
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 知識グラフ表現学習: 変種と応用

Author(s) 孔, 維坤

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18421

Rights

Description
Supervisor: NGUYEN, Minh Le, 先端科学技術研究

科, 博士

Doctoral Dissertation

Knowledge Graph Representation Learning: Variants and
Applications

KONG Wei Kun

Supervisor NGUYEN Le-Minh
Main Examiner NGUYEN Le-Minh

Examiners TOJO Satoshi
SHIRAI Kiyoaki
HASEGAWA Shinobu
MA Qiang

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]

(March, 2023)

Abstract

In the 1960s, a prototype of the knowledge graph was proposed to enable
formal reasoning and code representations of knowledge. Decades of devel-
opment followed, with particularly signicant progress in the past ten years.
The release of large-scale knowledge graphs and the springing up of power-
ful embedding models have sparked the enthusiasm of researchers. Today,
knowledge graphs are being applied in many elds, including natural lan-
guage processing, autonomous driving, biology, and nance.

Knowledge graph representation learning, also known as knowledge graph
embedding, aims to represent a knowledge graph using a set of vectors and
matrices in a low-dimensional vector space. This is essential for utilizing
knowledge graphs in deep learning models. Currently, most available knowl-
edge graph embedding models only embed entities and relations using the
triples provided by the knowledge graphs. This approach does not make full
use of available resources. However, some knowledge graph representation
models have been proposed to learn knowledge graph embeddings using not
only the facts in the knowledge graph but also additional useful information,
such as entity type, entity description, and logic rules.

In many scenarios, the interactions between entities are inherently associ-
ated with dierent uncertainties, frequencies, or intensities. For example, the
interaction possibility between two proteins and the importance of friends
in a social network can vary greatly. Weighted knowledge graphs extend
deterministic knowledge graphs by associating a weight with the triples to
formalize the weighted interactions between entities. Many weighted knowl-
edge graphs have been published, which has led to an increased focus on the
weighted knowledge graph and its embeddings.

Our research focuses on two main areas: learning better representations
from weighted knowledge graphs, and utilizing these representations in down-
stream tasks. To improve representations from weighted knowledge graphs,
we explore weight-aware knowledge graph embedding and weighted knowledge
graph embedding. Weight-aware knowledge graph embedding involves learn-
ing embeddings for a deterministic knowledge graph with the aid of weight
information from triples. However, the learned embedding cannot deduce
the weight of the triple. On the other hand, weighted knowledge graph em-
bedding is used to embed the weighted knowledge graph, with the ability to
deduce not only the triples but also their weights.

To extend the existing embedding models for deterministic knowledge
graphs to learn weight-aware embeddings and weighted embeddings from

weighted knowledge graphs, we propose two general frameworks, WaExt and
WeExt, respectively. To evaluate the learned embeddings from weighted
knowledge graphs, we introduce two evaluation tasks, weight-aware link pre-
diction and weight-aware triple classication for weight-aware knowledge
graph embedding, and weighted link prediction for weighted knowledge graph
embedding. For utilizing the representations in downstream tasks, we pro-
pose a framework KGWE to ne-tune word embeddings using knowledge
graph embeddings.

The three proposed frameworks outperform the baselines on the target
tasks, indicating their eectiveness in improving the performance of knowl-
edge graph embeddings. Furthermore, the evaluation tasks introduced in
this study provide a more comprehensive evaluation of these embeddings.

Keywords: Articial Intelligence, Weighted Knowledge Graph, Knowl-
edge Graph Embedding, Evaluation Tasks, Word Embedding.

2

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Knowledge Graph and Knowledge Graph Embedding . 1
1.1.2 Fact-alone Embedding Models 2
1.1.3 Embedding Models with Additional Information 4

1.2 Motivation . 6
1.3 Main Contribution . 7
1.4 Structure of the Dissertation 8

2 Preliminary 11
2.1 Knowledge Graph . 11

2.1.1 Knowledge . 11
2.1.2 Graph . 13
2.1.3 Knowledge Graph . 14

2.2 Knowledge Graph Representation Learning 16
2.2.1 Knowledge Representation 16
2.2.2 Knowledge Graph Representation Learning 17

3 Weight-aware Knowledge Graph Embedding & Evaluation
Tasks 20
3.1 Problem Statement . 20
3.2 Related Work . 23

3.2.1 Non-weight-aware Knowledge Graph Embedding Model 23
3.2.2 Weight-aware Knowledge Graph Embedding Model . . 23
3.2.3 Evaluation Task for Knowledge Graph Embeddings . . 24

3.3 Methodology . 25
3.3.1 Weight-aware Link Prediction Task 25
3.3.2 Weight-aware Triple Classication Task 27
3.3.3 Weight-aware Extensions of the Base Models 29

3.4 Experiment and Result . 31
3.4.1 Experiment Setting . 31

1

3.4.2 Base Models . 33
3.4.3 Result on Link Prediction and Weight-aware Link Pre-

diction . 35
3.4.4 Result on Triple Classication andWeight-aware Triple

Classication . 36
3.5 Summary . 38

4 Weighted Knowledge Graph Embedding 45
4.1 Problem Statement . 45
4.2 Related Work . 49

4.2.1 Deterministic Knowledge Graph Embedding Models . . 49
4.2.2 Weighted Knowledge Graph Embedding Models 49
4.2.3 Evaluation Tasks for Knowledge Graph Embedding Mod-

els . 51
4.3 Methodology . 52

4.3.1 WeExt . 52
4.3.2 Training Protocol . 54
4.3.3 Weighted Link Prediction Task 55

4.4 Experiments and Results . 56
4.4.1 Experiment Setting . 56
4.4.2 Base Models . 58
4.4.3 Results on Link Prediction 60
4.4.4 Results on Weight Prediction 62
4.4.5 Result on Weighted Link Prediction 63

4.5 Summary . 63

5 Knowledge-guided Word Embedding Fine-tuning Model 67
5.1 Problem Statement . 67
5.2 Related Works . 70
5.3 KGWE: Knowledge-Guided Word Embedding Fine-tuning

Model . 72
5.4 Experiments and Results . 74

5.4.1 Training Data and Experimental Setting 74
5.4.2 Knowledge Graph Embedding Models 78
5.4.3 Word Similarity Task 79
5.4.4 Results on Word Similarity Task 80
5.4.5 Results on Relation Classication Task 82
5.4.6 Results on Sentence Level Polarity Classication 82
5.4.7 Case Analysis . 82

5.5 Conclusion and Future Works 84

2

6 Conclusion and Future Work 85
6.1 Conclusion . 85
6.2 Future Work . 86

List of Figures

1.1 An illustration of TransE. 2
1.2 An illustration of RESCAL. 3
1.3 An example of the weighted knowledge graph taken from Con-

ceptNet. 6
1.4 An illustration of Chapter 3, Chapter 4, and Chapter 5. 10

2.1 An illustration of the graph. 14
2.2 An illustration of the simple graph. 14
2.3 An illustration of the knowledge graph embedding. 18
2.4 An illustration of the relations between information, knowl-

edge, knowledge graphs, and knowledge graph embeddings. . . 19

3.1 An illustration of a knowledge graph (a) and a weighted knowl-
edge graph (b) taken from ConceptNet. The weight value
in (b) indicates how believable the information is. A typical
weight is 1.0, and the number is higher when the information
comes from more sources or more reliable sources. 21

3.2 An illustration of WaExt. (a) is the process of base model,
while (b) is its weight-aware extension. 30

4

3.3 The correlation of the weight and the triple degree in CN15K,
NL27K, and PPI5K. The degree of a triple is the average of
the degree of the head entity and the degree of the tail entity.
The weights of the triples lay in [0,1], and the degrees lay in [0,
7300]. We divide the intervals of weight and degree into 200
subintervals, respectively. Count the number of triples falling
in this interval, and record it as num(tri). The center of the
circle represents the center of weight and center of degree of
the interval. The color is dened by RGB=(1-num(tri)/25541,
num(tri)/25541, 0), where num(tri)/25541 is the normalized
number of triples. The opaque and the radius of each circle
represent num(tri), where higher opaque and bigger radius
mean more triples here. If the color of an area is greener or
denser, there are more triples in the subinterval of the centers
of the circles. 32

3.4 (a) Entity coverage and (b) relation coverage of the training
set of the dataset. There are eight and four out-of-distribution
relations in the NL27K testing set and validation set, respec-
tively. 33

3.5 The activation functions with static base and dynamic base. . 34
3.6 Performance of link prediction (MRR) on CN15K, NL27K and

PPI5K. 40
3.7 Performance of weight-aware link prediction (WaMRR) on

CN15K, NL27K and PPI5K. 41
3.8 Distributions of correctly predicted Hits@100 triples on CN15K,

NL27K and PPI5K. 42
3.9 Rank distributions of all testing triples in CN15K, NL27K and

PPI5K. 43

4.1 Knowledge graph embedding 46
4.2 Knowledge graph embedding 47
4.3 The performance of UKGE on NL27K. The red line is the

mean reciprocal rank in link prediction. The blue line is the
mean square error in weight prediction. 48

4.4 The framework of WeExt. The green components are the com-
ponents of the base KGC model. 52

4.5 An example of the proposed framework based on TransH. . . . 54
4.6 The weight distribution in the datasets. 56

5

4.7 An illustration of how UKGE infers weights from the plau-
sibility of triples. Given two triples A=⟨(h1, r1, t1) , 04⟩ and
B=⟨(h2, r2, t2) , 08⟩, the non-linear function is sigmoid func-
tion: s(t) = 1

1+e−1 . Let a well-trained UKGE model predict
the plausibility of the given triples, the plausibility of triple-A
will be -0.4 and plausibility of triple-B will be 1.4. 60

4.8 An illustration of the weight distribution of triples correctly
predicted by UKGE and DistMultExt on NL27K and PPI5K. 61

5.1 An example of entity-description pairs extracted from Freebase. 68
5.2 The proposed model architecture of KGWE 72
5.3 The structures of BoW-based encoder and RNN-based encoder. 74
5.4 Performance on each word similarity task during the training . 81

List of Tables

3.1 Statistics of the datasets. #Ent denotes the number of the
entities. #Rel denotes the number of the relations. #Tri
denotes the number of the triples. INR denotes the interval of
the weights, i.e, the biggest weight minus the smallest weight.
Avg(deg) denotes the average of the degree of the entities and
Med(deg) denotes the median of the degree of the entities. . . 31

3.2 Results of base models and their weight-aware extension mod-
els on the link prediction task. sta. means the extended
models with static base. dyn. means the extended models
with dynamic base. 37

3.3 Results of FocusE on the link prediction task. 38
3.4 Results of base models and their weight-aware extension mod-

els on the weight-aware link prediction task. sta. means the
extended models with static base. dyn. means the extended
models with dynamic base. 39

3.5 Results of base models and their weight-aware extension mod-
els on the triple classication task and weight-aware triple clas-
sication task. sta. means the extended models with static
base. dyn. means the extended models with dynamic base. . 44

4.1 Statistics of weighted knowledge graphs. #Ent denotes the
number of the entities, #Rel denotes the number of the re-
lations, #Tri denotes the number of the triples, INR denotes
the interval of the weights, Avg(d) denotes the average of the
degree of the entities, and Med(d) denotes the median of the
degree of the entities. 58

4.2 Results on link prediction . 64
4.3 Results on weight prediction 65
4.4 Results on weighted link prediction 66

5.1 Word similarity results of KGWE with the Bow-based encoder
on GloVe.6B.50d . 74

7

5.2 Word similarity results of KGWE with the Bow-based encoder
on GloVe.6B.100d . 75

5.3 Word similarity results of KGWE with the Bow-based encoder
on GloVe.6B.200d . 75

5.4 Word similarity results of KGWE with the Bow-based encoder
on GloVe.6B.300d . 75

5.5 Word similarity results of KGWE with the Bow-based encoder
on Word2Vec 300d . 76

5.6 Statistical information of the dataset used in our experiment . 76
5.7 Statistical information of the lexicons used by Retrotting . . 77
5.8 Experiment results on relation classication 77
5.9 Statistics of the training data 77
5.10 Word similarity result of KGWE with a RNN-based descrip-

tion encoder on GloVe.6B.50d 81
5.11 Experiment results on sentence level polarity classication . . 83
5.12 An example on relation classication 83
5.13 An example on sentence polarity classication 83
5.14 The entity-description pair involved with interview 84

Chapter 1

Introduction

1.1 Background

1.1.1 Knowledge Graph and Knowledge Graph Em-
bedding

The knowledge graph (KG) is a set of knowledge organized in labeled simple
graphs, where the vertices represent entities, and the edges represent rela-
tions between the entities. Numerous large-scale knowledge graphs have been
released, such as DBpedia [1], NELL [2], ConceptNet [3], YAGO [4], Free-
base [5], STRING [6], Probase [7], involving general knowledge, knowledge for
natural language understanding, biology knowledge, etc. Knowledge graphs
are widely used in various applications and elds [8, 9, 10]. Typical applica-
tions include question-answering systems [11, 12, 13, 14, 15], recommendation
systems [16, 17, 18, 19, 20], and information retrieval [21, 22, 23, 24], etc. The
elds involved include medical science [25, 26], cybersecurity [27, 28, 29, 30],
nance [31, 32, 29, 30], and education [33, 34], etc.

The knowledge graph not only attracts researchers’ attention but also
contributes signicant economic value. An increasing number of companies
are constructing and utilizing knowledge graphs in their business. Google,
for example, leverages the knowledge graph to improve the accuracy of web
searches, gain a better understanding of user queries, and recommend rel-
evant things to the query to users [35]. Alibaba utilizes knowledge graphs
to better understand consumers’ needs [36], while LinkedIn uses them to
optimize advertisements and recommend jobs and people to members [37].

In order to improve the quality of knowledge graphs and utilize them
in deep learning models, a series of problems have been studied, such as
knowledge graph embedding (KGE) [38, 39], knowledge graph completion

1

(KGC) [40], knowledge graph alignment (KGA) [41], etc. The critical core
problem of leveraging knowledge graphs in deep learning models is how to
represent them with a set of dense vectors in a low-dimensional vector space,
which is the objective of knowledge graph embedding. KGE models encode
entities as low-dimensional vectors and relations as operations on these enti-
ties to preserve the structure of knowledge graphs in the embedding space. In
recent years, KGE models have ourished and facilitated multiple knowledge-
driven tasks [13, 14, 16, 17, 19, 22].

1.1.2 Fact-alone Embedding Models

he
ad
en
tit
y

relation

tail en
titytra

nsl
ate
d h
ead

ent
ity

− ⋅
plausibility

Figure 1.1: An illustration of TransE.

Most currently available knowledge graph embedding models only use the
triples provided by the knowledge graphs to embed entities and relations.
These models assign high plausibility to positive triples and low plausibility
to negative triples. We refer to these models as fact-alone knowledge graph
embedding models, following [9]. Knowledge graph embedding models can be
further divided into translational distance models and bilinear models based
on the dierent interaction modes of entities and relationships in one triple.

The translational distance model, including TransE [42], TransH [43], and
TransR [44], regards the relation as a translation operation from the head
entity to the tail entity, and utilizes a distance-based scoring function to
measure the plausibility of triples. It is worth noting that a vector with a
xed magnitude and direction but an unxed point of application is called a
free vector, while a vector with a unique magnitude, direction, and point of

2

application is called a xed vector. The translational distance model repre-
sents entities using xed vectors and relations using free vectors, which carry
distinct implications. The free vectors are utilized to represent translation
operations towards the xed vectors in the vector space, highlighting the
distinct meanings attributed to entities and relations within the model.

The bilinear models, such as RESCAL [45], DistMult [46], and HolE [47],
are based on tensor factorization and model the interaction of entities and
relations by vector-matrix product. These models obtain high expressive
power due to the use of a full-rank matrix for each relation in the scoring
functions, which are in the form of h⊤Wrt.

Figure 1.1 illustrates TransE, the originator of translational distance mod-
els. In TransE, entities are represented as vectors in the target embedding
space. The relation is modeled as a translation operation from the head en-
tity to obtain the translated head entity. The plausibility of the triple is then
determined as the negative distance between the translated head entity and
the tail entity.

he
ad
en
ti
ty

tail entity

relat
ion

⊤

=⋅⋅

head entity tail entityrelation

matrix of
possible triples

Figure 1.2: An illustration of RESCAL.

Figure 1.2 illustrates RESCAL, the originator of bilinear models. In
RESCAL, plausibilities of all possible triples (h, r, t) ≡ E ∗ R ∗ E are repre-
sented as elements of a 3-dimensional plausibility matrix, where 1 indicates
positive triples and 0 indicates negative triples. Entities are represented as
vectors and relations are represented as 2-dimensional matrices in the tar-
get embedding space. RESCAL learns the entity embeddings and relation
matrix by decomposing the 3-dimensional plausibility matrix.

3

1.1.3 Embedding Models with Additional Information

Besides the triples provided by knowledge graphs, there is a wide range of
additional information that can be utilized to enhance the performance of
fact-alone embedding models. The available additional information includes
entity types, textual descriptions, as well as logical rules.

Type-aided KGE

In heterogeneous graphs [48] or knowledge graphs that contain relation is-
a, the type of majority entities are known. For example, for a triple

(Isaac Newton, works-written,Optics)

its related type information is also given:

(Isaac Newton, is-a, physicist)

(Optics, is-a, book)

The fact-alone models regard the type of entities as an ordinary relation and
the corresponding triples as standard training examples, which can not make
full use of the type information of the entities.

SSE [49] introduces type information to knowledge graph embeddings by
requiring entities of the same type to be close to each other in the embedding
space. TKRL [50] incorporates hierarchical entity categories and multiple
category labels to knowledge graph embeddings through type-specic entity
projections. [51] utilizes entity type as constraints in the training phase to
exclude negative examples with incorrect entity types.

Description-aided KGE

In some knowledge graphs, entities have concise descriptions that contain
rich semantic information about them. In addition to entity descriptions
stored in knowledge graphs, textual descriptions, such as Wikipedia articles,
can also be useful for training knowledge graph embeddings. For example,
in Freebase, the entity Dalian has the following description:

Dalian is a major city and seaport in the south of Liaoning
province. It is the southernmost city of Northeast China and
China’s northernmost warm water port, at the tip of the Liaodong
peninsula. Dalian is the province’s second-largest city and has
sub-provincial administrative status; only the provincial capital
is larger. The Shandong peninsula lies southwest across the Bohai

4

Sea; Korea lies across the Yellow Sea to the east. Today a nan-
cial, shipping, and logistics center for Northeast Asia, Dalian has
a signicant history of being used by foreign powers for its ports:
Dalian proper was previously known as both Dalny and Dairen
but it was better known as both Port Arthur and Ryojun from
its Lüshunkou district. In 2006, Dalian was named China’s most
livable city by China Daily.

NTN [52] learns word vectors from an auxiliary news corpus and initial-
izes the entity embeddings by averaging the word embeddings contained in
the name of the entity. [53] proposed a joint model that aligns the given KG
with an auxiliary text corpus and conducts KG embedding and word embed-
ding jointly. The alignment mechanisms include alignment by entity names,
Wikipedia anchors, and entity descriptions. By aligning these two types of
information, jointly embedding enables the prediction of out-of-KG entities.
DKRL [54] associates each entity with a structure-based embedding and a
description-based embedding, capturing structural information conveyed in
KG facts and textual information expressed in the entity description, respec-
tively. TEKE [55] annotates entities in a given text corpus and constructs
a co-occurrence network composed of entities and words. TEKE denes an
entity’s textual context as its neighbors in the co-occurrence network and
textual context for a relation as the common neighbors of its head entity
and tail entity. The weighted average of the word embeddings in the textual
context is incorporated into fact-alone embeddings to learn more expressive
entity and relation representations.

Logical rules-aided KGE

Logical rules contain rich background information and have been widely stud-
ied in knowledge representation and reasoning [56]. The logic rules are ex-
tremely useful information for reasoning over knowledge graphs. For exam-
ple, if the triple

(Bei Jing, Capital-Of,China)

and the rule

∀x, y : (x, Capital-Of, y) → (x, Located-In, y)

are known, we can know that (Bei Jing, Located-In,China) is also true.
KALE [57] and [58] represent facts and rules in a unied framework, as

atomic and complex formulae respectively. Each triple is assigned a truth
value according to its plausibility. Logical rules are rst instantiated into

5

ground rules, and then ground rules are then interpreted as complex formulae
constructed by combining triples with logical connectives, and modeled by
t-norm fuzzy logic [59]. The truth value of a ground rule is a composition
of the truth values of the constituent triples, indicating to what degree the
ground rule is satised.

1.2 Motivation

Planet

Major
Planet

Earth Orbit

Venus

Jupiter

Satellite

is-a
9.38

synonym2.0 syno
nym

2.0

is-a
5.6 is-a 7.38

at-location4.9

Figure 1.3: An example of the weighted knowledge graph taken from Con-
ceptNet.

In addition to the aforementioned additional information, the weight in-
formation of triples has also attracted increasing attention from researchers.
In many scenarios, the interactions between entities inherently are associated
with dierent uncertainties, frequencies, or intensities. Without considering
the specic semantics, we call all numbers representing link strength, uncer-
tainty, and frequency as weights of triples. For example, in a social network,
people interact with all their friends, but especially frequently interact with

6

their close friends. In biology, the possibility of interactions between proteins
is generally proportional to the product of their numbers of interacting part-
ners or degrees. There is an illustration of the weighted knowledge graph in
Figure 1.3.

Many weighted knowledge graphs, such as ConceptNet [3], NELL [2], and
STRING [6], have been published, making triple-weight information receive
increasing focus. Follow [60], to distinguish the knowledge graph from the
weighted knowledge graph, we refer to the knowledge graph without weight
information as the deterministic knowledge graph in the following. Some
embedding models, Such as UKGE [60], PASSLEAF [61], learn weight infor-
mation from the weighted knowledge graphs. FocusE [62] utilizes the weight
information and a nonlinear function to rescale the contribution by each
triple to the total loss to train better knowledge graph embeddings.

However, UKGE and PASSLEAF only adopt low-expressive nonlinear
functions to t the weights of triples, which limits the model’s ability in
weight prediction. UKGE and PASSLEAF are evaluated in link prediction
and weight prediction respectively, which can not show the performance of
the model in these two tasks simultaneously. FocusE rescales the losses on
triples based on their weights using a nonlinear function under the assump-
tion that the importance of the triple varies according to the weight of the
triple. However, FocusE is evaluated only on the non-weight-aware link pre-
diction task, which fails to reect the weight distribution of the correctly
predicted triples.

1.3 Main Contribution

In order to learn more eective knowledge graph embeddings with the aid of
weight information and utilize knowledge graph embeddings to downstream
tasks more eectively, we have done the following works:

• We propose WaExt, a general framework for extending non-weight-
aware knowledge graph embedding models to their weight-aware ver-
sion. We explore more eective nonlinear functions for rescaling the
losses on triples with dierent weights.

• To evaluate the models under the assumption that the importance of
the triple for learning knowledge graph embeddings varies according to
the weight of the triple, we introduce weight-aware link prediction and
weight-aware triple classication tasks. Weight-aware link prediction
and weight-aware triple classication are weight-aware extensions for

7

link prediction and triple classication, aiming for more comprehen-
sively evaluating knowledge graph embeddings learned from weighted
knowledge graphs.

• We propose WeExt, a general framework that extends the deterministic
knowledge graph embedding models to enable them to embed weighted
knowledge graphs. The models extended by WeExt can learn not only
the plausibility of the triple but also the weight of the triple.

• To better evaluate the weighted knowledge embeddings, we introduce
the weighted link prediction task. Unlike the existing works evaluating
the models in link prediction and weight prediction asynchronously,
weighted link prediction evaluates the models’ performance in pre-
dicting the link attached to a weight. Weighted link prediction syn-
chronously reects the performance of the model in predicting links
and predicting weights.

• We propose KGWE, a general framework that can ne-tune word em-
beddings using knowledge graph embeddings. The word embeddings
netuned by KGWE achieves better performance on the word similar-
ity task and several downstream tasks.

1.4 Structure of the Dissertation

The remaining parts of the dissertation are organized as follows:

• Chapter 2 gives the denitions of some essential terminologies including
knowledge, graphs, knowledge graphs, and knowledge graph embed-
ding. We rst discuss the classication of knowledge from the perspec-
tives of philosophy and computer science and clarify the type of knowl-
edge involved in knowledge graphs. To enable researchers with dier-
ent knowledge backgrounds to better understand and utilize knowledge
graphs, we give a compendious denition of the knowledge graph which
contains the most essential factors. We also briey review the develop-
ment of knowledge graphs in the past 40 years.

• Chapter 3 introduces the proposed weight-aware extending framework
WaExt and the evaluation tasks including the weight-aware link predic-
tion task and weight-aware triple classication task. To demonstrate
the eectiveness of the proposed framework, we conduct experiments
on existing representative deterministic knowledge graph embedding
models.

8

• Chapter 4 introduces WeExt, a general framework to encode not only
the plausibility of the triple but also the weight information of the triple
into knowledge graph embeddings. We describe the weighted link pre-
diction task from the evaluation protocol to metrics. We extend two
representative translational distance models and two representative bi-
linear models using WeExt. The extensions achieve competitive per-
formance to the baselines in link prediction, weight prediction, and
weighted link prediction.

• Chapter 5 explores a possible approach to utilize the knowledge graph
embeddings in downstream tasks. We propose KGWE, a general frame-
work to ne-tune the word embeddings under the guide of knowledge
graph embeddings.

• Chapter 6 reviews the conducted works and their signicance and dis-
cusses further directions.

Figure 1.4 shows an illustration of Chapter 3, Chapter 4, and Chapter 5.

9

0.
5

0.2 0.1

0.9

0.6 0.7

0.
3

weighted
knowledge
graph

knowledge
graph

WaExt
learn knowledge
graph embedding
aided by triple

weight information

WaLP &WaTC
evaluation task for
knowledge graph

embeddings with awareness
of the weight of triples

WeExt
learn weighted
knowledge graph
embeddings

WLP
evaluation task for the
weighted knowledge
graph embeddings

knowledge
graph

embeddings

weighted
knowledge

graph
embeddings

0.
5

0.2 0.1

0.9

0.6 0.7

0.
3

deduce

deduce

knowledge
graph

embeddings

word
embeddings

KGWE
fine-tune word

embeddings using
knowledge graph
embeddings

fine-tuned word
embeddings

Chapter 3

Chapter 4

Chapter 5

Figure 1.4: An illustration of Chapter 3, Chapter 4, and Chapter 5.

10

Chapter 2

Preliminary

2.1 Knowledge Graph

2.1.1 Knowledge

Knowledge is familiarity with objects in the real world, understanding facts
in the real world, or practical skills. Knowledge has been widely discussed
by philosophers and computer scientists [63, 64, 65, 66, 67, 68]. We sort out
the various existing denitions of knowledge and try to give a denition of
knowledge from a computer science researcher’s perspective.

Philosophical Perspective

From a philosophical perspective, there are three dierent kinds of knowl-
edge: acquaintance knowledge, propositional knowledge (knowledge-that),
and knowledge-how.

Acquaintance knowledge [63, 65] can be dened by Denition 1:

Denition 1 (Acquaintance Knowledge). We have acquaintance with any-
thing of which we are directly aware, without the intermediary of any process
of inference or any knowledge of truths.

For example, we know our mothers, our friends, our pets, etc., by being
acquainted with them.

Propositional knowledge [64] can be dened Denition 2:

Denition 2 (Propositional Knowledge). Let S be a knowing subject. p is
a piece of propositional knowledge if and only if:

• p is true.

11

• S is justied in believing that p.

• S believes that p.

Propositional knowledge is knowledge of facts. We acquire propositional
knowledge when we learn that, for example, we know Bei Jing is the capital
of China.

Knowledge-how [69] can be dened by Denition 3:

Denition 3 (Knowledge-how). Knowledge-how is the specic knowledge
one possesses when one can truly be described as knowing how to do some-
thing.

Knowledge-how is knowledge of ability and experience. We acquire knowledge-
how about playing ping-pong (table tennis) when we truly know how to play
ping-pong.

Computer Science Perspective

From the knowledge level [68] perspective, an intelligent system is described
as an agent that processes its knowledge to determine the actions based on
the principle of rationality to take to achieve its goals. The principle of
rationality is that if an agent has knowledge that one of its actions will lead
to one of its goals, then the agent will select that action. Knowledge, as the
medium at the knowledge level, is dened as whatever can be ascribed to an
agent, such that its behavior can be computed according to the principle of
rationality.

Compared with the more general denition at the knowledge level, the
denition of knowledge in knowledge engineering [66, 67, 70] is more detailed:

Denition 4 (Knowledge). Knowledge is a human understanding of a sub-
ject matter that has been acquired through proper study or practice. Knowl-
edge can be divided into explicit knowledge and tacit knowledge:

• Explicit knowledge: the knowledge that is easy to articulate, capture,
and codify.

• Tacit knowledge is generally personal, subjective, resided in people’s
heads or muscle memory and is hard to express and capture.

Explicit knowledge is derived from information, which is derived from
data. Explicit knowledge is usually people’s cognition of objects, while im-
plicit knowledge is mainly human practical skills and experience.

12

Explicit knowledge in computer science corresponds to propositional knowl-
edge in philosophy, which is the province of knowledge graphs. Tacit knowl-
edge is more like knowledge-how, which is an area that deep learning models
are good at. For example, the medical imaging models based on deep learning
are comparable to experienced doctors [71].

2.1.2 Graph

The graph is a concept in mathematics used to model pairwise relations
between objects. The graph data structure in computer science is an im-
plementation of the graph in mathematics. Adopting the graph as the data
structure of knowledge brings a number of benets when compared with
relational models. For example, graphs provide a concise and intuitive ab-
straction for a variety of domains [72]. Graphs also allow for postponing the
denition of a schema and organizing the data in a more exible manner [73].

Let Pk(V) be the set of all k-element subsets of the set V , the graph can
be dened as [74]:

Denition 5 (Graph). A graph is a triple G = (V,E,ϕ) where

• V is a nite set of vertices,

• E is a nite set of edges,

• ϕ is a function with domain E and codomain P2(V).

According to Denition 5, a graph allows more than one edge between
two vertices. For example, in a trac network graph in a region, there may
be multiple roads between two cities. An illustration of a graph is shown in
Figure 2.1.

A graph allows multiple edges between two vertices. For example, there
may be multiple roads between two cities in a trac graph. A simple graph
removes multiple edges between two vertices in a graph, leaving only one of
the edges:

Denition 6 (Simple Graph). A simple graph G is a pair G = (V,E) where

• V is a nite set, called the vertices of G,

• E is a subset of P2(V) (i.e., is a set E of two-element subsets of V),
called the edges of G.

Denition 6 describes the essential factors of a simple graph: a set of ver-
tices and a set of non-repetitive edges connecting the vertices. An illustration
of a simple graph is shown in Figure 2.2.

13

A
B

C

D E F

G H






 




ℎ





Figure 2.1: An illustration of the graph.

A
B

C

D E F

G H






 






Figure 2.2: An illustration of the simple graph.

2.1.3 Knowledge Graph

The knowledge graph is a simple graph representing knowledge, in which
the vertices represent entities and the edges represent relations between en-
tities. The term knowledge graph is loosely used by researchers from various
research backgrounds without a unied denition. We try to give a com-
pendious denition of the knowledge graph as below without considering the
characteristics of the research domain.

Denition 7 (Knowledge Graph). A knowledge graph is a set of triples
KG = (h, r, t) where

14

• the triple (h, r, t) represents a piece of knowledge that indicates the re-
lation between h and t is r,

• h ∈ E and t ∈ E represent head entity and tail entity, respectively,

• r ∈ R represents the relation between head entity and tail entity,

• E is a nite set of entities,

• R is a nite set of relations.

The facts in the real world vary over time. The temporal knowledge graph
utilizes timestamps to identify the validity of triples.

Denition 8 (Temporal Knowledge Graph). A temporal knowledge graph is
a set of temporal triples T KG = ⟨(h, r, t), s⟩ where

• the temporal triple ⟨(h, r, t), s⟩ represents a piece of temporal knowledge
that indicates the relation between h and t is r and the timestamp s of
the knowledge,

• h ∈ E and t ∈ E represent head entity and tail entity, respectively,

• r ∈ R represents the relation between head entity and tail entity,

• s = τ or (τs, τe) ∈ T represents the time or the time interval of the
knowledge,

• E is a nite set of entities,

• R is a nite set of relations.

• T is a nite set of timestamps.

The edges of the knowledge graph can also be assigned dierent weights to
identify the uncertainty of dierent triples [75], condence score [76], degree
of relations [7], edge importance [77], called weighted knowledge graph.

Denition 9 (Weighted Knowledge Graph). A weighted knowledge graph is
a set of triples WKG = ⟨(h, r, t), w⟩ where

• the weighted triple ⟨(h, r, t), w⟩ represents a piece of weighted knowledge
that indicates the relation between h and t is r and the weight of the
knowledge,

• h ∈ E and t ∈ E represent head entity and tail entity, respectively,

15

• r ∈ R represents the relation between head entity and tail entity,

• w ∈ R≥0 represents the weight of the knowledge,

• E is a nite set of entities,

• R is a nite set of relations.

Note that the knowledge graph mentioned in this thesis without addi-
tional explanation is knowledge graphs including vanilla knowledge graphs,
temporal knowledge graphs, and weighted knowledge graphs. We refer to a
vanilla knowledge graph as a deterministic knowledge graph to distinguish it
from temporal knowledge graphs and weighted knowledge graphs.

2.2 Knowledge Graph Representation Learn-

ing

2.2.1 Knowledge Representation

Knowledge Representation [78, 79] can be dened by Denition 10:

Denition 10 (Knowledge Representation). Knowledge representation is to
represent knowledge in a formal approach that can be utilized by the computer.

There are four main knowledge representation approaches: logical rep-
resentation [80, 81], frame representation [82], and production rules [83],
knowledge graphs.

The logical representation is to represent knowledge using logic, such as
rst-order predicate logic, description logic, modal logic, and non-monotonic
logic.

A frame is an information structure with a frame name and a number of
slots. The slot is the holder of information concerning a particular item called
the slot ller. The slot llers map the objects in the domain of discourse.
A frame expresses a concept involving the various entities that appear as
slot-llers of its slots.

The production rules are also known as situation-action rules, widely used
in expert systems. The rules are the IF-THEN-ACTION rules: if the clause
is true, then the action will be performed. Production rules are clear, simple,
and easy to incorporate additional knowledge, modify knowledge, and delete
knowledge as the rules are independent. But as the knowledge base grows,
it becomes dicult to keep track of the rules. It is hard to handle knowledge
about cause and eect using production rules.

16

2.2.2 Knowledge Graph Representation Learning

Representation learning replaces manual feature engineering and allows a
machine to both learn the features and use them to perform a specic task. In
machine learning, representation learning [84] can be dened by Denition 11.

Denition 11 (Representation Learning). Representation learning is to au-
tomatically discover the necessary representations from raw data for a specic
task.

Knowledge graph representation learning is loosely used by a mount of
knowledge graph embedding models [85, 86, 87, 54, 51] to represent repre-
sentation learning on knowledge graphs.

Knowledge graph embedding is to represent a knowledge graph using a
set of vectors in low-dimensional space. This set of vectors, called knowledge
graph embeddings, should contain the essential structural information of the
knowledge graph. We give a compendious denition in Denition 12.

Denition 12 (Knowledge Graph Embedding). Given a knowledge graph
KG, knowledge graph embedding is to nd a set of embeddings V = (Ve,Vr),
a function emb, and a function emb−1 that satisfy V = emb(KG) and
KG = emb−1(V) where

• emb is the embedding function which can be used to embed a knowledge
graph to get the embeddings,

• emb−1 is the deduction function that can deduce the knowledge graph
according to its embeddings,

• V is the vectors and matrices used for representing the discrete items
in KG, where Ve ∈ Rn is vectors for representing entities and Vr ∈ Rn

(or Vr ∈ Rn ×Rn) is vectors (matrices) for representing relations.

For deterministic knowledge graphs, deducing the knowledge graph is de-
ducing the structure of the knowledge graph, i.e., deducing the triples in the
knowledge graph. But for weighted knowledge graphs, deducing the weighted
knowledge graph means not only deducing the triples but also deducing the
weight of the triples. Figure 2.3(a) shows an illustration of learning embed-
ding from the knowledge graph, and Figure 2.3(b) is deducing the knowledge
graph from its embeddings.

The target tasks of knowledge graph embedding, such as link prediction,
node classication, and triple classication, highly overlap with the target
tasks of knowledge graph representation learning, requiring similar features

17

he
ad
en
tit
y

relation

tail en
tity



embed

(a) learn embeddings from the knowledge graph

he
ad
en
tit
y

relation

tail en
tity

!"

deduce

(b) deduce the knowledge graph from its embeddings

Figure 2.3: An illustration of the knowledge graph embedding.

learned from knowledge graphs. In this thesis, we regard knowledge graph
representation learning and knowledge graph embedding as one task.

Knowledge representation is the representation of the knowledge stored
in people’s heads in a way that computers can understand. The knowledge
graph is one of the results of knowledge representation. Knowledge graph
representation learning is the representation of the knowledge graph in a way
that deep learning models can utilize. From this perspective, the knowledge
graph representation learning is a secondary representation of knowledge.
Figure 2.4 shows an illustration of the relations between information, knowl-
edge, knowledge graphs, and knowledge graph embeddings.

18

Information

Bei Jing is
the capital
of China

(Bei Jing, Capital-Of, China)

knowledge graph
representation learning

Knowledge Knowledge Graph Knowledge Graph Embeddings

Be
i J
in
g

Capital-Of

Chi
na

learn knowledge
representation

Figure 2.4: An illustration of the relations between information, knowledge,
knowledge graphs, and knowledge graph embeddings.

19

Chapter 3

Weight-aware Knowledge
Graph Embedding &
Evaluation Tasks

3.1 Problem Statement

Knowledge graphs (KG) store real-world knowledge in the form of graphs,
promoting the development of articial intelligence. Many large-scale knowl-
edge graphs, such as DBpedia [1], YAGO [88], Wikidata [89], NELL [76],
and KnowledgeVault [90] have been published. With the vigorous develop-
ment of KGs, they have been widely used in several real-world applications,
from information retrieval [91], question answering [92, 93], to recommender
systems [94, 95], and domain-specic tasks [96, 97]. Figure 3.1(b) is an illus-
tration of a knowledge graph.

Facts encoded in knowledge graphs (KG) are mostly formalized as a set
of triples (h, r, t), in which h denotes the head entity, t denotes the tail entity,
and r denotes the relation between h and t. As two of the prominent tasks,
link prediction (LP) and triple classication (TC) are widely adopted for
evaluating the quality of knowledge graph embeddings (KGE). Informally,
LP is dened as: given an incomplete triple like (h, r, ?) or (?, r, t), the
task is to predict the missing entity to complete the triple [98]. In addition,
TC is dened as: given an unseen triple (h, r, t), this task is to discriminate
the truth value of the triple.

However, facts in the real world are not discrete items that are either
true (1) or false (0). People weigh dierent facts and pay more attention
to important facts. However, deterministic knowledge graphs treat dierent
facts equally, which limits the expressive ability of knowledge graph embed-

20

snake
AtLocation

shark wiener
dog

lizard

At
Lo
ca
tio
n

At
Lo
ca
tio
n AtLocation

pet
shop

snake
AtLocation
1.0

shark wiener
dog

lizard

At
Lo
ca
tio
n

1.0

At
Lo
ca
tio
n

1.0

AtLocation
4.0

pet
shop

(a) (b)

Figure 3.1: An illustration of a knowledge graph (a) and a weighted knowl-
edge graph (b) taken from ConceptNet. The weight value in (b) indicates
how believable the information is. A typical weight is 1.0, and the number
is higher when the information comes from more sources or more reliable
sources.

ding (KGE) models. For example, the fact (Donald Trump, president,

USA) is much more important for learning the embedding of "Donald Trump"

than the fact (Donald Trump, pseudonym, John Barron). Few people care
about a presidential pseudonym. (Donald Trump, pseudonym, John Barron)

is, of course, a fact, but it is insignicant.
Figure 3.1 illustrates how weights collaborate with triples. Figure 3.1(a)

shows a deterministic knowledge graph, which suggests that snakes, lizards,
sharks, and wiener dogs are likely to appear in pet shops. However, this
creates an illusion that lizards and sharks are common pets in pet stores like
wiener dogs, which is apparently caused by missing weight information. In
contrast, Figure 3.1(b) shows a weighted knowledge graph where the weight
of the triple (wiener dog, AtLocation, pet shop) is signicantly higher
than the weight of the other three triples, indicating that wiener dogs are
more likely to appear in a pet shop than the other animals. The weights are
obviously useful for learning embeddings for the entities.

Weighted knowledge graphs (WKG) generalize deterministic KGs by as-
sociating a weight to each triple. Figure 3.1 (b) is an illustration of a WKG,

21

where the weights between two entities are statistics of the co-occurrence of
these two entities in the Wikipedia page of Donald Trump. This formalism
have been used to represent uncertainty [75], condence score [76], degree
of relations [7], edge importance [77], and even out-of-band knowledge [99]
in a growing number of scenarios. One prominent application of weighted
triples is to model the interactions between entities, such as, the interactions
of proteins in STRING [99] and the co-occurrence of concepts in Probase [7].
The weighted knowledge graphs could also enhance many natural language
processing models in several downstream tasks, such as inferring basic-level
of categorization for knowledge-driven applications [100] and interpreting
keywords using WKG for concept-based web searching [101].

Nevertheless, LP and TC do not discriminate the weights of triples and
equally deal with the predicted triples with high weights and those with low
weights, to the detriment of evaluation eectiveness. However, in many real-
world scenarios of using weighted knowledge graphs, it is important to distin-
guish the triples based on their weights. For example, [102] demonstrates that
protein-protein interaction networks have degree-weighted behavior, whereby
the probability of interaction between two proteins is generally proportional
to the product of their numbers of interacting partners or degrees. In this
case, LP and TC cannot evaluate the real performance of the KG embed-
dings.

Twofold contributions

Firstly, to ll the aforementioned gap, this section introduces a generalized
formalization of LP called the weight-aware link prediction task (WaLP) and
a generalized formalization of TC called the weight-aware triple classication
task (WaTC). According to their denitions (cf. Section 3.3), these two tasks
can evaluate the performance of the knowledge graph embedding model that
involves the weights of the triples. In WaLP and WaTC, correctly predicting
a triple and classifying a triple do not equally contribute to the result but
they contribute based on the weight of each triple. If two knowledge graph
embedding models correctly predict the same number of triples, the one that
can predict more triples with high weights is regarded as a superior one.

Secondly, to demonstrate the eectiveness of the proposed methodWaExt,
we extend four base knowledge graph embedding models, namely TransE [42],
TransH [43], ComplEx [47] and DistMult [103] by generalizing the based mod-
els with weights for WaLP and WaTC. Our extensive experiments reveal that
the weight-aware extension of their based model outperforms the baselines
on LP, TC, WaLP, and WaTC tasks, showing that emphasizing high-weight
triples can lead to better performance of knowledge graph embeddings.

22

3.2 Related Work

3.2.1 Non-weight-aware Knowledge Graph Embedding
Model

Nonweight-aware knowledge graph embedding models [9] are designed for
knowledge graphs without weights, focusing on encoding facts in knowledge
graphs. According to dierent modeling of the interaction between entities
and relations, deterministic knowledge graph embedding models can be di-
vided into translational distance models and bilinear models.

Translational distance models

Translational distance models, such as TransE [42] and TransH [43], adopt
distance-based scoring functions. Translational distance models treat the en-
tities and relations as vectors and operations to vectors in the representation
space, respectively. Distance-based scoring functions measure the plausibil-
ity based on the distance between the head entity and the tail entity that
has been operated by the specic relation.

Semantic matching models

Semantic matching models, such as DistMult [103] and ComplEx [104], treat
entities and relations as vectors and interactions of vectors, respectively.
They adopt similarity-based scoring functions, which measure plausibility
of facts based on the similarity of the head entity and the tail entity under a
specic interaction.

3.2.2 Weight-aware Knowledge Graph Embedding Model

FocusE [62] introduces an add-on layer for non-weight-aware knowledge graph
embedding models to enable them to focus on high-weight triples. Regardless
of the semantics of weights used in the literature, FocusE only considers the
weight value associated with each link, under the assumption that weights
intensify or mitigate the probability of the existence of a link. FocusE is
adapted between the scoring and loss layers to modulate the output of the
scoring layer based on the weights of the triples, to obtain weighted losses so
that FocusE can learn embeddings from training triples with high weights.
For a given positive weighted triple l+ := ⟨(h, r, t), w⟩, its corresponding
negative triple is l−, the score of a weighted triple given by FocusE layer is

h (l) = α · ln
(
1 + ef(l)

)

23

where f (l) is the scoring function of the base model and the modulating
factor α is

α =

{
β + (1− w)(1− β), if l+

β + w(1− β), if l−

The hyper-parameter β ∈ [0, 1]. The loss function is

L = −
∑

t+,t−

log
eh(t

+)

eh(t+) + eh(t−)

3.2.3 Evaluation Task for Knowledge Graph Embed-
dings

Link prediction

Link Prediction (LP) is the task of predicting the existence of a relation
between two entities or predicting the missing another entity given an entity
and a relation in graph structural data. LP can be adopted to predict friend
relation among users in a social network [105], predict co-author relation in
a citation network [106], and predict interactions between genes and proteins
in a biological network [107].

Mean rank (MR) [108], mean reciprocal rank (MRR) [109] and Hits@N [42]
are widely used for evaluation. For each testing triple, the head is removed
and replaced by each of the entities of the dictionary in turn. The scores
of those corrupted triples are rst computed by the models and then sorted
by ascending order; the ranking of the correct entity is nally stored. This
whole procedure is repeated while removing the tail instead of the head. MR
calculates the mean of those predicted ranks, MRR calculates the mean of
reciprocal of the ranks, and the Hits@N calculates the proportion of correct
entities ranked in the top N.

Triple classication

The triple classication task (TC) [52] is dened as binary classication that
decides whether the weight of a given triple l := (h, r, t) is strong or not.
A triple l is considered as strong if its condence score is above a specied
threshold τ . The representation models need to distinguish triples in a KG
from negative links and high-condence triples from low-condence ones.
The test set consists of triples from a KG and randomly sampled negative
links equally, and is divided into two groups: strong and weak/false, by their
ground truth condence scores. A testing triple l is strong if l is in the KG

24

and the weight of l is bigger than τ , otherwise weak/false. F1 score and
accuracy are widely adopted to measure the models’ performance on this
task.

Tail entity prediction

This task is introduced by UKGE [60] to evaluate the performance of KGE
models on WKGs. For a corrupted triple in form of (h, r, ?), tail entity
prediction is to predict a proper tail entity to make the corrupted triple as a
true one. This task puts all the entities in the vocabulary to the corrupted
triple to form the set of all possible triples. Then, let the KGE model score
all the possible triples and rank all possible triples according their score. The
normalized Discounted Cumulative Gain (nDCG) [110] is adopted to evaluate
the performance of the KGE model. But, nDCG requires the weight of all
possible triples, even for negative triples. UKGE adopts the probabilistic
soft logic to generate weight for negative triples so that both positive and
negative relational facts in WKG can be utilized.

3.3 Methodology

The above evaluation tasks have been originally designed for deterministic
knowledge graphs, which omit to use weights on the evaluation. Weight-
aware link prediction (WaLP) and weight-aware triple classication (WaTC),
which emphasize triples with high weights, aim to ll this gap.

Given a weighted knowledge graph (WKG) G such that

G :=

⟨(hi, ri, ti) , wi⟩

}u

i=1
(3.1)

where hi, ti ∈ E , ri ∈ R and wi ∈ R≥0. Both E and R are entity and relation
sets, respectively. We describe WaLP and WaTC tasks as follows.

3.3.1 Weight-aware Link Prediction Task

Task description

Given a corrupted triple in the form of (h, r, ?) (or (?, r, t)), the task is to nd
a proper entity φ ∈ E to complete the corrupted triple to a complete triple
in the form of (h, r,φ) (or (φ, r, t), respectively) with awareness of the weight
of (h, r,φ) ∈ G (or (φ, r, t) ∈ G, respectively). The reward for completing a
corrupted triple is calculated according to the weight of the complete triple.

25

Algorithm 1: Weight-aware Link Prediction

Input: WKG = ⟨(h, r, t), w⟩, KGE model M, weighting function g
Result: WaMR, WaMRR, WaHits@N

1 ranks, r ranks, hits = 0, 0, k:0
2 while i in range(WKG) do
3 mixt,mixh, scoret, scoreh = [(hi, ri, ti)], [(hi, ri, ti)], [], []
4 for j = 0; j < E ; j = j + 1 do
5 if (hi, ri, ej) ∈ WKG then
6 mixt.append((hi, ri, ej))
7 if (ej, ri, ti) ∈ WKG then
8 mixh.append((ej, ri, ti))

9 end
10 for k = 0; k < mixt; k = k + 1 do
11 scoretappend(Mscore(mixt[k]))
12 end
13 rankt = rank(scoret)get((hi, ri, ti))
14 ranks += rankt · g(wi)
15 r ranks += 1/(rankt · g(wi))
16 for k in hits.keys() do
17 if rankt <= k then
18 hits[k] += g(wi)

19 end
20 for k = 0; k < mixh; k = k + 1 do
21 scorehappend(Mscore(mixh[k]))
22 end
23 rankh = rank(scoreh)get((hi, ri, ti))
24 ranks += rankh · g(wi)
25 r ranks += 1/(rankh · g(wi))
26 for k in hits.keys() do
27 if rankh <= k then
28 hits[k] += g(wi)

29 end

30 end
31 WaMR, WaMRR, WaHits@N = ranks/(2 · WKG),

r ranks/(2 · WKG), hits[N]/(2 · WKG)

Evaluation protocol and metrics

For each testing weighted triple ⟨(hi, ri, ti) , wi⟩ in the testing set, wi is omit-
ted. The head entity hi is removed and replaced by each of the entities in

26

the dictionary in turn, resulting in a set of possible triples ⟨(φ, ri, ti) , ?⟩
where ⟨(φ, ri, ti) , ?⟩ ∈ G. The scores of the testing weighted triple and those
possible triples are rst computed by the models and then sorted in ascend-
ing order. After sorting, the ranking of the testing weighted triple rki is
recorded. This whole procedure is repeated while removing ti instead of hi.

We introduce weight-aware mean rank (WaMR), weight-aware mean re-
ciprocal rank (WaMRR), and weight-aware Hits@N (WaHits@N) to measure
the performance of the models on WaLP, shown in Equations 3.2, 3.3, and
3.4, respectively. WaMR is the weighted average of the rankings of all testing
triples. WaMRR is the sum of reciprocal weighted rankings. Compared with
WaMR, WaMRR is less susceptible to the interference of abnormally poor
rankings. WaHits@N is the weighted count of the top N triples, which are im-
portant for recommender systems. The introduced three metrics emphasize
the prediction of high-weight triples more than their unweighted versions.

WaMR =
1u

i=1 g(wi)

u∑

i=1

g(wi) · rki, (3.2)

WaMRR =
1u

i=1 g(wi)

u∑

i=1

1

g(wi) · rki
, (3.3)

WaHits@N =
1u

i=1 g(wi)

u∑

i=1

g(wi) · I[rki ≤ N] (3.4)

The function g : R≥0 → R with g(w) ̸= 0 is introduced as an activation
function that re-scales the weights to put more attention to more important
triples. As you see, g is dened as a general function with the non-zero
constraint to restrict its candidates. This condition is chosen to avoid unat-
tended triples. We illustrate good candidates g in Subsection 3.4.3. Finally,
the I[expn] is the indicator function, which outputs 1 if expn is true, and 0
otherwise. We present the complete evaluation procedure in Algorithm 1.

3.3.2 Weight-aware Triple Classication Task

Task description

Given a set of triples containing positive triples (hi, ri, ti) ∈ G and negative
triples (hj, rj, tj) ∈ G, the task is to classify positive triples from negatives
triples according to awareness on the weights of the triples in G. The reward
for correct classication of a triple and the punishment for wrong classica-
tion of a triple are calculated according to the weight of the triples.

27

Evaluation protocol and metrics

For any testing weighted triple ⟨(hi, ri, ti) , wi⟩, wi is omitted. The head entity
hi is removed to form the head-corrupted testing triple (φ, ri, ti). The head
entity of the head-corrupted testing triple is replaced by k entities in the
dictionary in turn, resulting in a set of head-corrupted testing triples. Mix
the testing triples with the possible triples by corrupting heads, we get the
mixture set for the head-corrupted testing triple:

mixhead :=

⟨(hj, rj, tj) , ?⟩  ⟨(hj, rj, tj) , wj⟩ ∈ G

}

∪

⟨(φ, rj, tj) , ?⟩  (φ, rj, tj) ∈ G

}
(3.5)

Similarly, the tail entity ti is removed to form the tail-corrupted testing
triple (hi, ri,φ). The tail entity of the tail-corrupted testing triple is replaced
by k entities in the dictionary in turn, resulting in a set of possible triples
for the tail-corrupted testing triple. Mix the testing triples with the possible
triples from those of the tail-corruption, we get the mixture set for the tail-
corrupted testing triple as follows:

mixtail :=

⟨(hj, rj, tj) , ?⟩  ⟨(hj, rj, tj) , wj⟩ ∈ G

}

∪

⟨(hi, rj,φ) , ?⟩  (hi, rj,φ) ∈ G

}
(3.6)

The model is required to divide mixhead and mixtail into a positive set and
a negative set, respectively. We introduce weight-aware F1 (WaF1) score

WaF1 =2 ∗ wa prec ∗ wa recall

wa prec + wa recall
(3.7)

where wa prec =


⟨(hi,ri,ti),?⟩∈TP

g(wi)


⟨(hi,ri,ti),?⟩∈TP

g(wi) +


⟨(hi,ri,ti),?⟩∈FP

g(wi)

wa recall =


⟨(hi,ri,ti),?⟩∈TP

g(wi)


⟨(hi,ri,ti),?⟩∈TP

g(wi) +


⟨(hi,ri,ti),?⟩∈FN

g(wi)

to measure the performance of the models on WaTC, where TP means the
true positive triples, FP means the false positive triples, and FN means the
false negative triples. Compared to macro F1 score, WaF1 emphasizes more
on the model’s judgment over correctly classied high-weight triples. We
present the complete evaluation procedure in Algorithm 2.

28

Algorithm 2: Weight-aware Triple Classication

Input: WKG = ⟨(h, r, t), w⟩, KGE model M, weighting function
g, number of the negative samples k

Output: WaF1
1 tp, fp, fn = 0, 0, 0 while i in range(WKG) do
2 mixt, value=[(hi, ri, ti)], [1]
3 for j = 0; j < k; do
4 idx = random(0, E )
5 if (hi, ri, eidx) ∈ WKG and (hi, ri, eidx) ∈ mixt then
6 mixt.append((hi, ri, eidx))
7 value.append(0)
8 j = j + 1

9 end
10 pvt = M.predict(mixt)
11 tp += g(wi) · (value ∗ pvt)count(1)
12 fp += (pvt− value)count(1)
13 fn += g(wi) · (value− pvt)count(1)
14 mixh, value=[(hi, ri, ti)], [1]
15 for j = 0; j < k; do
16 idx = random(0, E )
17 if (eidx, ri, ti) ∈ WKG and (eidx, ri, ti) ∈ mixh then
18 mixh.append((eidx, ri, ti))
19 value.append(0)
20 j = j + 1

21 end
22 pvh = M.predict(mixh)
23 tp += g(wi) · (value ∗ pvh)count(1)
24 fp += (pvh− value)count(1)
25 fn += g(wi) · (value− pvh)count(1)

26 end
27 WaF1 = 2·tp/(2·tp + fp + fn)

3.3.3 Weight-aware Extensions of the Base Models

Since existing deterministic knowledge graph embedding models learn in-
teractions of entities and relations within triples well, we propose a general
method WaExt for injecting weights into the existing knowledge graph em-
bedding models that combine the weights and their scoring function f(h, r, t),
as shown in Figure 3.2. The operator ⊕ in the gure denotes a summation
operation that aggregates all the losses (Figure 3.2a) and the weighted losses

29

ℎ
! 

ℎ
" 

… …… 


!

"

… 

!

"

…


(!)…

(")

*
*




ℎ
! 

ℎ
" 

… ……

!

"

…

(Weighted) Triples Embeddings
Embedded
(Weighted) Triples

ℎ 


ℎ 




(a)

(b)

Figure 3.2: An illustration of WaExt. (a) is the process of base model, while
(b) is its weight-aware extension.

(Figure 3.2b). The scoring function is adopted by the knowledge graph em-
bedding model during the training phase to calculate the score of each triple
from the training set S. In our WKG representation model, the weighted
scoring function

fw(h, r, t, w) := g(w) · f(h, r, t) (3.8)

calculates the score of a triple based on its weight.
We adopt the margin ranking loss [42] as the loss function for the proposed

models:

L =
∑

⟨(h,r,t),w⟩∈S

∑

⟨(h′,r′,t′),w′⟩∈S′

[γ + fw(h, r, t, w)− fw (h′, r, t′, w′)]+ (3.9)

where [x]+ denotes the positive part of x, γ > 0 is a margin hyperparameter,
w′ is the weight of the negative triples (regarded as a hyper-parameter of the
model), and S ′ is the set of the negative triples dened as follows:

S ′ :=

⟨(h′, r, t) , w′⟩  h′

i ∈ E \ hi
}u

i=1
∪

⟨(h, r, t′) , w′⟩  t′i ∈ E \ ti

}u

i=1

(3.10)

Note that the model is only aware of the weights of the triples during the
training process. For testing, the weights of the triples are omitted, and the
weight-aware extensions score the triples using the same scoring functions as
their base models.

30

3.4 Experiment and Result

3.4.1 Experiment Setting

Consistent with prior studies[60, 62], we selected CN15K, NL27K, and PPI5K [111]
as our datasets. CN15K is a subgraph of ConceptNet [75], containing 15,000
entities and 229,235 weighted triples in English. The original scores in Con-
ceptNet vary from 0.1 to 22, while the weights in CN15K are normalized to
[0.1, 1.0]. NL27K is extracted from NELL [76], a weighted KG obtained from
webpage reading. NL27K contains 27,221 entities, 405 relations, and 175,412
weighted triples. The weights in NL27K are normalized to the interval [0.1,
1.0]. PPI5K is a subset of the protein-protein interaction knowledge base
STRING [99] that contains 255,114 weighted triples for 4,999 proteins and
7 interactions. STRING labels the interactions between proteins with the
probabilities of occurrence. The weights in PPI5K fall in the interval [0.15,
1.0]. The Statistics of the datasets is shown in Table 3.1. The correlation of
the weight and the triple degree in the three datasets is shown in Figure 3.3.

Table 3.1: Statistics of the datasets. #Ent denotes the number of the entities.
#Rel denotes the number of the relations. #Tri denotes the number of the
triples. INR denotes the interval of the weights, i.e, the biggest weight minus
the smallest weight. Avg(deg) denotes the average of the degree of the entities
and Med(deg) denotes the median of the degree of the entities.

#Ent #Rel #Tri INR Avg(deg) Med(deg)

CN15K
train 15000 36 193274 0.900 25.77 12
test 10659 34 19166 0.900 3.60 2
val 10158 35 16795 0.900 3.31 2

NL27K
train 27221 405 149100 0.899 10.95 4
test 9711 287 14034 0.898 2.89 1
val 9000 279 12278 0.899 2.73 1

PPI5K
train 4999 7 214661 0.847 85.88 21
test 3703 7 21566 0.847 11.65 4
val 3557 7 18887 0.847 10.62 3

Figure 3.4 shows the coverage of the entities and relations that appear in
the test and validation sets by the triples in the training set of each dataset.
Notably, 8 and 4 unseen relations in the training set appear in the testing and
validation sets of NL27K, respectively. These out-of-distribution relations
could harm the models’ performance on NL27K. We also investigate this
observation in our experiments.

31

Figure 3.3: The correlation of the weight and the triple degree in CN15K,
NL27K, and PPI5K. The degree of a triple is the average of the degree of the
head entity and the degree of the tail entity. The weights of the triples lay in
[0,1], and the degrees lay in [0, 7300]. We divide the intervals of weight and
degree into 200 subintervals, respectively. Count the number of triples falling
in this interval, and record it as num(tri). The center of the circle represents
the center of weight and center of degree of the interval. The color is dened
by RGB=(1-num(tri)/25541, num(tri)/25541, 0), where num(tri)/25541 is
the normalized number of triples. The opaque and the radius of each circle
represent num(tri), where higher opaque and bigger radius mean more triples
here. If the color of an area is greener or denser, there are more triples in
the subinterval of the centers of the circles.

We implemented WaLP, WaTC, and the weight-aware extension for the
base models based on the PyKEEN toolkit [112]. We selected the exponential
function as our candidate activation function, and searched a static exponent
base among 0.2, 0.5, 1.5, e. We also explore a dynamic exponent base, e.g.,
adjusting the base in every epoch to avoid over-tting on high-weight triples.
We choose epoch+3

epoch+2
as the dynamic base, which varies from 1.5 to 1 during

training. An illustration of the activation functions is shown in Figure 3.5.
We selected learning rate λ for the stochastic gradient descent among 0.001,
0.01, 0.1, and the weight of the negative triples w′ among 0, 0.5, 1, avg(w),
1− avg(w), 2, where avg(w) is the mean of the weights of the triples in the
training set. Only if the base is less than 1, the weight of the negative triples
is set to 2. The margin of the loss function γ was set to 1. The number
of the false triples in WaTC was set to 100. The dimension of embeddings
and the number of training epochs were set to 50. We trained the models
for 1000 epochs, evaluated the models per 10 epoch, and save their best
results. We evaluated the proposed models and the base models on both of
LP and WaLP tasks. For convenience of our implementation, we replaced

1∑u
i=1 g(wi)

in WaMR (Equation 3.2), WaMRR (Equation 3.3), and WaHits@N

32

15000

10158

10659

27221

9000

9711
4999

3557

3703

1

34

1

102

251

28

7

7

7
8

24

4

(a) Entity coverage

(b) Relation coverage

training set testing set validation set

CN15K NL27K PPI5K

Figure 3.4: (a) Entity coverage and (b) relation coverage of the training set
of the dataset. There are eight and four out-of-distribution relations in the
NL27K testing set and validation set, respectively.

(Equation 3.4) with 1
u
.

3.4.2 Base Models

We implement the proposed framework based on two representative transla-
tional distance models: TransE and TransH, and two representative semantic
matching models: ComplEx and DistMult.

TransE

TransE [42] is one of the most representative translational distance models.
It interprets entities as vectors and the relation as a translation vector of
the head entity in one embedding space. The scoring of TransE is s =
−∥h+ r− t∥p.

33

Figure 3.5: The activation functions with static base and dynamic base.

TransH

TransE is eective for 1-to-1 relations, but cannot model the 1-to-N or N-to-N
relation well. TransH [43] models 1-to-N and N-to-N relations by introducing
the mechanism of projecting to relation-specic hyperplanes. The scoring of

TransH is s = −
∥∥(h−w⊤

r hwr

)
+ r−

(
t−w⊤

r twr

)∥∥2

2
, where wr stands for

the normal vector of a specic hyperplane.

34

DistMult

DistMult [103] represents each relation as a diagonal matrix that models
pairwise interactions between entities to capture the latent semantics. The
scoring of DistMult is s = h⊤ diag(r)t, where diag(·) is a diagonalization
function.

ComplEx

ComplEx [104] extends DistMult by introducing complex vector space to em-
bed the knowledge graph, aiming for better modeling asymmetric relations.
This scoring function of ComplEx is asymmetric, and facts with asymmetric
relations can receive dierent scores according to the order of entities in-
volved. The score function is dened as: s = Re

(
h⊤ diag(r)t̄

)
, where t̄ is

the conjugate of t and Re(·) means taking the real part of a complex value.

3.4.3 Result on Link Prediction and Weight-aware Link
Prediction

The results of base models and their weight-aware extension versions on
the link prediction and the weight-aware link prediction tasks are shown
in Table 3.2 and Table 3.4, respectively. For link prediction, our proposed
weight-aware extension models outperform TransE, TransH, ComplEx, and
DistMult on the mean rank, mean reciprocal rank, and most of Hits@N. In
particular, WaTransH has a nearly 50% improvement compared to TransH.
We assume that this is because the triples with high weights may contain
more useful information and less noise and the weight-aware extension models
can emphasize the triples with high weights.

Note that WaComplEx achieves the best performance with the activation
function g(w) = 02w on CN15K and NL27K, while WaTransE, WaTransH
and WaDistMult achieve the best performance with g(w) = 15w and g(w) =
ew. ComplEx assigns less attention to high-weight triples, which is dierent
from the other three models. This phenomenon might be caused by the fact
that TransE, TransH, and DisMult employ the pairwise Hinge loss, while
ComplEx uses the pointwise logistic loss. A further theoretical analysis is
required to understand the phenomenon and we aim to achieve it in the
future.

We choose FocusE as the baseline, whose result is shown in Table 3.3. Fo-
cusE’s application scope is relatively limited and it is unable to consistently
enhance the performance of knowledge graph representation models on link
prediction tasks: it achieves better performance than base models on CN15K

35

but shows a decline in performance on NL27K and PPI5K. Since FocusE is
implemented based on AmpliGraph [113] and WaExt is implemented using
PyKEEN [112], the training strategies and details of the two libraries may
dier, resulting in dierences in the performance of the base models. There-
fore, the performance of the extended model alone cannot directly indicate
the performance dierence between WaExt and FocusE. Currently, we are
comparing the performance of WaExt and FocusE based on the improvement
in the performance of the extended model over the base model. From this
perspective, WaExt outperforms FocusE in link prediction tasks across all
three datasets. To directly compare the performance of WaExt and FocusE,
we will implement WaExt using AmpliGraph [113] in future work.

We show the performance curve of WaExt in Figure 3.6 and Figure 3.7.
WaExt’s improvement to the base model is mild and stable. We show the
weight distributions of correctly predicted Hits@100 triples in Figure 3.8.
WaExt is able to correctly predict more triples with high weights. We show
the rank distributions of all triples in Figure 3.9. WaExt is able to make all
positive triples get higher ranking.

A comparison of the correctly predicted Hits@100 triple distributions for
WaTransE and TransE on CN15K, NL27K, and PPI5K is shown in Fig-
ure 3.8. We nd that WaTransE outperforms TransE in predicting triples
with high weights on all three datasets, which makes WaTransE achieve bet-
ter performance on the WLP task than TransE.

3.4.4 Result on Triple Classication and Weight-aware
Triple Classication

The results of base models and their weight-aware extensions on the TC and
the WaTC task are shown in Table 3.5. From the table, it is clear that our
proposed weight-aware extensions outperform TransE, TransH, ComplEx,
and DistMult on both TC and WaTC tasks over the three datasets.

The results suggest that assigning higher weights to signicant triples dur-
ing the training phase improves the quality of embeddings learned from the
knowledge graph. However, it is important to note that althoughWaComplExsta
performs better on the weighted triple classication task, it shows a decline
in performance on the triple classication task. This is attributed to the
fact that the base of the eective weighting function used for WaComplExsta
is less than 1. We will further investigate the mechanism for the weighting
function selection in future work.

36

Table 3.2: Results of base models and their weight-aware extension models
on the link prediction task. sta. means the extended models with static
base. dyn. means the extended models with dynamic base.

Model MR MRR Hits@1 Hits@3 Hits@5 Hits@10

C
N
15
K

TransE 1191.0 0.1048 0.0370 0.1273 0.1719 0.2381

WaTransE
sta. 1076.9 0.1130 0.0370 0.1419 0.1928 0.2604
dyn. 1178.2 0.1053 0.0370 0.1276 0.1740 0.2384

TransH 1734.5 0.0777 0.0414 0.0869 0.1073 0.1422

WaTransH
sta. 1036.6 0.1020 0.0423 0.1210 0.1589 0.2123
dyn. 1933.0 0.0781 0.0404 0.0906 0.1124 0.1419

ComplEx 1923.3 0.1239 0.0687 0.1386 0.1762 0.2349

WaComplEx
sta. 1774.4 0.1331 0.0746 0.1506 0.1928 0.2503
dyn. 1840.2 0.1223 0.0655 0.1380 0.1782 0.2354

DistMult 991.2 0.1049 0.0399 0.1261 0.1678 0.2263

WaDistMult
sta. 966.6 0.1064 0.0381 0.1294 0.1710 0.2340
dyn. 989.4 0.1049 0.0401 0.1261 0.1670 0.2251

N
L
27
K

TransE 132.1 0.3336 0.2100 0.3955 0.4624 0.5548

WaTransE
sta. 118.3 0.3376 0.2023 0.4109 0.4825 0.5804
dyn. 121.6 0.3351 0.2095 0.4004 0.4688 0.5618

TransH 811.4 0.2698 0.1896 0.3059 0.3505 0.4108

WaTransH
sta. 337.4 0.2997 0.1986 0.3482 0.4044 0.4761
dyn. 609.8 0.2720 0.1874 0.3112 0.3547 0.4187

ComplEx 203.2 0.6453 0.5391 0.7096 0.7786 0.8477

WaComplEx
sta. 266.2 0.6852 0.5970 0.7368 0.7932 0.8560
dyn. 222.5 0.6401 0.5333 0.7066 0.7705 0.8435

DistMult 190.2 0.4092 0.3208 0.4494 0.4992 0.5731

WaDistMult
sta. 159.1 0.4343 0.3435 0.4783 0.5292 0.5968
dyn. 182.1 0.4158 0.3306 0.4497 0.5023 0.5773

P
P
I5
K

TransE 25.0 0.1467 0 0.1852 0.2836 0.4363

WaTransE
sta. 31.6 0.1513 0.0001 0.2014 0.2961 0.4372
dyn. 24.9 0.1493 0 0.1906 0.2908 0.4440

TransH 49.7 0.1104 0.0030 0.1278 0.1933 0.3132

WaTransH
sta. 32.0 0.1339 0 0.1700 0.2551 0.3855
dyn. 50.4 0.1113 0.0026 0.1295 0.1951 0.3174

ComplEx 7.4 0.9273 0.8785 0.9759 0.9862 0.9915

WaComplEx
sta. 9.8 0.9491 0.9180 0.9792 0.9877 0.9909
dyn. 7.7 0.9263 0.8771 0.9746 0.9858 0.9913

DistMult 25.7 0.4518 0.3409 0.4997 0.5643 0.6550

WaDistMult
sta. 22.8 0.4682 0.3621 0.5080 0.5793 0.6845
dyn. 30.1 0.4678 0.3583 0.5201 0.5827 0.6718

37

Table 3.3: Results of FocusE on the link prediction task.

Model MR MRR Hits@1 Hits@3 Hits@5 Hits@10

CN15K

TransE 6864.0 0.0027 0.0014 0.0020 0.0030 0.0047
+FocusE 1288.9 0.0984 0.0433 0.1149 0.1353 0.2022
DistMult 1829.8 0.0956 0.0577 0.1026 0.1265 0.1669
+FocusE 2293.6 0.1059 0.0658 0.1156 0.1316 0.1826

NL27K

TransE 118.9 0.4357 0.2717 0.5421 0.6238 0.7214
+FocusE 138.7 0.3397 0.2014 0.4182 0.4585 0.5817
DistMult 117.7 0.6615 0.5540 0.7310 0.7976 0.8682
+FocusE 2566.3 0.4092 0.3183 0.4535 0.4851 0.5859

PPI5K

TransE 20.0 0.1858 0 0.2569 0.3790 0.5570
+FocusE 35.6 0.1526 0 0.2138 0.2685 0.4364
DistMult 4.4 0.9239 0.8647 0.9823 0.9872 0.9916
+FocusE 14.4 0.7745 0.6795 0.8402 0.8650 0.9407

3.5 Summary

In this section, we originally explore the weight-aware link prediction task
and propose three evaluation metrics for weight-aware link prediction (Sec-
tion 3.3.1). We also originally explore the weight-aware triple classication
task and propose weight-aware F1 score as the three evaluation metrics (Sec-
tion 3.3.2). With respect to the novel tasks, we propose a method to ex-
tend deterministic knowledge graph embedding models to their weight-aware
version, and provide the weight-aware extensions for the base models (Sec-
tion 3.3.3).

The weight-aware tasks emphasize the ability of knowledge graph embed-
ding models to correctly predict and classify triples according to the weights
of the triples, which is critical for applications in some scenarios that involve
non-deterministic knowledge, such as text understanding and protein-protein
interaction.

We propose a general framework WaExt for extending the determinis-
tic knowledge graph embedding models to learn weight-aware embeddings
from weighted knowledge graphs. To illustrate its usage, we apply WaExt to
TransE, TransH, ComplEx, and DistMult, and get the weight-aware exten-
sions for them (i.e., WaTransE, WaTransH, WaComplEx, and WaDisMult,
respectively). The weight-aware extensions of the base models can learn
embeddings better from triples with high weights and outperform baseline
models both link prediction, triple classication and the weight-aware tasks.
Our extensive experiments reveal that the exponential activation function is
eective for WaExt. We will explore more suitable activation functions in

38

Table 3.4: Results of base models and their weight-aware extension models
on the weight-aware link prediction task. sta. means the extended models
with static base. dyn. means the extended models with dynamic base.

Model WaMR WaMRR WaH@1 WaH@3 WaH@5 WaH@10

C
N
15
K

TransE 669.2 0.2064 0.0817 0.1861 0.2353 0.3015

WaTransE
sta. 657.7 0.2250 0.0928 0.2063 0.2546 0.3176
dyn. 661.7 0.2075 0.0834 0.1880 0.2351 0.2991

TransH 969.9 0.1505 0.0655 0.1141 0.1402 0.1790

WaTransH
sta. 605.5 0.2030 0.0859 0.1699 0.2103 0.2694
dyn. 1074.5 0.1517 0.0680 0.1176 0.1396 0.1770

ComplEx 1083.7 0.2470 0.1025 0.1872 0.2296 0.2900

WaComplEx
sta. 994.4 0.2688 0.1117 0.2042 0.2459 0.3038
dyn. 1117.3 0.2439 0.1015 0.1804 0.2194 0.2732

DistMult 558.2 0.2067 0.0833 0.1777 0.2217 0.2837

WaDistMult
sta. 542.3 0.2086 0.0831 0.1826 0.2291 0.2965
dyn. 554.6 0.2069 0.0838 0.1781 0.2208 0.2827

N
L
27
K

TransE 61.6 0.7967 0.3060 0.4973 0.5647 0.6649

WaTransE
sta. 103.8 0.7854 0.3029 0.4928 0.5544 0.6420
dyn. 60.2 0.7973 0.3075 0.5026 0.5695 0.6648

TransH 407.1 0.6508 0.2524 0.3736 0.4189 0.4905

WaTransH
sta. 77.9 0.7312 0.2787 0.4481 0.5134 0.5999
dyn. 306.6 0.6554 0.2557 0.3781 0.4282 0.5004

ComplEx 101.9 1.4837 0.6221 0.8009 0.8508 0.9042

WaComplEx
sta. 135.7 1.6184 0.6643 0.8052 0.8498 0.9002
dyn. 105.8 1.4689 0.6142 0.8005 0.8508 0.9028

DistMult 92.1 0.9583 0.3845 0.5255 0.5798 0.6604

WaDistMult
sta. 73.7 0.9913 0.4116 0.5509 0.6039 0.6835
dyn. 88.6 0.9735 0.3894 0.5290 0.5824 0.6661

P
P
I5
K

TransE 18.0 0.2568 0.0586 0.2496 0.3558 0.5136

WaTransE
sta. 26.2 0.2582 0.0724 0.2530 0.3469 0.4848
dyn. 17.9 0.2613 0.0605 0.2560 0.3630 0.5197

TransH 35.9 0.1946 0.0428 0.1788 0.2554 0.3853

WaTransH
sta. 23.8 0.2434 0.0667 0.2324 0.3237 0.4556
dyn. 36.4 0.1962 0.0427 0.1809 0.2596 0.3905

ComplEx 4.7 1.4287 0.8976 0.9825 0.9895 0.9928

WaComplEx
sta. 6.3 1.4592 0.9348 0.9853 0.9897 0.9918
dyn. 4.9 1.4276 0.8953 0.9814 0.9888 0.9928

DistMult 18.2 0.6888 0.3675 0.5460 0.6157 0.7138

WaDistMult
sta. 15.8 0.6863 0.3771 0.5641 0.6441 0.7485
dyn. 21.3 0.7145 0.3812 0.5650 0.6304 0.7292

the future.

39

(a) CN15K

(b) NL27K

(c) PPI5K

Figure 3.6: Performance of link prediction (MRR) on CN15K, NL27K and
PPI5K.

40

(a) CN15K

(b) NL27K

(c) PPI5K

Figure 3.7: Performance of weight-aware link prediction (WaMRR) on
CN15K, NL27K and PPI5K.

41

(a) CN15K

(b) NL27K

(c) PPI5K

Figure 3.8: Distributions of correctly predicted Hits@100 triples on CN15K,
NL27K and PPI5K.

42

(a) CN15K

(b) NL27K

(c) PPI5K

Figure 3.9: Rank distributions of all testing triples in CN15K, NL27K and
PPI5K.

43

Table 3.5: Results of base models and their weight-aware extension models on
the triple classication task and weight-aware triple classication task. sta.
means the extended models with static base. dyn. means the extended
models with dynamic base.

Model F1 WaF1

CN15K

TransE 0.255421 0.471335

WaTransE
sta. 0.318690 0.456810
dyn. 0.257189 0.473832

TransH 0.093696 0.171650

WaTransH
sta. 0.150479 0.290128
dyn. 0.094256 0.172605

ComplEx 0.434951 0.797724

WaComplEx
sta. 0.437375 0.743155
dyn. 0.437654 0.801842

DistMult 0.164980 0.301339

WaDistMult
sta. 0.202502 0.353637
dyn. 0.165068 0.300674

NL27

TransE 0.348590 0.816554

WaTransE
sta. 0.365673 0.849980
dyn. 0.348676 0.816331

TransH 0.144636 0.333883

WaTransH
sta. 0.289826 0.702594
dyn. 0.142370 0.329619

ComplEx 0.374295 0.863087

WaComplEx
sta. 0.570674 0.466630
dyn. 0.380700 0.884543

DistMult 0.187338 0.425659

WaDistMult
sta. 0.260377 0.554761
dyn. 0.203572 0.464910

PPI5K

TransE 0.602971 0.973062

WaTransE
sta. 0.607554 0.940403
dyn. 0.635340 1.019078

TransH 0.487225 0.754997

WaTransH
sta. 0.566378 0.940029
dyn. 0.487783 0.757455

ComplEx 0.976221 1.519832

WaComplEx
sta. 0.978150 1.515479
dyn. 0.976357 1.520123

DistMult 0.694333 1.099331

WaDistMult
sta. 0.701792 1.114662
dyn. 0.695856 1.100713

44

Chapter 4

Weighted Knowledge Graph
Embedding

4.1 Problem Statement

Knowledge graphs (KG) are thriving and promoting many downstream tasks,
such as academic search [114], social relationship recognition [115], and drug
discovery [116]. Facts encoded in KG are mostly formalized as triples (h, r, t),
in which h denotes the head entity, t denotes the tail entity, and r denotes
the relation between h and t. This formalism is sometimes referred to as
deterministic knowledge graph [117, 118, 119] since triples are employed to
represent facts.

Much recent attention has been paid to weighted knowledge graphs (WKG)
such as Probase [7], NELL [76], ConceptNet [120], and the Protein-Protein
Interaction Knowledge Base STRING [99, 121], which generalize determinis-
tic knowledge graphs by associating a weight w ∈ R to each triple. Facts en-
coded in WKG are mostly formalized as weighted triples ⟨(h, r, t), w⟩, though
the semantics of weight can be various. For example, it has been used to
represent uncertainty [75], condence score [76], degree of relations [7], edge
importance [77], and even out-of-band knowledge [99] in a growing number of
scenarios. In real-world usages, it is obvious that the weighted triples model
more precise knowledge. For example, while both (Honda, competeswith,
Toyota) and (Honda, competeswith, Chrysler) look somewhat correct, the
former fact should have a higher condence than the latter one, since Honda
and Toyota are both Japanese car manufacturers and have highly overlapping
customer bases. This modelling can be done if one supposes the semantics of
weights based on the condence score and associates the former triple with
a higher value.

45

As for basic elements in deterministic knowledge graphs, entities and
relations are discrete symbols, which are not easy to be utilized by machine
learning and deep learning models. To address this issue, knowledge graph
embedding (KGE) [9] has been investigated to represent the discrete symbols
in knowledge graphs as a set of vectors in a specic low-dimensional vector
space, and it requires that the representation should enable to deduce the
knowledge graphs from this set of vectors. Link prediction (LP) is widely
adopted as a task to evaluate the performance of embedding in deducing the
structure of any KG. An illustration of knowledge graph embedding is shown
in Figure 4.1.

is_husband_of

Do
na
ld
Tr
um

p
Jr.



Don
ald

Trum
p

Melania Tr
ump

is_father_of

is_
fat
he
r_o
f is_husband_of

Donald Trump Jr. Melania Trump



Donald
Trump

Figure 4.1: Knowledge graph embedding

While KGE algorithms focus on representing deterministic knowledge
graphs, they cannot work well when the semantics of triples are imposed
by weights. This problem leads to an extended study on weighted knowledge
graph embedding (WKGE) aimed to embed entities and relations in a WKG
into a set of vectors in a specic low-dimensional vector space. The embed-
dings of WKG are required to be able to not only deduce the triples in a WKG
but also deduce the weight of the triples, which requires the embeddings of
entities and relations have encoded the weight information.

To determine the embedding of weighted triples in WKG, some WKGE
algorithms [60, 61] have been proposed to decompose this main task into two
sub-tasks, namely link prediction, and weight prediction. An illustration of
this decomposition is shown in Figure 4.2. However, we observe that this
embedding scheme does not achieve the best performance on the link predic-
tion task and on the weight prediction task synchronously. An illustration
of the performance of UKGE [60] in link prediction and weight prediction on
NL27K is shown in Figure 4.3.

To encode weight information in knowledge graph embeddings, UKGE [60]
and PASSLEAF [61] adopt a non-linear function to convert the triple plausi-

46

is_husband_of

Do
na
ld
Tr
um

p
Jr.



Don
ald

Trum
p

Melania Tr
ump

is_father_of

is_
fat
he
r_o
f is_husband_of

Donald Trump Jr. Melania Trump 


Donald
Trump !


"

is_
fat
he
r_o
f is_husband_of

Donald Trump Jr. Melania Trump

Donald
Trump

is_
fat
he
r_o
f is_husband_of

Donald Trump Jr. Melania Trump

Donald
Trump !


"


ℎ

Figure 4.2: Knowledge graph embedding

bility score to the weight of the triple, equating the plausibility of the triple
and the weight of the triple. But even though the positive triples may have
been attached to dierent weights conveying dierent meanings, the plausi-
bility of all positive triples should be the same.

To ll this gap, we introduce the WeExt framework that includes an
independent weight prediction module to existing deterministic knowledge
graph embedding models, enabling them to encode the weight information of
the triples. The introduced weight prediction module takes the embeddings
of the head entity, the relation, and the tail entity as input, which contain
richer information than the plausibility of the triple. During training, we
jointly optimize the model’s performance in encoding facts and weights.

We also ll a gap of the WKGE model evaluation task. We design the
weighted link prediction (WLP) task to comprehensively evaluate the model’s
ability in deducing weighted triples. WLP adjusts the ranking of positive
triples in all possible triples according to the accuracy of weight prediction to

47

Figure 4.3: The performance of UKGE on NL27K. The red line is the mean
reciprocal rank in link prediction. The blue line is the mean square error in
weight prediction.

simultaneously demonstrate the performance of the model on link prediction
and weight prediction.

We conduct experiments with two representative KGE translational dis-
tance models TransE, TransH, and two KGE representative bilinear mod-
els DistMult, HolE. The results show that the proposed framework WeExt
achieves competitive performance over the baseline models on link prediction,
weight prediction, and weighted link prediction.

48

4.2 Related Work

4.2.1 Deterministic Knowledge Graph Embedding Mod-
els

Deterministic knowledge graph embedding models [9] are designed for deter-
ministic knowledge graphs, focusing on encoding facts in knowledge graphs.
According to dierent modeling of the interaction between entities and rela-
tions, deterministic knowledge graph embedding models can be divided into
translational distance models and bilinear models.

Translational Distance Models

The translational distance model, such as TransE [42] and TransH [122], re-
gards the relation as a translation operation from the head entity to the tail
entity and utilizes a distance-based scoring function to measure the plausi-
bility of triples.

Bilinear Models

The bilinear models, such as RESCAL [45], DistMult [103], and HolE [47],
are based on the tensor factorization and model the interaction of entities
and relations by vector-matrix product, obtaining high expressive power due
to the use of a full rank matrix for each relation in the score functions which
are in the form of h⊤Wrt.

4.2.2 Weighted Knowledge Graph Embedding Models

UKGE

UKGE [60] is an embedding model for uncertain knowledge graphs which
associate each triple to a condence score. The model requires logical rules
as additional inputs to help enforce the global consistency of predicted facts.
UKGE learns the weight of a given triple by squashing the plausibility score
of the triple calculated by DistMult using a non-linear function, such as

ϕ (s (l)) =
1

1 + e−(w·s(l)+b)
(4.1)

or
ϕ (s (l)) = min (max (w · s (l) + b, 0) , 1)  (4.2)

where w is a weight, b is a bias and s (l) is the score of the triple l given by
DistMult. UKGE adopts mean square error (MSE) to measure the loss on

49

learning the weights. Given a set of positive relation facts, the loss on the
positive triples is

Lpos =
∑

l∈L+

ϕ (s (l))− w2 (4.3)

UKGE estimates the weight of negative triples using probabilistic soft logic [56]
and measures the loss on negative triples by the square of the distance [123]

Lneg =
∑

l∈L−

∑

γ∈Γ
ψγ (ϕ(s (l)))2 (4.4)

where L− be a set of negative relaions and Γ be a set of grounded rules.
ψγ (ϕ(l)) denotes the distance to satisfaction of the rule γ in PSL. For any
rule γ ≡ γbody → γhead, the distance dγ describing the satisfaction of the rule
is

dγ = max 0, I (γbody)− I (γhead) (4.5)

where I (l) is the soft truth value of the triple l

I (l) =


w, l is positive

ϕ(s (l)), l is negative
(4.6)

But for negative triples not covered by the rule, the loss is

Lneg =
∑

l∈L−

ϕ (s (l))− 02 (4.7)

which treats the weight of triples not covered by the rules as 0. Thus, the
total loss is

L = Lpos + Lneg (4.8)

UKGE only optimizes its ability on weight prediction but does not put at-
tention to its performance on link prediction.

PASSLEAF

PASSLEAF [61] extends UKGE to be able to utilize the scoring functions of
RotatE and ComplEx to calculate triple weights. PASSLEAF automatically
generates weights for negative samples by the model expecting to mitigate
the false-negative problem and introduces a sample pool to keep negative
samples to improve training eciency.

50

TransHExt

TransHExt [124] adopts a 3-layer feed-forward neural network to TransH for
predicting the weight wp of any triple (h, r, t)

wp = N
((
h−w⊤

r hwr

)
+ r−

(
t−w⊤

r twr

))

where N is the 3-layer feed-forward neural network and wr is the normal
vector of the relation-specic hyperplane. h, r, t are corresponding vectors of
the triple (h, r, t), respectively. The accuracy of weight prediction is measured
by

acc(wp, w) =


w−|w−wp|

w
, wp ∈ [0, 2w]

0, otherwise

TransHExt simultaneously optimizes its performance on link prediction and
weight prediction through a joint loss

L =
∑

l∈L+

∑

l−∈L−

γ + [f (l) + acc (wp, w)]

− f
(
l−
)

4.2.3 Evaluation Tasks for Knowledge Graph Embed-
ding Models

Link Prediction

Link prediction (LP) is the task of predicting the existence of a relation
between two entities. LP can be adopted to predict friend relation among
users in a social network [105], predict co-author relation in a citation net-
work [106], and predict interactions between genes and proteins in a biological
network [107]. Mean rank (MR) [108], mean reciprocal rank (MRR) [109]
and Hits@N [42] are widely used for evaluation of the models. For each test
triple, the head is removed and replaced by each of the entities of the dictio-
nary in turn. The scores of those corrupted triples are rst computed by the
models and then sorted by ascending order; the rank of the correct entity
is nally stored. This whole procedure is repeated while removing the tail
instead of the head. MR calculates the mean of those predicted ranks, MRR
calculates the mean of the reciprocal of the ranks, and the Hits@N calculates
the proportion of correct entities ranked in the top N .

Weight Prediction

Weight prediction task (WP) [60] is to predict weights of unseen triples. For
each weighted triple ⟨(h, r, t), ?⟩ in the test set, the task is to predict the

51

missing weight w. The mean squared error (MSE) and the mean absolute
error (MAE) between the predicted values and the ground truth are adopted
as the evaluation metrics.

4.3 Methodology

4.3.1 WeExt

To embed the WKGs, we introduce a weight prediction module consisting of
preprocessing and a neural weight predictor (nwp) to predict the weight for
a given triple. The architecture of the proposed framework WeExt is shown
in Figure 4.4.

h

t



푠푐표빀
푓푢푐표

푝푙푎푢푠푙

_푣푐

푤빀ℎ

relation
embedding

entity
embedding

embedded
relation

embedded
head entity

embed
tail entity

푢푎푙
푤빀ℎ

푝푑푐표

base model weight prediction module

푐표푐푎푎빀

Figure 4.4: The framework of WeExt. The green components are the com-
ponents of the base KGC model.

For any deterministic KGE model, a head entity, a relation, and a tail en-
tity interact according to a preset paradigm to produce an interaction vector.
This interaction can be divided into two steps, the rst step is to preprocess
the entities and relations, and the second step is to perform addition oper-
ation (translation distance model) or multiplication operation (two-line sex
model) to get the interaction vector. The plausibility of the triple is obtained
by modulo the interaction vector. UKGE computes the weight of the triple
by squashing the plausibility of the triple by a non-linear function, while we
argue that the interaction vector of the triple maintains richer information
than the plausibility of the triple, thus it may be possible to predict the
weights with higher accuracy using the interaction vector.

Based on the above assumption, we design the inter vec (ivec) prepro-
cessing. ivec processes the entities and the relations following the base model

52

but removes the modulo operation and outputs the interaction vectors di-
rectly.

Since translational distance models measure the distance between the
head and the translated tail entity, the well-trained translational distance
models produce interaction vectors close to the zero vector. To mitigate
the above problem, we design another preprocessing which concatenates the
processed head entity, the relation, and the tail entity after the rst step of the
interaction of the base model. We call this preprocessing as concatenating
(cat).

We implement WeExt on the basis of four deterministic knowledge graph
embedding models, including two representative translational distance mod-
els TransE and TransH, and two representative bilinear models DistMult and
HolE.

Next, we illustrate how ivec and cat work through our implementation.
The scoring functions of the base models are:

• TransE: s = −∥h+ r− t∥p

• TransH: s = −
∥∥(h−w⊤

r hwr

)
+ r−

(
t−w⊤

r twr

)∥∥2

2

• DistMult: s = ∥r ◦ h ◦ t∥

• HolE: s = r(h ⋆ t)

where p is the norm, wr is the relation-specic hyperplane, ◦ is the element-
wise product, and ⋆ is the circular correlation.

The inter vec preprocessing for the base models are:

• TransE: p = h+ r− t

• TransH: p =
(
h−w⊤

r hwr

)
+ r−

(
t−w⊤

r twr

)

• DistMult: p = r ◦ (h ◦ t)

• HolE: p = r ◦ (h ⋆ t)

The concatenating preprocessings for the base models are:

• TransE: p = cat (h, r, −t)

• TransH: p = cat
(
h−w⊤

r hwr, r, −(t−w⊤
r twr)

)

• DistMult: p = cat (h, r, t)

• HolE: p = cat (r, h ⋆ t)

53

We implement the neural weight predictor using a four-layer feed-forward
neural network. The neural weight predictor predicts the weight based on
the output of the preprocessing component:

wp = nwp(p)

To better illustrate the workow of WeExt, we take TransH as an exam-
ple and explain how WeExt is used to extend the base model (TransH) in
Figure 4.5.



ℎ


















 




















pl
au
si
bi
lit
y

w
ei
gh
t

norm

Figure 4.5: An example of the proposed framework based on TransH.

4.3.2 Training Protocol

For a given positive training set

S =

⟨(hi, ri, ti) , wi⟩

}u

i=1
,

we generate a corresponding negative set by replacing the head entity using
all other entities and replacing the tail entity using all other entities:

S ′ = (h′, r, t′)
= (h′

i, ri, ti)  h′
i ∈ E \ hiui=1 (4.9)

∪ (hi, ri, t
′
i)  t′i ∈ E \ tiui=1 

We adopt margin ranking loss [42] to measure the loss on learning the facts:

Llink =
∑

(h,ℓ,t)∈S

∑

(h′,ℓ,t′)∈S′

[γ + f(h, r, t)− f (h′, r, t′)]+ (4.10)

54

We measure the loss of the weight prediction module on learning the weight
of the positive triple using

Lweight =
w − wp

w
(4.11)

The total loss of the model is

L = (1− α) · Llink + α · Lweight (4.12)

where the combination coecient α is a hyper-parameter that balances the
model between learning facts and learning weights.

4.3.3 Weighted Link Prediction Task

Task Description

Weighted link prediction (WLP) aims to simultaneously add missing rela-
tions and the corresponding missing weights to the incompleted WKGs. We
describe WLP as follows:

Given a weighted knowledge graph

WKG =

⟨(hi, ri, ti) , wi⟩

}u

i=1

where hi, ti ∈ E, ri ∈ R and wi ∈ (0, 1], the E and R are entity and relation
sets, respectively. A corrupted weighted triple is dened as a weighted triple
without the relation and the weight, i.e., ⟨(h, ?, t) , ?⟩. WLP is to complete
the missing relations and the weights of the corrupted weighted triples in
WKG, making them to completed weighted triples of the form ⟨(h, r, t) , w⟩.

Evaluation Protocol

For a test weighted triple ⟨(hi, ri, ti) , wi⟩, wi is omitted. The head entity hi is
replaced by each of the entities of the dictionary in turn to form all possible
triples ⟨(hj, ri, ti) , ?⟩j=|u|

j=1 . Triple scores are calculated by the scoring function
of the base model and then sorted in ascending order. After sorting, the
ranking of the testing weighted triple rki is recorded. This whole procedure
is repeated while removing ti instead of hi.

We measure the accuracy of predicting the weight by

acc(h, r, t, w) =
w − w − wp

w
(4.13)

We adjust the ranking of the positive triple rki using the accuracy of the
weight prediction acc(hi, ri, ti, wi) and a threshold τ :

55

rk
′
i = rki ·exp (τ − acc(hi, ri, ti, wi)) (4.14)

We adopt mean rank (MR), mean reciprocal rank (MRR), and Hits@N
(Hits@N) to measure the performance of the models on WLP, shown in
Equations 4.15, 4.16, and 4.17, respectively.

MR =
u∑

i=1

rk
′
i, (4.15)

MRR =
u∑

i=1

1

rk
′
i

, (4.16)

Hits@N =
u∑

i=1

I[rk
′
i ≤ N] (4.17)

where the I[expn] is the indicator function, which outputs 1 if expn is true,
and 0 otherwise. We present the complete evaluation procedure in Algo-
rithm 3.

4.4 Experiments and Results

To measure the performance of the proposed WeExt framework, we evalu-
ate the weighted extensions of the base models on link prediction, weight
prediction, and weighted link prediction.

4.4.1 Experiment Setting

(a) CN15K. (b) NL27K. (c) PPI5K.

Figure 4.6: The weight distribution in the datasets.

We conducted experiments on CN15K, NL27K, and PPI5K [111] datasets.
CN15K is a subgraph of ConceptNet [75], containing 15,000 entities and

56

Algorithm 3: Weighted Link Prediction

Input: WKG = ⟨(h, r, t), w⟩, KGE model M, threshold of
accuracy th

Result: MR, MRR, Hits@N
1 ranks, r ranks = 0, 0
2 hits = k:0
3 while i in range(WKG) do
4 mixt,mixh, scoret, scoreh = [(hi, ri, ti)], [(hi, ri, ti)], [], []
5 for j = 0; j < E ; j = j + 1 do
6 if (hi, ri, ej) ∈ WKG then
7 mixt.append((hi, ri, ej))
8 if (ej, ri, ti) ∈ WKG then
9 mixh.append((ej, ri, ti))

10 end
11 for k = 0; k < mixt; k = k + 1 do
12 scoretappend(Mscore(mixt[k]))
13 end
14 errw = exp(th−max (abs(wi −Mpredictw((hi, ri, ti)))wi, 0))
15 rankt = rank(scoret)get((hi, ri, ti))
16 ranks += rankt · errw
17 r ranks += 1/(rankt · errw)
18 for k in hits.keys() do
19 if rankt <= k then
20 hits[k] += errw
21 end
22 for k = 0; k < mixh; k = k + 1 do
23 scorehappend(Mscore(mixh[k]))
24 end
25 rankh = rank(scoreh)get((hi, ri, ti))
26 ranks += rankh · errw
27 r ranks += 1/(rankh · errw)
28 for k in hits.keys() do
29 if rankh <= k then
30 hits[k] += errw ;

31 end

32 end
33 MR, MRR, Hits@N = ranks/(2 · WKG), r ranks/(2 · WKG),

hits[N]/(2 · WKG)

57

229,235 weighted triples in English. The original scores in ConceptNet vary
from 0.1 to 22, while the weights in CN15K are normalized to [0.1, 1.0].
NL27k is extracted from NELL [76], an weighted KG obtained from webpage
reading. NL27k contains 27,221 entities, 405 relations, and 175,412 weighted
triples. The weights in NL27K are normalized to the interval [0.1, 1.0]. PPI5k
is a subset of the protein-protein interaction knowledge base STRING [99]
that contains 255,114 weighted triples for 4,999 proteins and 7 interactions.
STRING labels the interactions between proteins with the probabilities of
occurrence. The weights in PPI5k fall in the interval [0.15, 1.0]. We drop out
duplicated quadruplets in CN15K and PPI5K. The statistics of the WKGs
are shown in Table 4.1.

We implemented the proposed framework and the weighted link predic-
tion task based on the PyKEEN toolkit [112]. We choose 0.01 as the learning
rate λ for the stochastic gradient descent among and searched the combina-
tion coecient α for loss function among 0.1, 0.2, 0.01, 0.001, 0.0001. The
margin of the loss function γ was set to 1. The dimension of embeddings was
set to 50. We trained the models for 3000 epochs, evaluated the models per
10 epochs, and save their best results.

Table 4.1: Statistics of weighted knowledge graphs. #Ent denotes the num-
ber of the entities, #Rel denotes the number of the relations, #Tri denotes
the number of the triples, INR denotes the interval of the weights, Avg(d)
denotes the average of the degree of the entities, and Med(d) denotes the
median of the degree of the entities.

#Ent #Rel #Tri INR Avg(d) Med(d)

CN15K
train 15000 36 193274 0.900 25.77 12
test 10659 34 19166 0.900 3.60 2
val 10158 35 16795 0.900 3.31 2

NL27K
train 27221 405 149100 0.899 10.95 4
test 9711 287 14034 0.898 2.89 1
val 9000 279 12278 0.899 2.73 1

PPI5K
train 4999 7 214661 0.847 85.88 21
test 3703 7 21566 0.847 11.65 4
val 3557 7 18887 0.847 10.62 3

4.4.2 Base Models

We implement the proposed framework based on two representative transla-
tional distance models: TransE and TransH, and two representative semantic

58

matching models: DistMult and HolE.

TransE

TransE [42] is one of the most representative translational distance models.
It interprets entities as vectors and the relation as a translation vector of the
head entity in one embedding space. The scoring of TransE is

s = −∥h+ r− t∥p

TransH

TransE is eective for 1-to-1 relations, but cannot model the 1-to-N or N-to-N
relation well. TransH [122] models 1-to-N and N-to-N relations by introduc-
ing the mechanism of projecting to relation-specic hyperplanes. The scoring
of TransH is

s = −
∥∥(h−w⊤

r hwr

)
+ r−

(
t−w⊤

r twr

)∥∥2

2

where wr stands for the normal vector of the relation-specic hyperplane.

DistMult

DistMult [103] represents each relation as a diagonal matrix that models
pairwise interactions between entities to capture the latent semantics. The
scoring of DistMult is

s = ∥r ◦ h ◦ t∥
where ◦ is the element-wise product.

HolE

For a given triple, HolE [47] rst composes the head entity and tail entity
using the circular correlation operation [125], then matches the relational
with the compositional vector of the head entity and tail entity to score the
given triple. Since circular correlation is not commutative, HolE is able to
model asymmetric relations. The scoring of HolE is

s = r⊤(h ⋆ t)

where ⋆ is the circular correlation.

59

Figure 4.7: An illustration of how UKGE infers weights from the plausibility
of triples. Given two triples A=⟨(h1, r1, t1) , 04⟩ and B=⟨(h2, r2, t2) , 08⟩,
the non-linear function is sigmoid function: s(t) = 1

1+e−1 . Let a well-trained
UKGE model predict the plausibility of the given triples, the plausibility of
triple-A will be -0.4 and plausibility of triple-B will be 1.4.

4.4.3 Results on Link Prediction

For a test triple (hi, ri, ti), hi is removed and replaced by each of the entities

in the dictionary in turn to form all possible triples (hj, ri, ti) j=|u|
j=0 . Triple

scores are calculated by the scoring function of the base model and sorted
by ascending order. The rank of the positive triple is recorded as rki. This
whole procedure is repeated while removing the tail entity instead of the
head entity. We adopt MR, MRR, and Hits@N to measure the performance
of the models on link prediction, as shown in Equation 4.15, Equation 4.16
and Equation 4.17, respectively. We choose UKGE as the baseline.

The results on Link prediction are shown in Table 4.2. Because MRR
is not sensitive to extremely poor rankings, we mainly focus on the MRR
score. After introducing a weight prediction module for base models, the
extended models have to optimize their performance on both link prediction
and weight prediction simultaneously. The results show that the introduced
additional optimization term does not cause the model’s performance to de-
crease on the link prediction task, there may be a slight improvement for
some models instead, for example, TransE, TransH, and HolE. DistMultExt
achieves a worse performance than DistMult on all the datasets. DistMul-
tExt outperforms UKGE on CN15K and PPI5K, but due to the improved

60

Figure 4.8: An illustration of the weight distribution of triples correctly
predicted by UKGE and DistMultExt on NL27K and PPI5K.

performance of UKGE on NL27K compared to DistMult, the performance of
UKGE on NL27K is much better than DistMultExt.

From another perspective, all the extended models outperform UKGE on
CN15K. DistMultExt and HolEExt can surpass UKGE on PPI5K. But as for

61

NL27K, only HolEExt achieves better performance than UKGE. We assume
the performance dierence on the dierent datasets is caused by the weight
distribution of the respective datasets, shown in Figure 4.6, and the way how
UKGE learns the weights. Triples in NL27K are centralized in high-weight
regions, triples in PPI5K are centralized in low-weight regions, and weights
in CN15K are not so polarized as NL27K and PPI5K.

UKGE utilizes a non-linear function to squeeze the plausibility of triples
to obtain the weights of the triples, which makes the triples with a small
weight gap to gain a larger plausibility gap. An illustration is shown in
Figure 4.7. Thus, UKGE tends to assign stronger plausibility for high-weight
triples and weaker plausibility for low-weight triples, which is why UKGE’s
performance on PPI5K is not as good as half of the best-performing model. In
contrast, on NL27K, where high-weight triples account for a large proportion,
the gap between the performance of UKGE and the best-performing model
is much smaller.

Figure 4.8 shows the weight distribution of triples correctly predicted by
UKGE and DistMultExt on NL27K and PPI5K, we can see that UKGE
predicts more triples with high weights, while DistMultExt performs more
balanced on dierent intervals.

Moreover, WeExt with the cat preprocessing outperforms WeExt with
the ivec preprocessing on PPI5K, and they achieve similar performance on
CN15K and NL27K.

4.4.4 Results on Weight Prediction

For each weighted triple ⟨(hi, ri, ti) , wi⟩ in the test set, we predict the weight
based on the triple (hi, ri, ti) and report the mean squared error (MSE) and
mean absolute error (MAE).

The results on weight prediction are shown in Table 4.3. Except for Tran-
sHExt that performs worse than UKGE on NL27K, all the weighted exten-
sions outperform UKGE in the weight prediction task for all three datasets.
The result shows that adopting neural networks to learn weights from pro-
cessed embeddings is superior to utilizing nonlinear functions to learn weights
by squeezing the plausibility of the triple.

Moreover, WeExt with the cat preprocessing outperforms WeExt with the
ivec preprocessing, not only for the translational distance models but also for
the bilinear models, indicating that after the model is well-trained, the cas-
cade of entities and relations retains richer information than the interaction
vector.

62

4.4.5 Result on Weighted Link Prediction

The results on weighted link prediction are shown in Table 4.4. All weighted
extensions outperform UKGE in weighted link prediction on CN15K. Dist-
MultExt and HolEExt outperform UKGE on both NL27K and PPI5K. Al-
though the link prediction performance of DistMultExt on NL27K is worse
than UKGE, DistMultExt achieves better performance in the weighted link
prediction on NL27K thanks to the better weight prediction performance.

Moreover, WeExt with the cat preprocessing outperforms WeExt with
the ivec preprocessing on PPI5K, but they achieve similar performance on
CN15K and NL27K. The performance of the weighted extensions on weighted
link prediction is consistent with the performance trend on link prediction,
but not consistent with the performance of the model’s weighted prediction.
This indicates that under the current evaluation protocol for weighted link
prediction, the performance of the model on the link prediction task is dom-
inant, while the performance of the model on the weight prediction task has
been taken into consideration, but only in a subordinate position.

4.5 Summary

In this section, we propose a framework called WeExt for extending deter-
ministic knowledge graphs to be capable of embedding weighted knowledge
graphs. To facilitate the performance evaluation of our extended WKGE
models, we propose the novel weighted link prediction task. Compared
with the widely-used asynchronous link prediction and weight prediction
tasks, weighted link prediction can synchronously evaluate the performance
of weighted knowledge graph embedding in link prediction and weight pre-
diction.

In the next work, we plan to design a new evaluation protocol to alleviate
the impact of extreme data on the score, so that the score can better reect
the model performance.

63

Table 4.2: Results on link prediction

Model MR MRR Hits@1 Hits@3 Hits@5 Hits@10

C
N
15
K

UKGE 1760.4 0.0800 0.0372 0.0840 0.1161 0.1634
TransE 1240.2 0.1078 0.0371 0.1327 0.1818 0.2457

TEExt
ivec 1206.4 0.1091 0.037 0.1357 0.1821 0.2498
cat 1233.3 0.1084 0.0372 0.1324 0.1817 0.2466

TransH 1716.3 0.0789 0.0419 0.0879 0.1107 0.1455

THExt
ivec 1747.5 0.079 0.0415 0.0898 0.1118 0.1442
cat 1745.1 0.0804 0.0425 0.0899 0.1132 0.1486

DistMult 966.1 0.1072 0.041 0.13 0.1711 0.2315

DMExt
ivec 1105.7 0.0907 0.0408 0.1012 0.1339 0.1831
cat 1208.5 0.0773 0.0373 0.0815 0.108 0.152

HolE 1319.7 0.0935 0.0477 0.0994 0.1335 0.1832

HEExt
ivec 1327.7 0.0946 0.0496 0.1014 0.1329 0.1813
cat 1330.9 0.0945 0.0506 0.1007 0.1318 0.1794

N
L
27

UKGE 236.6 0.4550 0.3697 0.4879 0.5483 0.6268
TransE 111.4 0.3736 0.2298 0.4554 0.5325 0.6344

TEExt
ivec 114.8 0.3794 0.2366 0.4593 0.5364 0.6387
cat 109.2 0.3818 0.2344 0.4662 0.5449 0.6465

TransH 686.1 0.2721 0.1874 0.3125 0.3593 0.42

THExt
ivec 671.2 0.2798 0.1978 0.3168 0.3623 0.4226
cat 677.5 0.2769 0.194 0.3156 0.3579 0.4193

DistMult 179.1 0.3993 0.3065 0.4421 0.4939 0.57

DMExt
ivec 264.8 0.3703 0.2822 0.4069 0.4573 0.5321
cat 186.3 0.3729 0.2823 0.4118 0.4634 0.5354

HolE 135 0.5223 0.4198 0.5716 0.639 0.7241

HEExt
ivec 144.5 0.5382 0.4377 0.5873 0.6507 0.7333
cat 134.8 0.5291 0.4277 0.579 0.641 0.7267

P
P
I5
K

UKGE 29.3 0.3759 0.2405 0.4320 0.5092 0.6435
TransE 19.6 0.1819 0.0001 0.2432 0.3704 0.5636

TEExt
ivec 18.4 0.1815 0 0.2397 0.3682 0.5635
cat 18.7 0.1818 0 0.2425 0.3679 0.5637

TransH 49.5 0.1106 0.0029 0.1274 0.1906 0.3155

THExt
ivec 50.1 0.1196 0 0.1523 0.2193 0.3334
cat 48.7 0.1199 0 0.1532 0.217 0.3283

DistMult 24.1 0.459 0.3427 0.5175 0.5763 0.6662

DMExt
ivec 34.6 0.4302 0.3266 0.473 0.5298 0.6186
cat 32.6 0.4585 0.3549 0.4994 0.5584 0.6495

HolE 6.6 0.8426 0.7589 0.9149 0.9473 0.9719

HEExt
ivec 6.1 0.845 0.7628 0.9168 0.9479 0.9722
cat 6.6 0.8542 0.7762 0.9218 0.951 0.9743

64

Table 4.3: Results on weight prediction

Model MSE MAE
UKGE 8.61 19.90

CN15K

TransEExt
ivec 4.60 14.66
cat 3.83 13.08

TransHExt
ivec 4.26 13.89
cat 3.91 12.89

DistMultExt
ivec 5.10 15.62
cat 3.67 11.93

HolEExt
ivec 5.86 17.09
cat 5.79 16.31

NL27K

UKGE 2.36 6.90

TransEExt
ivec 1.45 5.98
cat 1.23 5.24

TransHExt
ivec 2.12 8.12
cat 3.05 10.46

DistMultExt
ivec 1.39 6.13
cat 1.22 5.09

HolEExt
ivec 1.31 5.01
cat 1.26 5.38

PPI5K

UKGE 0.95 3.79

TransEExt
ivec 0.24 2.77
cat 0.24 2.58

TransHExt
ivec 0.49 3.7
cat 0.42 3.32

DistMultExt
ivec 0.34 2.89
cat 0.28 2.70

HolEExt
ivec 0.16 1.83
cat 0.15 1.85

65

Table 4.4: Results on weighted link prediction

Model MR MRR Hits@1 Hits@3 Hits@5 Hits@10

C
N
15
K

UKGE 4031.2 0.0795 0.0266 0.0736 0.1066 0.1556

TEExt
ivec 3602 0.1129 0.035 0.1153 0.1639 0.2295
cat 4467.6 0.1154 0.0342 0.1174 0.1694 0.2361

THExt
ivec 4907.8 0.0865 0.0393 0.0821 0.1059 0.1398
cat 4551.3 0.0868 0.0381 0.0829 0.1085 0.1438

DMExt
ivec 3071.9 0.0961 0.0365 0.0898 0.1242 0.1749
cat 3224.2 0.083 0.033 0.0737 0.1025 0.147

HEExt
ivec 2761.2 0.0984 0.039 0.0924 0.1263 0.1777
cat 2786.5 0.0992 0.0433 0.0886 0.1201 0.1696

N
L
27
K

UKGE 483.5 0.5269 0.3566 0.4844 0.5521 0.637

TEExt
ivec 137.1 0.4198 0.1967 0.4481 0.5356 0.6491
cat 149.6 0.4093 0.1801 0.4429 0.5378 0.6462

THExt
ivec 621.5 0.2996 0.156 0.3044 0.3547 0.4258
cat 633.8 0.2942 0.1455 0.3039 0.3544 0.4221

DMExt
ivec 280.7 0.4148 0.2518 0.4012 0.456 0.536
cat 382 0.419 0.2558 0.3996 0.4581 0.5438

HEExt
ivec 272 0.624 0.4128 0.58 0.6563 0.746
cat 339.1 0.6038 0.3941 0.5579 0.636 0.7236

P
P
I5
K

UKGE 34.3 0.4212 0.2131 0.4193 0.5073 0.6518

TEExt
ivec 18.6 0.1996 0 0.2227 0.3574 0.5631
cat 18.3 0.2018 0 0.225 0.3697 0.5772

THExt
ivec 47.4 0.1336 0 0.1459 0.2174 0.3441
cat 45.3 0.1363 0 0.147 0.217 0.345

DMExt
ivec 34.5 0.4782 0.2835 0.4641 0.5263 0.6235
cat 33.7 0.5124 0.309 0.4906 0.5563 0.6547

HEExt
ivec 7.7 0.9769 0.7241 0.9096 0.9457 0.9722
cat 22.6 0.9948 0.7448 0.914 0.9473 0.9717

66

Chapter 5

Knowledge-guided Word
Embedding Fine-tuning Model

5.1 Problem Statement

Word embedding models represent words as real-valued vectors in a semantic
vector space, promoting the development of many natural language process-
ing tasks. The most intuitive way to represent words is using one-hot vectors,
which contain one at the words’ corresponding index and zeros in all other
indices. This method can assign an independent vector for each word; how-
ever, the angle between any two one-hot vectors in the semantic space is
a right angle, thus it is hard to measure the similarity between two words.
Apart from this, the one-hot vectors face the curse of dimensionality problem
while the vocabulary expands because the dimension of any one-hot vector
equals to the vocabulary’s size.

To address the above deciencies, some neural-based architectures (cf. [126,
127, 128]) have heen proposed to learn word embeddings based on the distri-
butional hypothesis: words appearing in a similar context must have similar
meanings and are thus represented similarly. The neural-based architectures
can learn word representations that are superior to one-hot vectors on the
word similarity task. However, there is a lack of supervision between a target
word and its context words when training with such architectures. Specif-
ically, it is possible that words appearing in a context window may not be
related and the related words do not appear in the same context window.
This shows why the size of a context window can signicantly impact the
performance of the word embeddings on the word similarity task [129]. In
other words, neural-based models merely learn to detect which words appear
with a target word in a given context window regardless of their semantical

67

relationship with the target word.

Freddy Rodriguez is an American actor
known for playing the characters Hector
Federico Rico Diaz on HBO Six Feet

Under and El Wray in Robert Rodriguez
Planet Terror. In 2007 he was a recurring
cast member on the series Ugly Betty as

Giovanni Gio Rossi.

Freddy Rodriguez

Chicago is the third most populous city in
the United States, after New York City and
Los Angeles. With 2.7 million residents, it
is the most populous city in both the U.S.
state of Illinois and the American Midwest.

Chicago

Lady in the Water is a 2006 American
fantasy thriller written and directed by M.

Night Shyamalan and starring Paul
Giamatti and Bryce Dallas Howard. The
film follows a Philadelphia maintenance

man who discovers a young woman in the
swimming pool of his apartment complex.

Lady in the Water

The 10th Screen Actors Guild Awards
were presented at the Shrine Exposition

Center, Los Angeles, California, USA on 22
February 2004.

10th Screen Actors Guild Awards

Film producer prepare and then supervise
the making of a film before presenting the

product to a financing entity or a film
distributor. They might be employed by a
production company or be independent,
yet either way they help the creative

people as well as accounting personnel.

film producer

Justina Machado is an American actress.
She is known for her role as Vanessa Diaz
in the HBO drama series Six Feet Under.

Justina Machado

profession

award

award_winner

ac
to
r

p
eo

p
le
_b

or
n_

he
re

Figure 5.1: An example of entity-description pairs extracted from Freebase.

Many models are proposed to enhance the quality of word embeddings
with knowledge graphs [130, 131]. For instance, Xu et al. [132] dened
regularization functions to incorporate knowledge into a skip-gram model
for strengthening the learnt vectors. Roy et al. [133] extended the original
objective function of distributed representation learning to embed dierent
knowledge sources during training. Wang et al. [53] combined a knowledge
graph model, a text model, and an alignment model into the single objective
function for jointly training entities and words within the same vector space.
Tissier et al. [134] augmented an input text with extra knowledge and used a
skip-gram model for training the embeddings. Faruqui et al. [135] developed
a retrotting method to ne-tune word embeddings so that they satisfy addi-
tional constraints dened in semantic lexicons. While these methods utilize
knowledge sources for improving the quality of word embeddings, there is no
study that enhances the word embeddings with knowledge graph embeddings
(cf. the review in [136]). Thus, we aim to ll this gap in this work.

It is worth mentioning that some knowledge graphs (e.g. [117, 1]) contains
not only rich knowledge information in form of triples, but also rich semantic

68

information in form of concise descriptions. Figure 5.1 illustrates an example
of the related entity-description pairs sampled from Freebase [117]. Since
each entity and its description refer to the same object in the real world, we
assume that words within the entity description are highly related to that
entity. In addition, we assume that words in the descriptions of the related
entities are also highly related to each other. Exceptional models that follow
this principle are [54, 137]. On the one hand, these works utilize embeddings
of the descriptions to improve the quality of entity embeddings. On the other
hand, this research considers the opposite direction of [54, 137]; that is, our
research question is to investigate how entity embeddings can be leveraged
to enhance the quality of word embeddings.

For this purpose, this work introduces a novel Knowledge-Guided Word
Embedding ne-tuning model (KGWE). Informally, KGWE adopts entity-
description pairs taken from knowledge graphs and entity embeddings trained
by knowledge graph embedding models as training inputs. For each entity-
description pair, it embeds the entity and its description using entity embed-
dings and word embeddings, respectively, where the entity embeddings are
xed. Then, KGWE encodes the embedded description and trains to maxi-
mize the likelihood of predicting each embedded entity in order to obtain the
higher quality of word embeddings for any words within the entity descrip-
tions. To ensure the eectiveness of KGWE, we conduct experiments with
two dierent word embedding models (i.e., GloVe [128] and Word2Vec [127])
and ve dierent entity embedding models (i.e., ANALOGY [138], Dist-
Mult [46], TransD [139], TransE [42] and TransH [122]) with four dierent
dimensions (50, 100, 200 and 300). We also implement two encoders for
encoding entity descriptions: a bag-of-word (BoW)-based encoder and an
RNN-based encoder. Our experiments show that both Word2Vec and GloVe
processed by KGWE not only gain signicant performance improvement on
word similarity task, but also outperform the baselines on the relation clas-
sication task, and the sentence polarity classication task. Also, the BoW-
based encoder with a simpler architecture yields the better performance than
the RNN-based encoder.

In sum, the main contribution of this section is a knowledge-guided ne-
tuning technique for utilizing knowledge graph resources to obtain higher-
quality semantic word embeddings. In contrast to the existing works, KGWE
extracts the related words of the entities from the entity-description pairs
that can lead to higher-quality training data. KGWE utilizes powerful entity
embeddings learned by the knowledge graph embedding models, which have
been shown to be more eective at integrating the knowledge into word
embeddings.

In our previous study [140], our experiments have veried the eective-

69

ness of KGWE on word similarity task. In this section, we evaluate the per-
formance of KGWE with RNN-based encoder and BoW-based encoder using
extrinsic evaluation, to prove the eectiveness of KGWE on natural language
processing downstream tasks. The results demonstrate that KGWE can also
improve the performance of word embeddings on downstream natural lan-
guage processing tasks.

5.2 Related Works

The existing word embeddings’ learning approaches can be categorized into
two main streams [141, 130]: (1) static word embedding models (cf. [127,
128]) and (2) dynamic word embedding models (cf. [142, 143]). Informally,
static word embedding models learn context-independent vectors for words
in a vocabulary regardless of any context, while dynamic word embedding
models learn a language model which can generate dierent word embeddings
for a given word based on dierent context.

To integrate knowledge into dynamic word embeddings, ERNIE [144] ran-
domly masks some word-entity alignments and then predicts all correspond-
ing entities based on aligned word embeddings. KnowBert [145] utilizes a
word-to-entity attention mechanism to align word embeddings and entity
embeddings. KEPLER [146] is a unied model which encodes textual entity
descriptions with a pre-trained language model, and then jointly optimizes
the knowledge graph embedding and language modeling objectives.

It is worth noting that static word embeddings have several superiorities,
although dynamic word embeddings can achieve better performance [147].
For instance, training dynamic (contextual) word embeddings is often resource-
consuming, even if ignoring the training phase. The computational cost of
using static word embeddings is typically tens of millions times lower than
using dynamic embedding models. Many NLP tasks inherently rely on static
word embeddings; for example, for the purpose of interpretability [148], bias
detection [149] and removal [150], analyzing word vector spaces[151] or other
metrics which are non-contextual by choice. Furthermore, static word em-
bedding can complement dynamic word embedding in dierent situations;
for instance, for separating static from contextual semantics, or for improv-
ing joint embedding performance on downstream tasks. Our KGWE focuses
on enhancing the static word embedding. Thus, we specically make further
reviews as follows.

The development of static word representations can also further divided
into two approaches: (1) global context-based models [152] and (2) local
context-based models [127, 128]. The global context-based models rstly

70

summarize the statistical information of the context into a high dimensional
sparse co-occurrence matrix, and then apply dimensionality reduction tech-
niques on the co-occurrence matrix in order to produce lower dimensional
vectors. On the other hand, local context-based models learn word embed-
dings which appear in every sliding window based on a neural network model.
Apropos to these approaches, the training objective functions are dened to
predict: (1) the next word given a sequence of words, (2) a target word given
its context words, or (3) all contexts given a target word.

Moreover, the models of utilizing knowledge for enhancing static word
embeddings can be categorized into two approaches: (1) co-training and
(2) ne-tuning. The co-training models train word embeddings using both
text and external knowledge simultaneously, whereas the ne-tuning models
ne-tune the pre-trained word embeddings based on the external knowledge.
Examples of the co-training approach are WAE [133], Dict2Vec [134], RC-
NET [132], and MPME [153]. An example of the ne-tuning approach is
Retrotting [135]. We briey discuss each of them in the following.

Firstly, WAE lets the target word predict both of its context words
and its labels to encode diverse information from heterogeneous knowledge
sources (e.g. human annotations, raw texts, malware attribute enumera-
tion, and characterization specications) into word embeddings. Secondly,
Dict2Vec adopts new word co-occurrence pairs as a kind of weak supervi-
sion to Word2Vec [127]. The word co-occurrence pairs used by Dict2Vec are
extracted from the word denitions in natural language dictionaries, which
are supposed to contain latent word similarity and relatedness information.
Thirdly, RC-NET attaches the relation restriction and the category restric-
tion to Word2Vec. The relation restriction is extracted by a knowledge graph
embedding model. The word categories are formed by the head words or the
tail words of the same relation. The category restriction aims to make words
in the same category closer to each other than before. Fourthly, [53] trains a
Word2Vec model and a knowledge graph embedding model separately, and
align the two models using the anchors extracted fromWikipedia or the entity
names. Fifthly, MPME [153] jointly learns the representations of words, enti-
ties, and mentions, to bridge text and knowledge representations at the sense
level. The representations are learned by separate models and aligned by a
unied optimization objective. Dierent mention senses are distinguished by
taking advantage of both textual context information and knowledge of ref-
erence entities. Lastly, Retrotting is to make the embeddings of the related
words closer to each other than before in the semantic vector space, under
the premise of minor changes to the word embeddings. The related words
are generated from the word sets in semantic lexicons.

KGWE is conceptually similar to Retrotting in a sense that both of

71

them utilize the external knowledge to ne-tune the static word embeddings.
However, KGWE diers from Retrotting in the aspect that KGWE ne-
tunes the pre-trained word embeddings using the entity embeddings learned
by knowledge graph embedding models, while Retrotting adopts constraints
extracted from semantic lexicons.

5.3 KGWE: Knowledge-GuidedWord Embedding

Fine-tuning Model

Figure 5.2: The proposed model architecture of KGWE

To ne-tune word embeddings under the guidance of knowledge, we design
our KGWE model as shown in Figure 5.2. Formally, let KG := (hi, ri, ti)Ni=1

be a knowledge graph containing N triples of head, relation, and tail entities.
Each head/tail entity in KG is also associated with a sequence of words as
its description, denoted by . For instance, h refers to the description of head
entity h. In addition, we also denote the set of all head/tail entities within
KG by E . Assume that one can nd well-quality entity embeddings of a
knowledge graph; for instance, via an adoption of ANALOGY, DistMult,
TransD, TransE, and TransH. The main idea of KGWE is to ne-tune an
embedding of each word w in description e with e ∈ E so that the vector
representation of description e is aligned closely to the adopted (and xed)
entity embedding.

To intuitively explain the mechanism of KGWE, we consider an arbi-
trary e and its description e in KG as an example. Here, ei ∈ E and
ei := (wi1, wi2,    , wij) be a sequence of j-words. KGWE consists of se-
quential operations as follows:

72

Firstly, a given knowledge graph KG is fed into a knowledge graph embed-
ding model (KGEM), which can be implemented by ANALOGY, DistMult,
TransD, TransE, or TransH, to learn the entity embeddings Ee and the rela-
tion embeddings Er:

Ee, Er := KGEM(KG) (5.1)

Secondly, given Ee and an arbitrary word embedding Ew, the target of
KGWE here is to ne-tune Ew in a way that the representation of ei becomes
closely to the same one in Ee. Let Embeddere : E×R|E|×n → Rn be a function
that returns an entity embedding and Embedderw : S × R|E|×n → Rj×n be
a function that returns a sequence of word embeddings for the description
ei ∈ S. The next operations are follows:

ei := Embeddere(ei, Ee) (5.2)

(wi1, wi2,    , wij) := Embedderw(ei, Ew) (5.3)

Thirdly, the embedded description (wi1, wi2,    , wij) is fed into the de-
scription encoder Encoderdesc : R

j×n → Rn to obtain a representation of the
description, denoted by ri, as follows:

ri := Encoderdesc(wi1, wi2,    , wij) (5.4)

The nal operation is to train for supervising the vector representation ri
closely aligned with the embedded entity ei by optimizing the following loss
function l:

l(ri, ei) := (ri − ei)
2 (5.5)

Intuitively, KGWE treats the embedded entity ei as the label of description
representation ri. After training, KGWE considers the ne-tuned Ew as
its desired output, i.e., the knowledge-guided word embedding. Note that
Equation 5.5 spells out that KGWE computes the squared error for any
entity i. Thus, our implementation denes the total loss L for the whole
dataset as the mean squared error over N triples as follows:

L :=
1

N

N∑

i=1

l(ri, ei) (5.6)

Finally, we discuss our two implementations of the description encoder
Encoderdesc proposed in this work for KGWE: (1) a RNN-based encoder and a
BoW (Bag of Word)-based encoder for self-containment. Formally, we utilize
the Gated Recurrent Unit (GRU) [154] to dene our RNN-based encoder, as
in Equation 5.7. For the BoW-based encoder, it computes the summation

73

Table 5.1: Word similarity results of KGWE with the Bow-based encoder on
GloVe.6B.50d

WordSim353 MEN
RMT

Rare
Words

Sim
Lex

Sim
Verb

SE17T2 Baker
Verb

YP
Verball simi rel full dev test trial test

GloVe 0.414 0.552 0.348 0.652 0.644 0.669 0.619 0.266 0.265 0.154 0.414 0.362 0.250 0.386

R
et
ro

tt
in
g FrameNet 0.394 0.557 0.322 0.622 0.611 0.645 0.600 0.279 0.289 0.217 0.420 0.364 0.233 0.461

PPDB 0.433 0.572 0.358 0.686 0.675 0.709 0.647 0.277 0.399 0.244 0.472 0.374 0.308 0.459
WordNetsyn 0.407 0.561 0.324 0.649 0.641 0.667 0.621 0.267 0.338 0.239 0.465 0.388 0.191 0.508
WordNetall 0.405 0.577 0.296 0.674 0.666 0.690 0.611 0.222 0.371 0.238 0.414 0.390 0.208 0.444

K
G
W

E

ANALOGY 0.447 0.583 0.388 0.652 0.644 0.669 0.619 0.273 0.265 0.154 0.649 0.450 0.250 0.386
DistMult 0.446 0.583 0.386 0.652 0.644 0.669 0.619 0.285 0.265 0.154 0.649 0.447 0.250 0.386
TransD 0.447 0.583 0.387 0.652 0.644 0.669 0.619 0.293 0.265 0.154 0.649 0.447 0.250 0.386
TransE 0.445 0.583 0.384 0.652 0.644 0.669 0.619 0.278 0.265 0.154 0.647 0.446 0.250 0.386
TransH 0.447 0.582 0.389 0.652 0.644 0.669 0.619 0.268 0.265 0.154 0.649 0.457 0.250 0.386

of each word embedding in the embedded entity description with an equal
weight (1) to obtain the description representation (cf. Equation 5.8). The
structure of each encoder is illustrated in Figure 5.3.

ri := GRU(wi1, wi2,    , wij) (5.7)

ri :=

j∑

o=1

1⊙ wio (5.8)

Figure 5.3: The structures of BoW-based encoder and RNN-based encoder.

5.4 Experiments and Results

5.4.1 Training Data and Experimental Setting

To evaluate the proposed model, we conducted experiments to ne-tune
Word2Vec[127] and GloVe[128]. We adopted 300-dimensional Word2Vec

74

Table 5.2: Word similarity results of KGWE with the Bow-based encoder on
GloVe.6B.100d

WordSim353 MEN
RMT

Rare
Words

Sim
Lex

Sim
Verb

SE17T2 Baker
Verb

YP
Verball simi rel full dev test trial test

GloVe.6B.100d 0.443 0.580 0.376 0.681 0.676 0.689 0.619 0.288 0.298 0.180 0.484 0.367 0.302 0.453

Retrotting

FrameNet 0.411 0.566 0.343 0.639 0.631 0.657 0.607 0.298 0.305 0.240 0.474 0.365 0.273 0.511
PPDB 0.467 0.606 0.396 0.710 0.702 0.727 0.653 0.302 0.430 0.266 0.480 0.382 0.364 0.516
WordNetsyn 0.434 0.582 0.351 0.676 0.668 0.692 0.622 0.292 0.365 0.263 0.443 0.387 0.230 0.585
WordNetall 0.439 0.607 0.336 0.698 0.692 0.709 0.625 0.235 0.400 0.264 0.401 0.399 0.254 0.509

KGWE

ANALOGY 0.474 0.612 0.414 0.681 0.676 0.689 0.619 0.289 0.298 0.180 0.736 0.453 0.302 0.453
DistMult 0.477 0.615 0.418 0.681 0.676 0.689 0.619 0.307 0.298 0.180 0.738 0.458 0.302 0.453
TransD 0.475 0.613 0.414 0.681 0.676 0.689 0.619 0.299 0.298 0.180 0.719 0.457 0.302 0.453
TransE 0.477 0.613 0.417 0.681 0.676 0.689 0.619 0.288 0.298 0.180 0.719 0.461 0.302 0.453
TransH 0.475 0.612 0.413 0.681 0.676 0.689 0.619 0.295 0.298 0.180 0.719 0.458 0.302 0.453

Table 5.3: Word similarity results of KGWE with the Bow-based encoder on
GloVe.6B.200d

WordSim353 MEN
RMT

Rare
Words

Sim
Lex

Sim
Verb

SE17T2 Baker
Verb

YP
Verball simi rel full dev test trial test

GloVe.6B.200d 0.482 0.608 0.416 0.710 0.707 0.717 0.620 0.314 0.340 0.198 0.563 0.393 0.284 0.515

Retrotting

FrameNet 0.439 0.587 0.374 0.667 0.660 0.679 0.604 0.323 0.333 0.250 0.525 0.388 0.249 0.539
PPDB 0.498 0.628 0.426 0.738 0.732 0.750 0.655 0.319 0.468 0.281 0.540 0.403 0.333 0.557
WordNetsyn 0.474 0.610 0.388 0.705 0.699 0.717 0.617 0.316 0.398 0.281 0.492 0.418 0.214 0.624
WordNetall 0.474 0.632 0.368 0.729 0.725 0.736 0.627 0.252 0.437 0.279 0.498 0.428 0.228 0.570

KGWE

ANALOGY 0.518 0.640 0.459 0.710 0.707 0.717 0.620 0.314 0.340 0.198 0.816 0.489 0.284 0.515
DistMult 0.515 0.639 0.453 0.710 0.707 0.717 0.620 0.318 0.340 0.198 0.800 0.487 0.284 0.515
TransD 0.516 0.640 0.454 0.710 0.707 0.717 0.620 0.316 0.340 0.198 0.816 0.493 0.284 0.515
TransE 0.516 0.641 0.455 0.710 0.707 0.717 0.620 0.319 0.340 0.198 0.814 0.485 0.284 0.515
TransH 0.515 0.640 0.452 0.710 0.707 0.717 0.620 0.314 0.340 0.198 0.814 0.488 0.284 0.515

Table 5.4: Word similarity results of KGWE with the Bow-based encoder on
GloVe.6B.300d

WordSim353 MEN
RMT

Rare
Words

Sim
Lex

Sim
Verb

SE17T2 Baker
Verb

YP
Verball simi rel full dev test trial test

GloVe.6B.300d 0.736 0.803 0.688 0.802 0.803 0.798 0.665 0.297 0.408 0.283 0.779 0.586 0.341 0.571

Retrotting

FrameNet 0.474 0.625 0.403 0.703 0.698 0.711 0.629 0.347 0.363 0.279 0.542 0.415 0.273 0.581
PPDB 0.543 0.674 0.467 0.765 0.760 0.775 0.675 0.352 0.496 0.312 0.562 0.432 0.344 0.588
WordNetsyn 0.518 0.655 0.433 0.738 0.734 0.747 0.646 0.342 0.432 0.314 0.492 0.44 0.233 0.645
WordNetall 0.52 0.68 0.413 0.761 0.759 0.766 0.648 0.277 0.468 0.312 0.507 0.454 0.25 0.597

KGWE

ANALOGY 0.736 0.803 0.688 0.802 0.803 0.798 0.669 0.320 0.408 0.283 0.779 0.587 0.341 0.571
DistMult 0.736 0.803 0.688 0.802 0.803 0.798 0.666 0.308 0.408 0.283 0.779 0.588 0.341 0.571
TransD 0.736 0.803 0.688 0.802 0.803 0.798 0.669 0.322 0.408 0.283 0.779 0.588 0.341 0.571
TransE 0.736 0.803 0.688 0.802 0.803 0.798 0.666 0.315 0.408 0.283 0.779 0.586 0.341 0.571
TransH 0.736 0.803 0.688 0.802 0.803 0.798 0.666 0.325 0.408 0.283 0.779 0.587 0.341 0.571

trained on the Google News Corpus.We adopted four dierent dimensions
(50, 100, 200, 300) for GloVe trained on Wikipedia and Gigaword corpus.
We adopted ve types of entity embeddings trained on FB15K[42], i.e.,
ANALOGY[138], DistMult[46], TransD[139], TransE[42] and TransH[122].
We adopt the OpenKE1[155] toolkit to train the entity embeddings with en-

1https://github.com/thunlp/OpenKE

75

Table 5.5: Word similarity results of KGWE with the Bow-based encoder on
Word2Vec 300d

WordSim353 MEN
RMT

Rare
Words

Sim
Lex

Sim
Verb

SE17T2 Baker
Verb

YP
Verball simi rel full dev test trial test

Word2Vec 0.698 0.772 0.635 0.732 0.733 0.731 0.490 0.268 0.443 0.364 0.657 0.481 0.450 0.553

R
et
ro

tt
ti
n
g FrameNet 0.104 0.165 0.036 0.239 0.239 0.243 0.320 0.178 0.160 0.127 0.168 0.125 0.227 0.214

PPDB 0.192 0.245 0.129 0.270 0.269 0.273 0.336 0.165 0.309 0.174 0.333 0.174 0.269 0.298
WordNetsyn 0.174 0.232 0.093 0.214 0.222 0.198 0.315 0.181 0.214 0.165 0.290 0.135 0.232 0.253
WordNetall 0.205 0.274 0.126 0.252 0.260 0.234 0.351 0.123 0.276 0.148 0.092 0.171 0.246 0.197

K
G
W

E

ANALOGY 0.698 0.772 0.635 0.734 0.736 0.732 0.522 0.282 0.443 0.364 0.684 0.482 0.454 0.553
DistMult 0.698 0.772 0.635 0.733 0.733 0.732 0.522 0.269 0.443 0.364 0.657 0.482 0.464 0.553
TransD 0.698 0.772 0.635 0.732 0.733 0.731 0.516 0.268 0.443 0.364 0.657 0.481 0.450 0.553
TransE 0.698 0.772 0.635 0.733 0.733 0.732 0.529 0.280 0.443 0.364 0.657 0.483 0.451 0.553
TransH 0.698 0.772 0.635 0.736 0.738 0.734 0.543 0.282 0.443 0.364 0.657 0.489 0.453 0.553

Table 5.6: Statistical information of the dataset used in our experiment

Total Pairs Non OOV Half OOV Both OOV

WS353
all 352 182 51.7% 134 38.1% 36 10.2%
sim 203 95 46.8% 82 40.4% 26 12.8%
rel 252 136 54% 98 39% 18 7.1%

MEN
full 3000 764 25.5% 1324 44.1% 912 30.4%
dev 2000 508 25.4% 882 44.1% 610 30.5%
test 1000 256 25.6% 442 44.2% 302 30.2%

RMTurk 287 71 24.7% 137 47.7% 79 27.5%
RareWords 2034 113 5.6% 896 44.1% 1025 50.4%
SimLex999 999 330 33% 413 41.3% 256 25.6%
SimVerb3500 3500 550 15.7% 1491 42.6% 1459 41.7%

SE17T2
trial 18 12 66.7% 5 27.8% 1 5.6%
test 500 187 37.4% 212 42.4% 101 20.2%

BakerVerb143 144 75 52.1% 62 43.1% 7 4.9%
YPVerb130 130 17 13.1% 48 36.9% 65 50%

tity/relation dimension in 50, 100, 200, 300. We adopted entity-description
pairs extracted from FB15K [42], a dataset extracted from a typical large-
scale KG Freebase [117], as the training data of KGWE.

To guarantee that every entity in the training data relates to a description,
47 entities whose descriptions contain less than three words were removed
from FB15K [54], resulting in the training data used in our experiment (see
the statistics of the training data in Table 5.9). Since the longest descrip-
tion in the training data contains 343 words, we restricted the length of the
descriptions to be 20. For any description containing more than 20 words,
we intercepted only the rst 20 ones from it. After preprocessing, there were
14,904 entities and 25,985 words in our training set.

76

Table 5.7: Statistical information of the lexicons used by Retrotting

Total
Pairs

FrameNet PPDB WNsynWNall

Non OOV Half OOV Both OOV Non OOV Half OOV Both OOV Non OOV Half OOV Both OOV

WS353
all 352 139 39.5% 134 38.1% 79 22.4% 330 93.8% 16 4.5% 6 1.7% 345 98% 7 2% 0 0%
sim 203 87 42.9% 70 34.5% 46 22.7% 193 95.1% 6 3% 4 2% 199 98% 4 2% 0 0%
rel 252 98 38.9% 104 41.3% 50 19.8% 237 94% 13 5.2% 2 0.8% 246 97.6% 6 2.4% 0 0%

MEN
full 3000 1173 39.1% 1270 42.3% 557 18.6% 2868 95.6% 126 4.2% 6 0.2% 2985 99.5% 15 0.5% 0 0%
dev 2000 790 39.5% 831 41.6% 379 19% 1909 95.5% 87 4.4% 4 0.2% 1988 99.4% 12 0.6% 0 0%
test 1000 383 38.3% 439 43.9% 178 17.8% 959 95.9% 39 3.9% 2 0.2% 997 99.7% 3 0.3% 0 0%

RMTurk 287 43 15% 131 45.6% 113 39.4% 266 92.7% 20 7% 1 0.3% 169 58.9% 96 33.4% 22 7.7%
RareWords 2034 112 5.5% 1066 52.4% 856 42.1% 965 47.4% 947 46.6% 122 6% 1376 67.6% 646 31.8% 12 0.6%
SimLex999 999 571 57.2% 318 31.8% 110 11% 993 99.4% 6 0.6% 0 0% 999 100% 0 0% 0 0%
SimVerb3500 3500 2743 78.4% 697 19.9% 60 1.7% 3337 95.3% 157 4.5% 6 0.2% 3500 100% 0 0% 0 0%

SE17T2
trial 18 8 44.4% 5 27.8% 5 27.8% 16 88.9% 1 5.6% 1 5.6% 18 100% 0 0% 0 0%
test 500 108 21.6% 193 38.6% 199 39.8% 361 72.2% 73 14.6% 66 13.2% 416 83.2% 59 11.8% 25 5%

BakerVerb143 144 20 13.9% 64 44.4% 60 41.7% 144 100% 0 0% 0 0% 57 39.6% 58 40.3% 29 20.1%
YPVerb130 130 99 76.2% 25 19.2% 6 4.6% 122 93.8% 8 6.2% 0 0% 130 100% 0 0% 0 0%

Table 5.8: Experiment results on relation classication

GloVe.6B.50d GloVe.6B.100d GloVe.6B.200d GloVe.6B.300d Word2Vec.300d
Accuracy M-A F1 Accuracy M-A F1 Accuracy M-A F1 Accuracy M-A F1 Accuracy M-A F1

vanilla 0.6732 0.6313 0.7265 0.6882 0.7276 0.6989 0.7276 0.6926 0.7619 0.7319

R
et
ro

tt
in
g FrameNet 0.6743 0.6459 0.7081 0.6766 0.7221 0.6973 0.6827 0.653 0.6827 0.653

PPDB-xl 0.6827 0.6525 0.7232 0.6798 0.7368 0.6992 0.7033 0.6641 0.7033 0.6641
WordNetsyn 0.671 0.6445 0.7229 0.679 0.7122 0.6864 0.6805 0.6509 0.6805 0.6509
WordNetall 0.6676 0.6316 0.7247 0.6944 0.7317 0.6913 0.6879 0.6624 0.6879 0.6624

K
G
W

E

ANALOGY 0.7111 0.6832 0.7494 0.7182 0.7471 0.717 0.7501 0.7186 0.781 0.751
DistMult 0.7137 0.6811 0.7494 0.7191 0.7449 0.7166 0.7512 0.7211 0.7803 0.7491
TransD 0.707 0.6817 0.7483 0.715 0.7446 0.715 0.7449 0.7213 0.7795 0.7518
TransE 0.7103 0.6901 0.7471 0.7137 0.7453 0.7258 0.7512 0.7218 0.7781 0.7576
TransH 0.7074 0.6913 0.7483 0.7197 0.7486 0.7218 0.7519 0.7261 0.7869 0.7552

Table 5.9: Statistics of the training data

Dataset Relation Entity Train Valid Test
FB15K 1,341 14,904 472,860 48,991 57,803

Regarding the training, we adopted the mean squared error as the loss
function as discussed in Section 5.3 and optimized using the stochastic gra-
dient descent. The learning rate of the optimizer was set to 0.0001. For
the RNN-based encoder (cf. Equation 5.7), we adopted GRU with one re-
current layer whose weights were initialized randomly via the uniform dis-
tribution. For the BoW-based encoder (cf. Equation 5.8), we assigned an
equal weight (1) to all words. Our model with a BoW-based encoder can
achieve the best performance within 500 training epochs for most combina-
tions of word embeddings and entity embeddings. We also compared the
performance with Retrotting2[135] using four dierent semantic lexicons:
FrameNet[156], PPDB[157], WordNetsyn [158] and WordNetall[158], with the

2https://github.com/mfaruqui/retrotting

77

default conguration reported in [135].

5.4.2 Knowledge Graph Embedding Models

This subsection explains each knowledge graph embedding model (KGEM)
used in our model for its self-containment.

ANALOGY is a bilinear model which represents each entity as a vector
and each relation as a matrix to capture their latent semantics. The relation
matrix models pairwise interactions between latent factors. The score of a
triple (h, r, t) is dened by a bilinear function: fr(h, t) = h⊤Mrt, where
h, t ∈ Rd are embeddings of head entity and tail entity, and Mr ∈ Rd×d is a
linear map associated with the relation.

DistMult is a simplied bilinear model by restricting Mr to diagonal
matrices. For each relation r, it introduces a vector embedding r ∈ Rd and
requires Mr = diag(r). The scoring function is hence dened as:

fr(h, t) := h⊤ diag(r)t =
d−1∑

i=0

[r]i · [h]i · [t]i (5.9)

This score captures pairwise interactions between only the components of h
and t along the same dimension. However, DistMult can only deal with sym-
metric relations which is not powerful enough for general knowledge graphs.

TransE is the most representative translational distance model. It learns
both entity embeddings and relation embeddings in the same space. Given
a triple (h, r, t), the relation is interpreted as a translation vector r so that
the embedded head entity h and tail entity t can be connected by r with low
error, i.e., h+ r ≈ t. TransE is simple and ecient, but weak in dealing with
1-to-N, N-to-1, and N-to-N relations.

TransH introduces relation-specic hyperplanes to overcome the disad-
vantages of TransE in dealing with 1-to-N, N-to-1, and N-to-N relations.
TransH models each relation r as a vector r on a hyperplane with wr as the
normal vector. For a triple (h, r, t), the entity representations h and t are
rst projected onto the hyperplane, resulting in

h⊥ = h−w⊤
r hwr, t⊥ = t−w⊤

r twr (5.10)

Each projection is assumed to be connected by r on the hyperplane with
a low error, i.e., h⊥ + r ≈ t⊥. By introducing such projections to relation-
specic hyperplanes, TransH can enable dierent roles of an entity in dierent
relations.

TransD introduces relation-specic spaces to deal with 1-to-N, N-to-1,
and N-to-N relations. For a triple (h, r, t), TransD introduces additional

78

mapping vectors wh,wt ∈ Rd and wr ∈ Rk for h, t ∈ Rd and r ∈ Rk. The
projections of h and t are

h⊥ =
(
wrw

⊤
h + I

)
h, t⊥ =

(
wrw

⊤
t + I

)
t (5.11)

The scoring function is dened as

fr(h, t) := −∥h⊥ + r− t⊥∥22 (5.12)

TransD is powerful in modeling complex relations, but loses the simplicity
and eciency of TransE and TransH.

5.4.3 Word Similarity Task

We evaluated the embeddings ne-tuned word by KGWE with the BoW-
based encoder on the word similarity task. We adopted the Spearman’s rank
correlation coecient between the cosine similarity of the ne-tuned word
embedding pairs and human judgments as the evaluation metric. Suppose x
be the cosine similarity scores of the ne-tuned word embeddings and y be
the human judgments, the Spearman’s rank correlation coecient ρs (x, y)
is:

ρs (x, y) =


i (xi − x̄) (yi − ȳ)√

i (xi − x̄)2


i (yi − ȳ)2
(5.13)

The closer the score is to 1, the closer the embeddings’ performance is
to human judgment. We performed our evaluations on WordSim353 [159,
160], MEN [161], RadinskyMTurk [162], RareWords [163], SimLex999 [164],
SimVerb3500 [164], SemEval17Task2 [165], BakerVerb143 [166] and Yang-
Powers130 [167]. We adopted the GluonNLP3 [168] toolkit to evaluate the
ne-tuned word embeddings.

Note that WordSim353 is a widely used word similarity benchmark, con-
taining 353 word pairs, each associated with an average of 13 to 16 human
judgments. MEN contains 3,000 pairs of randomly selected words that oc-
cur as ESP tags (pairs sampled to ensure a balanced range of relatedness
levels according to a text-based semantic score), each pair is scored on a
[0, 1]-normalized semantic relatedness scale. RadinskyMTurk contains 287
word pairs extracted from New York Times news articles, each pair’s sim-
ilarity score is obtained by using the Amazon’s Mechanical Turk workers.
RareWords contains 2034 pairs of low-frequency words. SimLex-999 is a
benchmark for evaluating the meaning of words and concepts. SimLex-
999 focuses on measuring how well models capture similarity, rather than

3https://nlp.gluon.ai/index.html

79

relatedness or association. SemEval17Task2 provides a reliable framework
for evaluating both monolingual and multilingual semantic representations,
and similarity techniques. In our experiment, we only adopted the English
monolingual word pairs. SimVerb-3500 provides human ratings for the sim-
ilarity of 3,500 verb pairs, covering all normed verb types from the USF
free-association database, providing at least three examples for every Verb-
Net class. BakerVerb consists of 143 verb pairs, constructed from 122 unique
verb lemma types. The participating verbs appear ≥ 10 times in the concate-
nation of the labour legislation and the environment datasets. Only pairs of
verbs that were considered at least remotely similar by human judges (inde-
pendent of those that provided the similarity scores) were included. Yang-
PowersVerb contains 130 verb pairs extracted from TOEFL (Test of English
as a Foreign Language) questions, and ESL (English as a second language)
questions.

5.4.4 Results on Word Similarity Task

The results of GloVe (dimension = 50, 100, 200, 300) and Word2Vec (dimen-
sion = 300) ne-tuned by the KGWE model with a BoW-based description
encoder on the word similarity task are shown in Tables 5.1, 5.2, 5.3, 5.4
and 5.5, respectively. The boldface numbers represent the best results on
the tasks. For 50-dimensional, 100-dimensional and 200-dimensional GloVe,
KGWE outperforms GloVe and Retrotting on WordSim353, RareWords
and SemEval17Task2, but gains no improvement on other benchmarks than
GloVe. For 300-dimensional GloVe, KGWE outperforms Retrotting on all
benchmarks and gains improvement on MEN, RadinskyMTurk, RareWords,
and SemEval17Task2 than GloVe. For 300-dimensional Word2Vec, KGWE
outperforms Retrotting on all benchmarks and gains improvement on MEN,
RadinskyMTurk, RareWords, SemEval17Task2, and BakerVerb143 thanWord2Vec.

In addition, KGWE achieves very little performance improvement on the
three verb similarity benchmarks: SimVerb3500, BakerVerb143, and Yang-
PowersVerb130. Based on our analysis, we hypothesize that this is because
we only adopt entity embeddings but drop the relation embeddings. Hence,
we lose the information contained in relational embedding. Figure 5.4 shows
the Spearman Rank Correlation curve during training, demonstrating that
the performance of KGWE is stable. Indeed, it shows to gradually improve
the word embedding. Even if it cannot improve the performance on word em-
bedding, it does not destroy the word representation like existing ne-tuning
methods such as Retrotting.

As limited by the scale of our training data, the word embeddings we
ne-tuned are relatively less, which has a great impact on the performance

80

Figure 5.4: Performance on each word similarity task during the training

Table 5.10: Word similarity result of KGWE with a RNN-based description
encoder on GloVe.6B.50d

MEN Rare
Words

SE17T2 YP
Verbfull dev test trial test

GloVe.6B.50d 0.652 0.644 0.669 0.266 0.414 0.362 0.386
KGWERNN ANALOGY 0.653 0.644 0.669 0.278 0.42 0.362 0.388

of KGWE. We divide the word pairs into three categories according to
the number of the OOV (out of vocabulary) words involved in the word
pair: Non OOV, Half OOV, Both OOV. We count the number and pro-
portion of these three types of word pairs in the training data of KGWE
and Retrotting, as shown in Tables 5.6 and 5.7, respectively. The ta-
bles reveal that FrameNet covers the least word pairs, while the perfor-
mance of Retrotting with FrameNet is also the worst. Although PPDB
and WNsynWNall have much better coverage of word pairs on all bench-
marks than KGWE, KGWE can achieve similar performance to Retrotting
with PPDB and WNsynWNall on GloVe (50d, 100d, 200d), and better per-
formance than Retrotting on 300-dimensional GloVe and Word2Vec.

As for KGWE with the RNN-based description encoder, the ne-tuned
word embeddings cannot gain any performance improvement on the word
similarity tasks. We hypothesize that this is because the RNN-based de-
scription encoder is more complex, and the optimizer can make the deviation
between entity embedding and entity description representation suciently
low by optimizing the weights of the RNN-based encoder. We also trained
the RNN-based model for 20,000, 30,000, 40,000 epochs and found that the

81

most signicant changes were on the embeddings of the unknown words,
padding words, and beginning/ending labels of sentences; all were initialized
with zero vectors. The remaining words’ embeddings have not been obviously
ne-tuned. We did experiment on KGWE with RNN-based encoder whose
weight is freezed. The result is shown in Table 5.10, KGWE with RNN-
encoder achieves better performance on four word similarity benchmarks,
which can prove our hypothesis.

5.4.5 Results on Relation Classication Task

The task of relation classication [169] is to predict a plausible semantic re-
lation between a pair of nouns which can be informally dened as follows:
given a sentence S with the annotated pairs of nouns n1 and n2, the task
is to identify a relation between n1 and n2. We use the SemEval-2010 Task
8 dataset to evaluate our proposed model[169], which contains 10,717 anno-
tated examples, including 8,000 training instances and 2,717 test instances.
There are 9 relationships (with two directions) and an undirected Other
class. Note that we did not take the Other class into account in our experi-
ment. Rather, we adopt the evaluation implementation in [170]4. The results
are shown in Table 5.8. For all kinds of embeddings, our proposed model can
outperform the naive word embeddings and the retrotting model.

5.4.6 Results on Sentence Level Polarity Classication

The sentence level sentiment polarity classication task is evaluated with the
MR dataset of short movie reviews [171]. For this task, only one sentence per
review is classied into positive/negative. Binary classication is performed
by a simplied version of the model proposed by [172], which is implemented
by [170]. The results are shown in Table 5.11, demonstrating that for all
kinds of embeddings, our proposed model can outperform the naive word
embeddings and retrotting model.

5.4.7 Case Analysis

We randomly selected an example from the relation classication task and
the sentence polarity classication task, and applied KGWE (BoW-based
encoder, epoch=250, TransE) on these two examples using glove.6B.50d for
their embeddings. The results from each task are shown in Table 5.12 and

4https://github.com/shashwath94/Extrinsic-Evaluation-tasks

82

Table 5.11: Experiment results on sentence level polarity classication

GloVe.6B Word2Vec
50d 100d 200d 300d 300d

vanilla 88.36 88.28 89.92 90.88 90.84

Retrotting

FrameNet 88.56 88.36 90.36 91.00 86.76
PPDB-xl 87.00 88.04 90.32 90.72 86.84
WordNetsyn 88.20 87.80 90.08 90.44 86.92
WordNetall 87.80 87.56 90.44 90.60 87.08

KGWE

ANALOGY 89.28 89.64 91.00 91.16 91.52
DistMult 89.20 89.56 90.96 91.24 91.60
TransD 89.12 89.68 91.04 91.08 91.40
TransE 89.16 89.60 91.16 91.28 91.64
TransH 89.16 89.52 90.88 91.12 91.56

Table 5.12: An example on relation classication

input
context: Inside of it, the rst details about the game

were revealed through an interview with se-
ries director Masahiro Yasuma.

entity: details, interview
label Message-Topic (e2,e1)
glove.6B.50d Other
KGWE Message-Topic (e2,e1)

Table 5.13: An example on sentence polarity classication

input the documentary will combine an interview with mr.
mcnamara discussing some of the tragedies and glories
of the 20th century, archival footage, documents, and
an original score by philip glass.

label positive
glove.6B.50d negative
KGWE positive

Table 5.13, respectively. We found that KGWE helps to improve the rep-
resentation of the embedding, yielding the correct classication as desired.
Table 5.14 shows the entity-description pair that involves the entity inter-
view and the word interview. We believe that it is the knowledge intro-
duced by KGWE, who has signicantly improved the performance of word
embeddings.

83

Table 5.14: The entity-description pair involved with interview

entity interview
id /m/01jdpf
description An interview is a conversation between two or more

people where questions are asked by the interviewer
to elicit facts or statements from the interviewee. In-
terviews are a standard part of journalism and media
reporting, but are also employed in many other situ-
ations, including qualitative research.@en

5.5 Conclusion and Future Works

this section proposes KGWE that utilizes the knowledge from entity em-
beddings learned from any knowledge graph embedding model and shows to
aid in ne-tuning the static word embeddings. In addition, we provide two
implementation methods of the entity description encoder in KGWE: the
RNN-Based encoder and the BoW-based encoder. We evaluate the proposed
model on both of intrinsic evaluation task and extrinsic evaluation, including
the word similarity task with various benchmarks, the relation classication
task, and the sentence polarity classication task. The results demonstrate
that the word embeddings ne-tuned by KGWE with a BoW-based encoder
can signicantly outperform the baseline word embeddings. In the future, we
will explore how to utilize relational embeddings to guide ne-tuning verbs.

84

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has investigated several interesting topics belonging to the cate-
gory of knowledge graph embedding.

Initially, we analyze the imbalance between learning embeddings on weighted
knowledge graphs and evaluating the embeddings with non-weight-aware
tasks. We introduce two weight-aware evaluation tasks for evaluating the
embeddings learned from weighted knowledge graphs. We propose a frame-
work WaExt to extend the non-weight-aware knowledge graph embedding
models to their weight-aware version, achieving better performance on both
weight-aware tasks and non-weight-aware tasks.

Secondly, we notice that the weight information is critically important
to the weighted knowledge graphs and explore how to encode the weight
information of the triples to the knowledge graph embeddings. We propose
a framework WeExt to extend the unweighted knowledge graph embedding
models to their weighted version. WeExt can well take into account the
performance of knowledge graph embeddings on the link prediction task and
weight prediction task, resulting in better performance on the weighted link
prediction task.

Lastly, we notice the mismatch between the word vector space where
the word embedding is located and the knowledge graph vector space where
the knowledge graph embedding is located, which brings diculty to the
utilization of knowledge graph embeddings on the downstream tasks. We
propose a model that uses knowledge graph embeddings to guide ne-tuning
of static word embeddings, improving the quality of the word embeddings.

85

6.2 Future Work

In the future, we will explore ways to eciently encode timestamps and
time intervals of triples in temporal knowledge graphs. Most existing models
embed time as discrete items, which results in signicant information loss,
such as the inability to intuitively compare the order of events. To address
this issue, we plan to propose a sequence-to-sequence model.

86

Publications

1. Kong W. K., Racharak T. and Nguyen M. L., Can Knowledge En-
hance Reading Comprehension? An Integrated Approach with Seman-
tic Lexicon, 12th International Conference on Knowledge and Systems
Engineering (KSE), 2020, pp. 7-12, doi: 10.1109/KSE50997.2020.9287218.

2. Kong W. K., Racharak T., Cao. Y., Peng C. and Nguyen M. L.,
KGWE: A Knowledge-guided Word Embedding Fine-tuning Model,
2021 IEEE 33rd International Conference on Tools with Articial Intel-
ligence (ICTAI), 2021, pp. 1221-1225, doi: 10.1109/ICTAI52525.2021.00193.

3. Kong, W.K., Zheng, S., Nguyen M.L., Ma, Q., A Multi-agent Rein-
forcement Learning Approach Towards Congestion-aware Route Rec-
ommendation for Tourists, 14th Data Engineering and Information
Management Forum (DEIM), 2022, D24-5.

4. Kong, W.K., Zheng, S., Nguyen M.L., Ma, Q., Diversity-Oriented
Route Planning for Tourists, 33rd International Conference on Database
and Expert Systems Applications (DEXA), 2022, doi: 10.1007/978-3-
031-12426-6 20

5. Kong W. K., Liu X., Racharak T. and Nguyen M. L., TransHExt:
a Weighted Extension for TransH on Weighted Knowledge Graph Em-
bedding, The 21st International Semantic Web Conference (ISWC),
2022.

6. Kong W. K., Liu X., Racharak T., Sun. G., Ma Q. and Nguyen M. L.,
Weight-aware Tasks for Evaluating Knowledge Graph Embeddings,
The Semantic Web journal, Under Review.

7. Kong W. K., Liu X., Racharak T., Sun. G., Ma Q. and Nguyen M.
L., WeExt: Extending Deterministic Knowledge Graph Embedding
Models for Embedding Weighted Knowledge Graphs, IEEE ACCESS,
Revising.

87

Bibliography

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
Dbpedia - a large-scale, multilingual knowledge base extracted from
wikipedia, Semantic Web, vol. 6, pp. 167–195, 2015.

[2] T. M. Mitchell, W. W. Cohen, E. Hruschka, P. P. Talukdar, B. Yang,
J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krish-
namurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A.
Platanios, A. Ritter, M. Samadi, B. Settles, R. C. Wang, D. Wijaya,
A. K. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling, Never-
ending learning, Communications of the ACM, vol. 61, pp. 103 – 115,
2015.

[3] R. Speer, J. Chin, and C. Havasi, Conceptnet 5.5: An open multilin-
gual graph of general knowledge, ArXiv, vol. abs/1612.03975, 2017.

[4] F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: a core of semantic
knowledge, in WWW ’07, 2007.

[5] K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Tay-
lor, Freebase: a collaboratively created graph database for structur-
ing human knowledge, in SIGMOD Conference, ser. SIGMOD ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
1247–1250.

[6] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-
Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J.
Jensen, and C. von Mering, String v11: protein–protein association
networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets, Nucleic Acids Research, vol. 47,
pp. D607 – D613, 2019.

[7] W. Wu, H. Li, H. Wang, and K. Q. Zhu, Probase: a probabilistic
taxonomy for text understanding, SIGMOD, 2012.

88

[8] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, A survey
on knowledge graphs: Representation, acquisition, and applications,
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
pp. 494–514, 2020.

[9] Q. Wang, Z. Mao, B. Wang, and L. Guo, Knowledge graph embed-
ding: A survey of approaches and applications, IEEE Transactions
on Knowledge and Data Engineering, vol. 29, pp. 2724–2743, 2017.

[10] X. Zou, A survey on application of knowledge graph, in Journal of
Physics: Conference Series, vol. 1487, no. 1. IOP Publishing, 2020,
p. 012016.

[11] A. Fader, L. Zettlemoyer, and O. Etzioni, Open question answering
over curated and extracted knowledge bases, in Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2014, pp. 1156–1165.

[12] X. Yao and B. Van Durme, Information extraction over structured
data: Question answering with freebase, in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), 2014, pp. 956–966.

[13] A. Bordes, S. Chopra, and J. Weston, Question answering with sub-
graph embeddings, in Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), 2014, pp.
615–620.

[14] A. Bordes, J. Weston, and N. Usunier, Open question answering with
weakly supervised embedding models, in Joint European conference
on machine learning and knowledge discovery in databases. Springer,
2014, pp. 165–180.

[15] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, An end-
to-end model for question answering over knowledge base with cross-
attention combining global knowledge, in Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2017, pp. 221–231.

[16] H. Wang, F. Zhang, X. Xie, and M. Guo, Dkn: Deep knowledge-aware
network for news recommendation, in Proceedings of the 2018 world
wide web conference, 2018, pp. 1835–1844.

89

[17] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, Collaborative
knowledge base embedding for recommender systems, in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge dis-
covery and data mining, 2016, pp. 353–362.

[18] V. Bellini, V. W. Anelli, T. Di Noia, and E. Di Sciascio, Auto-encoding
user ratings via knowledge graphs in recommendation scenarios, in
Proceedings of the 2nd Workshop on Deep Learning for Recommender
Systems, 2017, pp. 60–66.

[19] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo, Multi-task
feature learning for knowledge graph enhanced recommendation, in
The world wide web conference, 2019, pp. 2000–2010.

[20] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, Meta-graph based
recommendation fusion over heterogeneous information networks, in
Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, 2017, pp. 635–644.

[21] J. Dalton, L. Dietz, and J. Allan, Entity query feature expansion using
knowledge base links, in Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval,
2014, pp. 365–374.

[22] H. Raviv, O. Kurland, and D. Carmel, Document retrieval using
entity-based language models, in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval, 2016, pp. 65–74.

[23] F. Ensan and E. Bagheri, Document retrieval model through semantic
linking, in Proceedings of the tenth ACM international conference on
web search and data mining, 2017, pp. 181–190.

[24] X. Liu and H. Fang, Latent entity space: a novel retrieval approach for
entity-bearing queries, Information Retrieval Journal, vol. 18, no. 6,
pp. 473–503, 2015.

[25] P. Ernst, C. Meng, A. Siu, and G. Weikum, Knowlife: a knowledge
graph for health and life sciences, in 2014 IEEE 30th International
Conference on Data Engineering. IEEE, 2014, pp. 1254–1257.

[26] L. Shi, S. Li, X. Yang, J. Qi, G. Pan, and B. Zhou, Semantic
health knowledge graph: semantic integration of heterogeneous medi-
cal knowledge and services, BioMed research international, vol. 2017,
2017.

90

[27] Y. Jia, Y. Qi, H. Shang, R. Jiang, and A. Li, A practical approach to
constructing a knowledge graph for cybersecurity, Engineering, vol. 4,
no. 1, pp. 53–60, 2018.

[28] Y. Qi, R. Jiang, Y. Jia, R. Li, and A. Li, Association analysis algo-
rithm based on knowledge graph for space-ground integrated network,
in 2018 IEEE 18th International Conference on Communication Tech-
nology (ICCT). IEEE, 2018, pp. 222–226.

[29] S. A. Elnagdy, M. Qiu, and K. Gai, Understanding taxonomy of cyber
risks for cybersecurity insurance of nancial industry in cloud comput-
ing, in 2016 IEEE 3rd International Conference on Cyber Security
and Cloud Computing (CSCloud). IEEE, 2016, pp. 295–300.

[30] ——, Cyber incident classications using ontology-based knowledge
representation for cybersecurity insurance in nancial industry, in
2016 IEEE 3rd International Conference on Cyber Security and Cloud
Computing (CSCloud). IEEE, 2016, pp. 301–306.

[31] J. Liu, Z. Lu, and W. DU, Combining enterprise knowledge graph and
news sentiment analysis for stock price prediction, in Proceedings of
the 52nd Hawaii International Conference on System Sciences, 2019.

[32] B. Ulicny, Constructing knowledge graphs with trust, in 4th Inter-
national Workshop on Methods for Establishing Trust of (Open) Data,
Bentlehem, USA, 2015.

[33] P. Chen, Y. Lu, V. W. Zheng, X. Chen, and B. Yang, Knowedu: A
system to construct knowledge graph for education, Ieee Access, vol. 6,
pp. 31 553–31 563, 2018.

[34] C. Grévisse, R. Manrique, O. Mariño, and S. Rothkugel, Knowl-
edge graph-based teacher support for learning material authoring, in
Colombian Conference on Computing. Springer, 2018, pp. 177–191.

[35] A. Singhal, Introducing the knowledge graph: Things, not strings,
May 2012. [Online]. Available: https://blog.google/products/search/
introducing-knowledge-graph-things-not/

[36] X. Luo, L. Liu, Y. Yang, L. Bo, Y. Cao, J. Wu, Q. Li, K. Yang, and
K. Q. Zhu, Alicoco: Alibaba e-commerce cognitive concept net, in
Proceedings of the 2020 ACM SIGMOD international conference on
management of data, 2020, pp. 313–327.

91

[37] H. Qi, Building the linkedin knowledge graph, October 2016.
[Online]. Available: https://engineering.linkedin.com/blog/2016/10/
building-the-linkedin-knowledge-graph

[38] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
Translating embeddings for modeling multi-relational data, Advances
in neural information processing systems, vol. 26, 2013.

[39] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, Modeling relational data with graph convolutional net-
works, in European semantic web conference. Springer, 2018, pp.
593–607.

[40] J. Li, H. Shomer, J. Ding, Y. Wang, Y. Ma, N. Shah, J. Tang, and
D. Yin, Are graph neural networks really helpful for knowledge graph
completion? arXiv preprint arXiv:2205.10652, 2022.

[41] Z. Sun, W. Hu, Q. Zhang, and Y. Qu, Bootstrapping entity alignment
with knowledge graph embedding. in IJCAI, vol. 18, 2018, pp. 4396–
4402.

[42] A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston, and O. Yakhnenko,
Translating embeddings for modeling multi-relational data, in NIPS,
2013.

[43] Z. Wang, J. Zhang, J. Feng, and Z. Chen, Knowledge graph embed-
ding by translating on hyperplanes, in AAAI, 2014.

[44] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, Learning entity and
relation embeddings for knowledge graph completion, in AAAI, 2015.

[45] M. Nickel, V. Tresp, and H.-P. Kriegel, A three-way model for collec-
tive learning on multi-relational data, in ICML, 2011.

[46] B. Yang, W. tau Yih, X. He, J. Gao, and L. Deng, Embedding entities
and relations for learning and inference in knowledge bases, CoRR,
vol. abs/1412.6575, 2015.

[47] M. Nickel, L. Rosasco, and T. A. Poggio, Holographic embeddings of
knowledge graphs, in AAAI, 2016.

[48] R. Hussein, D. Yang, and P. Cudré-Mauroux, Are meta-paths neces-
sary? revisiting heterogeneous graph embeddings, in Proceedings of
the 27th ACM international conference on information and knowledge
management, 2018, pp. 437–446.

92

[49] S. Guo, Q. Wang, B. Wang, L. Wang, and L. Guo, Semantically
smooth knowledge graph embedding, in Annual Meeting of the As-
sociation for Computational Linguistics, 2015.

[50] R. Xie, Z. Liu, and M. Sun, Representation learning of knowledge
graphs with hierarchical types, in International Joint Conference on
Articial Intelligence, vol. 2016, 2016, pp. 2965–2971.

[51] D. Krompass, S. Baier, and V. Tresp, Type-constrained representa-
tion learning in knowledge graphs, in International Workshop on the
Semantic Web. Springer, 2015, pp. 640–655.

[52] R. Socher, D. Chen, C. D. Manning, and A. Ng, Reasoning with neural
tensor networks for knowledge base completion, in NIPS, 2013.

[53] Z. Wang, J. Zhang, J. Feng, and Z. Chen, Knowledge graph and text
jointly embedding, in Conference on Empirical Methods in Natural
Language Processing, 2014.

[54] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, Representation learning
of knowledge graphs with entity descriptions, in AAAI, 2016.

[55] Z. Wang and J.-Z. Li, Text-enhanced representation learning for
knowledge graph, in International Joint Conference on Articial In-
telligence, 2016.

[56] A. Kimmig, S. H. Bach, M. Broecheler, B. Huang, and L. Getoor, A
short introduction to probabilistic soft logic, in NIPS, 2012.

[57] S. Guo, Q. Wang, L. Wang, B. Wang, and L. Guo, Jointly embed-
ding knowledge graphs and logical rules, in Conference on Empirical
Methods in Natural Language Processing, 2016.

[58] T. Rocktäschel, S. Singh, and S. Riedel, Injecting logical background
knowledge into embeddings for relation extraction, in North American
Chapter of the Association for Computational Linguistics, 2015.

[59] P. Hájek, Metamathematics of fuzzy logic. Springer Science & Business
Media, 2013, vol. 4.

[60] X. Chen, M. Chen, W. Shi, Y. Sun, and C. Zaniolo, Embedding un-
certain knowledge graphs, in AAAI, 2019.

93

[61] Z. Chen, M.-Y. Yeh, and T.-W. Kuo, PASSLEAF: A pool-based semi-
supervised learning framework for uncertain knowledge graph embed-
ding, in AAAI, 2021.

[62] S. Pai and L. Costabello, Learning embeddings from knowledge graphs
with numeric edge attributes, in IJCAI, 2021.

[63] B. Russell, Knowledge by acquaintance and knowledge by descrip-
tion, in Proceedings of the Aristotelian society, vol. 11. JSTOR,
1910, pp. 108–128.

[64] J. J. Ichikawa and M. Steup, The Analysis of Knowledge, in The
Stanford Encyclopedia of Philosophy, Summer 2018 ed., E. N. Zalta,
Ed. Metaphysics Research Lab, Stanford University, 2018.

[65] B. Russell, The problems of philosophy. OUP Oxford, 2001.

[66] E. H. Shortlie, B. G. Buchanan, and E. A. Feigenbaum, Knowledge
engineering for medical decision making: A review of computer-based
clinical decision aids, Proceedings of the IEEE, vol. 67, no. 9, pp.
1207–1224, 1979.

[67] L. M. Markus, Toward a theory of knowledge reuse: Types of knowl-
edge reuse situations and factors in reuse success, Journal of manage-
ment information systems, vol. 18, no. 1, pp. 57–93, 2001.

[68] A. Newell, The knowledge level, Articial intelligence, vol. 18, no. 1,
pp. 87–127, 1982.

[69] C. Pavese, Knowledge How, in The Stanford Encyclopedia of Philos-
ophy, Fall 2022 ed., E. N. Zalta and U. Nodelman, Eds. Metaphysics
Research Lab, Stanford University, 2022.

[70] R. Studer, V. R. Benjamins, and D. Fensel, Knowledge engineering:
principles and methods, Data & knowledge engineering, vol. 25, no.
1-2, pp. 161–197, 1998.

[71] D. Shen, G. Wu, and H.-I. Suk, Deep learning in medical image anal-
ysis, Annual review of biomedical engineering, vol. 19, p. 221, 2017.

[72] R. Angles and C. Gutierrez, Survey of graph database models, ACM
Computing Surveys (CSUR), vol. 40, no. 1, pp. 1–39, 2008.

94

[73] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,
Foundations of modern query languages for graph databases, ACM
Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–40, 2017.

[74] E. A. Bender and S. G. Williamson, Lists, decisions and graphs. S.
Gill Williamson, 2010.

[75] R. Speer, J. Chin, and C. Havasi, Conceptnet 5.5: An open multilin-
gual graph of general knowledge, in AAAI, 2017.

[76] T. M. Mitchell, W. W. Cohen, E. R. Hruschka, P. P. Talukdar, B. Yang,
J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krish-
namurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A.
Platanios, A. Ritter, M. Samadi, B. Settles, R. C. Wang, D. Wijaya,
A. K. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling, Never-
ending learning, Communications of the ACM, vol. 61, pp. 103 – 115,
2015.

[77] O. D. la Cruz Cabrera, M. Matar, and L. Reichel, Edge importance
in a network via line graphs and the matrix exponential, Numerical
Algorithms, vol. 83, pp. 807–832, 2019.

[78] Introduction to knowledge-based systems, in Proceedings Electronic
Technology Directions to the Year 2000, 1995, pp. 18–27.

[79] R. Davis, H. Shrobe, and P. Szolovits, What is a knowledge represen-
tation? AI magazine, vol. 14, no. 1, pp. 17–17, 1993.

[80] F. Baader, Logic-based knowledge representation, in Articial intel-
ligence today. Springer, 1999, pp. 13–41.

[81] L. A. Zadeh, Knowledge representation in fuzzy logic, in An intro-
duction to fuzzy logic applications in intelligent systems. Springer,
1992, pp. 1–25.

[82] L. Steels, Frame-based knowledge representation, 1978.

[83] R. Davis, B. Buchanan, and E. Shortlie, Production rules as a rep-
resentation for a knowledge-based consultation program, Articial in-
telligence, vol. 8, no. 1, pp. 15–45, 1977.

[84] Y. Bengio, A. Courville, and P. Vincent, Representation learning: A
review and new perspectives, IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

95

[85] B. An, B. Chen, X. Han, and L. Sun, Accurate text-enhanced knowl-
edge graph representation learning, in Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), 2018, pp. 745–755.

[86] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, Representation learning
of knowledge graphs with entity descriptions, in Proceedings of the
AAAI Conference on Articial Intelligence, vol. 30, no. 1, 2016.

[87] Z. Wang, J. Li, Z. Liu, and J. Tang, Text-enhanced representation
learning for knowledge graph, in Proceedings of International joint
conference on articial intelligence (IJCAI), 2016, pp. 4–17.

[88] T. P. Tanon, G. Weikum, and F. M. Suchanek, Yago 4: A reason-able
knowledge base, The Semantic Web, vol. 12123, pp. 583 – 596, 2020.

[89] D. Vrandeić and M. Krötzsch, Wikidata: a free collaborative knowl-
edgebase, Commun. ACM, vol. 57, pp. 78–85, 2014.

[90] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. P. Murphy,
T. Strohmann, S. Sun, and W. Zhang, Knowledge vault: a web-scale
approach to probabilistic knowledge fusion, Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2014.

[91] L. Dietz, A. Kotov, and E. Meij, Utilizing knowledge graphs for
text-centric information retrieval, The 41st International ACM SI-
GIR Conference on Research & Development in Information Retrieval,
2018.

[92] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao, Answering natu-
ral language questions by subgraph matching over knowledge graphs,
IEEE Transactions on Knowledge and Data Engineering, vol. 30, pp.
824–837, 2018.

[93] X. Huang, J. Zhang, D. Li, and P. Li, Knowledge graph embedding
based question answering, Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining, 2019.

[94] S. Zhou, X. Dai, H. Chen, W. Zhang, K. Ren, R. Tang, X. He,
and Y. Yu, Interactive recommender system via knowledge graph-
enhanced reinforcement learning, Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Development in In-
formation Retrieval, 2020.

96

[95] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He,
A survey on knowledge graph-based recommender systems, IEEE
Transactions on Knowledge and Data Engineering, vol. 34, pp. 3549–
3568, 2022.

[96] C. Rudnik, T. Ehrhart, O. Ferret, D. Teyssou, R. Troncy, and X. Tan-
nier, Searching news articles using an event knowledge graph leveraged
by wikidata, Companion Proceedings of The 2019 World Wide Web
Conference, 2019.

[97] P. Ernst, C. Meng, A. Siu, and G. Weikum, Knowlife: A knowledge
graph for health and life sciences, 2014 IEEE 30th International Con-
ference on Data Engineering, pp. 1254–1257, 2014.

[98] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller, Link prediction in
relational data, in NIPS, 2003.

[99] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller,
J. Huerta-Cepas, M. Simonovic, A. C. J. Roth, A. Santos, K. Tsafou,
M. Kuhn, P. Bork, L. J. Jensen, and C. von Mering, String v10:
protein–protein interaction networks, integrated over the tree of life,
Nucleic Acids Research, vol. 43, pp. D447 – D452, 2015.

[100] Z. Wang, H. Wang, J.-R. Wen, and Y. Xiao, An inference approach
to basic level of categorization, CIKM, 2015.

[101] Y. Wang, H. Li, H. Wang, and K. Q. Zhu, Concept-based web search,
in ER, 2012.

[102] J. Ivanic, A. Wallqvist, and J. Reifman, Evidence of probabilistic be-
haviour in protein interaction networks, BMC Systems Biology, vol. 2,
pp. 11 – 11, 2007.

[103] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, Embedding entities
and relations for learning and inference in knowledge bases, in ICLR,
2015.

[104] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, Com-
plex embeddings for simple link prediction, in International conference
on machine learning. PMLR, 2016, pp. 2071–2080.

[105] L. A. Adamic and E. Adar, Friends and neighbors on the web, Soc.
Networks, vol. 25, pp. 211–230, 2003.

97

[106] H. Cho and Y. Yu, Link prediction for interdisciplinary collabora-
tion via co-authorship network, Social Network Analysis and Mining,
vol. 8, pp. 1–12, 2018.

[107] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, Mixed mem-
bership stochastic block models for relational data with application to
protein-protein interactions, 2006.

[108] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, Learning struc-
tured embeddings of knowledge bases, in AAAI, 2011.

[109] E. M. Voorhees, The trec-8 question answering track, Natural Lan-
guage Engineering, vol. 7, pp. 361 – 378, 2000.

[110] T.-Y. Liu, Learning to rank for information retrieval, Proceedings of
the 33rd international ACM SIGIR conference on Research and devel-
opment in information retrieval, 2009.

[111] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, Convolutional
2d knowledge graph embeddings, in AAAI, 2018.

[112] M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp,
and J. Lehmann, Pykeen 1.0: A python library for training and eval-
uating knowledge graph embeddings, J. Mach. Learn. Res., vol. 22,
pp. 82:1–82:6, 2021.

[113] L. Costabello, A. Bernardi, A. Janik, S. Pai, C. L. Van, R. McGrath,
N. McCarthy, and P. Tabacof, AmpliGraph: a Library for
Representation Learning on Knowledge Graphs, Mar. 2019. [Online].
Available: https://doi.org/10.5281/zenodo.2595043

[114] C. Xiong, R. Power, and J. Callan, Explicit semantic ranking for
academic search via knowledge graph embedding, in WWW, 2017.

[115] Z. Wang, T. Chen, J. S. J. Ren, W. Yu, H. Cheng, and L. Lin, Deep
reasoning with knowledge graph for social relationship understanding,
in IJCAI, 2018.

[116] X. Lin, Z. Quan, Z.-J. Wang, T. Ma, and X. Zeng, Kgnn: Knowledge
graph neural network for drug-drug interaction prediction, in IJCAI,
2020.

[117] W. Wu, H. Li, H. Wang, and K. Q. Zhu, Probase: a probabilistic
taxonomy for text understanding, 2012.

98

[118] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer et al., Db-
pedia – a large-scale, multilingual knowledge base extracted from
wikipedia, Semantic web, vol. 6, no. 2, pp. 167–195, 2015.

[119] F. Mahdisoltani, J. Biega, and F. Suchanek, Yago3: A knowledge base
from multilingual wikipedias, in 7th biennial conference on innovative
data systems research. CIDR Conference, 2014.

[120] R. Speer, J. Chin, and C. Havasi, Conceptnet 5.5: An open multilin-
gual graph of general knowledge, in Thirty-rst AAAI conference on
articial intelligence, 2017.

[121] D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Si-
monovic, A. Santos, N. T. Doncheva, A. Roth, P. Bork et al., The
string database in 2017: quality-controlled protein–protein association
networks, made broadly accessible, Nucleic acids research, p. gkw937,
2016.

[122] Z. Wang, J. Zhang, J. Feng, and Z. Chen, Knowledge graph embed-
ding by translating on hyperplanes, in AAAI, 2014.

[123] S. Bach, B. Huang, B. London, and L. Getoor, Hinge-loss markov
random elds: Convex inference for structured prediction, in UAI,
2013.

[124] W. K. Kong, X. Liu, T. Racharak, and L.-M. Nguyen, Transhext:
a weighted extension for transh on weighted knowledge graph embed-
ding, in ISWC, 2022.

[125] T. A. Plate, Holographic reduced representations, IEEE Transac-
tions on Neural networks, vol. 6, no. 3, pp. 623–641, 1995.

[126] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, A neural prob-
abilistic language model, in J. Mach. Learn. Res., 2000.

[127] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Ecient estimation
of word representations in vector space, in ICLR, 2013.

[128] J. Pennington, R. Socher, and C. D. Manning, GloVe: Global vectors
for word representation, in EMNLP, 2014.

[129] X. Yang and K. Mao, Task independent ne tuning for word em-
beddings, IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, pp. 885–894, 2017.

99

[130] A. Roy and S. Pan, Incorporating extra knowledge to enhance word
embedding, in IJCAI, 2020.

[131] F. Lu, P. Cong, and X. Huang, Utilizing textual information in knowl-
edge graph embedding: A survey of methods and applications, IEEE
Access, vol. 8, pp. 92 072–92 088, 2020.

[132] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T. Liu, Rc-net:
A general framework for incorporating knowledge into word represen-
tations, Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, 2014.

[133] A. Roy, Y. Park, and S. Pan, Predicting malware attributes from
cybersecurity texts, in NAACL, 2019.

[134] J. Tissier, C. Gravier, and A. Habrard, Dict2Vec: Learning word
embeddings using lexical dictionaries, in EMNLP, 2017.

[135] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and
N. A. Smith, Retrotting word vectors to semantic lexicons, in
Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Denver, Colorado: Association for Computational
Linguistics, May–Jun. 2015, pp. 1606–1615. [Online]. Available:
https://aclanthology.org/N15-1184

[136] Q. Wang, Z. Mao, B. Wang, and L. Guo, Knowledge graph embed-
ding: A survey of approaches and applications, IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743,
2017.

[137] W. Zhou, S. Wang, and C. Jiang, Knowledge graph embedding with
interactive guidance from entity descriptions, IEEE Access, vol. 7, pp.
156 686–156 693, 2019.

[138] H. Liu, Y. Wu, and Y. Yang, Analogical inference for multi-relational
embeddings, in ICML, 2017.

[139] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, Knowledge graph embedding
via dynamic mapping matrix, in ACL, 2015.

[140] K. W. Kun, T. Racharak, C. Yiming, P. Cheng, and M. Le Nguyen,
Kgwe: A knowledge-guided word embedding ne-tuning model, in
2021 IEEE 33rd International Conference on Tools with Articial In-
telligence (ICTAI). IEEE, 2021, pp. 1221–1225.

100

[141] Y. Wang, Y. Hou, W. Che, and T. Liu, From static to dynamic word
representations: a survey, International Journal of Machine Learning
and Cybernetics, pp. 1–20, 2020.

[142] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, Deep contextualized word representations, in
NAACL-HLT, 2018.

[143] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-
training of deep bidirectional transformers for language understand-
ing, in NAACL-HLT, 2019.

[144] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, Ernie:
Enhanced language representation with informative entities, in ACL,
2019.

[145] M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi,
S. Singh, and N. A. Smith, Knowledge enhanced contextual word
representations, in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019,
pp. 43–54. [Online]. Available: https://aclanthology.org/D19-1005

[146] X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang, Ke-
pler: A unied model for knowledge embedding and pre-trained lan-
guage representation, Transactions of the Association for Computa-
tional Linguistics, vol. 9, pp. 176–194, 2021.

[147] P. Gupta and M. Jaggi, Obtaining better static word embeddings
using contextual embedding models, in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 5241–5253. [Online].
Available: https://aclanthology.org/2021.acl-long.408

[148] M. Kaneko and D. Bollegala, Gender-preserving debiasing for
pre-trained word embeddings, in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp.
1641–1650. [Online]. Available: https://aclanthology.org/P19-1160

101

[149] H. Gonen and Y. Goldberg, Lipstick on a pig: Debiasing methods
cover up systematic gender biases in word embeddings but do
not remove them, in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 609–614. [Online].
Available: https://aclanthology.org/N19-1061

[150] T. Manzini, L. Yao Chong, A. W. Black, and Y. Tsvetkov, Black
is to criminal as caucasian is to police: Detecting and removing
multiclass bias in word embeddings, in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 615–621. [Online].
Available: https://aclanthology.org/N19-1062

[151] I. Vulić, S. Ruder, and A. Søgaard, Are all good word
vector spaces isomorphic? in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, Nov. 2020, pp. 3178–3192.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.257

[152] P. D. Turney and P. Pantel, From frequency to meaning: Vector space
models of semantics, ArXiv, vol. abs/1003.1141, 2010.

[153] Y. Cao, L. Huang, H. Ji, X. Chen, and J.-Z. Li, Bridge text and
knowledge by learning multi-prototype entity mention embedding, in
ACL, 2017.

[154] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, On
the properties of neural machine translation: Encoder-decoder ap-
proaches, arXiv preprint arXiv:1409.1259, 2014.

[155] X. Han, S. Cao, L. Xin, Y. Lin, Z. Liu, M. Sun, and J. Li, OpenKE:
An open toolkit for knowledge embedding, in Proceedings of EMNLP,
2018.

[156] C. F. Baker, C. Fillmore, and J. Lowe, The berkeley framenet
project, in COLING-ACL, 1998.

[157] J. Ganitkevitch, B. V. Durme, and C. Callison-Burch, PPDB: The
paraphrase database, in HLT-NAACL, 2013.

102

[158] G. Miller, WordNet: a lexical database for english, Commun. ACM,
vol. 38, pp. 39–41, 1995.

[159] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, Placing search in context: The concept revis-
ited, in Proceedings of the 10th International Conference on World
Wide Web, ser. WWW ’01. New York, NY, USA: Association for
Computing Machinery, 2001, p. 406–414.

[160] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and
A. Soroa, A study on similarity and relatedness using distributional
and WordNet-based approaches, in Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. Boulder,
Colorado: Association for Computational Linguistics, Jun. 2009, pp.
19–27.

[161] E. Bruni, G. Boleda, M. Baroni, and N.-K. Tran, Distributional se-
mantics in technicolor, in Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Jeju Island, Korea: Association for Computational Linguistics,
Jul. 2012, pp. 136–145.

[162] K. Radinsky, E. Agichtein, E. Gabrilovich, and S. Markovitch, A word
at a time: Computing word relatedness using temporal semantic anal-
ysis, in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 337–346.

[163] T. Luong, R. Socher, and C. Manning, Better word representations
with recursive neural networks for morphology, in Proceedings of the
Seventeenth Conference on Computational Natural Language Learning.
Soa, Bulgaria: Association for Computational Linguistics, Aug. 2013,
pp. 104–113.

[164] F. Hill, R. Reichart, and A. Korhonen, Simlex-999: Evaluating se-
mantic models with (genuine) similarity estimation, Computational
Linguistics, vol. 41, pp. 665–695, 2015.

[165] J. Camacho-Collados, M. T. Pilehvar, N. Collier, and R. Navigli,
Semeval-2017 task 2: Multilingual and cross-lingual semantic word
similarity, in Proceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017). Vancouver, Canada: Association
for Computational Linguistics, August 2017, pp. 15–26.

103

[166] S. Baker, R. Reichart, and A. Korhonen, An unsupervised model
for instance level subcategorization acquisition, in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 278–289.

[167] D. Yang and D. Powers, Verb similarity on the taxonomy of wordnet
- dataset, 10 2006.

[168] J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang,
J. Xie, S. Zha, A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, S. Zheng, and
Y. Zhu, GluonCV and GluonNLP: Deep learning in computer vision
and natural language processing, J. Mach. Learn. Res., vol. 21, pp.
23:1–23:7, 2020.

[169] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha,
S. Padó, M. Pennacchiotti, L. Romano, and S. Szpakowicz,
SemEval-2010 task 8: Multi-way classication of semantic relations
between pairs of nominals, in Proceedings of the 5th International
Workshop on Semantic Evaluation. Uppsala, Sweden: Association for
Computational Linguistics, Jul. 2010, pp. 33–38. [Online]. Available:
https://aclanthology.org/S10-1006

[170] A. Rogers, S. Hosur Ananthakrishna, and A. Rumshisky, What’s in
your embedding, and how it predicts task performance, in Proceedings
of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational
Linguistics, Aug. 2018, pp. 2690–2703. [Online]. Available: https:
//aclanthology.org/C18-1228

[171] B. Pang and L. Lee, Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales, in Proceedings
of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05). Ann Arbor, Michigan: Association for
Computational Linguistics, Jun. 2005, pp. 115–124. [Online].
Available: https://aclanthology.org/P05-1015

[172] Y. Kim, Convolutional neural networks for sentence classication,
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1746–1751. [Online].
Available: https://aclanthology.org/D14-1181

104

