
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title スケッチによるアートスタイルの描画支援に関する研究

Author(s) 黄, 正宇

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18422

Rights

Description Supervisor: 宮田 一乘, 先端科学技術研究科, 博士



Doctoral Dissertation

STUDY ON SKETCH-BASED ART STYLE DRAWING ASSISTANCE

HUANG, Zhengyu

Supervisor: Professor Kazunori Miyata

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science

March 2023



Abstract

Drawing has creative, expressive, and educational value. It remains fundamental
to translate and analyze the world. However, traditional drawing requires sophis-
ticated skills. For general users, it is not easy to access professional drawing
skills due to lack of artistic training, which is time-consuming and labor-intensive.
Nowadays, with the development of Artificial Intelligence (AI), those artistic
drawing styles have been achieved by Non-Photorealistic Rendering (NPR) or
Neural Style Transfer (NSF) techniques from images. However, recent studies
have shown that the drawing process predicted by AI is definitely different from
a human’s behavior – there’s still a long way to go to make AI understand the
drawing and support users for artistic creation following their expectation.

The final goal of this dissertation is to let AI understand users’ freehand rough
sketches and provide suitable guidance to support users’ art creativity interactively
and extend users’ drawing ability. As applications, this dissertation is dedicated to
supporting the creation of artistic portraits for both realistic style and anime style.
In order to achieve this goal, the major research question is how to translate the
features extracted by machine learning or deep learning into a user-recognizable
form that can be used to converse with users. From a mathematical perspective,
this goal is essentially to utilize features extracted from AI to help the user
explore the optimal solution in mind in the process of creating a new artistic
drawing. If a user’s response to the guidance given by the AI is regarded as a user-
perception evaluation function, then the greatest problem in this dissertation is that
the function is dynamically varying and non-differentiable, even with individual
differences. How to maximize this user-perception function which only exists in
one’s mind with AI is the major research question in this dissertation.

To address this research problem, this paper proposes a User-AI cooperation
paradigm which considers the user as a black-box part of the whole drawing
assistance system and interactively approximates the above user-perception eval-
uation function by constructing an overall optimization function with a certain
prior knowledge of this system. With this paradigm, the AI obtains more valuable
input information, and the user’s drawing ability is extended, making it a win-win
situation for both the AI and the user through conversation. Depending on whether
the extracted features are directly visualized as user feedback for conversation, the
strategies for constructing the overall optimization function can be divided into
two types: explicit strategy and implicit strategy.

The various works in this dissertation are centered on this paradigm, which
can be summarized in the following three parts.
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(1) Data preparation.
As there is no off-the-shelf sketch-art database available for deep learning yet

so far, I proposed a sketch-Art pair generation framework based on style transfer
for realistic style and anime-style artistic portraits. In particular, for line drawing
generation in anime style, a one-shot line drawing style transfer approach from
color illustrations is proposed to solve the limited data problem. Note that this
one-shot framework is a prior-knowledge-based style transfer, which is derived
from a feedback-free version of the above paradigm.

(2) AI-assisted Drawing with Explicit Conversation Strategy.
To achieve realistic style drawing assistance, “dualFace” was proposed, which

decomposes the overall system optimization function into nested functions and
designs a two-stage drawing assistance scheme - the AI offers sketch contour
guidance in the global stage while providing detailed guidance in the local stage.
To allow sketches to be converted to other recognizable input for realistic portrait
style transfer with intermediate real as prior knowledge, a low-level feature-
matching algorithm is proposed which converts rough sketches to semantics
masks for real-style artistic portrait generation automatically and connects these
two stages. Since the guidance given by both stages of dualFace relies heavily
on the prior knowledge of real human faces as an intermediate, the method fails
when one’s drawing style differs significantly from real faces, such as an anime
face. Therefore, this dissertation also designs the anime face drawing assistance
system using implicit strategy.

(3) AI-assisted Drawing with Implicit Conversation Strategy.
Unlike the two-stage explicit strategy, this part proposes an implicit optimiza-

tion function for the end-to-end sketch-guidance style transfer. An unsupervised
stroke-level disentanglement training strategy for prior knowledge in StyleGAN is
proposed so that rough sketches with sparse strokes can automatically match the
corresponding local facial parts in anime portraits respectively. What’s more, to
analyze the correspondence between strokes and semantics in portraits for smooth
conversation with users in anime style, a one-shot semantics-level matching
framework is proposed in the final interactive drawing assistance system.

Besides the success of each part in the above, the validity of the User-AI co-
operation paradigm is demonstrated by analyzing and discussing the relationship
between system evaluation with objective metrics and user evaluations with user
studies for art portrait drawing assistance of both realistic style and anime style in
the final drawing assistance.

Keywords: Generative Adversarial Networks (GAN), GAN inversion, sketch
comprehension, User-AI cooperation, sketch-based art creation.
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Chapter 1

Introduction

“A painting is not thought out in advance. While it is being done, it
changes as one’s thoughts change. And when it’s finished, it goes on
changing, according to the state of mind of whoever is looking at it
.” [2] - Pablo Picasso

1.1 Motivation
Drawing is an ancient medium of expression in the history of human civilization,
which originates from life and records the development of human thought. As
an important form of visual art, drawing has strong reproduction and realism,
which is the artist’s expression of his/her own emotions and thoughts. However,
no matter how abstract a drawing is, it is based on a certain level of drawing
skills. Satisfying this condition requires a lot of time and effort to practice painting
repeatedly, which has become the main barrier for untrained amateur users who
want to express themselves properly through drawing.

With the development of human-computer interaction technology, the uti-
lization of artificial intelligence and deep learning to assist and expand user
capabilities has become an important research topic which is also known as
Human-Centered Machine Learning (HCML) [3]. Many research efforts have
been made to apply AI to assist users in various tasks. An application of AI
background music generation for short online videos was developed by Frid
et al. [4], which allows video creators to interactively regenerate and mix AI-
generated music based on the songs fed into the AI engine. In the same research
area, Louie et al. [5], investigated how AI music generation tools can be tuned to
minimize user burden through user experimentation. Balasubramanian et al. [6]
developed an assistive AI tool for visually impaired people to master nonverbal
cues and conducted user experiments to understand their perspectives. Kacorri
et al. [7] also explore a mobile assistive tool with few-shot learning to help
blind people extract customized user-defined information about which they are
interested and concerned from the surrounding environment about visual objects
using deep learning techniques. Similarly, Feiz et al. [8] used AI technologies
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to develop an AI system Write-it-Yourself guide(WiYG) which makes it possible
for blind people to fill out printed forms independently. Lee et al. [9] proposed
an improved object recognition-based deep learning system for people with visual
impairments by locating their hands as prior evidence to consider when focusing
on an object in a frame. Zhao et al. [10] developed a face recognition application
“Accessibility Bot” for visually impaired people, extracting identity and facial
expressions information from their friends via their smartphone camera. As
to drawing assistance, Drawing Apprentice is developed by Davis et al. [11]
an intelligent drawing system which can improvise and collaborate on abstract
sketches.

However, as far as the current research is concerned, the methods that enable
providing support or guidance during the sketching process are almost always
based on image retrieval techniques, which greatly limits the quality of the drawn
objects and the creativity of the user. On the other hand, the input for sketch-
based image generation studies is often a complete hand-drawn sketch or a pseudo
sketch generated by traditional edge detection methods such as Canny, Sobel, etc.
Those S2I technique is difficult to be used for user drawing process assistance
because there is a big difference between reconstructing the sketch input by the
user during the drawing process and image inpainting techniques which simply
reconstruct masked regions on an image. Therefore, although there are many
sketch-based assistance systems and sketch-based image editing applications,
there is still a gap in the research on high-quality image generation assistance
throughout the drawing process.

1.2 Research Objectives and Problem Formulation
The final research objective of this dissertation is to make AI understand users’
rough sketches and provide suitable guidance to support users’ art drawing inter-
actively and extend users’ drawing ability as well as creativity.

To achieve this aim, the gap between the guidance promoted by the AI
during the sketching process and the users’ expectations needs to be measured
mathematically at first. Different from pure sketch recognition and sketch-based
image retrieval tasks, AI drawing assistance is more challenging because AI needs
to create a “new” artwork with high-quality details to meet the user’s desires based
on incomplete sketches that do not exist in a given database. However, whether the
guidance in the drawing process and the final artwork meet the user’s expectations
is a very abstract and subjective concept. Thus, this AI-assisted drawing problem
can be formalized mathematically as follows:

Assuming that there is a sequence of n strokes {s1, s2, ..sn} for a free-hand
rough sketch S as the system input, then the AI first conducts with feature
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(a) Original problem

(b) The ideal performance of AI in the simplified problem from (a)

Figure 1.1: The problem setting of this dissertation. As the user-perception ex-
ception function E(x) is unknown, non-differentiable, and dynamic, it is difficult
to calculate the optimal solution x∗. Instead, the problem in (a) is simplified into
minimizing the UEL loss function which is defined in Equation (1.4). In this
case, an ideal AI allows different users to input different sketches with increasing
degrees of completeness to obtain satisfactory results. Just as shown in (b), the
values of UEL from different sketches(Sketch 1 and Sketch 2) tend to be 0 stroke
by stroke.
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extraction operation FFE(·) as feature variables x, and there is

FFE(S)→ x ∈ X (1.1)

where X denotes sketching process exploration space for guidance generation
operation G(·) of AI. Then, the output guidance image Img is:

Img = G(x) (1.2)

The AI-assisted system is considered valid if the user believes that the guid-
ance image Im provided by the AI meets expectations. Therefore, we introduce
the concept of user-perceived expectation function E(·), where a higher value
represents a better performance of AI in the free-hand sketching process assis-
tance. According to the above-mentioned notations, the drawing assistance task is
described as an optimization problem:

x∗ = arg maxE(x) (1.3)

where the optimal solution x∗ corresponds to the most intelligent drawing as-
sistance AI system. However, the distribution of function E(x) depends on the
subjective will of users – the unknown of E(x) leads to the unknown of solution
x∗ which cannot be calculated directly with Equation (1.3) as Figure 1.1(a) shown.
What’s more, the function E(·) exists only in the user’s own mind and cannot
be observed in real-time beyond the user’s reactions to the outside world, and is
therefore non-differentiable. In addition, the function E(·) may be influenced by
guidance from the AI system or changes as their prior knowledge changes with
the increase of users’ experience – it is dynamic with personal preferences.

For these reasons, this dissertation simplifies the problem by introducing a
new loss function LUE called “User-perception Evaluation Loss (UEL)” :

LUE = L1(E(G(x)), Ĝ(x)) (1.4)

where the function E takes the generated guidance G(x) as the only independent
variable, and Ĝ is a customized evaluation criterion corresponding to G(x). As
UEL represents the gap between the guidance and the users’ expectations with
L1 loss function L1(·, ·), this problem can be converted into a more intuitive form
with the following equation:

x∗ = arg minLUE(x) (1.5)

Figure 1.1(b) illustrates the requirements of the AI-assisted system we’d like
to obtain in this simplified problem with a simple example. For any sketching
process, the value of LUE should tend to 0 as the number of strokes increases.
Once the value of the function LUE is below the user satisfaction threshold, it
means users have obtained their desired results with the help of AI.
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1.3 Solution Paradigm and Contribution

1.3.1 Challenges
According to the above-mentioned simple form of our problem in Equation (1.4),
our main task is to find a suitable customized evaluation criterion function Ĝ
which allows the AI to provide effective assistance to the user continuously. In
this process, this paper needs to face the following challenges:

The arbitrary and disorganization of free-hand sketches. During the free-hand
sketching process, the stroke order of user sketches is unpredictable because there
is no stroke order restriction, which forces AI to have the ability to cope with
various stroke order input situations as well as unexpected ”bad” strokes.

The abstraction of sketches. While it is intuitive as an input sketch, sketches
often do not contain detailed information, which makes a large difference between
the input sketches and the output guidance or final drawing.

The incompleteness of the sketch input. Since AI needs to be provided during
the drawing process, this predestines the input sketch to be incomplete in most
cases. How to make AI create user-satisfying results based on input sketches
under incomplete conditions is an ill-posed problem.

1.3.2 Solution Paradigm
In this dissertation, the sketch-based art drawing generation is considered as a
style transfer task. For single drawing generation in our AI system, a prior
knowledge-based style transfer paradigm is proposed as the basis of all work
in this dissertation which is shown in Figure 1.2(a). The basic version of our
paradigm in Figure 1.2(a) is based on the style transfer problem. The blue
text indicates the system operation of the AI perspective while the dark red text
indicates the system operation in the user’s view. Thus, features for the user can
be regarded as an intermediate language. In this situation, guidance generation
operation G(·) of AI and the output image Imt

g, at time t when the first t strokes
of a sketch St is input, are expanded as:

Imt
g = G(xt|PK) (1.6)

where PK is a given prior knowledge and features xt at time t is extracted from
St according to Equation (1.1).

Based on this paradigm, a User-AI cooperation version is proposed for AI-
assisted drawing in this dissertation shown in Figure 1.2(b), which is a recursive
system composed of AI and users together. Here, the user is regarded as a part
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(a) Basic version

(b) User-AI cooperation version

Figure 1.2: The proposed solution paradigm for AI-assisted drawing of this
dissertation. The key idea in the User-AI cooperation version is to let users and AI
cooperate with each other, converting the user evaluation function of his/her own
mind into an optimization function of the AI system. Leveraging this paradigm,
users’ drawing abilities can be expanded.
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of the AI-assisted system – the output of AI is the input for the user and vice
versa. In the drawing creation process, R denotes the user’s response function to
the guidance, and the sketch St+1 input at the next time t+ 1 for AI is:

St+1 = R(Imt
g|Imt

o) (1.7)

where response function R(·) is assumed to be related only to the guidance image
Imt

g and the ideal object Imt
o that the user intends to draw. In other words, R(·) is

considered to be a substitution function positively correlated with user-perceived
expectation function E(·) which also can be simply denoted as R|E(·). Note that
the symbol t in Imt

o means that the user-perceived expectation function E(·) is
dynamic and can change over time. At the same time, due to the limitations of
their own ability and drawing skills, there is a gap between what users imagine
Imt

o and what they actually draw St+1. Ideally, when t→∞, Imt
g will gradually

approximate Imt
o, i.e., the loss between Imt

g and Imt
o will gradually become

smaller with the assistance of AI:

L1(Im
t+1
g , Imt

o) < L1(Im
t
g, Im

t
o) (1.8)

which means the user-perceived expectation function E(Imt
g) is gradually con-

verging to the maximum. Since the user takes on the task of exploring the
maximum of E , the AI, by contrast, needs to consistently give reasonable guidance
to the user’s sketches. Denote a loss function which is able to measure the degree
of match between sketch St and guidance Imt

g as Lm, then for any t, there is
system objective function f :

f = Lm(St, Im
t
g)→ 0 (1.9)

where 0 for Lm means the best match of St and Imt
g is obtained.

Substituting Equations (1.9) and the simple form of (1.6) into Equation (1.9),
then

f = Lm(R|E(xt),G(xt|PK))→ 0 (1.10)

At this point, Equation (1.4) has been transformed into the above form which
is more. This Equation replaces the function of subjective user evaluation using
the system’s overall optimization function, providing a theoretical basis for AI-
assisted drawing creation.

According to whether the extracted features x are directly visualized as
guidance for users or not, the strategies for constructing the overall optimization
function can be divided into two types: implicit strategy and explicit strategy,
which are corresponding to Equation (1.9) in and Equation (1.10), respectively.
This dissertation conducts explicit strategy Chapter 4 and implicit one in Chap-
ter 5. The main contributions in this dissertation are as follows:

7



• Support general users for drawing creation with gradual guidance frame-
works based on sketch analysis and feature matching from our User-AI
cooperation paradigm.

• Lower the threshold of art creation for general users and make artistic
drawing easier.

• Insight into the correspondence between users’ rough sketches and artwork
in the drawing process with AI drawing assistance and tutorial, which is
beneficial to keep cultural succession.

1.4 Dissertation Outline
The rest of the dissertation is organized as follows.

Chapter 3 proposed a style transfer-based sketch-art paired data generation
framework. Then, based on this framework, an efficient one-shot learning strategy
for line drawing style transfer from color illustrations is proposed. Chapter 4
proposed a low-level feature matching-based sketch parsing approach and applied
it to realistic portrait drawing assistance with explicit conversation strategy. In
order to extend AI-assisted drawing to a more abstract style which differs signifi-
cantly from the real human face, Chapter 5 proposed the first stroke-level S2I syn-
thesis framework supporting the whole drawings process for high-quality anime
portrait generation with implicit conversation strategy. What’s more, a one-shot
semantic labelling approach for StyleGAN is proposed for the conversation with
the user and a comprehension-based drawing support system combining stroke-
level feature manipulation from with semantic-level feature matching. Chapter 6
concludes the proposed approaches for drawing assistance, and discusses the
future works at the end.

The relationship between chapters is shown in our research route in Fig-
ure. 1.3. The framework in data preparation in Chapter 3 provides adequate
data support for the following work in Chapter 4 and Chapter 5. Chapter 5 is an
extension and improvement of Chapter 4 in the case where the prior knowledge of
realistic human faces can not be utilized. Both efforts are centered on the User-AI
cooperation paradigm to explore a mutually beneficial way of existence between
humans and AI.
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Figure 1.3: Research route in this dissertation.
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Chapter 2

Related Work

2.1 Sketch Feature Extraction
The first step we take, as shown in Figure 1.2, is to extract the features of the
sketch. In this section, some common features in computer vision are introduced.
Features are important measurable information derived from raw data that can
be specific to a certain attribute or object. Feature extraction is the process of
eliminating redundant information and retaining only information that is valid
for a particular task. These techniques have played essential roles in research
fields such as machine learning, image retrieval, computer vision, object detec-
tion, image abstraction, data mining, and pattern recognition. There are also
many studies that make efforts to extract features from sketches for downstream
applications such as Sketch-based Image Retrieval (SBIR), sketch-based image
editing and sketch-based 3D shape modeling so on. Similar to image features,
sketch features are divided into two categories: hand-crafted features and deep
features. Hand-crafted features are often elaborated by researchers, while deep
features are extracted with deep neural networks. Next, these two features are
presented separately.

2.1.1 Hand-crafted Features for Sketch
The first extensive exploration of hand-drawn sketches was initiated by Mathias
et al., which analyzed the distribution of non-expert sketches of everyday objects
[12]. Before that, there are many shape-related representations and descriptors for
sketches have been studied [13]. Generally speaking, sketch representations can
be grouped into 4 main categories: region-based representation [14, 15], contour-
based representation [16, 17], skeleton-based representation [18], and hybrid-
based representation [19, 20]. Cao et al. [17] described each edgel(edge pixel)
in an image as a visual word with a triple (x, y, θ), which recorded the edgel
orientation θ at that position (x, y). However, this descriptor leads to the loss of
position-invariant information on the image unavoidably. A region-based point
descriptor for sketch-based image retrieval is developed by Chatbri et al. [15]
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combining information about the features of the support regions which is defined
on every sketch point. Eitz et al. [21, 22] introduced a bag-of-features sketch
descriptor that can represent sketches into local feature vectors by encoding distri-
butions of orientation. Contour points distribution histogram (CPDH) is described
by Shu et al. [23] to represent shape information. This descriptor is based on the
point distribution on the contour of the object in the polar coordinate, evolving
from the shape context. However, calculating the distance between CPDHs has
high computational complexity due to its adoption of mirror matching and circular
shift schemes in order to partially solve the rotation-invariance problem. Jing et
al. [19] present a hybrid descriptor for freehand sketch retrieval by combining
region-based features, contour-based features, and skeleton features in a weighted
process.

In contrast to the above representations that describe local features, there is
another descriptor that can explain the meaning of the object as a whole in the
image, which is called the global descriptor. Belongie [24] proposed a Shape-
context Descriptor (SCD) which can describe the global and geometric features
of images. Histogram of Oriented Gradient (HOG), presented by Shu et al. [23], is
effective in extracting edges and textures information from the input image. There
are many variations based on the HOG, such as a Field Histogram for Oriented
Gradients (GFHOG) proposed by Eitz et al. [22], a co-occurrence histogram of
oriented gradients (CoHOG) from Watanabe et al. [25], Circular Histogram of
Oriented Gradients (CHOG) developed by Skibbe and Reisert [26], Segmental
Histogram of Orientated gradients (SHOG) Katoet al. [27], and Rectangular
Histogram of Oriented Gradients (RHOG) from Porikli [28]. Each of them has
its own advantages and can be employed in different applications, such as sketch
retrieval, face recognition, etc.

In addition to figuring out new descriptors, a fusion of existing descriptors
is also a common approach. For 3D model retrieval, Wen et al. [29] propose
a joint description, which is invariant to scale, translate, and rotation, by fusing
local statistical structures and global spatial features. Similarly, Zhao et al. [30]
proposed a novel sketch descriptor by fusing multiple features with their statistic
information and bag-of-features representation to achieve translation and scale
invariance as well as rotational robustness.

2.1.2 Deep Features for Sketch
Phrase “Deep learning” is first used by Rina Dechter [31] in 1986 and is becoming
popular with the introduction of Convolutional Neural Network (CNN) and the
development of computing hardware in the last two decades. In the deep learning
era, deep feature learning has outperformed hand-crafted features on various
retrieval tasks in computer vision [32]. Unlike hand-crafted features, deep features
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are end-to-end, in other words, the researcher only needs to focus on designing a
suitable network architecture to obtain good features. Here, several representative
networks are introduced as follows:

1) Sketch-a-Net was introduced by Yu et al. [33] in 2015, as a CNN dedicated
to the recognition of free-hand sketching. It garnered attention as the first to
achieve recognition rates beyond those of humans and contributed to the popu-
larization of deep sketch analysis.

2) To leverage the sequential information during sketching, Sarvadevabhatla et
al. [34] provides a sketch recognition network, in which the training sketches are
redrawn to generate a continuous sequence stroke by stroke and the corresponding
deep features extracted from AlexNet [35] would be sent into a Gated Recurrent
Unit (GRU) [36] network in sequence. This network allows online recognition
during sketching because it contains information about the drawing process of
sketches. Similarly, as an improvement of this idea, Jia et al. [37] combine shape
and texture features model to upgrade the performance of sketch recognition, in
which both features are encoded by corresponding GRU networks respectively
stroke by stroke and their outputs are weighted combined based on the respective
time step. Furthermore, the deep visual sequential fusion (DVSF) net is proposed
by He et al. [38] to obtain both the space and stroke pattern of the sketch.

3) A groundbreaking network called “SketchRNN” is proposed Ha and Eck
[39]. SketchRNN learns from its sequential sketch generator based on variable
inference [40] for representation. In contrast to the previous sub-image repre-
sentations accumulated by strokes, SketchRNN takes the key points of strokes as
input directly.

4) SketchMate is proposed by Xu et al. [41] as a sketch hashing network.
SketchMate backbone contains both CNN and RNN branches, where the CNN is
used to extract abstract visual features while the RNN simulates the human stroke
order of sketch.

5) Multi-Graph Transformer (MGT) [42] is a novel Transformer GNN model
that learns both stroke order process and geometric information from sketch
graphs. The transformer architecture in MGT adopts multiple sparse-connected
graphs instead of the fully connected graph in the original one. Then, domain-
specific knowledge is injected into Graph Transformers via these sparse-connected
graphs. What’s more, input sketches are converted to extra-stroke graphs as well
as multiple intra-stroke ones by MGT, corresponding to their global and local
topological features, respectively.

Sketch-based generation studies with deep features or hand-crafted ones focus
on the problem of image retrieval or complete sketch and image correspondence
generation. The study of the sketching process is often limited to sketch-to-sketch
generation, which can not provide a high-quality guide for users. This dissertation
investigates the problem of high-quality guidance generation during the sketching
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process for art creation and the utilization of both types of features is covered,
filling the void in this research area.

2.2 Style Transfer
In this dissertation, the single process of generating guidance images from
sketches for sketch-are drawing pair generation in Chapter 3 is considered a
style transfer problem. This section describes the progress of research on style
transfer techniques. Before deep learning rises, the style transfer methods were
usually called texture transfer. which can be mainly divided into two types:
Non-Photorealistic Rendering (NPR) and photorealistic rendering [43]. These
algorithms provide methods and inspirations for later algorithms with deep learn-
ing. When texture transfer technique and deep learning are combined, Neural
Style Transfer (NSF) is presented, which has become a highly influential field of
research recently. The first complete and effective approach of NSF was proposed
by Gatys [44] et al. where features extracted from a pre-trained CNN are divided
into “style” and “content”, and they are recombined together to generate an image
with a similar style to the reference image. Studies most related to this dissertation
in style transfer are portrait rendering and line drawing extraction, which are
introduced as follows.

2.2.1 Portraits Rendering
In the field of NPR of portraits [45], existing approaches typically take one of two
approaches. One approach is to extract contour lines from images [46–48]. While
these can be useful for visual abstractions (e.g., preserving and enhancing local
shapes), it is difficult to consider semantic constraints and capture specific styles.
The other approach is to train a network that automatically generates artistic-
like drawings from facial images [49–52]. In these problem settings, training a
network requires pairs of facial images and portraits. However, it is challenging
to construct pixel-based (dense) correspondence because facial components (e.g.,
eye and nose) in portraits are manually located by artists. Lie et al. [53] combine
a global network (for images as a whole) and a local network (for each facial
component recognition) and transform high-quality portraits while preserving
facial components.

2.2.2 Line Drawing Style Transfer
Line Drawing Style Transfer, also known as line extraction, can be classified
into two categories: edge detection methods and CNN-based approaches. Edge
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detection methods such as Canny edge detector [54],Flow-based Difference of
Gaussians (FDoG) [55] and Extended Difference of Gaussians (XDoG) [56] are
highly dependent on the gradient. This property makes them able to extract useful
information from real-world images. However, false contours are usually gener-
ated, because color illustrations are abstract. A CNN-based approach proposed
a sketch simplification method for rough sketches [57]. A similar approach ex-
tracted structure lines from manga images successfully [58]. However, techniques
for color illustrations as specific objects are absent in these works, which becomes
the motivation of the work in Chapter 3.

2.3 GAN and StyleGAN
A typical GAN [59] exploits the contradiction between a generator and a dis-
criminator for an adversarial game. The generator randomly generates pseudo-
images from Gaussian noise in an attempt to interfere with the decision of the
discriminator, while the discriminator is required to identify which of the input
synthetic image and the real image is real/fake.

With advanced research in GAN design and training, the recent studies
[60–62] have made it possible to generate high-fidelity images. To make GAN
learn disentangled representations, many previous efforts have been made such as
addition of regularization conditions [63], post-hoc disentanglement on the trained
manifold [64], or creation of an architectural prior [61].

A milestone approach in regularisation is InfoGAN [63] where two groups of
latent codes c and z tend to disentanglement with encouragement: one of two c
learned structured information on data distribution while the other one z handles
non-structural noise. This goal is achieved by maximizing the lower bound on
the mutual information between the generated data and c. As an extension of
InfoGAN with discrete version, Mukherjee et al. [65] proposed Cluster-GAN
where an inverse-mapping network is adopted to project the generated data into
the latent space. During the inverse-mapping training, a clustering loss is used
for supervised learning as a regularizer. StyleGAN is one of the most prominent
Generative Adversarial Networks (GAN) models proposed by Karras et al. [61].

Motivated by Adaptive Instance Normalization (AdaIN) in style transfer [66],
StyleGAN consist of a special generator network architecture which is able to
generate high-quality images. A typical StyleGAN generator usually involves
3 types of latent space Z , W , and W+. A random vector z ∈ Z is often
a white noise belonging to a Gaussian distribution, which is the same as the
original GAN. In the StyleGAN, the z vector first passes through a mapping
network, which is composed of 8 fully connected layers and is transformed to
w embedding to an intermediate latent space W . Note that both z and w are
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512-dimensional vectors. Here, the introduction of this mapping network is to
get rid of the influence of the input vector z by the distribution of the input data
set and to better disentangle the attributes. Each layer of the StyleGAN generator
can receive a vector w of input via AdaIN. As there are 18 such layers in the
StyleGAN generator, StyleGAN can input up to 18 mutually different w vectors.
In this case, this different w can be concatenated into a new vector w+ with
18 × 512 dimensions and the corresponding latent space to w+ is call W+.
One of the applications of w+ is style mixing, which is also can be found in
Section 5.3. In addition, latent space W+ is used for GAN Inversion [67, 68]
which is described in the next section.

2.4 GAN Inversion
With the further development of GAN, how to use the latent space to achieve the
manipulation of the outputs from pre-trained GANs has also become a hot re-
search topic [69]. Among various of pre-trained GANs, StyleGAN [70] is usually
the most common choice. One of the most important applications of latent space
manipulations is face attribute editing. Chiu et al. [71] present a human-in-the-
loop differential subspace search for exploring the high-dimensional latent space
of GAN by letting the user perform searches in 1D subspaces. [72] identify latent
directions with PCA (Principal Components Analysis), and create interpretable
controls for image synthesis, such as viewpoint changing, lighting, and aging.
By finding out facial semantic boundaries with a trained linear SVM (Support
Vector Machine), [73] is able to control the expression and pose of faces. IALS
(Instance-Aware Latent-Space Search) is performed to find semantic directions
for disentangled attribute editing [74]. Pixel2Style2Pixel (pSp) [75] encoder
implements GAN inversion without optimization by using feature pyramids and
mapping networks. As it is not necessary to measure the loss between the input
and the output of the GAN, this approach also allows semantic layout or sketch as
input. Tov et al. [76] argued that adversarial loss and regularization of the latent
code should be incorporated into the training of the encoder as an improvement to
the editability of these encoder-based methods. In addition, ReStyle encoder [77]
improves the reconstruction quality of inverted images by iteratively refining
latent codes from the encoder. However, the GAN Inversion technique with
incomplete free-hand sketches as input has not been yet investigated. In Chapter 5,
we fill a niche in this research area.
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2.4.1 GAN Evaluation Metrics
Inception Score (IS) [78] and Fréchet Inception Distance (FID) [79] are the most
commonly used evaluation metrics for the image quality of GAN generation. Both
of them depend on a pre-trained CNN called InceptionNet which is fed with a
large-scale real-world photo image database “ImageNet” for feature extraction.
IS calculates the relationship between the conditional class distribution and the
marginal class distribution of the generated data with the Kullback-Leibler diver-
gence. FID computes a Fréchet distance, which is also known as the Wasserstein
distance between the multivariate Gaussian of the real and the potential space of
the generated images projected by the Inception-v3 CNN. In this dissertation, FID
is employed to measure the qualitative value of the generated image based on the
sketch input as a qualitative evaluation.

2.5 Sketch-based Applications
The sketch is a high-level abstract visual representation without lots of visual
details. By analyzing the intention behind users’ freehand sketch, the sketch-
based interaction allows users intuitive access to various applications such as
image retrieval [1, 80, 81] and image editing [82–85], simulation control [86],
block arrangement [87], and 3D modeling [88–90]. Among sketch-based systems,
freehand portrait sketching is difficult for common users due to the required
drawing skills and capabilities, which are inaccessible to novices (e.g., those with
poor drawing skills). To address this issue, we aim to establish a user-friendly
framework to support the process of the freehand drawing of human faces.

A sketching system’s guidance has been thoroughly investigated [91–93].
Especially, displaying visual guidance that can be extracted from reference images
(e.g., geometric structures [94, 95]) on the canvas enables one to support the
process of the freeform drawing of objects by tracing over the guidance [96, 97].
However, the user must select reference images, which can be time-consuming.
Lee et al. [1] and Choi et al. [98] dynamically search relevant images from a
large-scale database based on intermediate drawing results at drawing time and
generate shadow guidance that suggests a sketch completion to users. A similar
drawing interface was designed for calligraphy practice [99]. With these retrieval-
based approaches, visual guidance may limit to the predefined database. To
overcome this issue, image generation approaches can increase the variations from
simple strokes, such as Drawfromdrawings [100] and MaskGAN [101]. Similarly,
shadow guidance is used in this dissertation to help users. The only difference is
that our goal in this dissertation is to expand users’ expressive capabilities to create
“new” art drawings, rather than simply imitate them with image retrieval.
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Chapter 3

Sketch-Art Pair Generation for Por-
trait

The first task of this dissertation is to obtain enough sketch-art drawing data pairs
in order to provide data support for subsequent research. To accomplish this task,
a sketch-art painting generation framework that is applicable to both realistic and
anime-style portraits is proposed. Since the problem of style transfer to realistic
line drawing in the framework has already been studied [53], the focus of this
chapter will be on how to generate anime-style line drawings using a small number
of samples. Thus, a one-shot line drawing style transfer for anime style from color
illustrations is introduced.

3.1 Introduction
Line drawing, containing a lot of structural information, is an important medium
for artistic expression and information abstraction. This dissertation, therefore,
adopted the line drawing as guidance for an interactive system in both Chapter 4
and Chapter 5.4. To provide high-quality guidance to users, however, the first
problem to be faced is the lack of suitable datasets.

Although there are many sketch-related databases available for deep learning,
none of them are suitable for art drawing assistance. Back in 2012, in order to

Table 3.1: Sketch-related databases comparison

Databases Modalities Coarse Annotations Category& Sample Amount vs. fine-grained
TU-Berlin 20K sketches Coarse Class 250
QuickDraw 50M+ sketches Coarse Class 345

Sketchy 75K sketches, 12K photos Fine-grained Class, pairing 125
Da Vinci 71 sketch-line drawing pairs Fine-grained Pairing -

Photo-Sketching 5K sketches, 1K photos Fine-grained Pairing -
Tracing-vs-Freehand 1498 sketches for 100 prompts Fine-grained Pairing -
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Figure 3.1: Samples from published databases. None of them provide sketch-art
drawing pairs.

explore how humans sketch objects, Eitz et al. [12] created a large-scale sketching
database called “TU-Berlin” by collecting more than 20,000 hand sketches of
nearly 250 categories. Google published the large sketch dataset of Quick Draw
for the research purpose by collecting users’ rough sketches online [102]. The
above databases consist of simple and rough sketches, which can generally only
be used for image retrieval or recognition tasks. As to finding the correspondence
between rough sketches and real pictures, the following databases are often used
for comparison experiments to verify the effectiveness. Sangkloy et al. [103]
published the first large-scale sketch-photo pairs called Sketchy, which consists
of 75,471 sketches of 12,500 objects with 125 categories drawn by the human
hand. Li et al. [104] collected 5000 relative high-quality drawings of 1000
outdoor images grabbed from Adobe Stock [105] establishing a one-to-many
photo-sketching database. To evaluate freehand drawings with tracings, Wang
et al. [106] create a dataset of 1,498 freehand drawings and tracings by 110
participants for 100 image prompts, whose drawings are all registered to the
prompts and contain stroke order information. When converting paper sketches
to digital ones, it is often necessary to suppress the effects of noise and clean up
excess strokes. Thus, there are studies that have made efforts to create datasets
for rough sketch cleanup. Sasaki et al. [107] provided a line drawing restoration
dataset which consists of 71 sketch-line drawing pairs. Yan et al. [108] presented
a benchmark for rough sketch cleanup with a dataset consisting of 281 sketches
obtained in the wild and a curated subset of 101 sketches.

For a more intuitive illustration, samples from several popular databases are
shown in Figure 3.1 and the comparison of these sketch-related datasets is listed
in Table.3.1
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Figure 3.2: Proposed general framework for sketch-line drawing pair generation.
This framework can be applied to both realistic and anime styles.

Since there is no data available for sketch-art pairs, this chapter proposes a new
sketch-portrait pairs generation for both realistic style and anime style and put the
concentration on converting illustrations to line drawing according to previous
works.

The contributions of this chapter can be summarized as follows:

• This chapter proposes a new sketch-line drawing pair generation framework
for artistic portraits.

• This chapter proposes a novel lightweight CNN-based pipeline for one-shot
learning to extract structural lines from color illustrations with arbitrary
input sizes.

• This chapter proposes an effective method for data augmentation to avoid
over-fitting and the double-edge problem.

The rest of the chapter is organized as follows. Section 3.2 describes the
framework for generating sketch-art drawing data pairs. Then, Section 3.3
focuses on the proposed method of line drawing style transfer from anime-style
illustrations. At last, Section 3.4 summarizes this chapter.

3.2 General Framework for Pair Data Generation of
Portraits

Figure 3.2 shows the proposed general framework for sketch-art generations. This
dissertation view art line drawing generation as an Image-to-Image (I2I) transla-
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tion task which can be processed with style transfer and the corresponding rough
sketches are generated with facial contour information. The images generated
from GAN-based models are regarded as bridges between art line drawings and
the corresponding sketches.

Firstly, the basic formal description of the I2I task is defined. Given an input
image IA in a source domain A, if there exists a style-transfer mapping Fst such
that

IB = Fst(IA) (3.1)

where IB is the output image in a target domain B with IA’s intrinsic source
content preserved and the extrinsic style transferred to domain B. According to the
definition of I2I above, it is obvious that converting an image from one domain to
a target domain covers a large scale of issues in computer graphics and computer
vision.

This chapter concentrates on line drawing transfer for anime style, and the
other steps are described in detail in Chapter 4 and Chapter 5.

3.3 One-shot Line Drawing Transfer from Color Il-
lustrations

Although there are numerous works for line drawing from real-world images,
extracting lines from color illustrations remains challenging, because there are
various hand-painted styles, and additional details such as shadows and textures
are difficult to be distinguished from structure lines. Moreover, manually tracing
structure lines from color illustrations is labor-intensive and time-consuming.
With the development of deep learning, some studies have been conducted to
automatically extract lines. However, these CNN-based models require a large
number of data for training and usually take seconds for processing. In addition,
some of these models (e.g., [109]) extract a bold line as two edges which is
known as the double-edge problem (Figure 3.8(b)). One reason these CNN-
based methods cannot obtain desirable results is that techniques for colorization
expression between training data and test data may be different – adequate training
data with the same colorization techniques may be not easy to collect for those
CNN-based approaches. This work explores a line drawing style transfer method
from a cluster of color illustrations by learning features from only one similar
example.
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One-shot
CNN

XDoGSelf adaptive
thresholding

Figure 3.3: Pipeline of the proposed framework for line drawing style transfer
from color illustrations, including training and testing phases. One-shot learning
is conducted in the training phase.
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Figure 3.4: Proposed color illustration-line drawing framework for one-shot
learning of anime styles. As these deep features are extracted from CNN which
can‘t be understood and controlled by users intuitively, this form of feature is
called Implicit expression.

3.3.1 Pipeline
Figure 3.3 illustrates the major processes in the proposed pipeline. Both the
training phase and test phase for line drawing style transfer are conducted online.
During the training phase, the only one color illustration-line drawing pair is used
for one-shot learning after data augmentation processing.

3.3.2 Framework Analysis
According to the pipeline of one-shot learning, the corresponding framework is
shown in Figure 3.4. This framework is based on the basic version of our paradigm
shown in Figure 1.2(a). Equation (3.1) can be converted into

IB = G(FEF(IA)|PK) (3.2)

where prior knowledge PK consists of two parts: line-related prior knowledge
and style prior knowledge: in this work, line-related prior knowledge is included
in the data augmentation for learning in Section 3.3.4 as well as the post-
processing step in Section 3.3.5; Style prior knowledge is included in the hand-
picked simple of line drawing-color illustration pair for training.

The CNN features of line drawings can be regarded as a proper subset of
features extracted from the corresponding color illustrations. It is an implicit
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Figure 3.5: Network architectures of our proposed one-shot learning model.

expression of features because the user can not understand and manipulate these
CNN features directly. The following Section 3.3.3 will introduce the architecture
of CNN we used.

3.3.3 Architecture
Supervised CNNs usually try to capture every possibility of correct color-sketch
relations in the learned weights, which train on a large number of pairs of color-
sketch image examples. Therefore, these networks tend to be complex with huge
numbers of parameters. In contrast, this work can build a much smaller and sim-
pler pixel-wise network based on a single pair of images because the patterns of
the color-sketch relations are significantly simple and consistent. The architecture
of CNN is shown in Figure 3.5. It consists of seven residual block layers [110],
which can preserve important information from input with shortcut mapping to
make the gradient on the lower levels easy to propagate, and outperform the basic
block (e.g., Conv-BN-ReLU). Note that the number of parameters in our model
is 140,067, which is smaller than other pixel-wise CNNs (e.g. Pix2Pix [111] has
more than 20M). There is no need to adopt downscaling and upscaling operations
in our model which accelerate training at the expense of accuracy as U-net or other
pixel-wise CNNs do. This work adopts the sigmoid function as the activation
function at the last layer because the reference line drawing (our ground truth)
image has been thresholded and normalized – each output pixel in ideal condition
is 0.0 or 1.0, matching the range of the sigmoid.

3.3.4 One-shot Learning and Data Augmentation
A single supervised CNN is next to impossible to perform well for all types of
color illustrations with different hand-painted styles. Although there are large
numbers of color illustrations, the relationship between color illustrations and line
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drawings is many-to-many – artists have their own habits and understanding of
both sketch colorization and line drawing from color illustration. Therefore, it is
not easy to collect adequate color illustrations with the same rendering methods
for a data-intensive CNN. To solve this issue, this work aims to extract lines from
color illustrations with similar rendering methods by learning the features from
only one data. The main idea is to learn line features with data augmentation.

To make our model recognize the line feature in different color illustrations
and avoid over-fitting, this work augmented the training data by combining
primitive shapes. As shown in Figure 3.6, several primitive shapes, including
rectangles, ellipses, lines, and cubic Bezier curves are selected randomly with
random parameters and transformation matrices in each synthesized image as
the augmented training data. Furthermore, the filling color and the line color
of these primitive shapes are also randomly chosen using the color boundaries
in the HSV (Hue, Saturation, and Value) space. Note that the white color with
the HSV color value ranging from (0,0,221) to (180,30,255) in OpenCV was not
selected as the line color. Therefore, our CNN can distinguish lines from filling
colors successfully with only one pair of color illustrations and a line drawing for
training.

During the training phase, this work adopts the mean square error (MSE) as
the measurement metric to obtain smoother structure lines with nearly accurate
intensity and pressure. The sampling ratio is 6:4 for training between the color
illustration and line drawing pair and our augmentation method. ADAM solver
(with learning rate=0.001, β1=0.9, β2=0.999) was adopted in our model for faster
convergence.

Ellipse

Bezier curve

Rectangle

Line

Figure 3.6: Examples of synthesized images for data augmentation.

3.3.5 Post-processing for Refinement
Although the output of our CNN model can enhance structure lines and weaken
shadows and textures, a certain number or amount of light gray regions and
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shadows remain to some degree. To remove additional details and extract the
main structure lines, this work proposes a self-adaptive binary algorithm followed
by XDoG [56]. Algorithm 3.1 shows details of the proposed self-adaptive binary
algorithm. This work utilizes statistical information – mean value and standard
deviation – from color illustrations to distinguish additional shadows from struc-
ture lines. Then, the XDoG operator is applied for further noise suppression
and increases the aesthetic appeal. Figure 3.7 shows our refinement procedure
and results if this work adopts only one of these operations to the source image
(Figure 3.7(a)) as a comparison. With the following experiment, it is verified that
our method is efficient to remove most of the textures and preserve structure lines
from color illustrations.

Algorithm 3.1 Post-processing
Input: Original color image C, Output image of one-shot CNN I
Output: Refined image R
Gray image G← ColorToGray(C)
Mean of G: Mg ←Mean(G)
Standard deviation of gray image G Stdg ← std(G)
Height of G: h← Shape(G)[0]
Width of G: w ← Shape(G)[1]
for k=1:3 do

Threshold t←Mean(G.where(Pixel p ∈ G,
if (p < Mg + (k − 2)× Stdg)))

for i=1:w · h do
if I[i] > t then

I[i]=Color white;
end

end
end
R=XDoG(I)
return R

3.3.6 Experiments and Results

3.3.6.1 Quantitative Evaluation

To evaluate the proposed method, this work collected 20 Japanese-style “color
illustration-line drawing” pairs from online resources. The original sizes ranged
from (480, 640) to (2362, 2835). The one shown in Figure 3.3 was selected in
the training phase to generate training data. Then, color illustrations from the
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(a) Source image (b) Gray scaling only (c) Thresholding only (d) XDoG only

(e) One-shot CNN (f) (e)+Self-adaptive
threshold

(g) (f)+XDoG (h) Ground truth

Figure 3.7: Intermediate results of our post-processing procedure. Note that in
(g) with our approach, the nose in the red box is expressed as a point, which was
preserved successfully, and the shadow of the nose was cleared. As a reference,
this work also showed results with a single operation mentioned in Algorithm.3.1,
i.e. gray scaling, self-adaptive thresholding, and XDoG, respectively.
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other pairs were test data and their corresponding sketch images were used as the
ground truth. This work calculated the RMSE (root mean squared error) and the
recall rate between the line sketches extracted by the framework with the ground
truth as a quantitative evaluation.

In the implementation, all codes ran in Python, and this work conducted the
experiment on the Windows 10 platform. A laptop with Intel Core i5-8400,
2.80GHz 2.81GHz, NVIDIA RTX2070 GPU, and 16GB RAM was used as the
testing computing environment. Both L-net [112] and sketchKeras [113] are
trained with thousands of color illustration and line drawing pairs and we adopted
the official pre-trained models in the comparative experiment. In addition, this
work trained Pix2Pix [111] with the same data with 200 epochs as a baseline.
Note that 200 is the best epoch in the implementation because Pix2Pix contains
more than 20 million parameters which lead to a more seriously over-fitting after
200 epochs.

Because the other three models adopted the U-net structure, their input sizes
must be a multiple of 2 × N (N is the layer number of U-net). As shown in
Table 3.2, our proposed CNN model is the fastest with the same size of input
images and gets a competitive RMSE result (0.16) when inputting the original
size of images to our model compared with L-net (0.15) and sketchKeras (0.14).
What’s more, the both the recall rate and F1 rate of our model outperform the
others. Lower precision of our CNN due to background interference which can
be illustrated by the second example of Figure 3.8: Our CNN does not distinguish
between foreground and background; When there is no background in ground
truth but the texture is added to the illustration, the precision is reduced.

Table 3.2: Quantitative evaluation.

Model Input size Time cost (s) Precision Recall F1 RMSE
Pix2Pix

(512,512) 0.08 0.09 0.14 0.11 0.27
(baseline)

L-net (512,512) 6.46 0.87 0.63 0.71 0.15
sketchKeras (512,512) 0.22 0.83 0.74 0.76 0.14

Ours
(512,512) 0.05 0.60 0.91 0.70 0.20

Origin 0.41 0.71 0.89 0.77 0.16
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(a) Input (b) L-net (c) sketchKeras (d) Pix2Pix (e) Ours (f) Ground truth

Figure 3.8: Comparison results for line drawing style transfer with the proposed
model and other models.

3.3.6.2 Visual Comparison

As the RMSE score and recall are statistic indicators, it has difficulty completely
expressing the details of the results. This work shows several comparison results
from the proposed framework and the other three models in Figure 3.8. As a
baseline, the results of Pix2Pix are not good enough because of its over-fitting; the
proposed model can remove most of the shadow from color illustrations which do
not exist in the ground truth. In the last row of the results, the other results got
a false contour, while ours calculated the right line, avoiding the double-edge
problem. This verified that the proposed data augmentation scheme is useful for
extracting bold lines.

3.3.7 Disscusion and Limitation
This section proposed a one-shot learning-based framework for line drawing style
transfer from color illustrations. The evaluation experiment verified that the
proposed approach can extract competitive results of line drawings with their
original sizes from color illustrations if the training data is selected elaborately.
Since this method solves the double-edge problem, the resulting line drawings
contain more thick strokes and are more suitable as guidance for users. However,
the relationship between training data and test data is not intuitive. To solve this
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issue, a feasible solution is to pick up suitable training data for a given test dataset.
As the lack of a criterion that can effectively evaluate the style of the pair data, the
selection of valid training samples as prior knowledge is not further investigated
in this section.

Due to its generalization properties, it is also suitable for line extraction of
anime portraits. In the future, the proposed line drawing style transfer approach is
intended to be applied in sketch-based applications with generative models [114].

3.4 Summary
This chapter introduced a sketch-art pair generation framework for artistic por-
traits in Section 3.2. This framework is used in subsequent chapters in the sketch-
art generation tasks, providing strong data support for the subsequent chapters of
this study. In particular, to overcome the data shortage and improve the visual
quality of the guidance for anime style, a one-shot light-weight line drawing style
transfer from color illustrations is proposed in Section 3.3 according to the basic
version of the proposed paradigm in Chapter 1.
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Chapter 4

AI-assisted Drawing with Explicit Con-
versation Strategy

This chapter attempts to verify the explicit conversation strategy in AI-assisted
drawing with the low-level information extracted from sketches. The extracted
shape features are used for complementary retrieval and semantic parsing of
sketch inputs, which is successfully applied to a realistic style portrait drawing
assistance system called “dualFace”; As these low-level features x from sketches
in Equatin (1.10) are visualized as intermediate results and can be controlled by
users interactively with sketching, they are called explicit expressions for user-AI
conversation in this system.

4.1 Introduction
Portrait drawing is one important art genre to represent a specific human from
the real world or one’s imagination. Some artists, together with their famous
portrait drawings, have been widely adored for hundreds of years (e.g., Mona
Lisa and Girl with a Pearl Earring). However, drawing portraits is cumbersome
and requires special skills and capabilities (for example, spatial imagination and
essential drawing skills), which are inaccessible to novices without prior artistic
training. Therefore, the present paper aims to establish a user-friendly framework
to support the process of drawing freehand portraits.

Several systems have been proposed for supporting portrait drawings in the
guidance-based method. For example, Portraitsketch [97] proposes a framework
to display an artistic rendering sketch using tracing. However, the user must
prepare a reference image in advance, which can be time-consuming. Shadow-
draw [1] and Sketchhelper [98] incorporate image retrieval methods with tracing
tools to dynamically search the relevant images from a database instead of manual
selection and enable users to understand geometric structures of target designs
(e.g., facial parts’ locations and proportions). Although the approaches mentioned
above can help users copy existing drawings, it is still difficult to explore “new”
portrait designs. In addition, these systems are unsuitable for drawing the details
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Revised Contour

Global GuidanceInput Sketch Final SketchLocal Guidance

Figure 4.1: The proposed portrait drawing interface provides both global and local
guidance from the input of the user sketch. The revised contour sketch in the back
end is from the merged mask generated by our conversion algorithm according to
the input sketch, which is the reference for local guidance generation.

of portraits (e.g., facial parts’ details) because they simply blend a set of relevant
images. That is, the details of each image might be lost. Conversely, to explore
new drawing designs (detailed drawings), Ghosh et al. [115] and Zhu et al. [116]
employ deep learning methods, especially with generative adversarial networks
(GAN), to generate possible images with given color or edge constraints. How-
ever, the resulting image quality is still determined by the user’s drawing skill,
such as locating facial parts, so it remains difficult for novices to design high-
quality portrait drawings.

To address the problems above, this work referred to the conventional portrait
drawing procedures [117]. According to the conventional procedures, it is es-
sential for novices to adopt two types of guidance; (i) global guidance, which
helps users locate facial parts (geometric structures) with correct proportions,
and (ii) local guidance, which helps users design facial details (e.g., eye and
nose). Nonetheless, previous studies do not argue how to guide users to draw
both global and local features of portraits, to our knowledge. Thus, this work
first considers a method to automatically generate two types of visual guidance,
called global and local guidance, from user drawings (see Figure 4.1). In the case
of global guidance, as with Shadowdraw [1] and Sketchhelper [98] mechanism,
when the user draws contour lines on a canvas, the system dynamically searches
relevant images from a database and generates a blended image. In the case
of local guidance, the system generates detailed facial portraits from the user-
drawn contour lines by using a GAN-based system and displays one of them.
Second, this work implements a realistic style portrait drawing assistance system,
called dualFace, that incorporates the above visual guidance and is able to switch
between the two stages freely.

Our principal contributions are summarized as follows.
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Figure 4.2: Our two-stage AI-assisted drawing system. Given a user’s interme-
diate drawing at run-time, the system generates (a) global guidance generated by
blending relevant images from the database and (b) local guidance (i.e., realistic
facial portraits) generated by a generative model-based method.

• A two-stage guidance system that helps users design portrait drawings with
data-driven global guidance and GAN-based local guidance.

• An optimization method to automatically generate detailed facial portraits
with semantic constraints from user-drawn strokes. By using the generated
portraits as drawing guidance, the user can explore the desired details
without prior artistic training.

• A user study to demonstrate the benefits of our proposed system.

4.2 User Interface
A sketching system’s guidance has been thoroughly investigated [91–93]. Espe-
cially, displaying visual guidance that can be extracted from reference images
(e.g., geometric structures [94, 95]) on the canvas enables one to support the
process of the freeform drawing of objects by tracing over the guidance [96, 97].
However, the user must select reference images, which can be time-consuming.
Lee et al. [1] and Choi et al. [98] dynamically search relevant images from a
large-scale database based on intermediate drawing results at drawing time and
generate shadow guidance that suggests a sketch completion to users. A similar
drawing interface was designed for calligraphy practice [99]. With these retrieval-
based approaches, visual guidance may limit in the predefined database. To
overcome this issue, image generation approaches can increase the variations from
simple strokes, such as Drawfromdrawings [100] and MaskGAN [101]. Our AI-
assisted drawing system combines both sketch-based retrieval and generation with
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optimization conversion from sketch-mask mapping.
This section describes how users interact with the proposed two-stage AI-

assisted drawing system (see Figure 4.2) to draw portraits with global and local
guidance.

4.2.1 Drawing Tool
As with commercial drawing tools, the system enables the user to draw black
strokes, in which the stroke width is manually determined using a slider, on
canvas with a mouse-drag operation. Then, the system automatically records all
the vertices of the strokes and the stroke order for the mask generation step. In
contrast, with the eraser tool, the user clicks on a stroke, and the system deletes
the selected stroke. Moreover, the undo tool can delete the last stroke from the
stroke list. Note that our system can also load (or export) the user-drawn strokes
by clicking the “Load” (or “Save”) buttons.

4.2.2 Visual Guidance
Given user-drawn strokes, the system generates two types of visual guidance (i.e.,
global and local guidance) to use tracing. First, in the step of global guidance, the
system dynamically searches several relevant images from a database based on the
user’s intermediate drawing and generates a “blended” image (global guidance)
rather than a single image. With the global guidance, users can roughly understand
the locations and shapes of facial parts with correct proportions, as shown in
Figure 4.2(a). Second, in the step of local guidance, the system generates several
detailed facial portraits (guidance candidates) based on the user’s intermediate
drawings, and displays “one” of them instead of a blended image. The system has
a switching function to change the generated images, so the user can search for
the most reasonable local guidance. By using the local guidance, users can easily
design local details such as eyes and nose; see Figure 4.2(b). Note that the system
allows the user to freely switch global and local guidance modes by clicking the
global/local radio button or the face icon button.

4.2.3 Rewind Tool
In order to help users to draw the desired portraits, this work provides the rewind
tool in our user interface. If users thought the local guidance does not meet
their vision, the drawing process can return to the global stage by selecting the
corresponding radio button, as shown in Figure 4.2. Our drawing interface can
automatically save the sketches while switching between global and local stages
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so that users can revise their drawn contour sketches by reloading the recorded
data.

4.3 Two-Stage Drawing Guidance
A sketching system’s guidance has been thoroughly investigated [91–93]. Espe-
cially, displaying visual guidance that can be extracted from reference images
(e.g., geometric structures [94, 95]) on the canvas enables one to support the
process of the freeform drawing of objects by tracing over the guidance [96, 97].
However, the user must select reference images, which can be time-consuming.
Lee et al. [1] and Choi et al. [98] dynamically search relevant images from a large-
scale database based on intermediate drawing results at drawing time and generate
shadow guidance that suggests a sketch completion to users. A similar drawing
interface was designed for calligraphy practice [99]. With these retrieval-based
approaches, visual guidance may limit in the predefined database. To overcome
this issue, image generation approaches can increase the variations from simple
strokes, such as Drawfromdrawings [100] and MaskGAN [101]. Our framework
combines both sketch-based retrieval and generation with optimization conversion
from sketch-mask mapping.

Inspired by conventional portrait drawing processes, this work proposes dual-
Face, a two-stage framework for portrait drawing with both a global stage and a
local stage for drawing guidance. For the global stage of user guidance, this work
provides interactive drawing guidance for each facial part. To help users achieve
balanced facial contour drawing, this work adopts the data-driven facial feature
query by matching the Gabor Local Line-based Feature (GALIF) [118]. For the
local stage of user guidance, this work adopts a GAN-based neural network to
generate corresponding fine-grained sketches from a user’s rough contour sketch
on the global stage. Since this work provides photo-realistic facial details in
the local guidance, dualFace can help users concentrate on detailed drawing for
facial features and improve their drawing skills. this work believes the two-stage
framework of dualFace may narrow the gap between novices and artists in portrait
sketching due to the separation of the global contour information from local facial
details.

4.3.1 Solution Formulation
According to our paradigm in Figure 1.2(b), the framework proposed for dualFace
with explicit conversation strategy is shown in Figure 4.3. Assume that the user
always draws the facial contours first when drawing a portrait. The key idea is
using function decomposition for guidance generation operation G(·) of AI in
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Figure 4.3: The proposed framework with explicit conversation strategy. GALIF
extract from sketches is visualized as global guidance explicitly before the user
obtains the local guidance with details.

Equation (1.6) to obtain the guidance Im with details. G(·) is decomposed into
two generation function Gglobal(·) and Glocal(·) corresponding to global and local
stage. Then, there is

Imt
g = Glocal(Gglobal(xt|PKg)|PKl) (4.1)

where PKg and PKl denote prior knowledge used in the global and the local
stages, respectively. In detail, PKg corresponds to the facial contour dataset gen-
erated in Section 4.3.2.1 while PKl corresponds to pre-trained GAN for the facial
mask-realistic drawing conversion. The intermediate output of Gglobal(xt|PKg)
is a user-defined semantic mask M∗ generated from the user’s sketch automati-
cally with our sketch-mask mapping algorithm described in Section 4.3.3.1.

Similarly, the system objective function f in Equation (1.10) is then decom-
posed into objective function fg in the global stage and fl in the local stage. As
time t increases, there is

f = fg + fl → 0 (4.2)

where fg is
fg = Lm(R|E(xt),Gglobal(xt|PKg))→ 0 (4.3)

while fl
fl = Lm(R|E(xt),Glocal(M

∗|PKl))→ 0 (4.4)

Note that loss function Lm has the same meaning as the one in Equation (1.9).
In the AI view, the fg is the contour matching process in 4.3.2.2, which always

finds out the most similar face contours as global guidance from PKg.
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Figure 4.4: The stage of global guidance consists of three steps: data generation,
contour matching, and interactive guidance. The contour sketches in our database
are extracted from masks as source images which are more meaningful for feature
matching to achieve better drawing guidance than previous work [1].

Since the user has already obtained a desired contour sketch with the interac-
tive guidance on the global stage, the next step is simply to select the expected
local guidance as a drawing reference from multiple candidates all of which meet
the user’s rough contour sketch. This selection can make fg tend to 0 and the user
can finally obtain their expected drawing. The following sections will introduce
the implementations of Equation (4.1).

4.3.2 Global Guidance
It is difficult to draw recognizable portraits with correct locations and portions
of facial features, especially, for novices. To solve this issue, dualFace first aims
to help users to draw balanced facial contours by minimizing the global-stage
objective function fg of Equation (4.3). Figure 4.4 shows the workflow of global
guidance, including data generation, contour matching, and interactive guidance.
For the data generation step, face images are converted to contour images from
a face database. For the contour matching step, the local facial features are
calculated and stored as feature vectors indexed in the database. For the interactive
guidance step, the most similar candidates are retrieved as shadow guidance in real
time. In contrast to the previous work of Shadowdraw [1] with edge maps, this
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work adopted the labelled contour sketches for feature matching with the semantic
sketch information. Therefore, each stroke of users’ drawing input can be matched
with the meaningful facial features for the next stage of local guidance.

4.3.2.1 Data Generation

It is challenging to collect an enormous number of artist-designed portraits for
face retrieval. Instead of the artistic portraits, this work generated semantic label
masks [119] by utilizing a Bilateral Segmentation Network (BiSeNet) pre-trained
on the CelebAMask-HQ dataset [101]. Each pixel in the masks has a facial label
ID from facial images (e.g., eyes, nose, and mouth). This work follows our sketch
generation part of the framework described in Figure 3.2 and adopted the contour
function of OpenCV library for the line drawing functions. The contours of facial
components are extracted from the semantic label masks with balanced facial
features. Note that the contour images are stored with the corresponding original
face images, which are used for sketch retrieval on the global stage and for system
input on the local stage.

4.3.2.2 Contour Matching

To explore the closest contour sketches from the database as the guidance accord-
ing to a user’s incomplete freehand sketch in real time, this work used GALIF
features for sketch retrieval and local shape matching [118]. For the online query
method, the user sketch is encoded as a histogram. This work calculated the
similarity with the stored contour images in our database to obtain the closest
contour images.

4.3.2.3 Interactive Guidance

Similar to the shadow drawing interface [1], the top N relevant retrieval results in
the face database are merged as a shadow image by image blending (N = 3 in
our implementation). Benefiting from the interactive global guidance for portrait
drawing, users could realize the locations and shapes of each facial part. The
global guidance is updated in real-time for each drawing stroke. With the help of
global guidance for portrait sketching, the user can complete the contour sketch
to express the rough shape and the location of facial parts meeting their drawing
intentions.

4.3.3 Local Guidance
In the field of non-photorealistic rendering (NPR) of portraits [45], existing ap-
proaches typically take one of two approaches. One approach is to extract contour
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Figure 4.5: The stage of local guidance consists of two steps: mask generation
and portrait sketch generation.

lines from images [46–48]. While these can be useful for visual abstractions
(e.g., preserving and enhancing local shapes), it is difficult to consider semantic
constraints and capture specific styles. The other approach is to train a network
that automatically generates artistic-like drawings from facial images [49–52]. In
these problem settings, training a network requires pairs of facial images and por-
traits. However, it is challenging to construct pixel-based (dense) correspondence
because facial components (e.g., eye and nose) in portraits are manually located
by artists. Lie et al. [53] combine a global network (for images as a whole) and a
local network (for each facial component recognition) and transform high-quality
portraits while preserving facial components. This work adopted a similar portrait
rendering model to generate portrait drawings, and use them as local guidance.

In order to guide users to draw details of facial components (e.g., black
irises and eyelashes), dualFace provides local guidance using relevant templates
extracted from our database on the global stage. Local guidance for portrait
sketching includes mask generation and portrait sketch generation (Figure 4.5).
For the mask generation step, user strokes in the global stage are recorded and
converted to face masks based on the top N relevant templates (N = 3 in
our implementation). For the portrait sketch generation step, all templates can
generate fine-grained portrait sketches, and the user can select the most desirable
one as the reference for further drawing. Note that the input contour sketch is
not required to contain all facial parts, and the missing parts can be completed
automatically with our stroke-mask mapping optimization.

GAN-based neural networks are used in local guidance for mask and portrait
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sketch generation. In our implementation, this work adopted MaskGAN [101]
to generate portrait images matching the facial contour sketch and APdrawing-
GAN [53] to transfer the portrait images into artistic portrait sketching. Note
that two generative models are trained independently. To connect the two mod-
els, the facial landmarks are calculated with Gradient Boosting Decision Tree
(GBDT) [120], and the binary background mask is converted from the merged
mask.

4.3.3.1 Mask Generation

For portrait image generation, the conventional approaches adopted the facial
mask with manually defined label information as shown in Figure 4.5 (red dash
line of mask generation, and different colors denote facial labels). However, it
is a boring and time-consuming task of manual labeling for portrait drawing in
our work. To alleviate the manual labor and adapt to freehand sketching, this
work proposed automatic sketch-mask mapping with an optimization algorithm
to generate a facial mask according to the contour sketch from the users’ drawing.

This work first calculates the shape similarity F between user-drawn strokes
S and regions of face template mask M . Any single stroke s ∈ S can be regarded
as in-sequence vertices, where s = {pi | i = 1, · · · , N}. Then, this work obtains
the correspondence between two regions using the following equation.

F (S,M) = min
s

∑
s∈S

Dis(s,mk)

= min
p

∑
s∈S

(
1

N

∑
p∈s

L2(p,mk))

s.t. label(s) = k and mk ∈M

(4.5)

where Dis(s,mk) denotes the distance between a single stroke s with mk (region
of M with the label ID is k). Dis(s,mk) consists of dis(p,M), which denotes the
average of L2 distance from all vertices p ∈ s to mk. label(s) is the discriminant
function to calculate the label ID of s decided by the majority vote algorithm of
vertex p ∈ s, as calculated by the following equations:

label(s) = arg max
p

Cp∈s(V (p,M))

V (p,M) = k∗ = arg min
p

dis(p,mk)
(4.6)

where Cp∈s(·) is the aggregate function for stroke s to count the number of its
vertices with the same label ID. Discriminant function V (p,M) can determine
the label ID k∗ for a single vertex p in M by searching the minimum distance of
p in each region of M .
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Algorithm 4.1 Sketch-Mask Mapping
Input: Strokes S, Matched mask M
Output: User-defined mask M∗

M∗ = zeros(M .shape)
Number of mask M m← len(M)
for k=1:m do

Merged stroke with same label ms
Mask region in same label mask = M [k]
if mask is None then

continue;
end
ms= MergeStrokes(s ∈ S s.t. label(s) == k)
if ms is None then

M∗[k] = mask;
end
M∗[k]=ConcaveHull(ms)

end
return M∗

The sketch-mask mapping algorithm is described in Algorithm 4.1. User’s
strokes are classified to the labels in the matching mask respectively, and strokes
with the same labels are merged as a new stroke. Then, a contour (concave hull) of
each new stroke is calculated as a new mask to replace the old one in the matching
mask.

In terms of the correspondence between the user sketch and face template, this
work transfers semantic labels of facial components in the facial template to each
region of the user-drawn stroke (e.g., hair, mouth, eyes). Then, this work replaces
the corresponding template regions with ones of user-drawn regions if existed and
merges the user’s stroke feature into the mask. Note that the contour sketch can be
auto-completed even if the user input sketch is partial. Finally, this work replaces
user-drawn regions (partial sketch) and the corresponding template regions and
generates a complete label mask.

4.3.3.2 Portrait Sketch Generation

Generating facial images with details from rough sketches is an under-determined
problem. An end-to-end GAN-based model requires extensive artistic drawing
with similar styles for training, which is expensive and time-consuming. To solve
this issue, this work divides this problem into sketch-to-portrait image generation
and artistic rendering for simplification as shown in Figure 4.5. This work first
generates a realistic facial image using the MaskGAN network based on the
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complete label mask, corresponding face image, and the face template from the
global stage. Then, this work converts the face image to a portrait sketch using the
APDrawingGAN network for artistic rendering. This work obtains the locations
of facial components based on GBDT and the binary contour of the background
from the final mask to connect the two generative networks of mask and portrait
sketch generation. Note that the global features of the generated local references
have been restricted by users’ contour sketches.

4.3.4 Implementation
In the implementation of this section, dualFace was programmed in Python as
a real-time drawing application on the Windows 10 platform. A workstation
with Intel Core i9 10900KF, 3.7GHz 5.10GHz, NVIDIA RTX2080ti GPU × 2,
and 64GB RAM was used as the testing computing environment. In addition,
518 images with a size of 512 × 512 were picked up from the CelebAMask-
HQ dataset and converted to contour sketches. GALIF features were extracted
for sketch retrieval on the stage of global guidance. For the implementation of
local guidance, this work used MaskGAN for mask generation consisting of the
Dense Mapping Network (DMN) for image generation and U-Net like MaskVAE
for mask editing, which is pre-trained on CelebAMask-HQ with more than 200
thousand images. This work used APDrawingGAN for portrait sketch generation
with a hierarchical GAN structure using U-Net with skip connections for each
facial feature (i.e., left eye, right eye, nose, and mouth). This work utilized the
pretrained models with 300 epoch training on the APDrawing dataset (140 face
images and corresponding portrait drawings by an artist).

Our prototype system requires, on average, 0.36s for image retrieval in global
guidance after mouse release every time and 2.78s for each portrait image gener-
ation in local guidance. Note that the image generation was conducted only once,
meaning dualFace can provide effective feedback for portrait drawing. Because
dualFace generates facial images for local guidance, there are no reference images
or labels available as ground truth for quantitative evaluation. Therefore, this work
conducted a user study to verify the proposed approach in a qualitative way.

4.4 User Study

Due to the difficulty of objectively quantifying the response function R(·) in
Equation (4.3) and Equation (4.4), this work adopts user studies to indirectly
demonstrate its validity, with visual results, usefulness, and satisfaction. To
evaluate the usefulness of the proposed AI-assisted drawing system dualFace, this
work compared dualFace with two conventional drawing interfaces: suggestive

41



(a) (b)

Figure 4.6: Drawing interfaces used in the user study: (a) suggestive drawing UI
and (b) shadow drawing UI.

drawing UI (Figure 4.6(a)) and shadow drawing UI (Figure 4.6(b)). The imple-
mented suggestive drawing UI provides the three most related contours in sub-
windows below the main canvas from the face database. The shadow drawing
UI provides the blended shadow image from dualFace’s global stage, similar to
Shadowdraw [1].

4.4.1 Evaluation Procedure
This work invited 14 participants in the comparison study (graduate students,
nine males, and five females). All participants were asked to draw realistic style
portraits with a pen tablet (WACOM with 22.4 cm× 14.0 cm drawing area) and an
LCD monitor (126.2 cm×83.7 cm). All participants were asked to draw portraits
freely and aimlessly and try to draw more details as possible as they can with all
three drawing interfaces: suggestive UI, shadow UI, and ours in random order.
They first drew freely on the tablet until they felt comfortable using the devices
before the user study. This work instructed all participants on how to use dualFace
with a user manual. Considering the usage of facial masks, this work asked the
participants to draw each facial mask in a well-closed curve. All participants
were required to draw carefully and choose the most anticipated references for
local guidance from multiple generated candidates after they completed the global
stage. Finally, this work administered the questionnaire to all participants after
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Table 4.1: Questionnaire results in the user study. SD is short for Standard
Deviation.

# Question Score Mean SD

G
lo

ba
l Clear and easy to understand? 4.50 0.60

Feedback is meaningful and helpful? 4.10 1.00
Easy to follow and use? 4.10 0.80

L
oc

al Clear and easy to understand? 4.60 0.80
Feedback is meaningful and helpful? 4.00 1.10
Easy to follow and use? 4.00 1.00

O
ve

ra
ll Helped me learn how to draw faces? 4.20 0.90

Useful for helping learn how to draw faces? 4.10 0.60
Useful for helping improve face drawing skill? 3.90 1.20

they finished the user study.
The questions in the questionnaire were designed to confirm the effectiveness

of global and local guidance, and the overall evaluation using dualFace, as shown
in Table 4.1. All questions adopted a five-point Likert scale (1 for strongly
disagree, 5 for strongly agree).

4.4.2 Drawing Evaluation
After all participants completed the comparison study, the other 25 participants
joined the online questionnaire for drawing quality evaluation. All participants
were asked to score up 12 portrait sketches (four for each drawing UI). This work
confirmed two questions about the qualities of the spatial relationship and facial
details for all portrait sketches. This work adopted five-point Likert scales for
all questions (1 for very poor, 5 for very good). A good spatial relationship of
portrait sketches means well-balanced facial parts, and good facial details mean
that each facial part has a finely detailed drawing, such as eyes and mouth. This
work explained the meanings of the two qualities to all participants before the
online questionnaire.

4.5 Results
This section discusses the implementation results of dualFace, evaluation results,
user feedback, and the observations from the user study in this section.

4.5.1 Visual Guidance
Figure 4.7 shows some examples of our implementation results sketched with
dualFace. Users can achieve the desirable local guidance according to their free-
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User sketch

Revised contour

Local guidance

Final result

Figure 4.7: Some examples of our implementation results. User sketch denotes
results drawn under the global guidance. Revised contour denotes the matched fa-
cial masks in local guidance. Local guidance denotes the generated portrait sketch
image for reference to the user. Note that the portrait images in local guidance
were selected by users as the closest alternatives to user drawing expectations.
Final result denotes the final outcome from the users’ drawing.

hand contour sketches from the global guidance. If a user’s sketch is incomplete,
it can be completed automatically and revised with our sketch-mask matching
optimization. The last column of Figure 4.7 shows an example of a partial sketch.
Although the user only has drawn the left eye and eyebrow contour sketch on the
global stage, the proposed system can still work well. The matching of sketches
and the corresponding revised contour (combining of input sketch and global
guidance) reflects the reduction in fg of Equation (4.3).

Compared with previous work of the drawing interface ShadowDraw [1],
dualFace has no limitation on facial details in drawing guidance. If this work
blends the relevant templates (face images with details), it is difficult to distinguish
the facial references with the loss of facial details, as shown in Figure 4.8.
Therefore, ShadowDraw can only support the drawing guidance of simple subjects
without photo-realistic details.

In local guidance, mask generation plays an important role in meeting the
user’s intention in freehand drawing. To verify this issue, this work compared
the system results with and without mask generation, as shown in Figure 4.9.
In the case without the mask generation process, the feature lines in the user’s
contour sketch did not conform to the generated portrait drawing, as shown
in Figure 4.9 (left). Meanwhile, more plausible results were achieved by the
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Figure 4.8: As a limitation of ShadowDraw, the blended image (right) has
difficulty preserving details of facial images (left).

proposed framework with mask generation. The matching of sketches and the
corresponding local guidance reflects the reduction in fl of Equation (4.4).

4.5.2 User Evaluation
The results of the questionnaire are illustrated in Table 4.1. Participants were
asked to score dualFace by answering nine questions in total (three for global
guidance, three for local guidance, and three for overall evaluation). The mean
scores of all questions are above 3.9, verifying that the proposed drawing interface
dualFace is easy to understand and follows at a high level. For overall user
experiences, all participants thought our system can help them to draw portraits
well and improve their drawing skills. Because dualFace provides guidance on a
whole portrait sketch to the participants, users may want to practice basic drawing
skills such as arrangements of straight lines or curves. This work plans to improve
the current drawing interface to help users practice basic drawing skills in the near
future.

Figure 4.10 shows the results of an evaluation study of portrait sketches from
our online questionnaire. The proposed drawing interface achieved comparatively
high scores in drawing evaluations of both spatial relationships and facial details,
and the average scores are 4.5 and 4.32, respectively. Therefore, dualFace
can guide users to achieve better portrait drawings with correct facial spatial
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Without mask generation With mask generation (ours)

Figure 4.9: Comparison results with and without the mask generation process.
Mismatches are obvious between the user’s contour sketch (red lines) and the
generated local guidance without mask generation (left).
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Spatial Relationship Facial Details Time Cost

Suggestive Drawing UI Shadow Drawing UI Ours

Score Score Minute

s

Figure 4.10: Evaluation results of spatial relationship and facial details in portrait
drawings (left and middle). Time cost to complete portrait sketching for each
drawing interface (right).

relationships and detailed facial features, whereas the other drawing interfaces
may fail to provide them.

Figure 4.11 shows the portrait sketches from our comparison study among
suggestive drawing UI, shadow drawing UI, and our dualFace UI in our compar-
ison study. This work found that dualFace can not only help users with weak or
middle drawing skills to achieve much better portrait sketches but also help the
high-skilled users to complete high-quality portrait sketches different from their
customary styles of drawing. Note that participants were asked to score their
drawing skills using a five-point Likert scale.

This work has received the participants’ comments about system usage, such
as, “I think dualFace is useful, for helping the freehand drawing especially.”
This work also received comments about our guidance system, such as, “Local
guidance with mask generation fit my stroke more than the one without it” and
“Local guidance was surely based on my own, but it looked like a creature.”
All these feedback indicated that mask generation can increase the variation of
sketches but sometimes generate unnatural facial images. This issue can be solved
with other neural rendering approaches or a larger face database. This work would
improve the current prototype to help users draw from different viewpoints and
have high matching rates with users’ drawn strokes.
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Figure 4.11: Drawing results from six participants. Each column corresponds to
the same participant’s drawing.

4.5.3 User Satisfaction
To verify user satisfaction and whether or not the proposed drawing interface
helped users match their objectives, this work conducted the user evaluation
among three aforementioned interfaces: suggestive drawing UI, shadow drawing
UI, and ours (Figure 4.6). This work recruited 10 graduate students to join this
evaluation and a questionnaire was conducted afterward.

In this section, two questions are confirmed in the questionnaire. The average
score for the question “Do you think your rough sketch is matching with the detail
guidance to your expectation with dualFace?” is 4.33 (1, not matched at all; 5, well
matched). consistent with the decrease of overall system objective function f of
Equation (4.2). The average score for the question “How would you rate your
satisfaction of drawing with dualFace comparing with other two interfaces?” is
4.44. Therefore, dualFace is verified to enable users draw portraits that match
their visions. This work also interviewed the participants for further feedback on
user experiences. The comments on the final drawings include: “My drawing was
better than I thought.”, and “There were plenty of the details of my drawing which
makes it look better.”. For the usability of dualFace, the users thought that “It
is interesting that it generated the details accordingly.” and “It can automatically
generate details, but also beautify the face (drawing).”, which are consistent with
our findings in Table 4.1.
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4.5.4 Discussion

4.5.4.1 Computation Cost

This work measured the time cost of portrait drawing for each drawing interface,
as shown in Figure 4.10. The minimum time among all sketches using dualFace
is 4m15s, and the maximum is 17m15s. Although the users’ drawing skills
may differ from each other, the drawing results with more time cost lead to
better drawing results. The average time cost is around 10min, and the portrait
drawings, which cost longer than the average time cost, had more facial details
and comparatively better quality than the shorter ones. it is believed that our local
guidance can not only provide enough detailed features for users to follow but also
stimulate users’ creativity if they intended to spend more time using dualFace.

4.5.4.2 System Interactivity

Compared with the related sketch to facial image generation approaches [75,
121, 122], the main contribution of dualFace is providing interactive feedback
to users for improving their drawing skills. For these works, users cannot get
any help from the systems until the drawing is completed, where users’ essential
drawing skills are usually required. Although DeepFaceDrawing can generate
high-quality facial images from rough sketches with shadow guidance [123], it
is difficult to improve user drawing skills because they used edge maps extracted
from images as guidance without separated local-global facial information. In
contrast, dualFace can provide interactive sketch support with two-stage guidance
for both global features and local facial details. Our system can provide balanced
facial information in real-time, so that users can concentrate on learning how to
sketch balanced facial contours, especially for novices.

4.5.4.3 Generation Diversity

To meet users’ drawing expectations, it is necessary to ensure the generation
diversity of the facial image database. In this work, facial diversity could be
influenced by database size and mask generation. However, the best size of the
image database for retrieval on the global stage is a hyper-parameter because
it is difficult to find out a desirable criterion to evaluate whether generative
guidance of dualFace matches users’ vision automatically for size optimization.
In our implementation, thus, this work selected around 500 typical facial images
manually covering different facial types and shapes of facial parts. Our selection
strategy is to ensure completed facial parts with clear contours in front view and
avoid overlapped parts with hair or glasses. For mask generation, this work can
improve the diversity of the generation results for local guidance with multiple
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User sketch Local guidance candidates with revised contour

Figure 4.12: Multiple reference candidates (right) are generated from the user
sketch (left) for local drawing guidance.

references. Figure 4.12 shows the facial references to users from the global stage
so that users can select the most satisfying generated image as local guidance for
facial details drawing. All references maintained the shape restrictions (red lines)
from sketch input.

4.6 Limitation and future work
In this work, a portrait drawing assistance system with two-stage global and local
guidance is proposed. First, this work generates a shadow image to provide lo-
cations of facial parts when drawing strokes as global guidance. After specifying
the locations of facial parts as a contour sketch, this work then generates detailed
facial images from user contour sketches with face masks and portrait drawing
generation networks in local guidance. The proposed AI-assisted drawing system,
dualFace, was verified to be useful and satisfactory in portrait drawing for users
with different levels of drawing skills. This work is believed of contributing to
accelerate freehand drawing interfaces.

Because the proposed system converts users’ sketches to masks by matching
the strokes with the example mask, the contour sketch must contain the exact
shape information. dualFace can only support drawing portraits with realistic style
due to real photos in the face database. It is difficult to achieve high-level semantic
sketches such as emotional faces and exaggerated cartoon-style drawings because
it is challenging to determine the shapes of facial parts currently. If the strokes
for facial parts are not closed curves, this may lead to indeterminate contours of
facial parts. Figure 4.13 shows an input sketch with a smiling face may generate
a strange mask with two separated parts of the nose. This work plans to improve
the representation of facial sketches and increase the robustness of dualFace, and
weigh users’ intention and portrait quality.
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(a)User sketch (b)Generatedmask (c)Revised contour (d)Facial image (e)Local guidance

Figure 4.13: Limitations of our work. An abstract sketch may fail to be converted
to a reasonable mask (b), where the mouth in the user’s contour sketch is wrongly
regarded as a part of the nose. This caused the degeneration of generative image
(d) and local guidance (e).

4.7 Summary
In this chapter, an AI-assisted drawing system with an explicit conversation
strategy was implemented as a global-local drawing process according to the
proposed paradigm in Chapter 1. Low-level feature matching for rough sketches
has been experimentally shown to be useful for user drawing, although it fails
when misidentifying high-level semantics. With the help of the hand-crafted
feature GALIF [118], an incomplete rough sketch during sketching is successfully
converted into an input format acceptable to the deep network based on the
proposed rough portrait database as prior knowledge and the desired guidance
is finally obtained by style transfer with deep prior knowledge.
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Chapter 5

AI-assisted Drawing with Implicit Con-
versation Strategy

Figure 5.1: The overall framework with implicit conversation strategy. In this
strategy, the input sketch influences the output guidance directly, and the user
cannot explicitly observes and manipulates depth features.

This chapter introduces a comprehension-based drawing support system with
an implicit conversation strategy compatible with both realistic style and anime-
style portrait drawing. As stated in Chapter 3, deep features extracted from CNN
are implicit expressions that can not be understood and controlled directly.

According to Equation 1.9, the implicit strategy requires a reasonable guid-
ance Imt

g generated end-to-end based on incomplete sketches St for any time t.
For this reason, we propose a portrait generation method based on stroke-level
disentanglement. If sketches can be disentangled by strokes in the AI to generate
portrait guidance, it means that the AI contains information about the semantics of
the portrait face implicitly. Extraction of the above semantic information allows
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Figure 5.2: Another limitation on the local stage of dualFace caused by prior
knowledge when generating anime style drawing is mode collapse.

the AI to further understand user intent and provide more intelligent feedback.
Therefore, the implicit conversational drawing assistance framework shown in
Figure 5.1 attempts to solve two major issues:

• 1. Sketch-based portrait generation with stroke-level disentanglement in
Section 5.3;

• 2. Intelligent feedback from AI itself without additional auxiliary informa-
tion for anime style is described in Section 5.4.

Note that the deep prior knowledge of both issues is the same pre-trained Sytle-
GAN generator. What’s more, the final drawing assistance system can support
both anime-style and realistic-style.

5.1 Motivation
dualFace uses an explicit strategy to generate monochromatic portraits of real
faces from sketches through a two-stage process. But both stages require different
prior knowledge as data support: the global stage requires a preset database for
profile retrieval, while the local stage requires real faces as intermediate results,
generating real faces from masks before generating monochrome portraits. In
addition to the limitations discussed in Section 4.6, when the difference between
the style painting and the real face is relatively large, the results generated by
the method using the real face as the intermediate result tend to fall into over-
fitting. Figure 5.2 shows an example to show this limitation: when the prior
knowledge of APDrawingGAN [53] (real face-line drawing style transfer) on
the local stage of dualFace is simply replaced by face-anime style transfer with
DualStyleGAN [124], the input of different source and reference images will
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generate similar results in shape which is known as “mode collapse”. Thus,
anime-style portrait generation is a typical but challenging issue. As a popular
drawing style, anime-style portraits are simpler and more abstract than real human
faces. To make our AI-assisted system support this style of creation, stroke-level
disentanglement for StyleGAN is proposed as an implementation of the implicit
strategy of our paradigm. In addition, since there is no off-the-shelf semantic
segmentation method for anime faces available, this chapter also introduces an
alternative scheme that extracts semantics directly from parameters in StyleGAN
with one-shot learning. After the introduction of UI, we will describe the two
parts of the work separately in detail.

5.2 User Interface
Figure 5.3 shows the proposed user interface of the drawing support system. Both
realistic style and anime style portrait drawing can be supported. When our
AI-assisted system provides real face drawing support, it is called “RealFace”,
and when it provides anime face drawing support, it is called “AniFace”. The
system automatically records all the vertices of the strokes and the stroke order
and converts strokes to a raster image and corresponding guidance display on
the sketch panel in real time. Similar to ShadowDraw [1], this system provide
two types of guidance, i.e. “rough guidance” and “detailed guidance” under the
drawing board as semi-transparent shadows, which users can switch whenever
they wish. Detailed guidance shows the full face portrait to the user as a prompt,
while rough guidance shows the user a part of the face that has been drawn roughly
or will be drawn soon as a prompt by predicting the user’s drawing progress.
Both of them are useful and high-quality, detailed guidance allows the user to
understand the overall layout of the face to draw, and rough guidance enables the
user to focus on the depiction of the local facial parts. Note both the input sketch
and guidance are labeled with semantics automatically and show as different
colors for each part with the proposed one-shot semantic labelling approach in
AniFace for the lack of semantic data of anime faces. In RealFace, a pre-trained
CNN model [125] is adopted for real-face semantic parsing with a variation of
BiSeNet [126] which is trained on CelebAMask-HQ dataset [101]. If the user
is satisfied with the current guidance and does not want it to change any further
for sketch trace, he/she can press the “Pin” button to realize this purpose. When
the sketching is completed, users can generate the final color image as a result
by clicking on the ‘reference image selection (face)’ button to choose the desired
coloring style among reference images.

In contrast, with the eraser tool, users right-click on a stroke, and the system
deletes the selected stroke. Moreover, the undo tool can delete the last stroke
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(i) AniFace

(ii) RealFace

Figure 5.3: Proposed user interface of drawing assistance system. AniFace
supports anime-style drawing while RealFace supports real-face style drawing.
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from the stroke list. Note that our system can also load (or export) the user-drawn
strokes by clicking the “Load” (or “Save”) buttons.

5.3 Features Disentanglement for Sketch
It is a challenging issue to generate high-quality images from sketches with a low
degree of completion due to ill-posed problems in conditional image generation.
However, it becomes urgent to convert users’ rough sketches to high-quality im-
ages interactively and progressively during the creation processes to expand their
drawing skills. This section introduces a novel StyleGAN controlling approach
with stroke-level disentanglement in two stages of training to tackle this issue.
According to 5.1, the inputs are users’ incomplete sketches and the outputs are
corresponding high-quality portrait images or line drawings as shadow guidance
in the section. As the deep features extracted from sketches are fully contained by
the latent space of high-quality images, the only deep prior adopted in this task is
the decoder of deep features which is a pre-trained StyleGAN.

5.3.1 Introduction
With the rapid development of deep learning, image generation techniques for
anime portraits have become sophisticated. Especially, the emergence of Style-
GAN makes it possible to generate high-quality images. This great success in turn
led to the rapid development of GAN control and editing. By linear regression on
the disentangled latent space, users can control various properties of the generated
image by changing the attribute parameters.

As attribute manipulation with parameters is not intuitive for shape-related
attributes (e.g., pose, mouth shape, nose location), sketches become effective in-
puts of editing for these attributes for Sketch-to-Image (S2I) synthesis. However,
most S2I approaches tend to consider only complete sketches as input for image
generation – in the case of incomplete sketches and especially the ones with more
abstract strokes, they can’t keep the quality of outputs. This issue is particularly
evident in artwork image generation. Imagine a scenario where a user draws an
artwork with the S2I synthesis system, since the user draws it stroke by stroke,
the generated image should also keep matching the sketch locally as the number
of strokes increases.

Taking sketch-to-anime-portrait generation with StyleGAN as an example,
pSp (Pixel2Style2Pixel) [75] encoder shown in Figure 5.4(a) is an encoder for
GAN inversion that can successfully reconstruct a complete line drawing into an
anime portrait, which can tolerate small missing areas (first row in Figure 5.4(a)),
but it got poor outputs when the input is a sketch with large missing areas (second
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Input pSp Ours

(a) Encoder comparison (b) Our anime portrait generation during a drawing process

Figure 5.4: A original pSp encoder working for line drawing with small areas
of missing (first row in (a)) can not correctly recognize user sketches, even for a
complete sketch on the third row of (a). In contrast, our proposed approach can
generate high-quality images. (b) shows our approach can generate high-quality
results that consistently match the input sketch throughout the sketching process.
To make the matching of sketches and results of our method clear, the intermediate
results disentangled most of the color information (second row in (b)) are stacked
below the input strokes (blue and red strokes on the first row in (b)) once a new
stroke (red stroke on the first row in (b)) is added. The final results on the third row
in (b) are generated with random style-mixing techniques. Note that all generated
results with “near-white” hair are intermediate results which are style mixing with
fixed “near-white” color latent code.
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row in Figure 5.4(a)) or a more abstract sketch with fewer details (third row
in Figure 5.4(a)). Therefore the conventional S2I synthesis does not naturally
maintain partial match and performs well for the stroke drawing process.

To solve these issues, this chapter proposes a stroke-level disentanglement of
StyleGAN that allows the generated results to be matched with the user’s sketches
during the freehand drawing process. Our main contributions are summarized as
follows:

• This work presents the first S2I synthesis framework which can generate
high-quality anime portraits stably from freehand sketches throughout the
whole drawings process;

• This work proposes an unsupervised stroke-level disentanglement training
strategy for StyleGAN so that rough sketches with sparse strokes can
automatically match the corresponding local facial parts in anime portraits
respectively without inputting any semantic labels or strokes.

5.3.2 Stroke-level Disentanglement
This work first explains the concept of stroke-level disentanglement with a simple
example in Figure 5.5. Given a generated image I from StyleGAN with fixed
color latent code, the left eye and right eye of I in the green rectangle are
mapped to Land Rin disentangled latent space with GAN inversion. Stroke-
level disentanglement means that there is a sketch-GAN-inversion encoder for
the rough sketch which make Strokes 1 and Stroke 2 in the red rectangle can
be mapped to the subset of the corresponding latent codes Land Rrespectively.
Note that the percentage of the latent code of Strokes 1 to Lis higher than that
of the latent code of Strokes 2 to Rbecause Strokes 1 contains more details. In
addition, there may be a one-to-many relationship between strokes and latent code
of different facial parts – for instance, if a stroke includes shape information of
both left and right eyes at the same time, then it will correspond to a subset of
both Land Rafter encoding.

Then, this work describes the problem formally as follows. Let P and S
indicate the anime portrait domain and sketch domain respectively. Q is a subset
of P , which separates most of the representations of color information from
structural ones and can form a one-to-one mapping with S. Our sketch encoder
learns a mapping F : S → Q which can find the correct correspondence with
drawing strokes increased. This mapping F is called “Sketch GAN inversion”
in this dissertation. The output during the drawing process should gradually
converge and maintain high quality as input strokes increase. There are two main
issues needed to be addressed:

• Q1. How to learn a stroke-level disentangled mapping F which allows the
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Figure 5.5: Illustration of stroke-level disentanglement. Strokes can be mapped
into the subset of latent code of corresponding parts related to shape information.

strokes to be matched locally to the generated image.
• Q2. How to make the aforementioned mapping not affected by the stroke

order?

Given a sketch consisting of a series of strokes {s1, s2, ...sn}, these two issues
make it necessary for mapping F to satisfy the following two conditions respec-
tively.

Stroke independence. Assume that an image encoder that can convert an
anime portrait to completely disentangled structural latent codes {d1, d2, ...dn}
corresponding to the strokes, there is

F (si) = di (5.1)

Where i is the index of strokes and i ≤ n.

Stroke order invariance. For any different index of strokes i, j ≤ n, there is:

F (si|s1, s2, ...si−1, si+1...sn)

= F (sj|s1, s2, ...sj−1, sj+1...sn)
(5.2)

Where si|s1, s2, ...si−1, si+1...sn means add stroke si to a sketch consist of
strokes {s1, s2, ...si−1, si+1...sn}. Note this work does not use any label or
semantic stroke, the only inputs are monochrome sketches.

Figure 5.6 shows our core idea to simulate the drawing process and make
the sketch with a higher completion degree closer to the original sketch into
latent space limited in a neighbor region, which can provide the solution for the
aforementioned Q1 and Q2. Given a generated image from StyleGAN, the point
calculated with GAN inversion in the latent space P is p, and the point in the
image fixed color latent code (first row in red dash rectangle) projected into the
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Figure 5.6: Illustration of our core idea.
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Figure 5.7: Stroke-level disentanglement based S2I Framework. This is a part of
the overall framework in Figure 5.1.

latent subspace Q is q. Our drawing process simulation generates a sequence of
simulated sketches (second row in red dash rectangle) from simple to complex,
whose positions in Q space are denoted as S1 to Sn. The key idea is to learn a
spatial neighborhood in P whose projection in subspace Q can make the sequence
of points S1 to Sn gradually approximate the point q as shown in Figure 5.6.

5.3.3 Proposed Framework
The overview of the framework is shown in Figure 5.7. In the training step, this
work first trains an image encoder using the randomly generated images from the
decoder as our stage I, which projects the anime portrait correctly back into latent
space. Then, in stage II, this work then rearranges the latent space vectors in this
image encoder by simulating the drawing process, so that sketches with similar
strokes retain more rational distribution when projected into Q. In the inference
step, this work concatenates the structural codes derived from the sketch encoder
with the color codes from random Gaussian noise z, which is known as style-
mixing. Note once the decoder has been determined, all data is derived from the
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randomly generated images from this decoder, and no additional label information
of sketch is required as the input or the output in the proposed approach. Thus,
this is an unsupervised learning approach.

The training in stage I is similar to the previous work [75]. The difference is
that this work simply adopts L2 loss between the original images from StyleGAN
and the reconstructed images encoded by our image encoder in stage I.

5.3.3.1 Drawing Process Simulation

In stage II, the drawing process simulation generates sketch-image pairs automat-
ically from StyleGAN. Before the drawing process simulation, this work should
get a complete line drawing from the original anime portrait generated from
StyleGAN as the simulation input first. As the first row in Figure 5.8 shown,
this work conducts style-mixing between the original and reference image so that
most of the color information can be removed and get a complete line drawing
from style-mixing result with XDoG [127].

Then, this work uses landmark detection techniques for anime face [128] to
obtain information on the contours of each part of the face. This work simulates
the intermediate results of sketching starting from a single stroke using Algo-
rithm 5.1. In Algorithm 5.1, both functions RandomProcess and RandomDrawing
execute each function in their own lists with equal probability, respectively. That
means, during a drawing simulation, each stroke is chosen at random from the
contours of the selected facial features and the original line drawing with a random
process. The second row in Figure 5.8 shows a list of pseudo sketches with a
background augmentation approach which is described as follows.

Background augmentation. As the hair and other parts of the lines could not
be extracted using the anime face detection algorithm, this work treats them as
background. To increase stability, a random selection from the background and
facial contours is conducted as augmentation data in addition to Algorithm 5.1,
respectively. The effects of this method are discussed in Section 5.3.4.2. At this
point, this work has a series of pseudo sketches for training in Stage II which is
termed “Feature alignment”.

5.3.3.2 Feature Alignment

Given a Gaussian noise z, the input image of our encoder is x = G(z) and the
output latent code is then defined as

I(z) := E1(G(z)) (5.3)

where E1(·) and G(·) denote the image encoder and StyleGAN generator, respec-
tively.
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Algorithm 5.1 Drawing process simulation
Input: Portrait image P
Output: List of pseudo sketch S, List of loss mask M
Landmarks of portrait L← FaceDectect(P )
Strokes of facial parts C ← Resort(L)
Number of n← len(C)
Temporary while image pt ← ones(P .shape) × 255
Temporary loss mask mt ← zeros(P .shape)
RandomProcess=[GaussianBlur; Dilate; Erode, KeepOriginal]
RandomDrawing=[DrawOriginal, DrawContours]
S ← ∅
M ← ∅
for k=1:n do

Index i=RandomSelectOneStroke(C)
Part stroke s=C.pop(i)
pt= RandomDrawing(RandomProcess(pt ,s))
S.push(pt)
mt= DrawNewStrokesMask(mt ,s)
M .push(mt)

end
return S,M
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(i) Pseudo sketches (first row) with corresponding loss mask (second row) generated by Algorithm 5.1

(ii) Pseudo sketches (first row) generated in background augmentation with corresponding loss mask (second row)

(a) Drawing process simulation for anime-style.

(b) Drawing process simulation for realistic style. A generated real human face
after style-mixing is input for drawing process simulation.

Figure 5.8: An example of drawing process simulation and background augmen-
tation for anime-style and real-face style.
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The method for training an image encoder in stage I follows the usual GAN
inversion method. The loss function in stage I LI this work used is as follows:

LI = L1(G(I(z)), G(z)) (5.4)

Only by calculating the L1 distance between the input image and the reconstructed
image, the image encoder can already learn the inverse mapping very well.

Similarly, this work defines the output latent code of our sketch encoder as:

S(z) := E2(Drawi(G(z))) (5.5)

where E2(·) and Drawi(·) denote our sketch encoder and our drawing process
simulation as described in Algorithm 5.1, which can convert the image x to a
series of intermediate sketches of the drawing process and select the ith one from
these sketches.

In each iteration of training in stage II, this work can generate sketches S and
corresponding loss masks M after our drawing process simulation. Then, the loss
function is:

LS = L1(G(S(z)) ∗M,G(z) ∗M) + L2(I(z), S(z)) (5.6)

Here, L2 loss function L2(I(z), S(z)) ensures that the sketch with higher
completion degree is closer to the projection of the original in the latent structure
subspace, while L1 loss function L1(G(S(z)) ∗ M,G(z) ∗ M) with loss mask
ensures the local similarity between the original images and the generated results.

5.3.4 Experiments and Results

5.3.4.1 Implementation Details

In our implementation of AniFace, the image encoder and the sketch encoder
(Figure 5.7) adopted the pSp architecture [75]. This work chooses layers 1-8 in
W+ (which is described in 2) space as the structural code and layers 9-18 as the
color code, respectively. This work adopts Ranger optimizer and set a learning
rate to 0.0001. As a training environment, NVIDIA RTX3090 GPU was used to
train our encoders which are programmed in Python on the Linux platform. Then,
a workstation with Intel Core i7 8700, 3.20GHz/3.19GHz, NVIDIA RTX1070
GPU, and 64GB RAM on the windows 10 platform were used as the testing
environment. Naturally, RealFace also can also be trained with this approach. The
difference between AniFace and RealFace in training is that RealFace can extract
the hair contour using semantic segmentation contour information and reduce its
reliance on background augmentation. Thus, In each stroke simulation generation,
AniFace added 8 additional background augmentation images, while RealFace
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Input
Without background

augmentation Ours

Figure 5.9: Comparison between an encoder trained without background augmen-
tation in Stage II and the one with our approach. When a new stroke (red) is added
to the input of the first row, the result from the encoder trained without background
augmentation is highly degraded.

used only 4 as Figure 5.8 shown. The result of RealFace will be shown in the next
section and the discussion in this section is dominated by AniFace.

5.3.4.2 Stability Testing

To test the stability of our sketch encoder during the whole freehand sketch
process, this work first conducts the following experiments.

About the influence of stroke order and multiply strokes for one facial part.
Figure 5.10 compares the intermediate process of the same sketch with different
stroke orders. It can be seen that the final results are not very different, but the
intermediate processes maintain some diversity. This figure also shows that even
if only one stroke is used for each part of the face during training, the generated
guidance match well when the user uses multiple strokes for the same part (e.g.,
left eye and mouth).

Effect on training without background augmentation. The effect of back-
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Stroke order 1

Stroke order 2

Figure 5.10: The influence of stroke order and multiply strokes for one facial part.

ground augmentation is shown in Figure 5.9. If only sketches in the drawing
process on the second row in Figure 5.8 are trained without considering the
background (on the fourth row), the sketch encoder cannot correctly understand
the strokes associated with the hair (or the background) and project them near the
correct position.

Results generation for “Bad” strokes. If only a partial part of a stroke has valid
information, then the stroke is considered a “bad” stroke. In freehand sketching,
a “bad” stroke is not uncommon. The results generated by our method provide a
reasonable match to the valid part of such a “bad” stroke. For example, the strokes
depicting the left eye in Figure 5.10 form a triangle, a shape that is not natural as a
depiction of the eye contour, while the generated result is still reasonable. Another
example is the first stroke in Figure 5.11, which only partially matches the normal
face contour, but our approach still succeeds in capturing this information.

5.3.4.3 Qualitative Results

It is found that there is no S2I synthetic technique for anime portraits. Therefore,
this work trains an additional sketch encoder for the complete sketch using a
random cropping strategy as a baseline for a fair comparison. Except for the
training strategy, the hyperparameters and the architecture of the baseline network
are the same as those in the sketch encoder. The comparison results are shown in
Figure 5.11. It is verified that our approach can provide consistently high-quality
guidance that better match the input during the sketching process.
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(a) Input

(b) Ours

(c) Baseline (pSp encoder trained with complete sketches with a random crop)

Figure 5.11: Qualitative comparison with the same input sketch sequences. A red
color stroke represents the last stroke in a sketch.
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Figure 5.12: Samples from different datasets or approaches and the FID with each
other.

5.3.4.4 Quantitative Results

Our approach is evaluated from two aspects: the quality of generated images, and
the match between input and output. The quality of image generation affects both
the quality of the guidance received by the user and the evaluation of the final
generated result, so it is necessary for this indicator to be measured quantitatively
in addition to the subjective evaluation of the user. For similar reasons, the match
between the input sketch and the guide also needs to be measured quantitatively to
ensure that the validity of our approach is subjectively and objectively consistent.
To evaluate usability and satisfaction, a user study is conducted which is described
in Section 5.5 for the overall system.

Quality of generated images. Unlike normal S2I synthesis, this work is dedi-
cated to the stability of matching rough sketches and intermediate results through-
out the drawing process. To evaluate the matching degree between strokes and
hints during the drawing process for each stroke, this work uses FID to measure
the gap between the generated images: first, users are asked to draw 10 sketches
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Table 5.1: FID scores of baseline and our approaches. As a reference, the FID
between Decoder1k and Danbooru1k is 70.86.

DBName Ours Decoder1k Danbooru1k
Baseline 74.75 106.03 151.42

Ours - 74.14 125.19

Table 5.2: The average of different metrics from the proposed approach and from
the baseline method (ours/baseline in table). At the beginning of the drawing
process, the input sketches are usually more sparse, which makes it more difficult
to generate matching results. Thus, the average recall of the first k strokes is more
important.

Metrics
k

1 3 6 9 ∞ (whole process)

p 0.04/0.03 0.04/0.05 0.05/0.07 0.07/0.08 0.12/0.12
r 0.48/0.40 0.46/0.39 0.45/0.38 0.43/0.37 0.39/0.31
F1 0.07/0.05 0.07/0.09 0.09/0.11 0.11/0.13 0.17/0.16

and record the total 177 images generated by our method as a database “Ours”,
the results generated by the baseline method with the same input as a database
“Baseline”, one thousand randomly generated images using StyleGAN in our
decoder as a database “Decoder1k”, and one thousand randomly selected images
from the Danbooru database as a database “Danbooru1k”. The FIDs between
them are shown in Table 5.1. It can be seen that, in line with the observation
in qualitative results, our method generates better-quality images – similar to
the images generated by Decoder in Decoder1k as well as to the real images in
Danbooru1k. Figure 5.12 shows some samples from each dataset or approach
mentioned above, which makes results more intuitive.

Matching of the generated image to the input sketch. To evaluate the match
between the input sketch and generated guidance, sketch-guidance matching
can be thought of as a prediction problem. Although neither sketch S nor the
generated line drawing L is reliable enough as ground truth, the input sketches
are regarded as ground truth here because what we are concerned about is how
the system will cater to the input with the guidance. Then, recall is calculated
as follows. Given a sketch S and the corresponding line drawing L, then the
overlapping part of the two is denoted as S ∩ L. Regard the input sketch S as the
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Figure 5.13: Recall comparison as strokes increase. The average recall rate of our
approach was higher than the ones from the baseline method throughout.

ground truth and the recall of sketch matching r is

r =
Area(S ∩ L)

Area(S)
(5.7)

where function Area[·] counts the number of pixels of its input image. Similarly,
the precision of sketch matching p is

p =
Area(S ∩ L)

Area(L)
(5.8)

and the F1 of the sketch matching F1

F1 =
Area(S ∩ L)

Area(S ∪ L)
(5.9)

where S ∪ L = Area(S) + Area(L) − Area(S ∩ L). If the output guidance
is considered as the ground truth, one possibility for the low r and F1 in our
approach may be caused by the fact that more details are generated on L according
to the qualitative results in Figure 5.11.

Table 5.2 shows the results of the comparison between the proposed methods
in this section and the baseline method with is described in Section 5.3, a pSp
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encoder trained with random cropped sketches. It is even more important to
provide high-matching guidance in the early stages of drawing when the strokes
are sparse. Therefore, the average recall rate of the first 1, 3, 6, and 9 strokes
and the whole sketching process is calculated. We believe that the average recall
best describes the match in numerical terms because, in this evaluation metric,
our results consistently outperform the results of the baseline method during
the whole drawing process as shown in Figure 5.13. This result is consistent
with the observation of the qualitative comparison shown in Figure 5.11, while
slightly lower results of our approach in evaluation metrics p and F1 compared
with those of baseline indicate that the method provides more details in the
generation guidance. This experiment demonstrated that the guidance generated
by this system can better match the input rough sketch, both at the beginning and
throughout the drawing process. Based on the above results, the recall can be
considered as a valid metric to measure the match between the input sketch and
output guidance.

5.3.5 Discussion
This section successfully reordered the feature vectors in latent space at the stroke
level by unsupervised learning with drawing process simulation. Experiments
demonstrated the stability and effectiveness of the proposed approach. The
experiment results show our proposed method can consistently obtain high-quality
generation results during freehand sketching, independent of stroke order and
“bad” strokes. As the results generated by our method are completely dependent
on the decoder, i.e. pre-trained StyleGAN, the decoder in turn restricts the types
of the generated images. For example, since our pre-trained model is trained on
an anime portrait database extracted from Danbooru [129], the generated anime
portraits are all female. Thus, how to expand the results with more styles while
keeping the strokes matching will be promising for future work.
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5.4 One-shot semantic lablelling in StyleGAN
As Section 5.3 has introduced portrait generation during the drawing process
based on disentanglement stroke-level with the help of landmark detection tech-
nique, the last question is how to make AI automatically recognize the stroke
semantics during the drawing process and give reasonable guidance for drawing
support.

5.4.1 Introduction
Semantic analysis for free-hand sketching is an important research topic in visual
computing and computer graphics. Especially, it has been widely applied to
cross-media computing and content-based retrieval. The freehand sketch has
received a lot of attention from researchers because of its high abstraction in
representing scenes or objects of the real world in recent years [130]. Previous
studies on freehand sketch parsing concentrated on stroke-level labelling – line
segments or strokes are grouped into semantic components [131, 132]. There
is a great gap between the labelling approaches of this type and the semantic
segmentation approaches of real images because the previous one only requires
semantic labelling on sketches according to strokes, while the latter involves a
thorough annotation of all pixels from real images one by one. For this reason,
those existing approaches that are effective for real image parsing can not be
applied to the task of stroke-level labelling for sketches directly. This work
proposed a one-shot semantic labelling method based on deep prior knowledge
in StyleGAN with a single pair of image-mask which can finally generate a
semantic mask for users’ incomplete sketches during sketching as well as the
corresponding high-quality images combining stroke-level feature manipulation
from Section 5.3.

5.4.2 Framework
This section concentrate on the intelligent feedback generation part of our frame-
work with implicit conversation in Figure 5.1. Once again, this issue is solved by
the basic version of our paradigm which is introduced in Figure 1.2. The input
is an anime portrait generated from StyleGAN and the output is a semantic map.
The prior knowledge adopted in this section is the deep prior in StyleGAN and
a manually labelled image-mask pair. Because the semantic information is fully
contained by the latent space of the generated portrait image as a subset, figuring
out the semantic map can be viewed as the visualization of implicit deep features.

The pipeline of the one-shot semantic labelling-based drawing support is
shown in Figure 5.15. As a preparatory phase, both a GAN inversion encoder and
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Figure 5.14: Proposed drawing support framework.
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(a) Semantic labelling phase

(b) Drawing support phase

Figure 5.15: Pipeline of one-shot semantic labelling for anime drawing support.
In the semantic labelling phase, a semantic mask is annotated manually for a
generated image from Gaussian noise z and the decision vectors are calculated for
one-shot semantic labelling. In the drawing support phase, once a stroke is added
to the input sketch, users can get both rough guidance and detailed guidance at the
same time and can switch between them at any time for drawing assistance.75



Figure 5.16: An example of input image-mask pair for one-shot semantic
labelling. A generated RGB color image from StyleGAN on left is labeled with
semantic annotations as a mask in right. For anime portraits, there are 12 semantic
labels in total including the “unknown” label with black color which is not shown
in this mask.

sketch are trained following the training steps which are described in Section 5.3.
Then, in the semantic labelling phase, generated images from StyleGAN

(decoder) are annotated automatically by the proposed prior knowledge-based
semantic labelling approach and these image-mask pairs. The structural codes
derived from the sketch encoder are concatenated with the color codes from
random Gaussian noise z, which is known as style-mixing. Note once the
decoder and one image-mask pair have been determined, all data is derived from
the randomly generated images from this decoder and no additional assistant
database is required. Thus, this is a one-shot learning-based approach. In the
drawing support phase at last, with strokes increased during users’ sketching,
the system consistently delivers high-quality images and converts these images
to line drawings which are displayed as local guidance based on semantic mask
prediction.

The training for the GAN inversion encoder is similar to the previous
work [75]. The only difference is the loss function – simply L2 loss is adopted, be-
tween the original images from StyleGAN and the reconstructed images encoded
in this GAN inversion encoder. The training for the sketch encoder is similar
to Section 5.3. In the following Section 5.4.3, the proposed one-shot semantic
labelling is introduced.
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5.4.3 One-shot Semantic Labelling Correspondence based on
Feature Matching

5.4.3.1 Formal Statement

Given a Gaussian noise z, the generated image of StyleGAN generator is x =
G(z) and the output latent code Lz is then defined as

Lz := Einv(G(z)) (5.10)

where Einv(·) and G(·) denote the image encoder for StyleGAN inversion and
StyleGAN generator, respectively.

In the forward propagation process during G(·) operation, M ∈ RNc×W×H

is returned as feature maps, where Nc, W , and H are the number of channels,
width, and height of M respectively. Note that M has been scaled to the
same width W and height H of the input color image x ∈ R3×W×H with the
nearest neighbor method for the convenience of calculation. Then, for the above-
mentioned generated image x, labels with C classes (including “unknown” class)
of user-defined semantics are annotated as a reference mask m ∈ RC×W×H . As a
pair of image-mask {xK ,MK} sample is given as prior knowledge, the question
is how to calculate the masks of another unlabelled generated image x′ = G(z′)
from random noise z′. Especially, Figure 5.16 shows an example of the generated
image of an anime face used in this work and its corresponding semantic mask
labeled with 12 class annotations for portrait drawing process simulation.

Inspired by few-shot semantic segmentation [133] and one-shot learning for
StyleGAN controlling [134], the proposed one-shot semantic labelling consists of
two types of methods – region-based semantic labelling and pixel-based semantic
labelling.

5.4.3.2 Region-based Semantic Labelling

The result of the region-based semantic labelling method is one or several con-
nected regions. Therefore this method is suitable for semantic labels that do not
intersect much with other semantics, such as eyes, nose, and mouth in a portrait.

First, StyleGAN’s feature maps M are extracted corresponding to the seman-
tic masks from the given image-mask pair {xK ,MK} as prior knowledge. Then,
decision vectors vc = {v1

c ,v
2
c , ...,v

len(vc)
c } (function len(.) is used to calculate

the length of vectors) for each semantic class c from the pairs of extracted feature
maps and semantic masks, following the approach from Wang et al. [133].

vc =

∑
x,y M

x,yD
[
MK

(c,x,y) == 1]∑
x,y D

[
MK

(c,x,y) == 1
] (5.11)
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Figure 5.17: Illustrations for region-based semantic labelling method and pixel-
based method. Note that in location A, the final value for c = ‘nose′ is 0 in the
pixel-based method, because t = 0.25 > 0.2.

here (x, y) denotes pixel position in x, and D[·] is the indicator function that
returns 0 if the argument is false and 1 otherwise. Once the decision vectors
{vc}c∈C for all semantic labels are calculated, another unlabeled images x′

sampled from a random Gaussian noise z′ with the extracted feature maps M ′ in
StyleGAN can be annotated via feature matching between vc and corresponding
pixel-wise feature vectors {M ′(x,y)}x∈W,y∈H in M ′. Semantic label l(x,y) of a pixel
positioned in (x, y) is determined with cosine distance as follows:

l(x,y) = arg max
c∈C

meansi∈nc(cos(v
i
c,M

′(x,y))) (5.12)

where meansi∈nc(·) is the function to calculate the average value of metric
distances in class c and nc = {1, 2, ..., len(nc)} is the index set of decision vector
in class c. The reason for choosing the cosine distance as the metric distance here
is based on the finding from Collins et al. [135] that feature vectors in StyleGAN
with the same semantics tend to cluster on a unit sphere.

5.4.3.3 Pixel-based Semantic Labelling

For semantic labels that intersect much with other semantics such as hair and
eyebrows, and region-based semantic labelling, the results of semantic annotation
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will be more sensitive – wrong recognition of semantic labels can seriously affect
the subsequent stroke segmentation. Thus, pixel-based semantic labelling is
necessary for these semantic parts.

The only difference between pixel-based semantic labelling and region-based
one is the metric function. KNN(·), a K-nearest-neighbors function is adopted,
instead of means(·) in Equation (5.12).After obtaining decision vectors {vc}c∈C
for all classes C with Equation (5.11), Semantic label l(x,y) of a pixel positioned in
(x, y) with hype-parameters K = k for K-nearest-neighbors function and T = t
as low confidence threshold is determined as follows:

l
(x,y)
k,t = arg max

c∈C
KNNK=k,i∈nc(cos(v

i
c,M

′(x,y)) · D(cos(vi
c,M

′(x,y)) > t))

(5.13)
The advantage of adopting the K-nearest-neighbors function is that it increases
the confidence of sparse labels and reduces overfitting instead of being smoothed
by means(·). According to Equation (5.11), the number of decision vectors vc

in class c is positively related to the area occupied by this semantics in the mask,
which makes the means(·) strategy in Equation (5.12) bias sparse semantics in
semantic labelling.

This is illustrated by the comparison of the two semantic annotation methods
in Figure 5.17. It is known that there is an intersection between the nose and the
facial skin, i.e., the nose is on top of the skin. Assume that for the feature map
M ′, the number of decision vectors for the nose is 2, and the number of feature
vectors for the skin is 100. For a pixel with location A near the nose in M ′, if the
cosine distance from each decision vector to A is as shown by the blue arrow in
the figure, region-based semantic labelling taking the mean value will decide that
this pixel belongs to the nose, while pixel-based semantic labelling with KNN(·)
will decide that this pixel belongs to the skin.

5.4.3.4 Prior Knowledge-based Semantic Mask Optimization for Portraits

The above two annotation methods have their own strengths and weaknesses and
have different results for different semantics. Take Figure 5.17 as an example, in
the semantics of portrait drawing, there is more crossover of eyebrows and hair,
so it is easy to overfit with region-based semantic labelling method in eyebrows’
labels. Besides, parts that appear in pairs such as eyes and eyebrows are also prone
to recognition errors due to their owning similar features. Therefore, once a paired
image-mask data {xK ,MK} is given as the prior knowledge, the annotation
method applied to each part is decided and whether some of these parts require
additional processing is also defined respectively.

The proposed method is described in Algorithm 5.2. Firstly, Algorithm 5.2 de-
fines 3 types for each label i.e. “pair”, “line-like” and “normal” in ProcessTypes
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as well as their corresponding process functions in ProcessFuction. As a pixel-
based semantic labelled mask, Mp and region-based semantic labelled mask
Mr have been calculated with the above-mentioned one-shot method, functions
TypeDetection finds out a set of types T ⊆ ProcessTypes for each label c with
following objective function:

T = arg min
t∈T,c∈MK ,q∈{r,p}

SMc(ProcessFuctiont(Mq),MK) (5.14)

where moment invariants [136] is adopted for shape match function SM(·, ·). This
objective function means to find out the most suitable type set T which is most
similar in shape to the known labelled mask MK for each label class c ∈MK .

Then, the most related label d to a label with index c is found with the
following objective function

d = arg max
c,d∈MK ,CD(Mr[c],Mr[d])=1

L2(CD(Mr[c],Mr[d]),CD(MK [d],MK [d]))

(5.15)
where, Mr[·] and MK [·] are considered as a point set, and function CD(·, ·) is
a distance function to calculate minimal distance between two point sets. As
points in MK are pixel coordinates originally, the minimal of between two point
sets MK [c] and MK [d] is 1 in case of a label c and another d are neighbours in
MK . Then, Equation (5.15) means if the label c and the label d are neighbours
in MK while not in Mr, If the label c and the label d are neighbours in M [c]r,
the most differentiated adjacency represents the most likely overfit between two
labels c and d. As a result, Figure 5.18 illustrates the benefits of the proposed
method – the mask is calculated based on this prior knowledge to obtain relatively
accurate segmentation results in stroke-level with Algorithm 5.2. On the middle
row of Figure 5.18, landmarks of the input anime face of the first row are detected
and overlayed on the corresponding images at the top row with the anime-face
detector [128] which has been mentioned in Section 5.3. It is obvious that the
number of landmarks located in the correct semantic region with the proposed
method is the highest, which proves the effectiveness of this approach.

5.4.4 Experiments and Results

5.4.4.1 Implementation Details

In the implementation of this section, the sketch encoder in Figure 5.15 adopted
the pSp architecture [75]. In the pixel-based semantic labelling method, k = 3
and t = 0.5 is set. These two hyper-parameters were selected manually based
on the results of Figure 5.19, which can preserve the sparse semantics of the
annotation very well. Ranger optimizer is adopted with a learning rate of 0.0001
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Input Region-based Pixel-based Proposed

Figure 5.18: Comparison of region-based semantic labelling method, pixel-
based one, and the proposed prior knowledge-based optimization. The top row
is labelled semantic masks from the input image and the bottom row is a line
drawing of the input image segmented by the corresponding masks on the top
row. Also, semantic masks with facial landmarks are shown in the middle row to
show the effectiveness of the proposed method.
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Algorithm 5.2 Prior knowledge-based semantic mask optimization for portrait
images
Input: Portrait image x, Region-based semantic labelled mask Mr, Pixel-based

semantic labelled mask Mp, Known semantic label mask MK (prior
knowledge )

Output: Semantic mask of portrait Mout

Region-based semantic label masks of portrait R← Onehot(Mr)
Pixel-based semantic label masks of portrait Pix← Onehot(Mp)
ProcessTypes=[Pair; Line-like; Normal]
ProcessFuction=[KmeansK=2; Polynomial Fitting; Contour Detection; ]
S ← ∅
Mout ← ∅
for c=1:n do

Label s← ∅
One-hot label mask mr ← R[c]
One-hot label mask mp ← Pix[c]
Known one-hot label mask mk ←MK [i]
The most related label d to c, d← −1
Types T, d← TypeDetection(mk,mr,mp)
foreach(Type t in T)

if(d > −1) then
s← ProcessFuction(mr,mp, R[d], P ix[d])

else
s← ProcessFuction(mr,mp)

Mout ← DrawLabel(s)
end
return Mout

82



Figure 5.19: Effect of different parameters in pixel-based semantic labelling on
the results. According to the degree of preservation of sparse semantics such as
nose and eyebrows, this work chose k = 3 and t = 0.5 for Equation (5.13).
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for training. As a training environment, NVIDIA RTX3090 GPU was used to
train our encoders which are programmed in Python on the Linux platform. Then,
a workstation with Intel Core i7 8700, 3.20GHz/3.19GHz, NVIDIA RTX1070
GPU, and 64GB RAM on the windows 10 platform was used as the testing
environment.

5.4.4.2 Qualitative and Quantitative Results

The stability between the sketch and the generated results is described in Sec-
tion 5.3. Therefore, this chapter measures the reasonableness of the system
guidance from sketch. To evaluate the matching degree between strokes and
guidance during the drawing process for each stroke, this work exhibits visual
results for a whole drawing process. As shown in Figure 5.20, the proposed
system supports the whole process of sketching well and provides high-quality
drawing guidance continuously for both anime-style and realistic style drawing.
At the same time, the system can accurately identify the semantics of the strokes
and provide the corresponding semantic segmentation of line drawing results
in the detailed guidance and show reasonable prediction results in the rough
guidance. Both the rough guidance and detailed guidance provided by AniFace
are visually similar to the rough guidance and detailed guidance in RealFace,
which reflects the effectiveness of the one-shot learning method in this section.
Also, we evaluate the usefulness quantitatively with the following user study,
as colored rough guidance and detailed guidance which can provide intelligent
feedback to users.

What’s more, as a quantitative results, the number of landmarks located in
the right semantic region, which has been shown in Figure 5.18, is calculated to
evaluate the matching degree between guidance and semantic mask. Note that
there are 28 facial landmarks in total. Using the recorded 10 sketch processes
that we have obtained in Section 5.3.4.4, we can calculate 177 image-mask pairs
for evaluation. The average of this evaluation metric is 15.29 (54.61%) with
the proposed one-shot approach, 8.11 (28.96%) with the region-based semantic
labelling method, and 8.97 (32.04%) with the pixel-based semantic labelling
method. Thus, it can be clearly demonstrated that, compared with these two
methods, our method has a great improvement in this evaluation metric and
obtains a more accurate semantic mask.

5.5 User Study
To verify the effectiveness of our drawing assistance system for both anime-
style and real-face style, this work invited 15 participants (graduate students)
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Input of AniFace

(a)

(b)

(c)

(d)

(e)

(f)

Results from the AniFace

Input of RealFace

(a)

(b)

(c)

(d)

(e)

(f)

Results from the RealFace

Figure 5.20: Qualitative results with input sketch sequences. A red color stroke
represents the last stroke in a sketch. From the top to the bottom row, the
corresponding results from the proposed system with the input sketches are (a)
generated images (with random style-mixing), (b) line drawings from generated
images (c) rough guidance, (d) detailed guidance, (e) semantic segmented stroke,
and (f) stroke with detailed guidance.
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to this user study. All participants were asked to draw realistic portraits and
anime-style portraits by remote control of the mouse online. One of them, P0
only participated in the anime drawing assistance according to his/her personal
preference. All participants were asked to draw portraits freely and aimlessly
and try to draw more details as possible as they can. For each system, they did
drawing creation twice: the first time to experience the whole process of drawing
creation to familiarize themselves with the operation until they got used to this
system and felt comfortable; The following time, the participants completed the
whole process independently and took part in the user study. This work instructed
all participants on how to use AniFace and RealFace with user manuals. Before
the practical operation, they were asked to watch the corresponding tutorial video.
All participants were required to draw carefully and choose the most anticipated
references for local guidance from multiple generated candidates after they com-
pleted the global stage. When the generated guidance meets your wishes and
expectations, participants were required to press the “Pin” button to draw carefully
for refining the input sketch. Participants can select a reference image for color
portrait generation at any time during their drawing until they are satisfied with
the results. Finally, this work administered the questionnaire to all participants
after they finished their second drawing creation for each style.

5.5.1 Design of questionnaire
Our questionnaire consists of three parts: System Usability Scale (SUS) [137],
creativity-support index (CSI) [138], and a series of customized questions shown
in Table 5.4 to investigate the relationship between user satisfaction and guidance
matching.

In SUS, ten questionnaire items are set up to capture subjective evaluations
of the system’s usability. A five-point Likert scale is used in the evaluation
experiment. SUS is easy to investigate from a wide range of users and the result
can be reliable even with a small sample size.

Since the purpose of this work is to support user drawing creativity, CSI is
used to quantitatively evaluate the effectiveness of the proposed method. The CSI
score defines the creativity of the tool with six factors: Collaboration, Enjoyment,
Exploration, Expressiveness, Immersion, ResultsWorthEffort, and is scored with
a maximum of 100 points. Here, the factor “Collaboration” is set to 0 (not
applicable) as a slash symbol because there is no collaboration with other users in
our task – users should complete the art drawing independently.
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5.5.2 Results
For the similar reason as Section 4.4 mentioned, the difficulty of objectively
quantifying the response function R(·) contained in Equation (1.9) implicitly
makes this work adopt user studies to indirectly demonstrate the validity of our
system, with visual results, usefulness, and satisfaction. This section discusses
the implementation results of both AniFace and RealFace, evaluation results, user
feedback from the user study. Here, Table 5.4 shows the mean and SD of each
question in our customized questionnaire, while Figure 5.21 shows corresponding
boxplots to these questions.
Visual Results. Figure 5.22 shows some examples of our implementation results
in our user study. Our system can successfully turn the user’s rough sketches
into high-quality anime portraits and realistic portraits. It is worth noting that
the real-face semantic segmentation in RealFace employs an off-the-shelf pre-
trained CNN model. Thus, by comparing the color guidance with semantic
information in Figure 5.22 provided by the system, it is obvious that our one-
shot method in Section 5.4 can obtain face segmentation results for anime-style
portraits comparable to those learned through a large amount of data for realistic
portraits. What’s more, according to Q0 in our customized questions, 86.66%
participants thought their drawing skills is not high enough (less than or equal to
3) for anime style and 71.43% for realistic style. Results in Figure 5.22 come
from these novices. From these results, it can be considered that even beginners
can make reasonable sketches with the assistance of the system and end up with
high-quality color art drawings.
System Usability. The average score on SUS drawing assistance for anime style
was 73.84 (SD=20.04). The upper and lower limits of SUS were 90 and 65,
respectively. For realistic style drawing assistance, the SUS score on average
was 77.80 (SD=11.24), ranging from 65.00 to 97.50. The usability of our drawing
assistance system could be considered as “good” for both anime style and realistic
style. For the usability of our system, “Overall it’s a good tool for those like me
who don’t have much drawing skills, and it’s easy to use in terms of guidance
generation and color selection” and “I was not familiar with the operation when
I first experimented, but I can get an amazing generated result in the second
experiment. If I were shown the second generated image, I would not be able
to distinguish whether the person who is real or not” is commented.
Creative Support Capability. As Table 5.3 shown, the average scores on
CSI for both anime style and realistic style are 77.69 and 79.07, which means
that although there is still room for improvement in terms of immersion and
expressiveness, the system possesses effective creative support capabilities for art
drawing. In other words, from the user’s perspective, our system is considered to

87



AniFace

RealFace

Figure 5.21: Boxplots of customized questions in our user study for bot AniFace
and RealFace. The questions Q0 to Q15 are corresponding to those in Table. 5.4.
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AniFace RealFace

Figure 5.22: Visual results from our user study for both realistic style and anime
style. From the left to right column, they are the final user sketches, semantic
guidance in detail mode, and the final coloring images created by users according
to their free-hand sketches and user-selected reference images.
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provide “good” creative support for art creation.
Time cost. After the user draws a stroke, RealFace gives an average response
time of 1.71 seconds for the guidance generation while the average response time
from AniFace is 1.65s. This is not short for the user. Someone said, ”One small
problem is the not-so-short wait time after each stroke is completed”. This also
affects the immersion score of CSI in Table 5.3 to some extent. In order to improve
the user experience, the calculation time needs to be further reduced. Although
there is no time limit in our creation experiments, the average time for users to
complete a drawing is about 9 minutes for both AniFace and RealFace.
User-perception match degree. According to the results from Q1 to Q7 Ta-
ble 5.3, the average scores on these items range from 3.40 to 4.43, which illustrates
that our AI-assisted drawing system can output relatively matching guidance to the
sketches input during the drawing process for both styles. In these questions, A
score of five indicates “complete match” and 1 point means “complete mismatch”.
Although the statistics showed that the input and output matched relatively well,
Users dispute whether the hair in the input sketch and the generated image match.
The proponents commented, ”(In RealFace) I think the hand-drawn drafts fit the
real face very well, especially the hair and facial details, such as eye sockets and
cheek creases. ” and “The drawing assistance system performs better on hair
and eyes, and can match well with the drawing person’s draft to generate (anime
portrait)”. Critics said, “I tried to draw a double ponytail character, but couldn’t
achieve it” and “Some special hairstyles cannot be generated by RealFace”. The
main reason for this phenomenon is that the stroke-level disentanglement for
both anime style and realistic style is focused on facial contour features in the
training step restricted by the adopted prior knowledge. Even so, most participants
still tended to think that the sketch-hairs match is positive, which shows the
generalization capability of the proposed system at a certain level.
User-perception quality. According to the results from Q10 to Q12 Table 5.3,
users believe that the system consistently produces high-quality and reasonably
balanced facial guidance throughout the drawing process in both art-style and
realistic drawing assistance. This result is consistent with the results of the
qualitative experiments in Figure 5.20 and Figure 5.11, and they corroborate each
other.
User satisfaction for guidance mode. As a user evaluation of the intelligent feed-
back, the comparison between AniFace and RealFace of Q11 and Q12 illustrates
that the anime-style portrait generated using our semantic labelling described in
Section 3.3 achieves almost the same effect as the real human face semantic
segmentation with CNN, which is a powerful proof of the effectiveness of this
one-shot method. There are comments such as “In detailed mode I had to focus
on the generated auxiliary lines, thus unconsciously following the auxiliary, while

90



Table 5.3: CSI Questionnaire results in the user study.

Terms
AniFace RealFace

Mean SD Mean SD
Collaboration - - - -

Enjoyment 27.93 10.09 27.96 10.25
Exploration 29.11 11.27 28.79 10.65

Expressiveness 23.50 6.30 23.79 6.72
Immersion 13.46 10.86 15.50 13.19

ResultsWorthEffort 22.54 11.65 22.57 11.40
CSI Score 77.69 79.07

rough mode alleviated this problem to some degree” and “As a beginner, I think
this system is very helpful for beginners, allowing one to get a good result and
enjoy the drawing without having many professional skills.”.
User satisfaction for guidance. Results from Q10 to Q12 show that users
generally agree that our system provides good support for the creation of both
anime style and realistic portraits, improving both the user’s own sketches and
generating a desirable final color image according to their expectations. Taking
Q1 to Q7 into consideration, the consistency of these scores illustrates that our
approach, which can be regarded as an implicit strategy for our paradigm, achieves
the optimal matching between the sketch input and the guidance output so that
users’ satisfaction reaches the threshold of Figure 1.1 and successfully converts
the unknown user-perception evaluation function optimization problem into a
solvable AI-User conversation.

5.6 Summary
In this chapter, an AI-assisted drawing system with an implicit conversation
strategy was implemented as a stroke-level disentanglement in StyleGAN accord-
ing to the proposed paradigm in Chapter 1. this comprehension-based drawing
assistance system proposed can well analyze the semantics of the sketch when
the user is drawing and provide corresponding high-quality guidance. Users
can switch between global and local guidance at any time according to their
needs, which eventually helps them to draw the desired portraits and extend
their drawing skills. The most significant aspect of this system is that the
proposed one-shot semantic annotation method for anime-style portraits, relying
heavily on feature information within the pre-trained StyleGAN as the deep prior
knowledge, demonstrates that deep AI itself contains semantic information about
image generation. This one-shot approach achieves comparable results in our
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user study to the semantic segmentation network in RealFace, which has been
trained with large amounts of paired data. Combining with a reasonable approach,
such as disentanglement learning at stroke level in Section 5.3, these promising
information can be converted into a human-understandable form and used as
an aid to help humans perform various tasks. What’s more, user studies have
proven the effectiveness and generalization capability of our intelligent system
- it supports not only free sketch-based realistic portrait creation but also anime
face creation which is more abstract and challenging. As a limitation, despite the
multi-faceted measurement for our drawing assistance systems, a more intuitive
quantitative indicator of the user-perception exception function is still lacking.
In future work, a metric that can measure user exception online deserves to be
explored as a valid alternative to user satisfaction that can also be used to guide
AI learning.
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Chapter 6

Conclusion

6.1 Summary
Unlike the traditional use of AI to generate the final results directly, this disser-
tation explores AI’s understanding and interpretation of the generation process.
Several sketch-based AI interactive creation assistance techniques are proposed
which are applied to art drawing. The main idea of this dissertation is to consider
the user response as an expression of the user-perception exception function and
embed it as part of the assistance system for user-AI conversation and cooperation,
converting the unknown and dynamic user-perception exception function into an
overall optimization function of the system. According to this idea, a user-AI
cooperation paradigm is proposed based on a style-transfer problem, utilizing the
valid features in different conversation strategies based on various prior knowl-
edge from sketches and translating input sketches into a language that AI can
understand, and finally, generating images satisfying successfully. The greatest
advantage of this paradigm is that it integrates the user’s creative process into
the system: starting from incomplete rough sketches, it can gradually approach
the users’ desired drawing targets in their minds by consistently delivering high-
quality guidance. This user-AI cooperation paradigm not only improves the AI’s
input sketches but also expands the user’s drawing skills in the drawing process,
resulting in a win-win situation.

And our results are exciting – the success of the proposed drawing assistance
system fully illustrates that AI not only generates high-quality results but also
implies an understanding of the generation process, which in this dissertation
is reflected in the AI’s precise understanding of the user’s sketch input and the
generation of matching results. The detailed work of each chapter is as follows.

Data is an inseparable topic for deep learning. Chapter 3 proposes a framework
for generating sketch-art drawing data pairs using deep prior knowledge and
contributes to line drawing style transfer for anime style, which provides data
support and reference for the study in the subsequent chapters.

In Chapter 4, the two-stage drawing assistance system, dualFace, verifies
the effectiveness of an explicit conversation strategy in AI-assisted creation by
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visualizing shape features for global stage conversation, achieves sketch-semantic
level conversion using these feature descriptors, and successfully implements
realistic style portrait drawing assistance.

Chapter 5 addresses a more challenging research question: sketch-based
anime portrait drawing assistance. This is because the anime style is more abstract
compared to the real style of human faces and lacks a semantic database. Faced
with these difficulties, Section 5.3 adopts an implicit conversation strategy with
prior knowledge about the key points of the face to encourage the disentanglement
learning of neural networks at the level of strokes. As a further extension, this
AI-assisted drawing system uses only the prior knowledge of a facial semantic
mask from a single image for the anime style. This one-shot semantic labeling
approach automatically finds out the correspondence between strokes from users’
input sketches and line drawings generated as guidance. What’s more, with this
one-shot approach, our final drawing assistance system in Section 5.4 can predict
users’ sketching intentions and provide suitable guidance intelligently which is
confirmed in the following user study in Section 5.5.

6.2 Future work
Future work can be expanded in at least the following directions.

More artistic drawing styles. In this paper, the proposed drawing-assisted AI
is only for real style and anime portraits, which is mainly limited by deep prior
knowledge from StyleGAN. The sketch-based feature manipulation in Chapter 5
can be considered as a reordering of the depth-based prior knowledge at stroke-
level, and therefore relies heavily on the pre-trained GAN model. If more images
of art drawing styles can be obtained by using the style transfer approach, and
then more SytleGAN pre-trained models that can generate different styles of art
drawings can be obtained as prior knowledge, the scope of drawing assistance in
this dissertation can be extended.

Drawing assistance based on sketch vectorization. On the one hand, the sketch
generation simulation process in Chapter 5 for feature manipulation utilizes the
key point information of faces as an approximation of stroke lines, so this method
is limited to portrait matching. Once a deep network can predict stroke lines
similar to those used in human drawing, this method can be extended to assist
in animal drawings or even landscape drawings. On the other hand, the guidance
generated by the system in Chapter 5 is mainly given in raster image format, which
can only serve as a global reference for users’ sketching and cannot guide him/her
more precisely in stroke-level training. However, the current sketch vectorization
methods are often limited to simple sketches with low quality. Thus, there is still
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a long way to go for complex artistic drawing assistance.
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[56] H. Winnemöller, J. E. Kyprianidis, and S. C. Olsen, “Xdog: An extended
difference-of-gaussians compendium including advanced image styliza-
tion,” Comput. Graph., vol. 36, no. 6, pp. 740–753, 2012.

[57] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa, “Learning to sim-
plify: fully convolutional networks for rough sketch cleanup,” ACM Trans.
Graph., vol. 35, no. 4, pp. 121:1–121:11, 2016.

[58] C. Li, X. Liu, and T. Wong, “Deep extraction of manga structural lines,”
ACM Trans. Graph., vol. 36, no. 4, pp. 117:1–117:12, 2017.

[59] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial
networks,” CoRR, vol. abs/1406.2661, 2014. [Online]. Available:
http://arxiv.org/abs/1406.2661

[60] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high
fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[61] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 4401–4410. [Online]. Available: http://openaccess.thecvf.com/
content CVPR 2019/html/Karras A Style-Based Generator Architecture
for Generative Adversarial Networks CVPR 2019 paper.html

103

http://arxiv.org/abs/1406.2661
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html


[62] B. Liu, Y. Zhu, Z. Fu, G. De Melo, and A. Elgammal, “Oogan: Dis-
entangling gan with one-hot sampling and orthogonal regularization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, 2020, pp. 4836–4843.

[63] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“Infogan: Interpretable representation learning by information maximizing
generative adversarial nets,” Advances in neural information processing
systems, vol. 29, 2016.

[64] Y. Shen and B. Zhou, “Closed-form factorization of latent semantics in
gans,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 1532–1540.

[65] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent space
clustering in generative adversarial networks,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 4610–4617.

[66] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in ICCV, 2017.

[67] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan: How to embed
images into the stylegan latent space?” in 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019. IEEE, 2019, pp. 4431–4440. [Online].
Available: https://doi.org/10.1109/ICCV.2019.00453

[68] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision
Foundation / IEEE, 2020, pp. 8107–8116. [Online]. Available: https:
//openaccess.thecvf.com/content CVPR 2020/html/Karras Analyzing
and Improving the Image Quality of StyleGAN CVPR 2020 paper.html

[69] W. Xia, Y. Zhang, Y. Yang, J. Xue, B. Zhou, and M. Yang, “GAN
inversion: A survey,” CoRR, vol. abs/2101.05278, 2021. [Online].
Available: https://arxiv.org/abs/2101.05278

[70] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 12, pp. 4217–4228, 2021.

104

https://doi.org/10.1109/ICCV.2019.00453
https://openaccess.thecvf.com/content_CVPR_2020/html/Karras_Analyzing_and_Improving_the_Image_Quality_of_StyleGAN_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Karras_Analyzing_and_Improving_the_Image_Quality_of_StyleGAN_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Karras_Analyzing_and_Improving_the_Image_Quality_of_StyleGAN_CVPR_2020_paper.html
https://arxiv.org/abs/2101.05278


[71] C. Chiu, Y. Koyama, Y. Lai, T. Igarashi, and Y. Yue, “Human-in-the-loop
differential subspace search in high-dimensional latent space,” ACM Trans.
Graph., vol. 39, no. 4, p. 85, 2020.

[72] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris, “Ganspace: Discov-
ering interpretable gan controls,” in Proc. NeurIPS, 2020.

[73] Y. Shen, C. Yang, X. Tang, and B. Zhou, “Interfacegan: Interpreting the
disentangled face representation learned by gans,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 4, pp. 2004–2018, 2022. [Online].
Available: https://doi.org/10.1109/TPAMI.2020.3034267

[74] J. Y. Yuxuan Han and Y. Fu, “Disentangled face attribute editing via
instance-aware latent space search,” in International Joint Conference on
Artificial Intelligence, 2021.

[75] E. Richardson, Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar, S. Shapiro,
and D. Cohen-Or, “Encoding in style: A stylegan encoder for image-to-
image translation,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision
Foundation / IEEE, 2021, pp. 2287–2296.

[76] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or,
“Designing an encoder for stylegan image manipulation,” ACM Trans.
Graph., vol. 40, no. 4, pp. 133:1–133:14, 2021. [Online]. Available:
https://doi.org/10.1145/3450626.3459838

[77] Y. Alaluf, O. Patashnik, and D. Cohen-Or, “Restyle: A residual-based
stylegan encoder via iterative refinement,” in 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021. IEEE, 2021, pp. 6691–6700. [Online]. Available:
https://doi.org/10.1109/ICCV48922.2021.00664

[78] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Proceedings of the
30th International Conference on Neural Information Processing Systems,
ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc., 2016, p.
2234–2242.

[79] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA:
Curran Associates Inc., 2017, p. 6629–6640.

105

https://doi.org/10.1109/TPAMI.2020.3034267
https://doi.org/10.1145/3450626.3459838
https://doi.org/10.1109/ICCV48922.2021.00664


[80] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao, “Deep sketch hashing:
Fast free-hand sketch-based image retrieval,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:
IEEE, 2017, pp. 2298–2307.

[81] Q. Yu, F. Liu, Y. Song, T. Xiang, T. M. Hospedales, and C. C. Loy, “Sketch
me that shoe,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016, pp. 799–
807.

[82] T. Dekel, C. Gan, D. Krishnan, C. Liu, and W. T. Freeman, “Sparse, smart
contours to represent and edit images,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT,
USA: IEEE, 2018, pp. 3511–3520.
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