
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title ネットワークシステムのセキュア自動設計

Author(s) OOI SIAN EN

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18424

Rights

Description
Supervisor: BEURAN, Razvan Florin, 先端科学技

術研究科, 博士

Doctoral Dissertation

Automated Secure Design of Networked Systems

Ooi Sian En

Supervisor: Assoc. Prof. Razvan Beuran

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March 2023

Abstract

The trend of Digital Transformation (DX) to modernize the society intro-
duces various ICT challenges. DX ICT often requires a high frequency of
change and emphasises speed, flexibility and efficiency, which as a result,
requires an agile system delivery method. Conventionally, systems are
manually designed based on tacit and explicit knowledge of the system
designer. While manual design may work for small or relatively simple
systems, the tractability of a system is quickly lost for systems of systems,
which are common in Society 5.0. The challenges are even greater when
considering securing the system, especially when frequent changes require
the reassessment of the system’s security to ensure that those changes did
not degrade the security of the intended system.

This research aims to improve the security of a system by introducing
an automated verification of the security characteristics of a system into
fundamental system design. An automated secure design framework, Se-
cureWeaver, was proposed and implemented, which consists of contributions
such as a knowledge base for secure design and security verification algo-
rithms to verify the generated design. In addition, case studies on IoT
applications, such as end-to-end communication and secure configuration
implementation were carried out. The results of the case studies were also
used as the motivating evaluations for SecureWeaver. A set of models for
IT/NW and IoT system design were developed to evaluate SecureWeaver,
which cover scenarios such as typical corporate network, IoT appliances, and
also hardware-level system design in an automated and secure manner.

The evaluation showed that SecureWeaver is able to generate a system
design that mitigates the security threats present in the input requirements
via the automatic placement of security-based components in the system
design. The performance characteristics of SecureWeaver also demonstrated
that the security verification overhead compared to the total system design
time is largest for simple scenarios, for which the actual design is very fast,
still being just 0.58% in such a case. The expected impact of this dissertation
is to decrease the human effort in system design via automatically designing
secure systems by using the proposed framework. This formalized design
approach will also add to the knowledge field in automatic system design.

Keywords: networked systems, secure system design, automated design,
design space exploration, MITRE ATT&CK.

I

Acknowledgment

I would like to express my deepest gratitude and appreciation to my su-
pervisor, Associate Professor Razvan Beuran, for his continuous guidance,
patience and supervision throughout my doctoral journey. His advice,
encouragement, motivation, suggestion and valuable insights provided me the
means to complete this dissertation. I would also like to express my gratitude
to my co-supervisor, Professor Yasuo Tan for his support throughout my
entire postgraduate studies at JAIST.

I also wish to express my gratitude to my minor research supervisor, As-
sociate Professor Yuto Lim for his guidance and support. I would also like to
express my gratitude to Professor Yoichi Shinoda for his insightful comments
on the dissertation. Furthermore, I wish to express my sincere thanks to the
researchers from the Secure System Platform Research Laboratories at NEC
Corporation, Dr. Takayuki Kuroda, Mr. Takuya Kuwahara, Dr. Ryosuke
Hotchi, Mr. Norihito Fujita for imparting their extensive knowledge in the
field of automated system designer.

I would like to thank my dear wife for her unwavering patience and
support throughout my postgraduate journey. Last but not least, I would
like to thank my family for their support, in which they always provided me
with more than enough for me to explore and turn ideas and dreams into
realities.

II

Contents

Abstract I

Acknowledgment II

Contents III

List of Figures VII

List of Tables X

Chapter 1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Main Contributions . 3
1.4 Thesis Outline . 4

Chapter 2 Research Background 6
2.1 Cybersecurity Knowledge Databases 6
2.2 Intent-Based Design . 7
2.3 Secure Intent-Based Design 8
2.4 Weaver: Intent-based System Configuration Designer 9

2.4.1 Data Format Definitions 10
2.4.2 Rules and Topology Refinement 11
2.4.3 Tree Search-based Algorithm for DSE 12

2.5 IoT Design and Provisioning 12
2.5.1 IoT Design . 12
2.5.2 IoT Secure Design . 13
2.5.3 IoT Provisioning . 14

2.6 IoT Development and Management Platforms 14
2.7 Summary . 16

Chapter 3 Philosophy of Secure System Design 17
3.1 Why Do We Need Secure Design? 17

III

3.1.1 Trustworthiness . 18
3.1.2 Safety, Security, Privacy, Reliability, and Resilience . . 19

3.2 Methodology of Automated Secure System Design 21
3.2.1 Methodology Overview 21

3.3 Preliminary Work on Automated Secure Design 24
3.3.1 System Specification Verification with Satisfiability

Modulo Theories (SMT) 24
3.3.2 System Design Ontology 28
3.3.3 Analysis of IoT Development and Management Platforms 32

3.4 Summary . 41

Chapter 4 Secure Design Database 42
4.1 Secure Design Threats and Rules 42

4.1.1 Security Threats . 42
4.1.2 Logical and Conceptual Connections 43
4.1.3 Refinement Rules . 44

4.2 Threat Mitigation Knowledge Base 48
4.2.1 MITRE ATT&CK-Based Threat Mitigation 50
4.2.2 Structure of the Knowledge Base 51

4.3 Ontology Extension of the Threat Mitigation Knowledge Base 54
4.4 MITRE ATT&CK-Based Ontology 60

4.4.1 Exploring the MITRE ATT&CK Enterprise Matrix in
STIX . 61

4.4.2 Rebuilding Semantic Links from MITRE ATT&CK
STIX Bundle . 65

4.5 Summary . 70

Chapter 5 Automated Secure System Designer: SecureWeaver 74
5.1 Mechanism Overview . 74

5.1.1 Retrieving Threats from the Service Requirement . . . 75
5.1.2 Calling the Security Verification Functions 76

5.2 Security Verification Functions 79
5.2.1 Application Isolation and Sandboxing Verification . . . 79
5.2.2 Firewall Use Verification 80
5.2.3 Network Segmentation Verification 82
5.2.4 Configuration Settings Verification 84
5.2.5 Traffic Filtering Verification 85
5.2.6 Secure Protocol Use Verification 86
5.2.7 Intrusion Detection and Prevention System (IDPS) Use

Verification . 87
5.3 Summary . 88

IV

Chapter 6 Secure System Implementation Case Studies 89
6.1 Hardware Platform Design . 89
6.2 Hardware Platform Implementation 90

6.2.1 Wired Connectivity . 91
6.2.2 Wireless Connectivity 92

6.3 Case Study #1: Secure End-to-End Communication 94
6.3.1 Sigfox Security . 94
6.3.2 MQTT Security . 96

6.4 Case Study #2: Secure Configuration 98
6.4.1 Porting the Arduino Core into ESP-IDF 98
6.4.2 Locking Down Arduino on ESP32 98

6.5 Summary . 102

Chapter 7 Evaluation 103
7.1 Case Study #1: Secure Corporate Network Design 103

7.1.1 Service Requirement Input for Evaluation 103
7.1.2 Evaluation Experiment Setup 108
7.1.3 Security Verification Mechanism Evaluation 108
7.1.4 Performance Evaluation 113

7.2 Case Study #2: Secure IoT Appliance System Design 121
7.2.1 Service Requirement Input for Evaluation 122
7.2.2 Evaluation Experiment Setup 123
7.2.3 Security Verification Mechanism Evaluation 124
7.2.4 Performance Evaluation 126

7.3 Case Study #3: Secure IoT Hardware System Design 130
7.3.1 Formalization of IoT Components in SecureWeaver . . 130
7.3.2 Refinement Rules for IoT System Design 133
7.3.3 Secure IoT System Design Evaluation 136

7.4 Feature Evaluation and Comparison 142
7.4.1 Evaluation of SecureWeaver Capabilities 143
7.4.2 Comparison with Related Works 146

7.5 Summary . 148

Chapter 8 Conclusion 149
8.1 Conclusion . 149
8.2 Future Work . 150

References 152

Publications 162

V

Appendices 164

Appendix A IoT Refinement Rules 164

Appendix B Ontology with General Class Axiom Definitions
and SMT Verification 175

VI

List of Figures

2.1 Original Weaver system designer processing flow. 10
2.2 Example of the application of the rule DEPLOY-APP as a Weaver

topology refinement step. 11

3.1 Evolution of trustworthiness in industrial systems [1]. 19
3.2 Overview of the secure system designer SecureWeaver. 22
3.3 Example of Linux package manager dependencies and conflicts

[2]. 25
3.4 Result of Z3 verification for an audio functionality and battery

use scenario. 28
3.5 Screenshot showing the class and subclass of the prototype

ontology in Protégé. 29
3.6 Screenshot showing the object property hierarchy of the pro-

totype ontology in Protégé. 30
3.7 An overview of the ontology general class axiom structure in

RDF triplet for the “Density” object. 31
3.8 Result of automated axiom inclusion from “E2ELatency” into

Z3 solver, where the “Low” string value is verified against a
latency of 5ms. 33

3.9 IoT ARM building blocks [3]. 34
3.10 IoT ARM domain models and their relationships [3]. 35

4.1 Service requirement with relationship-type and component-
type threats. 43

4.2 Logical and conceptual connections between two system com-
ponent groups. 44

4.3 Refined web system example scenario without security verifi-
cation. 46

4.4 Example of possible topology refinements that mitigate the
security threat defined in the service requirement t0. 47

4.5 Visualized STIX “attack-pattern” SDO relationships [4]. . . . 60
4.6 Visualized STIX “course-of-action” SDO relationships [4]. . . . 61

VII

4.7 Screenshot of the MITRE ATT&CK Enterprise network do-
main ontology. 71

5.1 Flowchart of SecureWeaver mechanism. 75
5.2 Service requirement example that includes the threat T1090. . 77
5.3 Examples of possible topology states for network segmentation

verification. 84

6.1 External view of the MkIoT hardware platform. 90
6.2 Internal view of the MkIoT hardware platform. 91
6.3 Example use case of Sigfox end-to-end communication. 92
6.4 MkIoT daughterboard schematic. 93
6.5 Sigfox frame structure. 94
6.6 Sigfox end-to-end communication to Google Cloud Platform. . 95
6.7 MQTT communication using TLS and JWT. 96
6.8 MQTT JWT token. 97
6.9 ESP-IDF security features. 99
6.10 eFuse properties after enabling flash encryption and burning

the encryption key into the eFuse BLK1 register. 100
6.11 ESP32 device security issues log on first boot. 100
6.12 Extracted binary (bootloader section) before and after flash

encryption. 101
6.13 Plain-text private keys in EEPROM after encryption. 101
6.14 Encrypted and unencrypted partitions in ESP32 device. . . . 102

7.1 Properties and relationships of the components used in the
system evaluation experiments. 105

7.2 Input service requirement: thin client system with threats
T1090 and T1040, and web system with threat T1190. 106

7.3 SecureWeaver output system design: refined thin client and
web systems with mitigated threats. 110

7.4 Scenario #1 attack path. 111
7.5 Scenario #2 attack path. 112
7.6 Scenario #3 attack path. 112
7.7 Number of topology iterations in each scenario (logarithmic

scale). 117
7.8 Number of components in each scenario. 118
7.9 Number of relationships in each scenario. 119
7.10 Number of threats versus the total elapsed time taken by

SecureWeaver, with various security level requirements. 121

VIII

7.11 Number of threats versus ratio of tsec to ttotal, with various
security level requirement. 122

7.12 Properties and relationships of components for IoT appliance
scenario. 123

7.13 Service requirement input for IoT appliance scenario. 123
7.14 Examples of topologies for which the security verification was

successful for the IoT appliance scenario. 125
7.15 Examples of topologies rejected by the security verification

algorithm for the IoT appliance scenario. 126
7.16 Expected output topology and security configuration for the

IoT appliance scenario. 127
7.17 Performance evaluation results for SecureWeaver for the IoT

appliance scenario. 129
7.18 MQTT communication using basic authentication. 135
7.19 MQTT communication using TLS. 135
7.20 Graphical representation of secure MQTT refinement rules. . 136
7.21 IoT-related and supporting components in SecureWeaver

used in the evaluation. 137
7.22 Service requirement of standalone IoT system. 138
7.23 Output of standalone IoT system design by SecureWeaver. . 139
7.24 Output of standalone IoT system design by SecureWeaver. . 139
7.25 Service requirement of end-to-end IoT application system

design. 140
7.26 Output of end-to-end IoT application system design by Se-

cureWeaver. 141
7.27 Service requirement of end-to-end IoT application system

design with threat T1040. 141
7.28 Output of end-to-end IoT application system design by Se-

cureWeaver with security verification. 142

IX

List of Tables

3.1 Evaluation of Bosch IoT Suite platform. 37
3.2 Evaluation of IBM Watson IoT Platform. 38
3.3 Evaluation of Microtronic IoT Suite platform. 39
3.4 Evaluation of IoT Suite platform. 40

4.1 Comparison between security knowledge bases. 49
4.2 MITRE ATT&CK threats and mitigations in network domain. 52
4.3 Mitigations applicable to network domain threats. 53
4.4 Examples of STIX v2.1 domain objects [5]. 56
4.5 STIX v2.1 relationship objects [5]. 57
4.6 Common properties of STIX v2.1 objects [5]. 57
4.7 Top-level structure of MITRE ATT&CK STIX bundle. 63
4.8 Statistical result of MITRE ATT&CK Enterprise matrix in

STIX. 64
4.9 MITRE ATT&CK Enterprise matrix in STIX custom object

“x mitre contents”. 64
4.10 Example of MITRE ATT&CK Enterprise matrix concepts

mapping to existing STIX v2.1 domain objects. 66
4.11 MITRE ATT&CK Enterprise matrix concept mapping to

STIX object type in STIX bundle [6]. 67

6.1 ESP32 security eFuse fields. 100

7.1 SecureWeaver verification functions for each evaluation scenario.113
7.2 SecureWeaver evaluation results: verification statistics and

time measurements. 115
7.3 SecureWeaver evaluation results: topology statistics and disk

data sizes. 116
7.4 Additional security-based refinement rules in SecureWeaver. . 120
7.5 Numerical results for the performance evaluation of SecureWeaver.128
7.6 Pros and cons of SecureWeaver. 145
7.7 Feature comparison of SecureWeaver with related works. . . . 147

X

Chapter 1

Introduction

1.1 Overview

Digital transformation efforts in recent years, some of them related to the
COVID-19 pandemic, have made the network infrastructure a core element
of our society that enables virtual communication, e-commerce activities,
telecommuting, and so on. The current model for designing and deploying
networked systems is that the customers express their needs in service-level
requirement descriptions, and system developers focus mainly on resource-
level requirements [7]. However, there is no direct way to “translate” between
these two types of requirements, and expert knowledge must be used to
determine the system components to be deployed and the manned in which
they should be integrated in order to meet customer needs.

In order to formalize the expression of network service requirements,
several classed of approaches have been proposed, such as intent-based
representations [7–11], and template-based representations [12–14] solutions
have been developed to address the issue. Such declarative network operation
models contrast with the traditional imperative networking model, which
requires network engineers to specify the sequence of actions needed on
individual network elements and creates a significant potential for error.

Intent-based approaches such as Intent Based Networking (IBN) are
gaining more attention in both research and commercial communities as
they effectively resolve the challenges of conventional network design with
regard to flexibility, efficiency, and security [15]. IBN is generally employed
to transform the business intent of a user/customer from the user’s personal
requirements and performance targets into network configuration, operation,
and maintenance strategies, such that it captures and translates the intent
into automatable network configurations that can applied consistently across
the network. Typically, a business intent can be either captured through
a graphical user interface (GUI) or manually by defining them using data
formats such as JavaScript Object Notation (JSON) and Domain Specific
Language (DSL).

1

In addition to system functionality, expressed via qualitative and quanti-
tative requirements, system security must also be considered already at the
design stage in order to realize a “secure by design” system that has been
designed to be fundamentally secure. One approach in this area is extending
the Design Space Exploration (DSE) model to cover security aspects, as
done in [16, 17]. By integrating security into DSE, the authors provided a
solution for verifying any potential system security issues at the design stage,
a significant improvement over the traditional approach that involves manual
security audits and mitigation once the system has been already designed.

This work too focuses on extending the DSE approach to take into
account system security, and for this purpose we leveraged Weaver [18, 19],
which is an intent-based system designer that targets IT/NW services. The
main difference with other research is that Weaver adds support in DSE
for specifying an abstract service requirement as input that can be used to
bridge the gap between customers and system designers mentioned above,
thus making it possible for Weaver to address system design in a flexible and
efficient manner.

1.2 Motivation

Conventionally, systems are manually designed based on the tacit and explicit
knowledge of the system designer, where the system designer often utilize
checklists to validate the functional and security requirements. Although this
may work for small or relatively simple systems, the tractability of a system is
quickly lost for complex system of systems, especially when involving security.
On top of that, changes in system requirements over time make necessary
repeated re-verification to certify that the intended system still meets the
required security level.

Failure to do so can have dire consequences. For example, one of the
largest cybercrimes related to identity theft was attributed to American
credit bureau Equifax in 2017, where it suffered a data breach due to failure
to update the third-party software on their servers with the latest version.
While this provided the adversary with initial access into the vulnerable
servers, the main factor that caused the data breach was due to failure in
the design architecture, where further access to other systems were possible
due to insecure network design that lacked sufficient segmentation [20]. Even
with a well-funded and well-staffed team of security experts, manual audit
to changes in the design may be insufficient as addition of new components
and features may change the overall security of the intended system.

Furthermore, empirical studies [21, 22] show that about half of security

2

issues are the consequence of architecture design weakness. To make matters
worst, the fact that the systems that are set up to keep the communication
infrastructure secure are designed and managed by humans. Human has
always been a root of failure in IT systems, where human errors such as
lack of training, intentional or unintentional mistake, lack of risk perception,
and poor awareness typically leads to security breaches [23]. Automation is
one of the approach of minimizing human error, especially in tasks that are
repetitive and involves a large checklist. While there are some research that
look into automated system design which is inline with the goal of eliminating
the disadvantage of human design [7,10,11,18], automation of secure design
is still relatively uncommon.

The aim of this research is to improve the security of a system by
introducing formal verification of the security characteristics of a system
into fundamental system design, and also through practical experiment
verification. This research proposes an automated secure design framework,
SecureWeaver, and its implementation for networked systems to achieve this
goal. For an automated system designer to be able to validate whether
a design is secure, a knowledge base that embodies the tacit and explicit
knowledge of secure design is necessary. Using it, formal verification algo-
rithms can be introduced to verify the generated system design according to
the threat and mitigation information in the knowledge base. Even with the
ability to automatically create a secure system design, it cannot be said that
the resulting system is secure. Inconsistency throughout the life-cycle of the
system may cause it to deviate from the designed secure architecture, hence
justifying the need for a secure implementation at the same time.

1.3 Main Contributions

This thesis presents the individual components and processes needed to real-
ize an automated secure system design framework and its implementation for
networked systems, SecureWeaver. The following are the main contributions:

1. A secure design knowledge base for SecureWeaver that encompasses
a database of secure refinement rules for the proposed automated
secure system designer, a MITRE ATT&CK-based threat mitigation
knowledge base, and a database for secure protocols.

2. The SecureWeaver framework that supports the creation of a secure
system design for both information technology/network (IT/NW) and
IoT systems; the framework accepts an abstract intent with qualitative,
quantitative and security requirements as input, and refines it into a
secure system design.

3

3. Two case studies on secure end-to-end communication and secure con-
figuration that demonstrate the challenges of implementing secure net-
worked systems; these studies guided the process of modelling threats
and system components used for the evaluation of SecureWeaver.

4. A set of models for IT/NW and IoT system design via SecureWeaver,
such as a corporate network and IoT appliance along with hardware-
level design that make it possible to automatically design this kind of
systems in a secure manner.

The main impact of this research is that it will make possible to decrease
the human factor drawback in system design by automatically designing
secure system with the proposed framework. By using formal methods for
security, this will add to the knowledge field in automated system design.
Furthermore, this research involves a joint-research collaboration with NEC
in introducing security into their existing system designer; successive patent
applications were made from the results of this research, and there is potential
use commercially by the company, thus leading to a high impact in society.

1.4 Thesis Outline

The thesis is organized as follows.

• Chapter 1 introduces the overview, motivation, main contributions, and
outline of the thesis.

• Chapter 2 introduces the related works of the thesis, such as cy-
bersecurity knowledge databases, intent-based design, secure system
design, IoT design and provisioning. This chapter also introduce the
state-of-art intent-based system configuration designer, Weaver, which
was used as basis to realize the implementation of automated secure
system design presented in the dissertation. Moreover, existing IoT
development and management platforms are also introduced in this
chapter.

• Chapter 3 presents the philosophy behind automated secure system
design, where trustworthiness and its characteristics are discussed. The
methodology of automated secure system design is also introduced,
and its overview, secure system designer requirements and system
implementation are discussed. Furthermore, preliminary works on
automated secure design are also presented in this chapter, such as
system specification verification with Satisfiability Modulo Theories
(SMT), system design ontology, and the evaluation of existing IoT
platforms.

4

• Chapter 4 presents the secure design database, covering the secure
design threats and rules, threat mitigation knowledge base, and the
ontology extension of the proposed knowledge base. The definitions
of security threats, logical and conceptual connections, and security
refinement rules are covered in this chapter along with the MITRE
ATT&CK-based threat mitigation knowledge base.

• Chapter 5 details the automated secure system designer, SecureWeaver.
The overview of its mechanism and a detailed explanation of the
security verification functions based on the network domain in MITRE
ATT&CK Enterprise matrix are presented.

• Chapter 6 presents the reference IoT hardware platform, MkIoT.
The requirements to be considered when designing an IoT device
are introduced, along with details on MkIoT based on the stated
requirements. Besides that, three case studies are presented in this
chapter, where one implements a secure end-to-end IoT application,
another one implements hardware-based security on the IoT device,
and lastly the IoT life-cycle management is discussed.

• Chapter 7 presents the evaluation of the proposed automated secure
system designer in this thesis. Three case studies are presented in this
chapter, where the first one evaluates SecureWeaver from a secure cor-
porate network design perspective, and is by a case study on secure IoT
appliance system design. The final case study evaluates SecureWeaver
for secure IoT hardware system design. A feature evaluation and
comparison are also discussed in this chapter.

• Chapter 8 presents the conclusion of the thesis and outlines future
research directions.

5

Chapter 2

Research Background

In this chapter, a comprehensive review of the fundamental knowledge and
state-of-the-art works related to this research are explored. First, related
works in cybersecurity threat mitigation knowledge base are discussed,
followed by related works in networked systems, both Information Technology
and Network (IT/NW) and Internet-of-Things (IoT), respectively. Related
works in intent-based IT/NW design automation and secure intent-based
design are reviewed, followed by a detailed review of a DSE based IT/NW
system designer, Weaver, respectively. Furthermore, related works in au-
tomation of IoT design and provisioning are reviewed along with specific
works in IoT security. Finally, this chapter closes with an evaluation of
existing IoT platforms.

2.1 Cybersecurity Knowledge Databases

The work in [24] presents an approach to create a cyber threat dictionary
by mapping the ATT&CK Industrial Control Systems (ICS) matrix into
the Facility Cybersecurity Framework (FCF) cybersecurity assessment tool.
Both proactive and reactive measures can be done by utilizing the mapping
provided by the cyber threat dictionary threats and their mitigations. While
this work shares the similar concept of using a cybersecurity attack and
defense framework for mitigating a threat, SecureWeaver further introduces
a verification mechanism to enable the automatic verification of the applied
mitigations.

The work in [25] presents a methodology to unify both MITRE ATT&CK
Enterprise and Industrial ICS (Industrial Control Systems) to provide a
broader and holistic mitigation coverage together with the Cyber-Security
Culture model. This enables one to identify the security vulnerability using a
structured evaluation methodology from an organisation security assessment
result. This work also presents simple and complex use case scenarios to
illustrate the mapping of MITRE ATT&CK techniques and mitigations, and
Cyber-Security Culture model classification of the assets to each threat and

6

the relevant mitigations.
The work in [26] presents a semantic model of cyberattacks and vulnera-

bilities based on Common Attack Pattern Enumeration and Classification
(CAPEC) and Common Weakness Enumeration (CWE) knowledge base.
The ontology model links CWE to other attributes and CAPEC via relevant
relationship, which is implemented using OWL (Web Ontology Language)
that enables query capabilities to obtain classification of the security con-
cepts.

The work in [27] presents a cybersecurity threat modeling framework
based on MITRE ATT&CK Enterprise matrix. The Meta Attack Language
(MAL) framework is used in tandem with MITRE ATT&CK tactics and
techniques to describe the system assets, possible attack sequences and their
mitigations. With this approach, simulation of the IT system is done with
varying security settings and system architectural design to obtain a secure
system implementation.

The work in [28] presents a unique approach to enable bidirectional
mapping between multiple third-party security databases, such as MITRE
ATT&CK, NIST Common Weakness Enumerations (CWE), Common Vul-
nerabilities and Exposures (CVE), as well as Common Attack Pattern
Enumeration and Classification (CAPEC). This illustrates the feasibility of
expanding the threat mitigation knowledge base in this thesis beyond the
scope of MITRE ATT&CK to cover other third party databases.

2.2 Intent-Based Design

The work in [9] presents a framework for Software-Defined Network (SDN)
applications that is an intent-based Northbound Interface (NBI). The frame-
work is able to translates the objectives, requirement and constraints of an
application without requiring the usage of network-specific language in the
intent or comprehension of the underlying network in an SDN environment
which supports the application. While this framework specifically targeted
the SDN domain, the core concept behind its intent-based “translation” is
similar to the automated system design approach in this thesis.

The work in [29] also presents a framework for OpenFlow/IoT SDN
domains, which is also an intent-based NBI. The framework is capable
of provisioning the network path given the constraints such as end-to-end
Quality-of-Service (QoS) by using a service chaining description as intent.
This framework targets both the IT/NW and IoT domains. The main
difference with the work in this thesis is that the framework is intended for
the management of network paths in existing SDN environments, whereas

7

this thesis approach is able to design a networked system from scratch.
The work in [11] utilizes natural language to describe the intent in a

network management framework. The framework first accepts an intent that
is described using natural language from the user and extracts the requisite
information using machine learning algorithm. The extracted information is
then fed into an intent assembly module. This module generates concrete
network configuration commands that satisfies the intent requirements. This
work does not meet the goal of this thesis of automatic secure system
design as it is an intent-based network management tool for existing network
infrastructure.

Existing automated system design frameworks such as [7, 8] are capable
of designing a system are normally targeted toward either architecture or
parameter-level design platforms for their specific domains. The require-
ments and entities of a topology graph (e.g., components, relationships and
constraints) are typically specified in architecture-level design, whereas in
parameter-level design, the parameters and fine tuning are specified according
to the given topology. For example, parameter-level design tools like [7]
have a high level of flexibility compared to their architectural-level design
equivalents. Still, they are incompatible with the intended use cases in this
thesis, which is architecture-level design for networked systems covering both
the IT/NW and IoT domains.

2.3 Secure Intent-Based Design

The work in [30] presents an intent-based framework for Network Func-
tion Virtualization (NFV), where the framework models and computes the
suitable virtual network functions (VNF) chains to meet the intent require-
ments. This framework requires the abstract weights for the non-functional
requirements to be predefined before performing quantitative computation.
The resulting quantitative scores of the VNFs are then clustered to their
corresponding levels to obtain the most compatible VNF that meet the given
requirements. This approach is not as flexible as the approach for architecture
design in this thesis.

The work in [31] presents a model-driven design for cloud services or-
chestration that also incorporate security-level evaluation. A template-based
matching method is utilized to meet the required intent. This work also
employed numerical calculation approach to evaluate security propagation in
a topology graph. This is done to verify whether the output topology meets
the security level specified in the intent. Alternatively, the approach in this
thesis specifically links the security threats to their corresponding mitigations

8

by consulting a security knowledge base that is based on MITRE ATT&CK
Enterprise data. This is much more concrete than an abstract quantitative
assessment.

The work in [10] presents a framework, named IBCS (Intent-Based Cloud
Services for Security Applications), which is an intent-based security service
automation framework for cloud environments. The framework parse the user
provided network security intent and translates it into concrete configurable
security policies. This is achieved by first extracting the context data via the
Deterministic Finite Automata (DFA) method before linking the context to
a suitable Network Security Function (NSF). The extracted data is then
converted into security policies using the Context-Free Grammar (CFG)
technique, where the resulting output configuration can be used to configure
relevant network interfaces. The main difference of this work with the
thesis framework is that IBCS only computes security policies that are to
be applied in an existing cloud environment, whereas the thesis framework
designs a secure system architecture from scratch to satisfy the given intent
and requirements.

The work in [32] presents a DSE-based system designer that targets
application domains such as IoT and cyber-physical systems (CPS). The
work utilizes DSE techniques to refine a secure embedded system topology.
While this work is specifically used to design the hardware and software prop-
erties of IoT device, this thesis approach mainly address networked system
architecture design issues. Moreover, this work utilize Microsoft’s STRIDE
threat model to derive its attack types, whereas this thesis approach utilizes
MITRE ATT&CK Enterprise data for threat and mitigation representation
in the system design.

2.4 Weaver: Intent-based System Configura-

tion Designer

The secure system designer implementation in this thesis is based on the
Weaver IT/NW system designer [18,19]. An overview of Weaver’s processing
flow is presented in Fig. 2.1. Each rectangle in the figure represents the state
of the topology at a particular step, and the red arrows in the pyramid are
the rule-matching refinements performed by Weaver.

First, a service configuration which contains abstract and/or concrete
entities is input into Weaver. An entity is said to be concrete if its type
for both components and relationships is definite (e.g., Red Hat Enterprise
Linux OS, or HTTPS connection). Otherwise, it is said to be abstract (such

9

connTo

LAN

connTo

LAN

connTo

LAN

LAN HOST

LAN

LAN HOST

LAN HOST

LAN

(a) Service Requirement

(d) System Design (c) Tree Search

Input

Output

R
e
f
i
n
e
m
e
n
t

connTo

LAN

(b) Rules

HOST

LAN

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Figure 2.1: Original Weaver system designer processing flow.

as a generic OS or network connection). These abstract entities are then
continually refined using tree search with matching refinement rules until the
final topology state does not contain any abstract entities. The final topology,
which is fully concretized, is then output by Weaver as the system design
corresponding to the given service requirement. Weaver’s data format, rules
and topology refinement and the tree search approach are briefly described
in the following subsections.

2.4.1 Data Format Definitions

Weaver’s data format is structured similarly to TOSCA (Topology and
Orchestration Specification for Cloud Applications) [33], a specification
that declaratively describes a service configuration in a topology to enable
provisioning automation via the definition of components, relationships, and
their attributes.

A component is defined as a pair “v : ctype”, where v is the component
identifier and ctype is its type. A component type is defined as ctype =
(name, abs, cap, req), where name is the ctype name, abs is its abstractness,
cap is the component capability, and req is its associated requirement,
describing one or more relationships with other components.

An edge, e, is also known as a relationship between two components
in Weaver, where e = (vsrc, vdst, rtype) is a triplet of the source component
identifier, destination component identifier, and its relationship type. A rela-

10

{1}:App

{2}:Machine

HOST

{1}:App

DEPLOY-APP

connTo

usr:User

t
1
=

connTo

wa:WebApp

usr:User

t
2
=

t
lhs

t
rhs

host:Machine

HOST

wa:WebApp

Web
App

Web
App

Figure 2.2: Example of the application of the rule DEPLOY-APP as a Weaver
topology refinement step.

tionship type is defined as rtype = (name, abs), where name is an rtype name
and abs is its abstractness. For example, a non-specific operating system (OS)
is an abstract component, while “Windows” is a concrete component that
can be derived from an abstract OS component via inheritance.

A topology can be formalised as the tuple t = (V,E), where V =
{vnid1, ..., vnidn} and E = {eeid1, ..., eeidn} are a set of components and
relationships.

2.4.2 Rules and Topology Refinement

To refine an abstract service requirement into a completely concrete system
topology, the refinement process is performed iteratively to transform a
topology from one state to another using matched refinement rule. A
refinement rule, r, is a one-step refinement process that is denoted as a
tuple r = (tlhs, trhs), where tlhs is the left-hand side and trhs is the right-
hand side of the rule. An illustration of a rule, DEPLOY-APP, is shown in
Fig. 2.2. Generally, a match is a mapping from the component placeholders,
{1}, ..., {n} to component identifiers nid{1}, ..., nid{n}, wherem({i}) = nid{i}.

11

An action, r[m], is a function where r is provided with a matching, m to
load the rule component placeholders with the relevant component identifiers
found in the topology. As an example, the web application wa in topology
t1 in Fig. 2.2 is transformed into the topology t2 by the rule DEPLOY-APP

with the match pattern, m : {1} 7→ wa. An arrow with dashed line
represents an abstract relationship, while an arrow with solid line represents a
concrete relationship. The base component App in Fig. 2.2 has an inheritance
relationship with the WebApp component type. Hence, component {1} of
type App is equivalent to wa of type WebApp, such that {1} in the rule

DEPLOY-APP can be replaced by {1} HOST−→ {2}.

2.4.3 Tree Search-based Algorithm for DSE

Weaver finds refinement candidates through a deterministic search process,
by which it iteratively applies relevant actions to obtain a completely concrete
topology. The search algorithm exits when all the following conditions are
met for a given topology t = (V,E):

• All components v ∈ V are concrete
• All relationships e ∈ E are concrete
• All requirements of a component are matched by the capabilities of
another component that is connected to it via a relationship

If the exit condition is met, the selected system topology is said to be
concrete. More detailed information on the tree search algorithm and the
definition of topology concreteness can be referred in [19].

2.5 IoT Design and Provisioning

This section presents related works in IoT system design, as well as its secure
system design counterpart. Related works on frameworks for automated
provisioning of IoT systems are also presented.

2.5.1 IoT Design

The work in [34] outlines the directions for improving development of IoT,
which mainly highlights the importance of scalable models of interactions
between IoT entities. The use case scenarios illustrate the mapping of
the requirements to intents, where each entity and their relationships have
structure similar to an ontology. The work also discusses various issues on

12

simulation implementation such as entities integration, cloud platform and
tools, with the final goal of validating real life IoT scenarios in a network.

The work in [35] discusses the understanding of IoT system from broader
IoT architecture reference ontology such as IoT Architectural Reference
Model (IoT-ARM). This includes the structural definitions of devices, se-
mantic understanding of flows, services and quality measures within and
between entities in the system from the IoT-ARM perspective.

The work in [36] presents an approach for the verification and validation
of the software of the “Things” composing IoT systems using the thing-in-
the-loop approach. The work utilizes context models to safely test various
scenarios using simulated environment. Besides, the topology is expressed
using Unified Modeling Language (UML) in tandem with state machine
diagrams.

The work in [37] presents a framework for IoT Testing as a Service (IoT-
TaaS). The framework in this work provides remote interoperability testing
as well as scalable conformance and semantic validation in its testing. The
framework is core focus is on protocol conformance testing, as it supports
various protocols in a modular manner with automated conformance testing.
The semantic testing in the framework is limited to testing whether the
protocol data/message are syntactically and semantically correct.

The work in [38] presents a general classification of IoT devices based on
the NIST’s Network of “Things” framework [39]. This work also proposes a
taxonomy that is employed for classification of IoT devices, as well as example
scenarios that demonstrates its ability to classify common tools, protocols
and APIs that can be employed to standardize IoT implementations. The
work also demonstrates a use case where it uses the taxonomy to profile
the correct operation of a model for quality assurance testing and intrusion
detection.

The work in [40] presents a design methodology for end-to-end security
implementation that involves IoT devices and its validation using the digital
twin concept. Both black box and white box modeling are employed in this
work for modeling the global functionality of the end IoT device and its
end-to-end network path in the simulation.

2.5.2 IoT Secure Design

The work in [41] presents a framework that allows a designer to model the
functionality of the system, available architecture component in the system
and security attack scenarios. By analysing the task graph, the security
attack scenarios can be modeled with respect to the system architecture via
attack graph and risk tree of an IoT system architecture.

13

The work in [42] presents a detailed analysis of Arduino device security,
as well as the demonstration of vulnerability exploits for those devices. The
work describes various exploits against common microcontrollers, where the
work also demonstrated heap buffer and stack buffer overflow.

The work in [43] presents a methodology on performing threat analysis on
IoT device, especially Arduino. The threat analysis in the study is conducted
according to the Common Configuration Scoring System (CCSS) assessment
from NIST. The base score from CCSS is employed especially in optional
temporal and environmental perspectives to assess the security posture of
a typical IoT system. The work also includes a case study on Arduino
vulnerability impact on IoT devices.

2.5.3 IoT Provisioning

The work in [44] presents a framework that utilized the Service Oriented
Device Architecture (SODA) approach where the device is encapsulated as
a device service to offer data on a higher semantic level to services. The
work employed both JSON and REST API for the communication between
the components in a system, which is similar to Topology and Orchestration
Specification for Cloud Applications (TOSCA).

The work in [45] presents an automated orchestration framework of IoT
services providing dynamic resource provisioning and automated application
deployment in fog computing architecture. The intent requirement of the
framework specifies parameters such as priority, computation, latency, pri-
vacy, and output. This work also includes various system components in the
framework such as version control server, continuous integration tool, and
container registry, as well as IoT device and an orchestration server that is
powered by the cloud service provider IBM Watson IoT.

2.6 IoT Development and Management Plat-

forms

In this section, several IoT platforms are introduced as a part of the system
specification study during the preliminary work stage of this thesis.

First, an IoT platform in this thesis is defined as a suite of software
components providing capabilities like visualization, data archiving and an-
alytics of information from IoT devices and equipment [46]. There are many
commercial IoT platforms such as ThingSpeak, SensorCloud, thethings.io,
and many more. However, many of these platforms are mainly for data visu-
alization, lacking crucial feature such as IoT life-cycle management. In this

14

section, the existing IoT platforms that features IoT life-cycle management
are evaluated. The IoT platforms that are evaluated are:

• Bosch IoT Suite [47]
• IBM Watson IoT Platform [48]
• Microtronics IoT Suite [49]
• IoT Suite [50]

The detailed analysis of these platforms is presented in Section 3.3.3.2.
IoT platforms such as Bosch IoT Suite, IBM Watson IoT Platform and
Microtronics IoT Suite are commercial products, while IoT Suite is an
academic research.

Bosch IoT Suite is an IoT platform that provides three main pre-
integrated service packages: (i) asset communication; (ii) device manage-
ment; and (iii) software updates. These pre-integrated service packages are
built up from individual services such as IoT hub, remote manager, IoT In-
sights, IoT Rollouts, and IoT Things. For example, the asset communication
pre-integrated service is an integration of IoT hub and IoT Things services.
Bosch IoT Suite provides user with the ability to enroll their IoT device into
the management platform, and use its pre-integrated services or individual
services to cater to their requirements.

Besides that, IBM offers the IBM Watson IoT Platform as one of the
many services in IBM cloud. Users can typically use the IBM Watson IoT
Platform as a way to enroll IoT device into IBM cloud, and utilize the vast
services in IBM cloud such as business analytic, machine learning to DevOps
services. This provides the user with a wide range of option to build their
IoT solution on the platform.

Microtronics IoT Suite, on the other hand is different than the first
two platforms introduced in this section. Microtronics IoT Suite main
function is to allow users to create IoT application on-the-fly with the
company’s proprietary hardware solution. This allows users to quickly build
and test their IoT application as a proof of concept. The platform also
provides various sample templates such as datalogger with end-to-end cloud
connectivity, with dashboard included. User can implement their application
on Microtronics’s web integrated development environment (IDE), which
automatically build, setup and deployment the application.

The last IoT platform in the list is the IoT Suite, which is part an
academic project. The IoT Suite is a toolkit for prototyping IoT applications,
where it aims to reduce development efforts at various stages of a typical
IoT application development pipeline. The IoT Suite provides a compiler
that compiles a relatively abstract definition of an IoT application into a
concrete application, where the result is passed to a deployment module

15

for deployment. The IoT Suite also features a runtime system for the
deployed code to run on. The source code for the IoT Suite can be found on
(https://github.com/pankeshpatel/IoTSuite).

2.7 Summary

This chapter presented a comprehensive review of various works and fun-
damental knowledge related to this thesis. Related works in cybersecurity
threat mitigation knowledge base framework and works in networked system
were discussed. This was followed by a discussion on related works in
intent-based IT/NW design automation and secure intent-based design.
Furthermore, a detailed review of Weaver, a DSE based IT/NW system
designer that is used as the underlying system designer in this thesis was
presented. Related works in automation of IoT design, its provisioning and
specific works in IoT security such as Arduino were also discussed. Finally,
the chapter ended with an introduction of existing IoT platforms that will
be later evaluated in Chapter 3.

16

Chapter 3

Philosophy of Secure System De-
sign

In this chapter, the philosophy of secure system design of this thesis is pre-
sented. First, the topic of trustworthiness in systems is introduced, followed
by its characteristics such as safety, security, safety, privacy, reliability, and
resilience.

Next, the methodology of automated secure system design is introduced,
where its requirements are presented. This chapter also presents the prelim-
inary work on automated secure design on IoT, where the formal verification
of the system specification using Satisfiability Modulo Theories (SMT),
ontology based on IoT system design, and the system specification study
of existing IoT platforms are described in detail.

3.1 Why Do We Need Secure Design?

System designs and their corresponding security architectures typically in-
volve a good deal of concrete and technical aspects, where most aspects of
how to accomplish the objectives are likely to be of technical nature [51].
On the other hand, subject matters concerning the why does not need to
be technical, especially for the intent of a security architecture on a systems-
level perspective. The conceptual intents tend be characterized by various
non-technical aspects such as compliance requirements, moral, ethics, and
social code [52,53].

The difference between verification and validation is analogous to the
difference between technical and conceptual aspects:

• Verification: are we building the system right?
• Validation: are we building the right system?

Applying the same concept to the technical and conceptual aspects, it is
counterproductive to do something correctly while one is building the wrong
thing in the first place. Hence, a philosophical stance is required with

17

regards to secure design. To delve further into this, we look further into
trustworthiness and other aspects such as security, safety and privacy. The
topic of trustworthiness is a part of the publication [54].

3.1.1 Trustworthiness

Modern ICT has become more integrated in everyday life, and the future
society will be increasingly dependent on ICT systems. The issue of how
much the ICT systems can be trusted is critical, as failure or malfunction
of systems especially in safe and secure operations of critical infrastructures
can become a life threatening situation. The issue with trustworthiness is
that the term is overloaded, especially when heavily used in most marketing
materials. First, the following contexts on trust are listed:

• Trust is relative
• Definition of trustworthiness may be different or evolve in time

Trust is firstly relative as it is a human trait, for example, today I trust
you more, tomorrow I trust you less. This shows that trust is not a static
property or characteristic that can be easily defined. Secondly, the definition
of trustworthiness may changes over time. This is illustrated in Fig. 3.1,
where different stages of the industry revolution have different characteristics
that embody trustworthiness. In the early industrial age, reliability was the
key characteristic of trustworthiness, as most designs were not reliable, where
as over time, the reliability of systems has improved and stakeholders in the
industry began to address other characteristics [1].

The definition of trustworthiness will be discussed below, especially for
the IoT domain. To the best of the author’s knowledge, the issue of trustwor-
thiness, especially in the context of IoT domain, has only been addressed by
few organizations (e.g., International Organization for Standardization/In-
ternational Electrotechnical Commission (ISO/IEC) committee “Internet
of things and digital twin” JTC 1/SC 41 [55], the National Institute of
Standards and Technology (NIST) Cybersecurity for IoT Program [56], and
the Industrial Internet Consortium (IIC) [57].

The work in [58] by NIST discussed trustworthiness of Cyber-Physical
Systems (CPS), where security, privacy, safety, reliability, and resilience are
indicated to be characteristics of trustworthiness. However, the trustworthi-
ness concept was not explicitly defined in that work. On the other hand, the
IIC in [59] has performed a more extensive analysis of IoT trustworthiness,
and the definition it proposed is the one we consider as the best available at
present:

“Trustworthiness is the degree of confidence one has that the system

18

Figure 3.1: Evolution of trustworthiness in industrial systems [1].

performs as expected with characteristics including safety, security, privacy,
reliability and resilience in the face of environmental disturbances, human
errors, system faults, and attacks.”

While it is difficult to encompass all aspects of trustworthiness in this
definition, this thesis presents the works that focus on the aspect of security.
The following subsection will discuss the components of trustworthiness.

3.1.2 Safety, Security, Privacy, Reliability, and Re-
silience

The necessity for safety, security, privacy, reliability, and resilience is im-
portant in modern ICT, especially in the IoT domain. While the safety,
privacy, reliability, and resilience are not part of the scope in the thesis, strong
security is a prerequisite for both safety and privacy, thus putting emphasis
on the importance of an effective and comprehensive security architecture in
a system design. Each of the trustworthiness characteristics are described
next.

Safety Issues regarding safety are generally tackled via laws, regulations
and standards. This typically requires verifying that the particular system
satisfies the requirements of the relevant laws, regulations and standards,
both during the design phase and system operation. These requirements are

19

commonly specific to the target domain/industry of a particular country,
such as in the automotive industry, where an international standard on road
vehicle functional safety was published by ISO (International Organization
for Standardization) [60], and for domestic standard, a framework on self-
driving safety assessment was published by Japan Automobile Manufacturers
Association (JAMA) for autonomous functionality in Japan [61].

Security The information security “CIA” triad is commonly used to
analyze IT security issues, where its three components are Confidentiality,
Integrity, and Availability. Moreover, guidelines on secure IT/IoT devel-
opment have been published by various organizations and governments as
suggestions on implementing necessary security mechanisms in the system,
such as development guidelines from European Union Agency for Cyberse-
curity (ENISA) [62] and NIST cybersecurity requirement catalogs for IoT
device [63]. The verification of the security component of trustworthiness
comprises an extensive range of approaches. This may vary from solely
ensuring that the relevant guidelines have been adhered to, all the way to
static/dynamic source code analysis.

Privacy The main focus of privacy analysis is generally on the collected
data by an IT/IoT (e.g., via API/sensors), and on how that data is trans-
mitted and stored (e.g., on premise/in the cloud). The objective of privacy
analysis is to verify whether the system and its end-to-end components are
compliance with appropriate regulations. These may involves regulations like
the Health Insurance Portability and Accountability Act (HIPAA) [64] for
health-related applications in the U.S. and the General Data Protection Reg-
ulation (GDPR) in the EU [65]. The verification of the privacy component
of trustworthiness can be practically performed via evaluation during system
design phases and operation.

Reliability Reliability theory is an established field, with its widely used
reliability metrics such as the mean time between failures (MTBF) or mean
time to failure (MTTF) especially for hardware that may malfunction as due
to component or material failure [66]. On the other hand for systems related
to IT/IoT, software reliability has to be taken into account in tandem with
hardware reliability.

Resilience The concept of resilience as a component of trustworthiness is
highly dependent on the context, such that it may depends on parameters
such as the system architecture, its operational environment, and the type

20

of the disruptive event [67]. One approach that is often used to enhance
the resilience of a system is via redundancy. However, redundancy must be
coupled with the elimination of single points of failure and good maintenance
for it to work effectively [68]. Besides that, characteristics such as graceful
degradation is also crucial from a resilience perspective in order to make sure
that misbehaviour of a system does not adversely affect the other components
of trustworthiness.

3.2 Methodology of Automated Secure Sys-

tem Design

This section introduces the methodology for automated secure system design
and its implementation for the IoT domain.

3.2.1 Methodology Overview

During the architecture design phase of a given system, both functional
and non-functional requirements, which include the security of the intended
system, must be captured. Security in this context refers to the protection
of a system, and the requirements of a secure system architecture are mainly
related to how much uncertainty and risk one is willing to tolerate [51].
While no system can be made perfectly secure, having an inadequately
secured system has negative consequences. Thus, an automated secure
system designer should be able to have a quantifiable security level target,
and be able to quantitatively discern whether a particular design is secure
enough in terms of that target.

An automated secure system designer should be able to apply proactive
measures, which are measures that are directly applicable in a system design,
such as deploying a firewall where needed to filter the incoming traffic.
Reactive measures include actions such as cyber threat incident detection,
response, and recovery efforts. Such measures cannot be concretely specified
at design phase, hence they are to be applied in the form of assumptions that
must then be put into application during the actual system deployment.

There are many methods to secure a system, such as following best-
practice guidelines or threat modeling. When handling a security threat,
there may be more than one approach to address it, such as removing the
threat (prevention), reducing the impact of the threat (mitigation), or even
transferring the risk via insurance or passing on the risk to the end-user [51].

Furthermore, generating a secure design does not guarantee that the
design will be implemented correctly. Erroneous implementation may lead

21

Service

Requirement Secure Design

Database

SECURE SYSTEM DESIGNER

Web
App

connTo

Security

Verification

Figure 3.2: Overview of the secure system designer SecureWeaver.

to deviations from the original intended design. Ideally, the automated
secure system designer would output a system design, and the output will
be automatically build and deployed. This would be similar to the software
world’s DevOps CI/CD (continuous integration/continuous deployment) pro-
cess. However, we consider the automated implementation to be out of the
scope of this thesis.

In this work we propose an automated secure system designer that is able
to accept a service requirement as an input, including security aspects, then
process the input and generate a system design that is both concrete and
secure. In order to achieve this goal, the system needs to consult a database
that contains both design patterns and security knowledge. Hence, the key
requirements for such a system are the following:

1. Ability to design a system in an automatic manner based on input
qualitative and quantitative requirements (see Section 2.4)

2. Use of a secure design database with relevant design patterns and
knowledge that make possible the secure system design (see Chapter 4)

3. Use of a security verification mechanism to automatically check that
the generated system design satisfies appropriately the input security
requirements (see Chapter 5)

This methodology is illustrated in Fig. 3.2, which gives an overview of
our implementation, SecureWeaver. Note how the service requirement and
secure design database are used by the secure system designer that employs
the security verification mechanism to verify the system design candidates.

A service requirement is the top-level description of the intended design
outcome (intent), which is inspired by the concept of intent-based network-
ing (IBN). The service requirement can be either completely conceptual
(equivalent to designing a system from scratch), or it can be an incremental
addition to an existing network configuration. The creation of the service

22

requirement is typically a two stage process: (i) input requirement capture,
and (ii) composing the service requirement according to SecureWeaver’s
framework. The service requirements must first be captured from users of
the networked system that is to be designed, such as external customers
planning to deploy a network from scratch, or an internal department in
an organization planning to deploy a new service for their department on an
existing network infrastructure. Hence, technical staff will then express these
requirements to create the actual content inside the intent file in a format
that is compatible with SecureWeaver. The technical staff may be:

• Designers such as system/security/solution architect, etc.
• Actual operators such as system/cloud administrator, etc.

Components that describe abstract or concrete parts of the intent and the
relationships that denote communication or component relations are part of a
typical service requirement. However, a system designer is not able to derive
an appropriate system design when the specified threats and relationships in
a service requirement lack information and context.

Hence, a certain level of context is required in order to accurately express
the security requirements and derive a suitable solution that: (i) meets all
the functional requirements; (ii) has no unmitigated security issues. In this
manner, we can explicitly describe a security threat on any of the component
and relationship in the service requirement, where the automated secure
system designer must take into account during its refinement process.

For the automated secure system designer to be able to interpret the
defined threat, it must refer to a database to obtain the required information
and act accordingly. This is where the secure design database comes into
play. The secure design database should contain information, such as secure
design patterns, security threats and their corresponding mitigations, and
other related data needed for informed decision making.

To realise the vision of such an automated secure system designer, we built
our prototype implementation upon an existing automated system designer,
named Weaver. By integrating a security knowledge base into Weaver with
relevant modifications, we made it possible for the system designer to consult
the knowledge base regarding entities in its topology for security issues and
mitigate them with appropriate mitigation techniques. Moreover, we also
had to extend Weaver to accommodate security capabilities, especially in
the areas regarding the components and their relationships.

23

3.3 Preliminary Work on Automated Secure

Design

This section presents the preliminary work we conducted on automated
secure design in the IoT domain. The first subsection explores the usage
of SMT to perform formal verification of IoT system specifications, such
as boolean logic and quantitative constraints. This is followed by the
preliminary work to expand the basic IoT “vocabulary” in the first subsection
to an ontology framework that allows extensible semantics for heterogeneous
IoT domain.

3.3.1 System Specification Verification with Satisfiabil-
ity Modulo Theories (SMT)

To formally verify a system specification, a verification framework is required
to be able to take arbitrary format (e.g., integers, boolean, logical connective,
etc.) and compute an output whether the following input is valid. One of the
most commonly used verification frameworks are the Satisfiability Modulo
Theories (SMT) and Satisfiability (SAT) solver. Both SMT and SAT solvers
are typically used to solve huge systems of equations, or in another terms,
constraints in terms of system requirements in the specification. The main
difference between SMT and SAT solver is that the SMT solvers are the
“front-end” of the SAT solver. SAT solvers are limited to boolean equation
in conjunctive normal form (CNF), while SMT is able to take a system of
equations as an input in arbitrary format and process them using underlying
SAT solvers.

The high-performance theorem prover Z3, developed at Microsoft Re-
search is utilized in the preliminary work as a proof-of-concept. The Z3
solver is also an open source and cross-platform SMT solver, where it provides
bindings for languages such as C, C++, .NET, Java, OCaml, Python, Julia,
and WebAssembly. Before implementing a prototype verification framework
for IoT system specification, the work in [2] is adapted to built the initial
implementation of boolean-only verification. The Optimal Package Instal-
l/Uninstall Manager (OPIUM) by [2] is an improved Linux package manager
that solves the dependencies and conflicts constraints using a SMT solver.
The package manager dependencies and conflicts problem is illustrated in
Fig. 3.3, where the individual packages (a, b, c, d, e, f, g, y and z)
dependencies and conflicts are shown (d and e).

The boolean verification of package dependencies and conflicts can be
adapted to describe the dependencies and conflicts in the IoT system re-

24

Figure 3.3: Example of Linux package manager dependencies and conflicts
[2].

quirements. However, IoT system specification verification under boolean-
only scenarios are too limited, as many of its requirements are quantifiable
constraints, such as IoT device’s power budget for battery operation. Hence,
both boolean and quantitative constraints are considered in the proof-of-
concept in this preliminary work for automated secure design.

First, an IoT design scenario is assumed, where a battery power budget
and functionality verification is evaluated. The unit watt (milliwatt for low-
power IoT devices) is the right term used to describe power consumption by a
device. However, the current consumption measured in milliampere is all too
often used instead. This mainly corresponds to battery-powered applications,
where a tiny battery may only provide a limited max current output without
damaging the battery. Hence, the current consumption will be used in our
work for the power budget verification. A basic JSON dictionary consisting
of various IoT hardware features, such as the wireless capabilities with their
typical power consumption are shown in Code 3.1 under the variable “dict”.
The dictionary features various microcontroller unit (MCU) such as Espressif
ESP8266 and ESP32, and ATMEL ATMega32U4, each with their features
as listed below:

• power: Typical max current consumption in milliampere
• security: Availability of security feature as a boolean value
• freq: CPU frequency speed in MHz
• network: List of wireless network interfaces
• interface: List of wired interfaces

The dictionary also features the wireless interfaces with their parameters such
as power, security, and the maximum size of data in a packet. Definition of
functionalities and their dependencies are also listed in the dictionary.

Since the energy consumption requirement is one of the main factors in
determining an IoT device architecture for both hardware and software [69],

25

the quantitative verification scenario will focus on a power budget verifi-
cation. Two functions are implemented to describe both dependency and
conflict relationship, as shown in Code 3.1 dependsOn() and conflict().
The dependsOn() function implements the logical implication of an input
to its dependencies, as shown from Line 19 to 23. On the other hand,
the conflict() function implements a NOT logical operator between all the
elements in the input, as shown in Line 26.

Code 3.1: IoT hardware verification example using Z3 in Python 3.

1 from z3 import ∗
2
3 dict = { ’ w i r e l e s s ’ : {
4 ’ w i f i ’ : { ’ power ’ : 240 , ’ s e c u r i t y ’ : True , ’ p s i z e ’ :

2312} ,
5 ’ b l e ’ : { ’ power ’ : 13 , ’ s e c u r i t y ’ : True , ’ p s i z e ’ :

242} ,
6 ’ s i g f o x ’ : { ’ power ’ : 100 , ’ s e c u r i t y ’ : True , ’ p s i z e ’ :

12} ,
7 ’ z i gbee ’ : { ’ power ’ : 40 , ’ s e c u r i t y ’ : True , ’ p s i z e ’ :

128} ,
8 ’ nr f24 ’ : { ’ power ’ : 16 , ’ s e c u r i t y ’ : False , ’ p s i z e ’ :

32}} ,
9 ’mcu ’ : {
10 ’ esp8266 ’ : { ’ power ’ : 400 , ’ s e c u r i t y ’ : True , ’ f r e q ’ :

160 , ’ network ’ : [’ w i f i ’ , ’ b l e ’] , ’ i n t e r f a c e ’ : [’
i 2 c ’ , ’ s p i ’ , ’ uart ’ , ’ i 2 s ’ , ’ 1wire ’]} ,

11 ’ esp32 ’ : { ’ power ’ : 240 , ’ s e c u r i t y ’ : True , ’ f r e q ’ :
240 , ’ network ’ : [’ w i f i ’ , ’ b l e ’] , ’ i n t e r f a c e ’ : [’
i 2 c ’ , ’ s p i ’ , ’ uart ’ , ’ i 2 s ’ , ’ 1wire ’]} ,

12 ’ atmega32u4 ’ : { ’ power ’ : 27 , ’ s e c u r i t y ’ : False , ’ f r e q
’ : 16 , ’ network ’ : [] , ’ i n t e r f a c e ’ : [’ i 2 c ’ , ’ s p i ’ ,
’ uart ’ , ’ 1wire ’ , ’ usb ’]}} ,

13 ’ f u n c t i o n a l i t y ’ : {
14 ’ audio ’ : { ’ i n t e r f a c e ’ : ’ i 2 s ’ } ,
15 ’ v ideo ’ : { ’ p s i z e ’ : 1000 , ’ s e c u r i t y ’ : True , ’ f r e q ’ :

200}
16 }
17 }
18
19 def dependsOn (char , deps) :
20 i f i s e x p r (deps) :
21 return Imp l i e s (char , deps)
22 else :
23 return And ([Imp l i e s (char , dep) for dep in deps])
24
25 def c o n f l i c t (∗ chars) :
26 return Or ([Not (char) for char in chars])
27

26

28 def check (∗ problem) :
29 s = So lve r ()
30 s . set (unsa t co r e=True)
31 for c on s t r a i n t in problem :
32 s . a s s e r t and t r a ck (cons t ra in t , str (c on s t r a i n t))
33
34 i f s . check () == sat : # SAT
35 m = s . model ()
36 r = []
37 for x in m: # x i s a Z3 de c l a r a t i on
38 i f i s t r u e (m[x]) :
39 r . append (x ()) # x () re turns the Z3 expre s s i on
40 print (r)
41 else : # unSAT
42 print (s . unsa t co r e ()) # minimal u n s a t i s f i a b l e core
43
44 system , mcu , network , s e cu r i t y , power , bat te ry = Bools (’ system

mcu network s e c u r i t y power batte ry ’)
45 power budget , t o ta l power = In t s (’ power budget to ta l power ’)
46 v a l i d a t i o n a r g = []
47 v a l i d a t i o n a r g . append (I f (bat te ry==True , power budget <= 250 ,

True))
48 v a l i d a t i o n a r g . append (I f (bat te ry==False , power budget > 250 ,

True))
49 v a l i d a t i o n a r g . append (power budget >= tota l power)
50 v a l i d a t i o n a r g . append (to ta l power == (dict [’ w i r e l e s s ’] [’ w i f i ’] [’

power ’] + dict [’ w i r e l e s s ’] [’ b l e ’] [’ power ’]))
51 v a l i d a t i o n a r g . append (batte ry)
52 audio = True
53 cand idate s = []
54 i f audio == True :
55 for i in dict [’mcu ’] :
56 for j in dict [’mcu ’] [i] [’ i n t e r f a c e ’] :
57 i f dict [’ f u n c t i o n a l i t y ’] [’ audio ’] [’ i n t e r f a c e ’] == j :
58 cand idate s . append ((i , dict [’mcu ’] [i] [’ power ’]))
59 print (cand idate s [0] [0])
60 check (∗ va l i d a t i on a r g , to ta l power == cand idates [0] [1])
61 print (”\n\n” + cand idate s [1] [0])
62 check (∗ va l i d a t i on a r g , to ta l power == cand idates [1] [1])

Both the power budget and functionality verification are evaluated with
the Z3 solver, where a system requirement with audio functionality and
battery operated below 250mA is defined. The code from Line 47 to 51
in Code 3.1 shows the definition of the battery power budget constraint of
250mA (Line 47 to 48), definition of total power constraint with respect to
power budget (Line 49), definition of total power (Line 50), use of battery as
boolean (Line 51), and definition of the requirement of audio functionality.
The Z3 solver is then used to verify the available microcontrollers in the JSON

27

Figure 3.4: Result of Z3 verification for an audio functionality and battery
use scenario.

dictionary, where the output result of the verification is shown in Fig. 3.4.
Both ESP8266 and ESP32 MCU are evaluated, where the ESP8266 is shown
to be unsatisfiable due to it exceeding the power budget and ESP32 is shown
to be a satisfiable solution. ESP32 MCU satisfied both power budget and
the audio functionality requirement as ESP32 has I2S interface.

Thus, the system specification verification with SMT solver is shown to
be viable as proof-of-concept.

3.3.2 System Design Ontology

The previous preliminary work on system specification verification with
SMT solver utilized a basic dictionary that describes a few MCUs and their
capablities, which is too simplistic for actual IoT system verification. This
subsection explores the idea of further expanding such an IoT “dictionary”,
where more characteristics, features and properties are defined, along with
their interlink between the other relevant properties. Ontology is proposed
as the approach to encapsulate such information.

An ontology is a representation of types of entities in a given domain
and of the relations between them, where it enables structured yet flexi-
ble knowledge representation to address structural complexity of complex
databases and semantic relationships between the data stored. Besides, it
promotes interoperability across heterogeneous subsystems for system design

28

Figure 3.5: Screenshot showing the class and subclass of the prototype
ontology in Protégé.

use case. Existing ontologies in the IoT domain mainly focus on machine-to-
machine (M2M) protocol interoperability [70, 71]. No existing ontologies in
the IoT have such representation for the purpose of system design or system
verification.

The prototype ontology represents the IoT device characteristics, their
software and system, as shown in Fig. 3.5. Software architecture classifi-
cations such as application OS, container OS, real-time OS (RTOS), and
many more are defined, while the general characteristics of an IoT device
is extensively described in the ontology. Furthermore, the axioms of each
individual characteristics are also described, for example: the end-to-end
latency (“E2ELatency”) has string values describing a range of latency like
very low, low, moderate, high, and best effort. To define numerical range
for each of these string values, the ontology general class axiom feature is
utilized as general class axiom are widely used in domain constraints. As
shown in Fig. 3.5, the “High” latency value has a range between 100ms to
less than 500ms, where it is also defined as a subclass of the end-to-end
latency characteristic. Besides that, the object property hierarchy is also
shown in Fig. 3.6, where each performance characteristics are defined.

29

Figure 3.6: Screenshot showing the object property hierarchy of the proto-
type ontology in Protégé.

3.3.2.1 Integration of SMT Verification with the Ontology

Since the ontology was manually created in the Protégé software, the node
transversal in the ontology had to be understood in order to develop au-
tomation tools for it. The “Density” characteristic is used as an example,
where it has the values of low (< 1000), medium (1000 <= x < 10000),
high (>= 10000), and variable assigned to it. Fig 3.7 illustrates the
Resource Description Framework (RDF) triplet for each of the node that are
related to the root object “Density” general class axiom, where its following
child is linked via the subclass of relationship to the string values of its
characteristic. While they are available tools and frameworks to search
and parse RDF triplets for common class and subclass objects, no existing
framework supports axiom parsing as of the author’s knowledge. Hence, a
Python tool is developed for RDF general class axiom parsing.

The Python tool is shown in Appendix B, where the RDF general class
axiom parser is implemented together with the Z3 input builder. This enables
automated encoding of the targeted class/subclass rules and constraints from
the linked data in the ontology into Z3 solver programmatically. In order
to extract the general class axiom that are linked to the “Density” object,
the subclass of “Density” is searched, where the results are the three string
values of the axioms (Low, Medium and High). This is done by verifying the
following conditions:

• The object ID is equal to the search key

30

Figure 3.7: An overview of the ontology general class axiom structure in
RDF triplet for the “Density” object.

31

• The predicate is equal to “RDFS.subClassOf”
• The search key type is not equal to “rdflib.term.BNode”
• The subject type is equal to “rdflib.term.BNode”

The resulting triplets includes the individual node ID (“OWL#onProperty”)
of the string value as the triplet’s subject, the corresponding string value
as the RDF type (“RDF#type”), and the value “Restriction” for the
“OWL#someValuesFrom” subject as shown in Fig 3.7. Hence, the process
of searching and parsing the general class axiom is presented.

The second part of the process converts the parsed axioms/constraints of
the target subject into individual constraint inputs that are compatible with
Z3 solver. Each of the constraints are processed, where its property name
(e.g., Low, Moderate, High) is defined into the constraint as a boolean type,
and the constraint comparison operators are matched and defined using the
following mapping:

• XSD.minInclusive: >=
• XSD.minExclusive: >
• XSD.maxInclusive: <=
• XSD.maxExclusive: <

To show the working of the Python-based RDF general class axiom parser
via the Z3 tool, a scenario is evaluated where the end-to-end latency is
required to be low in the service requirement and the actual end-to-end
latency is measured to be 5ms. Thus, the input conditions of the Python
tool are as below:

• Search class: “E2ELatency”
• To be verified level: “Low”
• To be verified actual “E2ELatency” value: 5ms

The verified result is shown in Fig 3.8, where the measured end-to-end latency
satisfied the defined low level for “E2ELatency”. Thus, the proof-of-concept
of integrating the ontology and automating the verification with SMT solver
is also successfully conducted.

3.3.3 Analysis of IoT Development and Management
Platforms

In this subsection, the IoT platforms presented in Section 2.6 (Bosch IoT
Suite, IBM Watson IoT Platform, Microtronics IoT Suite, and IoT Suite) are
evaluated as a part of the system specification study during the preliminary
work stage of this thesis. This preliminary study provides a comprehensive

32

Figure 3.8: Result of automated axiom inclusion from “E2ELatency” into Z3
solver, where the “Low” string value is verified against a latency of 5ms.

insight into the current state-of-art IoT platforms that are available commer-
cially and academic research project.

3.3.3.1 Gap/Overlap Analysis Criteria

To evaluate and compare the IoT platforms, a gap and overlap analysis
approach is employed by using reverse mapping on the existing IoT platforms.
Each of the IoT platforms are mapped to an IoT reference model, where each
of the similar features/characteristics are given an evaluation mapping score
from 1 to 3. For the IoT reference model, the Architectural Reference Model
(IoT ARM) [3] developed by IoT-A is chosen. The IoT ARM is by far the
most comprehensive reference architecture model, as it covers identification
and definition of principle features of IoT, universal industry applications
examples, and also the use of the IoT reference model with definitions and
concepts to analyze and design an IoT architecture. Furthermore, IoT
ARM documentations also contains various guidelines and best practices
for development. All of these components are illustrated in Fig. 3.9, where
each of these building blocks and its interaction with the relevant blocks are
shown. Comparing IoT ARM with other state-of-the-art research reference
architectures, we conclude that most research paper’s reference architectures
are written at a high-level view, which typically lack details and depth.

The IoT ARM reference model takes into account various architecture
views, such as:

• Physical view
• Context view
• Functional view

33

Figure 3.9: IoT ARM building blocks [3].

• Information view
• Deployment view

Besides that, the IoT ARM also covers several architecture perspectives, such
as:

• Evolution and interoperability
• Performance and scalability
• Trust, security and privacy
• Availability and resilience

To perform the evaluation of the existing IoT platform, the IoT ARM models
are employed as the reference for IoT characteristics/features. The IoT ARM
model covers three main models: (i) IoT Domain Model; (ii) IoT Information
Model; and (iii) IoT Functional Model.

IoT Domain Model This model is used to capture the main concepts
and relationships that are relevant for IoT stakeholders. It covers six key
concepts:

• Entities (physical, virtual, augmented)
• Devices
• Resources
• Services
• Identification of Physical Entities
• Context and Location

34

Figure 3.10: IoT ARM domain models and their relationships [3].

IoT Information Model This model defines the structure of all the
information for virtual entities on a conceptual level. Examples of such
structures are: relations, attributes and services.

IoT Functional Model This model contains both the functionality groups
(FG) and the interaction between those parts. There are various functionality
groups that are defined under the IoT Functional Model, such as:

• IoT Process Management FG
• Service Organization FG
• Virtual Entity FG
• IoT Service FG
• Communication FG
• Management FG
• Security FG

Each of these models and their relationships are illustrated in Fig. 3.10.
The IoT Domain Model is used in the IoT Information Model where its
concepts are explicitly modelled and represented in an IoT system, whereas
the domain model concepts are also used in the IoT Functional Model as the
foundations of the FG.

35

3.3.3.2 Analysis Results

Using the IoT ARM as the reference model for the gap and overlap analysis,
the results of the mapping and its mapping score for each IoT platform
are tabulated in Table 3.1 (Bosch IoT Suite), Table 3.2 (IBM Watson IoT
Platform), Table 3.3 (Microtronic IoT Suite), and Table 3.4 (IoT Suite).

The Bosch IoT Suite Table 3.1 has a total mapping score 35 out of 42. Out
of the total score, 16 out of 18 was scored from the IoT Domain Model, where
many of Bosch IoT Suite entities and components are highly similar with the
description of the corresponding IoT ARM reference model’s component.
The Bosch IoT Suite also scored 3 out of 3 in the IoT Information Model,
where Bosch’s Things feature definition is provided by Eclipse Vorto for
device abstraction fully meets the definition of the virtual entity in the IoT
Information Model. Lastly, the mapping score in the IoT Functional Model
is the lowest, 15 out of 21. The Bosch IoT Suite mapped particularly poorly
in areas such as the Service Organization FG while in other areas, such as
Communication FG, Management FG and Security FG, the Bosch IoT Suite
lacks one or two elements in their corresponding reference definition, which
leads to a lower score.

For the IBM Watson IoT Platform, it scores the highest among the four
IoT platforms, 38 out of 42. The IBM Watson IoT Platform scored higher
than the Bosch in both IoT Domain Model and IoT Functional Model, as the
wide range of the IBM cloud services has at least one service that sufficiently
maps well to the areas in the reference model. Next, the Microtronic IoT
Suite scores a total of 18 out of 42. This low score compared to the previous
two platforms are due to the poor or non-existent features/properties in the
Microtronic’s platform. Note that Microtronic’s platform is mainly a rapid
prototype environment that does not have a full suite of IoT management
capabilities.

The IoT Suite in Table 3.4 has the lowest mapping score out of the four
IoT platforms evaluated. One of the main contributing factor to its low
mapping score is that the IoT Suite does not have any components that are
in the area of IoT Functional Model, as it does not have any management
nor any service provided on the platform. Even in areas of the IoT Domain
Model, the IoT Suite maps poorly to the corresponding area.

For IoT platforms such as the Bosch IoT Suite and the IBM Watson IoT
Platform, it is more intuitive for the user to leverage on its features and
services to build an IoT application with end-to-end communication, data
analysis, and life-cycle management. The life-cycle management in both of
these platforms is done via a simple user interface (UI) and is straightforward
to understand. The main difference between these two platforms is that the

36

T
ab

le
3.
1:

E
va
lu
at
io
n
of

B
os
ch

Io
T

S
u
it
e
p
la
tf
or
m
.

Io
T

A
R
M

B
os
ch

Io
T

S
u
it
e

M
ap

p
in
g

S
co
re

Io
T

D
om

ai
n
M
o
d
el

E
n
ti
ti
es

T
h
in
gs

(p
h
y
si
ca
l,
v
ir
tu
al
,
tr
an

sa
ct
io
n
al
,
m
as
te
r
d
at
a,

et
c.
)

3
R
es
ou

rc
es

S
er
v
ic
es

(n
et
w
or
k
re
so
u
rc
es
,
st
or
ag
e
re
so
u
rc
es
)

2
D
ev
ic
es

T
h
in
gs

(T
h
in
gs

is
u
se
d
to

id
en
ti
fy

b
ot
h
d
ev
ic
es

an
d
ot
h
er

en
ti
ti
es
)

2

S
er
v
ic
es

S
er
v
ic
es

(C
on

n
ec
ti
on

s,
E
d
ge

d
ow

n
lo
ad

s,
R
ol
lo
u
ts
,
R
u
le
s,

T
as
k
s,

et
c.
)

3

Id
en
ti
fi
ca
ti
on

of
P
h
y
si
ca
l
E
n
-

ti
ti
es

T
h
in
gs

ID
(n
am

es
p
ac
e)

3

C
on

te
x
t
an

d
L
o
ca
ti
on

T
h
in
gs

D
efi
n
it
io
n
an

d
A
tt
ri
b
u
te
s

3
Io
T

In
fo
rm

at
io
n
M
o
d
el

V
ir
tu
al

E
n
ti
ty

T
h
in
gs

fe
at
u
re
’s

d
efi
n
it
io
n

(d
ev
ic
e

ab
st
ra
ct
io
n

w
it
h

E
cl
ip
se

V
or
to
)

3

Io
T

F
u
n
ct
io
n
al

M
o
d
el

Io
T

P
ro
ce
ss

M
an

ag
em

en
t
F
G

R
u
le
s,
T
as
k
s

2
S
er
v
ic
e
O
rg
an

iz
at
io
n
F
G

In
si
gh

t
(m

as
te
r
d
at
a
m
an

ag
em

en
t)

1
V
ir
tu
al

E
n
ti
ty

F
G

E
cl
ip
se

V
or
to

3
Io
T

S
er
v
ic
e
F
G

E
cl
ip
se

V
or
to
,
H
u
b
,
T
h
in
gs

3
C
om

m
u
n
ic
at
io
n
F
G

H
u
b
,
T
h
in
gs

2
M
an

ag
em

en
t
F
G

In
si
gh

t,
A
n
al
y
ti
cs
,
D
ev
ic
e,

R
u
le
s,
T
as
k
s

2

S
ec
u
ri
ty

F
G

S
u
it
e
A
u
th

(A
u
th
en
ti
ca
ti
on

,
A
u
th
or
iz
at
io
n
),
T
ea
m
s,
D
ev
ic
e
M
an

-
ag
em

en
t

2

T
ot
al

34

37

T
ab

le
3.
2:

E
va
lu
at
io
n
of

IB
M

W
at
so
n
Io
T

P
la
tf
or
m
.

Io
T

A
R
M

IB
M

W
at
so
n
Io
T

P
la
tf
or
m

M
ap

p
in
g

S
co
re

Io
T

D
om

ai
n
M
o
d
el

E
n
ti
ti
es

D
ev
ic
es

(p
h
y
si
ca
l,
v
ir
tu
al
,
lo
gi
ca
l,
et
c.
)

3
R
es
ou

rc
es

S
er
v
ic
es

(n
et
w
or
k
re
so
u
rc
es
,
st
or
ag
e
re
so
u
rc
es
,
d
ev
ic
e
si
m
u
la
to
r)

3
D
ev
ic
es

D
ev
ic
es

(p
h
y
si
ca
l
en
ti
ty
)

2
S
er
v
ic
es

C
lo
u
d
S
er
v
ic
es

(B
os
ch

Io
T

R
ol
lo
u
t,
et
c.
)

3
Id
en
ti
fi
ca
ti
on

of
P
h
y
si
ca
l

E
n
ti
ti
es

D
ev
ic
e
ID

3

C
on

te
x
t
an

d
L
o
ca
ti
on

D
ev
ic
e
In
fo
rm

at
io
n

3
Io
T

In
fo
rm

at
io
n
M
o
d
el

V
ir
tu
al

E
n
ti
ty

D
ev
ic
e
In
fo
rm

at
io
n
(r
es
ou

rc
e
m
o
d
el
,
ev
en
t
m
o
d
el
),

A
n
al
y
ti
cs

S
er
v
ic
e

(l
og
ic
al

in
te
rf
ac
es
)

3

Io
T

F
u
n
ct
io
n
al

M
o
d
el

Io
T

P
ro
ce
ss

M
an

ag
em

en
t

F
G

Io
T

fu
n
ct
io
n
s

3

S
er
v
ic
e
O
rg
an

iz
at
io
n
F
G

C
lo
u
d
S
er
v
ic
es

3
V
ir
tu
al

E
n
ti
ty

F
G

A
n
al
y
ti
cs

S
er
v
ic
e
(l
og
ic
al

in
te
rf
ac
es
)

2
Io
T

S
er
v
ic
e
F
G

A
n
al
y
ti
cs

S
er
v
ic
e
(l
og
ic
al

in
te
rf
ac
es
),
C
lo
u
d
S
er
v
ic
es
,
Io
T

fu
n
ct
io
n
s

3
C
om

m
u
n
ic
at
io
n
F
G

P
la
tf
or
m

S
er
v
ic
e

2
M
an

ag
em

en
t
F
G

A
cc
es
s
M
an

ag
em

en
t,
A
n
al
y
ti
c
S
er
v
ic
e
(p
re
d
ic
ti
on

s)
3

S
ec
u
ri
ty

F
G

S
ec
u
ri
ty
,
A
cc
es
s
M
an

ag
em

en
t

2
T
ot
al

38

38

T
ab

le
3.
3:

E
va
lu
at
io
n
of

M
ic
ro
tr
on

ic
Io
T

S
u
it
e
p
la
tf
or
m
.

Io
T

A
R
M

M
ic
ro
tr
on

ic
Io
T

S
u
it
e

M
ap

p
in
g
S
co
re

Io
T

D
om

ai
n
M
o
d
el

E
n
ti
ti
es

D
ev
ic
e
(p
h
y
si
ca
l
en
ti
ty

on
ly
)

1
R
es
ou

rc
es

ID
E
,
on

-d
ev
ic
e,

n
et
w
or
k
an

d
st
or
ag
e
re
so
u
rc
es

3
D
ev
ic
es

D
ev
ic
e,

ra
p
id
M
2M

P
or
ta
l
(S
it
es
,
A
p
p
li
ca
ti
on

)
1

S
er
v
ic
es

ra
p
id
M
2M

P
or
ta
l
(R

ep
or
ts
)

2
Id
en
ti
fi
ca
ti
on

of
P
h
y
si
ca
l
E
n
ti
ti
es

D
ev
ic
e
se
ri
al

n
u
m
b
er

3
C
on

te
x
t
an

d
L
o
ca
ti
on

D
ev
ic
e
(e
x
ce
p
t
lo
ca
ti
on

)
2

Io
T

In
fo
rm

at
io
n
M
o
d
el

V
ir
tu
al

E
n
ti
ty

ra
p
id
M
2M

P
or
ta
l
(S
it
es
,
A
p
p
li
ca
ti
on

)
1

Io
T

F
u
n
ct
io
n
al

M
o
d
el

Io
T

P
ro
ce
ss

M
an

ag
em

en
t
F
G

-
0

S
er
v
ic
e
O
rg
an

iz
at
io
n
F
G

-
0

V
ir
tu
al

E
n
ti
ty

F
G

ra
p
id
M
2M

P
or
ta
l
(S
it
es
,
A
p
p
li
ca
ti
on

,
R
ep

or
ts
)

1
Io
T

S
er
v
ic
e
F
G

ra
p
id
M
2M

P
or
ta
l
(S
it
es
,
A
p
p
li
ca
ti
on

,
R
ep

or
ts
)

1
C
om

m
u
n
ic
at
io
n
F
G

R
E
S
T

A
P
I

1
M
an

ag
em

en
t
F
G

ra
p
id
M
2M

P
or
ta
l
(S
it
es
,
A
p
p
li
ca
ti
on

,
R
ep

or
ts
)

1
S
ec
u
ri
ty

F
G

ra
p
id
M
2M

P
or
ta
l
(U

se
rs
)

1
T
ot
al

18

39

T
ab

le
3.
4:

E
va
lu
at
io
n
of

Io
T

S
u
it
e
p
la
tf
or
m
.

Io
T

A
R
M

Io
T

S
u
it
e

M
ap

p
in
g
S
co
re

Io
T

D
om

ai
n
M
o
d
el

E
n
ti
ti
es

D
om

ai
n
sp
ec
ifi
ca
ti
on

(v
o
ca
b
.m

y
d
sl
)

1
R
es
ou

rc
es

O
n
-d
ev
ic
e

1
D
ev
ic
es

V
o
ca
b
.m

y
d
sl
(p
h
y
si
ca
l
en
ti
ty
)

1
S
er
v
ic
es

-
0

Id
en
ti
fi
ca
ti
on

of
P
h
y
si
ca
l
E
n
ti
-

ti
es

D
ep
lo
y
m
en
t
sp
ec
ifi
ca
ti
on

(d
ep
lo
y.
m
y
d
sl
)

1

C
on

te
x
t
an

d
L
o
ca
ti
on

d
ep
lo
y.
m
y
d
sl
,
vo

ca
b
.m

y
d
sl

3
Io
T

In
fo
rm

at
io
n
M
o
d
el

V
ir
tu
al

E
n
ti
ty

F
u
n
ct
io
n
al

sp
ec
ifi
ca
ti
on

(a
rc
h
.m

y
d
sl
),

d
ep
lo
y.
m
y
d
sl
,

vo
-

ca
b
.m

y
d
sl

3

Io
T

F
u
n
ct
io
n
al

M
o
d
el

Io
T

P
ro
ce
ss

M
an

ag
em

en
t
F
G

-
0

S
er
v
ic
e
O
rg
an

iz
at
io
n
F
G

-
0

V
ir
tu
al

E
n
ti
ty

F
G

-
0

Io
T

S
er
v
ic
e
F
G

-
0

C
om

m
u
n
ic
at
io
n
F
G

-
0

M
an

ag
em

en
t
F
G

-
0

S
ec
u
ri
ty

F
G

-
0

T
ot
al

10

40

Bosch one lacks integrated virtualization and an analysis service to evaluate
the ingested IoT data or device characteristics.

On the other hand, in the IoT Information Model, the solution provided
by the Bosch platform, Eclipse Vorto is superior as it provides a descriptive
language for definition of IoT devices or services. IoT device that are
described in Eclipse Vorto are able to be automatically simulated/emulated
and even deployed in both real world and digital twins. Both Eclipse
Vorto and the academic project, IoT Suite are useful for the integration
and expansion part in automated trustworthiness verification as they are
semantically described by design.

Both the Microtronic IoT Suite and the academic project IoT Suite
are focused on IoT device development prototyping rather than life-cycle
management. Both lack scalability from their prototyping stage or rather
they lack a path to scale up. Furthermore, platforms such as Microtronic
require proprietary hardware to use their service while IoT Suite is only
available on Andriod based device for IoT service implementation.

When it comes to evaluating the platforms from the perspective of
security metrics such as trustworthiness validation/verification score, neither
of the evaluated platforms do not have such feature. Security level or risk
score can be introduced into the IoT Information Model areas, such as devices
or network resources. With defined metric score in place, approach such
as risk analysis and formal method such as Satisfiability Modulo Theories
(SMT) can be utilized to compute the security of the target IoT application.

3.4 Summary

The philosophy of secure system design of this thesis was introduced in
this chapter. The topic on trustworthiness is first discussed, followed by
the discussion of the characteristics of trustworthiness. The methodology of
automated secure system design was then presented, where its requirements
were introduced. Furthermore, the preliminary work on automated secure
design on IoT, the formal verification of the system specification using
Satisfiability Modulo Theories (SMT), ontology based on IoT system design,
and the system specification study of existing IoT platforms are presented.

The next chapters in the thesis are as follows. First, the secure design
database is presented in Chapter 4. Then, the automated secure system
designer verification mechanism and verification functions are presented in
Chapter 5. This is followed by case studies of secure system implementation,
which are presented in Chapter 6. Finally, the evaluation of the methodology
is presented in Chapter 7.

41

Chapter 4

Secure Design Database

In this chapter, the integral parts that build up the secure design database
are introduced. First, the security threat information that is applicable to
the system design and its refinement rules is discussed. This is followed by
the security knowledge that is build from the MITRE ATT&CK Enterprise
matrix that pertains to secure system design. Next, the chapter discusses the
approach of extending the security knowledge base using an ontology. Finally,
the threat mitigation ontology that is based on the MITRE ATT&CK
Enterprise Network domain matrix is presented. The contents of this chapter
is a part from the publications [72,73].

4.1 Secure Design Threats and Rules

In this section, the security threats that are used in secure system design are
defined. The threat concept is introduced using the existing Weaver system
designer entities, where the concept of logical and conceptual connections are
also introduced to extend the capabilities of existing Weaver. The security
specific refinement rules are also presented with examples the various types
of refinement rules and their corresponding use-case scenarios to illustrate
the mechanism of threat mitigation.

4.1.1 Security Threats

In Section 2.4, the entities and intent/service requirement of the existing
Weaver were described. Using these concepts, two types of security threats
can be defined:

• Component-type threats which are applicable to system components,
for example: a physical host

• Relationship-type threats which pertain to relationships between components-
type entity, for example: the network connection between a device and
a user

42

usr:User wa:WebApp

connTo
Threat1

Web
App

Threat2

Figure 4.1: Service requirement with relationship-type and component-type
threats.

For component-type threats, the threat indicates that protection is required
at the target component. For relationship-type threats, the entity that
requires protection is the attack path to a target component.

An example of a service requirement that illustrates an explicitly-defined
relationship-type threat (Threat1) applied to the abstract connTo relation-
ship between the user usr, and the web application wa, and a component-type
threat (Threat2) applied to wa is shown in Fig. 4.1. The relationship threat
(Threat1) in this case denotes that the relationship (connTo) is susceptible
to eavesdropping or sniffing that may affect the security and privacy of the
two end components. On the other hand, the component threat (Threat2)
denotes that the component (wa) is susceptible to a certain malicious activity.
Besides, the threat in this thesis examples are represented by an Anonymous
mask icon placed on the affected relationship or component entity.

The modeling of a component-type threats is relatively uncomplicated,
because this type of threat only affects the target component and its sub-
components that are derived from it during the automated design process.
A relationship-type threat however affects multiple components and sub-
components in a system topology. Hence, in order to model the relationship-
type threats and their inheritance for affected branches in a topology, the
fundamental relationship between two components (e.g., connTo relationship
between usr and wa in Fig. 4.1) has to be preserved during the topology
refinement process. The objective is to make it possible to verify all possible
mitigations for selected topology. For this purpose, the existing Weaver
functionality was extended to accommodate such information in the topology
refinement process, which is achieved by introducing two new types of
connections: (i) logical; and (ii) conceptual.

4.1.2 Logical and Conceptual Connections

Logical connections in this thesis are defined as relationships with an relation-
ship type (rtype) property that corresponds application and network layer
protocols in the TCP/IP model. Values of the logical connections rtype are

43

HTTPS

IPLAN

Group 1

HOST

Group 2

LAN

Conceptual
connection

Web
App

Figure 4.2: Logical and conceptual connections between two system compo-
nent groups.

concrete protocols in the TCP/IP model, such as HTTP, HTTPS, RTP, SRTP,
IPSEC and IP. This is illustrated in Fig. 4.2, where two of such concrete
logical connections, HTTP and IPSEC connects between Group 1 and Group

2, which are defined as dash-dotted lines. The TCP/IP model is found to be
well suited for describing the relationship between two network components.
Considering only the application and network layers in the TCP/IP model
is sufficient for our system design purposes as of writing.

A conceptual connection can be defined as a pair of application and
network layer rtype entities that connect two component groups in a topology.
A component group is denoted as a set of one or more components that were
derived via the refinement process from a given component in the service
requirement/intent, and that corresponds logically to a service/resource
specified in the requirement. This is illustrated in Fig. 4.2, where two such
groups are shown: (i) Group 1 made of the user, which forms a group by
itself; and (ii) Group 2 made of the web application and the host/machine it is
deployed on, as the machine was added to the topology via a refinement rule
corresponding to hosting of the web application. The conceptual connection
between these two groups is defined as the pair of HTTPS and IP logical
connections. By retaining such logical and conceptual connections in the
topology, this preserves the information required by the subsequent security
verification algorithm (see Section 5.2.6).

4.1.3 Refinement Rules

In the secure design database, the refinement rules refer to: (i) component
refinement; and (ii) relationship refinement. These secure design refinement
rules are in addition to the general refinement rules for both components and
relationships that are required to design non-security related aspects of the
system.

Fig 4.3 shows an overview of security component related refinement

44

rules. Refinement rules like DEPLOY-NIDS and DEPLOY-FIREWALL represents
the type of refinement rules that add network security appliances into
a topology. Furthermore, there are also refinement rules that refine an
abstract component into a concrete type for security purposes, for example,
the refinement rule REFINE-VM refines an abstract Machine type compo-
nent into a VirtualMachine instead of the regular PhysicalMachine or
PhysicalServer, which provides isolation or a sandboxed environment.

Next, the refinement rules for the refinement of the relationship type
(rtype) are explored. Typical refinement rules in the existing Weaver
transform a topology state into another by changing or removing the abstract
rtype or ctype entities to achieve a concrete state. On the contrary, for the
concrete logical connections that were introduced in the previous subsection,
the refinement rules have to be designed in a manner that ensures all the
logical connections are preserved in the topology.

One thing to take note of when it comes to security concerns in refinement
rules is that top-level threats are explicitly included in the service requiremen-
t/intent, but threats associated with protocol-related threats and mitigations
are implicitly included via the inherent security properties of TCP/IP model
application and network layer protocols when used as an rtype in a topology.
As a consequent, these are defined in the secure design database’s threat
mitigation knowledge base, and used for security verification purposes.

Refinement Mechanism For Relationship-Based Threat Mitigations
When performing a topology refinement, there may be more than one
solution to mitigate a threat. This is illustrated in Fig. 4.4, where a service
requirement at topology t0 has a User and a WebApp component are connected
by the abstract relationship connTo to which the threat T1040 is applied.
The abstract relationship connTo can be concretized via the usage of either
the HTTP or HTTPS application protocols at the TCP/IP application layer in
a conceptual connection, where HTTP is insecure and HTTPS is secure. The
sequential topology refinements for the HTTP and HTTPS branches are shown
in the left and right-hand side diagrams in Fig. 4.4, respectively.

In the left-hand side sequence, the HTTP application protocol does
not mitigate the threat T1040, therefore the white Anonymous mask icon
denotes the associated implicit threat on the affected relationship. Following
the subsequent refinement procedure of this topology, the implicit threat
is inherited by the connTo abstract rtype relationship as shown at step
ti+n+1,1. The term inheritance in this context defines that if the application
layer relationship has an implicit threat, the aforesaid threat is also applied
implicitly to the following network layer relationship. At step ti+n+2,1, the

45

REFINE-VM

{1}:Machine

DEPLOY-FIREWALL

VM
{1}:VM

wire:
WAN

wire:
WAN

wire:
FW

{1}:WAN {2}:Router
{1}:WAN {2}:

Router

{3}:Firewall

DEPLOY-NIDS
{1}:L3SW

{2}:NIDS

NIDSL3

{1}:L3SW

L3

DEPLOY-VPN-EXTTHINGS-CONNTO-THINCLIENT

EXT
Things

OSmarked:
include

{1}:ThinClientSys

{2}:MWThinClient

wire:
OS

{3}:OS

wire:
HOST

{4}:

Machine

wire:
LAN

connTo

wire:LAN

wire:
WAN

{5}:

Switch
{6}:

Router

EXT
Things

OSmarked:
include

{1}:ThinClientSys

{2}:MWThinClient

wire:
OS

{3}:OS

wire:
HOST

{4}:

Machine

wire:
LAN

RDP

wire:
WAN

{5}:

Switch
{6}:

Router

wire:
WAN

{8}:

ExtThings

{7}:WAN

{8}:
ExtThings

{7}:WAN

{9}:
VPNServer

IPSEC

Figure 4.3: Refined web system example scenario without security verifica-
tion.

46

HTTP

connTo

T1040

HTTPS

t
i,1

t
i,2

rtype

=HTTP

rtype

=HTTPS

HTTPS

HOST
IP

t
i+m,2

t
i+n,1

t
0
=

t
i+n+1,1

t
i+n+2,1

t
i+m+1,2

HTTP

HOSTIPSEC

HTTP

HOSTconnTo

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Figure 4.4: Example of possible topology refinements that mitigate the
security threat defined in the service requirement t0.

47

abstract connTo relationship is replaced with a concrete logical connection,
IPSEC. At this step, the T1040 threat is mitigated because IPSEC network
protocol is defined as a valid mitigation for T1040 threat in the threat
mitigation knowledge base. Threats that are mitigated are denoted with
a dark Anonymous mask icon marked with a red “X”.

In the right-hand side topology, HTTPS directly mitigates the T1040 threat,
as per its secure protocol definition in the threat mitigation knowledge base.
Thus, the remaining refinement for concretizing this topology does not have
any security issues related to T1040 such that insecure protocol such as
IP can be used at network level without compromising the overall security
characteristics of the solution.

The discussions about the left-hand side topologies demonstrates that
logical connections (insecure) that do not mitigate a threat should not be
eliminated immediately by the automated system designer. Doing such would
truncate the potential viable solutions. Hence, when it comes to Weaver
based system designer, the security verification should only be performed
after all the entities in the topology are fully concretized.

4.2 Threat Mitigation Knowledge Base

There are different types of methodologies for security assessment, for
instance, the Lockheed Martin Cyber Kill Chain (CKC) [74], MITRE
ATT&CK matrix [75], and Microsoft STRIDE (Spoofing, Tampering, Repu-
diation, Information disclosure, Denial of service, Elevation of privilege) [76].
The CKC is a well-known intrusion-centric framework which defines a well-
established sequence of attack steps. Meanwhile, MITRE ATT&CK matrix
is a list of attack techniques that is grouped by tactics, where no specific order
of operation are implied in the matrix. The STRIDE framework is a high-
level threat model which is typically used during the security development
life-cycle since it is focused on identifying overall categories of attacks.

The comparison between security knowledge bases are summarized in
Table 4.1, where CKC, ATT&CK and STRIDE are compared in addition
to NIST SP 800-53 guidelines and MITRE CVE (Common Vulnerabilities
and Exposures). When looking from an abstraction level perspective, its
level of detail and orientation, both CKC and STRIDE have very high level
of attack model abstraction and vague details as they commonly used to
model the possible threat/attack of a system from a high level point-of-view.
Guidelines such as NIST SP 800-53 provides a high abstraction level for
system defense while at the same time provide very detailed information
about its guidelines, while security vulnerability databases such as CVE are

48

Table 4.1: Comparison between security knowledge bases.

Name
Abstraction
level

Level of
detail

Orientation
Data
format

Lockheed Martin Cyber
Kill Chain

Very high Vague Attack
Text docu-
ment

Microsoft STRIDE Very high Vague Attack
Text docu-
ment

NIST SP 800-53 High
Very de-
tailed

Defense
Text docu-
ment

MITRE ATT&CK Medium Detailed
Attack, De-
fense

STIX
(JSON)

MITRE CVE Low
Very de-
tailed

Attack JSON

at lowest abstraction level within the list with very detailed information on
the security vulnerabilities is utilized for attack. The ATT&CK matrix, on
the other hand, has its abstraction level in the middle, as it describes both
attack and defense methods in the respective target domains (Enterprise,
Mobile, and Industrial Control Systems (ICS)) in detail. On the data format
which the security knowledge base are presented, CKC, STRIDE and SP
800-53 are text documents which rely on user’s interpretation of the threat
modeling and guidelines for the intended system. On the other hand, both
ATT&CK and CVE are available in machine readable JSON format, which
can be parsed and implemented in a relatively straightforward way.

Since security threats are explicitly defined in the service requirement
(intent) in this thesis’s automated system designer that is based off the
existing Weaver, the kill chain and high-level modelling techniques are
not suitable because they are incompatible with the refinement process in
Weaver. In addition, they also do not include sufficient security context.
Hence, for threat mitigation knowledge base in the secure design database,
the MITRE ATT&CK framework was selected as it provides a rich taxonomy
of adversarial tactics, techniques, and common knowledge that can be readily
applied in various scenarios.

It is to be noted that other third-party security databases besides MITRE
ATT&CK should be compatible for use for security verification in tandem
with the MITRE ATT&CK matrix in the threat and mitigation knowledge
base. This can be achieved by using common cyber threat intelligence (CTI)
sharing language such as Structured Threat Information Expression (STIX)
[77], which is discussed in the later section in this chapter (see Chapter 4.3).

49

4.2.1 MITRE ATT&CK-Based Threat Mitigation

The MITRE ATT&CK based knowledge base is organized as a collection
of matrices, such as Enterprise, Mobile and ICS, where each matrix covers
a specific field. In a MITRE ATT&CK matrix, the data is categorised
into Tactics, Techniques and its sub-techniques, Data Sources, Mitigations,
Groups and Software. For the threat mitigation knowledge base in this thesis,
the most essential part are the threats and the mitigations. Thus, the MITRE
ATT&CK techniques and mitigations are designated as the security threats
and mitigations in the threat and mitigation knowledge base.

The version of the MITRE ATT&CK framework that is employed in
the threat mitigation knowledge base is version 10.0, which is the latest
at the time of writing. Furthermore, the threat mitigation knowledge base
specifically focus on the ATT&CK Enterprise matrix, which contains a total
number of 14 tactics, 185 techniques, 367 sub-techniques and 42 mitigations.

As the total number of techniques and sub-techniques in ATT&CK is
large, the concepts of domain, which is utilized to group relevant techniques
and its sub-techniques based on their area of relevance, is leveraged. There
are a total number of seven domains in the ATT&CK Enterprise matrix
version 10, which are listed below:

• Preparatory
• Windows
• macOS
• Linux
• Cloud
• Network
• Containers

This approach would help cut down the initial number of techniques to a
manageable number, which is most relevant to the area of focus in this thesis
that is networked system.

The most relevant domain in MITRE ATT&CK Enterprise matrix is the
Network domain, as the thesis is focus on networked systems. The network
domain has a total number of 9 tactics, 15 techniques, 26 mitigations and 16
data sources, where some of them are unique and some are commonly shared
with other domains in the MITRE ATT&CK Enterprise matrix. Each of
the threats, mitigations and the affected Weaver entity types for the network
domain are tabulated in Table 4.2, where the threats are listed in the order
as displayed on the MITRE ATT&CK Web page (https://attack.mitre.org).
Some techniques such as T1600, T1056 have no known mitigation in the
ATT&CK Enterprise matrix. This is denoted by “N/A” in the Table 4.2.

50

After analyzing the attack surface/vector for each threat in the table, the
affected Weaver entity types (component/relationship) were assigned to their
corresponding threat. The description of the mitigation IDs in Table 4.2 is
listed in Table 4.3.

By analyzing the ATT&CK network domain’s techniques and mitigations,
the necessary information required to implement security verification in a
system topology for each group of mitigations is obtained. Through this
analysis, seven types of verifiable characteristics were identified, as listed
below:

1. Application isolation and sandboxing
2. Firewall use
3. Network segmentation
4. Configuration settings
5. Traffic filtering via a network appliance
6. Secure protocol use
7. Intrusion prevention/detection system use

This information is associated to each mitigation and shown in the
bottom notes in Table 4.2. Detailed information about the actual verification
functions that provide full coverage for the ATT&CK network domain will
be presented in Section 5.2.

4.2.2 Structure of the Knowledge Base

For the data structure of the threat mitigation knowledge base, a JSON key-
value pair representation was implemented to store the relevant information.
The threat mitigation data is organized in three main categories:

• Weight of the security mitigation
• Mitigation verification function mapping
• Secure protocol corresponding to the threat and mitigation pair (if any)

To illustrate the concept of mitigation weight that is introduced, the
MITRE ATT&CK Exploit Public-Facing Application (T1190) threat is used
as an example. The threat T1190 has six possible mitigations, such as
sandboxing mitigation, firewall mitigation, network segmentation, and three
mitigations that are related to configuration settings, as shown in Table 4.2.
Each of these mitigations may help achieve a particular level of security
against a specific target threat. In this thesis, it is assumed that if all available
mitigations are applied, the threat is fully negated. Thus, each mitigation
can be assigned a different weight, depending on its significance/effectiveness
in mitigating/negating a specific threat where the total sum of the weights

51

Table 4.2: MITRE ATT&CK threats and mitigations in network domain.
Threat Mitigations Type
T1190 (Exploit Public-
Facing Application)

M10481 M10502 M10303 M10264

M10514 M10164
Component

T1059 (Command and
Scripting Interpreter)

M10494 M10404 M10454 M10424

M10384 M10264 M10214
Component

T1556 (Modify Authenti-
cation Process)

M10324 M10284 M10264 M10254

M10224
Component

T1542 (Pre-OS Boot) M10464 M10264 M10514 Component
T1205 (Traffic Signaling) M10424 M10375 Component
T1562 (Impair Defenses) M10224 M10244 M10184 Component
T1601 (Modify System
Image)

M10464 M10454 M10434 M10324

M10274 M10264
Component

T1599 (Network Bound-
ary Bridging)

M10434 M10375 M10324 M10274

M10264
Component

T1600 (Weaken Encryp-
tion)

N/A Component

T1056 (Input Capture) N/A Component
T1040 (Network Sniffing) M10416 M10324 Relationship
T1602 (Data from Con-
figuration Repository)

M10416 M10375 M10317 M10303

M10544 M10514
Component

T1095 (Non-application
Layer protocol)

M10375 M10317 M10303 Component

T1090 (Proxy) M10375, M10317 M10204 Component
T1020 (Automated Exfil-
tration)

N/A Component

1 Application isolation and sandboxing
2 Firewall use
3 Network segmentation
4 Configuration settings
5 Traffic filtering
6 Secure protocol use
7 Intrusion detection and prevention system use

52

Table 4.3: Mitigations applicable to network domain threats.
ID Name
M1048 Application Isolation and Sandboxing
M1040 Behavior Prevention on Endpoint
M1046 Boot Integrity
M1045 Code Signing
M1043 Credential Access Protection
M1042 Disable or Remove Feature or Program
M1041 Encrypt Sensitive Information
M1038 Execution Prevention
M1050 Exploit Protection
M1037 Filter Network Traffic
M1032 Multi-factor Authentication
M1031 Network Intrusion Prevention
M1030 Network Segmentation
M1028 Operating System Configuration
M1027 Password Policies
M1026 Privileged Account Management
M1025 Privileged Process Integrity
M1022 Restrict File and Directory Permissions
M1024 Restrict Registry Permissions
M1021 Restrict Web-Based Content
M1054 Software Configuration
M1020 SSL/TLS Inspection
M1051 Update Software
M1018 User Account Management
M1016 Vulnerability Scanning

53

for all the mitigations corresponding to a specific threat is equal to 1.0. The
mitigation weight in the threat mitigation knowledge base are by default
given an equally distributed weight for the total number of mitigation
applicable to a specific threat. It is also envisioned that expert knowledge
can be used to assign a more realistic value to the weight each mitigation
holds.

Each threat and mitigation pair in the threat mitigation knowledge base is
mapped to the corresponding security verification function that is introduced
in Section 4.2.1. The pairs are also tagged with their relevant Weaver
entity type (component/relationship), which denotes the type of entity the
mitigation can be applied to. While the parameters are similar across most
type of mitigations in the knowledge base, the configuration setting based
mitigations have an extra parameter that denotes whether the corresponding
system setting are assumed to be applied or not, which is simply designated
by True or False as its value. As of writing, Weaver system designer does
not support any functionality to precisely model an entity with detailed
software/configuration settings. Hence, if Weaver eventually gains such
functionality to verify the actual settings, the configuration setting could
be dynamically verified as well.

The threat mitigation knowledge base also includes the information about
the logical connections introduced in Section 4.1.2. The logical connections
that are secure network protocols such as HTTPS, IPSEC and SRTP are
defined in the knowledge base and mapped to the corresponding threat and
mitigation pair. Hence, any logical connection relationship types that are not
explicitly denoted in the threat mitigation knowledge base are considered to
be insecure.

4.3 Ontology Extension of the Threat Mitiga-

tion Knowledge Base

To improve the quality of the threat mitigation knowledge base in the secure
design database, one should refer to more than one trusted third-party data
source. Some examples of trusted third-party data source from MITRE and
NIST are the ATT&CK matrix [78], Common Attack Pattern Enumera-
tion and Classification (CAPEC) [79], Common Vulnerability Enumerations
(CVE) [80], Common Weakness Enumerations (CWE) [81], and National
Vulnerability Database (NVD) [82]. Referencing multiple trusted data
sources generally improves the trustworthiness of the required information
needed for security verification. Besides that, each data source may present

54

different viewpoints of the same information for a certain subject such as
CVE provides concrete information of a vulnerable target, while ATT&CK
provides a relatively abstract objective of an Advanced Persistent Threat
(APT) on how the vulnerable target could be exploited [28].

Such extension to accommodate various data sources requires the use of
semantics to link the information. In this section, an ontology is proposed,
as this is a developed field in semantic technologies that provides various
languages such as Resource Description Framework (RDF), Web Ontology
Language (OWL), and various other tools like reasoners and queries. Seman-
tic relationships are the core behind an ontology, as it maps/links multiple
data together to create a shared vocabulary in cyber security.

A Cyber Threat Intelligence (CTI) typically describes detailed informa-
tion about threats and threat actors in cyber security. Details such as
timestamp and location of attack, type of malware, threat actor group, attack
vectors, and indicator of compromise (IOC) such as source IP address are
usually defined in a CTI. Since CTI sharing is common between government
and industries, much works have gone into standardizing the format of CTI
for effective and efficient CTI sharing. While this thesis does not go into
detail on how to model a CTI, there are various models to describe a CTI
and its use, such as the Detection Maturity Level (DML) model [83], Cyber
Kill Chain (CKC) [74], and CTI [84]. Moreover, there are also various data
formats that are used for CTI exchanges, such as:

• Open Indicators of Compromise (OpenIOC) [85]
• Incident Object Description Exchange Format (IODEF) [86]
• Vocabulary for Event Recording and Information Sharing (VERIS) [87]
• Structured Threat Intelligence Exchange (STIX) [5]

OpenIOC mainly focuses on aiding an investigator to describe and classify
artifacts encountered during the source of a security incident investigation.
IODEF primary focus is to enable incident information exchanges between
Computer Emergency Response Teams (CERTs), while VERIS lies emphasis
on cyber security incident’s measurement and management of risks. STIX
on the other hand is not confined to specific use case while providing an
extensive tool set to aid representation of various information about cyber
security incidents [88]. Furthermore, the STIX data format is the de-facto
standard for CTI used in the industry [89] and its also the format with
the most extensive capabilities in application. Thus, STIX is chosen as the
structured representation to build the ontology. The next subsection will
introduce STIX and its use in MITRE ATT&CK matrix, followed by the
ontology based on Network domain in ATT&CK Enterprise matrix.

55

Table 4.4: Examples of STIX v2.1 domain objects [5].

Name
Type
name

Description

Attack
pattern

attack-
pattern

A type of Tactics, Techniques, and Procedures (TTP)
that describe the approaches that adversaries attempt to
compromise its targets

Course of
action

course-
of-action

A recommendation from a producer of intelligence to a
consumer on the actions that they might take in response
to that intelligence

Identity identity
Actual individuals, organizations, or groups (e.g., ACME,
Inc.) as well as classes of individuals, organizations,
systems or groups (e.g., the finance sector)

Intrusion
set

intrusion-
set

A grouped set of adversarial behaviors and resources with
common properties that is believed to be orchestrated by
a single organization

Malware malware A type of TTP that represents malicious code

Tool tool
Legitimate software that can be used by threat actors to
perform attacks

Structured Threat Intelligence Exchange (STIX) Structured Threat
Intelligence Exchange (STIX) is a state-of-the-art semi-structured represen-
tation for CTI that is developed by OASIS Open for the purpose of sharing
CTI. STIX is graph based model where a piece of information is represented
as an object with its attributes, and the information are linked through
relationship. Thus, the two core object type in STIX are:

• STIX Domain Object (SDO)
• STIX Relationship Object (SRO)

An SDO describes the characteristics of an incident, while an SRO describes
the relationships between those characteristics. The current version of STIX
as of writing is version 2.1, where there are a total of 18 SDO and 2 SRO.
Table 4.4 lists some of the SDO that are used in the MITRE ATT&CK STIX
collection, where the full list of SDO can be referred in [5]. Table 4.5 lists all
the SROs that are available in STIX.

Each STIX object (SDO/SRO) has their properties defined using the
common properties as shown in Table 4.6. While a STIX object may use
all the available common properties, some may just define the required
properties as listed in Table 4.6.

56

Table 4.5: STIX v2.1 relationship objects [5].
Name Type name Description

Relationship relationship
Used to link together two SDOs or SCOs in order
to describe how they are related to each other

Sighting sighting
Denotes the belief that something in CTI (e.g., an
indicator, malware, tool, threat actor, etc.) was
seen

Table 4.6: Common properties of STIX v2.1 objects [5].

Name Type Description
Re-
quire-
ment

type string Identifies the type of STIX Object.
Re-
quired

spec version
string

The version of the STIX specification
used to represent this object.

Re-
quired

id identifier Uniquely identifies this object.
Re-
quired

created
by ref

identifier
Specifies the id property of the “iden-
tity” object that describes the entity
that created this object.

Op-
tional

created timestamp
Represents the time at which the ob-
ject was originally created.

Re-
quired

modified timestamp

Only used by STIX Objects that sup-
port versioning and represents the
time that this particular version of the
object was last modified.

Re-
quired

revoked boolean
Only used by STIX Objects that sup-
port versioning and indicates whether
the object has been revoked.

Op-
tional

labels
list of type
“string”

Specifies a set of terms used to de-
scribe this object

Op-
tional

confidence integer
Identifies the confidence that the cre-
ator has in the correctness of their
data.

Op-
tional

lang string
Identifies the language of the text con-
tent in this object.

Op-
tional

57

external
references

list of
type “exter-
nal reference”

Specifies a list of external references
which refers to non-STIX information.

Op-
tional

object
mark-
ing refs

list of type
“identifier”

Specifies a list of “id” properties of
“marking-definition” objects that ap-
ply to this object.

Op-
tional

granular
markings

list of type
“granu-
lar marking”

Specifies a list of granular markings
applied to this object.

Op-
tional

defanged boolean
Defines whether or not the data con-
tained within the object has been de-
fanged.

N/A

extensions dictionary
Specifies any extensions of the object,
as a dictionary.

N/A

The STIX incident information representation structure is written in
the JSON format. An example of a threat report on Poison Ivy trojan
from non-STIX source [90] represented in STIX version 2.1, where part
of the “attack-pattern” and “course-of-action” are shown in Code 4.1 and
Code 4.2, respectively. The threat report in [90] compiles how various threat
actors in different campaigns used the Poison Ivy remote access tool (RAT)
for malicious activities. The example of an “attack-pattern” representation
presented in Code 4.1 shows all the required common properties in Table 4.6
as well as optional properties specific to “attack-pattern” SDO such as
“kill chain phases”.

Code 4.1: Representation of STIX v2.1 “attack-pattern” for Poison Ivy threat
report [4].

1 {
2 ” type” : ” attack−pattern ” ,
3 ” sp e c v e r s i o n ” : ” 2 .1 ” ,
4 ” id ” : ” attack−pattern−−19da6e1c−69a8−4c2f −886d−d620d09d3b5a”

,
5 ” c rea ted ” : ”2015−05−15T09 : 1 2 : 1 6 . 4 3 2Z” ,
6 ”modi f i ed ” : ”2015−05−15T09 : 1 2 : 1 6 . 4 3 2Z” ,
7 ” e x t e r n a l r e f e r e n c e s ” : [
8 {
9 ” source name” : ” capec ” ,
10 ” d e s c r i p t i o n ” : ” spear ph i sh ing ” ,
11 ” e x t e r n a l i d ” : ”CAPEC−163”
12 }
13] ,
14 ”name” : ”Spear Phishing Attack Pattern used by admin@338” ,

58

15 ” d e s c r i p t i o n ” : ”The p r e f e r r e d attack vec to r used by
admin@338 i s spear−ph i sh ing emai l s . Using content that i s
r e l e van t to the target , the se emai l s are des igned to

en t i c e the t a r g e t to open an attachment that conta in s the
ma l i c i ou s PIVY se rv e r code . ” ,

16 ” k i l l c h a i n p h a s e s ” : [
17 {
18 ” k i l l c ha i n name ” : ”mandiant−attack− l i f e c y c l e −model” ,
19 ”phase name” : ” i n i t i a l −compromise”
20 }
21]
22 }

The mitigation for the “attack-pattern” is shown in Code 4.2, where
“action reference” points to a valid external reference that a human expert
can refer to. For setting commands that can be applied directly to mitigate
the threat in a machine, STIX also provides an optional “action bin” property
in replacement of “action reference” in base64 encoded command for such
use case. This example illustrates the flexibility of STIX version 2.1 to
accommodate various use cases.

Code 4.2: Representation of STIX v2.1 “course-of-action” for Poison Ivy
threat report [4].

1 {
2 ” type” : ” course−of−ac t i on ” ,
3 ” sp e c v e r s i o n ” : ” 2 .1 ” ,
4 ” id ” : ” course−of−act ion−−8e2e2d2b−17d4−4cbf −938 f−98

ee46b3cd3f ” ,
5 ” c r e a t e d by r e f ” : ” i d en t i t y−−f431 f809 −377b−45e0−aa1c−6

a4751cae5 f f ” ,
6 ” c rea ted ” : ”2016−04−06T20 : 0 3 : 4 8 . 0 0 0Z” ,
7 ”modi f i ed ” : ”2016−04−06T20 : 0 3 : 4 8 . 0 0 0Z” ,
8 ”name” : ”mit igat ion−poison−ivy−f i r e w a l l ” ,
9 ” d e s c r i p t i o n ” : ”This ac t i on po in t s to a recommended s e t o f

s t ep s to respond to the Poison Ivy malware on a Cisco
f i r e w a l l dev i c e ” ,

10 ” ac t i on type ” : ” c i s c o : i o s ” ,
11 ” a c t i o n r e f e r e n c e ” :
12 { ” source name” : ” i n t e r n e t ” ,
13 ” u r l ” : ” https : //www. stopthebad . com/ po i son ivy r e sponse .

asa ”
14 }
15 }

For the SRO, it labels the relationship(s) between two SDO. An example
of the “attack-pattern” SDO relationship to other SDOs in STIX is visualized
in Fig. 4.5. Some of the SDOs, such as “campaign”, “course-of-action”,

59

Figure 4.5: Visualized STIX “attack-pattern” SDO relationships [4].

“indicator”, and many more have their relationship mapped to “attack-
pattern”. Besides that, there can also be more than one relationship between
two SDOs, such as “attack-pattern” and “malware”, where it has bi-direction
“Uses” that represents both SDOs can use one another to achieve its target
and “Delivers” shows that an attack pattern can be used to deliver a specific
malware. This provides the semantic linking between different SDOs, which
is useful for creating the ontology in the later section.

Fig. 4.6 shows the relationships between “course-of-action” and the SDOs
related to it. An example of multiple relationship between two SDOs is also
illustrated, where “course-of-action” can both “Remediates” and “Mitigates”
the malware and vulnerability type SDOs. In fact, the “Remediates” SRO
means that the threat can be eradicated, which also includes “Mitigation” as
a mitigation is akin to damage control where the issue cannot be eliminated.

4.4 MITRE ATT&CK-Based Ontology

The entire collection of MITRE ATT&CK matrices are available in STIX
version 2.0 [91] and STIX version 2.1 [6] formats. In this thesis, the
version 10.0 of MITRE ATT&CK Enterprise matrix in STIX version 2.1

60

Figure 4.6: Visualized STIX “course-of-action” SDO relationships [4].

is employed to build the ontology. In order to build the basic ontology
structure that is similar to the threat mitigation knowledge base introduced
in Section 4.2.1, the tactic, technique and mitigation concepts in MITRE
ATT&CK are used. First, the MITRE ATT&CK Enterprise matrix in STIX
representation is explored. This includes the statistical overview of the entire
JSON bundle/collection for MITRE ATT&CK Enterprise matrix version
10.0. Then, the work on mapping/linking the SDOs related to MITRE
ATT&CK tactic, technique and mitigation in the JSON bundle is discussed,
followed by the result of the MITRE ATT&CK based ontology.

4.4.1 Exploring the MITRE ATT&CK Enterprise Ma-
trix in STIX

While MITRE ATT&CK Enterprise matrix can be represented in STIX,
it requires extensions as custom objects to fully represent all the informa-
tion. An example of a “course-of-action” in STIX version 2.1, ATT&CK
Network Segmentation mitigation (M1041) is shown in Code 4.3. The
custom properties, such as “x mitre version”, “x mitre attack spec version”,
“x mitre domains”, “x mitre modified by ref” in Code 4.3 are all MITRE
ATT&CK custom STIX objects.

61

Code 4.3: JSON example of a MITRE ATT&CK Enterprise in STIX 2.1
“course-of-action” object [6].

1 {
2 ” id ” : ” course−of−act ion −−86598de0−b347−4928−9eb0−0

acbfc21908c ” ,
3 ”name” : ”Network Segmentation” ,
4 ” d e s c r i p t i o n ” : ” Arch i t e c t s e c t i o n s o f the network to i s o l a t e

c r i t i c a l systems , func t i ons , or r e s ou r c e s . Use phy s i c a l
and l o g i c a l segmentat ion to prevent a c c e s s to p o t e n t i a l l y
s e n s i t i v e systems and in fo rmat ion . Use a DMZ to conta in

any in t e rne t−f a c i n g s e r v i c e s that should not be exposed
from the i n t e r n a l network . Conf igure s epara te v i r t u a l
p r i va t e c loud (VPC) i n s t an c e s to i s o l a t e c r i t i c a l c loud
systems . ” ,

5 ” e x t e r n a l r e f e r e n c e s ” : [
6 {
7 ” source name” : ”mitre−attack ” ,
8 ” e x t e r n a l i d ” : ”M1030” ,
9 ” u r l ” : ” https : // attack . mitre . org /m i t i g a t i on s /M1030”
10 }
11] ,
12 ” ob j e c t ma rk i n g r e f s ” : [
13 ”marking−d e f i n i t i o n −−fa42a846−8d90−4e51−bc29−71

d5b4802168”
14] ,
15 ” c r e a t e d by r e f ” : ” i d en t i t y−−c78cb6e5−0c4b−4611−8297−

d1b8b55e40b5” ,
16 ” type” : ” course−of−ac t i on ” ,
17 ”modi f i ed ” : ”2020−05−14T13 : 0 5 : 3 9 . 5 0 0Z” ,
18 ” c rea ted ” : ”2019−06−10T20 : 4 1 : 0 3 . 2 7 1Z” ,
19 ” x m i t r e v e r s i on ” : ” 1 .1 ” ,
20 ” sp e c v e r s i o n ” : ” 2 .1 ” ,
21 ” x m i t r e a t t a c k s p e c v e r s i o n ” : ” 2 . 1 . 0 ” ,
22 ” x mitre domains ” : [
23 ” en t e rp r i s e−attack ”
24] ,
25 ” x m i t r e mod i f i e d by r e f ” : ” i d en t i t y−−c78cb6e5−0c4b

−4611−8297−d1b8b55e40b5”
26 }

The MITRE ATT&CK Enterprise matrix is stored inside a STIX bundle
in a JSON file. Table 4.7 shows the top-level structure of the STIX bundle,
where some of STIX common properties are described. The “objects” entry
is a list array that stores the entire ATT&CK Enterprise matrix SDOs, SROs
and other metadata in a flat structure.

In order to work with the STIX bundle, a short script was developed to
parse the STIX bundle and list all the keys and their number of occurrences.

62

Table 4.7: Top-level structure of MITRE ATT&CK STIX bundle.

Object Value
type bundle
id bundle–{bundle uuid}
spec version 2.1
objects [...]

Algorithm 1 describes the overall flow to parse and count every object keys in
the “objects” list in the STIX bundle. The algorithm first parse the “x-mitre-
collection” key, as this key contains all the object reference, “object ref” and
modified timestamp, “object modified” information in its internal dictionary
structure, “x mitre contents”. For every type of object that is not found in
the “data dict” array, the information of the object and count is appended
into the array. If the type of object is found in the array, the count for that
object is incremented by 1.

After the “x-mitre-collection” is parsed and processed, the algorithm
starts parsing the large and flat “objects” list. Similar to the “x-mitre-
collection” routine, the type of object is entered into the array if they are
not found while the existing ones are incremented for all objects and their
sub-objects.

The result of running Algorithm 1 is shown in Table 4.8. To verify the
statistics in Table 4.8, the total count of an object is compared to the MITRE
ATT&CK matrix. Since “course-of-action” is known to be the mitigation in
MITRE ATT&CK, the values are compared. The total number of “course-
of-action” is 284, wherea MITRE ATT&CK Enterprise matrix only have 43
mitigations. Further investigation into the large disparity reveals that the
STIX bundle for MITRE ATT&CK not only contains the version 10.0, it also
contains all the older versions of MITRE ATT&CK where their SDOs are
marked with “revoked” as True. After accounting for the revoked/deprecated
SDOs in the STIX bundle, the valid MITRE ATT&CK concepts can be
obtained.

Since Algorithm 1 also parses and processes the “x mitre contents”
in “x-mitre-collection”, those results are tabulated in Table 4.9. The
“x mitre contents” stores all the UUID of the objects in the STIX bundle,
where the results in Table 4.8 and Table 4.9 can be compared and verified.

63

Table 4.8: Statistical result of MITRE ATT&CK Enterprise matrix in STIX.

Type Name
No. of en-
tries

STIX
Domain
Objects
(SDO)

attack-pattern 707
relationship 14467
course-of-action 284
identity 1
intrusion-set 136
malware 475
tool 73
marking-definition 1

ATT&CK
Custom
Object

x-mitre-collection 1
x-mitre-tactic 14
x-mitre-matrix 1
x-mitre-data-source 38
x-mitre-data-component 109

Table 4.9: MITRE ATT&CK Enterprise matrix in STIX custom object
“x mitre contents”.

Name No. of entries
attack-pattern–{uuid} 707
relationship–{uuid} 14467
course-of-action–{uuid} 284
identity–{uuid} 1
intrusion-set–{uuid} 136
malware–{uuid} 475
tool–{uuid} 73
x-mitre-tactic–{uuid} 14
x-mitre-matrix–{uuid} 1
x-mitre-data-source–{uuid} 38
x-mitre-data-component–{uuid} 109

64

Algorithm 1 Parse and process MITRE ATT&CK Enterprise matrix STIX
bundle.
Input: STIX bundle, bundle
Output:
1: function parse stix bundle(bundle)
2: obj ← bundle[“objects”]
3: for all data in obj[“x-mitre-collection”] do
4: data1← data[“type”]
5: if data1 not in data dict then
6: data dict← [data1, 1]
7: else
8: Increment count in data dict[data1]
9: end if

10: end for
11: for all data in obj[“objects”] do
12: data1← data[“type”]
13: if data1 not in data dict then
14: data dict← [data1, 1]
15: for all obj key in data do
16: obj dict[data1][obj key] ← 1
17: end for
18: else
19: Increment count in data dict[data1]
20: for all obj key in data do
21: if obj key not in obj dict[data1] then
22: obj dict[data1][obj key] ← 1
23: else
24: Increment count in obj dict[data1][obj key]
25: end if
26: end for
27: end if
28: end for
29: return data dict, obj dict
30: end function

4.4.2 Rebuilding Semantic Links fromMITRE ATT&CK
STIX Bundle

The approach to transverse the STIX bundle was discussed in the previous
subsection. By extending the previous approach, the semantic link between

65

Table 4.10: Example of MITRE ATT&CK Enterprise matrix concepts
mapping to existing STIX v2.1 domain objects.

MITRE ATT&CK concept STIX object
Object Property Object Property
Tactic

name
description

attack-pattern kill-chain-phases
name
description

Technique
name
description
tactic

attack-pattern
name
description
kill-chain-phases

Mitigation
name
description

course-of-action
name
description

each SDO can be obtain and the graph can be rebuilt in the appropriate
format that is compatible with ontology editor and knowledge management
system such as Protégé. The ontology that will be built will focus on the
following MITRE ATT&CK concepts:

• Tactics
• Techniques
• Mitigations
• Data sources

The concepts are obtained from the network domain in the MITRE ATT&CK
Enterprise matrix to populate the resulting ontology. Table 4.10 shows
an example of MITRE ATT&CK Enterprise concepts mapping to existing
SDOs. While not all concepts can be mapped one-to-one, the mapping shows
how STIX is generally utilized to represent MITRE ATT&CK concepts. The
one-to-one mapping from MITRE ATT&CK concepts to their respective
STIX object type is shown in Table 4.11, where both existing STIX SDOs
and custom STIX objects are used. ATT&CK tactics are denoted as “x-
mitre-tactic” when used to describe the specific tactic information, while the
“kill-chain-phases” property of “attack-pattern” or ATT&CK technique is
used to list all the phases in the kill chain.

An example for the MITRE ATT&CK network sniffing threat T1040 in
STIX, the “kill-chain-phases” stores two ATT&CK tactic: (i) Credential
Access; and (ii) Discovery. In the entry for ATT&CK tactic Credential
Access, the “kill-chain-name” and “phase name” values are “mitre-attack”

66

Table 4.11: MITRE ATT&CK Enterprise matrix concept mapping to STIX
object type in STIX bundle [6].

ATT&CK concept STIX object type Custom type
Tactics x-mitre-tactic Yes
Techniques attack-pattern No
Mitigations course-of-action No
Data sources x-mitre-data-component Yes

and “credential-access” respectively. The actual semantic link or relationship
is describe as SRO in the STIX bundle. Hence, query functions are developed
to search for the STIX UUID or ATT&CK concept specific ID and filter out
the deprecated SDOs and SROs.

The flow to create the ontology is first to parse and process the raw
SDO and SRO data in the MITRE ATT&CK STIX bundle, then to create
a JSON-LD representation of the data and their semantic links. The
resulting JSON-LD can be directly imported into the Protégé ontology
software. First, the JSON-LD structure starts with the base ontology,
onto base as shown in Code 4.4. This mainly describes the ontology with the
“http://www.w3.org/2002/07/owl#Ontology” type and ATT&CK concepts
as general classes via “http://www.w3.org/2000/01/rdf-schema#Class” in
the ontology. Next, to populate the ontology with MITRE ATT&CK
information, a Python 3 script was developed to parse and process data
in the ATT&CK in STIX bundle and append them into the onto base.

Code 4.4: JSON-LD base ontology.

1 [
2 {
3 ”@id” : ” https : // attack . mitre . org /” ,
4 ”@type” : [
5 ”http ://www.w3 . org /2002/07/ owl#Ontology”
6] ,
7 ”http ://www.w3 . org /2000/01/ rdf−schema#l a b e l ” : ”MITRE ATT

&CK MATRIX” ,
8 ”http ://www.w3 . org /2000/01/ rdf−schema#comment” : ”Network

domain c o l l e c t i o n ”
9 } ,
10 {
11 ”@id” : ” https : // attack . mitre . org / techn iques ” ,
12 ”@type” : [
13 ”http ://www.w3 . org /2000/01/ rdf−schema#Class ”
14]
15 } ,

67

16 {
17 ”@id” : ” https : // attack . mitre . org / t a c t i c s ” ,
18 ”@type” : [
19 ”http ://www.w3 . org /2000/01/ rdf−schema#Class ”
20]
21 } ,
22 {
23 ”@id” : ” https : // attack . mitre . org /m i t i g a t i on s ” ,
24 ”@type” : [
25 ”http ://www.w3 . org /2000/01/ rdf−schema#Class ”
26]
27 } ,
28 {
29 ”@id” : ” https : // attack . mitre . org / datasource s ” ,
30 ”@type” : [
31 ”http ://www.w3 . org /2000/01/ rdf−schema#Class ”
32]
33 }
34]

This is shown in Algorithm 2, where all the techniques in the MITRE
ATT&CK Enterprise network domain are retrieved. Deprecated techniques
in the network domain are also filtered by get techniques by platform().
With the network domain techniques retrieved, each of the technique’s tactic
(kill chain phases) is obtained and appended into a temporary variable
tactics1 as shown from Line 5 to 11.

Next, the mitigation(s) for each technique are obtained via the func-
tion get mitigations by technique uuid(), where the UUID of the selected
network domain technique is provided. Similar to the previous procedure,
the deprecated mitigations are also filtered during retrieval and its result is
appended to tactics1 as shown from Line 12 to 18. The data source(s) of the
selected technique is obtained via the technique UUID and each of the results
is appended to tactics1. The selected technique together with the ontology
data in tactics1 are then appended into onto base. This is repetitively done
for all the techniques in the network domain in ATT&CK Enterprise matrix.
Lastly, the ATT&CK data sources, mitigations and tactics information are
appended into the onto base as shown in Line 28 to 39, and the onto base is
returned as the JSON-LD result. The Python 3 source code for this algorithm
is made available on Github [92].

A short snippet of the resulting JSON-LD output is shown in Code 4.5,
where MITRE ATT&CK threat T1040 and its relationships are described.
The “@id” denotes the ID for treat T1040 points directly to its URL on
MITRE ATT&CK webpage. The “@type” defines both ontology RDF class
and MITRE ATT&CK technique as its type. The RDF schema label is

68

used for defining the name of the threat. Furthermore, the RDF schema
“subClassOf” is used to define the semantic links to other SDOs such as
ATT&CK technique class, individual tactics, mitigations and data sources,
respectively.

Code 4.5: JSON-LD result of MITRE ATT&CK threat T1040 and its
respective semantic links.

1 {
2 ”@id” : ” https : // attack . mitre . org / techn iques /T1040” ,
3 ”@type” : [
4 ”http ://www.w3 . org /2000/01/ rdf−schema#Class ” ,
5 ” https : // attack . mitre . org / techn iques ”
6] ,
7 ” http ://www.w3 . org /2000/01/ rdf−schema#l a b e l ” : ”Network

S n i f f i n g ” ,
8 ”http ://www.w3 . org /2000/01/ rdf−schema#comment” : ”Adver sar i e s

may s n i f f network t r a f f i c to capture in fo rmat ion about
an environment , i n c l ud ing au then t i c a t i on mate r i a l passed
over the network . Network s n i f f i n g r e f e r s to us ing the
network i n t e r f a c e on a system to monitor or capture
in fo rmat ion sent over a wired or w i r e l e s s connect ion . An
adversary may p lace a network i n t e r f a c e in to promiscuous
mode to pa s s i v e l y a c c e s s data in t r a n s i t over the network
, or use span por t s to capture a l a r g e r amount o f data .\n
\nData captured v ia t h i s technique may inc lude user
c r e d en t i a l s , e s p e c i a l l y those sent over an insecure ,
unencrypted pro to co l . Techniques f o r name s e r v i c e
r e s o l u t i o n poison ing , such as [LLMNR/NBT−NS Poisoning and
SMB Relay] (https : // attack . mitre . org / techn iques /T1557
/001) , can a l s o be used to capture c r e d e n t i a l s to
webs i tes , prox ie s , and i n t e r n a l systems by r e d i r e c t i n g
t r a f f i c to an adversary .\n\nNetwork s n i f f i n g may a l s o
r e v ea l c on f i g u r a t i on d e t a i l s , such as running s e r v i c e s ,
v e r s i on numbers , and other network c h a r a c t e r i s t i c s (e . g .
IP addresses , hostnames , VLAN IDs) nece s sa ry f o r
subsequent Late ra l Movement and/ or Defense Evasion
a c t i v i t i e s . ” ,

9 ”http ://www.w3 . org /2000/01/ rdf−schema#subClassOf ” : [
10 {
11 ”@id” : ” https : // attack . mitre . org / techn iques ”
12 } ,
13 {
14 ”@id” : ” https : // attack . mitre . org / t a c t i c s /TA0006”
15 } ,
16 {
17 ”@id” : ” https : // attack . mitre . org / t a c t i c s /TA0007”
18 } ,
19 {

69

20 ”@id” : ” https : // attack . mitre . org /m i t i g a t i on s /M1032”
21 } ,
22 {
23 ”@id” : ” https : // attack . mitre . org /m i t i g a t i on s /M1041”
24 } ,
25 {
26 ”@id” : ” https : // attack . mitre . org / datasource s /DS0009”
27 } ,
28 {
29 ”@id” : ” https : // attack . mitre . org / datasource s /DS0017”
30 }
31]
32 }

The result of the import of the JSON-LD file into Protégé ontology
software is shown in Fig. 4.7, where on the left-hand side under the class
hierarchy, the data sources, mitigations, tactics and techniques in MITRE
ATT&CK network domain are listed with their respective sub-classes. On the
top right of Fig. 4.7, all usage of threat with ID T1040 is shown, which lists
all the sub-classes related to T1040, its “rdfs:comment” as the description of
the threat and the label or name of T1040.

4.5 Summary

In this chapter, each of the requisite components in the secure design
database were presented. The concept behind a security threat for system
design was discussed, together with the extension of the existing Weaver
relationship concept to accommodate the relationship type security threats.
This was followed by the discussion on various third-party security knowledge
base, where Network domain of MITRE ATT&CK Enterprise matrix was
chosen for the threat mitigation knowledge base. The mitigations in the
network domain were also analyzed which results in isolating seven types of
verifiable characteristics. Furthermore, the chapter also discussed extending
the threat mitigation knowledge base using ontology. The CTI sharing
framework, STIX was explored as the common CTI sharing approach to map
various third party database together. Finally, a threat mitigation ontology
that is based on MITRE ATT&CK Enterprise Network domain matrix was
presented.

70

Figure 4.7: Screenshot of the MITRE ATT&CK Enterprise network domain
ontology.

71

Algorithm 2 Generate the MITRE ATT&CK Enterprise network domain
representation in JSON-LD format.

Input: STIX bundle, bundle; Ontology base structure, onto base
Output: JSON-LD result, jsonld
1: function generate JSON-LD(bundle, onto base)
2: nw techniques = get techniques by platform(“Network”)
3: for all indiv technique in nw techniques do
4: tactic1 = [“@id”: prefix + “techniques”]
5: for all tactic in indiv technique.kill chain phases do
6: if tactic.phase name not in tactics all[] then
7: tactics all[]← tactic.phase name
8: end if
9: tactic1 = get tactic(tactic.phase name)

10: tactics1← ontology data entry for “tactics”
11: end for
12: technique mitigations= get mitigations by technique uuid(nw technique.id)
13: for all technique mitigation in technique mitigations do
14: if technique mitigation.external id not in mitigations all

then
15: mitigations all← technique mitigation.external id
16: end if
17: tactics1← ontology data entry for “mitigations”
18: end for
19: data srcs= get datasources id by technique uuid(indiv technique.id)
20: for all data src in data srcs do
21: if data src.external id not in datasrcs all then
22: datasrcs all← data src.external id
23: end if
24: tactics1← ontology data entry for “datasources”
25: end for
26: onto base← ontology data entry for indiv technique
27: end for
28: for data src in datasrcs all do
29: data src = get datasource by id(data src)
30: onto base← ontology data entry for data src
31: end for
32: for mitigation in mitigations all do
33: mitigation = get mitigation by id(mitigation)
34: onto base← ontology data entry for mitigation
35: end for

72

36: for tactic in tactics all do
37: tactic = get tactic(tactic)
38: onto base← ontology data entry for tactic
39: end for

return onto base
40: end function

73

Chapter 5

Automated Secure System De-
signer: SecureWeaver

In this section, the automated secure system designer SecureWeaver, a secu-
rity extended system designer that is based on the existing Weaver, is intro-
duced. First, the details of SecureWeaver’s security verification mechanism
are presented and the threat retrieval process from the service requirement
is described. Next, the implementation of the seven security verification
functions that correspond to the characteristics introduced in Section 4.2.1
is presented. These security verification functions provide full verification
coverage of the network domain in the MITRE ATT&CK Enterprise matrix.
The contents of this chapter is a part from the publications [72,73].

5.1 Mechanism Overview

SecureWeaver is implemented as a security extension of Weaver, which take
advantages of existing Weaver topology verification stage to further verify
concrete topology candidate that is otherwise output by Weaver as the
solution. This extension is illustrated in Fig. 5.1, where Weaver first loads
the intent file and begin the refinement process to transform the abstract
intent into a concrete system design. If the topology candidate is verified as
concrete, SecureWeaver security verification will begin its verification process.

To address the issue of threat mitigation that was introduced in Sec-
tion 4.1, a security verification algorithm which ensures all the threats
specified in the intent/service requirement are mitigated prior to Weaver
completing the system design is needed. At present, this thesis only considers
the threats that are explicitly defined in the service requirement, and a system
design is deemed secure subjected to all the defined threats are mitigated in
accordance to the required security level policy.

SecureWeaver first checks that the system design candidate contains
no abstract entities (components and relationships). If the system design
candidate is deemed concrete, the security verification will take place in

74

Figure 5.1: Flowchart of SecureWeaver mechanism.

two stages: (i) retrieving the explicitly defined threats from the service
requirement, and (ii) dynamically calling the applicable security verification
functions for system design verification. Next, the process is described in
detail, followed by a description of each security verification function in
Section 5.2.

5.1.1 Retrieving Threats from the Service Requirement

Since the threat(s) are defined in the service requirement and existing Weaver
do not have the mechanism to “propagate” the threat in the design topology,
the threat information are retrieved from the service requirement. Hence,
the initial procedure of the security verification is to search in the service
requirement input, t0 for all the explicitly defined component and relationship
type threats, nthreat and ethreat, and stores them into their respective threat
arrays. Then each entry in the component and relationship type threat
arrays is independently verified from a mitigation perspective. All threats in

75

the service requirement are verified for their mitigations by default, unless
explicitly marked to be omitted. All threats that are to be actually verified
are then assigned to the second part of the security verification process.

Besides that, each threat in the service requirement must specify how
a threat is considered as mitigated or not. It is designed as such because
a particular threat may have more than one mitigation. In SecureWeaver,
three verification modes were offered to check whether the defined threats
were negated or not:

• OR type verification
• AND type verification
• Verification based on a configurable security level

To implement this concept, each threat-mitigation pair (e.g., M1041.T1040)
is assigned a weight, which denotes how much of a certain mitigation method
mitigates a threat. The OR type verification mode denotes that at least
one mitigation method should be applied for the threat to be considered as
negated, thus it is equivalent to a minimum security level. In SecureWeaver,
the minimum security level is implemented by comparing the total accu-
mulated weight against a threshold equal to the minimum value of float

numbers in Python 3 (sys.float info.min). The AND type verification mode
denotes that all available mitigations related to the particular threat must be
met in order for that threat to be considered as neutralized. This is equivalent
to a maximum security level, which is implemented in SecureWeaver by
checking the total accumulated weight against a threshold equal to the
maximum value 1.0.

The configurable security level verification mode denotes that a threat is
considered to be negated if the total accumulated weight is larger or equal
than the required/configured security level, which is any value between 0.0
and 1.0. As mentioned earlier, the security verification for a certain threat
can be disabled by explicitly defining its configurable security level to the
value 0.0.

An example of a simple thin client system service requirement with a
threat defined is shown in Fig. 5.2, where the MITRE ATT&CK “Proxy”
(T1090) threat is defined in the ThinCient type component with the maxi-
mum security level 1.0 (AND type verification) under its properties.

5.1.2 Calling the Security Verification Functions

The second part of the security verification process is where the actual
system design is verified. The process first determines the target threat
corresponding security verification functions, then executes them accordingly.

76

Figure 5.2: Service requirement example that includes the threat T1090.

77

In order to determine appropriate security verification functions for the
target threat, the algorithm will retrieve all the mitigations applicable to
the given threat from the secure design database, and store their relevant
information in an array. SecureWeaver can also be specified explicitly on
the exact mitigation to be considered for verification, which in this case,
SecureWeaver will retrieve the specific security verification function that is
mapped to the given threat and mitigation pair.

After retrieving all the relevant security verification functions, the algo-
rithm will first verify if the array is not empty. If the array is empty, this
denotes that there is no known security verification function that cloud be
determined from the security design database, and the algorithm will return
the value False. From a security verification point of view, the return value
of False is equivalent to rejecting the selected topology state.

If the array is not empty, the threat-mitigation pair information in the
array will be individually parsed for their entity type as different sets of input
arguments is required for the security verification functions depending on
whether its a component or relationship type threat. After the type of threat
is identified, the algorithm will dynamically call the corresponding security
verification function via its name, and pass to its input all the required
arguments. At this point, the security verification function will perform the
actual verification and return its result.

The algorithm will retrieve the security level weight that is assigned to the
target threat-mitigation pair if the security verification function returns True.
The security level weight is then summed to the current total weight for the
target threat. On the other hand, if the security verification function returns
False, then the current total weight is not updated. The total accumulated
weight is rounded off to two decimal places after verifying all the mitigations
with their respective security verification function to prevent numerical float
calculation errors especially in AND verification mode.

Finally, depending on the security verification mode (OR, AND or secu-
rity level-based), the algorithm determines whether the total accumulated
weight for the target threat is larger or equal to the threshold mentioned in
Section 5.1.1. The second part of the security verification process will return
True if this condition is met, thus the corresponding threat is considered as
mitigated. On the contrary, the selected topology state will be discarded if
the second part of the security verification returns False. In this case, the
next topology state produced by Weaver iteratively verified until a secure
topology state is found.

78

5.2 Security Verification Functions

In this section, the security verification functions introduced in Section 4.2.1
are individually described in detail.

5.2.1 Application Isolation and Sandboxing Verification

The main objective of the MITRE ATT&CK mitigation “Application Isola-
tion and Sandboxing” (M1048) is to restrict the execution of code to a virtual
sandboxed environment or in-transit to an endpoint system. This mitigation
can be verified by SecureWeaver by checking for the existence of a concrete
component type like VirtualMachine in the topology state.

The isolation/sandboxing verification function is implemented in Se-
cureWeaver by calling a more generic subroutine, verify type(), which
searches for the given target node while traversing the topology from the
source node affected by the target threat. Specifically, this subroutine as
shown in Algorithm 3 verifies whether the component of the target type,
ntype, is a child of the input source component, nsrc.

Line 2 of Algorithm 3 shows the subroutine first retrieves all the rela-
tionships from nsrc to other components, and stores them into the array
nconn[]. For each component relationship nconn in nconn[], the subroutine
determines whether the component’s relationship type contain the “wire:”
prefix. The relationship “wire:” is defined Weaver as an internal connection.
If the condition is met, nconn’s destination component is then retrieved and
assigned to the destination component variable, ndst. Then, on Line 6, the
destination component type, ndst,type, is checked, and if ndst,type is found in
the ntype (as a list) or ndst,type is equivalent to ntype (as a single variable),
the subroutine will return the value True. This denotes that the searched
component type is in fact a child of the input source component. The syntax
“in” in Python is employed in this paper such that it is utilized to check if a
value exists in a sequence, such as a list or string.

If the check on Line 6 fails, the subroutine will check whether the ndst,type

is not equal to “wire:lan”. If the condition is satisfied, the type verification
subroutine is then called recursively with the component relationship destina-
tion, nconn,dst, as the next input source component. The type verification will
explore all internal Weaver connections of related to the input source node
except the components that are connected with relationship type “wire:lan”,
which denotes an external LAN connection instead of an internal connection.
If the target type is not found after exhaustively exploring all components,
i.e., the nconn[] array is empty, the subroutine will return the value False.

79

Algorithm 3 Verify existence of a node type.

Input: Topology, t; Source node, nsrc; Node type, ntype

Output: True or False
1: function verify type(t, nsrc, ntype)
2: nconn[]← all connected edges to nsrc

3: for all nconn do
4: if “wire:” in nconn,type then
5: ndst ← node nconn,dst

6: if ndst,type in ntype then
7: return True
8: end if
9: if nconn,type! = “wire : lan” then

10: return verify type(t, nconn,dst, ntype)
11: end if
12: end if
13: end for
14: return False
15: end function

The subroutine verify type() discussed above is called in the applica-
tion isolation and sandboxing verification function, where its arguments are:

1. The component affected by a threat as the input source component
2. VirtualMachine as the target component type

5.2.2 Firewall Use Verification

A MITRE ATT&CK threat such as “Exploit Public-Facing Application”
T1190 can be verified via the firewall use verification function that determines
whether the corresponding mitigation such as Exploit Protection (M1050) is
applied in the topology state.

The mitigation M1050 states that in order to safeguard a system with
public-facing component such as web application (WebApp) against exploits,
a firewall or equivalent component/mechanism is required. Hence, the
implementation of the firewall use verification algorithm is as the following:

1. Search for child-of target network component
2. Network-specific mitigation verification

The first part of the process is implemented as a child-of target component
specifically for network components, named search nw node(), as shown in
Algorithm 4. While search nw node() subroutine is mostly similar to the

80

type verification introduced in Algorithm 3, the main difference between
them is that Algorithm 3 only traverse within a single physical machine
excluding the network section (before wire : lan relationship type), whereas
Algorithm 4 traverse the child components inclusive of network components
until it locates a valid type of network component. In Algorithm 4 Line 8,
every wire : lan relationship type that is located are determined whether the
destination of the wire : lan relationship is a valid type of network component
such as L3SW and L2SW . If a valid network component type is found, the
selected wire : lan relationship is then stored in a list, connected nw[] as
shown in Algorithm 4 line 10 to 11.

Next, the search nw node() subroutine will search exhaustively for the
rest of the wire : lan relationships and add them into the list. The algorithm
will recurse with destination component of the relationship nconn,dst to find
the following child component if the component is not the valid type as shown
in Line 13.

After processing all the relationships in nconn[], the algorithm will check
whether the array connected nw[] is not empty. If the condition is met,
the algorithm will return connected nw[] array indicating a successful search
process. On the other hand, if the array is empty, the algorithm will return
False denoting the child-of target component does not have any relationship
to any network components.

If the first part of the firewall use verification (search process) is successful,
the result is passed to another verification subroutine verify nw node type().
This subroutine is shown in shown in Algorithm 5 where it verifies the
mitigation based on the type of the network component. First, the sub-
routine iterates though every network relationship, connected nw in the
connected nw[] array returned by Algorithm 4. The relationship(s) of each
network relationship destination, connected nwdst are retrieved and stored
in eNW as shown in Line 3. All relationships that are stored in eNW are
then processed, where the source of the object’s relationship is retrieved and
store into nNW as shown from Line 4 to 5. On Line 6, the nNW type is then
determined whether the type is found in the ntype input, such that ntype can
be either single type or a list of types which increases the flexibility of the
algorithm input handling. The algorithm will return True if the condition
is met indicating that the target type is a part of the affected component
network. On the other hand, the algorithm will retrieve all relationships
related to the eNW relationship source object if the condition is not satisfied,
and store it into an array, connected NW1[] as shown in Line 9. Following,
the connected NW1[] provided as the new input array into the algorithm to
be recurse for further verification.

Therefore, a wrapper function is implemented to verify firewall type com-

81

Algorithm 4 Search and verify the child-of a target component for network
related verification.
Input: Topology, t; Source node, nsrc

Output: True or False
1: function search nw node(t, nsrc)
2: nconn[]← all connected edges to nsrc

3: for all nconn do
4: if “wire:” in nconn,type then
5: if nconn,type! = “wire : lan” then
6: return search nw node(t, nconn,dst)
7: end if
8: else
9: nNW ← node nconn,dst

10: if nNW,type is a valid switch type then
11: connected nw[]← nconn

12: else
13: return search nw node(t, nconn,dst)
14: end if
15: end if
16: end for
17: if connected nw[]! = ∅ then
18: return connected nw[]
19: else
20: return False
21: end if
22: end function

ponent, which first calls the Algorithm 4 subroutine to obtain the networks
the target component is connected to, followed by Algorithm 5 subroutine
with the result of Algorithm 4 as its argument to determine whether a
Firewall type component is apart of the target component network.

5.2.3 Network Segmentation Verification

Network segmentation is a technique used to separate vulnerable services and
resources from the rest of the system components. For example, the “Network
Segmentation” (M1030) mitigation from the ATT&CK framework which
addresses threat T1190 recommends segmenting external facing services and
servers via methods such as Demilitarized Zone (DMZ) to isolate them from
the rest of the network.

82

Algorithm 5 Search and verify the type of mitigation based on network
component.

Input: Topology, t; Connected network, connected nw[]; Node type, ntype

Output: True or False
1: function verify nw node type(t, connected nw[], ntype)
2: for all connected nw[] do
3: eNW ← all connected edges to connected nwdst

4: for all eNW do
5: nNW ← node eNW,src

6: if nNW,typ in ntype then
7: return True
8: else
9: connected NW1[]← all connected edges to eNW,src

10: if verify nw node type(t, connected NW1[], ntype) then
11: return True
12: end if
13: end if
14: end for
15: end for
16: return False
17: end function

The conditions that are used to verify whether a component is segmented
or not from a network point of view are shown in Fig. 5.3. Example 1
shows the case in which a component with a threat associated to it is
connected to two LAN switches, and some other components are connected
to one of the LAN switches. In such a case, the component under threat is
defined as a no network segmentation scenario. Note that a component under
threat connected to only one network is also deemed as having no network
segmentation if the total number of networks in the entire topology is one,
as shown in Example 2.

Example 3 in Fig. 5.3 illustrates a segmented network topology state
which has two LAN components with other types of components connected
to them, but no component is connected to both LANs. Example 4 illustrates
one component that is connected to two LANs, whereas the component under
threat is connected to only one LAN. This case is also considered to be
network segmented, since it is not possible to directly access another LAN
from the component under threat without compromising the component that
is connected to both LANs.

To implement the network segmentation verification algorithm a wrapper

83

Example 1 Example 2

Example 3 Example 4

Figure 5.3: Examples of possible topology states for network segmentation
verification.

function was implemented, which calls first the Algorithm 4 subroutine
to determine which networks the input source component is connected to.
The array of connected networks returned by this subroutine returns is
then processed by a second subroutine that checks the existence of network
segmentation for the input source component.

This second subroutine will first check the network type component
relationships that are stored in connected nw[], which are the network
connections from the initial input source component identified by the first
subroutine. If there is more than one network type component relationship
in connected nw[], it means that the input source component is connected
to more than one network segments, and the subroutine will return False.
Otherwise the subroutine will return True, except for the case when there is
only one network in total, when it returns False, as discussed for Example
2 in Fig. 5.3.

5.2.4 Configuration Settings Verification

Some of the threats in the ATT&CK framework are mitigated via specific
software or hardware-related configuration settings and actions, such as
“Privileged Account Management” (M1026) or “Code Signing” (M1045).
Since the current SecureWeaver focuses on networked system architecture
design, such configuration-related mitigations are implemented as user-
definable assumptions in the secure design database, as it was explained

84

in Section 4.2.2. Users may define whether a specific software or hardware-
related configuration can be assumed to be present or not in the actual
implementation of the designed system. Note that the system administrators
should ensure the assumed configuration mitigation is actually implemented
when the designed system is deployed.

The configuration verification function retrieves the configuration miti-
gation assumptions from the secure design database based on the provided
threat-mitigation pair and checks whether the setting is defined as True. If
this is the case, the value is appended to a dictionary of configuration miti-
gation assumptions for the component under threat (creating this dictionary
if it doesn’t exist yet). When SecureWeaver verifies that a given topology
state is secure, it will take into account the configuration mitigation status
for that state.

5.2.5 Traffic Filtering Verification

Some network-related threats, such as Man-in-the-Middle (MITM), Denial
of Service (DoS), unsanctioned proxy, and many more can be mitigated
via traffic filtering. This typically requires the use of a software firewall
or/and specialized network appliances to filter the ingress/egress traffic. The
type or combination of network traffic filters that is required to mitigate a
threat is determined by the mitigation description for that particular threat,
interpreted by an expert who will input the corresponding notation in the
secure design database.

To verify for hardware-based network-filtering mitigation, the verification
function must check that there is a valid type of network appliance for
network filtering such as a Firewall component. On the other hand, to
verify for a software firewall and its configuration settings, the verification
function must check the assumed configuration settings in the secure design
database. Hence, this requires the verification function to choose or combine
the network type verification introduced in Section 5.2.2, and the configura-
tion settings verification discussed in Section 5.2.4 to determine whether a
mitigation is suitable for a particular threat.

The corresponding verification function is implemented as a wrapper
function that calls both the aforementioned verification functions. The
wrapper function first checks the secure design database for the type of
the verification method: (i) hardware; (ii) software; (iii) require either one
(OR); and (iv) require both (AND). Then the wrapper function calls the
related verification function according to the required method to mitigate
the selected threat. The hardware-based component type to be verified in
the selected topology state by the network type verification is the Firewall

85

component type, while the configuration settings function will verify whether
the software firewall configuration assumption is set to True in the secure
design database. If the function calls are successful according to the required
mitigation method, then the traffic filtering verification function will return
True.

5.2.6 Secure Protocol Use Verification

While most threats in the ATT&CK framework apply to components, there
are also instances of threats that refer to relationships between components.
For example, the network communication between two endpoints may be
susceptible to sniffing, as an adversary may be able to capture valuable
information if the connection is not secured sufficiently. In order to model
such a scenario, the logical and conceptual connections is introduced in
Section 4.1.2, and the corresponding refinement rules in Section 4.1.3 to
ensure that the designed system is secure even for in-transit data.

To verify whether a conceptual connection represented by a group of
logical connections combination is secure, a secure protocol verification
function is implemented where it checks the security of the application layer
and network layer protocols in a given topology state. The verification
function, shown in Algorithm 6, takes the component source and destination
of the relationship (edge), esrc and edst, and the relationship threat, ethreat,
information as the input. The algorithm determines all the relationships
connected to the relationship source component, esrc, and stores them in the
array econn[], then each array element, econn, is processed. If the type of econn
has the prefix “wire:” but is not “wire:lan”, it means that particular econn is
not a logical connection; then the algorithm will call itself recursively with
the destination of econn replacing the initial esrc, so as to verify the child
of the source component in esrc as shown on Lines 4–5. If the result of the
recursion is True, the entire algorithm will return True, denoting that a valid
mitigation has been verified.

If the condition on Line 4 is not met, this means that the selected
relationship is a logical connection. Then the algorithm checks whether the
destination of the selected relationship is equal to the input edst, as shown
on line 9. If this is the case, it means that the logical connection is an
application layer protocol in the TCP/IP model. If the condition on line 9
is not met, it means that the logical connection is a network layer protocol.
The actual protocol for the logical connection is then verified with reference
to the secure design knowledge base, as shown on lines 10 and 15. If the
protocol for the logical connection is found in the secure design knowledge
base, the secure protocol verification function will return True, since only

86

Algorithm 6 Search and verify the mitigation of threats in conceptual
connections
Input: Edge source, esrc; Edge destination, edst; Edge threat, ethreat
Output: True or False
1: function verify CC(esrc, edst, ethreat)
2: econn[]← all connected edges to esrc
3: for all econn do
4: if econn,type prefix == “wire:” and econn,type ! = “wire:lan” then
5: if verify CC(econn,dst,edst, ethreat) then
6: return True
7: end if
8: else
9: if econn,dst == edst then

10: CCmitigation ← econn mitigation info
11: if CCmitigation,threat == ethreat and CCmitigation! = ∅ then
12: return True
13: end if
14: else
15: CCmitigation ← econn mitigation info
16: if CCmitigation,threat == ethreat and CCmitigation! = ∅ then
17: return True
18: end if
19: end if
20: end if
21: end for
22: return False
23: end function

secure protocols are recorded in the knowledge base.

5.2.7 Intrusion Detection and Prevention System (IDPS)
Use Verification

While firewalls may limit the inbound or outbound access between networks,
firewall filtering rules must configured in advance for this purpose. For
inbound traffic, in particular, a “hole” must be opened to allow the traffic
pass through the firewall. A Network Intrusion Detection System (NIDS)
or an Intrusion Detection and Prevention System (IDPS) is often deployed
in conjunction with a firewall, and its functions is to analyze the traffic
based on an internal database that contains intrusion detection signatures of

87

attacks on specific applications. When a suspicious activity is detected, an
NIDS will typically send an alert to the management terminal for the system
administrator to take further action, whereas an IDPS will log the attempt
and actively try to prevent the attack.

In order to verify whether an NIDS or IDPS are present in a given
topology state, a wrapper function is implemented to search for NIDS or
IDPS type components. This function calls the two subroutines shown in
Algorithm 4 and Algorithm 5, providing the list of target components as the
target type input. If either an NIDS or IDPS type component is found on the
path traversing between two networks, the IDPS use verification function
will return True.

5.3 Summary

In this chapter, the verification mechanism of SecureWeaver and its security
verification functions were presented. Details of the security verification
mechanism were presented first, thus, the threat retrieval process from
the input service requirement was described, followed by the description of
dynamic calling process of security verification function. Besides that, the
seven security verification functions that provide full verification coverage of
the Network domain in MITRE ATT&CK Enterprise matrix were described
in detail.

88

Chapter 6

Secure System Implementation
Case Studies

In this chapter, several case studies on secure system implementation are ex-
plored. The secure system implementation is explored using an IoT hardware
platform, MkIoT, where the first case study investigates the implementation
of secure end-to-end communication, and the second case study explores the
implementation of secure configurations. The results from the case studies
are used as motivating evaluations for the thesis. The content of this chapter
is a part from the publication [93] (note that the paper includes an additional
case study about IoT life-cycle management).

6.1 Hardware Platform Design

A set of design requirements is typically utilized in the design phase of a
hardware platform. The typical requisites that should be considered in the
design decision [94,95], are as follows:

• Ease of development
• Data acquisition, processing and storage
• Connectivity
• Power
• Cost
• Security

Ease of development looks into factors such as the availability, accessibility,
and quality of documentations and tools relevant to the development of
a hardware. Data acquisition, processing and storage are generally the
quantitative requirements that is defined by the target application for the
hardware, as well as power requirements and cost. The target applica-
tion also determines the type of connectivity (wireless/wired) and also the
power requirement (battery/wall-powered). Last but not least, the security
requirement determines the required hardware features such as hardware-

89

based cryptography engine, secure boot, and flash encryption. The design
requirements will be utilized to describe the features of hardware platform
that used in the case studies.

6.2 Hardware Platform Implementation

With the purpose of being representative for generic IoT applications, MkIoT
should target common maker use cases and applications. The requirements
presented in Section 6.1 are employed for various use cases, such as: simple
smart home device, remote sensing in agriculture, asset tracking and many
more applications that shares similar architecture. Hence, the microcon-
troller unit (MCU) used in the MkIoT should meet the requirements listed
below:

• Widely used in maker communities
• Supported by Arduino
• Adequate processing capability and storage while being affordable

For connectivity in MkIoT, a common bus interface with off-the-shelf
sensor and industrial modules should be present for wired connectivity,
while it should also have WiFi and Low-power WAN (LPWAN) for wireless
communication. Furthermore, MkIoT should be able to be powered either
through wired or battery power.

Figure 6.1: External view of the MkIoT hardware platform.

90

Figure 6.2: Internal view of the MkIoT hardware platform.

MkIoT is composed of two main parts, as shown in Figs. 6.1 and 6.2:
(i) MCU module and (ii) expansion daughterboard. The MCU is based on
Espressif ESP32, a popular MCU in the maker communities and have a large
varieties of tutorial and examples which satisfies the ease of development
criteria. The MCU module is an off-the-shelf module, the M5Sstack ESP32
basic Core IoT development kit, which is a relatively affordable and accessible
MCU module. It features a dual-core MCU, which runs up to 600 MIPS,
448KB ROM and 520KB SRAM. Besides, it also able to store large amount of
data locally as it supports multiple external flash chips through its QSPI bus.
The ESP32 module is equipped with both WiFi and Bluetooth Low Energy
(BLE), which partly satisfy the connectivity requirement. The M5Stack
module also supports both wired and battery operation, which satisfy the
flexible power requirement.

Typically, the more wired or wireless interfaces a device has, the more
diverse the application domains the reference hardware platform can explore.
Thus, for the design of MkIoT, emphasis is placed on both wired and wireless
interfaces/connectivity.

6.2.1 Wired Connectivity

The ESP32 MCU comes standard with I2C, I2S, SPI, UART and CAN bus.
To allow MkIoT to communicate via industrial standard communication,
RS485, a daughterboard was developed to provide RS485 communication
though both NXP SC16IS752IBS I2C-to-dual UART interface and LTC1480
for ultra-low power RS485 transceiver. Besides that, a DC step-up boost

91

regulator was also added to the daughterboard to provide a 12V power rail
to any industrial device powering off MkIoT.

6.2.2 Wireless Connectivity

In order to support LPWAN, a Sigfox transceiver, Wisol SFM10, was
included in the daughterboard design. Sigfox is selected as the candidate
for LPWAN communication implementation due to the reasons as below:

1. Relatively simple device onboarding process to connect an IoT device
to Sigfox network

2. High ease of development
3. Low cost
4. Low power consumption for battery use cases

An illustration of Sigfox use case is shown in Fig. 6.3. There are two SFM10
transceivers that were tested in this chapter, which are RC3 for Japan
and RC4 for Asia Pacific countries, such as Malaysia. The development
and testing was done first in Ishikawa, Japan and later in Kuala Lumpur,
Malaysia, and in both cases E2E communication from MkIoT to the Sigfox
cloud was successful. One of the drawbacks observed was the absence of signal
indoors, rendering it useless in such an environment. The u-blox SAM-M8Q
GPS module was also included to support asset tracking use cases.

Figure 6.3: Example use case of Sigfox end-to-end communication.

The schematic for the MkIoT daughterboard is shown in Fig. 6.4, where
the circuit design for the RS485, Sigfox transceiver, GPS module, and power
regulation are shown.

92

11

22

33

44

D
D

C
C

B
B

A
A

12

J1 H
ea

de
r 2

H

V
BA

T

G
N

D

10
uF

C
10

V
C

C
_3

.3

G
N

D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

P1 H
ea

de
r 1

5X
2

G
N

D
1

G
N

D
2

G
N

D
3

G
N

D
4

SY
SC

LK
5

G
PI

O
8

6

G
PI

O
7

7

G
PI

O
6

8

G
PI

O
5

9

G
PI

O
4

10

C
PU

LE
D

11
R

A
D

IO
LE

D
12

G
PI

O
9

13

U
A

RT
TX

14
U

A
RT

R
X

15

R
X

LE
D

/D
BG

_D
AT

A
16

TX
LE

D
/D

BG
_C

LK
17

D
BG

_E
N

18

R
ST

_N
19

G
N

D
20

V
D

D
_I

O
21

G
N

D
22

G
PI

O
0

23
G

PI
O

1
24

G
PI

O
2

25
G

PI
O

3
26

G
N

D
27

G
N

D
28

G
N

D
29

R
F_

IO
30

G
N

D
31

U
1

SF
M

10
R

4

G
N

D

10
0p

F

C
9

47
nH

L1 In
du

ct
or

0R
1

Re
s

Se
m

i

R
1

RE
2

D
E

3
D

4

G
N

D
5

A
6

B
7

V
C

C
8

U
2

LT
C

14
80

Pr
ob

e
1

Sh
ie

ld
2

J2 SM
A

_9
0d

eg

G
N

D

SI
G

FO
X

_R
X

SI
G

FO
X

_T
X

10
0K

R
2

Re
s

Se
m

i

V
C

C
_3

.3

10
0n

F

C
8

G
N

D

V
C

C
_3

.3

PG
N

D
1

EN
2

FR
EQ

3

FB
4

SG
N

D
5

V
D

D
6

B
O

O
T

7

SW
8

U
3

LM
R

61
42

8
G

N
D

G
N

D 10
0K

R
3

Re
s

Se
m

i
11

.5
K

R
4

Re
s

Se
m

i
39

pF
C

1

G
N

D

10
0K

R
5

Re
s

Se
m

i

V
C

C
_5

V

49
.9

R
6

Re
s

Se
m

i

V
C

C
_5

V

V
C

C
_5

V
_D

R
O

P
V

C
C

_5
V

_D
R

O
P

1u
F

C
5

G
N

D

6.
8u

H

L2 In
du

ct
or

D
1 30
V

 2
A

1u
F

C
2 G

N
D

V
C

C
_1

2V

V
C

C
_1

2V

22
uF

C
6

22
uF

C
7

1 2 3 4

T1 H
ea

de
r 4

H

1 2 3 4

T2 H
ea

de
r 4

H

1 2 3 4

T3 H
ea

de
r 4

H

V
C

C
A

1

G
N

D
2

A
3

D
IR

5
V

C
C

B
6

B
4

U
4

74
LV

C1
T4

5

G
N

D

12
V

_E
N

G
N

D
12

V
_E

N

V
C

C
_5

V
_D

R
O

P
V

C
C

_3
.3

G
N

D

G
N

D
1

G
N

D
4

G
N

D
5

G
N

D
6

SD
A

9

TX
D

13

SC
L

12

V
C

C
17

R
X

D
14

SA
FE

B
O

O
T_

N
8

TI
M

EP
U

LS
E

7

V
_B

C
K

P
3

V
C

C
_I

O
2

G
N

D
10

G
N

D
11

G
N

D
15

G
N

D
16

G
N

D
20

RE
SE

T_
N

18

EX
TI

N
T

19

U
5

SA
M

-M
8Q

G
N

D

R
X

A
1

V
D

D
5

I2
C

6

N
C

9

V
D

D
13

V
SS

12

X
TA

L2
4

IR
Q

14

A
1

8
A

0
7

X
TA

L1
3

RE
SE

T
2

SC
L

10

SD
A

11

CT
SB

15
RT

SB
16

D
SR

B
17

D
TR

B
18

C
D

B
19

R
IB

20

V
SS

21
TX

B
22

R
X

B
23

D
SR

A
24

D
TR

A
25

C
D

A
26

R
IA

27

V
D

D
28

V
SS

29

RT
SA

30

CT
SA

31

TX
A

32

V
SS

_C
EN

TE
RP

A
D

33

U
6

SC
16

IS
75

2I
B

S

2

3 1

4

Y
1

1.
84

32
M

H
z

V
C

C
_3

.3

G
N

D

1K
R

7
IR

Q

V
C

C
_3

.3

G
N

D V
C

C
_3

.3

R
ST

22
uF

C
3

22
uF

C
4

SC
L

SD
A

SC
L

SD
A

SI
G

FO
X

_T
X

SI
G

FO
X

_R
X

R
S4

85
_B

R
S4

85
_A

R
S4

85
_A

R
S4

85
_B

V
C

C
_1

2V

G
N

D

R
S4

85
_R

X
R

S4
85

_T
X

R
S4

85
_R

TS
IN

V

R
S4

85
_R

TS
IN

V

N
ot

e:
 T

o
us

e
au

to
 R

S-
48

5
RT

S_
IN

V
 c

on
tro

l,
en

ab
le

 R
TS

C
O

N
 a

t E
FC

R
 b

it
4

an
d

di
sa

bl
e A

ut
o-

RT
S_

IN
V

 a
nd

 A
ut

o-
CT

S_
IN

V
 a

t E
FR

 b
it

6
an

d
7

N
ot

e:
 E

na
bl

e
R

S-
48

5
m

ul
tid

ro
p

m
od

e
at

 E
FC

R
 b

it
0

N
ot

e:
 E

na
bl

e
R

S-
48

5
RT

SI
N

V
ER

 a
t E

FC
R

 b
it

5

R
S4

85
_R

X

R
S4

85
_T

X

TX
_R

EA
D

Y

V
C

C
_3

.3

1u
F

C1
1

1u
F

C
12

10
uF

C
13

1u
F

C
14

1u
F

C
15

G
PI

O
23

G
PI

O
19

G
PI

O
3

G
PI

O
16

SD
A

G
PI

O
2

G
PI

O
12

G
PI

O
15

H
PW

R

EX
T_

SC
K

G
N

D

V
BA

T
V

C
C

_5
V

G
PI

O
34

G
PI

O
35

G
PI

O
36

EN G
PI

O
25

G
PI

O
26

G
PI

O
13

V
C

C
_3

.3
G

PI
O

1
G

PI
O

17
SC

L
G

PI
O

5

G
PI

O
0

G
N

D

EX
T_

G
PI

O
0

EX
T_

G
PI

O
1

EX
T_

G
PI

O
2

EX
T_

G
PI

O
3

EX
T_

G
PI

O
4

EX
T_

G
PI

O
5

EX
T_

G
PI

O
6

EX
T_

G
PI

O
7

4.
7K

R
9

Re
s

Se
m

i

4.
7K

R
10

Re
s

Se
m

iV
C

C
_3

.3

V
C

C
_3

.3

SC
L

SD
A

22
uF

C
16

EX
T_

G
PI

O
0

1K
R

8

1u
F

C
17

PIC101 PIC102
COC

1

PIC201 PIC202
COC

2
PIC301 PIC302

COC
3

PIC401 PIC402
COC

4

PIC501 PIC502
COC

5
PIC601 PIC602

COC
6

PI
C7
01

PI

C7
02

COC
7

P
I
C
8
0
1

P
I
C
8
0
2

COC
8

PI
C9

01

PI
C9

02

COC
9

PIC1001 PIC1002
COC

10
PIC1101 PIC1102

COC
11

PIC1201 PIC1202
COC

12
PIC1301 PIC1302

COC
13

PIC1401 PIC1402
COC

14
PIC1501 PIC1502

COC
15

PIC1601 PIC1602
COC

16
PIC1701 PIC1702

COC
17

P
I
D
1
0
1

P
I
D
1
0
2
 COD
1

P
I
J
1
0
1

P
I
J
1
0
2

COJ
1

P
I
J
2
0
1

P
I
J
2
0
2
 COJ
2

PIL101 PIL102 COL
1

PIL201 PIL202 COL
2 P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7

P
I
P
1
0
8

P
I
P
1
0
9

P
I
P
1
0
1
0

P
I
P
1
0
1
1

P
I
P
1
0
1
2

P
I
P
1
0
1
3

P
I
P
1
0
1
4

P
I
P
1
0
1
5

P
I
P
1
0
1
6

P
I
P
1
0
1
7

P
I
P
1
0
1
8

P
I
P
1
0
1
9

P
I
P
1
0
2
0

P
I
P
1
0
2
1

P
I
P
1
0
2
2

P
I
P
1
0
2
3

P
I
P
1
0
2
4

P
I
P
1
0
2
5

P
I
P
1
0
2
6

P
I
P
1
0
2
7

P
I
P
1
0
2
8

P
I
P
1
0
2
9

P
I
P
1
0
3
0

COP
1

PI
R1

01

PI
R1

02
 COR
1 PIR201 PIR202 COR

2

PIR301 PIR302 COR
3

PIR401 PIR402 COR
4

P
I
R
5
0
1

P
I
R
5
0
2

COR
5

PIR601 PIR602 COR
6

PI
R7

01

PI
R7

02

COR
7

PI
R8

01

PI
R8

02

COR8

P
I
R
9
0
1

P
I
R
9
0
2

COR
9

PI
R1

00
1

PI
R1

00
2

COR
10

P
I
T
1
0
1

P
I
T
1
0
2

P
I
T
1
0
3

P
I
T
1
0
4
 COT

1

P
I
T
2
0
1

P
I
T
2
0
2

P
I
T
2
0
3

P
I
T
2
0
4
 COT2

P
I
T
3
0
1

P
I
T
3
0
2

P
I
T
3
0
3

P
I
T
3
0
4
 COT

3

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

P
I
U
1
0
1
0

P
I
U
1
0
1
1

P
I
U
1
0
1
2

P
I
U
1
0
1
3

P
I
U
1
0
1
4

P
I
U
1
0
1
5

P
I
U
1
0
1
6

P
I
U
1
0
1
7

P
I
U
1
0
1
8

P
I
U
1
0
1
9

P
I
U
1
0
2
0

P
I
U
1
0
2
1

P
I
U
1
0
2
2

P
I
U
1
0
2
3

P
I
U
1
0
2
4

P
I
U
1
0
2
5

P
I
U
1
0
2
6

P
I
U
1
0
2
7

P
I
U
1
0
2
8

P
I
U
1
0
2
9

P
I
U
1
0
3
0

P
I
U
1
0
3
1
 COU
1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8
 COU

2

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
3

P
I
U
3
0
4

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
3
0
7

P
I
U
3
0
8

COU
3

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
3

P
I
U
4
0
4

P
I
U
4
0
5

P
I
U
4
0
6

COU
4

P
I
U
5
0
1

P
I
U
5
0
2

P
I
U
5
0
3

P
I
U
5
0
4

P
I
U
5
0
5

P
I
U
5
0
6

P
I
U
5
0
7

P
I
U
5
0
8

P
I
U
5
0
9

P
I
U
5
0
1
0

P
I
U
5
0
1
1

P
I
U
5
0
1
2

P
I
U
5
0
1
3

P
I
U
5
0
1
4

P
I
U
5
0
1
5

P
I
U
5
0
1
6

P
I
U
5
0
1
7

P
I
U
5
0
1
8

P
I
U
5
0
1
9

P
I
U
5
0
2
0
 COU

5

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
9

P
I
U
6
0
1
0

P
I
U
6
0
1
1

P
I
U
6
0
1
2

P
I
U
6
0
1
3

P
I
U
6
0
1
4

P
I
U
6
0
1
5

P
I
U
6
0
1
6

P
I
U
6
0
1
7

P
I
U
6
0
1
8

P
I
U
6
0
1
9

P
I
U
6
0
2
0

P
I
U
6
0
2
1

P
I
U
6
0
2
2

P
I
U
6
0
2
3

P
I
U
6
0
2
4

P
I
U
6
0
2
5

P
I
U
6
0
2
6

P
I
U
6
0
2
7

P
I
U
6
0
2
8

P
I
U
6
0
2
9

P
I
U
6
0
3
0

P
I
U
6
0
3
1

P
I
U
6
0
3
2

P
I
U
6
0
3
3
 COU
6

PIY101
PIY102

PIY103
PIY104 COY

1

P
I
U
3
0
2

P
I
U
4
0
3

NL
12
V0
EN

P
I
P
1
0
5

NLE
N

P
I
U
4
0
4

P
I
U
6
0
1
7
 NL
EX

T0
GP

IO
0

P
I
U
6
0
1
8
 NL
EX

T0
GP

IO
1

P
I
U
6
0
1
9
 NL
EX

T0
GP

IO
2

P
I
U
6
0
2
0
 NL
EX

T0
GP

IO
3

P
I
U
6
0
2
4
 NL
EX

T0
GP

IO
4

P
I
U
6
0
2
5
 NL
EX

T0
GP

IO
5

P
I
U
6
0
2
6
 NL
EX

T0
GP

IO
6

P
I
U
6
0
2
7
 NL
EX

T0
GP

IO
7

P
I
P
1
0
1
2
 NL
EX
T0
SC
K

PIC202
PIC302

PIC402

PIC502
PIC602

PI
C7

02

P
I
C
8
0
2

PIC1002
PIC1102

PIC1202
PIC1302

PIC1402
PIC1502

PIC1602
PIC1702

P
I
J
1
0
2

P
I
J
2
0
2

PIL102

P
I
P
1
0
2

P
I
P
1
0
4

P
I
P
1
0
6

PIR401

P
I
T
1
0
1

P
I
T
2
0
1

P
I
T
3
0
1

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
2
0

P
I
U
1
0
2
2

P
I
U
1
0
2
7

P
I
U
1
0
2
8

P
I
U
1
0
2
9

P
I
U
1
0
3
1

P
I
U
2
0
5

P
I
U
3
0
1

P
I
U
3
0
5

P
I
U
4
0
2

P
I
U
4
0
5

P
I
U
5
0
1

P
I
U
5
0
4

P
I
U
5
0
5

P
I
U
5
0
6

P
I
U
5
0
1
0

P
I
U
5
0
1
1

P
I
U
5
0
1
5

P
I
U
5
0
1
6

P
I
U
5
0
2
0

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
1
2

P
I
U
6
0
2
1

P
I
U
6
0
2
9

P
I
U
6
0
3
3

PIY102
P
I
P
1
0
2
3

NLG
PIO

0 P
I
P
1
0
1
3

NL
GP

IO
1

P
I
P
1
0
2
0
 NL
GP

IO
2

P
I
P
1
0
1
4
 NL
GP

IO
3

P
I
P
1
0
1
9

NL
GP

IO
5

P
I
P
1
0
2
2
 NL
GP
IO
12

P
I
P
1
0
2
1

NL
GP
IO
13

P
I
P
1
0
2
4
 NL
GP
IO
15

P
I
P
1
0
1
6
 NL
GP
IO
16

P
I
P
1
0
1
5

NL
GP
IO
17

P
I
P
1
0
1
0
 NL
GP
IO
19

P
I
P
1
0
8
 NL
GP
IO
23

P
I
P
1
0
7

NL
GP
IO
25

P
I
P
1
0
9

NL
GP
IO
26

P
I
P
1
0
2
5

NL
GP
IO
34

P
I
P
1
0
1

NL
GP
IO
35

P
I
P
1
0
3

NL
GP
IO
36

P
I
P
1
0
2
6

P
I
P
1
0
2
8

P
I
P
1
0
3
0
 NLH

PWR

PI
R7

02

P
I
U
6
0
1
4

NLI
RQ

PIC102
PIR301

PIR402
P
I
U
3
0
4

P
I
C
8
0
1

PIR202
P
I
U
1
0
1
9

PI
C9

01

P
I
U
1
0
3
0

PI
C9

02
 PIL101 PIR1
02

P
I
D
1
0
2

PIL202

P
I
U
3
0
8

P
I
J
2
0
1

PI
R1

01

P
I
R
5
0
2

P
I
U
3
0
3

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

P
I
U
1
0
1
0

P
I
U
1
0
1
1

P
I
U
1
0
1
2

P
I
U
1
0
1
3

P
I
U
1
0
1
6

P
I
U
1
0
1
7

P
I
U
1
0
1
8

P
I
U
1
0
2
3

P
I
U
1
0
2
4

P
I
U
1
0
2
5

P
I
U
1
0
2
6

P
I
U
5
0
7

P
I
U
5
0
8

P
I
U
5
0
1
4

P
I
U
5
0
1
8

P
I
U
5
0
1
9

P
I
U
6
0
3

PIY103

P
I
U
6
0
4

P
I
U
6
0
9

P
I
U
6
0
1
5

P
I
U
6
0
1
6

P
I
U
6
0
3
1

PIY101

P
I
T
1
0
3

P
I
T
2
0
3

P
I
T
3
0
3

P
I
U
2
0
6

NL
RS
48
50
A

P
I
T
1
0
4

P
I
T
2
0
4

P
I
T
3
0
4

P
I
U
2
0
7

NL
RS
48
50
B

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
6
0
3
0
 NL
RS

48
50

RT
SI

NV

P
I
U
2
0
4

P
I
U
6
0
3
2
 NL
RS
48
50
RX

P
I
U
2
0
1

P
I
U
6
0
1
 NL
RS
48
50
TX

PI
R8

02

P
I
U
6
0
2

NLR
ST

P
I
P
1
0
1
7

P
I
R
9
0
1

P
I
U
5
0
1
2

P
I
U
6
0
1
0

NLS
CL

P
I
P
1
0
1
8

PI
R1

00
1

P
I
U
5
0
9

P
I
U
6
0
1
1

NLS
DA

P
I
U
1
0
1
5

P
I
U
6
0
2
2

NL
SI

GF
OX

0R
X

P
I
U
1
0
1
4

P
I
U
6
0
2
3

NL
SI

GF
OX

0T
X

P
I
U
5
0
1
3
 NL
TX
0R
EA
DY

P
I
J
1
0
1

P
I
P
1
0
2
9

NL
VB
AT

PI
C7
01

PIC1001
PIC1101

PIC1201
PIC1301

PIC1401
PIC1501

PIC1601
PIC1701

P
I
P
1
0
1
1

PIR201

PI
R7

01

PI
R8

01

P
I
R
9
0
2

PI
R1

00
2

P
I
U
1
0
2
1

P
I
U
2
0
8

P
I
U
4
0
6

P
I
U
5
0
2

P
I
U
5
0
3

P
I
U
5
0
1
7

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
1
3

P
I
U
6
0
2
8

PIY104

NL
VC
C0
30
3

PIC601

PIL201

P
I
P
1
0
2
7

PIR601

P
I
U
3
0
7

NL
VC
C0
5V

PIC501
P
I
R
5
0
1

PIR602
P
I
U
3
0
6

P
I
U
4
0
1

NL
VC
C0
5V
0D
RO
P

PIC101

PIC201
PIC301

PIC401
P
I
D
1
0
1

PIR302

P
I
T
1
0
2

P
I
T
2
0
2

P
I
T
3
0
2

NL
VC
C0

12
V

F
ig
u
re

6.
4:

M
k
Io
T

d
au

gh
te
rb
oa
rd

sc
h
em

at
ic
.

93

6.3 Case Study #1: Secure End-to-End Com-

munication

For case study #1, an end-to-end (E2E) application prototype is imple-
mented, in which the IoT device sends data to or receives data from the
cloud. Hence, focus is placed on the device and E2E communication integrity
and security. The architectures and security practices that are relatively
straightforward for a maker to implement are explored, and the pitfalls
encountered throughout the process are analyzed. In this analysis, it is
assumed that the public cloud provider implements best security practices
to safeguard their service and infrastructure [96].

In order to implement secure E2E communication, transaction-level secu-
rity is ensured by measuring integrity of the entire system and transaction,
E2E. Secure E2E communication is implemented over LPWAN and IP
network to the public cloud endpoint in this case study.

6.3.1 Sigfox Security

Sigfox is a lightweight protocol, suitable for very-low power remote sensor
IoT application. Some use cases for Sigfox are remote sensing and asset
tracking. The lightweightness of Sigfox also constrains the application to 12-
bytes payload for uplink and 8-bytes payload for downlink. The total size of
a Sigfox frame is 26-bytes in total, where the frame structure is illustrated in
Fig. 6.5. Moreover, there is also a limit of up to 140 uplink and 4 downlink
messages per day, which is still sensible for its target use case market.

Preamble

4 bytes

Frame

Sync

2 bytes

End-device

ID

4 bytes

Payload

0..12 bytes Variable

Auth. FCS

2 bytes

Preamble

4 bytes

Frame

Sync

13 bits 2 bits

Payload

0..8 bytes

Flag

2 bytes

FCS

2 bytes

Auth.

Variable

Error

codes

Uplink MAC Frame

Downlink MAC Frame

Figure 6.5: Sigfox frame structure.

94

For case study #1 implementation using LPWAN, two architectures were
considered, with their endpoints being:

1. Sigfox cloud
2. Google Cloud Platform (GCP) through Sigfox backend

For the first architecture, the implementation was fairly straightforward,
as the SFM10 Sigfox transceiver can receive AT commands over UART
as long as the transceiver identity is registered at the Sigfox cloud and
is authorized to communicate. Further infomation on Sigfox UID and
encryption key can be found in [97]. The second architecture, as illustrated
in Fig. 6.6, is actually an extension of the first, where the uplink payload
is received at Sigfox cloud and a set of callbacks using Sigfox backend API
is setup to forward the payload to GCP HTTPS endpoint. The transaction
between Sigfox and GCP is authenticated by basic HTTP username and
password over HTTPS, for which the credentials are stored in plain text on
Sigfox backend. Hence, at this point, the services provided by public cloud
providers are assumed to be secure.

callback_data

callback_service

Sigfox IoT

Device

Figure 6.6: Sigfox end-to-end communication to Google Cloud Platform.

In a Sigfox network, a unique ID, the Network Authentication Key
(NAK), and the encryption key are burned into the ON Semiconductor AX-
SFUS-1-01 MCU inside the SFM10 transceiver module. This process relies on
the trusted supply chain between the module manufacturer and Sigfox. The
last two being secret, and 128 bits in length. Each message sent by a device
or the cloud contains a unique signature generated using the encryption key.
This signature authenticates the sender, and to make sure there are no copies
or duplications possible, the system inserts it in a sequence of numbers.
The transmission is unsynchronized between the devices and the network.
They broadcast each message 3 times on 3 different frequencies (frequency
hopping). The base stations monitor the spectrum and look for UNB signals
to demodulate.

95

Sigfox frames are sent in plain text by default, although there is encryp-
tion support since 2017, which is provided by the Sigfox end [98]. How-
ever, there are no details about enabling payload encryption in the SFM10
datasheet. This restricts the makers to either utilize another transceiver or
rollout their own payload encryption, which is an issue by itself in [97]. This
issue is also covered in [99], where Sigfox is used only for the network security
itself, and delegates the payload security issue to the makers.

6.3.2 MQTT Security

For case study #1 implementation using IP, the IoT device communicates
over the IP network using the MQTT protocol with GCP. Before going into
the implementation details, the key points on MQTT security are first dis-
cussed. Firstly, the original MQTT standard does not require authentication
in MQTT as mandatory [100]. While it is possible to host an authentication-
less MQTT broker in a secured network, this is not widely practised in most of
the implementation tutorials and examples. Secondly, basic authentication in
MQTT is not as secure as mostly thought. While authentication is supported
via username and password fields in the CONNECT message, these are sent
in plain text in TCP over the network, which is an eavesdropping risk. Many
popular MQTT setup tutorials, especially for smart homes, are using this
method, which is a risk if the maker expose the service to public network.

In order to solve this issue, MQTT can be used over TLS to encrypt the
whole MQTT communication. While introducing TLS on the MQTT broker
has insignificant performance penalty, that cannot be said very constrained
IoT devices, where the increase in overhead processing will reduce its battery
operational time. The maker has to balance the requirements in order to
accommodate the overhead or settle for a less secure implementation. For
public cloud provider such as GCP,TLS connection to their MQTT broker is
mandatory.

MQTT Client

Credential:
root CA

TLS
, K

sign(JWT)

MQTT Broker IAMService

TLS: Mutual Authentication

Gen. JWT using K
sign(JWT)

Connect [id, pw=JWT]

ACK
Client ID Verification | IAM

Verify JWT using K
verify(JWT)

Figure 6.7: MQTT communication using TLS and JWT.

96

In addition to TLS, other security mechanisms can be used to increase
security, for instance, JSONWeb Token (JWT), which is also used in addition
to TLS on GCP MQTT broker, as shown in Fig. 6.7. JWT enables per-
device authentication, which limits the attack surface as compromised key
would only affect a single device rather than the whole group. Besides, each
JWT is only valid to up to the user setting or maximum 24 hours, which
ensures that the compromised key will expire. Google maintains a sample
Arduino library to make implementation simple for makers. One issue that
affected many makers using the Arduino library to connect to GCP is that
there is no built-in mechanism to refresh the JWT. This requires the maker to
periodically disconnect and reconnect back to GCP with a new JWT, causing
session interruption, which may not be ideal for certain IoT applications as
unwanted latency is introduced. Another issue that was faced during case
study #1 implementation was the connection rejection if the JWT timestamp
does not tally with GCP side. JWT is also time dependent; hence, there is
a risk of DoS as the IoT device is now dependent on NTP servers to resolve
its system time.

Figure 6.8: MQTT JWT token.

From this case study, it is clear that implementing a theoretically secure

97

communication method does not guarantee that it can mitigate against all
attacks. This is due to issues related to implementation/configuration; hence,
in the next case study the secure configuration is explored in view of this
issue.

6.4 Case Study #2: Secure Configuration

The ESP32 MCU has some built-in security features, such as secure boot,
flash encryption, 1024-bits OTP, cryptographic hardware acceleration for
AES, hash (SHA-2), RSA, ECC and random number generator (RNG). This
section explores and discusses on the approach of utilizing the MCU hardware
security features to secure the device integrity.

6.4.1 Porting the Arduino Core into ESP-IDF

The Arduino software platform plays a very important role in the maker
culture. It enables laymen to tinker with programming and electronics
with little effort due to its extensive abstraction of the hardware layer
into simple functions to control the MCU’s I/O and perform computations.
Arduino platform is also famous for its extensive software libraries, which
are contributed by the open source communities. Arduino also provides an
IDE to develop applications, direct firmware build and upload to the ESP32
device from the user friendly IDE. While these may be positive from an ease of
development standpoint, it may also quickly turn into a security nightmare.
There is a number of vulnerabilities that make Arduino easily exploitable as
presented in [42]. Reference [43] also includes a case study on the Arduino
vulnerability impact on IoT devices.

6.4.2 Locking Down Arduino on ESP32

The ESP32 MCU is often paired with an external flash chip that stores the
user applications and data. Hence, any maker with physical access to the
ESP32 based device could read the flash chip content via serial or desoldering
and reading the physical flash chip directly through SPI. Firmware reverse
engineering and modification could be done if the device maker does not
secure the device sufficiently. Fortunately, ESP32 features hardware-based
flash encryption and secure boot to prevent unwanted flash accesses. There
is a caveat, however, as it requires the Espressif integrated development
framework (ESP-IDF), which is mainly low-level embedded C, to enable the
security features. Since the prototype implementations of case study #1

98

were developed using Arduino, the implementation is restricted to the usage
of Arduino code, as it is difficult for a non-technical maker to jump from
Arduino into embedded C. One workaround is to use the Arduino core as a
“component” in ESP-IDF as shown in [101].

The Arduino code was ported using the workarounds in [101] to ESP-
IDF, but many issues had to be ironed out, such as external SPI RAM
failing to initialise, broken links to BLE, missing TLD setting and many
more. Furthermore, the Arduino core had to be compiled to specific version
of ESP-IDF, which were outdated (v3.x) compared to the latest stable (v4.x),
missing out certain security features and bug fixes. Enabling the security
features in ESP-IDF is trivial as shown in Fig. 6.9.

Figure 6.9: ESP-IDF security features.

The ESP32 bootloader, ported Arduino application code and custom par-
tition table from Arduino minimal SPIFFS partition scheme were prepared.
Then, an encryption key was generated and burned into the ESP32 device
eFuse as shown in Fig. 6.10. Table 6.1 shows the descriptions and size of
each parameter security fuse.

The unencrypted bootloader, partition table and application are then
written to the ESP32, which will auto reset and encrypt the bootloader,
application partitions and any partition that is flagged as encrypted (see
Fig. 6.11).

While Fig. 6.11 shows some security warnings regarding insecure con-
figurations, the ESP32 device was not fully locked down in the settings,
as it would limit the ability to further analyse the flash after encryption.
Moreover, if there are any errors during the flash encryption procedure, the
ESP32 may be bricked, rendering the device useless.

99

Figure 6.10: eFuse properties after enabling flash encryption and burning the
encryption key into the eFuse BLK1 register.

Table 6.1: ESP32 security eFuse fields.

Name Description Size (bit)
FLASH CRYPT CNT Flash encryption count 7

FLASH CRYPT CONFIG Flash encryption config 4
CONSOLE DEBUG DISABLE Disable ROM console 1

ABS DONE * Enable secure boot 2
JTAG DISABLE Disable JTAG 1
DISABLE DL * Disable in UART 3

BLK1 Flash encryption key 256
BLK2 Secure boot key 256
BLK3 Variable block 3 256

Figure 6.11: ESP32 device security issues log on first boot.

100

Figure 6.12: Extracted binary (bootloader section) before and after flash
encryption.

6.4.2.1 Flash Chip Content

Next, the ESP32 flash chip is analyzed for both unencrypted and encrypted
scenarios. For ESP32 series, all except ESP32 pico have the firmware stored
on an external memory chip. The flash chip content is read through ESP32
serial for both scenarios, where a sample of the bootloader before and after
encryption is shown in Fig. 6.12.

However, through analysis it was discovered that not every partition is
encrypted. By default, only the bootloader, partition table, OTA data and
App related partitions are encrypted [101]. The prototype code that performs
secure E2E communication utilized the Arduino EEPROM library to store its
private keys in the flash. The earlier version of the EEPROM library reads
and writes contents into a fixed partition block where the recent version
emulates the read write functions and store the data in the non-volatile
storage (NVS) partition. NVS partition is not directly compatible with flash
encryption while fixed EEPROM partition block is unencrypted by default.
Hence, the application private keys can still be read as plain text, as shown
in Fig. 6.13.

Figure 6.13: Plain-text private keys in EEPROM after encryption.

Fig. 6.14 shows the encrypted, unencrypted and unencryptable partitions
to the Arduino minimal SPIFFS partition scheme. While it is possible
to encrypt the EEPROM partition by setting the encryption flag, the
Arduino EEPROM library does not support such operations as its uses
esp partition write() to write data into the partition instead of the required
esp rom spiflash write encrypted(). For NVS based EEPROM case, one

101

method to encrypt the private keys is to encrypt them in software before
storing them into the NVS.

B
o

o
tl
o

a
d

e
r

P
a

rt
it
io

n

T
a

b
le

N
V

S

O
T
A

 D
a

ta

A
p

p
0

A
p

p
1

E
E

P
R

O
M

S
P

IF
F

S

Encrypted Unencryptable Encrypted Unencrypted

0x0000 0x8000 0x9000 0xE000 0x10000 0x1F000 0x3D0000 0x3D1000 0x400000

Figure 6.14: Encrypted and unencrypted partitions in ESP32 device.

This case study on secure configuration showed that even when one at-
tempts to increase the security of a hardware/device via secure configuration,
it may not guarantee its security in practice. Hence, in this thesis, we treat
the secure configurations only as part of the solution of how to mitigate a
threat, with further mechanisms being required to secure the system.

6.5 Summary

This chapter explored several case studies on secure system implementation.
The case studies were implemented using the maker-oriented IoT hardware,
MkIoT that was developed. An end-to-end (E2E) application prototype
was implemented by leveraging existing off-the-shelf embedded hardware,
open-source code, examples and tutorials provided by maker communities.
Two case studies were carried out, where the first case study explored the
implementation of secure end-to-end communication, and the second case
study explored the implementation of secure configurations. The case studies
highlighted issues when theoretically secure communication approaches may
have their vulnerabilities, as well as issues with secure configuration, where
the secure configuration may not be implemented correctly.

102

Chapter 7

Evaluation

In this chapter, the evaluation of the proposed automated secure system
designer is presented. Three case studies are presented, where the first
evaluates SecureWeaver from a secure corporate network design perspective,
followed by a case study on secure IoT appliance system design. The final case
study evaluates SecureWeaver for secure IoT hardware system design. The
feature evaluation of SecureWeaver and its comparison with related works
are also discussed in this chapter. The content of this chapter is a part of
the publications [72, 73].

7.1 Case Study #1: Secure Corporate Net-

work Design

In this section, the evaluation of SecureWeaver system is presented. First,
an evaluation is performed from a functionality perspective, where Se-
cureWeaver is utilized to generate a secure system design based on a set of
example scenarios service requirement as input that includes several security
threats. SecureWeaver will then verify that those threats are mitigated in
the concrete system topologies outputted by SecureWeaver.

The set of example scenarios service requirements are based on a realistic
corporate network scenario. Following the introduction of the input scenar-
ios, the system design output is then evaluated from a security perspective
to show that SecureWeaver is able to generate secure system designs.

7.1.1 Service Requirement Input for Evaluation

The experiments service requirement inputs are built using a subset of
Weaver components and relationships that are also available in the Se-
cureWeaver system model database, as shown in Fig. 7.1. The light-
grey background in Fig. 7.1 denotes a group of abstract and concrete
components that are related to each other. For example, System is an
abstract component, whereas components such as BackUpSys, WebSys, and

103

ThinClientSys are the concrete representations of that system. The other
included groups are abstract MiddleWare component, consisting of various
concrete middleware software applications for backup, thin client and web
application server, concrete WebApp component is related to web applications,
and abstract Storage component, which has a Storage Area Network (SAN)
system as a concrete component.

Fig. 7.1 also illustrates the other groups of system components: (i)
Machine that consists of a hardware or a virtualized host; (ii) ExtThings

that consists of external entities, such as users (User) and external API
(ExtAPI); (iii) LAN that is related to Ethernet network switches; and (iv)
the OS group, which consists of operating system-related components. Fur-
thermore, Fig. 7.1 shows a number of independent components: (i) Wide
Area Network (WAN); (ii) network router (Router); (iii) NIDS appliance
(NIDS); (iv) thin client (ThinClient); (v) VPN server instance (VPNServer);
and (vi) firewall appliance (Firewall). Fig. 7.1 also includes a component
Requirement, which denotes functional or non-functional requirements for
certain components that are part of a System in a topology.

Hence, a typical corporate network can be designed using the components
in Fig. 7.1 that includes various network systems, such as thin clients, web
application hosting, and remote access. In this evaluation we first introduce
three basic scenarios, where each of the scenario has one specific MITRE
ATT&CK threat explicitly defined. By carefully selecting the threats, we
are able to demonstrate that SecureWeaver is able to evaluate all seven
verification function with the selected threats. Moreover, the basic scenarios
by themselves can be integrated with others to create more complex scenarios.

The scenarios below are introduced in the order of their complexity for
designing them in SecureWeaver. To evaluate SecureWeaver’s capability
to design secure systems for real world applications, the complete service
requirement that is build up from the three scenarios is shown in Fig. 7.2.
Each of the building block scenarios are grouped using different shades of
grey background and are numbered according to the description below.

7.1.1.1 Scenario #1

A service requirement with a thin client system is illustrated in Fig. 7.2 as
Scenario #1. A thin client system and thin client components are defined,
their component IDs being TCSys and TC, respectively. The connection
between them is an abstract relationship, connTo, which is shown as a dashed
line, and denotes that TC should have a path that connects it to TCSys in
the output system design. The belongTo abstract relationship denotes that
TC and TCSys belongs to bizLAN LAN network, where both TC and TCSys

104

WebStorage

MWThinClient

Machine

MWAppServer

abs: False

req: OS(1)

cap: APP(1)

abs: False

req: STGE(1)

cap: -

abs: False

req: OS(1)

cap: -

abs: True

req: LAN(inf)

cap: HOST(1)

abs: True

req: -

cap: LAN(inf)

Router

Firewall

Switch

VPNServer

User

OS

ExtAPI

abs: True

req: HOST(1)

cap: OS(inf)

WAN

RHEL

OS

VM

VM

SANMWBackUp

ThinClient

BackUpSys WebSys ThinClientSys

Requirement

NIDS

NIDS

LAN

abs: False

req: -

cap: extWAN(1)

L3

L3SW

abs: False

req: LAN(inf)

cap: WAN(inf)

FW(1)

abs: True

req: -

cap: -

abs: False

req: -

cap: LAN(inf)

NIDS(1)

abs: False

req: -

cap: extWAN(1)

EXT
Things

abs: True

req: -

cap: -

abs: False

req: WAN(inf)

cap: extWAN(inf)

MW
abs: True

req: OS(1)

cap: -

abs: False

req: HOST(1)

cap: OS(inf)

abs: False

req: FW(1)

cap: WAN(inf)

LAN(inf)

abs: False

req: LAN(1)

cap: -

SYS

MW

abs: False

req: APP(1)

cap: -

Web
App

abs: True

req: -

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: -

cap: REQ(inf)

abs: False

req: SAN(inf)

LAN(inf)

cap: -

Storage

abs: True

req: LAN(inf)

cap: STGE(inf)

abs: False

req: NIDS(1)

LAN(1)

cap: -

PhysicalServer

abs: False

req: LANinf)

cap: HOST(1)

SAN(inf)

abs: False

req: LANinf)

cap: HOST(1)

SAN(inf)

abs: False

req: WAN(1)

cap: -

System

MiddleWare

WebApp

ExtThings

abs: False

req: OS(1)

cap: -

Figure 7.1: Properties and relationships of the components used in the system
evaluation experiments.

105

W
S
:

W
e
b
S
t
o
r
a
g
e

W
S
S
y
s
:

W
e
b
S
y
s

d
m
z
L
A
N
:

L
A
N

bel
ong

To

b
e
l
o
n
g
T
o

B
K
S
y
s
:

B
a
c
k
U
p
S
y
s

R
e
q
:

R
e
q
u
i
r
e
m
e
n
t

U
s
r
:
U
s
e
r

A
P
I
:
E
x
t
A
P
I

W
A
N
:
W
A
N

w
i
r
e
:
R
E
Q

s
u
p
p
o
r
t

i
n
c
l
u
d
e

w
i
r
e
:

e
x
t
W
A
N

T
1
1
9
0

c
o
n
n
T
o

connTo

T
1
0
4
0

con
nTo

T
C
:

T
h
i
n
C
l
i
e
n
t

T
C
S
y
s
:

T
h
i
n
C
l
i
e
n
t
S
y
s

b
i
z
L
A
N
:

L
A
N
belo

ngTo

be
lo
ng
To

c
o
n
n
T
o

w
i
r
e
:

e
x
t
W
A
N

T
1
0
9
0#
1

#
2

#
3

F
ig
u
re

7.
2:

In
p
u
t
se
rv
ic
e
re
q
u
ir
em

en
t:

th
in

cl
ie
n
t
sy
st
em

w
it
h
th
re
at
s
T
10
90

an
d
T
10
40
,
an

d
w
eb

sy
st
em

w
it
h
th
re
at

T
11
90
.

106

component or child component will be connected to bizLAN in the resulting
system design. In this scenario the “Proxy” (T1090) threat is defined for the
thin client component TC to model the case in which an adversary has control
over TC and utilizes an external connection proxy as an intermediary to avoid
suspicion over its command and control (C&C) communication traffic.

7.1.1.2 Scenario #2

Employees often need to remotely connect to a thin client environment on-
premise to access software that is network licensed. This would require a user
to connect to the company’s thin client system via the public Internet, as
illustrated in Scenario #2 in Fig. 7.2, where the User component is designated
as Usr connected to WAN and TCSys by the connTo relationship. In this
scenario the “Network Sniffing” (T1040) threat is defined for the connTo

relationship, to model the case when the remote connection between Usr

and TCSys is vulnerable to eavesdropping. The rest of the company’s thin
client system in the service requirement is the same with the Scenario #1
service requirement.

7.1.1.3 Scenario #3

Scenario #3 is a service requirement with a public-facing web application,
as illustrated in Fig. 7.2. This scenario assumes a company has a on-premise
private-cloud storage system, where its cloud storage is accessible via public
Internet and utilized an external API for single sign-on (SSO) authentication.
These are all illustrated in Fig. 7.2 as the abstract connTo relationship
connecting the concrete WebStorage component together with both concrete
external API (API) component and concrete external user (Usr) component,
where both external components are connected to the WAN.

Furthermore, a backup system is introduced into the service requirement
as the functional requirement that supports the private-cloud storage web
system, WSSys. The WSSys is also connected via the abstract include rela-
tionship to its subsystem component, which is the web storage application WS.
Both WS and the backup system component BKSys are part of the dmzLAN as
connected with the abstract belongTo relationship. The MITRE ATT&CK
Exploit Public-Facing Application (T1190) threat is explicitly defined for
the WebStorage component in this scenario, to model the exploitation of
zero-day vulnerabilities for public facing services such as WS.

107

7.1.1.4 Scenario #4

This scenario is a combination of the Scenario #1 and #3 service require-
ments, where both the thin client system and the private cloud storage system
are assumed to exist together in the corporate network. Two threats are
defined for this scenario, with threat T1090 affecting the thin client system,
and threat T1190 affecting the web storage application.

7.1.1.5 Scenario #5

This scenario combines all the three basic scenarios, with the service require-
ment describing a real-life corporate environment that includes a thin client
system, remote access, and a private-cloud storage system. This is illustrated
in Fig. 7.2, with the thin client system being affected by the threat T1090,
the remote access between the user and the thin client system being affected
by the threat T1040, and the web storage application being affected by the
threat T1190.

7.1.2 Evaluation Experiment Setup

SecureWeaver was implemented in Python 3 and is based on Weaver version
0.1.3. The source code of Weaver v0.1.3 was provided by NEC Corporation
as a part of a joint research project with JAIST. An Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) VM instance was utilized to perform all
the experiments presented in Sections 7.1.3 to 7.1.4. The EC2 VM instance
that is utilized is “p2.xlarge”, where the specifications are as shown:

• 4 virtual Intel Xeon E5-2686 v4 CPUs with a frequency of up to 3.0
GHz

• 64 GB of RAM
• 1 NVIDIA Tesla K80 GPU
• 60 GB of available storage

7.1.3 Security Verification Mechanism Evaluation

With the service requirement from the evaluation scenarios introduced in the
previous subsection, a concrete and secure system design that corresponds
to their service requirement can be generated by SecureWeaver. For the
evaluation, a set of refinement rules that consists of 33 rules is utilized. This
also includes the rules illustrated in Fig 4.3. Each available mitigation for
a threat are assumed to be of equal effectiveness in mitigating the threat in

108

this evaluation. Hence, the total weight for security level is 1.0, being evenly
divided among each mitigation for a threat.

Besides that, SecureWeaver has two modes of operation: (i) automatic;
and (ii) interactive. In SecureWeaver’s automatic mode, the first refinement
rule that meets both quantitative and qualitative requirements will be
matched by default, and heuristically applied them to generate the following
potential topology states. This automatic refinement process is deterministic,
only the first system design that satisfies the quantitative, qualitative and
security requirements will be returned by SecureWeaver. On the other hand,
SecureWeaver in interactive mode presents all valid refinement rules that are
applicable to the current topology state, such that the user can manually
choose the refinement rule to be applied at each refinement step.

The security level requirement for each scenario is set to the strictest
standard, which is equivalent to 1.0, ensuring that the resulting system
design passes every security verification function for the type of threat that is
declared in the service requirement. Each scenario is individually evaluated
with SecureWeaver in automatic mode and the resulting system design for
the full scenario (Scenario #5) is shown in Fig. 7.3. As mentioned previously,
the full scenario is a combination of Scenarios #1, #2 and #3, which are
emphasized using different shades of grey background.

Scenario #1 The refined Scenario #1 part in Fig. 7.3 shows the thin
client system (TCSys) that includes a thin client middleware (TCS), Red
Hat Enterprise Linux (RHEL) operating system (OS1), and a physical server
(HOST1) to host TCS. The thin client (TC) is logically connected to TCSys

via RDP relationship and both thin client related components are physically
connected to the same Layer 3 switch (bizLAN). Since TC is assumed to
be affected by the threat T1090, it can be mitigated via M1037, M1031,
and M1020, as referenced from the secure design database. Hence, security
verifications such as traffic filtering verification (M1037), IDPS verification
(M1031), and configuration settings verification (M1020) were performed by
SecureWeaver.

The traffic filtering verification requires that the TC has either a software
firewall or a hardware firewall, or both in the system design for ingress/egress
networking filtering depending on the method specified in the threat miti-
gation knowledge base. The mitigation M1037 for threat T1090 specifies
that traffic to known malicious network or infrastructure are to be blocked
via the use of network allow and block list, which can be achieved via a
software or a hardware-based firewall (“OR” method). Thus, TC security can
be verified via the hardware firewall shown in Fig. 7.3. The IDPS verification

109

W
S
S
y
s

d
m
z
L
A
N

B
K
S
y
s

R
e
q

U
s
r

A
P
I

W
A
N

w
i
r
e
:
R
E
Q

m
a
r
k
e
d
:

s
u
p
p
o
r
t

m
a
r
k
e
d
:

i
n
c
l
u
d
e

w
i
r
e
:
e
x
t
W
A
N

T
1
1
9
0

w
i
r
e
:
e
x
t
W
A
N

V
M

M
W

L
3

w
i
r
e
:
L
A
N

w
i
r
e
:
L
A
N

w
i
r
e
:
W
A
N

w
i
r
e
:
F
WW
S

T
1

W
S

F
W
:
F
i
r
e
w
a
l
l

V
M
:
V
M

R
T
R
:

R
o
u
t
e
r

O
S
3

M
W
A
P
S
:

M
W
A
p
p
S
e
r
v
e
r

S
A
N
:

S
A
N

w
i
r
e
:
S
A
N

w
i
r
e
:
S
T
G
E

O
S
2

H
O
S
T
2

B
K
:

M
W
B
a
c
k
U
p

T
C

T
C
S
y
s

b
i
z
L
A
N
:

L
3
S
W

wire:LAN

N
I
D
S

w
i
r
e
:
L
A
N

L
3

w
i
r
e
:
L
A
N

IP
SE
C

V
P
N
:

V
P
N
S
e
r
v
e
r

wi
re
:L
AN

N
I
D
S
:
N
I
D
S

R
D
P

T
1
0
9
0

T
1
0
9

T
1

wire:LAN

w
i
r
e
:

L
A
N

RDP

T
1
0
4
0

RD

0

O
S
1
:

R
H
E
L

H
O
S
T
1
:

P
h
y
s
i
c
a
l
S
e
r
v
e
r

T
C
S
:

M
W
T
h
i
n

C
l
i
e
n
t

wire:

WAN

#
1

#
2

#
3

w
i
r
e
:
H
O
S
T

w
i
r
e
:
O
S

F
ig
u
re

7.
3:

S
ec
u
re
W
ea
ve
r
ou

tp
u
t
sy
st
em

d
es
ig
n
:
re
fi
n
ed

th
in

cl
ie
n
t
an

d
w
eb

sy
st
em

s
w
it
h
m
it
ig
at
ed

th
re
at
s.

110

NIDS

L3

M1031

T1090T109

M1037

M1020

Figure 7.4: Scenario #1 attack path.

for mitigation M1031 requires the affected component local network to have
an NIDS or IDPS component to monitor the network for suspicious traffics.
The NIDS component (NIDS) highlighted in red is connected to the bizLAN

network switch, thus satisfying the requirement. For configuration setting
mitigations, the configuration settings verification verifies TC, for which it
is assumed the mitigation M1020 will be implemented. Fig. 7.4 illustrates
the attack path for Scenario #1, showing the entry of proxy attack through
the switch, where the NIDS is connected to the switch as mitigation M1031,
and configuration setting mitigations (M1037, M1020) assumed on the TC.
As all mitigations against threat T1090 are in place, it is considered to be
mitigated.

Scenario #2 For the refined Scenario #2 part in Fig. 7.3, SecureWeaver
mitigates the threat T1040 on the remote access connection between the
user and the thin client system. The secure protocol verification function
is used in this case to verify the conceptual connection between Usr and
TCSys. Since the remote desktop protocol (RDP) is not considered as a
secure protocol in the threat mitigation knowledge base, the secure protocol
verification validates the remote desktop connection security based on the
IPSEC connection from the Usr to the VPN server (VPN) that is connected to
RTR. Fig. 7.5 illustrates the attack path for Scenario #2, showing the entry of
network sniffing attack between the Usr and TCSys. Since the starting point
of the remote connection is at Usr, the network layer is encapsulated with
an IPSEC tunnel to VPN for Usr to access the internal corporate network
securely, which mitigates threat T1040.

Scenario #3 The refined Scenario #3 part in Fig. 7.3 includes the private
cloud storage system and its supporting requirement (BKSys). The web
storage application (WS) is affected by threat T1190, which is mitigated via
M1048, M1050, M1030, and the configuration settings mitigations M1026,
M1051, and M1016. For the application isolation and sandboxing verification
(M1048), a virtual machine is required as a host, which is the VM in Fig. 7.3.

111

RDP

L3

IPS
EC

T10400

M1041

Figure 7.5: Scenario #2 attack path.

M1026

M1051

M1016

L3
T11900VM MW

M1048M1050

M1030

NW

Segmentation

Figure 7.6: Scenario #3 attack path.

Moreover, the firewall (FW) that is placed between WAN and RTR satisfies the
firewall use verification (M1050). The network segmentation verification is
also successful as there are two LAN networks in Fig. 7.3, where the host of
the WS affected by T1190, VM, is only connected to one of the LAN segments.
The remaining mitigations M1026, M1051, and M1016 for WS are verified
via configuration settings verification. Fig. 7.6 illustrates the attack path for
Scenario #3, showing the entry of threat T1190 from Usr, where input traffics
are first filtered by FW (mitigation M1050), and routed through the network
that is only relevant to WS as a part of network segmentation (M1048). WS is
hosted on VM, where it provides a sandboxed environment for the public-
facing application (mitigation M1048), and lastly, mitigations related to
configuration setting on WS (M1026, M1051, M1016) are assumed on the
WS. As all mitigations against threat T1190 are in place, it is considered to
be mitigated.

For the purpose of this evaluation, the discussion for Scenario #4 and #5
is not included, as they are just made of the first three scenarios. Table 7.1
summarizes the verification function(s) utilized by SecureWeaver for each
evaluation scenario. Hence, we conclude that all three security threats
in Fig. 7.3 are completely mitigated according to the security verification
performed automatically by means of all the seven verification functions in
SecureWeaver.

112

Table 7.1: SecureWeaver verification functions for each evaluation scenario.

Verification Function
Scenario

#1 #2 #3 #4 #5

Application Isolation and Sandboxing ⃝ ⃝ ⃝
Firewall Use ⃝ ⃝ ⃝

Networking Segmentation ⃝ ⃝ ⃝
Configuration Settings ⃝ ⃝ ⃝ ⃝ ⃝

Traffic Filtering ⃝ ⃝ ⃝
Secure Protocol Use ⃝ ⃝

Intrusion Detection and Prevention System
Use

⃝ ⃝ ⃝

7.1.4 Performance Evaluation

The performance characteristics of SecureWeaver and the overhead of the
security verification mechanism is evaluated in this subsection. The perfor-
mance evaluation is done in two approaches:

• Using SecureWeaver with increasingly complex input service require-
ments.

• Varying the number of security threats and the required security
level for an in-depth analysis of complex system design feasibility and
scalability

The evaluation is conducted using the five scenarios introduced in Sec-
tion 7.1.1. The evaluation focuses on metrics such as the number of topology
checks (iterations), and the time taken by various aspects of SecureWeaver
(concretizing system design, security verification) needed to return a concrete
and secure system design.

Five sets of experiments are performed for each scenario to obtain the
average numerical results presented in the following subsections.

7.1.4.1 Security Verification Performance

The performance evaluation results of Scenario #1 to #5 are presented
in Table 7.2, where S is the designation of the scenario number, nthreat is
the number of service requirement threats, ntopo is the number of topology
concreteness and quantitative checks, nsec is the number of security verifica-
tion iterations, nsec,F is the ntopo value for which the first security check is

113

performed, ttotal is the total time in seconds to design and verify the system
design, RSDttotal is the relative standard deviation of ttotal, tsec is the time in
seconds for security verification, RSDtsec is the relative standard deviation
of tsec, and tsec/ttotal is the percentage of tsec with respect to ttotal. Each
of the five scenarios is evaluated both with a service requirement without
any threat, and with a service requirement with threats with the maximum
security level being defined (AND verification mode).

Beside the performance evaluation results in Table 7.2, the supplementary
data is also included in Table 7.3 with statistics on the number of components
and relationships, and the temporary database used by SecureWeaver to
store data during the refinement and verification process. Thus, ncomp is
the number of components in the system design, nrel is the number of
relationships in the system design, nall is the total number of components and
relationships in the system design, sizeaction is the total size of the refinement
action/step database, and sizestate is the total size of the topology state
database.

When looking at the ntopo result for the service requirement without threat
in Table 7.2, there is an increase with scenario complexity, and increase
that is also reflected by the increasing number of nall and size of sizestate in
Table 7.3; actually, the sizestate is a more accurate indicator of the complexity
of a scenario than nall, as the database stores all the possible topology states
in the search tree. The number of topology iterations for each scenario in
both no security and maximum security level is shown in Fig. 7.7, plotted
using logarithmic scale. A difference of 30.6% is observed between Scenario
#1 and #2 for ntopo from Fig. 7.7, while there is a 19.1 times difference
between Scenario #2 and #3. The combined Scenarios #4 and #5 show a
drastic increase regarding ntopo, which illustrates the complexity of service
requirements in real-world applications.

As for the additional number of ntopo iterations when using the full
security level mode, the increase in percentage for Scenarios #1 to #5 is
of 14.3%, 87.5%, 182%, 10.7%, and 7.2%, respectively. The increase in ntopo

for the increasing scenario complexity is given by how Weaver heuristically
refines for concrete topology states before security verification. The total
ntopo is ultimately determined by the order of the possible topology states
refined, where a topology state candidate that is both concrete and secure is
first refined.

Nonetheless, the relative time taken by the security verification when
computed as the ratio tsec/ttotal sharply decreases as the scenario becomes
larger and more complex, given the intrinsic time needed for the basic design
of such large scenarios. This shows that SecureWeaver security verification
mechanism only introduces a small overhead; for example, tsec/ttotal for the

114

T
ab

le
7.
2:

S
ec
u
re
W
ea
ve
r
ev
al
u
at
io
n
re
su
lt
s:

ve
ri
fi
ca
ti
on

st
at
is
ti
cs

an
d
ti
m
e
m
ea
su
re
m
en
ts
.

S
n
th
r
ea

t
n
to
p
o

n
se
c

n
se
c,
F

t t
o
ta
l
[s
]

R
S
D

t t
o
ta

l
[%

]
t s

ec
[s
]

R
S
D

t s
e
c
[%

]
t s

ec
/t

to
ta
l
[%

]
w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

1
1

49
56

5
49

0.
20
4

0.
27
8

0.
26

0.
39

0.
00
16
2

9.
5

0.
58

2
1

64
12
0

14
64

0.
27
1

0.
71
7

0.
52

0.
49

0.
00
40
5

8.
5

0.
56

3
1

12
86

36
26

18
34
08

9.
32

37
.2

0.
48

0.
28

0.
01
03

3.
6

0.
02
8

4
2

47
65
6

52
75
4

12
2

47
65
6

84
9

11
23

0.
19

1.
7

0.
08
17

3.
8

0.
00
73

5
3

19
98
38

21
41
52

26
6

19
98
38

46
22

54
63

0.
38

0.
22

0.
17
7

2.
0

0.
00
32

115

T
ab

le
7.
3:

S
ec
u
re
W
ea
ve
r
ev
al
u
at
io
n
re
su
lt
s:

to
p
ol
og
y
st
at
is
ti
cs

an
d
d
is
k
d
at
a
si
ze
s.

S
n
co
m
p

n
r
el

n
a
ll

si
ze

a
ct
io
n

si
ze

st
a
te

w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

w
/o

se
c.

se
c.

1
6

7
6

8
12

19
19
2
K
iB

23
2
K
iB

87
2
K
iB

1.
2
M
iB

2
9

10
11

12
20

22
28
4
K
iB

64
8
K
iB

1.
4
M
iB

3.
6
M
iB

3
14

17
16

19
30

36
10

M
iB

27
M
iB

55
M
iB

19
4
M
iB

4
22

24
24

27
46

51
42
6
M
iB

50
4
M
iB

4.
1
G
iB

5.
0
G
iB

5
22

25
27

31
49

56
2.
4
G
iB

2.
6
G
iB

23
.1

G
iB

25
.8

G
iB

116

� � � � �
��������

�
�

�
�

�
�

�
�

�
�

�
!

"
�
#$
�
%$
&�
'
�
(�
)
*
$�
&�
��
&�
�
�
+

"�$+��,��&*
-�.�/,/$+��,��&*$01"23

)

Figure 7.7: Number of topology iterations in each scenario (logarithmic
scale).

full scenario in Fig. 7.3 is just 0.00032%, with an increase of 7.2% for ntopo

due to the processing related to creating 265 concrete topology states that
are discarded because they do not meet the security requirements.

Furthermore, the number of components and relationships in each sce-
narios for both no security and maximum security level are shown in Fig. 7.8
and Fig. 7.9. The additional components and relationships added to achieve
maximum security system design is relatively minimal compared to the
no security system design, with a maximum increase of three additional
components for the most complex scenario and four additional relationships.
This minimal increase of additional entities is due to the number of additional
security-related refinement rules that is required in SecureWeaver. Table 7.4
summaries the number of security-related rules in SecureWeaver, where the
total number of security-related rules is five. Only four mitigations (M1031,
M1041, M1048, M1050) requires additional security-based components in
their mitigation while the other mitigations rely on configuration setting in
the relevant component.

For large and complex fully-abstract service requirements, SecureWeaver

117

� � � � �
��������

�

�

��

�

��

!
�
"#
�
$#
��

%
&
�
�
�
�
'(

!�#(��)��'*
+�,�%)%#(��)��'*#-.!/0

Figure 7.8: Number of components in each scenario.

is technically limited to the available storage space for storing temporary data
(applied actions and computed topology states). As shown in Table 7.3,
sizeaction and sizestate increase with the complexity of the input service
requirement, and in Scenario #5 the total size of temporary data reached 28.4
GB (considering that the total available storage on the experiment machine
is 60 GB). However, in practice, networked systems are rarely designed from
scratch. Hence, we also performed an evaluation of SecureWeaver in which an
incremental addition of new services is done to an existing corporate network
design. The resulting partially-concrete service requirement in this case
included the abstract requirements in Scenario #1 and a concrete network
topology of 205 entities (105 components and 100 relationships), and the
output system design consisted of 110 components and 107 relationships,
satisfying the imposed qualitative, quantitative and security requirements.
In this way, the scale of the experiment was increased by about 4 times
compared to the results reported in Table 7.3.

118

� � � � �
��������

�

�

��

�

��

�

��

!
�
"#
�
$#
��
%�
&�
�
�
'(

�)
'

!�#'��*��&+
,�-�.*.#'��*��&+#/0!12

Figure 7.9: Number of relationships in each scenario.

7.1.4.2 Effect of Security Level on Performance

In real life networked system design, cost and other considerations may
require the need for alternative system designs, so as to make possible trade-
off analysis. When using SecureWeaver, one can generate multiple system
designs that fulfill the functional requirements but have a different level of
risk associated to them by adjusting the security level property of the threat
in the service requirement (note that it is also possible to generate alternative
solutions for the same level of risk).

In what follows we evaluate the effect on performance when varying the
security level in Scenario #5 with a number of threats between one and three.
In particular, the required security level is assigned the following values: no
security (No Sec.), minimal security (OR), 25%, 50%, 75%, and full security
(AND). The results for the second set of experiments are shown in Fig. 7.10
and Fig. 7.11, where both ttotal and the ratio tsec/ttotal are plotted as function
of the required security level shown on the horizontal axis.

The total elapsed time increases in general as the required security level

119

Table 7.4: Additional security-based refinement rules in SecureWeaver.
Scenario Threat Mitigation Added Security Rules

1
T1090

M1037 01,2

M1031 1
M1020 01

2
T1040

M1041 2
M1032 01

3
T1190

M1048 1
M1050 1
M1030 01

M1026 01

M1051 01

M1016 01

1 Configuration-based mitigation
2 May rely on existing security-based refinement rule(s)

becomes higher, although there are instances (e.g., the one threat scenario)
when both security level 50% and 75% have similar ttotal, since the topology
state verified at the same number of ntopo is sufficiently secure, with the
security level of the selected system design being larger than 75%.

As expected, the security verification overhead for minimum security level
(OR) increases with the number of threats in the service requirement. Thus,
for one threat mitigated at OR security level, an increase of 0.30% is recorded
in ttotal when compared with no security verification. For both two and three
threats at OR security level, an increase of 8.3% and 9.3% is observed. Our
results for ntopo at OR security level (results not shown in the thesis) show
an increase of 0.0015% for one threat, and a 4.6% increase for both two and
three threats when compared to the no security case.

The increase of ttotal and tsec/ttotal observed in Fig. 7.10 and Fig. 7.11 as
the security level requirement become higher is clear. For example, in the
case of the maximum security level (AND), an increase of 4.0%, 12.6%, and
18.9% in ttotal are recorded for a service requirement with one to three threats
compared to the minimum security case (OR). Consequently, although a
secure system design can be output by SecureWeaver in the shortest time
by using a minimum security level requirement, a maximum security level
solution can also be obtained in our experiments for a relatively small increase
in time.

120

���
��������������

�

�

�

!

"

$
%�
&
��
'
��
()

�
�*
�+

�����,-�(�.
/(0()-)���,-�(�.�1234
�"5���,-�(�.�%�6�%
" 5���,-�(�.�%�6�%
7"5���,-�(�.�%�6�%
/�8()-)���,-�(�.�19�:4

Figure 7.10: Number of threats versus the total elapsed time taken by
SecureWeaver, with various security level requirements.

7.2 Case Study #2: Secure IoT Appliance

System Design

In this section, a case study on IoT video surveillance service requirements
is implemented. SecureWeaver is evaluated functionally by utilizing the IoT
video surveillance service requirement to generate a secure system design
that includes threats, and verify that they are mitigated in all the possible
concrete topologies. Furthermore, a performance evaluation is conducted on
SecureWeaver to determine its security verification overhead for scenarios
with an increasing number of entities.

121

��
�����������������

 !"

�

�!"

�

�!"

�

�!"

�
�
��
�
��
��
�
s
e
c
��
�
��
to
ta
l

� #"

�����$��%�&
'%(%������$��%�&�)*+,
�"-���$��%�&�.�/�.
" -���$��%�&�.�/�.
0"-���$��%�&�.�/�.
'�1%������$��%�&�)2�3,

Figure 7.11: Number of threats versus ratio of tsec to ttotal, with various
security level requirement.

7.2.1 Service Requirement Input for Evaluation

For this evaluation, Fig. 7.12 shows the following components that are used
to build the service requirement, including all component types and their
deriving relations. Both the video surveillance and health checker component
types are derived from App component type while the component type’s
abstractness, abs, capability, cap and requirement, req are also shown in
Fig. 7.12. An IoT IP camera, IpCamera has req = LAN(1) while a Switch
type has cap = LAN(inf), where LAN is an rtype and the number in the
rtype corresponds to the minimum or maximum number that the same rtype
can be “connected” to. This means that when an IpCamera is defined in

122

VideoSurveillance HealthChecker

IpCamera

Switch

Machine App

abs: True

req: HOST(1)

cap: APP(1)

abs: False

req: -

cap: -

abs: False

req: -

cap: -

abs: False

req: LAN(inf)

cap: HOST(1)

abs: False

req: LAN(1)

cap: -

abs: False

req: -

cap: LAN(inf)

Figure 7.12: Properties and relationships of components for IoT appliance
scenario.

vs:VideoSurveillancehc:HealthChecker ip_cam:IpCamera

sendVideocheckStatus

T1040 T1040

Figure 7.13: Service requirement input for IoT appliance scenario.

a service requirement, the final topology must have a maximum number of
one Switch “connected” to it, while the Switch can be “connected” to an
infinite number of components with req = LAN .

This service requirement assumes that a customer has an IP camera in the
office and wants to sign up for a comprehensive security package that includes
video surveillance and health checking services. The corresponding service
requirement is shown in Fig. 7.13, where each icon represents a component
type labeled with its nid and ctype. The component ip cam of type
IpCamera represents the existing IP camera in the customer’s office, while
the hc of type HealthChecker and vs of type V ideoSurveillance are the
services that are to-be deployed. Functional requirements of the new services
are denoted as abstract relationships of type checkStatus, esendStatus, and
sendV ideo, esendV ideo, where echeckStatus means hc has to regularly monitor
ip cam status and esendV ideo means ip cam is required to stream its video
feed to vs. The threats defined in checkStatus and sendV ideo are both the
MITRE ATT&CK-defined “Network Sniffing”, T1040, indicating that there
may be a threat to the confidentiality of the communication between the IP
camera and its applications.

7.2.2 Evaluation Experiment Setup

The SecureWeaver experiments conducted in Sections 7.2.3 to 7.2.4.2 are
perfosmed using an AWS EC2 VM instance, “t2.micro”, which features one

123

virtual CPU with a frequency of up to 3.3 GHz and 1 GB of RAM. The
“t2.micro” VM instance performs slightly faster than the “p2.xlarge” VM
instance used in Chapter 7.1 due to its high boost CPU frequency. However,
for sustained computation of complex system designs, the “t2.micro” VM
instance is not a suitable candidate, as once it runs out of CPU credit, the VM
will throttle to the base clock, affecting the performance evaluation results.
Nevertheless, for the experiments conducted in this section, the “t2.micro”
VM instance is sufficient.

7.2.3 Security Verification Mechanism Evaluation

After providing SecureWeaver with the evaluation service requirement, it
generates a concrete and secure system design that corresponds to the input
service requirement. Examples of possible concrete and secure scenarios are
shown in Fig. 7.14, where the topology denoted with “1” in the top-left
corner is the default system design output in automatic mode, and the other
topologies are generated via interactive mode.

For the first system design in Fig. 7.14, hc and vs are communicating
with ip cam via inherently insecure application layer protocols (HTTP and
RTP), which do not mitigate the T1040 threats defined in the service
requirement. Hence, SecureWeaver secures the topology by applied IPSEC
network protocol for both conceptual connections to mitigate their respective
threats (IPSEC mitigates T1040 as M1041, encrypt sensitive information).
For system design 2, the communication between hc and ip cam is replaced
with HTTPS in the application layer, which addresses T1040 via M1041;
hence, the plain IP network layer protocol can be used for the conceptual
connection between the hc and ip cam. For system design 3, both hc and vs
are communicating via HTTPS and SRTP on the application layer, both
protocols mitigating T1040 via M1041. It is also possible to “oversecure” a
conceptual connection, as shown in system design 4: SRTP already mitigates
the threat between hc and ip cam at the application layer, but IPSEC is
used at the network layer.

Two examples of rejected topologies that are concrete but insecure are
shown in Fig. 7.15. These topologies do not appear as the final system design,
as they are rejected during the refinement and verification process. For the
first rejected topology, both conceptual connection between hc, vs and ip cam
are insecure as both application and network layer protocol does not mitigates
the threat. In the second rejected topology, while the conceptual connection
between vs and ip cam is secure, the topology is rejected due to the insecure
conceptual connection between hc and ip cam.

124

RTPHTTPS

LAN

LAN LAN

HOSTHOST IP HO
IPSEC

RTPHTTP

LAN

LAN LAN

HOSTHOST IP
SE
C

ST HO

IPSEC

SRTPHTTPS

LAN

LAN LAN

HOSTHOST IP
IP

SRTPHTTPS

LAN

LAN LAN

HOSTHOST IP
IPSEC

4

3

2

1

HO

Figure 7.14: Examples of topologies for which the security verification was
successful for the IoT appliance scenario.

125

RTPHTTP

LAN

LAN LAN

HOSTHOST IP
IP

RTPHTTP

LAN

LAN LAN

HOSTHOST IP HO

IPSEC

1

2

Figure 7.15: Examples of topologies rejected by the security verification
algorithm for the IoT appliance scenario.

7.2.4 Performance Evaluation

In order to evaluate the overhead of the security verification mechanism,
SecureWeaver is used to design a scenario with an increasing number of
customer offices, n, ranging from 1 to 30. In this scenario, parameters such as
time taken to design or verify a topology and the number of checks performed
by portions of SecureWeaver to output a secure system design are evaluated.
Since SecureWeaver performance evaluation is performed on an AWS EC2
“t2.micro” instance, the experiments are specifically done spaced in time to
prevent exhausting the “t2.micro” instance burst CPU limits.

7.2.4.1 Expected System Design Output

The service requirement used is similar to that shown in Fig. 7.13, where each
office contains a single IP camera and it is connected to a health checker and
video surveillance application. When increasing the number of offices, the
number of IP cameras also increase linearly along with the video surveillance
applications as a pair. For the health checker application, there is only
one instance, and all IP cameras will send their status to it. Hence, the
expected system design output using SecureWeaver in automatic mode is
shown in Fig. 7.16, where each office has an IP camera, a LAN switch and
a video surveillance application, and the health checker application connects

126

LAN

.
.
.

RTP
HO
ST

IPSE
C

H
O
S
T

LA
N

HTTP

HT
TP

IPSE
C

IPSEC

Office 1

LAN

RTP
HO
ST

IPSE
CLA

N

Office n

LAN

Figure 7.16: Expected output topology and security configuration for the
IoT appliance scenario.

to every office’s IP camera. Both HTTP and IPSEC are chosen by default
in automatic mode as the application and network layer protocol in the their
relationship, respectively.

7.2.4.2 Performance Evaluation Results

The performance evaluation results are shown in Table 7.5, where n is
the number of offices, ncomp is the number of components in the system
design, nrel is the number of relationships in the system design, nall is
the total number of components and relationships in the system design,
nthreat is the number of service requirement threats, niter is the number
of algorithm iterations, ntopo is the number of topology concreteness and
quantitative checks, nsec is the number of security verifications,nchild is the
number of component dependency searches, ttotal is the total time elapsed
in seconds to design and verify the system design, RSDttotal is the relative
standard deviation of ttotal, tsec is the time elapsed in seconds for security
verification, RSDtsec is the relative standard deviation of tsec, and tsec/ttotal
is the percentage of tsec from the total ttotal.

The results in Table 7.5 are the averages of 10 experiments for each
number of offices n. As both ncomp and nrel increase, the average ttotal
increased in a manner that can be curved fitted (R2 = 1) as shown in

127

T
ab

le
7.
5:

N
u
m
er
ic
al

re
su
lt
s
fo
r
th
e
p
er
fo
rm

an
ce

ev
al
u
at
io
n
of

S
ec
u
re
W
ea
ve
r.

n
n
co
m
p

n
r
el

n
a
ll

n
th
r
ea

t
n
it
er

n
to
p
o

n
se
c

n
ch

il
d

t t
o
ta
l[
s]

R
S
D

t t
o
ta

l
[%

]
t s

ec
[s
]

R
S
D

t s
e
c
[%

]
t s

ec
/t

to
ta
l[
%
]

1
6

8
14

2
25

44
9

1
0.
13

1.
02

0.
00
21

1.
73

1.
57

2
10

16
26

4
10
1

22
0

21
11

0.
87

0.
69

0.
00
45

4.
37

0.
51

3
14

24
38

6
19
0

49
9

37
27

2.
57

0.
90

0.
00
73

1.
24

0.
29

4
18

32
50

8
26
5

76
1

57
49

5.
14

0.
69

0.
01
2

0.
92

0.
23

5
22

40
62

10
33
5

99
5

81
77

8.
80

0.
59

0.
01
4

2.
08

0.
16

6
26

48
74

12
40
5

12
22

10
9

11
1

13
.8
7

0.
43

0.
01
6

1.
25

0.
12

7
30

56
86

14
47
5

14
49

14
1

15
1

20
.8
9

3.
35

0.
01
9

1.
85

0.
09

8
34

64
98

16
54
5

16
76

17
7

19
7

28
.9
9

0.
47

0.
02
3

1.
76

0.
08

9
38

72
11
0

18
61
5

19
03

21
7

24
9

39
.6
1

0.
64

0.
02
6

3.
76

0.
07

10
42

80
12
2

20
68
5

21
30

26
1

30
7

52
.4
1

0.
78

0.
03
2

9.
46

0.
06

15
62

12
0

18
2

30
10
35

32
65

54
1

68
7

15
9.
04

0.
39

0.
06
1

7.
00

0.
04

20
82

16
0

24
2

40
13
85

44
00

92
1

12
17

35
9.
97

0.
52

0.
12

6.
58

0.
03

25
10
2

20
0

30
2

50
17
35

55
35

14
01

18
97

68
9.
97

0.
46

0.
21

15
.5
0

0.
03

30
12
2

24
0

36
2

60
20
85

66
70

19
81

27
27

11
95
.6
9

0.
48

0.
31

13
.6
5

0.
03

128

��� ��� ��� ��� ��� ��� ���
���

���

�

���

���

 ��

!��

����

����

�
�
��
��
�
�
��
"
�
��
��

�
��
� �
�
��
��#
�$

�

%
�
��
�
��
��
� �
�
��
��
��
��
��
��#
&
$

�
���
'�

�����

�
�����

���

�(�

�(

�(�

�(�

�(�

�(�

�(

�(!

Figure 7.17: Performance evaluation results for SecureWeaver for the IoT
appliance scenario.

Equation 7.1, where nall is the sum of ncomp and nrel:

ttotal = 3 · 10−5 · n3
all − 0.001 · n2

all + 0.1834 · nall − 3.9823. (7.1)

The average tsec to the total number of ncomp and nrel can be curved fitted
(R2 = 0.9992) as shown in Equation 7.2:

tsec = 4 · 10−9 · n3
all + 8 · 10−7 · n2

all + 8 · 10−5 · nall − 0.003. (7.2)

A more detailed analysis shows that the above performance is an intrinsic
characteristic of the original Weaver. When considering only the security
verification part of the system, it is noted that the average elapsed time,
tsec, increases much slower. Thus, when expressed in percentages, tsec versus
ttotal decreases sharply from 1.57% for n = 1 to 0.03% for n = 30. These
results are plotted and shown in Fig. 7.17. For real-world system designs have
more than 100 entities (9 to 30 offices), the overheads are 0.07% at n = 9
to 0.03% at n = 30 with an average overhead of 0.04%. This means that
the SecureWeaver extension only incurs a small overhead, which becomes
comparably very small with respect to the total processing time as ncomp and
nrel increase.

129

7.3 Case Study #3: Secure IoT Hardware

System Design

In the previous section, a case study on an IoT video surveillance appliance
was conducted at a network system design level. In this section, a case
study is conducted to explore the feasibility of performing hardware level
system design for IoT with SecureWeaver. First, the formal representation
of each of the intrinsic components that make up a typical IoT hardware
device is defined. This is followed by the details on Message Queueing
Telemetry Transport (MQTT) as the IoT communication in end-to-end
system design. The corresponding refinement rules for IoT system design are
presented, and functional evaluations are carried out to validate the feasibility
of SecureWeaver in both designing concrete hardware level system design and
ensuring the design is free of security threat.

7.3.1 Formalization of IoT Components in SecureWeaver

To formalize an IoT components for SecureWeaver, an IoT application or
device with a specific application running on an embedded device, which is
connected to the network for communication to an endpoint, is assumed.
The IoT application or device can be broken down into smaller components,
not restricted to the following:

• IoT embedded application
• Operating system of the device
• Network interface of the device

The embedded application or firmware of an IoT device is analogous to an
IT web application or software application. In SecureWeaver, such firmware
can be defined in a JSON structure as shown in Code 7.1, where the IoT
application is a concrete component type, where the amount of memory
(“memory use”) can be defined as an integer. The “reference” key denotes
a requirement for the IoT App that it is required to be hosted on one and
only one OS component (“iot os”). The amount of memory used can be
defined in the intent, where SecureWeaver has to search and match relevant
rule candidates to meet the quantitative requirement.

Code 7.1: Description of IoT firmware in SecureWeaver

1 ”IoT App” : {
2 ” abs t r a c t ” : f a l s e ,
3 ” der ived f rom ” : [] ,
4 ” p r op e r t i e s ” : {

130

5 ”memory use” : ” In t eg e r ”
6 } ,
7 ” r e f e r e n c e ” : {
8 ” i o t o s ” : 1
9 }
10 }

An IoT OS is analogous to an IT OS, which can be directly described
in SecureWeaver as an abstract OS component as shown in Code 7.2. This
generic OS (IoT OS) has a “service” key, which denotes that the generic OS
provides the “iot os” capability, where component such as IoT App can be
connected to that it satisfies the IoT App requirement. The “inf” value on the
“service” key denotes that the abstract OS is able to provide an unlimited
number of “iot os” service, as long as the other quantitative requirements
are met (e.g., “memory use”).

Code 7.2: Description of abstract IoT OS in SecureWeaver

1 ”IoT OS” : {
2 ” abs t r a c t ” : true ,
3 ” der ived f rom ” : [] ,
4 ” s e r v i c e ” : {
5 ” i o t o s ” : ” i n f ”
6 } ,
7 ” r e f e r e n c e ” : {
8 ” iot hardware ” : 1
9 }
10 }

The abstract IoT OS component has to be refined into a concrete
component in SecureWeaver. Hence, the FreeRTOS real-time OS (RTOS) for
embedded system is defined as shown in Code 7.3, where the IoT FreeRTOS is
derived from the IoT OS component describing its inheritance. The abstract
value is defined as False, with the capability to provide unlimited “iot os”.
Its service requirement requires one “iot hardware”, which the OS is required
to be hosted on a hardware platform.

Code 7.3: Description of concrete FreeRTOS OS in SecureWeaver

1 ”IoT FreeRTOS” : {
2 ” abs t r a c t ” : f a l s e ,
3 ” der ived f rom ” : [”IoT OS”] ,
4 ” s e r v i c e ” : {
5 ” i o t o s ” : ” i n f ”
6 } ,
7 ” r e f e r e n c e ” : {
8 ” iot hardware ” : 1
9 }

131

10 }

An abstract IoT hardware (IoT HardwarePlatform) can be formalized in
SecureWeaver as shown in Code 7.4, where it provides one “iot hardware”
as its capability and requires at least one to an unlimited number of
abstract network interface (“iot network”). For the concrete hardware
platform component, the Espressif ESP32 is used as the example, where
its capabilities are defined as a SecureWeaver component. This is shown
in Code 7.5, where the IoT ESP32 abstractness is False and it is derived
from the IoT HardwarePlatform. The IoT ESP32 also provide capabilities
such as “iot hardware”,“iot wifi”, “iot ble”, “iot i2c”, “iot uart”, “iot spi”,
and “iot crypt engine”. An interface service, such as “iot wifi”, provides the
option for SecureWeaver to determine whether a certain precursor component
requires such capability. For example, if an IoT application require connec-
tion to an I2C capable temperature sensor, the component that is matched
by SecureWeaver should have “iot i2c” as a part of its capability.

Code 7.4: Description of abstract hardware platform in SecureWeaver

1 ” IoT HardwarePlatform” : {
2 ” abs t r a c t ” : true ,
3 ” der ived f rom ” : [] ,
4 ” s e r v i c e ” : {
5 ” iot hardware ” : 1
6 } ,
7 ” r e f e r e n c e ” : {
8 ” io t network ” : ” i n f ”
9 }
10 }

Code 7.5: Description of concrete ESP32 based hardware platform in Se-
cureWeaver

1 ”IoT ESP32” : {
2 ” abs t r a c t ” : f a l s e ,
3 ” der ived f rom ” : [” IoT HardwarePlatform”] ,
4 ” s e r v i c e ” : {
5 ” iot hardware ” : 1 ,
6 ” i o t w i f i ” : 1 ,
7 ” i o t b l e ” : 1 ,
8 ” i o t i 2 c ” : 1 ,
9 ” i o t u a r t ” : 1 ,
10 ” i o t s p i ” : 1 ,
11 ” i o t c r y p t e n g i n e ” : 1
12 } ,
13 ” r e f e r e n c e ” : {
14 ” io t network ” : ” i n f ”

132

15 }
16 }

The last component of the IoT application/device is the network interface.
The abstract network interface is defined in SecureWeaver as shown in
Code 7.6, where it provides an unlimited number of “iot network” capability
and requires at least one LAN (“lan”) service. The LAN and the rest of
the components are generic SecureWeaver IT/NW components, such as the
network switch, router, WAN, external services, etc. A concrete network
interface, IoT Network WiFi is shown in Code 7.7, where it provides one
“iot network” capability.

Code 7.6: Description of abstract network interface in SecureWeaver

1 ” IoT NetworkInter face ” : {
2 ” abs t r a c t ” : true ,
3 ” der ived f rom ” : [] ,
4 ” s e r v i c e ” : {
5 ” io t network ” : ” i n f ”
6 } ,
7 ” r e f e r e n c e ” : {
8 ” lan ” : ” i n f ”
9 }
10 }

Code 7.7: Description of concrete WiFi network interface in SecureWeaver

1 ”IoT Network WiFi” : {
2 ” abs t r a c t ” : f a l s e ,
3 ” der ived f rom ” : [” IoT NetworkInter face ”] ,
4 ” s e r v i c e ” : {
5 ” io t network ” : 1
6 } ,
7 ” r e f e r e n c e ” : {
8 ” lan ” : ” i n f ”
9 }
10 }

7.3.2 Refinement Rules for IoT System Design

With the basic concepts that were described in the previous two subsections,
the refinement rules can be defined for SecureWeaver to be able to design
IoT system. All the refinement rules that are used in this case study are
listed in the Appendix A under “iot rule.json”.

133

Modeling IoT Hardware For each of the components introduced in
Section 7.3.1, their corresponding refinement rules and their brief descriptions
are summarised as follows:

1. IoT OS → IoT FreeRTOS (abstract → concrete): Refine an abstract
IoT OS component into a concrete FreeRTOS component.

2. IoT HardwarePlatform → IoT ESP32 (abstract → concrete): Refine
an abstract embedded hardware component into a concrete ESP32 one.

3. IoT NetworkInterface → IoT Network WiFi (abstract → concrete):
Refine an abstract embedded network interface component into a
concrete WiFi interface component.

4. IoT App → IoT OS: Add an abstract embedded OS component to host
the IoT App component.

5. IoT OS → IoT HardwarePlatform: Add an abstract embedded hard-
ware component to host the IoT OS component.

6. IoT HardwarePlatform → IoT NetworkInterface: Add an abstract
embedded hardware network interface component to the IoT HardwarePlatform

component.
7. IoT NetworkInterface → Switch: Add an abstract network switch

component to the IoT NetworkInterface component.

IoT Communication via Message Queueing Telemetry Transport
(MQTT) The refinement rules presented above are adequate to refine an
IoT App component into a standalone IoT appliance that connects to a LAN
network (WiFi access point is equated to a network switch). The case study
presented in Section 6.3 is revisited, where we assumed the scenario of the IoT
application communicating with an endpoint such as an external API. Such,
the refinement rules for connecting the IoT App component to the External
API component are based on the Message Queueing Telemetry Transport
(MQTT) protocol over IP network.

By default, the original MQTT protocol does not require authentication
as a mandatory requirement [100]. The MQTT protocol does have basic
authentication, which is illustrated in Fig. 7.18, where the MQTT client
provides the user ID and password as credential to the MQTT broker, for
which the MQTT broker will authenticate and acknowledge whether the
authentication is successful. However, the basic authentication method is
insecure, as the credentials are sent as plain text over the network. This
sensitive information can be intercepted over the network via security threat
such as MITRE ATT&CK defined Network Sniffing (T1040).

Since both no-authentication and basic authentication methods of MQTT
are unsecure, to demonstrate SecureWeaver capability of designing a secure

134

Figure 7.18: MQTT communication using basic authentication.

system design, a secure method of MQTT authentication is illustrated in
Fig. 7.19. The MQTT communication is encrypted via a TLS tunnel, where
the credential in plain text can be transmitted securely to the MQTT broker
for authentication.

MQTT Client

Credential: private key,
public cert., root CA

TLS

MQTT Broker IAMService

TLS: Mutual Authentication

Connect [id]

ACK
Client ID Verification | IAM

Figure 7.19: MQTT communication using TLS.

Modeling MQTT Communication Two possible end-to-end MQTT
communication scenarios between an IoT appliance and an endpoint over
an IP network can be created, where one utilizes an insecure approach and
the other one uses a secure approach based on TLS to communicate with
the endpoint. The refinement rules for these two MQTT communication
approaches are summarized below:

1. IoT App → external API (MQTT only): Refine abstract connTo rela-
tionship to a pair of concrete MQTT and IP logical connections

2. IoT App → external API (MQTT with TLS): Refine an abstract
connTo relationship to a pair of concrete MQTT-TLS and IP logical
connections

The refinement rule for secure end-to-end communication of IoT App

with external API is illustrated in Fig. 7.20, where the abstract connTo

135

DEPLOY-MQTT-TLS-IOTAPP-CONNTO-EXTAPI

IoT
App

{8}

:ExtAPI

{1}:

IoTApp

L3

{7}:

WAN

{5}:

L3SW

{6}:

Router

{4}:

IoTNW

{3}:

IoTHW

{2}:

IoTOSOS

IoT
App

{8}

:ExtAPI

{1}:

IoTApp

L3

{7}:

WAN

{5}:L3SW

{6}:

Router

{4}:

IoTNW

{3}:

IoTHW

{2}:

IoTOS

MQTT_TLS

I
P

OS

connTo

Figure 7.20: Graphical representation of secure MQTT refinement rules.

relationship between IoTApp and ExtAPI and the other relevant components
on the left-hand side are transformed into the right-hand side topology in a
one-step refinement.

Considering both the IoT hardware and communication aspects discussed
in this section, a total of nine IoT-specific refinement rules were added to the
SecureWeaver model database in order to add to it the capability of designing
secure IoT systems.

7.3.3 Secure IoT System Design Evaluation

For the evaluation, the same SecureWeaver version 0.1.3 setup on AWS
“t2.micro” VM instance detailed in Section 7.2.2 was utilized. Three
scenarios are designed to evaluate SecureWeaver for hardware-level system
design:

1. Standalone IoT system design
2. End-to-end IoT application without security
3. End-to-end IoT application with one security threat

The standalone IoT system design is a basic IoT application that is used
to functionally evaluate SecureWeaver capability at designing hardware level
system. The end-to-end IoT application (with no-security scenario) is the
extension of the first evaluation scenario, where SecureWeaver designs at both
hardware-level and network-level. The end-to-end IoT application scenario

136

Router

ExtAPI

WAN

abs: False

req: LAN(inf)

cap: WAN(inf)

FW(1)

abs: False

req: -

cap: extWAN(1)

EXT
Things

abs: True

req: -

cap: -

abs: False

req: WAN(inf)

cap: extWAN(inf)

ExtThings

abs: True

req: -

cap: LAN(inf)

Switch

LAN

L3

L3SW

abs: True

req: -

cap: -

abs: False

req: -

cap: LAN(inf)

NIDS(1)

IoT
App

OS

Free
RTOS

ESP32

IoTOS

IoTFreeRTOS

abs: True

req: IoTHW(1)

cap: IoTOS(inf)

IoTHW

IoTESP32

abs: True

req: IoTNW(inf)

cap: IoTHW(1)

abs: False

req: IoTNW(inf)

cap: IoTHW(1)

abs: True

req: IoTHW(1)

cap: IoTOS(inf)

IoTWiFi

IoTNW

abs: True

req: LAN(inf)

cap: IoTNW(inf)

abs: True

req: LAN(inf)

cap: IoTNW(1)

abs: False

req: IoTOS(1)

cap: -

IoTApp

Figure 7.21: IoT-related and supporting components in SecureWeaver used
in the evaluation.

with security threat on the other hand is used to evaluated SecureWeaver
capability to mitigate security threats for IoT system design.

The components that are used in the evaluation are shown in Fig. 7.21.
The grey background denotes the grouping of related type components, for
example the abstract LAN component is the root for both abstract Switch
component and the concrete layer 3 network switch, L3SW.

7.3.3.1 Evaluation of Standalone IoT System Design

The service requirement for standalone IoT system design evaluation is
illustrated in Fig. 7.22, where it defines a concrete IoT application, App1
that is an “IoTApp” component type introduced in the previous subsection.
This single IoT application is used to evaluate SecureWeaver capability to
refine the application from the application level to the networking level.

The result of SecureWeaver for the standalone IoT system design sce-
nario is shown in Fig. 7.22. The IoTApp-1 is refined where a concrete
OS, IoT FreeRTOS provides the “iot os” capability that is required. The
IoT ESP32 provides the “iot hardware” capability to IoT FreeRTOS hard-

137

IoT
App

IoTApp-1:IoTApp

Figure 7.22: Service requirement of standalone IoT system.

ware platform while the IoT Network WiFi provides the network capability
required by the hardware platform to connect to a network. Each of their
relationships are shown in the “Topology” section in Fig. 7.22 under “Edge”,
where the first and second column is the source and destination, while the
third column is the type of the relationship.

The resulting system design for Scenario #1 is represented graphically
in Fig. 7.24, where the IoTApp-1 component is connected via wire:IoTOS

to the concrete OS component IoT FreeRTOS that provides the iot os

capability that is required by IoTApp-1. The IoT ESP32 component provides
the iot hardware capability to IoT FreeRTOS hardware platform, while
the IoT Network WiFi component provides the network capability required
by IoT ESP32 to connect to a network. The IoT Network WiFi is finally
connected to a network switch, L3SW (this generic L3SW component represents
a WiFi access point). From the output design we conclude that SecureWeaver
is able to functionally design an IoT system automatically.

7.3.3.2 Evaluation of End-to-End IoT ApplicationWithout Threats

In this scenario, the basic standalone IoT application intent is further
extended, and the IoT application, IoTApp-1 is connected to an external
API, External API 1 as described by an abstract connTo relationship as
shown in Fig. 7.25. Besides that, External API 1 is also connected to the
WAN via a concrete relationship, wire:external-GW. Hence, this scenario
describes an end-to-end communication between the IoT application and the
external API, which can be a cloud platform on the Internet.

The result of the scenario refined by SecureWeaver is shown in Fig. 7.26.
In addition to the concrete refinement of the IoT system part, the logical
relationship between IoTApp-1 and External API 1 on the application layer
in the TCP/IP model is MQTT, where the IoTApp-1 is the source and
External API 1is the destination. The network layer protocol in the TCP/IP
model is the IP, where the source is IoTNWIn (network interface WiFi) and
the destination is External API 1.

The WiFi network interface, IoT Network WiFi is connected to the L3SW,

138

Figure 7.23: Output of standalone IoT system design by SecureWeaver.

IoT
App

IoTApp-1:

IoTApp

Free
RTOS

ESP32

L3

L3SW:

L3SW
IoTNWIn:

IoTNetworkWiFi

IoTHWP:

IoTESP32

IoTOS:

IoTFreeRTOS

wire:

IoTNW

wire:

IoTOS

wire:IoTHW

wire:

LAN

Figure 7.24: Output of standalone IoT system design by SecureWeaver.

139

WAN:WAN

IoT
App

External_API_1:ExtAPI

IoTApp-1:IoTApp c
o
n
n
T
o

Figure 7.25: Service requirement of end-to-end IoT application system
design.

where the L3SW is then connected to the Router via a concrete wire:lan type
relationship. The WAN is connected to Router via a concrete wire:WAN-GW

relationship, which completes the end-to-end path between the IoT applica-
tion, IoTApp-1 and external API, External API 1. This scenario highlights
that SecureWeaver is not only able to design for IoT system as a standalone,
but also its subsequent IT related networking part.

7.3.3.3 Evaluation of End-to-End IoT Application With One Secu-
rity Threat

In this scenario, the end-to-end IoT application scenario service requirement
is used to evaluate SecureWeaver’s security verification mechanism. The
MITRE ATT&CK Network Sniffing threat (T1040) is introduced into the
end-to-end IoT application intent, where the abstract connTo relationship is
explicitly defined to be vulnerable to the network sniffing threat as shown in
Fig. 7.27. For the abstract connTo refinement to concrete MQTT connection,
MQTT protocol by itself is not secure. Hence, SecureWeaver will reject the
system design candidates that does not meet the required secure protocol to
mitigate the threat T1040. The MQTT with TLS, MQTT TLS is defined as a
secure type of relationship in SecureWeaver database.

The result of the end-to-end IoT application scenario is shown in Fig. 7.28,
where the topology edge section shows MQTT TLS relationship type is de-
fined for the relationship between the source, IoTApp-1 and destination,
External API 1. Note that the application layer protocol for the logical con-
nection between IoTApp-1 and External API 1 is MQTT TLS, which is defined
as one of the protocols that is suitable for the MITRE ATT&CK mitigation

140

IoT
App

External_API_1

:ExtAPI

IoTApp-1:

IoTApp

Free
RTOS

ESP32

L3

WAN:

WAN

L3SW:L3SW

RTR:

Router

IoTNWIn:

IoTNetworkWiFi

IoTHWP:

IoTESP32

IoTOS:

IoTFreeRTOS

MQTT

IP

Figure 7.26: Output of end-to-end IoT application system design by Se-
cureWeaver.

WAN:WAN

IoT
App

External_API_1:ExtAPI

IoTApp-1:IoTApp

T1040

c
o
n
n
T
o

Figure 7.27: Service requirement of end-to-end IoT application system design
with threat T1040.

141

IoT
App

External_API_1

:ExtAPI

IoTApp-1:

IoTApp

Free
RTOS

ESP32

L3

WAN:

WAN

L3SW:L3SW

RTR:

Router

IoTNWIn:

IoTNetworkWiFi

IoTHWP:

IoTESP32

IoTOS:

IoTFreeRTOS

MQTT_TLS

IP

T1040040

Figure 7.28: Output of end-to-end IoT application system design by Se-
cureWeaver with security verification.

technique “Encrypt Sensitive Information” (M1041) in the SecureWeaver
threat mitigation knowledge base. Since mitigation M1041 is mapped to
threat T1040 (which appeared in the input requirement for this scenario),
SecureWeaver utilizes the corresponding secure protocol verification function
to check accordingly the system design candidates generated during the
refinement process.

By analyzing the detailed SecureWeaver output, we were able to confirm
that all system design candidates that did not meet the secure protocol
requirement for mitigating threat T1040, such as MQTT at the application layer
and IP at the network layer, were correctly rejected. Thus, this evaluation
demonstrated that SecureWeaver is not only able to functionally design a
concrete IoT system at both hardware and network levels, but can also ensure
that the resulting IoT system design output is secure.

7.4 Feature Evaluation and Comparison

In this section, the feature evaluation of SecureWeaver and its comparison
with related works are discussed. The discussion on the evaluation and the
pros and cons of SecureWeaver are discussed in detail, which is followed by

142

the feature comparison between SecureWeaver and other system designers.

7.4.1 Evaluation of SecureWeaver Capabilities

The verification process in SecureWeaver was implemented according to
the best practices included in the MITRE ATT&CK matrix and we have
validated that these best practices are reflected in the output design. In
addition, security professionals from NEC Corporation have assessed the
SecureWeaver output design for several scenarios and they found it satis-
factory from a security perspective. However, judging only the validity of
the SecureWeaver output does not prove its effectiveness. Human designers
often utilize checklists, such as the Functional Specification Document (FSD)
and Technical Specification Document (TSD), to validate the functional and
security requirements during design and implementation. In our method,
instead of a checklist, the design is conducted based on security rules, and it
is fundamentally equivalent to checklist-based design in term of its security
characteristics. Moreover, SecureWeaver is not affected by the possible
mistakes or omissions that human designers could make, and at the same
time is able to verify significantly larger sets of conditions compared to
human designers. On the other hand, a human designer can deal with
various implicit requirements, whereas SecureWeaver can only handle the
sets of explicit requirements that it is able to recognize (this aspect can be
improved on by extending the set of refinement rules and the knowledge
base).

In the current implementation of SecureWeaver, the output design is gen-
erated from a network domain perspective, which may not explicitly consider
OS-dependent details, such as a certain security patches or vulnerabilities.
Therefore, due diligence is required to ensure that the actual implementation
of the system design is sound and follows the best security practices. To
extend SecureWeaver beyond the network domain, security details at the OS
level, such as security vulnerabilities and their mitigations can be included
into the framework via additional refinement rules that include the relevant
details. For instance, for network servers running Linux-based OSs, the Linux
domain in the ATT&CK Enterprise matrix is relevant to ensure their security.

Besides that, it is possible for SecureWeaver to unknowingly introduce
further vulnerabilities during its refinement process into the final system
design output, since certain refinement rules may introduce a possible vector
of attack in the system. Ideally, SecureWeaver should actively mitigate the
threats introduced during the refinement process recursively. However due
to the inherent limitation of SecureWeaver, it is only able to process and
mitigate threats that are explicitly defined in the service requirement, and it

143

is unable to recursively mitigate new threats that are introduced as a result
of the refinement.

The concept of “zero trust” has been gaining momentum in the security
communities, and it means that components in a network are not trusted
by default, and their interactions are always verified. Thus, the principle
of least privilege recommends per-request access controls to achieve micro-
segmentation, which requires enhanced identity management features. To
apply the concept of zero trust to SecureWeaver would require a new
meta-level verification function for access control regarding the relevant
components, as well as additional refinement rules and an Access Control
List (ACL) in the secure design database.

Like any system, SecureWeaver has its advantages and disadvantages,
as summarized in Table 7.6. Regarding its advantages, SecureWeaver is
able to automatically transform an abstract intent into a concrete system
design that satisfies the input requirements, handling both the design-from-
scratch and incremental-design cases. While SecureWeaver currently has
built-in support for the IT/NW and IoT domains, it can also support any
other type of networked system, as long as the corresponding components,
relationships, and their refinement rules can be expressed in SecureWeaver
format. SecureWeaver includes the MITRE ATT&CK based security verifica-
tion functions that incorporate best practices for mitigating attacks against
specific system components. Furthermore, SecureWeaver is not prone to
mistakes and omissions as it can happen for human designers, and can verify
significantly larger sets of conditions compared to a human designer.

As for disadvantages, SecureWeaver requires a technical user to define the
service requirement, components, relationships and refinement rules for any
system that is to be designed (if these elements are not already defined in its
library). The current SecureWeaver only implements security verification and
rules related to the network domain in MITRE ATT&CK, which limits the
range of practical use scenarios. For example, threats such as Data Encrypted
for Impact (T1486) that relate to ransomware attacks against database and
backup servers are part of the Infrastructure-as-a-Service (IaaS), Linux,
Windows, and macOS domains of MITRE ATT&CK; as they are outside
the network domain currently implemented in SecureWeaver, such threats
are not covered at this moment. In addition, SecureWeaver does not support
automatic threat assignment or identification of cascading threat(s) from the
included threats(s), as currently a security expert must explicitly define the
security threat(s) of concern in the service requirement. Lastly, SecureWeaver
can only handle a limited sets of requirements when compared to human
designers, as the extent of the support depends on the amount of implemented
refinement rules.

144

Table 7.6: Pros and cons of SecureWeaver.

Pros

Automatically transform an intent file into a concrete system design
that satisfies the included qualitative, quantitative, and security re-
quirements
Can accept fully abstract or partially concrete intent files so that either
full or incremental designs are possible
Supports any type of networked system provided that the corre-
sponding components, relationships, and their refinement rules can
be expressed
MITRE ATT&CK based security verification, which incorporates best
practices for mitigating attacks against specific system components
A smaller number of independent security verification functions and
related rules compared to the number of threats, making their defini-
tion manageable
Includes components, relationships and refinement rule definitions for
the IT/NW and IoT domains
Does not suffer common disadvantage of human designer and is able
to verify significantly larger conditions

Cons

Requires the definitions of intent file, components, relationships and
refinement rules for any system that is to be designed (if not already
defined)
Only the MITRE ATT&CK network domain security verification and
related rules are currently implemented
Requires the explicit inclusion of the security threat(s) of concern in
the intent file; no automatic threat assignment or identification of
cascading threat(s) from the included threat(s) is supported
Only can handle limited sets of requirement when compared to human
designers

145

7.4.2 Comparison with Related Works

In this section, SecureWeaver is compared to the related works that cover
secure design aspects discussed in Section 2. The comparison first looks at
each framework’s capabilities, whether it is able to design or/and verify the
security level of its output. The method that is used to design or create
the output is also explored, as well as the type of output as its target
domain. Furthermore, the method of how each framework creates or verifies
its security policies/mitigations, whether qualitatively or quantitatively, and
lastly, the type of security knowledge base that the framework refers to in
order to refine its output are considered.

The comparison is summarized in Table 7.7. For framework capabilities,
both SecureWeaver and [32] are able to perform both system design from
abstract input and verify the security of the output, while the works in [30]
and [31] are only capable of verifying a concretized input. As for [10], the
framework is only capable of designing the security policy from an abstract
input.

For the design method, both SecureWeaver and [32] use DSE refine a
concrete system, while [30] uses clustering and external tools to manage its
dependency process. The framework in [31] uses template matching to create
the flow chain for verification, and [10] uses DFA and CFG to create concrete
configurable security policies. Template-based approaches are generally more
rigid than search-based design.

For the framework target domain, SecureWeaver covers both IT/NW
and IoT aspects, as demonstrated in this paper and in [72]. However, the
other frameworks target specific domains such as NW, IT/NW or IoT (the
difference between NW and IT/NW is that NW only considers traffic routing
in an SDN cloud environment, whereas IT/NW represents a more generic
IT environment). Moreover, all the framework security threat mitigation
approaches are quantitative-based except the framework in [10]. For the
quantitative-based approach, a numerical result is typically used to satisfy
the quantitative security requirements, while a qualitative-based approach
such as [10] only creates its output with reference to a pattern database as a
matching problem, which is not an optimization problem.

All platforms use some form of database which stores the ruleset/tem-
plate/attack chain and their corresponding numerical values for security com-
putations. While [30] and [31] are based on abstract numerical values, [32]
designed their attack chain based on the STRIDE model. The SecureWeaver
database is based on the ATT&CK matrix, which provides a more concrete
and comprehensive coverage. The SecureWeaver database also allows users
to assign numerical weights for each mitigation.

146

T
ab

le
7.
7:

F
ea
tu
re

co
m
p
ar
is
on

of
S
ec
u
re
W
ea
ve
r
w
it
h
re
la
te
d
w
or
k
s.

N
am

e
C
ap

ab
il
it
y

M
et
h
o
d

T
ar
ge
t

T
h
re
at

M
it
ig
at
io
n

S
ec
u
ri
ty

K
n
ow

le
d
ge

S
ec
u
re
W
ea
ve
r

D
es
ig
n

&
ve
ri
fi
ca
ti
on

D
S
E

IT
/N

W
,

Io
T

Q
u
an

ti
ta
ti
ve

(d
on

e
v
ia
se
cu
-

ri
ty

ve
ri
fi
ca
ti
on

&
se
cu
ri
ty

le
ve
l
as
se
ss
m
en
t)

A
T
T
&
C
K

d
at
ab

as
e,

se
cu
ri
ty

le
ve
l
&

fu
n
ct
io
n
d
at
ab

as
e

IN
S
p
IR

E
[3
0]

V
er
ifi
ca
ti
on

C
lu
st
er
in
g

N
W

Q
u
an

ti
ta
ti
ve

(d
on

e
v
ia
se
cu
-

ri
ty

sc
or
e
co
m
p
u
ta
ti
on

)
V
ir
tu
al

N
et
w
or
k

F
u
n
ct
io
n

(V
N
F
)

&
se
cu
ri
ty

sc
or
e

d
at
ab

as
e

[3
1]

V
er
ifi
ca
ti
on

T
em

p
la
te

IT
/N

W
Q
u
an

ti
ta
ti
ve

(d
on

e
v
ia
se
cu
-

ri
ty

le
ve
l
as
se
ss
m
en
t)

P
at
te
rn

&
se
cu
ri
ty

le
ve
l

d
at
ab

as
e

IB
C
S
[1
0]

D
es
ig
n

D
F
A

&
C
F
G

N
W

Q
u
al
it
at
iv
e
(d
on

e
v
ia

p
ol
ic
y

ge
n
er
at
io
n
)

N
et
w
or
k

S
ec
u
ri
ty

F
u
n
ct
io
n

(N
S
F
)
d
at
ab

as
e

[3
2]

D
es
ig
n

&
ve
ri
fi
ca
ti
on

D
S
E

Io
T

Q
u
an

ti
ta
ti
ve

(d
on

e
v
ia

p
ro
b
ab

il
is
ti
c
at
ta
ck

ch
ai
n
)

S
T
R
ID

E
b
as
ed

at
ta
ck

ch
ai
n
,

se
cu
ri
ty

fu
n
ct
io
n
d
at
ab

as
e

147

This comparison demonstrates that SecureWeaver is well suited for
addressing secure architecture-level system design in the IT/NW and IoT
domains, and is favorably positioned compared to other related works.

7.5 Summary

This section presented the evaluation of SecureWeaver using two approaches:
(i) functionality evaluation; and (ii) performance evaluation. A typical
corporate network scenario that includes web systems, thin client systems,
and remote user access was used to create multiple scenarios in increasing
complexity and number of threats for the evaluation. SecureWeaver was
shown to be able to generate a system design that mitigates the security
threats included in the service requirement via the automatic assignment of
a NIDS, a VPN server, and a firewall appliance at the suitable positions
in the topology state, as well as utilizing a virtual machine environment to
deploy a potentially-vulnerable web server application.

Furthermore, the performance characteristics of SecureWeaver implemen-
tation were also evaluated. The security verification overhead compared
to the total elapsed time for system design is largest for simple scenarios,
whereby the actual design process is very fast, still being just 0.58% in
such a case. Nevertheless, the overhead for complex realistic scenarios with
multiple threats sharply decreases, approaching levels as low as 0.30% in the
experiments performed. A detailed discussion of the evaluation and the pros
and cons of SecureWeaver is also discussed, followed by a feature comparison
with respect to other research works, emphasising the overall advantages of
SecureWeaver.

148

Chapter 8

Conclusion

8.1 Conclusion

The aim of this dissertation was to improve the security of a system by
introducing formal verification of its security characteristics into fundamental
system design, and also emphasizing practical experiment verification. The
dissertation main contributions are summarized as follows:

1. The secure design database, as a part of the larger automated secure
system designer framework, provides the database of secure refinement
rules, MITRE ATT&CK-based threat mitigation knowledge base, and
database of secure protocols. The secure design database provides the
necessary information to the system designer, such that automated sys-
tem designer is able to output a system design that is not only concrete,
but also secure at the same time. An extension of the threat mitigation
knowledge base was also presented, where using ontology and STIX,
the threat mitigation knowledge base can be extended beyond MITRE
ATT&CK to include other third-party security databases.

2. The intent-based secure system designer, SecureWeaver, realizes auto-
mated system design for networked systems that does not only meet
the qualitative and quantitative requirements of the service require-
ment input, but also its security requirements. SecureWeaver was
implemented by leveraging the functionality of an existing intent-based
system designer that targeted IT/NW services, named Weaver, and
introduced security verification mechanism into the verification process.

3. The case studies on secure end-to-end communication and secure
configuration to demonstrate the development challenges with an IoT
hardware platform. The end-to-end communication implementations
covered both LPWAN Sigfox and MQTT to public cloud implementa-
tions, where the issues with Sigfox payload encryption and securing
MQTT session were investigated and discussed. Furthermore, the
work to port maker-friendly Arduino code into ESP-IDF in order to
implement flash encryption was also presented. From the analysis, it

149

was shown that a flash encrypted ESP32 device may not be fully en-
crypted and discussed the pitfalls in ensuring the device is fully secure.
These case studies demonstrated the challenges of implementing secure
networked systems that guided the process of modelling threats and
system components used for the evaluation of SecureWeaver.

4. A set of models for IT/NW and IoT system design is automatically
designed via SecureWeaver to meet the qualitative, quantitative and
security requirements. Practical scenarios such as corporate network,
IoT appliance and hardware-level design are evaluated to showcase that
it is possible to automatically design this kind of systems in a secure
manner. In corporate network scenario, SecureWeaver was able to
generate a system design that mitigates the security threats included
in the input requirements via the automatic placement of a network
intrusion detection system, a VPN server, and a firewall at the appro-
priate locations, as well as by deploying a potentially-vulnerable web
server application in a virtual machine environment. The performance
characteristics of SecureWeaver implementation demonstrated that the
security verification overhead compared to the total system design time
is largest for simple scenarios, for which the actual design is very fast,
still being just 0.58% in such a case. However, for complex realistic
scenarios with multiple threats the overhead decreases sharply, reaching
levels as low as 0.30% in the experiments performed.

As of the social impact of this dissertation, the proposed automated secure
system design is intended as a way to decrease the human effort required
in system design via automatically designing secure systems. This would
reduce the manual labour required to design secure system and redistribute
the labour to higher value work. This research was conducted as a joint-
research project with NEC Corporation to introducing security features into
their existing system designer where several patent applications were made
during this project, and the potential commercial use of the research by NEC
will potentially increase its high impact in society.

8.2 Future Work

The following are possible future directions of this work:

• Since the current threat mitigation knowledge base is based only on the
network domain in MITRE ATT&CK Enterprise matrix, the threat
mitigation knowledge base could be extended to include other third-
party security databases such as MITRE’s Common Vulnerabilities and

150

Exposures (CVE), and many more.
• Artificial Intelligence (AI) can be used to optimize the automated
system designer refinement process, making it faster and more efficient
to generate larger and more complex system designs.

• Automated threat placement and rule generations can be introduced
to reduce manual definition of threats in the service requirement and
manual curation of security-focused refinement rules.

• Lastly, the automated system designer can be optimized regarding
software performance by the early elimination of those system designs
that cannot be made secure by any means.

151

References

[1] Industrial Internet Consortium (IIC). Trustworthi-
ness in Industrial System Design. [Online]. Avail-
able: https://www.iiconsortium.org/news/joi-articles/2018-Sept-JoI-
Trustworthiness-in-System-Design-Wibu-Systems.pdf

[2] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner, “Opium: Optimal
package install/uninstall manager,” in 29th International Conference
on Software Engineering (ICSE’07). IEEE, 2007, pp. 178–188.

[3] F. Carrez, M. Bauer, M. Boussard, N. Bui, C. Jardak, J. Loof,
C. Magerkurth, S. Meissner, A. Nettsträter, A. Olivereau et al., “Final
architectural reference model for the iot v3. 0, internet of things-
architecture iot-a ec project deliverable d1. 52013.”

[4] OASIS Open. STIX 2.1 Examples. [Online]. Available: https:
//oasis-open.github.io/cti-documentation/stix/examples.html

[5] ——. STIX Version 2.1. [Online]. Avail-
able: https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-
csprd01.html# Toc16070624

[6] MITRE. ATT&CK STIX Data. [Online]. Available: https://
github.com/mitre-attack/attack-stix-data/

[7] C. Wu, S. Horiuchi, K. Murase, H. Kikushima, and K. Tayama, “Intent-
driven cloud resource design framework to meet cloud performance
requirements and its application to a cloud-sensor system,” Journal of
Cloud Computing, vol. 10, no. 1, pp. 1–22, 2021.

[8] A. Rafiq, A. Mehmood, T. Ahmed Khan, K. Abbas, M. Afaq, and W.-
C. Song, “Intent-based end-to-end network service orchestration system
for multi-platforms,” Sustainability, vol. 12, no. 7, p. 2782, 2020.

[9] M. Pham and D. B. Hoang, “Sdn applications-the intent-based north-
bound interface realisation for extended applications,” in 2016 IEEE
NetSoft Conference and Workshops (NetSoft). IEEE, 2016, pp. 372–
377.

152

https://www.iiconsortium.org/news/joi-articles/2018-Sept-JoI-Trustworthiness-in-System-Design-Wibu-Systems.pdf
https://www.iiconsortium.org/news/joi-articles/2018-Sept-JoI-Trustworthiness-in-System-Design-Wibu-Systems.pdf
https://oasis-open.github.io/cti-documentation/stix/examples.html
https://oasis-open.github.io/cti-documentation/stix/examples.html
https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-csprd01.html#_Toc16070624
https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-csprd01.html#_Toc16070624
https://github.com/mitre-attack/attack-stix-data/
https://github.com/mitre-attack/attack-stix-data/

[10] J. Kim, E. Kim, J. Yang, J. Jeong, H. Kim, S. Hyun, H. Yang, J. Oh,
Y. Kim, S. Hares et al., “Ibcs: intent-based cloud services for security
applications,” IEEE Communications Magazine, vol. 58, no. 4, pp. 45–
51, 2020.

[11] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z.
Granville, W. Willinger, and S. G. Rao, “Hey, lumi! using natural
language for {Intent-Based} network management,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 625–639.

[12] C. El Houssaini, M. Nassar, and A. Kriouile, “A cloud service
template for enabling accurate cloud adoption and migration,” in
2015 International Conference on Cloud Technologies and Applications
(CloudTech). IEEE, 2015, pp. 1–6.

[13] J. DesLauriers, T. Kiss, G. Pierantoni, G. Gesmier, and G. Terstyan-
szky, “Enabling modular design of an application-level auto-scaling and
orchestration framework using TOSCA-based application description
templates,” in 11th International Workshop on Science Gateways,
IWSG 2019. CEUR Workshop Proceedings, 2021.

[14] N. Paladi, A. Michalas, and H.-V. Dang, “Towards secure cloud
orchestration for multi-cloud deployments,” in Proceedings of the 5th
Workshop on CrossCloud Infrastructures & Platforms, 2018, pp. 1–6.

[15] Y. Wei, M. Peng, and Y. Liu, “Intent-based networks for 6g: Insights
and challenges,” Digital Communications and Networks, vol. 6, no. 3,
pp. 270–280, 2020.

[16] E. Kang, “Design space exploration for security,” in 2016 IEEE
Cybersecurity Development (SecDev). IEEE, 2016, pp. 30–36.

[17] A. D. Pimentel, “A case for security-aware design-space explo-
ration of embedded systems,” Journal of Low Power Electronics and
Applications, vol. 10, no. 3, p. 22, 2020.

[18] T. Kuroda, T. Kuwahara, T. Maruyama, K. Satoda, H. Shimonishi,
T. Osaki, and K. Matsuda, “Weaver: A novel configuration designer
for it/nw services in heterogeneous environments,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[19] T. Kuwahara, T. Kuroda, T. Osaki, and K. Satoda, “An intent-based
system configuration design for it/nw services with functional and

153

quantitative constraints,” IEICE Transactions on Communications,
vol. E104.B, no. 7, pp. 791–804, 2021.

[20] J. Luszcz, “Apache struts 2: how technical and development gaps
caused the equifax breach,” Network Security, vol. 2018, no. 1, pp.
5–8, 2018.

[21] G. McGraw, “Software security,” Building security in, 2006.

[22] J. C. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 220–
223.

[23] T. Pollock, “Reducing human error in cyber security using the human
factors analysis classification system (hfacs).” 2017.

[24] R. Kwon, T. Ashley, J. Castleberry, P. Mckenzie, and S. N. G.
Gourisetti, “Cyber threat dictionary using mitre att&ck matrix and
nist cybersecurity framework mapping,” in 2020 Resilience Week
(RWS). IEEE, 2020, pp. 106–112.

[25] A. Georgiadou, S. Mouzakitis, and D. Askounis, “Assessing mitre
att&ck risk using a cyber-security culture framework,” Sensors, vol. 21,
no. 9, p. 3267, 2021.

[26] A. Brazhuk, “Semantic model of attacks and vulnerabilities based on
capec and cwe dictionaries,” International Journal of Open Information
Technologies, vol. 7, no. 3, pp. 38–41, 2019.

[27] W. Xiong, E. Legrand, O. Åberg, and R. Lagerström, “Cyber security
threat modeling based on the mitre enterprise att&ck matrix,” Software
and Systems Modeling, vol. 21, no. 1, pp. 157–177, 2022.

[28] E. Hemberg, J. Kelly, M. Shlapentokh-Rothman, B. Reinstadler,
K. Xu, N. Rutar, and U.-M. O’Reilly, “Bron–linking attack tactics,
techniques, and patterns with defensive weaknesses, vulnerabilities and
affected platform configurations,” arXiv e-prints, pp. arXiv–2010, 2020.

[29] G. Davoli, W. Cerroni, S. Tomovic, C. Buratti, C. Contoli, and F. Cal-
legati, “Intent-based service management for heterogeneous software-
defined infrastructure domains,” International Journal of Network
Management, vol. 29, no. 1, p. e2051, 2019.

154

[30] E. J. Scheid, C. C. Machado, M. F. Franco, R. L. dos Santos, R. P.
Pfitscher, A. E. Schaeffer-Filho, and L. Z. Granville, “Inspire: Inte-
grated nfv-based intent refinement environment,” in 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM).
IEEE, 2017, pp. 186–194.

[31] F. Amato, N. Mazzocca, and F. Moscato, “Model driven design and
evaluation of security level in orchestrated cloud services,” Journal of
Network and Computer Applications, vol. 106, pp. 78–89, 2018.

[32] L. Gressl, C. Steger, and U. Neffe, “Design space exploration for
secure iot devices and cyber-physical systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–24, 2021.

[33] M. Rutkowski, C. Chris Lauwers, and C. Curescu,
“Tosca simple profile in yaml version 1.3,” 2020. [Online].
Available: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

[34] D. Makoshenko and I. Enkovich, “Iot development: Discovering,
enabling and validation of real life iot scenarios,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, 2017, pp. 159–164.

[35] A. R. DeSerranno, M. T. Mullarkey, and A. R. Hevner, “Building a
semantic ontology for internet of things (iot) systems.” in ONTOBRAS,
2017, pp. 111–117.

[36] D. Amalfitano, N. Amatucci, V. De Simone, V. Riccio, and F. A.
Rita, “Towards a thing-in-the-loop approach for the verification and
validation of iot systems,” in Proceedings of the 1st ACM Workshop
on the Internet of Safe Things, 2017, pp. 57–63.

[37] H. Kim, A. Ahmad, J. Hwang, H. Baqa, F. Le Gall, M. A. R. Ortega,
and J. Song, “Iot-taas: Towards a prospective iot testing framework,”
IEEE Access, vol. 6, pp. 15 480–15 493, 2018.

[38] X. Mountrouidou, B. Billings, and L. Mejia-Ricart, “Not just another
internet of things taxonomy: A method for validation of taxonomies,”
Internet of Things, vol. 6, p. 100049, 2019.

[39] J. Voas et al., “Networks of ‘things’,” NIST Special Publication, vol.
800, no. 183, pp. 800–183, 2016.

155

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

[40] L. Maillet-Contoz, E. Michel, M. D. Nava, P.-E. Brun, K. Leprêtre,
and G. Massot, “End-to-end security validation of iot systems based
on digital twins of end-devices,” in 2020 Global Internet of Things
Summit (GIoTS). IEEE, 2020, pp. 1–6.

[41] L. Gressl, M. Krisper, C. Steger, and U. Neffe, “Towards an auto-
mated exploration of secure iot/cps design-variants,” in International
Conference on Computer Safety, Reliability, and Security. Springer,
2020, pp. 372–386.

[42] C. Alberca, S. Pastrana, G. Suarez-Tangil, and P. Palmieri, “Security
analysis and exploitation of arduino devices in the internet of things,”
in Proceedings of the ACM International Conference on Computing
Frontiers, 2016, pp. 437–442.

[43] A. A. Gendreau, “Internet of things: Arduino vulnerability analysis,”
A Primer for Security, p. 32, 2016.

[44] T. Niemirepo, M. Sihvonen, V. Jordan, and J. Heinilä, “Service plat-
form for automated iot service provisioning,” in 2015 9th International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing. IEEE, 2015, pp. 325–329.

[45] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy: a
framework for continuous automated iot application deployment in fog
computing,” in 2017 IEEE international conference on AI & Mobile
Services (AIMS). IEEE, 2017, pp. 38–45.

[46] A. R. DeSerranno, M. Mullarkey, and A. Hevner, “Evaluation of a
commercial iot platform,” 2017.

[47] Bosch. Bosch IoT Suite. [Online]. Available: https://www.bosch-iot-
suite.com

[48] IBM. IBM Watson IoT Platform. [Online]. Available: https:
//internetofthings.ibmcloud.com/

[49] Microtronics. Microtronics IoT Suite. [Online]. Available: https:
//www.microtronics.com/en/product/iot-suite.html

[50] D. Soukaras, P. Patel, H. Song, and S. Chaudhary, “Iotsuite: a
toolsuite for prototyping internet of things applications,” in The 4th
International Workshop on Computing and Networking for Internet of
Things (ComNet-IoT), co-located with 16th International Conference
on Distributed Computing and Networking (ICDCN), 2015, p. 6.

156

https://www.bosch-iot-suite.com
https://www.bosch-iot-suite.com
https://internetofthings.ibmcloud.com/
https://internetofthings.ibmcloud.com/
https://www.microtronics.com/en/product/iot-suite.html
https://www.microtronics.com/en/product/iot-suite.html

[51] G. M. Køien, “A philosophy of security architecture design,” Wireless
Personal Communications, vol. 113, no. 3, pp. 1615–1639, 2020.

[52] Industrial Internet Consortium (IIC). The Industrial In-
ternet of Things: Managing and Assessing Trust-
worthiness for IIoT in Practice. [Online]. Avail-
able: https://www.iiconsortium.org/pdf/Managing and Assessing
Trustworthiness for IIoT in Practice Whitepaper 20190516.pdf

[53] V. Shannon and W. J. Rewak. An Introduction to Cybersecurity
Ethics. [Online]. Available: https://www.scu.edu/media/ethics-
center/technology-ethics/IntroToCybersecurityEthics.pdf

[54] R. Beuran, S. E. Ooi, A. Barbir, and Y. Tan, “POSTER: IoT System
Trustworthiness Assurance,” in Posters In 2022 ACM Asia Conference
on Computer and Communications Security (AsiaCCS), 2022.

[55] International Organization for Standardization/International Elec-
trotechnical Commission (ISO/IEC). ISO/IEC JTC 1/SC 41:
Internet of things and digital twin. [Online]. Available:
https://www.iso.org/committee/6483279.html

[56] National Institute of Standards and Technology (NIST).
NIST Cybersecurity for IoT Program web page. [On-
line]. Available: https://www.nist.gov/itl/applied-cybersecurity/nist-
cybersecurity-iot-program

[57] Industrial Internet Consortium (IIC). Industrial Internet Consortium
webpage. [Online]. Available: https://www.iiconsortium.org

[58] E. R. Griffor, C. Greer, D. A. Wollman, M. J. Burns et al., “Framework
for cyber-physical systems: Volume 1, overview,” 2017.

[59] A. Karmarkar and M. Buchheit, “The industrial internet of things
volume g8: Vocabulary,” IIC: PUB G, vol. 8, 2017.

[60] International Organization for Standardization, “Road vehicles - Func-
tional safety. ISO 26262:2018,” 2018.

[61] Japan Automobile Manufacturers Association (JAMA). Self-driving
safety assessment framework (in Japanese). [Online]. Available:
https://www.jama.or.jp/safe/automated driving/pdf/framework.pdf

157

https://www.iiconsortium.org/pdf/Managing_and_Assessing_Trustworthiness_for_IIoT_in_Practice_Whitepaper_20190516.pdf
https://www.iiconsortium.org/pdf/Managing_and_Assessing_Trustworthiness_for_IIoT_in_Practice_Whitepaper_20190516.pdf
https://www.scu.edu/media/ethics-center/technology-ethics/IntroToCybersecurityEthics.pdf
https://www.scu.edu/media/ethics-center/technology-ethics/IntroToCybersecurityEthics.pdf
https://www.iso.org/committee/6483279.html
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program
https://www.iiconsortium.org
https://www.jama.or.jp/safe/automated_ driving/pdf/framework.pdf

[62] European Union Agency for Cybersecurity (ENISA). Good Practices
for Security of IoT – Secure Software Development Lifecycle. [Online].
Available: https://www.enisa.europa.eu/publications/good-practices-
for-security-of-iot-1/@@download/fullReport

[63] National Institute of Standards and Technology (NIST). IoT Device
Cybersecurity Requirement Catalogs. [Online]. Available: https:
//pages.nist.gov/IoT-Device-Cybersecurity-Requirement-Catalogs/

[64] U.S. Department of Health & Human Services. Health Insurance
Portability and Accountability Act (HIPAA). [Online]. Available:
https://www.hhs.gov/hipaa/index.html

[65] European Parliament and Council of the European Union. General
Data Protection Regulation (GDPR) 2016/679. [Online]. Available:
https://eur-lex.europa.eu/eli/reg/2016/679/oj

[66] M. Rausand, A. Barros, and A. Hoyland, System reliability theory:
models, statistical methods, and applications (3rd edition). John
Wiley & Sons, 2020.

[67] P. Uday and K. Marais, “Designing resilient systems-of-systems: A
survey of metrics, methods, and challenges,” Systems Engineering,
vol. 18, no. 5, pp. 491–510, 2015.

[68] G. Marshall and D. Chapman. Resilience, Reliability and Redundancy.
[Online]. Available: http://copperalliance.org.uk/uploads/2018/03/
41-resilience-reliability-and-redundancy.pdf

[69] A. Taivalsaari and T. Mikkonen, “A taxonomy of iot client architec-
tures,” IEEE software, vol. 35, no. 3, pp. 83–88, 2018.

[70] V. C. Pham, Y. Lim, A. Sgorbissa, and Y. Tan, “An ontology-driven
echonet lite adaptation layer for smart homes,” Journal of Information
Processing, vol. 27, pp. 360–368, 2019.

[71] European Telecommunications Standards Institute (ETSI). Smart
Appliances Reference Ontology and oneM2MMapping. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi ts/103200 103299/103264/02

[72] S. E. Ooi, R. Beuran, Y. Tan, T. Kuroda, T. Kuwahara, and N. Fujita,
“Secureweaver: Intent-driven secure system designer,” in Proceedings
of the 2022 ACMWorkshop on Secure and Trustworthy Cyber-Physical
Systems, 2022, pp. 107–116.

158

https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1/@@download/fullReport
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1/@@download/fullReport
https://pages.nist.gov/IoT-Device-Cybersecurity-Requirement-Catalogs/
https://pages.nist.gov/IoT-Device-Cybersecurity-Requirement-Catalogs/
https://www.hhs.gov/hipaa/index.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://copperalliance.org.uk/uploads/2018/03/41-resilience-reliability-and- redundancy.pdf
http://copperalliance.org.uk/uploads/2018/03/41-resilience-reliability-and- redundancy.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02

[73] S. E. Ooi, R. Beuran, T. Kuroda, T. Kuwahara, R. Hotchi, N. Fujita,
and Y. Tan, “Intent-driven secure system design: Methodology and
implementation,” Computers & Security, vol. 124, p. 102955, 2023.

[74] Lockheed Martin, “Cyber kill chain,” 2014. [On-
line]. Available: http://cyber.lockheedmartin.com/hubfs/
GainingtheAdvantageCyberKillChain.pdf

[75] B. Strom, A. Applebaum, D. Miller, K. Nickels, A. Pennington, and
C. Thomas, “Mitre att&ck: Design and philosophy. the mitre corpora-
tion, mclean,” VA, Technical report, Tech. Rep., 2018.

[76] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover security
design flaws using the stride approach.” Microsoft Corporation, 2006.

[77] S. Barnum, “Standardizing cyber threat intelligence information
with the structured threat information expression (stix),” Mitre
Corporation, vol. 11, pp. 1–22, 2012.

[78] MITRE. MITRE ATT&CK. [Online]. Available: https:
//attack.mitre.org

[79] ——. MITRE Common Attack Pattern Enumeration and
Classification. [Online]. Available: http://capec.mitre.org

[80] ——. MITRE Common Vulnerabilities and Exposure. [Online].
Available: https://cve.mitre.org

[81] ——. MITRE Common Weakness Enumeration. [Online]. Available:
https://attack.mitre.org

[82] National Institute of Standards and Technology (NIST). NIST
National Vulnerability Database (NVD). [Online]. Available: https:
//nvd.nist.gov

[83] R. Stillions, “The dml model,” Ryan Stillions: Postulations after great
cogitation, 2014.

[84] V. Mavroeidis and S. Bromander, “Cyber threat intelligence model:
an evaluation of taxonomies, sharing standards, and ontologies within
cyber threat intelligence,” in 2017 European Intelligence and Security
Informatics Conference (EISIC). IEEE, 2017, pp. 91–98.

[85] W. Gibb and D. Kerr, “Openioc: back to the basics,” OpenIOC: Back
to the Basics, 2018.

159

http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
https://attack.mitre.org
https://attack.mitre.org
http://capec.mitre.org
https://cve.mitre.org
https://attack.mitre.org
https://nvd.nist.gov
https://nvd.nist.gov

[86] R. Danyliw, J. Meijer, Y. Demchenko et al., “The incident object
description exchange format,” IETF Request For Comments, vol. 5070,
2007.

[87] Verizon Security Research & Cyber Intelligence Center. Vocabulary for
Event Recording and Incident Sharing (VERIS). [Online]. Available:
https://github.com/vz-risk/veris

[88] F. Böhm, F. Menges, and G. Pernul, “Graph-based visual analytics for
cyber threat intelligence,” Cybersecurity, vol. 1, no. 1, pp. 1–19, 2018.

[89] C. Sauerwein, C. Sillaber, A. Mussmann, and R. Breu, “Threat intelli-
gence sharing platforms: An exploratory study of software vendors and
research perspectives,” 2017.

[90] Mandiant. Poison Ivy: Assessing Damage and Extracting Intelligence.
[Online]. Available: https://www.mandiant.com/resources/poison-
ivy-assessing-damage-and-extracting-intelligence

[91] MITRE. CTI. [Online]. Available: https://github.com/mitre/cti

[92] S. E. Ooi. Codes related to Automated Secure Design of Networked
Systems. [Online]. Available: https://github.com/quadcube/Codes-
for-Automated-Secure-Design-for-Networked-Systems

[93] S. E. Ooi, R. Beuran, and Y. Tan, “Secure iot development: A maker’s
perspective,” in 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS). IEEE, 2021, pp. 1–6.

[94] IBM. Choosing the best hardware for your next IoT project.
[Online]. Available: https://developer.ibm.com/articles/iot-lp101-
best-hardware-devices-iot-project/

[95] IoT Rapid-Proto Labs. WP3: Internet of Things: Best Practices
in Technology, Development Methods and Product Design. [Online].
Available: https://www.rapidprotolabs.eu/wp-content/uploads/2019/
02/WP3-Report-Best-Practices-Report.pdf

[96] W. M. Stout and V. E. Urias, “Challenges to securing the internet of
things,” in 2016 IEEE International Carnahan Conference on Security
Technology (ICCST). IEEE, 2016, pp. 1–8.

[97] R. Fujdiak, P. Blazek, K. Mikhaylov, L. Malina, P. Mlynek, J. Misurec,
and V. Blazek, “On track of sigfox confidentiality with end-to-end

160

https://github.com/vz-risk/veris
https://www.mandiant.com/resources/poison-ivy-assessing-damage-and-extracting-intelligence
https://www.mandiant.com/resources/poison-ivy-assessing-damage-and-extracting-intelligence
https://github.com/mitre/cti
https://github.com/quadcube/Codes-for-Automated-Secure-Design-for-Networked-Systems
https://github.com/quadcube/Codes-for-Automated-Secure-Design-for-Networked-Systems
https://developer.ibm.com/articles/iot-lp101-best-hardware-devices-iot-project/
https://developer.ibm.com/articles/iot-lp101-best-hardware-devices-iot-project/
https://www.rapidprotolabs.eu/wp-content/uploads/2019/02/WP3-Report-Best-Practices-Report.pdf
https://www.rapidprotolabs.eu/wp-content/uploads/2019/02/WP3-Report-Best-Practices-Report.pdf

encryption,” in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018, pp. 1–6.

[98] Sigfox, “Sigfox technical overview,” 2017.

[99] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range
communications in unlicensed bands: The rising stars in the iot and
smart city scenarios,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 60–67, 2016.

[100] M. Calabretta, R. Pecori, M. Vecchio, and L. Veltri, “Mqtt-auth: A
token-based solution to endow mqtt with authentication and authoriza-
tion capabilities,” Journal of Communications Software and Systems,
vol. 14, no. 4, pp. 320–331, 2018.

[101] Espressif. To use as a component of ESP-IDF. [Online].
Available: https://github.com/espressif/arduino-esp32/blob/master/
docs/esp-idf component.md

161

https://github.com/espressif/arduino-esp32/blob/master/docs/esp-idf_component.md
https://github.com/espressif/arduino-esp32/blob/master/docs/esp-idf_component.md

Publications

[1] Sian En Ooi, Razvan Beuran, Takayuki Kuroda, Takuya Kuwahara,
Ryosuke Hotchi, Norihito Fujita, and Yasuo Tan. 2023. Automated
Secure Design with Machine Learning. [Planning to submit to ES-
ORICS 2023]

[2] Sian En Ooi, Razvan Beuran, Takayuki Kuroda, Takuya Kuwahara,
Norihito Fujita, and Yasuo Tan. 2023. Study on Automated Secure
Design for IoT Systems. [Planning to submit to SafeComp 2023]

[3] Sian En Ooi, Razvan Beuran, Takayuki Kuroda, Takuya Kuwahara,
Ryosuke Hotchi, Norihito Fujita, and Yasuo Tan. 2023. Intent-
Driven Secure System Design: Methodology and Implementation. In
Computers & Security, 124, 102955, 1st January 2023.

[4] Razvan Beuran, Sian En Ooi, Abbie Barbir, and Yasuo Tan. 2022.
POSTER: IoT System Trustworthiness Assurance. In ACM Asia
Conference on Computer and Communications Security (AsiaCCS)
2022 Poster Session, 30th May 2022.

[5] Sian En Ooi, Razvan Beuran, Yasuo Tan, Takayuki Kuroda, Takuya
Kuwahara, and Norihito Fujita. 2022. SecureWeaver: Intent-Driven
Secure System Configuration Designer. In Proceedings of the 2022
ACM Workshop on Secure and Trustworthy Cyber-Physical Systems.
April 2022.

[6] Sian En Ooi, Razvan Beuran, and Yasuo Tan. 2021. Secure IoT
Development – A Maker’s Perspective. In 2021 IEEE COINS, pp. 1-6.
23th August 2021.

[7] Yuan Fang, Yuto Lim, Sian En Ooi, Chen Zhou, and Yasuo Tan. 2020.
Study of human thermal comfort for cyber-physical human centric
system in smart homes. In 2020 Sensors, 20(2), pp. 372. January
2020.

[8] Sian En Ooi, Yuan Fang, Yuto Lim, and Yasuo Tan. 2019. Study of
adaptive model predictive control for cyber-physical systems. In 2019
ICCST, pp. 165 – 174. 29th August 2018.

162

[9] Yuan Fang, Sian En Ooi, Yuto Lim, and Yasuo Tan. 2019. Time
task scheduling for simple and proximate time model in cyber-physical
systems. In 2019 ICCST, pp. 185 – 194. 29th August 2018.

[10] Sian En Ooi, Yoshiki Makino, Yuto Lim, and Yasuo Tan. 2018. Pre-
dictive thermal comfort control for cyber-physical smart home systems.
In 2018 IEEE SoSE, pp. 444 – 451. 19th June 2018.

[11] Sian En Ooi, Yamin Thiri Aung, Yuan Fang, Yuto Lim, and Yasuo
Tan. 2019. Implementation of predictive thermal comfort control for
cyber-physical home systems. In IEICE technical report 118 (468), pp.
131 – 136. 5th March 2019.

[12] Sian En Ooi, Yoshiki Makino, Yuan Fang, Yuto Lim, and Yasuo Tan.
2018. Study of predictive thermal comfort control for cyber-physical
smart home systems. In IEICE technical report 117 (426), pp. 29 –
34. 30th January 2018.

163

Appendix A

IoT Refinement Rules

1 {
2 ” r u l e s ” : [
3 {
4 ” r i d ” : ”LAN to Switch” ,
5 ” t a r g e t ” : {
6 ”nid ” : ”nid LAN 1” ,
7 ” typ” : ”LAN”
8 } ,
9 ” l h s ” : [
10 {
11 ”nid ” : ”nid LAN 1” ,
12 ” typ” : ”LAN”
13 }
14] ,
15 ” rhs ” : [
16 {
17 ”nid ” : ”nid LAN 1” ,
18 ” typ” : ”Switch”
19 }
20]
21 } ,
22 {
23 ” r i d ” : ”Switch to L3SW” ,
24 ” ta r g e t ” : {
25 ”nid ” : ” n id Swi tch 1 ” ,
26 ” typ” : ”Switch”
27 } ,
28 ” l h s ” : [
29 {
30 ”nid ” : ” n id Swi tch 1 ” ,
31 ” typ” : ”Switch”
32 }
33] ,
34 ” rhs ” : [
35 {
36 ”nid ” : ” n id Swi tch 1 ” ,
37 ” typ” : ”L3SW”
38 }

164

39]
40 } ,
41 {
42 ” r i d ” : ”Switch to L2SW” ,
43 ” ta r g e t ” : {
44 ”nid ” : ” n id Swi tch 1 ” ,
45 ” typ” : ”Switch”
46 } ,
47 ” l h s ” : [
48 {
49 ”nid ” : ” n id Swi tch 1 ” ,
50 ” typ” : ”Switch”
51 }
52] ,
53 ” rhs ” : [
54 {
55 ”nid ” : ” n id Swi tch 1 ” ,
56 ” typ” : ”L2SW”
57 }
58]
59 } ,
60 {
61 ” r i d ” : ” [JAIST] IoT App to IoT OS” ,
62 ” t a r g e t ” : {
63 ”nid ” : ”nid IoTApp 1” ,
64 ” typ” : ”IoT App”
65 } ,
66 ” l h s ” : [
67 {
68 ”nid ” : ”nid IoTApp 1” ,
69 ” typ” : ”IoT App”
70 }
71] ,
72 ” rhs ” : [
73 {
74 ”nid ” : ”nid IoTApp 1” ,
75 ” typ” : ”IoT App”
76 } ,
77 {
78 ”nid ” : ”nid IoTOS 1” ,
79 ” typ” : ”IoT OS”
80 } ,
81 {
82 ”typ” : ”wire : i o t o s ” ,
83 ” s r c ” : ”nid IoTApp 1” ,
84 ” dst ” : ”nid IoTOS 1”
85 }
86]
87 } ,

165

88 {
89 ” r i d ” : ” [JAIST] IoT OS to IoT Hardware Platform” ,
90 ” t a r g e t ” : {
91 ”nid ” : ”nid IoTOS 1” ,
92 ” typ” : ”IoT OS”
93 } ,
94 ” l h s ” : [
95 {
96 ”nid ” : ”nid IoTOS 1” ,
97 ” typ” : ”IoT OS”
98 }
99] ,
100 ” rhs ” : [
101 {
102 ”nid ” : ”nid IoTOS 1” ,
103 ”typ” : ”IoT OS”
104 } ,
105 {
106 ”nid ” : ” nid IoTHardwarePlatform 1” ,
107 ”typ” : ” IoT HardwarePlatform”
108 } ,
109 {
110 ”typ” : ”wire : i o t hardware ” ,
111 ” s r c ” : ”nid IoTOS 1” ,
112 ” dst ” : ” nid IoTHardwarePlatform 1”
113 }
114]
115 } ,
116 {
117 ” r i d ” : ” [JAIST] IoT Hardware Platform to IoT Network

I n t e r f a c e ” ,
118 ” ta r g e t ” : {
119 ”nid ” : ” nid IoTHardwarePlatform 1” ,
120 ”typ” : ” IoT HardwarePlatform”
121 } ,
122 ” l h s ” : [
123 {
124 ”nid ” : ” nid IoTHardwarePlatform 1” ,
125 ”typ” : ” IoT HardwarePlatform”
126 }
127] ,
128 ” rhs ” : [
129 {
130 ”nid ” : ” nid IoTHardwarePlatform 1” ,
131 ”typ” : ” IoT HardwarePlatform”
132 } ,
133 {
134 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
135 ”typ” : ” IoT NetworkInter face ”

166

136 } ,
137 {
138 ”typ” : ”wire : i o t ne twork ” ,
139 ” s r c ” : ” nid IoTHardwarePlatform 1” ,
140 ” dst ” : ” n id IoTNetworkInter face 1 ”
141 }
142]
143 } ,
144 {
145 ” r i d ” : ” [JAIST] IoT OS to FreeRTOS” ,
146 ” ta r g e t ” : {
147 ”nid ” : ”nid OS 1” ,
148 ”typ” : ”OS”
149 } ,
150 ” l h s ” : [
151 {
152 ”nid ” : ”nid IoTOS 1” ,
153 ”typ” : ”IoT OS”
154 }
155] ,
156 ” rhs ” : [
157 {
158 ”nid ” : ”nid IoTOS 1” ,
159 ”typ” : ”IoT FreeRTOS”
160 }
161]
162 } ,
163 {
164 ” r i d ” : ” [JAIST] IoT Hardware Platform to ESP32” ,
165 ” ta r g e t ” : {
166 ”nid ” : ” nid IoTHardwarePlatform 1” ,
167 ”typ” : ” IoT HardwarePlatform”
168 } ,
169 ” l h s ” : [
170 {
171 ”nid ” : ” nid IoTHardwarePlatform 1” ,
172 ”typ” : ” IoT HardwarePlatform”
173 }
174] ,
175 ” rhs ” : [
176 {
177 ”nid ” : ” nid IoTHardwarePlatform 1” ,
178 ”typ” : ”IoT ESP32”
179 }
180]
181 } ,
182 {
183 ” r i d ” : ” [JAIST] IoT Network I n t e r f a c e to WiFi” ,
184 ” ta r g e t ” : {

167

185 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
186 ”typ” : ” IoT NetworkInter face ”
187 } ,
188 ” l h s ” : [
189 {
190 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
191 ”typ” : ” IoT NetworkInter face ”
192 }
193] ,
194 ” rhs ” : [
195 {
196 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
197 ”typ” : ” IoT Network WiFi”
198 }
199]
200 } ,
201 {
202 ” r i d ” : ” [JAIST] IoT Network I n t e r f a c e to Switch” ,
203 ” ta r g e t ” : {
204 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
205 ”typ” : ” IoT NetworkInter face ”
206 } ,
207 ” l h s ” : [
208 {
209 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
210 ”typ” : ” IoT NetworkInter face ”
211 }
212] ,
213 ” rhs ” : [
214 {
215 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
216 ”typ” : ” IoT NetworkInter face ”
217 } ,
218 {
219 ”nid ” : ” n id Swi tch 1 ” ,
220 ”typ” : ”Switch”
221 } ,
222 {
223 ”typ” : ”wire : lan ” ,
224 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
225 ” dst ” : ” n id Swi tch 1 ”
226 }
227]
228 } ,
229 {
230 ” r i d ” : ” [JAIST] IoT App to ExternalAPI (MQTT only) ” ,
231 ” ta r g e t ” : {
232 ”typ” : ”connTo” ,
233 ” s r c ” : ”nid IoTApp 1” ,

168

234 ” dst ” : ” n id Externa lTh ings 1 ”
235 } ,
236 ” l h s ” : [
237 {
238 ”nid ” : ” n id Externa lTh ings 1 ” ,
239 ”typ” : ”ExternalThings ”
240 } ,
241 {
242 ”typ” : ”connTo” ,
243 ” s r c ” : ”nid IoTApp 1” ,
244 ” dst ” : ” n id Externa lTh ings 1 ”
245 } ,
246 {
247 ”nid ” : ”nid IoTApp 1” ,
248 ”typ” : ”IoT App”
249 } ,
250 {
251 ”typ” : ”wire : i o t o s ” ,
252 ” s r c ” : ”nid IoTApp 1” ,
253 ” dst ” : ”nid IoTOS 1”
254 } ,
255 {
256 ”nid ” : ”nid IoTOS 1” ,
257 ”typ” : ”IoT OS”
258 } ,
259 {
260 ”typ” : ”wire : i o t hardware ” ,
261 ” s r c ” : ”nid IoTOS 1” ,
262 ” dst ” : ” nid IoTHardwarePlatform 1”
263 } ,
264 {
265 ”nid ” : ” nid IoTHardwarePlatform 1” ,
266 ”typ” : ” IoT HardwarePlatform”
267 } ,
268 {
269 ”typ” : ”wire : i o t ne twork ” ,
270 ” s r c ” : ” nid IoTHardwarePlatform 1” ,
271 ” dst ” : ” n id IoTNetworkInter face 1 ”
272 } ,
273 {
274 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
275 ”typ” : ” IoT NetworkInter face ”
276 } ,
277 {
278 ”typ” : ”wire : lan ” ,
279 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
280 ” dst ” : ” n id Swi tch 1 ”
281 } ,
282 {

169

283 ”nid ” : ” n id Swi tch 1 ” ,
284 ”typ” : ”Switch”
285 } ,
286 {
287 ”nid ” : ”nid WAN 1” ,
288 ”typ” : ”WAN”
289 } ,
290 {
291 ”typ” : ”wire : exte rna l−GW” ,
292 ” s r c ” : ” n id Externa lTh ings 1 ” ,
293 ” dst ” : ”nid WAN 1”
294 }
295] ,
296 ” rhs ” : [
297 {
298 ”nid ” : ”nid IoTApp 1” ,
299 ”typ” : ”IoT App”
300 } ,
301 {
302 ”typ” : ”wire : i o t o s ” ,
303 ” s r c ” : ”nid IoTApp 1” ,
304 ” dst ” : ”nid IoTOS 1”
305 } ,
306 {
307 ”nid ” : ”nid IoTOS 1” ,
308 ”typ” : ”IoT OS”
309 } ,
310 {
311 ”typ” : ”wire : i o t hardware ” ,
312 ” s r c ” : ”nid IoTOS 1” ,
313 ” dst ” : ” nid IoTHardwarePlatform 1”
314 } ,
315 {
316 ”nid ” : ” nid IoTHardwarePlatform 1” ,
317 ”typ” : ” IoT HardwarePlatform”
318 } ,
319 {
320 ”typ” : ”wire : i o t ne twork ” ,
321 ” s r c ” : ” nid IoTHardwarePlatform 1” ,
322 ” dst ” : ” n id IoTNetworkInter face 1 ”
323 } ,
324 {
325 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
326 ”typ” : ” IoT NetworkInter face ”
327 } ,
328 {
329 ”typ” : ”wire : lan ” ,
330 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
331 ” dst ” : ” n id Swi tch 1 ”

170

332 } ,
333 {
334 ”nid ” : ” n id Swi tch 1 ” ,
335 ”typ” : ”Switch”
336 } ,
337 {
338 ”typ” : ”wire : lan ” ,
339 ” s r c ” : ” n id Router 1 ” ,
340 ” dst ” : ” n id Swi tch 1 ”
341 } ,
342 {
343 ”nid ” : ” n id Router 1 ” ,
344 ”typ” : ”Router”
345 } ,
346 {
347 ”typ” : ”wire :WAN−GW” ,
348 ” s r c ” : ”nid WAN 1” ,
349 ” dst ” : ” n id Router 1 ”
350 } ,
351 {
352 ”nid ” : ”nid WAN 1” ,
353 ”typ” : ”WAN”
354 } ,
355 {
356 ”typ” : ”wire : exte rna l−GW” ,
357 ” s r c ” : ” n id Externa lTh ings 1 ” ,
358 ” dst ” : ”nid WAN 1”
359 } ,
360 {
361 ”nid ” : ” n id Externa lTh ings 1 ” ,
362 ”typ” : ”ExternalThings ”
363 } ,
364 {
365 ”typ” : ”MQTT” ,
366 ” s r c ” : ”nid IoTApp 1” ,
367 ” dst ” : ” n id Externa lTh ings 1 ”
368 } ,
369 {
370 ”typ” : ”IP” ,
371 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
372 ” dst ” : ” n id Externa lTh ings 1 ”
373 }
374]
375 } ,
376 {
377 ” r i d ” : ” [JAIST] IoT App to ExternalAPI (MQTT−TLS) ” ,
378 ” ta r g e t ” : {
379 ”typ” : ”connTo” ,
380 ” s r c ” : ”nid IoTApp 1” ,

171

381 ” dst ” : ” n id Externa lTh ings 1 ”
382 } ,
383 ” l h s ” : [
384 {
385 ”nid ” : ” n id Externa lTh ings 1 ” ,
386 ”typ” : ”ExternalThings ”
387 } ,
388 {
389 ”typ” : ”connTo” ,
390 ” s r c ” : ”nid IoTApp 1” ,
391 ” dst ” : ” n id Externa lTh ings 1 ”
392 } ,
393 {
394 ”nid ” : ”nid IoTApp 1” ,
395 ”typ” : ”IoT App”
396 } ,
397 {
398 ”typ” : ”wire : i o t o s ” ,
399 ” s r c ” : ”nid IoTApp 1” ,
400 ” dst ” : ”nid IoTOS 1”
401 } ,
402 {
403 ”nid ” : ”nid IoTOS 1” ,
404 ”typ” : ”IoT OS”
405 } ,
406 {
407 ”typ” : ”wire : i o t hardware ” ,
408 ” s r c ” : ”nid IoTOS 1” ,
409 ” dst ” : ” nid IoTHardwarePlatform 1”
410 } ,
411 {
412 ”nid ” : ” nid IoTHardwarePlatform 1” ,
413 ”typ” : ” IoT HardwarePlatform”
414 } ,
415 {
416 ”typ” : ”wire : i o t ne twork ” ,
417 ” s r c ” : ” nid IoTHardwarePlatform 1” ,
418 ” dst ” : ” n id IoTNetworkInter face 1 ”
419 } ,
420 {
421 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
422 ”typ” : ” IoT NetworkInter face ”
423 } ,
424 {
425 ”typ” : ”wire : lan ” ,
426 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
427 ” dst ” : ” n id Swi tch 1 ”
428 } ,
429 {

172

430 ”nid ” : ” n id Swi tch 1 ” ,
431 ”typ” : ”Switch”
432 } ,
433 {
434 ”nid ” : ”nid WAN 1” ,
435 ”typ” : ”WAN”
436 } ,
437 {
438 ”typ” : ”wire : exte rna l−GW” ,
439 ” s r c ” : ” n id Externa lTh ings 1 ” ,
440 ” dst ” : ”nid WAN 1”
441 }
442] ,
443 ” rhs ” : [
444 {
445 ”nid ” : ”nid IoTApp 1” ,
446 ”typ” : ”IoT App”
447 } ,
448 {
449 ”typ” : ”wire : i o t o s ” ,
450 ” s r c ” : ”nid IoTApp 1” ,
451 ” dst ” : ”nid IoTOS 1”
452 } ,
453 {
454 ”nid ” : ”nid IoTOS 1” ,
455 ”typ” : ”IoT OS”
456 } ,
457 {
458 ”typ” : ”wire : i o t hardware ” ,
459 ” s r c ” : ”nid IoTOS 1” ,
460 ” dst ” : ” nid IoTHardwarePlatform 1”
461 } ,
462 {
463 ”nid ” : ” nid IoTHardwarePlatform 1” ,
464 ”typ” : ” IoT HardwarePlatform”
465 } ,
466 {
467 ”typ” : ”wire : i o t ne twork ” ,
468 ” s r c ” : ” nid IoTHardwarePlatform 1” ,
469 ” dst ” : ” n id IoTNetworkInter face 1 ”
470 } ,
471 {
472 ”nid ” : ” n id IoTNetworkInter face 1 ” ,
473 ”typ” : ” IoT NetworkInter face ”
474 } ,
475 {
476 ”typ” : ”wire : lan ” ,
477 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
478 ” dst ” : ” n id Swi tch 1 ”

173

479 } ,
480 {
481 ”nid ” : ” n id Swi tch 1 ” ,
482 ”typ” : ”Switch”
483 } ,
484 {
485 ”typ” : ”wire : lan ” ,
486 ” s r c ” : ” n id Router 1 ” ,
487 ” dst ” : ” n id Swi tch 1 ”
488 } ,
489 {
490 ”nid ” : ” n id Router 1 ” ,
491 ”typ” : ”Router”
492 } ,
493 {
494 ”typ” : ”wire :WAN−GW” ,
495 ” s r c ” : ”nid WAN 1” ,
496 ” dst ” : ” n id Router 1 ”
497 } ,
498 {
499 ”nid ” : ”nid WAN 1” ,
500 ”typ” : ”WAN”
501 } ,
502 {
503 ”typ” : ”wire : exte rna l−GW” ,
504 ” s r c ” : ” n id Externa lTh ings 1 ” ,
505 ” dst ” : ”nid WAN 1”
506 } ,
507 {
508 ”nid ” : ” n id Externa lTh ings 1 ” ,
509 ”typ” : ”ExternalThings ”
510 } ,
511 {
512 ”typ” : ”MQTT TLS” ,
513 ” s r c ” : ”nid IoTApp 1” ,
514 ” dst ” : ” n id Externa lTh ings 1 ”
515 } ,
516 {
517 ”typ” : ”IP” ,
518 ” s r c ” : ” n id IoTNetworkInter face 1 ” ,
519 ” dst ” : ” n id Externa lTh ings 1 ”
520 }
521]
522 }
523]
524 }

174

Appendix B

Ontology with General Class Ax-
iom Definitions and SMT Veri-
fication

1 from z3 import ∗ # sudo pip3 i n s t a l l z3−s o l v e r
2 import r d f l i b # pip3 i n s t a l l r d f l i b
3 import p i c k l e
4 import os
5
6 global g
7 global va l i d a t i o n a r g # Z3
8
9 OWL = r d f l i b . namespace .OWL
10 RDF = r d f l i b . namespace .RDF
11 XML = r d f l i b . Namespace (” http ://www.w3 . org /XML/1998/ namespace”)
12 XSD = r d f l i b . namespace .XSD
13 DCTERMS = r d f l i b . namespace .DCTERMS
14 RDFS = r d f l i b . namespace .RDFS
15 #VANN = r d f l i b . Namespace (” h t t p :// pur l . org / vocab/vann/”)
16 FOAF = r d f l i b . namespace .FOAF
17 #SAREF = r d f l i b . Namespace (” h t t p s :// s a r e f . e t s i . org / core /”)
18 #S4ECHONET = r d f l i b . Namespace (” h t t p s :// echonet / releaseM /”)
19 TEST = r d f l i b . Namespace (”http :// quadcube . xyz/ on t o l o g i e s /

i o t v a l i d a t i o n#”) # might have some bug wi th f i l e pars ing or
expor t from pro tege . miss ing ’#’ in between URI and key

20
21 def dependsOn (char , deps) : # Z3 r e l a t e d
22 i f i s e x p r (deps) :
23 return Imp l i e s (char , deps)
24 else :
25 return And ([Imp l i e s (char , dep) for dep in deps])
26
27 def c o n f l i c t (∗ chars) : # Z3 r e l a t e d
28 return Or ([Not (char) for char in chars])
29
30 def check (∗ problem) : # Z3 r e l a t e d
31 s = So lve r ()

175

32 s . set (unsa t co r e=True)
33 #s . s e t (’ : core . minimize ’ , True)
34 for c on s t r a i n t in problem :
35 s . a s s e r t and t r a ck (cons t ra in t , str (c on s t r a i n t))
36 #s . add (∗ problem)
37
38 i f s . check () == sat :
39 m = s . model ()
40 r = []
41 for x in m: # x i s a Z3 de c l a r a t i on
42 i f i s t r u e (m[x]) :
43 r . append (x ()) # x () re turns the Z3 expre s s i on
44 print (”SAT”)
45 print (r)
46 print (m)
47 else :
48 print (”unSAT”)
49 #pr in t (” Proof unSAT”)
50 #pr in t (s . proo f ())
51 print (”unSAT core ”)
52 print (s . unsa t co r e ()) # minimal u n s a t i s f i a b l e core
53
54 def r d f s e a r c h (s e a r ch sub j=None , s ea r ch pred=None , s e a r ch ob j=

None) :
55 global g
56 no sea r ch keys = 0
57 no keys found = 0
58 i f s e a r ch sub j != None :
59 no sea r ch keys += 1
60 i f s ea rch pred != None :
61 no sea r ch keys += 1
62 i f s e a r ch ob j != None :
63 no sea r ch keys += 1
64 for subj , pred , obj in g :
65 i f subj == sea r ch sub j :
66 no keys found += 1
67 i f pred == search pred :
68 no keys found += 1
69 i f obj == sea r ch ob j :
70 no keys found += 1
71 i f no keys found == no sea r ch keys :
72 return (subj , pred , obj)
73 else :
74 no keys found = 0
75 return None
76
77 def r d f a x i om to z 3 bu i l d e r (s e a r c h s t r) :
78 global g
79 global va l i d a t i o n a r g

176

80 counter = 0
81 search key = [s e a r c h s t r] # only s t o r e l a t e s t node ID
82 temp search key = []
83 k e y p r o p e r t y l i s t = [] # main assumption : keys are a l l

s e r i a l i z e d in the same order
84 n o c o n s t r a i n t l i s t = [] # main assumption : keys are a l l

s e r i a l i z e d in the same order
85 c o n s t r a i n t l i s t = [] # main assumption : keys are a l l

s e r i a l i z e d in the same order
86 while True :
87 for key in s ea rch key :
88 i f key != None : # padding mechanism
89 for subj , pred , obj in g :
90 i f obj == key and pred == RDFS. subClassOf

and type (key) != r d f l i b . term .BNode and
type (subj) == r d f l i b . term .BNode :

91 temp search key . append (subj)
92 e l i f subj == key :
93 i f pred == OWL. someValuesFrom : # do we

need to check f o r RDF#type ? (Obj :
Re s t r i c t i on)

94 temp search key . append (obj)
95 r d f s e a r c h r e s = rd f s e a r c h (

s e a r ch sub j=key , s ea r ch pred=OWL.
onProperty)

96 i f r d f s e a r c h r e s != None :
97 k e y p r o p e r t y l i s t . append (

r d f s e a r c h r e s [2])
98 e l i f pred == OWL. w i thRe s t r i c t i on s :
99 temp search key . append (obj)
100 e l i f pred == RDF. f i r s t :
101 r d f s e a r c h r e s = rd f s e a r c h (

s e a r ch sub j=obj)
102 i f r d f s e a r c h r e s != None :
103 try :
104 print (f ’ counter : { counter } ’)
105 n o c o n s t r a i n t l i s t [counter]

+= 1
106 except IndexError :
107 n o c o n s t r a i n t l i s t . append (1)
108 print (f ’ n o c o n s t r a i n t l i s t :

{ n o c o n s t r a i n t l i s t } ’)
109 try :
110 i f n o c o n s t r a i n t l i s t [

counter] == 1 :
111 c o n s t r a i n t l i s t . append

([(r d f s e a r c h r e s [1] ,
r d f s e a r c h r e s [2])])

112 else :

177

113 c o n s t r a i n t l i s t [counter
] . append ((
r d f s e a r c h r e s [1] ,
r d f s e a r c h r e s [2]))

114 except : # TODO: f i nd out why
counter increments way more
than what i s in the l i s t . .
p robab l y have b e t t e r way to
escape the error

115 print (f ’ Error occured !\
n n o c o n s t r a i n t l i s t : {
n o c o n s t r a i n t l i s t }\
n c o n s t r a i n t l i s t : {
c o n s t r a i n t l i s t } ’)

116 e l i f pred == RDF. r e s t and obj != RDF. n i l
:

117 for in range (counter) : # padding
mechanism fo r co r r e c t increment
o f no . o f c on s t r a i n t s f o r a
proper ty

118 temp search key . append (None)
119 temp search key . append (obj)
120 counter += 1 # cleaner than l i s t [s ea rch key . index (

key)]
121 i f temp search key == [] :
122 break
123 else :
124 counter = 0
125 search key = temp search key
126 temp search key = []
127
128 # Z3 con s t r a i n t b u i l d e r
129 print (”\nZ3 conver s i on ”)
130 z 3 b o o l l i s t = []
131 counter = 0
132 z 3 i n t l i s t = []
133 z 3 i n t l i s t . append (Int (”{ i }” . format (i=s e a r c h s t r . toPython () .

s p l i t (’#’) [1])))
134 print (type (s e a r c h s t r . toPython ()))
135 for key property in k e y p r o p e r t y l i s t :
136 z 3 b o o l l i s t . append (Bool (”{ i }” . format (i=key property .

toPython () . s p l i t (’#’) [1])))
137 print (f ’ { c o n s t r a i n t l i s t [counter]}\n ’)
138 for i in range (len (c o n s t r a i n t l i s t [counter])) :
139 property comparison , p rope r ty va lue =

c o n s t r a i n t l i s t [counter] [i]
140 print (f ’ \n{property compar i son . toPython () }\ t {

prope r ty va lue . toPython () } ’)
141 i f property compar i son == XSD. minInc lu s ive :

178

142 va l i d a t i o n a r g . append (I f (z 3 b o o l l i s t [counter]==
True , z 3 i n t l i s t [0] >= proper ty va lue .
toPython () , True))

143 e l i f property compar i son == XSD. minExclus ive :
144 v a l i d a t i o n a r g . append (I f (z 3 b o o l l i s t [counter]==

True , z 3 i n t l i s t [0] > prope r ty va lue .
toPython () , True))

145 e l i f property compar i son == XSD. maxInc lus ive :
146 v a l i d a t i o n a r g . append (I f (z 3 b o o l l i s t [counter]==

True , z 3 i n t l i s t [0] <= proper ty va lue .
toPython () , True))

147 e l i f property compar i son == XSD. maxExclusive :
148 v a l i d a t i o n a r g . append (I f (z 3 b o o l l i s t [counter]==

True , z 3 i n t l i s t [0] < prope r ty va lue .
toPython () , True))

149 counter += 1
150
151
152 i f os . path . i s f i l e (”tmp . p i c k l e ”) : # load from p i c k l e
153 g = p i c k l e . load (open(”tmp . p i c k l e ” , ” rb”))
154 else : # f i r s t time load , s low a f . . .
155 g = r d f l i b . Graph ()
156 g . parse (” i o t v a l i d a t i o n xm l . owl” , format=” app l i c a t i o n / rd f+xml

”)
157 p i c k l e . dump(g , open(”tmp . p i c k l e ” , ”wb”))
158
159 v a l i d a t i o n a r g = [] # Z3
160 s e a r c h s t r = r d f l i b . URIRef (TEST. E2ELatency)
161 rd f a x i om to z 3 bu i l d e r (s e a r c h s t r)
162 v a l i d a t i o n a r g . append (Int (’ E2ELatency ’) == 5)
163 v a l i d a t i o n a r g . append (Bool (’Low ’) == True)
164 check (∗ va l i d a t i o n a r g)

179

	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Main Contributions
	1.4 Thesis Outline

	Chapter 2 Research Background
	2.1 Cybersecurity Knowledge Databases
	2.2 Intent-Based Design
	2.3 Secure Intent-Based Design
	2.4 Weaver: Intent-based System Configuration Designer
	2.4.1 Data Format Definitions
	2.4.2 Rules and Topology Refinement
	2.4.3 Tree Search-based Algorithm for DSE

	2.5 IoT Design and Provisioning
	2.5.1 IoT Design
	2.5.2 IoT Secure Design
	2.5.3 IoT Provisioning

	2.6 IoT Development and Management Platforms
	2.7 Summary

	Chapter 3 Philosophy of Secure System Design
	3.1 Why Do We Need Secure Design?
	3.1.1 Trustworthiness
	3.1.2 Safety, Security, Privacy, Reliability, and Resilience

	3.2 Methodology of Automated Secure System Design
	3.2.1 Methodology Overview

	3.3 Preliminary Work on Automated Secure Design
	3.3.1 System Specification Verification with Satisfiability Modulo Theories (SMT)
	3.3.2 System Design Ontology
	3.3.3 Analysis of IoT Development and Management Platforms

	3.4 Summary

	Chapter 4 Secure Design Database
	4.1 Secure Design Threats and Rules
	4.1.1 Security Threats
	4.1.2 Logical and Conceptual Connections
	4.1.3 Refinement Rules

	4.2 Threat Mitigation Knowledge Base
	4.2.1 MITRE ATT&CK-Based Threat Mitigation
	4.2.2 Structure of the Knowledge Base

	4.3 Ontology Extension of the Threat Mitigation Knowledge Base
	4.4 MITRE ATT&CK-Based Ontology
	4.4.1 Exploring the MITRE ATT&CK Enterprise Matrix in STIX
	4.4.2 Rebuilding Semantic Links from MITRE ATT&CK STIX Bundle

	4.5 Summary

	Chapter 5 Automated Secure System Designer: SecureWeaver
	5.1 Mechanism Overview
	5.1.1 Retrieving Threats from the Service Requirement
	5.1.2 Calling the Security Verification Functions

	5.2 Security Verification Functions
	5.2.1 Application Isolation and Sandboxing Verification
	5.2.2 Firewall Use Verification
	5.2.3 Network Segmentation Verification
	5.2.4 Configuration Settings Verification
	5.2.5 Traffic Filtering Verification
	5.2.6 Secure Protocol Use Verification
	5.2.7 Intrusion Detection and Prevention System (IDPS) Use Verification

	5.3 Summary

	Chapter 6 Secure System Implementation Case Studies
	6.1 Hardware Platform Design
	6.2 Hardware Platform Implementation
	6.2.1 Wired Connectivity
	6.2.2 Wireless Connectivity

	6.3 Case Study #1: Secure End-to-End Communication
	6.3.1 Sigfox Security
	6.3.2 MQTT Security

	6.4 Case Study #2: Secure Configuration
	6.4.1 Porting the Arduino Core into ESP-IDF
	6.4.2 Locking Down Arduino on ESP32

	6.5 Summary

	Chapter 7 Evaluation
	7.1 Case Study #1: Secure Corporate Network Design
	7.1.1 Service Requirement Input for Evaluation
	7.1.2 Evaluation Experiment Setup
	7.1.3 Security Verification Mechanism Evaluation
	7.1.4 Performance Evaluation

	7.2 Case Study #2: Secure IoT Appliance System Design
	7.2.1 Service Requirement Input for Evaluation
	7.2.2 Evaluation Experiment Setup
	7.2.3 Security Verification Mechanism Evaluation
	7.2.4 Performance Evaluation

	7.3 Case Study #3: Secure IoT Hardware System Design
	7.3.1 Formalization of IoT Components in SecureWeaver
	7.3.2 Refinement Rules for IoT System Design
	7.3.3 Secure IoT System Design Evaluation

	7.4 Feature Evaluation and Comparison
	7.4.1 Evaluation of SecureWeaver Capabilities
	7.4.2 Comparison with Related Works

	7.5 Summary

	Chapter 8 Conclusion
	8.1 Conclusion
	8.2 Future Work

	References
	Publications
	Appendices
	Appendix A IoT Refinement Rules
	Appendix B Ontology with General Class Axiom Definitions and SMT Verification

