 bits, is as follows.
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<0, sampleCompiler, [<unsigned long, 32, 0, 18446744073709551615>,
<unsigned short, 16, 0, 65535>, <unsigned char, 8, 0, 255>]>

The information about the compiler can be obtained by checking the compiler
manual. In this research, we assume that the knowledge of compilers is given in
the format shown in the above definition.

5.2 Knowledge meta-model
Figure 5.2 shows the proposed meta-model in UML. This meta-model is designed
to represent the hardware, compiler, and software knowledge for verifying the
target coding rules. There are four packages in this meta-model: HWAndCompiler
- hardware and compiler package, SWSyntactic - software syntactic, SWSemantic
- software semantic, and Supplementary. The textitHWAndCompiler package is
for representing the knowledge of employed hardware and compiler. Details of
this package are shown in Section 5.2.1. The SWSyntactic represents the syntactic
knowledge of the source code. Details of SWSyntactic package are shown in
Section 5.2.3. On the other hand, the SWSemantic package represents the semantic
knowledge of the source code. Details of SWSemantic package are shown in
Section 5.2.2. Finally, the Supplementary package is for additional necessary
information for the verification process. Details of Supplementary package are
shown in Section 5.2.4.

5.2.1 Hardware and compiler package
Hardware and compiler knowledge is represented in HWAndCompiler package.
Figure 5.3 shows this package. There are six classes in this package: Configura-
tion, HardwareKnowledge, CompilerKnowledge , PairTypeAndSize, Register, and
CodingRule. The root class in this package is Configuration. A Configuration
object is the composition of a HardwareKnowledge object and a CompilerKnowl-
edge object. As explained in Chapter 3, the hardware knowledge includes registers
which are represented by class Register, and coding rules in using these registers,
which are represented by class CodingRule. The compiler knowledge includes
information about data types’ sizes represented by class PairTypeAndSize.

Figure 5.4 shows a representation of a microcontroller namedmicrocontroller1
with two registers: register1 at the address 0xFFF20300 and register2 at the ad-
dress 0x40006C30. There is a coding rule for using these two registers: After
setting register1 to 0x00000010, do not set register2[1:0] to 00. The com-
piler in this example is named sampleCompiler There are three pairs of types
and sizes: unsigned long with the size 32, the lower bound 0, the upper bound
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18446744073709551615; unsigned short with the size is 16, the lower bound is 0,
the upper bound is 65535; unsigned char with the size is 8, the lower bound is 0,
the upper bound is 255.

5.2.2 Software semantic package
Figure 5.5 shows this the Software semantic package. As knowledge related to
register-access is the main focus of this package, an abstract class named Register-
Access is the root class in this package. Two concrete classes extend this abstract
class: WriteAccess and ReadAccess. Both aWriteAccess and a ReadAccess objects
have an id, an access size represented by a data type in C, an accessed register
which is represented by a Register object, and an expression which perform the
access which is represented by an Expression object, an access status which is
represented by an AccessStatus object. In addition, a WriteAccess object has the
possible written values, which is represented by aWrittenValueSetwhile aReadAc-
cess object has the possible accessed bits, which is represented by an AccessBitSet
object.

There are two special data types for presenting semantic knowledge besides
basic data types such as string and integer. The first data type is a boolean value
with a precision level. Abstract class BooleanValue is used to represent boolean
data. This class has an attribute named value for the boolean value itself and an
attribute named preciseness to represent this value’s reliability level. Two concrete
classes extend this abstract: AccessStatus and OrderStatus. Class AccessStatus
represents whether a register is accessed. Class OrderStatus represents execution
orders among register-accesses.

The second data type is non-negative integer sets. Data, including accessed
bits of a read-access and the written value of a write-access can be represented as
a non-negative integer. Abstract class IntegerSet is used to represent integer set
data. Three concrete classes are extending from this abstract class: Enumeration,
Interval, and PeriodicityInterval. As the integer set data is used to represent the
written values and accessed bits, anWrittenValueSet and anAccessBitSet object are
composited by either a Enumeration, an Interval, or a PeriodicityInterval object.

Figure 5.6 shows a representation of the sample source code in Figure 5.7 using
the Software semantic package. There are two write-access objects at lines 6 and
9. These two register-access objects are represented in objects namedwa1 andwa2
in Figure 5.6. Assuming that the register-access objects are detected by an over-
approximation approach like AI, the status of these two objects is MAYBE which
is shown in objects named aStatus1 and aStatus2. The written value of wa1 is
0x00000010. Assume that this value is not a special value, this value is represented
by an object named n1. The written value ofwa2 is 0x00000000. Assume that this
value is a CONDITIONAL_INVALID value, this value is represented by an object
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named n2. The relation of the two write-access objects is represented by objects
named exeOrder1 and exeOrder2. Logically, one order status object is sufficient
to show the relation between the two register-access objects. We store two objects
for order status because it will be faster to query the model. Concretely, if we want
to check write-access objects which occur after wa1, checking exeOrder1 is the
optimal way. On the other hand, if we want to check write-access objects which
occur after wa2, checking exeOrder2 is the best solution.

5.2.3 Software syntactic package
Figure 5.8 shows this the Software syntactic package. A software syntactic knowl-
edge package divides a source code into file, function, and line levels. In cor-
respondingly, we have four classes: SourceCode, File, Function, Line. Class
SourceCode has one attribute, which is the name. Class File has two attributes:
fileName and filePath. ClassFunction has two attributes: functionName and scope.
There are two possible values for the scope attribute: local - visible for the file in
which the function is defined only, and public - visible for other files. Class Ex-
pression represents the C expressions that match code patterns for register-access.
Expressions that match the code patterns are called potential register-access ex-
pressions. We employ the code patterns described in 4.4.2 for distinguishing the
register-access expressions from other C expressions. Each Expression object has
a unique id, a matched pattern’s name, which is either RA for read-access or WA
for write-access and the expression in string format.

Figure 5.9 shows the representation of the syntactic feature of the source code in
Figure 5.7. Object sc represents the source codewith its name. Object f1 represents
the file namedmain.c. Object func1 represents the functionmain. Objects line1 to
line9 represent the code lines in the source code. Objects exp1 and exp2 represent
the two expressions that match the code patterns for register-access.

5.2.4 Supplementary package
Figure 5.10 shows this the Supplementary package. The supplementary package
represents an explanation for the extracted software knowledge. There are three
supplementary pieces of information: the syntactic feature of an expression to show
the expression matches a code pattern shown by class ExpressionComponent, the
execution trace of a boolean knowledge is shownby classTraceInfo, and the nameof
the method/tool used to extract the knowledge is shown by classExtractionMethod.

Figure 5.11 shows instances of class ExpressionComponent. Object wAComp1
and wAComp2 show the expression components in the two expressions at lines
6 and 9 in Figure 5.7. Figure 5.12 shows trace information from the program’s
starting point to the execution point of the expression at line 6. Figure 5.13 shows

75



an example of extraction methods. Object extractMethod1 represents the extrac-
tion method using the Eva plugin with no configuration. Object extractMethod2
represents the extraction method using the CBMC with a configuration that the
maximum depth to be explored is 1000.
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Figure 5.2: Knowledge meta-model
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Figure 5.3: Hardware and compiler package
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Figure 5.4: Example of hardware and compiler package
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Figure 5.5: Software semantic package
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Figure 5.6: Example of software semantic package

1 void main ( void ) {
2 unsigned long ∗ r e g i s t e r _ 1 = ( unsigned long ∗) 0xFFF20300 ;
3 unsigned long ∗ r e g i s t e r _ 2 = ( unsigned long ∗) 0x40006C30 ;
4
5 i n t n = 1000 ;
6 ∗ r e g i s t e r _ 1 = 0x00000010 ;
7
8 i f ( n == 1000) {
9 ∗ r e g i s t e r _ 2 = 0x00000000 ;
10 }
11
12 }

Figure 5.7: Sample source code
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Figure 5.8: Software syntactic package

Figure 5.9: Example of software syntactic package
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Figure 5.10: Supplementary package
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Figure 5.11: Example of expression component

Figure 5.12: Example of expression component
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Figure 5.13: Example of extraction methods
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Chapter 6

Verifying systems against
microcontroller-specific coding rules

6.1 Approach overview
The previous chapter discussed how hardware, compiler, and software knowledge
is gathered as a knowledge model. This chapter explains how to use this model
to verify the system against the target coding rules. As the knowledge model is
described in UML, we naturally think of query techniques for the UML model as
the solution for the verification task.

Figure 6.1 shows an overview of the process for verifying the system using
the knowledge model. The input of this process is a model - an instance of the
meta-model in the previous chapter, a coding rule in the form of a query, and a list
of pre-defined queries. The output is a verification result which is defined below.

Definition 6.1.1 (Verification result) Averification result VR={<status, regAccObjs>},
where
status ∈ {notViolated, violated, maybeViolated, unknown};
regAccObjs ∈ {read-access-object, write-access-object, <condObjs, reqObj>};
condObjs is a list of write-access objects;
reqObj is a write-access object.

A verification result is a list of double tuples of a status and a registerAcces-
sObjects. A status of a verification result can be notViolated, violated, maybe-
violated, or unknown. This status is decided differently based on the coding rule
categories and constraint type. Table 6.1 shows the factors to decide the status.
For constraints related to accessibility or access size of read-access coding rules
and non-conditional-case coding rules (i.e., read-access-constraint, NotWriteable,
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Figure 6.1: Verification approach

NotWriteableBit, WriteValidSize, and WriteInvalidSize), we need to consider the
precision level of the register-access object only. For constraints related to writ-
ten values of non-conditional-case coding rules (i.e., ValidValue, InvalidValue,
ValidValueBit, and InvalidValueBit), we need to consider the precision level of the
register-access object and the precision level of the written value. For condition-
case coding rules, we need to consider the precision level of the register-access
objects, the precision level of the written values, and the precision level of the
temporal relationships among the condition and the requirement register-access
objects. There are three levels of precision as defined in Definition 4.3.3: con-
firmed, maybe, and unknown. A status of a verification result is notViolated if
there are no register-access objects which violate the coding rule. A status of
a verification result is violated if all precision level is confirmed. A status of a
verification result is maybeViolated if there is a level is maybe, and no level is
unknown. A status of a verification result is unknown for the remaining cases in
which there is an unknown level.

If the status of checking a coding rule is notViolated, there are possible unde-
tected bugs if the bugs are out of our current scope which are the expressions that
match our code pattern for register-access and C single thread C program with no
interruptions. If the verification result of the coding ismaybeViolated or unknown,
there are possible false warnings. If the verification result of the coding is violated,
we can confirm that this is an actual violation.

The process of querying the knowledge model is a model-to-model transfor-
mation. The input and output models are instances of the meta-model described
in Figure 5.2. Each model is a set of objects where the output model is a subset of
the input. The applied query is a filter to get violated objects in the input model.
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Table 6.1: Factors to decide the statuses of a verification result

Coding rule categories Constraint type Factors to consider

read-access read-access-constraint Precision of access status
non-conditional-case NotWriteable

NotWriteableBit
WriteValidSize
WriteInvalidSize

ValidValue Precision of access status
InvalidValue Precision of written value
ValidValueBit
InvalidValueBit

conditional-case ValidValue Precision of access status
InvalidValue Precision of written values
ValidValueBit Precision of temporal relation
InvalidValueBit

The main difficulty of verifying the coding rules is the large number of varia-
tions of coding rules. As not all developers are familiar with the query language,
we provide predefined queries for the defined categories of coding rules to facilitate
the usage of the verification approach. The pre-defined queries will be explained
in Section 6.2.

6.2 Pre-defined queries for target coding rules
As discussed in Section 2.6.3, this research uses QVTo language for describing
queries. Like many popular high-level programming languages such as C or C++,
QVTo is imperative. However, not all developers are familiar with QVTo. The
requirement of learning a new language may prevent developers from applying
the proposed verification process to their daily work. However, as we discussed
in Chapter 3, the target coding can be categorized into several groups based on
the structure of the coding rules. Coding rules in the same category share similar
queries. Hence, there is room for providing support in writing queries. The
solution is that we provide pre-defined queries for coding rules in the known
groups. This section explains the queries in detail.

In Chapter 3, we categorized the coding rules based on their structures (i.e.,
read-access, non-conditional-case, and conditional-case). For the read-access
category, there are three kinds of requirements: the readability of a whole register,
the readability of a bit of a register, and the access sizes of a register. The
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requirement can be expressed as a list of valid access sizes or a list of invalid access
sizes for access sizes. The query for read-access coding rules on the readability
of whole registers is explained in Section 6.2.1. The query for checking the
register-access coding rules on the valid access sizes is shown in Section 6.2.2

For the non-conditional-case coding rule in the write-access category, the re-
quirement is used to describe the requirements on how a write-access is performed
on a register. For the write-access, there are five kinds of requirements: on the
writability of a whole register, the writability of a bit of a register, on the access
sizes of a register, on the written values of a whole register, on the written values
of a bit of a register. For the written value (or the access size of a register), the
requirement can express a list of valid values or a list of invalid values (or a list
of valid access sizes or a list of invalid access sizes). The query on checking
the non-conditional-case coding rules on the valid written values is discussed in
Section 6.2.3. The query on checking the non-conditional-case coding rules on
the valid written values is discussed in Section 6.2.4.

For conditional-case coding rules, there are two parts: the condition and the
requirement. The condition and requirement parts can be represented in the same
formats as the non-conditional-case coding rules. However, for the conditional-
case coding rule, one must consider the temporal properties to represent the
relationship between the condition and requirement parts which is either before,
after, before-or-after. The query for the conditional-case coding rules with the
single condition and before as the temporal property is discussed in Section 6.2.5.
The query for the conditional-case coding rules with the single condition and after
as the temporal property is shown in Section 6.2.6. The query for the conditional-
case coding rules with the single condition and before-or-after as the temporal
property is shown in Section 6.2.7.
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6.2.1 Read-access query on the readability

Algorithm 6 Query for read-access coding rules - Not readable register
Input: knowledgeModel, regName,
Output: violatedObjList
Procedure:
violatedObjList = []
for obj in knowledgeModel do

if obj is ReadAccess and obj.register.name == regName and
(obj.preciseness.toString() == "CONFIRMED" or obj.preciseness.toString() ==
"MAYBE") then

violatedObjList.add(obj)
end if

end for
return violatedObjList

Algorithm 6 shows the query for read-access coding rules regarding readability.
The input of this algorithm is a knowledge model and a registered name in a
string. This query is to check whether there are any register-access objects in the
knowledge model that performs the read-access operator over the input register.
The output is a list of register-access objects if these objects read the input register,
and an empty list otherwise. The procedure for performing this query is to iterate
over each read-access in the knowledge model, then check whether they access the
target register to find the violated ones.
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6.2.2 Register-access query on the valid access sizes

Algorithm 7 Query for read-access coding rules - Valid read-access size
Input: knowledgeModel, regName, listValidSize
Output: violatedObjList
Procedure:
violatedObjList = []
for obj in knowledgeModel do

if obj is ReadAccess and obj.register.name == regName and
(obj.preciseness.toString() == "CONFIRMED" or obj.preciseness.toString() ==
"MAYBE") then

if obj.pairOfTypeAndSize.size not in listValidSize then
violatedObjList.add(obj)

end if
end if

end for
return violatedObjList

Algorithm 7 shows the query for checking the access size of read-access. The
input is a knowledge model, a register name in string format, and a list of valid
sizes. This query is to check whether there is any register-access over the target
register which has an access size outside of the valid list. The output is a list of
register-access objects if these objects read the input register with an invalid size,
and an empty list otherwise. The procedure for performing this query is to iterate
over each read-access in the knowledge model, then check whether they access the
target register with an invalid size to find the violated ones.
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6.2.3 Non-conditional-case query on the valid written values

Algorithm 8 Query for non-conditional-case coding rules - Valid written values
Input: knowledgeModel, regName, listOfValidVal
Output: violatedObjList
Procedure:
violatedObjList = []
for obj in knowledgeModel do

if obj is WriteAccess and obj.register.name == regName and (obj.preciseness
== "CONFIRMED" or obj.preciseness == "MAYBE") then

for valSet in obj.writtenvalueset do
if valSet isTypeOf Enumeration then
for val in valSet do

if val not in listOfValidVal and (val.preciseness == "CONFIRMED"
or val.preciseness == "MAYBE") then

violatedObjList.add(obj)
end if

end for
end if

end for
end if

end for
return violatedObjList

Algorithm 8 is a query for non-conditional write-access regarding the valid written
value. The input of this algorithm is a knowledge model, a register name, and a
list of valid values in form of an integer list. This query is to check whether there
are any register-access objects in the knowledge model that performs the write-
access operator over the input register with a value outside of the valid list. The
output is a list of register-access objects if these objects write to the input register.
The procedure for performing this query is to iterate over each write-access in
the knowledge model, then check whether they access the target register with an
invalid value to find the violated one.
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6.2.4 Non-conditional-case query on the invalid written values

Algorithm 9 Query for non-conditional-case coding rules - Invalid written values
Input: knowledgeModel, regName, listOfInvalidVal
Output: violatedObjList
Procedure:
violatedObjList = []
for obj in knowledgeModel do

if obj is WriteAccess and obj.register.name == regName and (obj.preciseness
== "CONFIRMED" or obj.preciseness == "MAYBE") then

for valSet in obj.writtenvalueset do
if valSet isTypeOf Enumeration then
for val in valSet do

if val in listOfInvalidVal and (val.preciseness == "CONFIRMED"
or val.preciseness == "MAYBE") then

violatedObjList.add(obj)
end if

end for
end if

end for
end if

end for
return violatedObjList

Algorithm 9 is a query for non-conditional write-access regarding the invalid
written value. The input of this algorithm is a knowledge model, a register name,
and a list of invalid values in form of an integer list. This query is to check whether
there are any register-access objects in the knowledge model that performs the
write-access operator over the input register with a value inside of the invalid list.
The output is a list of register-access objects if these objects write to the input
register. The procedure for performing this query is to iterate over each write-
access in the knowledge model, then check whether they access the target register
with an invalid value to find the violated one.
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6.2.5 Conditional-case query with single condition and before
as the temporal property

Algorithm 10 Query for conditional-case coding rules - single condition - before
Input: knowledgeModel, condRegObj, reqRegObj
Output: violatedObjList
Procedure:
violatedObjList = []
for oi in knowledgeModel.RegisterAccessObjs do
if oi satisfies condRegObj and (oi.preciseness == CONFIRMED or

oi.preciseness == MAYBE) then
violatedFlag = true
for oj in oi.getBeforeObj() do
if oj satisfies reqRegObj and (oj.preciseness == CONFIRMED or

oj.preciseness == MAYBE) then
violatedFlag = false
break

end if
end for
if violatedFlag == true then

violatedObjList.add(oi)
end if

end if
end for
return violatedObjList

Algorithm 10 is a query for a conditional write-access with temporal property
is before. The input of this algorithm is a knowledge model, a register-access
object for representing the condition, and a register-access object for representing
the requirement. This query is to check before the condition object holds in the
knowledge model, whether there is an object which satisfies the requirement. The
output is a list of register-access objects which satisfy the condition object but
there is no object executed before that satisfies the requirement.
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6.2.6 Conditional-case query with single condition and after as
the temporal property

Algorithm 11 Query for conditional-case coding rules - single condition - after
Input: knowledgeModel, condRegObj, reqRegObj
Output: violatedObjList
Procedure:
violatedObjList = []
for oi in knowledgeModel.RegisterAccessObjs do
if oi satisfies condRegObj and (oi.preciseness == CONFIRMED or

oi.preciseness == MAYBE) then
violatedFlag = true
for oj in oi.getAfterObj() do

if oj satisfies reqRegObj and (oj.preciseness == CONFIRMED or
oj.preciseness == MAYBE) then

violatedFlag = false
break

end if
end for
if violatedFlag == true then

violatedObjList.add(oi)
end if

end if
end for
return violatedObjList

Algorithm 11 is a query for a conditional write-access with temporal property
is after. The input of this algorithm is a knowledge model, a register-access
object for representing the condition, and a register-access object for representing
the requirement. This query is to check before the condition object holds in the
knowledge model, whether there is an object which satisfies the requirement. The
output is a list of register-access objects which satisfy the condition object but
there is no object executed after that satisfies the requirement.
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6.2.7 Conditional-case query with single condition and before-
or-after as the temporal property

Algorithm 12 Query for conditional-case coding rules - single condition - before
or after

Input: knowledgeModel, condRegObj, reqRegObj
Output: violatedObjList
Procedure:
for oi in knowledgeModel.RegisterAccessObjs do
if oi satisfies condRegObj and (oi.preciseness = CONFIRMED or

oi.preciseness = MAYBE) then
violatedFlag = true
for oj in knowledgeModel.RegisterAccessObjs do

if oj satisfies reqRegObj and (oj.preciseness = CONFIRMED or
oj.preciseness = MAYBE) then

violatedFlag = false
break

end if
end for
if violatedFlag == true then

violatedObjList.add(oi)
end if

end if
end for
return violatedObjList

Algorithm 12 is a query for a conditional write-access with temporal property is
before-or-after. Actually, before-or-after means that there is no requirement on
the executed order among register-access objects. The input of this algorithm is
a knowledge model, a register-access object for representing the condition, and a
register-access object for representing the requirement. This query is to check if
the condition object holds in the knowledge model, and whether the requirement
object holds. The output is a list of register-access objects which satisfies the
condition object but there is no object that satisfies the requirement.
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Chapter 7

Implementation architecture

This chapter first explains the implementation architecture of the verification
framework. Details of this implementation can be found in Section 7.1. Sub-
sequently, the verification process using the framework is described in Section
7.2.

7.1 Architecture overview
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Figure 7.1: Implementation architecture
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Figure 7.1 shows the overview of the implementation architecture for the
verification system. The input of this framework includes a hardware manual in
PDF, a C program that can be compiled by GCC, knowledge of a compiler in the
format of Definition 5.1.1, and a query that can be executed by EMF. The output
of this framework is the verification in the format of Definition 6.1.1.

The framework includes four main components: Software Knowledge Extrac-
tor, Hardware Knowledge Extractor, Model Generator, and Model Querier. This
section will explain each component in detail.

Software Knowledge Extractor is a component implemented in python for
extracting information related to register-access in hardware-dependent source
code. This component can extract the following two kinds of information. The
first information is related to the loop, including syntactic information (such as
the line number and file name) and the maximum number of iterations. The
second information relates to register-access, including syntactic information and
semantic information. The semantic information includes an accessed register,
accessed size, written value for writer-access, accessed bits for read-access, and
execution order among these accesses.

The component includes 5 modules: Pattern Extractor, Annotation Creator,
Annotation Attacher, Anotation Executor, and Tool Result Analyzer. Pattern
Extractor is used to extract target code expressions using Cobra. This model
detects read-access expressions which read the whole register value, write-access
expressions, read-access expressions which read several bits in registers, and for
and while loop in source code. Annotation Creator can create assertions to
extract target knowledge. Created assertions are different among tools. Annotation
Attacher is responsible for attaching the created assertion to the source code.
Annotation Executor is used to execute the annotated source code. Finally, Tool
Result Analyzer will extract target knowledge from the output of program analysis
tools (Eva plugin, CBMC, SatAbs). This component is implemented using python.

Hardware Knowledge Extractor is a component implemented in python for
extracting knowledge from the hardware manual. The input of this module is a
hardware manual in PDF format. This module’s output is the hardware knowledge
in the format shown in 3.3. This component contains the HW Manual Analyzer
module for analyzing the hardware manual and extracting target information. This
component is implemented using Python.

Model Generator is the component for instantiating the meta-model based
on the extracted knowledge taken from the Hardware Knowledge Extractor and
Software Knowledge Extractor components. The input of this component is the
hardware knowledge in the format shown in 3.3 and the software knowledge in the
format shown in 4.3. The output of this component is a model in XMI format.
This component includes a module named Model Instantiator instantiating this
meta-model. This component is implemented in EMF; Java is used for the module
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Figure 7.2: Sequence diagram of the whole verification process

Model Generator.
Model Querier component generates and performs queries over the knowledge

model. The input of this component is a knowledge model generated from the
Model Generator components. The output is the verification in the format of
Definition 6.1.1. This component includes Query Executor module to execute the
query. This component is implemented in EMF; the queries are described using
QVTo.

7.2 Verification process
Figure 7.2 shows the sequence diagram for verifying systems against themicrocontroller-
specific coding rules. There are five entities in this process: User, HW Knowledge
Extractor, SW Knowledge Extractor, Model Generator, and Model Querier.

This process has two phases. The first phase is extracting information and
instantiating the meta-model using the extracted information. First, the User
provides a hardware manual to the HW Knowledge Extractor to extract hardware
knowledge. Then, the HW Knowledge Extractor sends back the automatically
extracted knowledge to the User. The User will manually extract the remaining
knowledge and send the result to theHWKnowledge Extractor. The SWKnowledge
Extractor receives the full hardware knowledge fromHWKnowledge Extractor and
a source code from the User, analyzes the source code, and outputs the software
knowledge to the Model Generator. The Model Generator receives the hardware
knowledge from the HW Knowledge Extractor, software knowledge from the SW
Knowledge Extractor, and compiler knowledge from theUser, instantiate themeta-
model and output the knowledge model to the Model Querier. The result of the
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first phase is a knowledge model of the target system.
The second phase is to query the knowledge model to check for the target

coding rules. Specifically, theModel Querier receives the knowledge model from
theModel Generator. Users can send QVTo queries to theModel Querier to verify
their target coding rules.
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Chapter 8

Evaluation

We conducted experiments to evaluate the proposed approach’s feasibility and
applicability. These experiments were conducted over two kinds of source code:
benchmark source code and industrial source code. The benchmark source code is
materials prepared by experienced developers of AISW in which this source code
contains: several scenarios of code that perform register access (some of them
violate coding rules) and common variations to perform register-access, which
are frequently used in the industry. This source code was used to evaluate the
approach’s feasibility and the performance of code patterns when dealing with
common variations of register-access in the industry. The industrial source code
was a real product of AISW. This source code was used to evaluate the approach’s
applicability as the source code has a sufficient size and properties of a popular
industrial microcontroller-based source code.

Finally, we then discuss the reliability, effectiveness, and applicability of the
verification program to other microcontrollers. These discussions can be found in
Section 8.3.
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8.1 Experiment with benchmark source code

8.1.1 Experiment settings

Table 8.1: Categories of scenario code in benchmark source code

Coding rule category Check content Not violate Violate

read-access Size of read-access 45 3

non-conditional-case
Written value of whole register 26 26

Written value in several bits 5 5

(write-access) Size of write-access 9 9

conditional-case Written value of whole register 3 1

(write-access,
one condition) Written value in several bits 15 5

We applied the proposed approach over benchmark source code provided by AISW
to evaluate the approach in two criteria 1) the feasibility of the proposed approach
and 2) the coverage of proposed code patterns in common variations of register-
access in the industry.

The benchmark source code consisted of 2,900 lines of code, 48 scenarios of
code that related to the read-access, 104 scenarios of code related to the write-
access (152 scenarios in total), 39 read-access expressions, 47 write-access ex-
pressions, and three violations of read-access coding rules, 49 violations of write-
access coding rules. There were 152 scenarios of code in total. The number of
register-access expressions was small than the number of scenarios because some
scenarios call the same function which contains register-access expressions.

Table 8.1 shows the categories of the 152 scenarios of code. In which, 45
scenarios did not violate read-access coding rules, three scenarios violated read-
access coding rules, 40 scenarios did not violate non-conditional-case coding
rules, 40 scenarios violated non-conditional-case coding rules, 18 scenarios did
not violate conditional-case coding rules, and six scenarios violated conditional-
case coding rules. For read-access, the property to be checked is access-size of
registers. For write-access, there were three types of properties to be checked:
written values of the whole register, written values of several bits, and access-size.

Senior developers of AISW designed the experiments with benchmark source
code. In general, these selection criteria in the experimentswas to comprehensively
evaluate the approach in handling coding rules from all categories, frequently used
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register-access expressions and C expressions with various complexity levels.
Specifically, the developers selected coding rules so that there is at least one
coding rule from each category. In the process of designing the experiments, we
also had a concern about different selected sets of coding rules that could result in
different experimental results. Hence, we conducted comprehensive experiments
with coding rules from all categories. The developers designed violations so that
there were violations for all selected coding rules. These violations appeared in
various forms of C expressions (i.e., these expressions have different levels of
complexity). In other words, these violations were designed to represent various
potential appearances of violations in actual industrial source code.

The assumed hardware in this experiment consisted of 110 registers and 152
coding rules (i.e., corresponding with the 152 scenarios of code). Specifically,
there were 43 read-access coding rules, 80 non-conditional-case coding rules,
and 24 conditional-case coding rules. In this experiment, we assumed that the
hardware knowledge was provided in advance. Hence, we did not need to analyze
the hardware manual to extract this information.

The assumed compiler in this experiment was a compiler with the name sam-
pleCompiler. In this compiler, unsigned long had 32 bits with the lower bound
being 0 and the upper bound being 18446744073709551615; unsigned short
had 16 bits with the lower bound being 0 and the upper bound being 65535;
unsigned char had 8 bits with the lower bound being 0 and the upper bound
being 255. The formalized compiler knowledge in this experiment was as follows.

<0, sampleCompiler, [<unsigned long, 32, 0, 18446744073709551615>,
<unsigned short, 16, 0, 65535>, <unsigned char, 8, 0, 255>]>

Program analysis tools used in this experiment were Cobra version 3.11, Cobra
version 3.1, Frama-C version 20.0 (Calcium)2, CBMC version 5.113, and SatAbs
version 3.24. The tool for performing natural language processing tasks was
NLTK5. The tool for knowledge modeling and querying was Eclipse Modeling
Tools 2020-096.

The machine used in this experiment contained 32 cores CPU and 1.5TB
memory for analyzing the hardware manual and source code. For modeling and
verifying tasks, the machine for experimenting with representing the knowledge
was a computer with 32 GB RAM and an Intel Core i7 CPU.

1https://spinroot.com/cobra/downloads.html
2http://frama-c.com/download/user-manual-20.0-Calcium.pdf
3https://www.cprover.org/cbmc/
4https://www.cprover.org/satabs/
5https://www.nltk.org/
6https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-modeling-tools
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1 f o r ( ; ; ) {
2 sw i t ch ( ma in_cn t ) {
3 case 0 :
4 sample_Exec00 ( ) ;
5 break ;
6 [ . . . ]
7 de f au l t :
8 ma in_cn t = 0 ;
9 break ;
10 }
11
12 main_cn t ++;
13 }

Figure 8.1: A missed for loop

In this experiment, we first analyzed the source code using the first three steps in
Algorithm 3. The fourth step was skipped as no coding rules require the accessed
order in this experiment. Next, we modeled the extracted software knowledge, the
knowledge of the assumed hardware, and the knowledge of the compiler. Finally,
we used the model to verify 152 coding rules using the pre-defined queries.

8.1.2 Experiment results

Table 8.2: Extracting loop objects

# Total # Matched expression # Calculated

For loop 5 4 4

While loop 0 0 0

On extracting loop information: Table 8.2 shows the result of step 1 in Algorithm
3. In this step, four out of five for loops in the source code were detected using
the code patterns for <simple-for-pattern> in Definition 4.4.2. There were five
for loops and no while loops in the source code. The missed loop is shown in
Figure 8.1. This loop was out of the scope of the supported loop as the control
variable main_cnt was updated outside of the loop.
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Table 8.3: Extract register-access object

register-access object status # explanation# confirmed # maybe # unknown

Read-access
Eva plugin _ 34 4 _
CBMC 38 _ 0 38
SatAbs x x x x

Write-access
Eva plugin _ 61 12 _
CBMC 73 _ 0 73
SatAbs x x x x

On extracting potential register-access expression: Using the code patterns for
register access from Definition 4.4.1 to find potential register-access expressions,
we detected 60 potential read-access expressions using the code pattern number
(1) for read-access; 4 potential read-access several bits expressions using the code
pattern number (2-6). For write-access, we detected 68 potential write-access
expressions using the three code patterns for write-access. The code patterns
cover all expected register-access expressions.

On confirming actual register-access object: Table 8.3 shows the result of step
2 in Algorithm 3 in confirming the register-access objects. In this table, "_" mean
the tool is not capable of handling this task; "x" means that the tool may be capable
but not used. CEGAR/SatAbs was not used in this experiment as the combination
of the AI/Eva plugin, and BMC/CBMC is sufficient in this experiment. In Table
8.3, there were four unknown read-access objects and 12 unknown write-access
objects reported by the Eva plugin. However, these unknown objects were fully
handed by BMC/CBMC later.

Table 8.4: Extracting register-access detail

Potential Potential Accessed size
accessed bit sets written value sets

Read-access 4 x 38
Write-access x 73 73

Table 8.5: Confirming the special written values

# confirmed # maybe # unknown # explanation
Eva plugin _ 34 39 _
CBMC 73 _ 0 73
SatAbs x x x x
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Tables 8.4 and 8.5 show the result of step 3 in Algorithm 3. Table 8.4 shows the
result of potentially accessed bits, potentially written values, and access size using
the AI/Eva plugin. Specifically, we extracted four potentially accessed bits sets for
read-access objects, 73 potential written value sets for write-access objects, and
access sizes for 38 read-access and 73 write-access objects.

For 73 registers, there was a special written value that was either valid or
invalid written value. Table 8.5 shows the result of checking whether these values
were written to these registers in the benchmark source code. AI/Eva plugin
and BMC/CBMC were sufficient for confirming the values. Specifically, AI/Eva
plugin concluded that 34 special written valuesmaybewere written to 34 registers,
but unknown about the other 39 special values. However, BMC/CBMC confirmed
that the 73 special values were actually written to the 73 registers.

Table 8.6: Result of verifying the benchmark source code against register-access
coding rules

Coding rule Check not violated maybe- unknown
category content violated Violated

read-access Size of
read-access

43 5 0 0

non-
conditional-
case

Written
value of
whole
register

26 26 0 0

Written
value of
several bits

5 5 0 0

Size of
write-
access

9 9 0 0

conditional-
case

Written
value of
whole
register

3 1 0 0

Written
value of
several bits

15 5 0 0
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1 void f u n c_w r i t e _16 ( unsigned long add , unsigned shor t d a t a ) {
2 ( ∗ ( ( v o l a t i l e unsigned shor t ∗) add ) ) = ( unsigned shor t ) d a t a ;
3 re turn ;
4 }
5 void t y p e01_02_Se tA l l ( void ) {
6
7 unsigned char c n t ;
8 cons t StRegLongData ∗ p t _ s t ;
9 unsigned shor t tmp_va lue ;
10 unsigned shor t tmp_mask ;
11
12 tmp_mask = 0xFFFF ;
13 tmp_va lue = 0xFFFF ;
14 p t _ s t = t ype01_02_0E_p t_ s t ;
15 f o r ( c n t = 0 ; c n t < 4 ; c n t ++) {
16 tmp_mask = ( unsigned shor t ) ( ( p t _ s t −>va l u e ) >> 16) ;
17 tmp_va lue = ( unsigned shor t ) ( ( p t _ s t −>va l u e ) & 0x0000FFFF ) ;
18 tmp_va lue = ( unsigned shor t ) ( ( ~ ( tmp_va lue ) ) & tmp_mask ) ;
19
20 t ype01_02_ func_wr i t e _16 ( p t _ s t −>add r e s s , tmp_va lue ) ;
21 p t _ s t ++;
22 }
23 }

Figure 8.2: An unknown case by Eva plugin

On verifying register-access coding rules: Table 8.6 shows the result of ver-
ifying the 152 coding rules. In this table, not violated means that there was no
violation found; violated,maybeViolated, and unknown are defined as in Definition
6.1.1.

For the read-access, we detected five warnings about the read-access size.
Three warnings were expected violations. Two remaining warnings were also real
violations created unintended by the developers. We could see that it was easy
to make unintended bugs when developing microcontroller-based applications
for even senior developers. For the write-access, all expected violations were
reported as violated. It means a warning was triggered for each expected violation;
explanations were available for all violations.

8.1.3 Discussion
This experiment showed that the approach is feasible in verifying microcontroller-
based systems against the register-access coding rules. Although the benchmark
was a small-size source code only, the source code represented different ways
for violations to occur. The approach successfully analyzed the source code and
detected all expected violations of the target register-access coding rules. We even
find violations that senior developers miss.

The coding patterns for register-access expressions could cover register-access
methods used in AISW. The proposed code patterns detected all expected register-
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access expressions in the benchmark source code, which senior embedded systems
developers embedded to represent how they usually do to perform register-access
operations. It means the code patterns work well in handling common variations
of register-access in the company.

From this experiment, we also found that the combination of multiple program
analysis techniques/tools was necessary even for small embedded systems. The
reason is that the difficulties of handling these systems not only come from the
volume but also complex coding structures used used such as loops, arrays, and
pointers. In this experiment, AI/Eva plugin could confirm expressions do not vio-
late the coding rules; however, it could not confirm an expression violate a coding
rule. Sometimes this tool failed to provide any information. For example, Figure
8.2 shows an example of these cases where the tool returned in unknown in calcu-
lating the register-access in line 2. In this example, the register-access operations
were performed using a loop and pointer to iterate over an array. However, this
case could be handed by BMC/CBMC. In this experiment, CEGAR/SatAbs was
not required as BMC/CBMC was able to confirm all the actual expected register-
access operations. The reason is that the expected violations were apprear within
the bound set when executing BMC/CBMC.

8.2 Experiment with industrial source code
To evaluate the applicability of the approach, we applied the approach to handle
actual microcontroller-based systems in the automotive industry. There are three
sub-experiments in this section. The first sub-experiment was an experiment
for analyzing the hardware manual of the target microcntroller. Specifically, we
applied the proposed approach for extracting hardware knowledge in Section 3.4 to
extract information from the manual. Details of this sub-experiment can be found
in Section 8.2.1.

The second experiment was to analyze the industrial source code. Specifically,
we applied the proposed approach for extracting software knowledge in Section 4.4
to extract information from the target source code. Details of this sub-experiment
can be found in Section 8.2.2.

The third experiment was for generating a data model and checking the target
coding rules. Specifically, we applied the meta-model proposed in Chapter 5
and the verification approach proposed in Chapter 6 for this task. Details of this
sub-experiment can be found in Section 8.2.3.
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8.2.1 Experiment for analyzing hardware manual
Experiment settings

This experiment was conducted by applying the Algorithm 1 to handle the manual
of the target microcontroller. The purpose of this experiment was to evaluate the
coverage of the patterns in Table 3.2.

The hardware manual of the target microcontroller contained 38 chapters and
2415 pages. There were a total of 641 register groups with 12,149 registers.

We experimented with the approach described in Section 3.4. Specifically,
we first convert the manual from PDF format to a text document. Secondly,
we extracted physical information from registers. Tasks in extracting registers’
physical information included: identifying register subsections and extracting
registers’ sizes, addresses, values after reset, bit names, and bit accessibility.
Thirdly, we extract coding rules for using these registers.

The tools for converting PDF to text were Soda PDF7 and Microsoft Word8.
The tool for performing natural language processing tasks was NLTK9. The ma-
chine used in this experiment contained 32 cores CPU and 1.5TB memory.

Experiment results in extracting physical information of registers

Table 8.7: Result of extracting physical information of registers

Info type Total #Correctly
extracted

#Wrongly
extracted

#Not
extracted

Register subsec-
tion

641 614 0 27

Access size 641 614 0 27

Access address 614 600 0 14

Value after reset 641 609 1 31

Bit name 641 612 2 27

Bit accessibility 641 614 0 27

Table 8.7 shows the result of extracting physical information of registers. 614
out of 641 register information subsections were detected. In the remaining 27

7https://www.sodapdf.com/
8https://www.microsoft.com/ja-jp/microsoft-365/word
9https://www.nltk.org/
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register groups, the accessed address was not described in the hardware manual.
Hence, the subsections did not meet the requirement of containing "\nAddress".
The registers in these cases were control registers of the microcontroller, which
could not be accessed via addresses using standard C programming language.
Hence, there was no address for these registers in the manual. However, as our
target is source code written in C, the accesses to these control registers are out of
our scope.

After identifying register subsections, we extract the information about 614
out of 641 accessed size information was correctly extracted. The remaining 27
accessed size information belonged to the 27 missed register subsections. 600 out
of 614 accessed address information was correctly extracted. The remaining 14 ac-
cessed address information were cases where the address is referred to somewhere
else in the manual. For example, "Address:\tSee Table 4.3, List of Write-Protection
Control Registers." belonged to these 14 cases.

609 out of 641 value after reset information was correctly extracted. Among
31 missed value after reset information, 27 cases belonged to missed register
subsections and 4 cases in which the value after reset refer to somewhere else. One
case was wrongly detected because the register group has two possible values after
resetting. The sentence to describe the value after reset, in this wrongly detected
case, was "Value after reset:\t0087H (edge detection), 8087H (level detection)".
Pattern7 in Table 3.2 detected the first value after reset only.

612 out of 641 bit name information was correctly extracted. Among the re-
maining 29 cases, 27 missed cases were the cases where accessed size information
belongs to the 27 missed register subsections. Two cases were wrongly detected
because the bit names were described in multiple lines.

614 out of 641 bit accessibility information was correctly extracted. 27 missed
cases were the cases where access size information belongs to the 27 missed
register subsections.
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Experiment results in extracting coding rules in using registers

Table 8.8: Result of extracting logical information of registers

Category #Total #Extracted #Correctly
extracted

#Wrongly
extracted

Coding rules re-
lated to access-
size

641 614 613 1

Coding rules re-
lated to accessi-
bility

641 614 614 0

Coding rules re-
lated to written
values

492 35 35 0

Table 8.8 shows the number of coding rules extracted by applying our approach.
For coding rules related to access-size, 613 out of 641 (95.6%) cases were correctly
extracted as the coding rules were created based on the information about access
size in physical information. For coding rules related to accessibility, 614 out of
641 (95.8%) cases were correctly extracted as the coding rules were created based
on the information about accessibility (readable/ writeable/ reserved) in physical
information.

For coding rules related to written values, 35 over around 492 coding rules were
detected. Program verification techniques could automatically verify 16 out of 35
detected coding rules. For example, “Set REGISTERNAME33.GROUPBITNAME
[ 5:0 ] to REGISTERNAME35.GROUPBITNAME [ 5:0 ] to 000000B to select
physical ch0 .” belonged to this case. 18 out of 35 detected coding rules; the target
bit/ register is not explicitly mentioned. For example, in "This bit should be set to
0 ( REGISTERNAMEnIm signal not output at the beginning of count operation )
." or " The program must clear interrupt request flag to 0 .", the register names
are not stated. There was a detected coding rule where the bit name was not found
among extracted registers. The reason was that this bit name belonged to control
registers which were out of our scope.

Discussion

Using the patterns in Table 3.2, we extracted the information for 95.8% of registers
in one of the most popular microcontroller families used in automotive systems.
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95.6% (613/614) of coding rules related to accessed size were correctly extracted.
95.8% (614/641) of coding rules related to the accessibility of the register are
correctly extracted. Around 3.3% (16/492) of coding rules related to written
values were correctly extracted. Automated program verification techniques could
automatically verify the correctly extracted coding rules. By this, a large amount
of manual work could be reduced.

The limitation of the patterns in Table 3.2 was that the number of extracted
coding rules related to written values was small. However, as we mentioned above,
even a small number of coding rules could reduce the number of manual tasks.

8.2.2 Experiment for analyzing C source code
Experiment settings

The target source code in this experiment was a real product of AISW that develops
software for car devices. This source code contained 83,006 lines, excluding
comments and empty lines.

Similar to the experiment with benchmark source code, program analysis tools
used in this experiment were Cobra version 3.110, Cobra version 3.1, Frama-C
version 20.0 (Calcium)11, CBMC version 5.1112, and SatAbs version 3.213. The
machine used in this experiment contained 32 cores CPU and 1.5TB memory.

The Eva plugin requires a C pre-processor for use onCfiles. For pre-processing
the source code, a specific commercial compiler (i.e., Green Hills compiler) is
necessary. In this experiment, we tried to pre-process the source code using
GCC14. Several code fragments that GCC could not compile were removed to
perform this task. These code fragments were mainly related to compiler-specific
features.

In this experiment, we performed the first three steps of the Algorithm 3 to
evaluate the following:

• The effectiveness of the combination of selected techniques/ tools

• The supportiveness of knowledge related to loops in extracting knowledge
related to register-access.

The result of this experiment was published in [47].
As explained in Algorithm 5, the first step for detecting register-access objects

is to detect potential register-access expressions. By applying the code patterns for

10https://spinroot.com/cobra/downloads.html
11http://frama-c.com/download/user-manual-20.0-Calcium.pdf
12https://www.cprover.org/cbmc/
13https://www.cprover.org/satabs/
14https://gcc.gnu.org/
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register-access over the target source code, 1,514 potential read-access expressions
and 587 potential write-access expressions were detected. As the target hardware
contains 12,149 registers, there were potential 25,525,049 (i.e., 12,149 x 1,514 +
12,149 x 587) register-access objects. The next task was to exclude confirmedNot
objects, detect confirmed and maybe objects, and provide explanations for the
detected objects. As introduced in Algorithm 5, the checks for potential register-
access objects were embedded into assertions. Subsequently, these assertions were
executed by three selected tools (i.e., Eva plugin, CBMC, and SatAbs) sequentially.
Specifically, we applied the seven steps (i.e., from 2.1 to 2.7) in Algorithm 5 in
which the unsolved assertions by the former steps were left to the latter steps.

Firstly, Cobra is used to detect potential register-access expressions using
the code patterns for register-access shown in Definition 4.4.2. Subsequently,
the detected potential register-access expressions are precisely examined by the
Eva plugin of Frama-C, CBMC, and SatAbs as introduced in algorithm 5. In
short, we execute steps with the following settings sequentially: Eva plugin with
NotEqual assertions attached and loop unwinding not applied, Eva plugin with
NotEqual assertions attached and loop unwinding applied, CBMC with NotEqual
assertions attached and loop unwinding applied, Eva plugin with Equal assertions
attached and loop unwinding not applied, Eva pluginwithEqual assertions attached
and loop unwinding applied, CBMC with Equal assertions attached and loop
unwinding applied, and finally SatAbs with NotEqual assertions attached.

Evaluating many assertions at once was extremely heavy for the Eva plugin,
CBMC, and SatAbs. For example, an experiment evaluating 25,525,049 NotEqual
assertions by the Eva plugin did not complete after three weeks. It is also rec-
ommended to execute one assertion per time for CBMC and SatAbs. Hence, we
decided to split these assertions into smaller parts so that each part only focuses on
one expression. Additionally, the number of assertions executed each time was set
differently for each tool. The number of assertions was set to less than or equal to
1000 per run for the Eva plugin but only one per run for CBMC and SatAbs. In this
experiment, these executions were performed in parallel as they were independent.
Parallel GNU [52] was used to facilitate this parallel process. As the machine
used in this experiment contains 64 cores, we set to perform 64 runs in parallel. In
Table 8.9, # assertion/ run is the number of assertions that are executed per run,
and # run is the number of executions for each step in this experiment.

Loop unwinding was employed at steps 2.2, 2.3, 2.5, and 2.6 as in Algorithm
5. We applied different schemes for each tool. For applying Eva plugin, unrolling
all loops were costly. Additionally, not all loops were relevant to an expression.
Hence, only loops closely related to a target expression (i.e., the expression is inside
these loops) were unrolled. If this number is available, the number of iterations
for a loop is based on the maxNumOfIteration. If this number is unknown, the
maxNumOfIteration calculated in the source code is used. For CBMC, there was

114



Table 8.9: Resource consumed in different steps

Time limit: 48 hours
No. Step # assertion/ run # run Time (h:m:s) Memory

peak (Kbyte)

2.1 Eva plugin-
NotEqual-No loop
unwind

<=1,000 27,313 1:08:33 188,488

2.2 Eva plugin-
NotEqual-Loop
unwind

<=1,000 77 6:27:44 17,788,120

2.3 Eva plugin-Equal-
No loop unwind

<=1,000 182 0:59.28 156,380

2.4 Eva plugin-Equal-
Loop unwind

<=1,000 182 0:39:13 722,172

2.5 CBMC-NotEqual-
d1000

1 2,512 4:49:14 123,521,752

2.6 CBMC-Equal-
d1000

1 2,427 3:23:12 122,521,874

2.7 SatAbs-NotEqual-
Boom-100

1 221 >48:00:00 3,508,712

a need to specify the bound to unroll every loop. We did not employ the extracted
loop objects for unrolling loops with CBMC, as when the number of iterations
for loops was large, the executions of CBMC would be out of memory. In this
experiment, based on several trials of applying this tool, we selected the setting
�depth 1000 as there were fewer cases of getting out of memory error. This
option is depth-based unwinding which uses the number of instructions in the
control-flow graph instead of the number of instructions in the source code [53].
For applying SatAbs, amodel checker and the number of CEGAR iterations needed
to be specified. The selected model checker was Boom [54] as this model checker
was selected when SatAbs attended a competition [31]. The number of CEGAR
iterations was set to 100 based on our experiment applying this tool to this source
code.

As the amount of computation in this experiment might be large, the consumed
time might be huge. We set the time limitation for each step as 48 hours in the
phase of analyzing the source code.

Experiment results
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Table 8.10: Number of detected read-access objects in different steps

(*) 12/15 objects are marked as maybe in step 1. 3/15 objects are newly detected.
No. Step confirmed maybe unknown confirmedNot dead explanation

2.1 Eva plugin-
NotEqual-No loop
unwind

- 93 515 4,664,608 13,728,370 -

2.2 Eva plugin-
NotEqual-Loop
unwind

- 0 515 0 - -

2.3 Eva plugin-Equal-
No loop unwind

0 - 515 - - -

2.4 Eva plugin-Equal-
Loop unwind

0 - 515 - - -

2.5 CBMC-NotEqual-
d1000

15(*) - 512 - - 15

2.6 CBMC-Equal-
d1000

0 - 512 - - -

2.7 SatAbs-NotEqual-
Boom-100

42 - - - - 42
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Table 8.11: Number of detected write-access objects in different steps

(*) 23/70 objects are marked as maybe in steps 1 or 2. 47/70 objects are newly detected.
No. Step confirmed maybe unknown confirmedNot dead explanation

2.1 Eva plugin-
NotEqual-No
loop unwind

- 157 26,519 2,633,955 4,470,832 -

2.2 Eva plugin-
NotEqual-Loop
unwind

- 163 1,741 24,772 - -

2.3 Eva plugin-
Equal-No loop
unwind

0 - 1,741 - - -

2.4 Eva plugin-
Equal-Loop
unwind

0 - 1,741 - - -

2.5 CBMC-
NotEqual-d1000

70(*) - 1,694 - - 70

2.6 CBMC-Equal-
d1000

0 - 1,694 - - -

2.7 SatAbs-
NotEqual-Boom-
100

102 - - - - 102
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Figure 8.3: Number of detected register-access objects along the extracting process

We detected a total of 208 for and while loops in the source code, in which
89 loops belong to the supported group. Using the Eva plugin, we calculated the
maximum number of iterations for 28 loops. The maximum number of iterations
in the source code was 65,536. This means the maximum number of iterations
for one loop in the experiment of applying loop unwinding for the Eva plugin is
65,536. It took around 4 seconds to experiment with extracting loop objects.

Figure 8.3 summarizes the final result of detected register-access objects. In
this figure, "maybe" means an object was extracted by using the Eva plugin (i.e.,
maybe ⇐⇒ Kover, s0 |= EF p); "confirmed but not explained" means an
object was extracted by Eva plugin (i.e., con f irmed ⇐⇒ Kover, s0 |= AF p);
"confirmed & explained" means an object was extracted by CBMC or SatAbs (i.e.,
con f irmed ⇐⇒ Kunder, s0 |= EF p). We detected 57 confirmed objects for
read-access and 39 maybe objects. The remaining were 512 unknown objects.
These unknown objects belonged to 9 potential read-access expressions. For
write-access, we detected 172 confirmed objects and 38 maybe objects. The
remaining were 1694 unknown objects. These unknown objects belonged to 35
potential read-access expressions. Explanations were extracted for all confirmed
register-access objects.

Detailed results of each step can be found in Tables 8.10 and 8.11. In these
tables, "-" means that the step could not detect register-access objects with this
status. By applying the first step, we could exclude 4,664,608 (25% of potential
read-access objects) confirmedNot read-access objects, 2,633,955 (36.9% of
potential write-access objects) confirmedNot write-access objects, 13,728,370
(74.6% of potential read-access objects) dead read-access objects, and 4,470,832
(62.7% of potential write-access objects) deadwrite-access objects. This step also
detected 93 (0.0005% of potential read-access objects) maybe read-access objects
and 157 (0.0022% of potential write-access objects) maybe write-access objects.
The second stepwas not effective for read-access. However, this step excluded 1741
(0.024% of potential write-access objects) confirmedNot write-access objects
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and detected 6 (0.00008% of potential write-access objects) maybe write-access
objects. The third and fourth steps were not effective for both read-access and
write-access. The fifth step confirmed and explained that for 15 (0.00008% of
potential read-access objects) and 70 (0.00098% of potential write-access objects)
write-access objects. The sixth step was not effective for both read-access and
write-access. The seventh step confirmed and explained for 42 (0.0002% of
potential read-access objects) read-access objects and 102 (0.001% of potential
write-access objects) write-access objects.

Table 8.9 shows the time and peak memory consumed for each step. Among
these steps, step 5, which applies CBMC with NotEqual assertions to detect and
explain register-access objects, required the largest amount of memory; step 7,
which applies SatAbs with NotEqual assertions to explain the detected register-
access objects, needed the longest time to perform, and it even not finished within
the accepted time (i.e., 48 hours).

Table 8.12: Register-access details

Potential Potential Accessed size
accessed bit sets written value sets

Read-access 8 x 608
Write-access x 1904 1904

Table 8.12 shows the result of potential accessed bits, potential written values,
and access size using the Eva plugin. Specifically, we extracted eight potential
accessed bits sets for read-access objects, 1904 potential written value sets for
write-access objects, and access sizes for 608 read-access and 1904 write-access
objects.

Discussion

The experiments show that combining the four techniques effectively detects
register-access objects. Specifically, the combination of AI and BMC increased
the number of the register-access objects detected. BMC helps to detect 3 more
read-access objects and 47 more write-access objects. The combination of BMC
and CEGAR effectively confirmed and explained the detected register-access ob-
jects. BMC and CEGAR explained different objects, and the number of objects
explained by CEGAR was larger than BMC. As a result, most of the detected
register-access was explained (59.4% of detected read-access objects, 81.9% of
detected write-access objects).

There were remaining 512 unknown read-access objects and 1694 unknown
write-access objects. These objects need to bemanually examined. However, these
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objects only belong to 9 potential read-access expressions and 35 potential write-
access expressions. That means we only needed to manually check 44 expressions
in the source code, which was pretty small compared to checking the whole source
code.

The knowledge related to loop was supportive in detecting confirmedNot
register-access objects. As we can see in Table 8.11, by using the knowledge
related to loop, 24,772 confirmedNot write-access objects were detected at step
2. This result reduced the burden for the latter steps as executing these large
number of assertions, especially by CBMC, was heavy. Additionally, 6 maybe
write-access were detected using the knowledge.

The NotEqual assertions were more effective than the Equal ones. In fact, the
Equal assertions did not improve the results in our experiment. The reason is that
the NotEqual format was more relaxed than the Equal format, as in most cases,
showing a property was invalid is easier than proving this property is valid. As
loops and conditional statements frequently appear in the target source code, the
Equal format did not perform well in this experiment.

8.2.3 Experiment for generating data model and checking the
target coding rules

Experiment settings

We built a knowledge model using the extracted knowledge in Sections 8.2.1 and
8.2.2 using the meta-model described in Section 5.2. Subsequently, we employed
the knowledge model to check coding rules in different categories to evaluate the
verification framework. Table 8.13 shows the categories of target coding rules.

The tool for knowledge modeling and querying was Eclipse Modeling Tools
2020-0915. The machine for experimenting with representing the knowledge is a
computer with 32 GB RAM and an Intel Core i7 CPU.

Experiment results

We successfully instantiated the meta-model using the extracted knowledge of the
target system. The time for generating the knowledge model in this experiment
was around 6 minutes. Table 8.14 shows the result of checking the target coding
rules in Table 8.13. In this table, TP means true positive which is the number
of correctly detected violations; FP means false positive which is the number
of wrongly detected violations; TN means true negative, which is the number of
correctly confirmed non-fraud cases; FNmeans false negativewhich is the number

15https://www.eclipse.org/downloads/packages/release/2020-09/r/eclipse-modeling-tools
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Table 8.13: Categories of coding rules in the experiment with industrial source
code

Category Coding rule # Expected violations

Read-access 1O Do not read bit 4th of register REG1 0

Read-access 1N Do not read bit 3rd of register REG2 4

Non-cond 1O Do not write 0x00 to REG3 0

Non-cond 1N Do not write 0x80010 to REG3 1

Non-cond 2O Do not set 0xFF to REG4 0

Non-cond 2N Do not set 0x00 to REG4 1

Cond 1O If REG5 is 0xCC, REG6 should be
set to 0xCC.

0

Cond 1N Not set REG5 and REG6 to 0xCC
at the same time

1

Cond 2O If REG7 is 0xCC, REG8 should be
0x00.

0

Cond 2N If REG7 is 0xCC, REG8 should not
be 0x2F0002.

1
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Table 8.14: Result of verifying industrial source code

Category # TP # FP # TN # FN Precision Recall Time to query

Read-access 1O 0 0 4 0 - - 10ms

Read-access 1N 4 0 0 0 - - 6ms

Non-cond 1O 0 0 1 0 - - 11ms

Non-cond 1N 1 0 0 0 - - 11ms

Non-cond 2O 0 1 0 0 - - 12ms

Non-cond 2N 1 0 0 0 - - 12ms

Cond 1O 0 0 1 0 - - 8878ms

Cond 1N 1 0 0 0 - - 8980ms

Cond 2O 0 1 0 0 - - 8840ms

Cond 2N 1 0 0 0 - - 8852ms
Total 8 2 7 0 0.8 1 -

of missed violation. Regarding the verification result defined in Definition 6.1.1,
a TP or an FP means that there is a result with status violated or maybeViolated.
A TN or an FN means that there is a result with status notViolated or unknown

There were two false positive cases in the experiment with the Non-cond 2O
coding rule and the Cond 2O coding rule. The precision value in this experiment
was 0.8 as there were two false positive cases. The recall was 1 as there were
no false negative cases. The reason for the wrong warning for checking the Non-
cond 2O coding rule was that some calculated potential values were not actually
written values. Figure 8.4 shows a simplified version of this case. In this figure,
0x020E0004 is the address of REG4. The invalid value 0xFF was not written to
this register. However, there were four possible values for pt_st->value, which
included 0xFF. This problem could be solved by considering 0xFF as a special
written value of REG4 and checking whether this value was actually written to
this register.

The reason for the wrong warning for checking the Cond 2O coding rule was
that the register-access object, which wrote 0x00 to REG8, was not detected.
Actually, this object was marked with status unknown. As this object satisfied the
requirement part of the coding rule, the source code did not violate the coding
rule. However, a violation was triggered as the verification framework could not
detect this object.
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1 cons t StRegLongData s t_ type01_02_0E [ 4 ] = {
2 { 0x020E0004 , 0xF7317BDE} ,
3 { 0x020E0008 , 0xFF } ,
4 { 0x020E000C , 0xFFFF5A5A} ,
5 { 0x020E0010 , 0xFFF05A5A}
6 } ;
7 void s e t A l l ( void ) {
8 unsigned char c n t ;
9 cons t StRegLongData ∗ p t _ s t ;
10
11 p t _ s t = &s t_ type01_02_0E [ 0 ] ;
12 f o r ( c n t = 0 ; c n t < 4 ; c n t ++) {
13 ( ∗ ( ( v o l a t i l e unsigned long ∗) p t _ s t −>add r e s s ) ) = p t _ s t −>va l u e ;
14 p t _ s t ++;
15 }
16 }

Figure 8.4: Simplified version of FP for Non-cond 2O

Discussion

We successfully applied the meta-model and the verification approach for rep-
resenting and verifying an industrial system. The meta-model was capable of
representing all of the extracted knowledge from the target system.

The precision value in this experiment was 0.8 as there were two false positive
cases. The recall was 1 as there were no false negative cases.

The time query for the model was relatively small: less than one second for
read-access and non-conditional-case coding rules and less than 10 seconds for
conditional-case coding rules. Hence, the coding rule could be verified interac-
tively after generating the knowledge model. Since verifying coding rules related
to register-access usually requires deep analyses of the system, the interactivemode
was hard to obtain with existing tools.

As the target source code was a real product in the industry that contains a
sufficient size and features of a practical source code, successfully handling this
source code is evidence of the applicability of the proposed approach.

8.3 Discussion

8.3.1 Reliability
There are three assumptions in this research. The first assumption is that there
is on C source code in the target systems. There are some parts in embedded
systems written in other languages, such as assembly. However, the majority
are usually implemented in C [19]. Hence, it is still useful to check the parts
written in C language. The second assumption is that there are no multiple threads
and interruptions. However, we argue that there are cases in that interruptions
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do not occur, and our approach can check the target coding rules in this case.
Moreover, there is a chance to extend our work to handle multiple threads and
interruptions. The third assumption is that all register-access expressions match
our code patterns for register-access. It is hard to cover all potential variations
of performing register-access using C language. However, in our experiments,
the code patterns for register-access worked well with both the benchmark source
code and the industrial source code. All expected expressions in the benchmark
source code and a sufficient number of expressions in the experiment with the
industrial source code (1,514 potential read-access expressions and 587 potential
write-access expressions were detected) were detected. Hence, although the three
assumptions are applied, our target systems are still significant to handle.

There are two main concerns about the reliability of a verification tool. The
first concern is whether this tool misses any bugs. Missing bugs are dangerous,
especially for mission-critical systems. In our verification framework, we can
ensure that there are no missed bugs in the code expressions that match the code
patterns for register-access. The reason is that the expressions will be checked
with all the registers in the target microcontroller. Specifically, these expressions
are analyzed by multiple sophisticated techniques. This approach performed well
in the experiment with the benchmark source code. All expected violations in the
benchmark source code were detected. The approach also successfully handled
the industrial source code. All expected violations in the industrial source code
were detected too. The reason is that the code patterns for register-access covered
the popular methods for register-access operations. In the experiment with the
benchmark source code, there was no unknown register-access objects. In the
experiment with the industrial source code, there were 512 unknown read-access
objects and 1694 unknown write-access objects. If the unknown objects can
be analyzed by the user, there will be no chance for missed bugs in the target
expressions.

The second concern is where any reported bugs are false. As the verification
framework employs static program analysis tools, there may be cases where false
warnings are reported. There are two reasons for false warnings. The first reason is
that there is knowledge obtained using over-approximation techniques such as AI,
which has not been reconfirmed by under-approximation techniques such as BMC
or CEGAR. For example, the first FP case in the experiment with the industrial
source code belongs to this case. The second reason is unknown register-access
objects. The second FP case in the experiment with the industrial source code
belongs to this case. False warnings are a common problem with static program
analysis tools. There is a trade-off between the rate of FP and FN. As static
program analysis tools try to reduce the number of missed bugs, the number of
false warnings tends to increase. However, in our framework, the rate of false
warnings is expected to be reduced compared with using a single program analysis
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tool. The reason is that we first limit our target to a set of special expressions.
Subsequently, we applymultiple techniques to precision analyze the values of these
expressions. These techniques include over- and under-approximation techniques,
where the under-approximation technique is used to re-check the result of the
over-approximation technique. This approach helps to reduce the number of false
warnings.

There are two bottlenecks of the proposed approach regarding reliability due to
technical difficulties. The first bottleneck is the complexity of the hardware man-
ual. This complexity may cause mistakes in the formalization process. Automated
solutions can be applied to support the formalization phase. For the target micro-
controller in this research, only 16 out of 492 coding rules, which are automatically
extracted, can be automatically formalized. However, there is a chance to increase
the number of automatically extracted coding rules by introducing better patterns
or applying more sophisticated techniques for analyzing manuals.

The second bottleneck is the incompleteness of the proposed code patterns.
As the code patterns do not cover all potential register-access expressions, there is
a case that register-access expressions are missed. Although the code pattern only
covers limited cases, our approach can still be helpful in practice as we focus on
the most common patterns. Our experiment with the benchmark source code and
the industrial source code shows that these code patterns can cover the commonly
used methods for write-access. It also implies that the possibility of undetected
violations is low. Additionally, the proposed approach is flexible enough to quickly
introduce other different coding styles as new patterns.

8.3.2 Effectiveness
We discuss the effectiveness of the proposed verification approach by comparing
this approach with the manual process.

Table 8.15 compares the manual process and the proposed process. In this
table, bold parts are automated steps. The two processes contain three phases:
extract coding rules, check coding rules, and review. In the manual process, the
extract coding rules phase is when a developer extracts coding rules from the
hardware manual and stores these coding rules as a list in an excel file. In the
proposed approach, a part of the extraction process is automated, as explained in
Chapter 3.

The check coding rules phase contains three steps. The first step is to understand
the coding rules. For the manual process, a developer reads the related portions
in the hardware manual and profoundly understands the coding rules. For the
proposed process, in addition to the task of understanding coding rules, a developer
expresses these understandings in the form of formalized coding rules. The second
step is to extract source code fragments related to the coding rules. For the manual

125



Table 8.15: Comparison between the manual process and the proposed process

Manual process Proposed approach

Extract coding rules Extract the coding rules from the
hardware manual

Partially extract the coding rule
automatically

Check coding rules

Deeply understand coding rules Deeply understand coding rules

Formalized coding rules

Extract related fragments of source
code

Extract potentially related frag-
ments of source code

Verify related fragments Analyze the source code

against coding rules Model the hardware and software
knowledge

Issue queries over the modeled
knowledge to verify the coding rules

Execute the queries

Review Review the result by group discus-
sion

Review unknown register-access
objects

Automated parts are in bold.

process, a developer looks for these fragments based on his/her knowledge of the
coding rules and the target source code. This step is automatically performed for
the proposed process using the code patterns for register-access as explained in
Section 4.4.2.

The third step is to verify the related fragments against the coding rules.
For the manual process, a developer carefully checks each line in the fragments
and decides whether this line violates coding rules. This step is automatically
performed for the proposed process using multiple program analysis techniques
and model-driven engineering techniques. Specifically, required properties in the
coding rules are embedded in assertions; subsequently, the assertions are executed
using the combination of AI, BMC, andCEGAR. Subsequently, the analysis results
of program analysis tools with the hardware and compiler knowledge are modeled
using the meta-model explained in Chapter 5. Finally, the modeled knowledge
can be queried to check the target coding rules. The task of issuing queries
over the model is manual. However, the task of executing these queries is done
automatically.

The review phase is used for checking the result of the check coding rules
phase. For the manual process, four to five developers recheck all the results and
discuss them to make the final decision. For the proposed process, it is required
for a developer to check register-access objects that have unknown status.

Compared with the manual process, the proposed process reduces most of the
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manual effort. Among the steps in the manual process, the steps which require
analyzing source code (i.e., the two last steps in check coding rules and the review
phase) are the heaviest. The first reason is that embedded systems are usually
complex and can contain thousands of lines of code. The second reason is that
the source code can be frequently updated. In practice, the verification process
is conducted before the software release. That means these steps need to be
conducted again for every release. On the other hand, steps that require analyzing
the hardware manual are usually conducted only once for each microcontroller.
We take the source code in the experiment at Section 8.2 as an instance to compare
the time consumed between the manual process and the proposed approach. In the
manual process, the task of analyzing source code and verifying the source code
against the target coding rules, which are three latter tasks in the check coding
rules phase, the manual process to handle the source code in the experiment at
Section 8.2, consumes two man-weeks. In the proposed approach, these steps are
mainly automated. The time for analyzing the source code is around 65 hours (i.e.,
3925 minutes), the time for building the model is around 6 minutes, and the time
for querying is around 83 minutes for 500 coding rules (assume that 10s for one
coding rule).

We aim to automate the steps required to analyze source code in the proposed
process. As the two last steps in check coding rules are automated in the proposed
process, the cost of the verification process is dramatically reduced. Although the
review phase is still required for the proposed process, this phase is less heavy
than the manual process. The reason is that instead of checking all the results,
the proposed approach only requires checking fragments where corresponding
register-access objects get status unknown.

Compared with the manual process, the proposed process has an additional
manual step (i.e., the formalization step). However, this step can be performedwith
a little effort as the templates for coding rules are simple and defined beforehand.
The formalization step is also valuable to apply for the manual process. This
step is helpful if one considers the convenience of discussion as the understanding
of coding rules is well documented in a formal format. The formalized coding
rules are also reusable for any system built using thismicrocontroller. Additionally,
extracting andmodeling hardware knowledge is advantageous in handlingmultiple
source codes. Typically, one microcontroller can be used for multiple systems.
Once the hardware knowledge is extracted and modeled, this knowledge can be
reused for multiple projects.

Detecting bugs earlier is one of the essential targets in software development.
The manual process is unsuitable for this target as it can be performed only a
few times (i.e., before a release) because of the high cost. However, the proposed
approach is effective in achieving the target as analyzing the hardware manual (i.e.,
the formalization phase) needs to be done once only at the beginning of conducting
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a system; most of the remaining tasks can be done automatically.

8.3.3 Applicability for other microcontrollers
Even though this research focuses on a microcontroller, the proposed approach is
applicable to othermicrocontrollers too. The coding rules of othermicrocontrollers
can fall into two cases. The first case is that the coding rules fall into the defined
categories. In this case, the specification language for hardware knowledge can be
applied. Performing register-access is a popular task amongmicrocontroller-based
systems; our defined specification language for coding rules related to register-
access are expected to apply to othermicrocontrollers. To validate our expectations,
we sampled the hardware manuals of three other popular microcontrollers. They
are ATmega328P [55], STM32F101xx [56], and PIC16F87XA [57]. In these
hardware manuals, we found coding rules which belong to the defined categories
below:

1 "The EEMPE bit must be written to one before a logical one is written to EEPE, otherwise
no EEPROM write takes place.", Page 21, Section 7 (ATmega328P) [55]

2 "For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written", Page 285, Section
29 (ATmega328P) [55]

3 "To enter Stop mode, all EXTI Line pending bits (in Pending register (EXTI_PR)) and
RTC Alarm flag must be reset. Otherwise, the Stop mode entry procedure is ignored
and program execution continues.", Page 60, Chaper 4 (STM32F101xx) [56]

4 "Setting the TPAL and TPE bits at the same time is always safe, however resetting both at
the same time can generate a spurious Tamper event. For this reason it is
recommended to change the TPAL bit only when the TPE bit is reset.", Page 69,
Chapter 5 (STM32F101xx) [56]

5 "These registers are reserved; maintain these registers clear.", Page 18, Section
2 (PIC16F87XA)

6 "When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must
be set to one of the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x,
1101, 1110, 1111.", Page 43, Chapter 4 (PIC16F87XA) [57]

The second case is that the coding rules of other microcontrollers are out of the
defined categories. In this case, one must introduce new templates for describing
the new rules. However, the proposed approach is also flexible enough to handle
the new template with a reasonable effort. Specifically, the approach is designed
as plug-and-play architecture. It is only required to introduce new code patterns
and new algorithms for generating assertions that focus on the new categories of
coding rules.

The heaviest task in handling other microcontrollers is to handle different styles
of writing in hardware manuals. Hardware manuals were usually written in similar
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formats, especially for expressing the physical information of hardware. Currently,
we apply pattern matching to handle the targeted manuals. Although the patterns
in Table 3.2 can not be directly applied to manuals of other microcontrollers, this
experiment showed that the heuristic approach seems to work well with this kind of
document. As discussed in Section 3.4, there are two kinds of hardware knowledge
to be extracted from the hardware manual; physical and logical knowledge of
registers. For the physical knowledge, other hardware manuals tend to use table
format too, as shown in Figure 3.2. Hence, patterns 1-12 in Table 3.2 may be
applied with some modifications. For logical knowledge, manual effort is mainly
required. However, as discussed above, the step of analyzing hardware manuals
only needs to be done once. Then, the analyzed results can be reused for multiple
projects.
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Chapter 9

Related works

9.1 Analyzing hardware manual
There are several works on handling natural language documents in software
engineering. There are two directions in doing this task.

The first direction is to define grammar with syntactic and semantic categories,
manually tag each word in the input text using these categories, and parse the input
text based on the grammar [58]. The limitation of this approach is that we need to
define the syntactic and semantic categories and manually tag these categories for
words. Hence, this approach is hardly acceptable in practice.

The second direction is to apply heuristics based on the characteristic of the
target documents [8, 59, 60]. Among these works, the work of S. Chaudhary et
al., which also targeted the hardware manual is the closest work to ours. However,
this work only handles coding rules related to accessibility. At the same time, our
work can handle this type of coding rule and coding rules related to the access size
and written values.

9.2 Analyzing and modeling source code informa-
tion

Extracting information from source code beforehand and using this information for
different purposes, such as software verification or understanding, is a well-known
approach. Information extraction is one essential task in reverse engineering [61].
As understanding software code is a frequent need in software development, many
previous works proposed approaches for analyzing source code and obtaining tar-
get information. We discuss the closest works to our work [62, 63, 64]. Akbar
et al. [62] provided a comparative evaluation of using information retrieval tech-
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niques to explore source code. However, applying information retrieval techniques
could not handle the deep analysis of source code that was required in verifying
microcontroller-based systems. Hachisu et al. [63] tried to extract information
from the source code and store this information in a database. However, the target
information was different from our work. While the work of Hachisu et al. tried to
get a fine-grained database (i.e., all general information of source code), our work
focuses on specific information (i.e., information related to register-access).

On the other hand, the work of Hachisu et al. focused on Java code, while
ours focused on C code. Kumar and Krogh [65] proposed an ontology-based
knowledge management framework for integrating multiple verification results to
eliminate the system-level verification. However, this process was mainly manual.
Fehmel et al. [64] automatically extracted and represented the behavior of software
drivers in abstract driver finite state machine models. The state machine models
are the predicate abstraction of driver features (e.g., API functions or interrupt
service routines). While our work focuses on microcontroller-based systems in
general, the work of Fehmel et al. focused on driver code. On the other hand,
the approach proposed in [64] was only suitable for small source code. When
the source code was large, this approach had the following problems: the manual
step of identifying variables was heavy, the state explosion problem might occur,
and the generated state machine models would be large and hard to be handled by
developers who were not familiar with the notations of the models.

There are several solutions for representing the knowledge of microcontroller-
based systems. One direct and simple method is to store the knowledge in excel
files. Developers of embedded systems use this method. Specifically, the devel-
opers manually extract their target knowledge in both source code and hardware
manuals; then store this knowledge in excel files; finally, use this knowledge in
group meetings to discuss the reliability of the source code. This method is not
effective in managing relational knowledge like hardware-dependent knowledge.
In addition, the method is not appropriate for automating the verification process.
Another method is to store the knowledge in state machine diagrams [66]. In [66],
Said et al. extracted the behaviors of embedded software by symbolic execution
and represented this behavior in state machines. However, these state machines
tended to become complex and hard to understand, while the state machines may
store irrelevant information to the target coding rules.

9.3 Verifying microcontroller-based systems
For ensuring the safety of embedded software, while full verification like theorem
proving is almost impossible because of its expensiveness, testing is unreliable
enough as the coverage is often small compared to many possible cases in a
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program. Static program analysis is appropriate since it can automatically check
programs against predefined rules. In addition, since this method often employs
an over-approximation technique, the possibility of undetected problems is low.
Related works also adopted the method to verify the hardware-based properties of
microcontrollers.

In [7], Schlich et al. created a tool named [MC]SQUARE for verifying the
assembly code of microcontrollers’ applications by applying model checking with
the support of static analysis. If an error is found, it will be related to the C code
using debug information. [MC]SQUARE is a discrete-time, finite-state, mostly
explicit CTL model checker for microcontroller assembly code. Users can make
propositions about registers, I/O registers, and values of other memory locations,
such as C variables. The main problem of this approach was state explosion, as
this work could only deal with academic-sized projects. Similarly, [67] and [68]
used model checking for verifying embedded software too. However, these works
had the same limitation as [7].

By extending a static analysis tool named Goanna, Fehnker et al. have ap-
plied static analysis to find bugs in microcontroller software in three categories:
incorrect-interrupt-handling check, incorrect-timer-service check, and reserved-
bits check [6]. In this research, the CFG of a C program is labeled with the
syntactic pattern of interest. Required properties are described manually in the
form of CTL formulae. However, this work only focused on a limited set of rules
and was hard to be extended to other coding rules.

Similar to [6], Chaudhary et al. introduced a compiler extension named em-
SPADE [8] which used heuristics to extract rules and apply static analysis to verify
reserved-bits, read-only and write-only rules. The advantage of this work was
that it was automatic. However, the work only focused on simple rules as they
were easier to extract and verify. Another limitation of the work was that it only
examined one-line statements and did not consider data-dependent and conditional
cases. Embedded programs are oftenmore complex; considering only simple cases
is insufficient to ensure these programs’ reliability.

In general, previousworks tend to create new or extend existing tools, which are
heavy tasks. In [7], [67] and [68], modeling various features of a microcontroller
is a laborious task. Moreover, the model may need to be adjusted for each
microcontroller. Similarly, in [6] and [8], it is necessary to modify the tools
directly to handle other rules. This task is very time-consuming. It also requires
professional knowledge of both the microcontroller and the verification tool. As
the process may lengthen the time-to-market of products, these approaches are not
feasible in practice.

Our work combines four existing static program analysis tools to verify a
microcontroller’s coding rules automatically. This approach is more applicable to
the practical situation as it can be easily adapted to check different properties of
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Table 9.1: Comparing with existing program analysis tools

Tool name Pattern-matching-based Sophisticated analysis Data query

Flawfinder[12] yes no yes

Polyspace no yes no
Bug Finder[13]

CodeQL[14] no yes yes

Our tool yes yes yes

various microcontrollers. Additionally, our target is different from the previous
works.

In [7], [6] and [8], they tried to examine the microcontroller’s applications
against their specifications. Fehnker et al. [6], and Chaudhary et al. [8] aimed at
verifying hardware-specific properties. We also target hardware-specific proper-
ties, but our coverage is broader than [6] and [8]. Specifically, we can deal with the
third rule in [6] and all rules in [8]. We do not handle the two first rules in [6], as
these rules do not belong to any category in Table 3.1. However, we cover not only
the third rule in [6] and all rules in [8], but other rules. The third rule in [6] and
all rules in [8] are only a small portion of our target. Only 18% of the coding rules
in the two sections of the hardware manual of the investigated microcontroller are
in the same categories as these rules.

Survey about hardware-dependent verification Verification of Hardware Inter-
action Properties of Software [69] by Ramsay Taylor:

- An analysis process is developed that operates on disassembled executable
files and formal specifications of the target platform to produce CSP-OZ formal
models of the software’s behavior.

9.4 Existing program analysis tools
We proposed a verification tool for handling register-access coding rules. This sec-
tion discusses our tool with existing program verification tools for C source code.
Specifically, we survey popular analysis tools supporting C programs and discuss
their applicability to handle specific coding rules like register-access coding rules.
As our tool employs pattern-matching-based, sophisticated analysis and data query
techniques, we select leading tools in the industry that employ those techniques.
For pattern-matching-based techniques, Flawfinder is selected. PolySpace Bug
Finder is selected as a sophisticated analysis tool. For data query tools, CodeQL is
selected. Table 9.1 compares these tools and our tool regarding techniques used.
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Table 9.2: Coding rules supported by existing program analysis tools

Tool name MISRA C CERT C Register-access Custom
2012 coding rules coding rules

Flawfinder no no no yes

PolySpace Bug Finder yes yes no no

CodeQL yes yes no yes

Our tool no no yes yes

Subsequently, Table 9.2 shows the comparison regarding the handled coding rules.
Flawfinder [12] does not directly support MISRA c 2012 and CERT C. However,
syntactic-based and partially semantic-based coding rules can be checked by is-
suing queries over the built database. Hence, using this tool only does not apply
to handling our target. PolySpace Bug Finder [13] supports checking coding rule
standards such as MISRA C 2012 and CERT C. However, this tool does not sup-
port hardware-specific coding rules like register-access coding rules and also does
not support custom coding rules. Hence, the tool is not directly applicable to our
target. For CodeQL [14], queries can be provided to support MISRA c 2012 and
CERT C. This tool is also customizable for new coding rules. However, there is no
support customizing the database to represent a source code. Hence, information
about used hardware cannot be embedded, and hardware-specific coding rule, like
our target, is hardly directly supported.
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Chapter 10

Conclusion and future direction

10.1 Conclusion
This research proposed a verification framework to verify microcontroller-based
systems against their specific coding rules. There are four sub-goals in propos-
ing this framework: analyzing the hardware manuals to extract hardware knowl-
edge, analyzing the C program to extract software knowledge, modeling the
extracted software and hardware knowledge, and verifying systems against the
microcontroller-specific coding rules using the extracted software and hardware
knowledge.

For the first goal, we proposed a semi-automated approach for analyzing the
hardware manuals, extracting and formalizing the information from hardware
documents in Chapter 3. We can extract the physical information for 95.8% of
registers in one of the popular microcontroller families used in automotive systems.
For logical information, 95.6%of coding rules related to accessed size are correctly
extracted. 95.8% of coding rules related to the accessibility of the register is
correctly extracted. Around 3% of coding rules related to written values are
correctly extracted. Automated program verification techniques can automatically
verify the correctly extracted coding rules. The registers’ information is useful to
enable fully automated verification of the coding rules. Although the number of
extracted coding rules is small, the approach helps reduce many manual tasks. To
precisely describe the hardware knowledge, we propose a specification language
for describing the hardware knowledge in Chapter 3. The language can precisely
describe the coding rules in the defined categories in Section 3.2.

For the second goal of extracting software knowledge of embedded systems,
we proposed an algorithm for combining multiple program analysis techniques
(i.e., PM, AI, BMC, CEGAR), which is shown in Chapter 4. The advantage of
PM is the flexibility to define patterns to be searched and the high speed even
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when scanning large source code. On the other hand, AI, BMC, and CEGAR
have the power of sophisticated engines so that they can precisely analyze source
code. The experiment results show that the approach effectively extracts the target
information. By taking advantage of these techniques, the approach can analyze
industrial source code to get software knowledge. Specifically, PM can handle
different coding styles and extract syntactic knowledge; AI and BMC can extract
semantic knowledge related to register-access, and BMC and CEGAR can ex-
plain the extracted knowledge. The extracted knowledge is useful for many tasks
in developing hardware-dependent systems, such as understanding the systems
and verifying hardware-dependent coding rules. To precisely describe the soft-
ware knowledge, we propose a specification language for describing the software
knowledge in Section 4.3. The specification language for software knowledge can
formalize the output of employed program analysis tools.

We proposed a meta-model for the third goal of representing the software and
hardware knowledge in Chapter 5. This model can represent knowledge from
hardware, compiler, and software and the result of multiple existing extraction
tools. Knowledge models of hardware-dependent systems can be generated using
the meta-model. Subsequently, these models can be used to verify coding rules
related to register-access to the system.

For the fourth goal of handling a large number of variations of coding rules,
we proposed an approach for using the knowledge model generated above. This
approach is described in Chapter 6. As not all developers are familiar with the
query language, we provide predefined queries for the defined categories of coding
rules. These queries help to facilitate the usage of the verification approach. The
pre-defined queries are explained in Section 6.2.

We implemented a tool based on the proposed verification framework explained
in Chapter 7. The tool was used in the experiment with a benchmark source code
and an industrial source code in Chapter 8. The result showed that our framework
could handle all the scenarios test cases in this benchmark and detected a violation
in this industrial source code.

There are two limitations to this research. The first limitation is that we did
not handle interruptions and multiple threads. In Section 2.4, we discuss three
methods for accessing registers: memory-mapped I/O, which is usually handled
by C language, and port-mapped I/O, which usually requires writing in assembly.

The first method is memory-mapped I/O, in which the device registers are
mapped to conventional data space. The second method is port-mapped I/O,
in which control and data registers are mapped to separate small data spaces.
Additionally, severalmicrocontroller families provide specialmethods of accessing
and manipulating the memory via the I/O mapped. The second limitation is that
we did not handle assembly code. Although C is the leading choice of embedded
systems, there are several situations where implementing the systems in assembly
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is necessary, such as speed-critical parts [19]. Typically, embedded systems mix
C code with a small portion of assembly code. Assembly code is called from C
programs. Assembly is usually used for accessing port-mapped I/O or disabling/
enabling interrupts.

In conclusion, we proposed utilizing advanced techniques in program analysis
and model-driven engineering to solve a practical verification problem. Although
many innovation techniques proposed in academia have a high potential to apply
to practice, the methods of applying these techniques in practice are limited. The
reason is that industrial settings aremuchmore complex in comparisonwith labora-
tory environments. Despite this difficulty, our work successfully utilized program
analysis and model-driven engineering techniques to verify microcontroller-based
systems against their specific coding rules. This is a complex problem as the cod-
ing rules with numerous variations. Besides the academic contributions, our work
has a significant practical contribution as microcontrollers are popularly used in
critical systems.

https://scsc.uk/gsn?page=gsn

10.2 Future direction
The first direction is to extend this work to handle assembly code and interruptions.
For assembly code, pattern matching may also work well. Several tools may work
well for C concurrent programs, such as Deagle [70] or CBMC.

The second direction is that we will deploy the approach in the industrial
experiment. Currently, we use a huge computer server for conducting this research.
However, there is the case that the environment in practice does not have a large
computer as the machine used in our experiments. In this case, the settings of this
approach may be changed to adapt to the practical environment. Hence, we will
find the optimal setting so the approach can be adapted to multiple environments.

The third direction is to extend the verification framework to handle systems
with multiple sub-systems. Currently, we only handle single source code with a
single microcontroller. An embedded system, such as an IoT system, may be an
integration of multiple devices. Hence, there is room to leverage the verification
approach to handle these systems.
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