
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
人と協調してネットワーク運用を支援する機械学

習に関する研究

Author(s) 川口, 英俊

Citation

Issue Date 2023-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18426

Rights

Description
Supervisor: 岡田 将吾, 先端科学技術研究科, 博

士



Doctoral Dissertation

Research on collaborative machine learning with a human expert for supporting
network operations

Hidetoshi Kawaguchi

Supervisor: Shogo Okada

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March, 2023



Abstract

Communication networks have become indispensable to people’s lives. In this
age of smartphones, the Internet can be regarded as an infrastructure for daily
life and electricity, water, and gas. Companies that provide such communication
services to users struggle daily to ensure the stable communication networks.

Network operations experts are needed to ensure the stable communication
networks. However, with new technologies such as the Internet of things (IoT)
and 5G, the burden on the experts who manage them continues to increase. The
work of network operations experts is diverse and includes many decision-making
tasks.

We focus on the intrusion detection and prevention system (IDPS) signature
classification task in network operations. IDPSs monitor network systems and
take actions such as logging, notification, and blocking when malicious communi-
cations are detected. This dissertation focuses on a type of IDPS that performs
detection based on pattern files of malicious communications such as signatures.
The signatures are distributed periodically by the IDPS developers, similar to a
subscription service. Network operations experts determine the importance level
(“low”, “medium”, or “high”) of each signature to set IDPS actions. For example,
if the importance of a signature is “high”, the action is “blocking”; if it is low, the
action is “logging”.

Determining the importance level of a signature for setting it up in the IDPS is
a burden for the expert. While expert-designed if-then rule scripts can automat-
ically determine some signatures, the remaining signatures must be determined
manually by experts based on elements in the signatures, articles on the Internet,
and their own experience. This manual decision-making process takes some time.
In addition to time consuming issues, it takes sufficient knowledge and experi-
ence to determine the importance level, and there are not many experts who have
such knowledge and experience. In other words, the cost of hiring experts is high.
Therefore, determining the importance of a signature, which requires an expert’s
time, is also a significant cost to the network company.

IDPS signature classification is an important task, but there has yet to be re-
search to automate it. We must recognize the seriousness of classification errors
that can result from automation, as is the case in the medical field. Signature mis-
classification leads to IDPS misconfiguration. Misconfiguration of IDPS can cause
security incidents, such as missing malicious communications and false intercep-
tions of regular communications. Security incidents should be avoided because they
damage public trust in the organization operating the network system. Hence, it
is not practical to automate all signature classifications. In order to automate



classification while reducing classification errors, a framework for efficient classifi-
cation in cooperation with humans, such as checking with experts as necessary, is
required.

This dissertation aims to formulate IDPS signature classification as a machine
learning problem for the first time and to build and evaluate a system that coop-
erates with experts to classify signatures. To achieve this goal, we addressed three
problems.

First, there are no publicly available datasets for machine learning signature
classification. In other words, they need to prepare for the prerequisites of the
research. Several reasons make signature datasets difficult to make publicly avail-
able: Many of the signatures are distributed by IDPS developers, but they cannot
be redistributed under license; Publishing the signatures and their labels may lead
to the outside world guessing about the sensitive information of the IDPS con-
figuration. We collected the three datasets used in this research in cooperation
with several experts in actual network operations organizations. These are real
datasets consisting of signatures that experts actually set in the IDPS. Experts
classify some signatures by predefined if-then rules. An if-then rule returns a label
of “low”, “medium”, “high”, or “unknown” importance based on keyword match-
ing of the elements in the signature. Two datasets, the automatically annotated
dataset (AAD) and the manually annotated dataset (MAD), were collected. AAD
consists of 4, 465 signatures automatically labeled by expert-designed if-then rule
scripts. MAD consists of 1, 300 signatures that could not be classified by the if-
then rule scripts and were manually labeled by the experts. Next, we collected
a time-series manually annotated dataset (TMAD) consisting of 7, 577 signatures
that were manually labeled and time-stamped with the date and time of distri-
bution. Both labels of signatures were determined after consultation with several
experts. This research is based on these three datasets.

Second, to classify IDPS signatures by machine learning, it is necessary to
search for an effective feature extraction method. We propose three features based
on the expert’s knowledge, with interpretability to clarify the expert’s criteria. We
first design two types of features, symbolic features (SFs) and keyword features
(KFs), which are used in keyword matching for the if-then rules. Next, we design
web information and message features (WMFs) to capture the properties of sig-
natures that do not match the if-then rules. The WMFs are extracted as term
frequency-inverse document frequency (TF-IDF) features of the message text in
the signatures. The features are obtained by web scraping from the referenced ex-
ternal attack identification systems described in the signature. The effectiveness
of the proposed features is evaluated in experiments with AAD and MAD. In the
experiment, the classification models with proposed features are evaluated from
two perspectives: classification accuracy and reject option (RO) performance. In



both cases, the combined SFs and WMFs performed better than the combined
SFs and KFs. We also show that using an ensemble of neural networks (deep en-
sembles; DE) improves the performance of the RO. An analysis shows that experts
refer to natural-language elements in the signatures and information from external
information systems on the Internet.

Third, if a fully automated machine learning model replaces the IDPS signa-
ture classification task, there is a risk of missing critical classification errors. It is
also necessary to entrust experts with decisions that have a high risk of error by
signature classification models. Therefore, it is important to establish a method
for humans and the system to cooperate in setting up and classifying data. In
addition, to actually use machine learning, it is necessary to cope with high anno-
tation costs and domain shifts caused by signatures created to keep up with new
cyber attacks. In this dissertation, we propose a system based on active learning
in cooperation with experts to overcome three challenges: (a) security incidents
caused by classification errors, (b) high annotation costs, and (c) classification
accuracy decrease due to domain shifts. The proposed system includes an IDPS
signature classification model and periodically classifies the received signatures in
cooperation with an expert. The uncertainty sampling is used as an acquisition
function to preferentially transfer signatures with a high risk of misclassification
to the expert. The signatures are sorted by uncertainty sampling; some are trans-
ferred to experts, and the rest are automatically classified. The experts classify
the transferred signatures and add them to the training dataset, and the classi-
fication model is retrained. After training, the new signatures that have not yet
been labeled are classified. The proposed system executes this workflow each time
it receives signatures. Uncertainty estimation methods in deep learning, such as
Monte Carlo dropout (MC-Dropout) and DE, are also incorporated to identify
signatures at high risk of misclassification accurately. Experiments are conducted
on the TMAD to evaluate the proposed system in a simulation case. An analysis is
then performed by comparing several variants of the proposed system. The results
show that the system with MC-Dropout performs best. We also show that this
variation has two effects: it transfers more samples with “medium” importance to
the experts and mitigates imbalances in the training dataset.

As described above, in this dissertation, we collected IDPS signature datasets
that are difficult to make public, and proposed features for machine learning classi-
fication of IDPS signatures and an active learning-based system to cooperate with
experts. The proposed system enables accurate identification of IDPS signatures
and contributes to reducing fatal classification errors, which are problematic in
practical applications. Analysis using the proposed features identifies the elements
in the signatures that are important to experts when classifying signatures. Iden-
tifying the important factors to experts can provide helpful information for other



machine learning and non-machine learning approaches to signature classification.
The proposed system procedures are widely applicable not only to signatures.
There are other tasks in network operations where data are generated periodically
and classified by experts. For example, software vulnerability information, such as
common vulnerabilities and exposures (CVE), is released periodically, and experts
may decide whether to classify this information as necessary. In this dissertation,
task sharing is considered collaboration, but interaction with machine learning sys-
tems and education of novices using them are also examples of collaboration. The
realization of such collaborations is future works for machine learning technology
to support network operations. We hope that the ideas and evaluation results in
this dissertation will help solve signature classification problems as well as other
tasks.

Keywords: machine learning, IDPS, signature, active learning, uncertainty esti-
mation, reject option.
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Chapter 1

Introduction

Communication networks have become indispensable to people’s lives. In this age
of smartphones, the Internet can be regarded as an infrastructure for daily life and
electricity, water, and gas. Companies that provide such communication services
to users struggle daily to ensure the stable communication networks.

One of the main assignments of a communication network company is to per-
form network operations. Network operations include many tasks, such as network
device configuration, troubleshooting, new equipment installation, and network se-
curity operations. Communication network companies continue to pay operating
costs to maintain a communication environment that has grown to a large scale
and are trying to reduce costs while maintaining high communication quality.

Communication network facilities are supported by operators daily. In this
research, network operators are referred to as experts because they require ad-
vanced knowledge and practical experience. Specialized knowledge and experience
are necessary to operate a growing computer network properly. Experts perform
a wide variety of tasks, but many of them involve making decisions on given data.

Reducing the burden of experts contributes to the cost reduction of whole
network operations. The costs of hiring experts are high because of their expertise,
and it is not easy to hire them. Reducing human resource costs is a pressing issue
for communications network companies.

We focus on the intrusion detection and prevention system (IDPS) signature
classification task in network operations. The figure 1.1 shows an overview of
IDPSs. IDPSs monitor network systems and take actions such as logging, notifica-
tion, and blocking when malicious communications are detected. This dissertation
focuses on a type of IDPS that performs detection based on pattern files of mali-
cious communications such as signatures [1, 2, 3]. The signatures are distributed
periodically by the IDPS developers, similar to a subscription service.

Since each IDPS user has a different security policy, the IDPS action when a
signature is matched must be configured for each distributed signature. Depending
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Figure 1.1: Intrusion detection and prevention system (IDPS)

on the hardware and software that make up the network system being monitored
by IDPS, there are differences in the malicious communications that damage the
system. For example, malicious communications that should be blocked in one
organization may not need to be blocked in another. IDPS developers set a default
action for each signature. However, for the above reasons, it is necessary to set an
action for each signature that fits the organization.

Network operations experts determine the importance level (“low”, “medium”,
or “high”) of each signature to set IDPS actions. Figure 1.2 shows an overview
of the importance determination made by experts on signatures and the IDPS
settings involved. For example, if the importance level of a signature is “high”, the
action is “blocking”; if it is “low”, the action is “logging”. This importance level
determination process requires expertise and should be considered a significant
cost of network operations. In general, the experts classify signatures somewhat
automatically. First, the experts classify signatures using an if-then rule script
coded by them. The if-then rule returns an importance label or an “unknown” label
according to the results of keyword matching on the elements in a signature. The
experts then manually classify signatures that are determined to be “unknown”
by the if-then rule.

Determining the importance level of a signature for setting it up in the IDPS is
a burden for the expert. While expert-designed if-then rule scripts can automat-
ically determine some signatures, the remaining signatures must be determined
manually by experts based on elements in the signatures, articles on the Internet,
and their own experience. This manual decision-making process takes some time.
In addition to time consuming issues, it takes sufficient knowledge and experi-
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Figure 1.2: The importance determination made by experts on signatures and the
IDPS settings involved

ence to determine the importance level, and there are not many experts who have
such knowledge and experience. In other words, the cost of hiring experts is high.
Therefore, determining the importance of a signature, which requires an expert’s
time, is also a significant cost to the network company.

IDPS signature classification is an important task, but there has yet to be re-
search to automate it. We must recognize the seriousness of classification errors
that can result from automation, as is the case in the medical field. Signature mis-
classification leads to IDPS misconfiguration. Misconfiguration of IDPS can cause
security incidents, such as missing malicious communications and false intercep-
tions of regular communications. Security incidents should be avoided because they
damage public trust in the organization operating the network system. Hence, it
is not practical to automate all signature classifications. A collaborative classifi-
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cation framework is required that allows experts to classify signatures as needed.
Our goal is to develop technologies that enable systems to be helpful to humans
while contributing to improving system performance without humans being aware
of it.

If the determination process of experts is modeled, computers can perform
the network operation task, thereby reducing their burden. Machine learning
is a practical modeling approach. In recent years, machine learning has been
actively applied and put to practical use in media fields, such as image processing
[4, 5], natural language processing (NLP) [6], and speech processing [7]. Machine
learning is also being applied to communication networks, such as traffic prediction,
resource management, and security [8, 9], but compared to the media field, there
are many unexplored aspects.

This dissertation aims to formulate IDPS signature classification as a machine
learning problem for the first time and to build and evaluate a system that coop-
erates with experts to classify signatures. To achieve this goal, we addressed three
problems. The three problems and their solutions are described below:

1. Collecting labeled IDPS signature datasets
Problem: There are no publicly available datasets for machine learning signa-
ture classification. In other words, they need to prepare for the prerequisites
of the research. Several reasons make signature datasets difficult to make
publicly available. Many of the signatures are distributed by IDPS develop-
ers, but they cannot be redistributed under license. Publishing the signatures
and their labels may lead to the outside world guessing about the sensitive
information of the IDPS configuration.

Solution: We work with experts from real network operating organizations to
collect three datasets. The signatures in these datasets are the actual inputs
to the IDPS, and the labels are determined in consultation with several
experts for this research. We also describe the notations of signatures and
the expert’s signature classification procedure, which are the premise of this
research. (Chapter 3)

2. Feature engineering based on experts’ knowledge
Problem: To classify IDPS signatures by machine learning, it is necessary
to search for an effective feature extraction method. Since the signatures
in this research are represented in text format, we can input them into a
large-scale language model of deep neural networks (DNNs), which have
rapidly developed in recent years [10, 11, 12, 13, 14]. However, DNNs have a
problem with interpretability [15]. We need to know the criteria for experts
to determine the importance level of signatures. As a starting point for this
research, it is desirable to be as interpretable as possible and to be able to
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identify the elements of interest to the expert.

Solution: We propose three features based on the expert’s knowledge, with
interpretability to clarify the expert’s criteria. We first design two types of
features, symbolic features (SFs) and keyword features (KFs), which are used
in keyword matching for the if-then rules. Next, we design web information
and message features (WMFs) to capture the properties of signatures that
do not match the if-then rules. The WMFs are extracted as term frequency-
inverse document frequency (TF-IDF) features of the message text in the
signatures. The features are obtained by web scraping from the referenced
external attack identification systems described in the signature. (Chapter
4)

3. A machine learning system that cooperates with an expert
Problem: If a fully automated machine learning model replaces the IDPS
signature classification task, there is a risk of missing critical classification
errors. It is also necessary to entrust experts with decisions that have a high
risk of error by signature classification models. Therefore, it is important to
establish a method for humans and the system to cooperate in setting up and
classifying data. In addition, to actually use machine learning, it is necessary
to cope with high annotation costs and domain shifts caused by signatures
created to keep up with new cyber attacks. In summary, to automate real-
world IDPS signature classification with machine learning models, we need
to overcome the following three challenges

(a) Security incidents caused by classification errors - Incorrect IDPS con-
figurations due to classification errors may cause a security incident that
could be fatal to the organization.

(b) High annotation costs - Only a limited number of people can annotate
signatures due to the need for expertise.

(c) Classification accuracy decreases due to domain shifts - New signatures
may result in decreased accuracy because the distribution of the new
signatures is different from that of the trained signatures.

Solution: In this dissertation, we propose a system based on active learning
[16] in cooperation with experts. The uncertainty sampling is used as an
acquisition function to preferentially transfer signatures with a high risk of
misclassification to the expert. Uncertainty estimation methods from deep
learning [17], such as Monte Carlo dropout (MC-Dropout) [18] and deep
ensembles (DE) [19], are also incorporated to estimate signature uncertainty
accurately. The proposed system overcomes the following three challenges
(a)-(c). (Chapter 5)
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A roadmap of this research is shown in Figure 1.3. Work 1 is positioned as
a preparation for starting a machine learning study to classify IDPS signatures.
Work 2 is the first machine learning study of IDPS signature classification using
the datasets from Work 1. Work 3 is an extension study of Work 2 using the other
dataset from Work 1.

This dissertation is organized as follows. Chapter 2 describes the related works
of this research. Chapter 3 describes the tasks and signatures of the studied
experts and the collected dataset as the common problem set for this dissertation.
In Chapter 4, we propose a feature design for signature classification models based
on experts’ knowledge and report the evaluation results using real datasets. In
Chapter 5, we propose a machine learning system that cooperates with an expert,
and report the evaluation results using a time-stamped dataset collected over two
years. Chapter 6 presents our concluding remarks.
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Figure 1.3: A roadmap of this research
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Chapter 2

Related works

This research is related to the following two research areas.

• IDPS research area

– Improvement of IDPS detection performance (Section 2.1.1)

– Reducing the costs of IDPS operations (Section 2.1.2)

• Machine learning research area

– Reject option (RO) (Section 2.2.1)

– Active learning (Section 2.2.2)

– Uncertainty estimation in deep learning (Section 2.2.3)

An overview of the relationship between these research areas and this research is
shown in Figure 2.1. There are two types of research on IDPS: research to improve
the performance of IDPS in detecting malicious communications and research to
reduce the operational cost of IDPS. This research belongs to the latter category
and uses machine learning to reduce the cost of signature management. Among the
many areas of machine learning, ROs, active learning, and uncertainty estimation
in deep learning are relevant. RO and active learning are necessary to realize the
behavior for cooperation between humans and systems. Uncertainty estimation
methods are introduced in the proposed system to identify signatures at high risk
of misclassification accurately. In the following sections, we describe these research
areas in detail.
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Figure 2.1: This reseaarch and related works

2.1 Intrusion detection and prevention system

(IDPS) research area

2.1.1 Improvement of IDPS detection performance

IDPS performs logging, notification, blocking, and other actions on communi-
cations that match predefined malicious communications. There are two ways
to express malicious communication patterns: signatures and machine learning
classification models. IDPS vendors manually design and provide signatures by
analyzing cyber attacks. Machine learning-based classification models are also
generally developed by vendors.

The signature design is costly for vendors. In order to reduce this cost, research
has been conducted to generate signatures automatically. Shahriar and Bond
have proposed a method for automatically generating new signatures using genetic
algorithms from existing signatures [20]. Others have applied decision trees (DTs)
to generate signatures, such as Fallahi et al. automatically and Lee et al. have
applied the Latent Dirichlet Allocation (LDA) to generate signatures automatically
[21, 22].

There have been many studies on machine learning models for classifying nor-
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mal and malicious communications [2]. In this case, the machine learning clas-
sification model takes the features of the malicious communication as input and
outputs a multi-class classification of whether the communication is malicious or
not or the type of malicious communication. Support Vector Machines (SVMs),
DTs, bagging, artificial neural networks, and other methods have been applied
[23, 24, 25, 26]. Unified benchmark tests (NSL-KDD, UNSW-NB15, and TUIDS)
have been established for research in this field, and many research results have
been reported [27, 28, 29].

These studies contribute to improving the performance of IDPS in detecting
malicious communications. This research does not belong to the above studies.
However, research to reduce the operational cost of IDPS is also being conducted,
and this research belongs to that field.

2.1.2 Reducing the costs of IDPS operations

While it is important to improve the detection performance of IDPS, it is also
important to operate IDPS efficiently in network security operations. The most
burdensome part of IDPS operation is responding to alerts caused by false positives
and managing signatures.

Usually, many alerts are due to false positives in the IDPS, and users of the
IDPS are forced to deal with these alerts daily. Research is being conducted to
analyze alerts from IDPSs and reduce the number of alerts themselves. Tadeusz
proposes a system that incorporates machine learning to reduce false alerts [30].
Alsubhi et al. propose a fuzzy theoretical system to estimate the priority of alerts
[31]. Cortés and Gómez propose a strategy that integrates several excessive alert
reduction methods [32]. There are several other studies to reduce false alerts
[33, 34].

Our approach differs from any of these methods in that it contributes to reduc-
ing the overall IDPS management costs by reducing the cost of setting up an IDPS.
Research has been done to organize the signatures that are being created every
day properly. Stakhanova et al. propose an analytical model for finding conflict-
ing signatures [35]. In their model, signatures are represented as nondeterministic
automata, and signature overlap is detected based on automata equivalence. Mas-
sicotte and Labiche propose another approach based on set and automata theories
for the same purpose [36]. Other research efforts include identifying duplicate sig-
natures [35, 36, 37] and methods for defining patterns of normal communication
and identifying signatures that match these patterns, i.e., misjudged signatures
[38]. Our approach differs from any of these methods in that it contributes to
reducing the overall IDPS management costs by reducing the cost of setting up an
IDPS.

Our research belongs to the field of signature management. As described in
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Chapter 1, the importance level of each signature must be determined for each
case. However, to our knowledge, no research has been done to automate this
determination. This is probably due to the sensitivity of the data being handled
and the difficulty in creating datasets. In order to automate the determination
of importance levels for signatures, it is necessary to model the tacit knowledge
appropriately and the thought patterns of experts. In this dissertation, we pro-
pose a machine learning system with features based on experts’ knowledge as an
approach to enable such modeling. In Chapter 4, the proposed features are evalu-
ated to identify points of interest for experts to focus on when performing signature
classification. In Chapter 5, simulation evaluation of signature classification is per-
formed in real-world time-series order. These evaluations are performed on three
real datasets we collected with experts in Chapter 3. To our knowledge, these
datasets have yet to be collected.

2.2 Machine learning research area

2.2.1 Reject option (RO)

The RO is a function that determines whether to cancel the classification itself and
is pioneered by Chow [39, 40]. Figure 2.2 shows an overview of RO. It makes a
threshold decision based on the confidence/uncertainty score of the prediction that
the classification model estimates. The idea of dropping a classification according
to certain criteria is widely used, and these studies are reviewed.

Figure 2.2: Reject option (RO)

Hanczar et al. proposed a method combining SVM and one-class SVM to im-
prove the RO performance. Harish et al. performed a theoretical analysis of the
RO in the case of three or more classifications [41]. Goepfert et al. extended
the self-adjusting memory architecture (SAN-KNN) [42] and adaptive random for-
est (ARF) [43] methods to incorporate an RO for classification in nonstationary
environments [44].
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The RO is practical and has been studied for certain applications, especially in
the medical field. Waseem et al. constructed and analyzed a classification model
with an RO that predicts cancer based on genetic information [45]. Lin et al. pro-
posed a classification model with an RO to classify biomedical images [46]. Their
model uses SVM, which is an ingenious way to calculate a confidence score. The
confidence score is based on the average ratio of the distance to the separating
hyperplane during classification in the SVM, normalized to [0, 1], and the distance
to the centroid of each class in the feature space. Raghu et al. showed theoret-
ically and experimentally that for images that are automatically classified by a
classification model, the uncertainty of medical images can be directly estimated
to determine whether to seek a second opinion [47]. An RO is helpful in fields
where the impact of misclassification is significant, such as the medical field.

The classification model with the features proposed in Chapter 4 also measures
RO performance. Several evaluation methods for RO have been proposed, with
the accuracy-rejection curve (ARC) [48] being one of the most representative. The
ARC is a visualization method of RO performance in which the trade-off between
rejection rate and accuracy for a given test data (Figure 2.3). Note that accuracy
in ARC is not the Top-1 classification accuracy (the simple percentage of correct
answers to a classification problem) but rather the percentage of correct answers
that are assumed to be correct even if rejected. The accuracy and rejection rates
are computed for each threshold value used to determine the classification cancel-
lation. The area under the ARC (AU-ARC) allows RO performance comparisons
regardless of the threshold. Accuracy rejection normalized-cost curves (ARNCCs),
an ARC-extended method, has also been proposed by Abbas et al. [49]. ARNCCs
allow ARCs to take into account the cost of misclassification. Condessa et al.
also proposed three RO performance metrics: nonrejected accuracy, classification
quality, and rejection quality [50].

In IDPS signature classification, the subject of this research, the risk of failure
is as high as in medical fields. This is because malicious communications may
be missed due to misconfiguration of the IDPS and lead to security incidents.
Security incidents should be avoided because they damage public trust in the
organization operating the network. If regular communication is interrupted, the
convenience of the network is also reduced. To mitigate such risks, using an RO
in the classification model of IDPS signatures is a natural solution.

2.2.2 Active learning

Active learning is a framework that aims to complete the training task with mini-
mal annotation costs [16, 51]. In active learning, predictive models are trained by
selecting the samples from an unlabeled dataset that are most likely to be useful for
training and having an annotator (also called an oracle) label them while building
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Figure 2.3: Accuracy-rejection curve (ARC)

the training data. Figure 2.4 shows an overview of active learning. First, in active
learning, a machine learning model is trained from a training dataset containing a
small number of labeled examples. Next, an acquisition function is used to select
examples that are expected to facilitate better training the machine learning model
from the unlabeled dataset. The oracle annotates the selected examples and adds
them to the training dataset. Again, the machine learning model is trained on the
updated training dataset. Active learning repeats the above process.

Labeling is costly in fields that require expertise, so researched it is being ac-
tively conducted to overcome this challenge. Active learning is applied to medical
image processing [52, 53, 54, 55, 56], clinical text classification [57, 58], machine
translation [59, 60, 61, 62, 63], chemical scenarios [64, 65, 66], and patent classifi-
cation [67].

Our proposed system in Chapter 5 is a natural integration of this active learning
paradigm into an expert’s periodic signature classification task. This means that
the cost of annotation is reduced for experts. The most popular main fields of
active learning research are image and NLP. Other data types are relatively less
explored, and to the best of our knowledge, there are no examples of applications
of active learning to signature data structures.

2.2.3 Uncertainty estimation in deep learning

When using uncertainty sampling [16] as the acquisition function for active learn-
ing, the accuracy of the estimated probabilities output by the classification model
is important. If the accuracy of the estimated probabilities is low, the uncertainty
cannot be properly estimated, and better training samples cannot be selected.
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Figure 2.4: Active learning

An interesting topic in deep learning that has recently been applied in many
fields is the calibration of DNNs, which is the process of correcting the predicted
probabilities estimated by a DNN to the actual probabilities [17]. This is expected
to be synergistic with uncertainty sampling, which requires the proper estimation
probabilities to be determined. Since Guo et al. reported that large DNNs tend to
be overconfident, further research has been conducted [68]. Calibration approaches
include post hoc methods [69, 68, 70, 71, 72, 73, 74, 75, 76] that modify estimations
after the fact and regularization methods [77, 78, 22, 79, 80, 81, 82, 83, 84] that
modify the objective function and augment the data. In cascaded inference sys-
tems (a system in which a smaller DNN first performs inference, and if the result
is uncertain, the decision is left to the larger DNN), calibration is crucial and dis-
cussed to optimize the trade-off between classification accuracy and computational
cost [85].

Because of the difficulty of observing the actual probability values, evaluating
calibration methods is not easy. Therefore, evaluation methods are also discussed.
The most popular calibration metric is expected calibration error (ECE) [86],
and many extensions have been proposed [87, 72, 88, 74], such as classwise-ECE
[71] and adaptive calibration error (ACE) [89]. In addition, negative log-likelihood
(NLL) [90], a popular measure for uncertainty estimation, is often used to evaluate
the effects of calibration because it indirectly represents a calibration evaluation
[68, 81, 76].
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Basic research on calibration methods has been mainly evaluated using im-
age classification benchmarks, e.g., CIFAR10[91], CIFAR100[92], SVHN[93], and
ImageNet[94]. However, since accurately measuring the reliability of DNN predic-
tions is also valuable for translation and dialogue systems, several experimental
validations have been conducted in NLP [95, 83, 96, 88, 97]. These verifications
use bidirectional encoder representations from transformers (BERT) [10]. BERT
achieved state-of-art at the time for many natural language tasks, so its impact
was significant, and calibration was likely taken up as a new research perspective
based on BERT.

Many methods have been proposed to express the uncertainty of DNNs, and
these techniques are also effective for calibration. These are the mainstream
Bayesian methods [98, 99, 100, 101, 102, 103, 104, 18, 105], but the power of
DE as non-Bayesian approaches have also been demonstrated [19]. The DE is a
simple method that trains multiple DNNs and uses the average of these outputs as
the final output when making predictions (Figure 2.5). DEs have the disadvantage
of using multiple DNNs, which requires an enormous computational cost for even
one. However, the calibration performance of DE has been empirically shown to
exceed that of post hoc methods and Bayesian neural networks [106, 107, 108].
Increasing diversity among DNN members is said to improve calibration perfor-
mance, and methods have been proposed for this purpose [109, 110]. Ashukaha
et al. proposed an evaluation metric called deep ensembles equivalent (DEE) as a
method to evaluate calibration performance based on DE. As a use case for DE,
Jiang et al. proved that, given the assumption that DEs are calibrated, the degree
of disagreement between DE members’ predictions is expected to match the test
error rate [111]. Thus, DEs have the potential to be used in a variety of ways, not
only to improve calibration performance.

Another uncertainty estimation method for the DE, MC-Dropout [18], is pop-
ular due to its ease of implementation. MC-Dropout is an approximation method
for Bayesian neural networks, in which dropout [112], which is usually used to
reduce overfitting of DNNs, is also used to predict test data, and the average of
multiple feed-forward outputs is used as the final output (Figure 2.6). A vari-
ation of MC-Dropout that performs dropout at only some layers has also been
proposed and analyzed [113]. This dropout method at only some layers has been
implemented on FPGAs to speed up the process [113].

Such methods also have calibration capabilities and are expected to be highly
compatible with uncertainty sampling since the starting point better represents
uncertainty. Our proposed system in Chapter 5 is based on active learning and
uses uncertainty sampling as the acquisition function. This dissertation also ver-
ifies the performance of the proposed system by incorporating uncertainty esti-
mation methods, such as the DE and MC-Dropout. The DE is introduced as a
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Figure 2.5: Deep ensembles (DE)

machine learning algorithm into the proposed model and the proposed system in
the experiments in Chapter 4 and Chapter 5. MC-Dropout is incorporated into
the proposed system in Chapter 5. These approaches have become particularly
representative among uncertainty estimation methods, partly due to their ease of
implementation, and further work on such methods is still being conducted today.
In particular, [114] reported that they could be made better by combining active
learning and DE.
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Figure 2.6: Monte Carlo dropout (MC-Dropout)
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Chapter 3

Tasks and Datasets

3.1 IDPS signature classification procedure by

experts

This research concerns IDPS signature classification for an expert in a real network
operations organization. This chapter describes the assumptions of this research
based on interviews with experts.

Experts classify the signatures distributed periodically by IDPS developers, like
subscription services, based on their levels of importance. There are three levels of
importance: “low”, “medium”, and “high”. These importance levels correspond
to the action of IDPS when the signature is matched. If it is “low”, it neither
notifies the expert nor intercepts the communication. In the case of “medium”,
only notification is made. In the case of “high”, the communication is intercepted
in addition to the notification.

Signatures are labeled by importance, but all classes are treated equally in this
research. Suppose that “high” importance corresponds to the IDPS setting “block”
and that “low” importance corresponds to “logging”. Classifying a signature la-
beled “high” as “low” would allow communications that should be blocked to pass
through. Naturally, experts would prefer not to do this, as it could cause a security
incident. Similarly, mistaking “low” for “high” should also be avoided. This mis-
take can block communications that should otherwise be allowed to pass through
unimpeded. This prevents the network from providing proper communications to
its users. Which of the two error types is more important is determined by the
operational policy of the experts. Our research is conducted from the standpoint
of not emphasizing any particular policy.

The expert semi-automatically classifies signatures according to the following
procedure. The procedure is also shown in Figure 3.1. First, classification is
performed by applying an if-then rule designed by them. The if-then rule assigns an

18



Figure 3.1: Signature classification procedure by experts

importance label or a label meaning “unknown” to a signature based on a keyword-
matching combination of elements in the signature. Signatures determined to be
unclassifiable by the if-then rule are then manually classified.

Since experts are motivated to classify signatures with if-then rules whenever
possible, if-then rules are regarded as all the explicit knowledge that experts can
explain. In contrast, the manual classification of signatures by experts is based
on tacit knowledge. According to the experts, approximately 80 percent of the
signatures can be classified using if-then rules, but a great deal of effort is required
to classify the remaining 20 percent. In this research, we aim to reproduce the
decision-making process of experts in manual classification using machine learning.
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3.2 Notation of signatures

The signatures are written in the notation of the IDPS engine called Snort 1.
Figure 3.2 shows a concrete example2. The first word “alert” is the action taken
by the IDPS when the signature is matched. Because the experts set up actions
based on an importance level, actions cannot be entered into the classification
model. Features are extracted from the strings after the action.

Figure 3.2: A specific example of IDPS signatures

“tcp $EXTERNAL NET any -> $HOME NET 79” is a 5-tuple of values. The
5-tuple is a set of five values listed in the header of an IP packet. “tcp” is the
communication protocol. “$EXTERNAL NET” is the source IP address. “any”
is the source port number. “$HOME NET” is the destination IP address. “79”
is the destination IP address. A 5-tuple is an essential element of signatures. A
string in parentheses after the 5-tuple is optional. The options are expressed in
key-value format with the following conditions:

• The key and value are linked with colons.

• Semicolons are used as key-value separators.

• Depending on the key, there may be more than one value.

• Some values do not have a key, such as nocase.

We focus on four elements in the options: msg (abbreviation for message),
metadata, reference, and classtype. The if-then rule classifies signatures in terms
of 5-tuples and these elements alone.

msg is a string written to a log or alert when a signature is matched with a
communication. “PROTOCOL-FINGER 0 query” in Figure 3.2 is an example of
this.

1https://snort.org/
2https://www.snort.org/downloads/#rule-downloads
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metadata is an element that represents information in the key-value format.
The “ruleset community” in Figure 3.2 is an example of metadata. A space sep-
arates the key and value. Commas delimit key-value sets. This example has one
key-value set.

reference describes a pointer to external information about the attack identifi-
cation system. In Figure 3.2, it is described as “cve,1999-0197”. In this example,
reference refers to common vulnerabilities and exposures (CVE) 1999-0197. There
are two ways to describe a reference. The first is the name and ID of the vul-
nerability list. In addition to nessus, there are CVE and Bugtraq. A CVE with
ID 1999-0067 is listed as “cve,CVE-1999-0067”, and Bugtraq with ID 629 is listed
as “bugtraq,629”. Second, the URL is directly described as the destination for
accessing the information. For example, “url,www.spywareguide.com/product_
show.php?id=973”.

classtype is a general group of malicious communications indicated by signa-
tures. In Figure 3.2, it is “attempted-recon”. The groups that classtype indicates
are different from the importance levels determined by the experts.

3.3 If-then rule for IDPS signature classification

The experts coded an if-then rule script to classify as many signatures as possi-
ble. An if-then rule returns a label of “low”, “medium”, “high”, or “unknown”
importance based on keyword matching of the elements in the signature.

The if-then rule classifies signatures by matching keywords and combinations
of keywords. Keyword matching is used to determine whether a word is included
in a signature. The key-value pairs used in keyword matching are the 5-tuple,
msg, metadata, reference, and classtype. Keyword matching for metadata uses a
key-value pair as one keyword. msg keyword matching does not consider word
position. In other words, keyword matching for msg determines whether a certain
word appears. Keyword matching for reference determines whether a specific
system is referred to, and it does not use an ID. The elements of the 5-tuple are
extracted and judged individually. Because classtype is represented by a single
symbol, no special preprocessing is applied.

The number of keywords extracted for the if-then rule is 133 for 5-tuple, 2
for metadata, 56 for msg, 1 for reference, and 6 for classtype. The if-then rule
contains 61 conditions that combine logical products and logical sums, with key-
word matching as the basic component. The number of conditions is smaller than
the number of keywords because determinations also require matching with mul-
tiple keywords. As specific examples of keywords, conditions with “high” impor-
tance include “trojan-activity” in classtype and “MALWARE-TOOLS” in msg.
For “medium” importance, there are “network-scan” in classtype, “blacklist” in
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msg, and so on. If the importance is “low”, the source IP address of the 5-tuple is
“$EXTERNAL NET”, the source IP address of msg is “MALWARE-CNC”, etc.
If the importance is “moderate”, the source IP address of msg is “MALWARE-
CNC”, etc.

The if-then rule assigns importance labels only to signatures that match the
keyword match condition. Signatures that do not meet the conditions are assigned
an “unknown” label. The conditions are prioritized so that if a signature matches
more than one condition, the importance label for the condition with the highest
priority is assigned.

3.4 Collecting labeled IDPS signature datasets

In this research, the target dataset is the signatures labeled by experts in actual
network security operation organizations to be set in the IDPS for their actual
work. The labels for each signature were determined through consultation among
several experts for this research. Different datasets are used for the evaluation of
the feature design and the evaluation of the proposed active learning-based system.
Below are the names of the databases used in each chapter.

Chapter 4

• Automatically annotated dataset (AAD)

• Manually annotated dataset (MAD)

Chapter 5

• Time-series manually annotated dataset (TMAD)

The collection process and details of each dataset are shown below.

3.4.1 Automatically annotated dataset (AAD) and manu-
ally annotated dataset (MAD)

First, the experts automatically classify signatures with the if-then rules. The
experts coded if-then rules so that as many importance labels as possible could
be assigned. Next, the experts manually determine the labels of signatures that
do not match the if-then rules. Two datasets are then created: one for signatures
classified by the if-then rule and the other for signatures classified manually. The
former is called the AAD, and the latter is called the MAD.

Table 3.1 shows the number of AAD and MAD samples prepared by the ex-
perts. Each signature is assigned one of three importance labels: low, medium, or
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Table 3.1: Summary of AAD and MAD

Dataset
Priority

Total
low medium high

AAD 3, 936 93 436 4, 465
MAD 1, 119 122 59 1, 300

high. Based on the importance level, the experts set the action of the IDPS for
communications that match the signature.

IDPSs are operated to monitor the communication of servers that actually
provide services on the Internet. This service is available only to users who have
contracted with an organization affiliated with the expert. The datasets in this
research (AAD and MAD ) are real datasets created for use in IDPS. The signatures
that make up the dataset were distributed by the company that develops and sells
the IDPS for approximately one year and six months, from December 2016 to May
2018.

For practical use, there is no need to use machine learning models to classify
AADs, which can be classified by if-then rules. However, since the purpose of
this research is to construct a signature classification model, experiments are also
conducted on AADs to confirm the degree to which the proposed features and
machine learning can simulate the if-then rule.

3.4.2 Time-series manually annotated dataset (TMAD)

To evaluate the proposed system in Chapter 5, we develop a real dataset consisting
of time-stamped and labeled signatures with the help of experts. In this experi-
ment, we only collected signatures that could not be classified by the if-then rule,
i.e., those that require manual classification by an expert.

Table 3.2 shows the distribution of the classes by time step t. Signatures are
classified into one of three importance levels, low, medium, or high, and assigned
a time step t. The signatures and their labels were collected on a monthly basis
for two years. These signatures are distributed periodically by an IDPS developer.
Some signatures can be automatically classified using if-then rules, but these sig-
natures are thinned out in advance. In other words, the dataset consists only
of signatures that experts have manually labeled based on their knowledge and
experience.
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Table 3.2: Summary of TMAD

Time step #. low #. medium #. high total

t = 0 155 16 3 174
t = 1 281 1 1 283
t = 2 232 16 9 257
t = 3 566 36 3 605
t = 4 214 18 2 234
t = 5 643 20 4 667
t = 6 326 7 6 339
t = 7 364 8 1 373
t = 8 516 6 3 525
t = 9 219 26 4 249
t = 10 218 15 4 237
t = 11 357 6 2 365
t = 12 173 0 5 178
t = 13 285 20 14 319
t = 14 203 19 2 224
t = 15 217 43 7 267
t = 16 291 43 3 337
t = 17 290 74 7 371
t = 18 165 36 5 206
t = 19 314 35 1 350
t = 20 214 49 6 269
t = 21 174 44 1 219
t = 22 276 64 0 340
t = 23 143 39 7 189

total 6, 836 641 100 7, 577
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3.5 Limitation

The importance level of a signature depends on the information and communi-
cation systems monitored by the IDPS. In other words, even if the same expert
determines the importance level of the same signature, the importance level of the
signature may differ depending on the network systems monitored by the IDPS.
Therefore, the IDPS sigclassification model/system should be constructed for each
information and communication system monitored by the IDPS.

The construction and evaluation of signature classification models for multiple
information and communication systems and the analysis of differences in classi-
fication models among information and communication systems are future work
and are not addressed in this research. We cannot guarantee the same accuracy
when using datasets collected by other information and communication systems.
However, the methods used by the experts to create datasets, extract features, and
construct classification models are independent of the information and communica-
tion systems monitored by the IDPS. In order to demonstrate the generality of the
findings in this dissertation, it is necessary to collect similar datasets and perform
similar validations in multiple organizations. However, this research contributes
to the demonstration of its generality.
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Chapter 4

Feature engineering based on
experts’ knowledge

4.1 Problem setup

To classify IDPS signatures by machine learning, it is necessary to search for an
effective feature extraction method. In this chapter, we design and experiment
with features based on the expert signature classification procedure, AAD and
MAD introduced in Chapter 3.

Because the signatures are written in text, they can be fed into large-scale
language models [10, 11, 12, 13, 14]. However, the predictions obtained from these
neural network-based models are difficult to interpret. In other words, even if the
classification model performs well, we do not know why. For a first step, it is
desirable to make interpretation easy, so that future research can be developed.
Our policy is to design features that are easy to interpret while still using machine
learning. Specifically, we design features so that it is possible to identify which
elements of the signature are focused on by experts.

We classify all signatures with a single classification model in order to ana-
lyze the experts’ decision process in later evaluation experiments (Chapter 4.3).
We design and represent the signatures as a common feature vector regardless of
whether the signatures conform to the if-then rule. Referring to the classification
procedures of the above experts, we designed three feature vectors:

1. Features that are subject to the conditions of the if-then rule.

2. Features obtained from keywords in the if-then rule.

3. Features obtained by web scraping from messages and external reference
information in the signatures.
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4.2 Proposed features

To construct a classification model, we propose SFs, KFs, and WMFs. The proce-
dure for extracting these features and their relationship is shown in Figure 4.1. The
SFs and KFs are designed with reference to if-then rules. The WMFs are designed
with reference to interviews with experts. SF is extracted from 5-tuple, metadata,
and classtype, while KF and WMF are extracted from msg and reference.

4.2.1 Symbolic features (SFs)

SFs are extracted from the 5-tuple, metadata, and classtype, each of which is
extracted as a feature with one-hot encoding. The processing procedure is shown
in the gray box on the left side of Figure 4.1. The one-hot encoding is a method of
converting nominal features into a numeric vector. For example, if there are three
kinds of symbols, A, B, and C, they are converted to features [1, 0, 0][0, 1, 0], [0, 0, 1]
respectively.

The classtype is directly extracted as a feature using one-hot encoding. How-
ever, the 5-tuple and metadata need to be preprocessed. The 5-tuple is separated
into its five values. After that, each value is converted into features by one-hot
encoding. In the extraction procedure for metadata, all the key-value pairs are
extracted first. Then, all the extracted key-value pairs are reordered and com-
bined into a string to form a single symbol. This sorting eliminates the influence
of the order in which key-values appear in the metadata. In principle, there is a
huge variety of key-value combinations, but the number of such combinations that
appear in AAD and MAD is small.
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Figure 4.1: Proposed features for signature classification: (1) symbolic features, (2) keyword features and (3) web
information and message features.
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4.2.2 Keyword features (KFs)

KFs are designed for keyword matching on msg and reference in the if-then rule.
The KF processing procedure is shown in the gray box in the upper right corner of
Figure 4.1. KFs are extracted from msg and reference according to the presence
or absence of the keywords in the if-then rule. After extraction, they are converted
with one-hot encoding.

To convertmsg to features, a list is created from the words used in the matching
conditions from the if-then rule. Sets of words in the list are extracted as symbols
from msg in the order of the list. If no word matches the word list, a dummy
symbol is used to indicate that the word does not exist. Then, the symbols are
converted with one-hot encoding.

To extract features from reference, a list is made from system names that exist
in the if-then rule. The system names pointed to by reference are combined and
treated as a symbol. If a system name does not match the list, it is extracted
as a dummy symbol indicating this. These symbols are converted to features by
one-hot encoding.

4.2.3 Web information and message features (WMFs)

Many signatures cannot be classified by an if-then rule. We need to add a new
criterion to capture the properties of such signatures.

We interviewed experts to design new features from the criteria used by ex-
perts to classify features manually. The expert determines the importance level of
a signature based mainly on the external information indicated by the msg and
reference, the configuration information of the information and communication
system to be operated, and his/her own experience and knowledge. Specifically,
first, the expert understands the type and detailed characteristics of the malicious
communication targeted by the signature from the external information indicated
by the msg and reference. Then, the importance level is determined by considering
the degree of the adverse impact of the types and characteristics on the informa-
tion communication system and the risk of over-detection or false detection. For
example, if the type of malicious communication is a SQL injection that attacks
a database, and the database is managed in the information and communication
system, the importance level is likely to be set to “medium” or “high”. The results
of the interviews are summarized in the following two insights.

• The experts check all the information in msg.

• The experts check the external information of reference via a web search.

We assume that the whole msg and the information on the web indicated by
reference are essential and propose features that can effectively use them. To ex-
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pand on this information, we apply the term frequency-inverse document frequency
(TF-IDF), which is frequently used in natural language analysis [115, 116, 117].
Web scraping is also used for feature extraction on reference. The gray box at the
bottom right of Figure 4.1 shows the procedure for extracting WMFs.

For reference, web scraping is performed to obtain information from external
references. reference is a set of names of vulnerability lists (CVE, Bugtraq, etc.)
and their IDs or URLs, which allow information related to the signature to be
uniquely identified. For example, when referring to CVEs, information can be
obtained by searching for an ID in web systems such as the National Vulnerability
Database (NVD)1 and RedHat’s CVE Database2. Examples of signature-related
information include the software targeted by the malicious communication indi-
cated by the signature and its version information. The developer of the classi-
fication model needs to describe the web scraping process for each web system
that publishes the information referred to by the reference. Although applying the
procedure to all web systems is difficult, it is possible to describe the procedure
by focusing on frequently used web systems. In what follows, reference refers to
information obtained by web scraping.

Before extracting TF-IDF values, msg and reference are cleaned as follows:
Since only alphabets, numbers, and underscores are used, other symbols are re-
placed by blanks. Stop words [118] and words that appear only once in all signa-
tures are removed.

The cleaned msg and reference are converted into feature vectors by TF-IDF
separately. Let d be an identifier for a text (msg or reference in a signature) and
t be an identifier for a word; the TF-IDF is as follows:

tf -idf(t, d) = tf(t, d) · idf(t) (4.1)

tf(t, d) represents the number of occurrences (an integer greater than or equal to
0) of the word t in the text d. idf(t) is calculated as follows:

idf(t) = log
NL + 1

dfL(t) + 1
+ 1. (4.2)

NL is the number of texts in the training data. dfL(t) is the number of texts in
which the word t appears among the NL training samples. In other words, the
IDF used when converting the test data to feature vectors with TF-IDF is the IDF
calculated in the training data. When converting to TF-IDF, all words are treated
as unigrams. After conversion to TF-IDF, L2 normalization is performed for each
WMF. After L2 normalization, min-max scaling is performed with a minimum
value of zero and a maximum value of one.

1https://nvd.nist.gov/vuln
2https://access.redhat.com/security/security-updates/#/cve

30



4.3 Evaluation of proposed features for machine

learning models

Experiments are conducted on AAD and MAD to evaluate the performance of the
proposed features. This experiment aims to check the validity of the proposed
features and the focus of experts when performing signature classification. The
time-series nature of the signatures is not considered.

4.3.1 Experimental setting

Outline of the experiment

In this section, we confirm the classification accuracy and RO performance of the
classification model with proposed features and analyze the validity of the feature
design. Specifically, evaluation experiments are conducted on the following process:

1. Measuring classification accuracy
We validate the proposed features on several traditional machine learning
models and compare the balanced accuracy (BACC) as a classification ac-
curacy.

2. Measuring of RO performance
We evaluate the quantified RO performance with ARCs and the AU-ARC
[48].

3. Measuring of DE for the RO
We explore the RO performance improvement by using a DE [19], which is
said to better represent uncertainty.

4. Analysis of the expert’s point of view
We analyze the importance of the proposed features to identify the signature
elements that the experts regard as important for evaluating the signature.

5. Analysis of valid features
We explore which elements of the proposed features contributed to the clas-
sification accuracy.

The results of these experiments are shown in Section 4.3.2.

Extraction feature sets

We extract two types of feature sets. One concatenates the SFs and KFs into a
vector directly. These connected features are called if-then rule features (ITRFs).
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The ITRF is a feature design based on the if-then rule. Second, we directly con-
catenate the SFs and WMFs to form a vector. The connected features are called
manual classification features (MCFs). The MCF is a feature design considering
manual classification by experts.

Implementation of web scraping

Before converting to WMFs, the information is extended by web scraping for each
signature for both AAD and MAD. In this dissertation, we perform web scraping
to obtain the software and version information of the target of the malicious com-
munication indicated by the signature. We try to obtain the text indicating the
target software and version information in the order of CVE, Bugtraq, and URL in
the signature and terminate web scraping for the signature when the information
is successfully obtained. When retrieving from CVE, search in the order of NVD
and RedHat’s CVE Database. When retrieving from Bugtraq, search from Secu-
rityFocus3. When retrieving from a URL, attempt to retrieve if the URL refers
to the Vulnerability Report4 of Talosintelligence, Adobe Security Bulletin5, or Ex-
ploit Database6. By the above procedure, we succeeded in obtaining information
on 2, 807 out of 4, 465 for AAD and 1, 024 out of 1, 300 for MAD.

Machine learning

In experiments using five different trained classification models, linear support
vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), random
forest (RF), and naive Bayes (NB), we evaluate the ITRFs and MCFs. The num-
bers of samples of the two classes with low numbers are increased to the same level
as that of the majority class by SMOTE [119]. The number of neighbors is 5. The
hyperparameters for each machine learning model are shown below.

The classification model of linear SVM is trained with a regularization pa-
rameter C = 1. One-vs-rest (OvR), which can be applied to multiclassification
problems, is used.

The MLP in this experiment consists of three layers with a hidden layer of 100
nodes and is trained by backpropagation. The activation function for all nodes
is a rectified linear unit (ReLU; ramp function). Overfitting is suppressed by L2
regularization. The regularization parameter is set to 0.0001. We use adaptive
moment estimation (Adam) [120] for the optimization of objective functions. The
Adam parameters are set to the default values in [120] (α = 0.0001, β1 = 0.9, β2 =

3https://www.securityfocus.com/
4https://talosintelligence.com/vulnerability_reports
5https://helpx.adobe.com/security.html
6https://www.exploit-db.com/
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0.99, ϵ = 10−8). Training is terminated if the loss value in the training data is not
less than 0.0001 in a minimum of 10 iterations.

The DT is trained using the classification and regression tree (CART) method
with Gini impurity as the indicator. Training is performed until the number of
samples or classes present at all endpoints reaches 1.

RF consists of 10 DTs trained the same way as DT. Each DT is trained by
randomly selecting ⌊

√
m⌋ features with mas the dimensionality of the feature vec-

tor. ⌊·⌋ represents the floor function, which is defined as the largest integer less
than or equal to the input value.

NB is implemented by assuming that the input variables follow a normal dis-
tribution.

Classification with an RO

In this experiment, RO performances also are evaluated using SVM and MLP
among the classification models. The RO can be used on any classification model as
long as a prediction score can be calculated. It is formulated as follows: Let x ∈ X
be the input class and y ∈ Y = {1, .., C} be the output class. Let Sy : X → R be
a function that computes the prediction score of class y for a classifier. The final
classification result ŷi for the input xi of the classification model with RO is as
follows.

ŷi =

{
arg max

y∈Y
Sy(xi) ifmax

y∈Y
Sy(xi) ≥ τ

ϕ otherwise.
(4.3)

τ is the threshold, which is the hyperparameter of the RO. ϕ is a symbol of
rejection.

The following shows how the scores are calculated for each machine learning
model. For the OvR linear SVM, the prediction score is the maximum distance
from the decision boundary. MLP uses the maximum value of the prediction
probability vector normalized by the softmax function as the prediction score.

Evaluation method

Due to the imbalanced dataset, we measure the BACC as the classification accu-
racy. BACC is also called macro-Recall. Let y be a symbol indicating a class. Let
TP(y) be the number of samples that belong to the true class y that were correctly
predicted as y. Let FN(y) be the number of samples that belong to the true class
y that were incorrectly predicted to be in another class. The BACC is as follows.

BACC =
1

C

C∑
y=1

TP(y)

TP(y) + FN(y)
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BACC is the interclass average of the recall for a class y.
In addition, to verify the performance of the RO, we plot an ARC [48]. The

ARC visualizes the trade-off between the classification accuracy and the rejec-
tion rate generated by the RO. Note that the classification accuracy is the top-1
classification accuracy, where the rejected samples are considered correct. Let
D = {xi, yi}Ni=1 be a dataset containing N labeled samples for evaluation. The fol-
lowing equations show the accuracy (vertical axis) and rejection rate (horizontal
axis) of ARC at the threshold of the RO.

Accuracy(τ) =
1

N

N∑
i=1

min(1(ŷi = yi) + 1(ŷi = ϕ), 1)

Rejection rate(τ) =
1

N

N∑
i=1

1(ŷi = ϕ)

If the AU-ARC is included, it is possible to compare methods regardless of the
threshold value. The experiments are performed with trained 10-fold cross-validation.

4.3.2 Experimental results

We perform a Stratified 10-fold cross-validation on all combinations of the two
datasets (AAD and MAD), transformation methods to feature vectors (ITRF and
MCF), and machine learning models (SVM, MLP, DT, RF, and NB). The mean
and standard deviation of the dimensionality of the feature vectors are shown in
Table 4.1. For each of AAD and MAD, the number of ITRF and MCF dimensions
is listed for each of the five elements of the signatures focused on in this dissertation
(5-tuple, metadata, classtype, msg and reference). The value on the left is the mean
of the number of dimensions, and the value with ± in parentheses is the standard
deviation. Each value is rounded to two decimal places.

Measuring classification accuracy

In each fold of the stratified 10-fold cross-validation, the test data were classified
with the trained classification model. The BACC was then measured, and the
mean and standard deviation were calculated across the 10 folds. Table 4.2 shows
the results. The column for each machine learning model name indicates the value
for BACC. The value on the left is the mean of the BACC, and the value in
parentheses with ± represents the standard deviation. Each value is rounded to
the fourth decimal place.

The experimental results for AAD show that ITRF performs sufficiently close
to the if-then rule. On the other hand, ITRF shows a significant decrease in
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Table 4.1: Dimension of the feature vector in the experiment
Dataset Features† #. Dimensions

AAD

ITRF

5tuple 236.8 (±3.0)
metadata 427.3 (±4.8)
classtype 15.7 (±0.7)
msg 21.9 (±0.3)
reference 2.0 (±0.0)

MCF

5tuple 236.8 (±3.0)
metadata 427.3 (±4.8)
classtype 15.7 (±0.7)
msg 1, 760.8 (±10.3)
reference 2, 081.8 (±75.0)

MAD

ITRF

5tuple 96.8 (±1.8)
metadata 383.1 (±6.2)
classtype 9.9 (±0.3)
msg 6.0 (±0.0)
reference 2.0 (±0.0)

MCF

5tuple 96.8 (±1.8)
metadata 383.1 (±6.2)
classtype 9.9 (±0.3)
msg 803.8 (±9.1)
reference 563.2 (±27.1)

† ITRF is composed of the linkage of SF and KF, and MCF consists of the
connection of SF and WMF.

accuracy for MAD compared to AAD. This indicates that MAD, a dataset that
does not match the if-then rule, is difficult to classify with ITRF, composed of
features designed concerning the if-then rule.

Next, to compare ITRF and MCF, we review the experimental results on MAD.
We can confirm that MCF significantly outperforms all machine learning models.
The performance of MCF is 30.43% for Linear-SVM, 27.47% for Multilayer Per-
ceptron, 27.09% for DT, 25.13% for RF, and 38.94% for Naive Bayes, all of which
show a minimum 0.251 improvement. MCF is used. The highest performance with
MCF is 86.82% for Linear-SVM, and the lowest is 82.38% for RF. MCF achieves the
lowest performance of 82.38% regardless of the machine learning model. The only
difference between ITRF and MCF is whether KF or WMF is used to transform
feature vectors for msg and reference. Therefore, WMF improved the accuracy
by at least 25.13% for both machine learning models. These results suggest that
WMF in MCF captures the characteristics of manual classification by experts well.
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Table 4.2: Balanced accuracy between ITRFs and MCFs
Dataset Features† SVM MLP DT RF NB

AAD
ITRF

95.69 95.66 95.40 92.93 76.37
±2.41 ±2.02 ±3.48 ±3.89 ±5.24

MCF
96.86 96.43 96.27 92.65 88.26
±2.63 ±2.42 ±2.98 ±3.09 ±5.24

MAD
ITRF

56.39 58.98 59.59 57.35 45.24
±6.96 ±6.74 ±7.05 ±10.09 ±8.48

MCF
86.82 86.45 86.68 82.38 84.18
±6.35 ±6.99 ±6.96 ±4.42 ±7.57

† ITRF is composed of the linkage of SF and KF, and MCF consists of the
connection of SF and WMF.

Measuring of RO performance

In this section, we measure the performance of the RO for SVM and MLP. Table
4.3 shows the AU-ARCs. Figure 4.2 shows all the ARCs for each fold in the
stratified 10-fold cross-validation. The overall trend is similar to that of BACC.
On the AAD, there is no significant performance difference between the ITRFs
and MCFs. However, on the MAD, the MCFs outperform the ITRFs for the RO.
The RO performances of the linear SVM and MLP improve by 6.19% and 4.24%,
respectively.

Table 4.3: AU-ARC (%) between the ITRFs and MCFs.
Dataset Features SVM MLP

AAD
ITRF 99.93 ± 0.07 99.93 ± 0.06
MCF 99.95 ± 0.05 99.98 ± 0.02

MAD
ITRF 93.26 ± 1.81 95.18 ± 0.95
MCF 99.45 ± 0.36 99.42 ± 0.36

In real cases, experts classify signatures that are rejected by classification mod-
els. The RO performance on the MAD shows its effectiveness. On the MAD, the
MCFs exhibit a high RO performance exceeding 99% AU-ARC when using the
linear SVM and MLP. This result is one more indication of the practicality of the
MCFs.
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Figure 4.2: Each ARC shows the result of 1 fold in stratified 10-fold cross-
validation.

Measuring of DE for the RO

In this section, we use DE [19] as a classification model to further improve the
performance of the RO and confirm its effectiveness. The RO is said to have a
better trade-off between accuracy and rejection rate the closer its prediction score
is to the actual probability that it fits the classification [39]. The DE is considered
a method that better represents the uncertainty of DNNs. Experiments have also
shown the superior calibration capability of the DE, which is the ability to estimate
the true probability [19, 106].

The analysis results are shown in Table 4.4 and Figure 4.3. Each DE consists
of 100 independently trained MLPs, each with identical data. The prediction score
for the RO is the average of the prediction scores output by the component MLPs.
The AU-ARC shows a performance improvement. The results also show that the
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DE generally performs well in terms of the ARC. The AU-ARC for the DE shows
the best combined results in Table 4.2 and Table 4.4.

The DE is also found to positively affect signature classification with the RO.
In our proposed model, any machine learning method can be used for the clas-
sification model as long as the RO is feasible. However, we conclude that the
DE is the best choice for this experiment. In addition to the measured results,
the advantage of using DE is that it extends MLP. MLP is a kind of DNN, and
DNNs continue to make remarkable progress in terms of applications. Therefore,
this signature classification model with an RO is also expected to benefit from the
future development of MLPs and DNNs.

Table 4.4: AU-ARC (%) between the MLP and DE.
Dataset Features MLP DE

AAD MCF 99.98 ± 0.02 99.98 ± 0.02
MAD MCF 99.42 ± 0.36 99.58 ± 0.32
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Figure 4.3: ARC confirms the improvement achieved by the RO with the DE.

Analysis of the expert’s point of view

Through interviews with experts, we design the WMFs by assuming that all the
information in the msg and the information from the web is important. The values
of the weight parameters of the trained models denote the feature importance in
classifying signatures, so the features with large weights are considered by experts.
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We analyze the feature importance in binary classification tasks (important vs
nonimportant), where we merge the high and middle labels of the security impor-
tance level into one class (important). We apply the MCFs and linear SVM to the
AAD and MAD for our analysis. A comparison of the classification model weights
learned by linear SVM shows which factors among 5-tuple, metadata, classtype,
msg, and reference are considered more important. The average of the weights
learned in each fold of stratified 10-fold cross-validation is calculated.

We can determine to which of the five elements of the signature each weight
belongs. Figure 4.4 shows the cumulative frequency graphs of the classification
model weights of the five elements. The horizontal axis shows the ranks of the
absolute values of the weights. A comparison of the two figures shows that the
important features are different depending on the type of dataset. The best and
second-best features in the AAD are elements of metadata. Additionally, in third
place is an element of classtype, and in fourth place is an element of the 5-tuple.
The elements of msg appear in the 6th position and later, but the elements of
reference do not appear in the top 20. On the other hand, the weights of the
top eight features in the MAD are elements of msg. After the top nine, reference
elements appear, and after the top 17, 5-tuple elements appear. metadata and
classtype elements do not appear in the top 20 at all.

The features with high weights were consistent with the features identified as
important in the expert interviews. We find that, unlike if-then rules, experts pay
attention to msg and reference in manual classification. msg and the external
information from reference are similar to natural-language information. If these
are the dominant perspectives in manual classification, then it is likely that NLP
methods can be applied.

Analysis of valid features

We designed WMF based on the assumption that msg and reference are important
based on the results of interviews with experts. To confirm the validity of this as-
sumption, we analyze valid features through more detailed experiments. Under the
conditions described above and the MCF, we performed the same experiment with
31 combinations of all the elements in the signature (5-tuple, metadata, classtype,
msg, and reference) for MAD. The results are shown in Table 4.5. For notational
convenience, 5-tuple is abbreviated as 5t, msg as ms, metadata as mt, reference
as rf, and classtype as cl. The value with the highest average BACC for each
machine learning model is shown in bold. Underlines indicate the highest value in
the machine learning model for each number of elements used.
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Figure 4.4: Feature analysis: the cumulative number of elements with high weights
for each feature in the rankings on the horizontal axis.
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Table 4.5: Detailed performance evaluation of the use of MCF in MAD
Elements † SVM MLP DT RF NB

5t 46.92 ± 7.87 44.66 ± 7.58 43.09 ± 5.97 45.22 ± 6.18 37.10 ± 6.64
mt 49.95 ± 5.27 50.00 ± 5.38 50.86 ± 6.01 51.44 ± 5.80 34.55 ± 4.08
cl 57.48 ± 7.87 56.92 ± 7.59 57.48 ± 7.87 56.64 ± 8.01 43.70 ± 5.23
ms 85.04 ± 4.83 87.38 ± 5.70 85.07 ± 8.31 83.32 ± 7.14 83.01 ± 7.68
rf 80.81 ± 7.48 82.66 ± 5.96 80.58 ± 7.81 80.72 ± 8.03 76.74 ± 4.48

5t,mt 52.80 ± 5.18 55.16 ± 6.17 50.67 ± 7.77 49.91 ± 6.25 36.39 ± 6.53
5t,cl 61.13 ± 8.44 59.67 ± 8.37 57.59 ± 10.6 58.10 ± 9.54 44.30 ± 9.28
5t,ms 86.77 ± 4.71 85.22 ± 5.93 84.66 ± 6.89 76.25 ± 6.14 82.87 ± 7.87
5t,rf 86.37 ± 7.04 86.23 ± 6.15 81.65 ± 6.36 82.14 ± 5.35 77.29 ± 4.93
mt,cl 55.73 ± 5.39 57.53 ± 8.04 56.59 ± 6.85 54.21 ± 7.86 42.43 ± 7.18
mt,ms 78.21 ± 6.12 80.73 ± 6.87 83.40 ± 6.63 80.75 ± 7.58 82.91 ± 7.25
mt,rf 83.74 ± 5.12 84.03 ± 7.65 84.64 ± 5.85 84.32 ± 5.44 75.47 ± 8.14
cl,ms 84.35 ± 4.86 86.23 ± 5.83 84.27 ± 6.08 83.25 ± 5.43 82.89 ± 8.24
cl,rf 86.16 ± 6.72 84.68 ± 7.19 85.76 ± 7.43 85.52 ± 7.91 77.16 ± 5.34
ms,rf 88.87 ± 5.97 89.19 ± 5.02 87.49 ± 7.04 88.38 ± 7.05 85.59 ± 6.80

5t,mt,cl 56.61 ± 6.78 55.85 ± 8.45 54.70 ± 10.82 52.73 ± 7.85 43.61 ± 8.96
5t,mt,ms 79.76 ± 6.76 81.40 ± 6.14 81.69 ± 8.33 76.54 ± 8.03 82.67 ± 7.45
5t,mt,rf 83.47 ± 8.75 84.85 ± 7.57 83.46 ± 6.41 81.45 ± 4.89 73.63 ± 9.28
5t,cl,ms 85.31 ± 5.04 84.13 ± 6.37 82.28 ± 6.88 76.99 ± 5.50 82.68 ± 8.35
5t,cl,rf 86.56 ± 6.92 84.95 ± 6.37 80.64 ± 6.22 82.58 ± 6.17 77.81 ± 6.70
5t,ms,rf 88.94 ± 6.18 89.47 ± 6.34 86.68 ± 7.45 83.49 ± 5.71 85.37 ± 6.84
mt,cl,ms 80.82 ± 5.83 81.07 ± 5.74 83.07 ± 6.64 81.68 ± 6.57 82.72 ± 7.87
mt,cl,rf 84.37 ± 4.82 85.89 ± 5.67 84.61 ± 7.80 82.80 ± 7.68 75.55 ± 7.35
mt,ms,rf 87.12 ± 6.79 86.79 ± 6.27 86.79 ± 7.68 84.41 ± 6.69 84.74 ± 6.93
cl,ms,rf 87.88 ± 5.47 89.28 ± 5.23 86.72 ± 7.09 87.34 ± 7.52 85.07 ± 7.82

5t,mt,cl,ms 81.62 ± 6.13 81.04 ± 5.89 82.02 ± 7.32 71.80 ± 5.69 82.42 ± 8.01
5t,mt,cl,rf 83.86 ± 7.95 85.65 ± 7.73 83.14 ± 8.21 81.19 ± 6.83 73.87 ± 9.01
5t,mt,ms,rf 87.65 ± 6.27 86.76 ± 6.39 86.38 ± 9.14 84.03 ± 5.59 84.46 ± 7.07
5t,cl,ms,rf 88.79 ± 5.31 87.58 ± 6.54 87.52 ± 6.92 85.81 ± 6.53 84.78 ± 7.80
mt,cl,ms,rf 86.53 ± 6.29 87.28 ± 6.63 89.40 ± 4.73 84.73 ± 6.17 84.52 ± 7.48

5t,mt,cl,ms,rf 86.82 ± 6.35 86.45 ± 6.99 86.68 ± 6.96 82.38 ± 4.42 84.18 ± 7.57

†5tuple(5t), msg(ms), metadata(mt), reference(rf), classtype(cl)
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We can confirm that msg and reference contribute significantly to performance
improvement. The performance of all machine learning models is highest when msg
and reference are included. Comparison by the number of elements converted to
features shows that the performance of feature sets that include msg and reference
tends to be higher. Comparing the five elements alone, Linear-SVM, Multilayer
Perceptron, DT, and RF perform better than msg, reference, classtype, metadata,
and 5-tuple, in that order. For Naive Bayes, the top three are msg, reference, and
classtype, in the same order as the other machine learning models.

From the above, we conclude that the assumption that msg and reference
are important is valid. msg and reference are natural language elements, and
NLP methods can be applied to them. NLP is one of the fields that is rapidly
advancing with the rise of deep learning. For example, the BERT model [10]
learned from large language corpora could be applied. BERT has been applied
to many tasks with excellent results and may be applicable to [11, 12, 121] and
signature classification.

4.4 Concluding Remarks

In this chapter, three features proposed as one element of the machine learning-
based IDPS signature classification models were evaluated through experiments.
SFs and KFs were designed based on if-then rules, and WMFs were designed based
on the results of interviews with experts. WMF used the idea of expanding its in-
formation content by combining tf-idf and web scraping. A signature classification
model was constructed by combining machine learning models and features, and
evaluation experiments were conducted on AAD and MAD. By using the com-
bined SF and KF features, the AAD was able to classify with high accuracy, but
the MAD was only able to classify with relatively low accuracy. However, we con-
firmed that using features combining SF and WMF improved the performance of
MAD. Through the analysis of effective features, we confirmed the validity of the
assumptions and WMFs obtained from interviews with experts.

The analysis showed that msg is the most effective method for classifying sig-
natures in MAD, followed by reference. Further performance improvement can be
expected by using general-purpose language models and word embedding models
used in natural language processing.

In this chapter, the machine learning model with RO was trained using the
signatures obtained for one year and six months. Because time series were not
considered, words not included in the training did not appear as unknown words at
the time of testing. No problem that would significantly degrade the classification
accuracy of the test data was observed. In the long term, it is expected that
the information contained in the signatures will change with changes in software
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information and types of malicious communications. If new words that the machine
learning model has not yet learned appear in the test data, they may degrade the
classification accuracy.
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Chapter 5

A machine learning system that
cooperates with an expert

5.1 Problem setup

We discuss considerations for automating our target task with machine learning.
Three challenges are encountered when applying a classification model by machine
learning to the real world: (a) security incidents caused by classification errors,
(b) high annotation costs, and (c) classification accuracy decreases due to domain
shifts. The details of each are as follows.

(a) Security incidents caused by classification errors: Classification er-
rors can lead to improper IDPS configurations, which may cause security incidents.
Security incidents can significantly damage the social credibility of an organiza-
tion and sometimes cause fatal damage. As in the medical field, mechanisms that
reduce classification errors, such as the reject option, are needed for our field.

(b) High annotation costs: Only experts with knowledge and experience can
perform signature classification. In other words, collecting labeled signatures for
training is not easy. It is necessary to train the classification model on a limited
dataset.

(c) Classification accuracy decreases due to domain shifts: Signatures
are periodically generated to keep up with new cyberattacks. This causes a domain
shift, and there is concern that signature classification models will not be able
to effectively classify new signatures. Figure 5.1 shows a simple analysis of this
issue. We have developed a time-stamped signature dataset (Section3.4.2). In this
dataset, we measured BACC using the following two holdout methods. (i) Ignoring
timestamps (blue bars in Figure 5.1). (ii) Considering timestamps; new signatures
were classified by a classification model trained on old signatures (red bars in
Figure 5.1). If no domain shift has occurred, there should be little differences

44



10% / 90% 30% / 70% 50% / 50% 70% / 30% 90% / 10%
Sample ratio (training / test)

0

20

40

60

80

100
BA

CC
 (%

)

-26.0% -34.2%
-29.3%

-24.1% -23.1%

(i) Holdout ignoring timestamps
(ii) Holdout considering timestamps 

Figure 5.1: Experimental results showing the accuracy degradation induced in the
IDPS signature classification model: the classification of new signatures with a
model trained on old signatures resulted in accuracy degradation. A multilayer
perceptron was used for the machine learning model, and the feature design and
hyperparameters were the same as those in the experiment in Section 5.3.1.

between the BACCs of these cases. However, the BACC is lower for the time
series split case. In other words, domain shift occurs; the simple classification
models are ineffective in real situations. We need a mechanism to ensure that a
classification model can keep up with new signatures.

The signature classification task is similar to the challenges of applying machine
learning in the medical field; (a) security incidents caused by classification errors
and (b) high annotation costs are common challenges. Our signature classification
task is characterized by the challenge concerning (c) classification accuracy de-
creases due to domain shifts. In the medical field, classification targets are usually
observation data from the human body, which do not change significantly even if
the time series changes. However, signatures are generated as new cyberattacks
are created, so they change significantly.
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5.2 Signature classification with active learning

In this section, we propose an active learning system that uses the IDPS signature
classification model with features proposed in Chapter 4 as one of the elements for
overcoming the three challenges mentioned above: (a) security incidents caused
by classification errors, (b) high annotation costs, and (c) classification accuracy
decreases due to domain shifts. We choose uncertainty sampling to reduce misclas-
sification as the acquisition function. Figure 5.2 shows an overview of a proposed
system.

Figure 5.2: An overview of a proposed system based on active learning. First,
the signatures whose importance levels are difficult to determine are transferred
to an expert. The expert determines the importance of those signatures. The
signatures are added to the training dataset along with their importance labels.
After retraining, the machine learning model classifies the remaining signatures.
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5.2.1 Procedures for applying active learning

We present notations showing the processing steps of the proposed active learning-
based system. The key to understanding the procedure is how to build the training
dataset and the set of signatures to be classified for each discrete time step t ∈
{0, 1, ..., }. Let s(t) ∈ N be the number of annotations set by the expert at each
time step t. s(t) is a hyperparameter that the system user sets while considering
the annotation cost. At each time step t, the top s(t) signatures resulting from
uncertainty sampling are annotated and added to the training dataset. After
the classification model is retrained, the signatures that were not annotated are
classified.

Let X (t) be the space of the signatures at time t. The set of signatures sampled
from X (t) is X(t) = {x(t)

i }N
(t)

i=1 . N
(t) ∈ N is the number of signatures given at time

t, e.g., the number of signatures distributed by the IDPS developer. The space of
the importance labels assigned to the signatures is constant regardless of the time
series, with y ∈ Y = {1, ..., C}. The indices of the signatures manually annotated

by experts at time t are I(t)train ⊂ {1, .., N (t)}, and the indices of the signatures

automatically classified by the machine learning model are I(t)test ⊂ {1, ..., N (t)}.
Let A(t) = {x(t)

i , y
(t)
i |i ∈ Itrain} be the dataset labeled by the experts at time t.

Let D(0)
train = {x(0)

i , y
(0)
i }N

(0)

i=1 be the initial training dataset. The training dataset at
time t is constructed by accumulating a labeled dataset A(t) as follows.

D(t)
train = D(0)

train ∪ A(1)∪, ...,∪A(t) = D(t−1)
train ∪ A(t)

Let w(t) be the parameter of the classifier trained from D(t)
train. Let P (y|x,w(t)) be

the membership probability of sample x as predicted by the classifier trained on
D(t)

train. The output label of the classifier is calculated as

ŷ = arg max
y∈Y

P (y|x,w(t)).

The procedure of the system at step t is summarized in Algorithm 1. For
effective active learning, it is important to design an acquisition function that
selects annotation targets from unlabeled data. Our proposed system uses an
uncertainty sampling strategy. The uncertainty estimation function υ : X (t) →
R is used for uncertainty sampling. For the classification model to consistently
achieve high accuracy, it is crucial to design the function υ. The function υ should
output higher values for signatures with more uncertain importance labels and
lower values for more certain samples. The simplest example of υ is entropy.
Entropy is calculated as follows:

υH(x) = −
∑
c∈Y

P (y = c|x,w(t)) · log(P (y = c|x,w(t))).
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Algorithm 1 The procedure of the classification model at t

1: Given a dataset X(t) = {x(t)
i }N

(t)

i=1 and s(t).

2: γ(t) ← max[s(t)]({υ(x
(t)
i )|x(t)

i ∈ X(t)})
3: I(t)train ← {i|i ∈ {1, ..., N (t)} ∧ υ(x

(t)
i ) ≥ γ(t)}

4: The experts annotate X(t) of Itrain to develop a labeled dataset A(t).
5: D(t)

train ← D
(t−1)
train ∪ A(t)

6: Train the classification model’s parameter w(t) with D(T )
train.

7: I(t)test ← {i|i ∈ {1, ..., N (t)} ∧ υ(x
(t)
i ) < γ(t)}

8: X
(t)
test ← {x

(t)
i |i ∈ I

(t)
test}

9: Predict the classes in X
(t)
test with the classification model trained in the above

step.

Let max[n](·) be a function that returns the n-th highest value among the given
values. At the time t, the proposed system transfers the top s(t) uncertain signa-
tures quantified by the function υ to the experts for annotation. The uncertainty
threshold for selecting such signatures is as follows:

γ(t) = max[s(t)]({υ(x
(t)
i )|x(t)

i ∈ X(t)})

The indices Itrain of the samples transferred to the experts at time t and the index
set Itest of the samples classified by the machine learning model are as follows:

Itrain = {i|i ∈ {1, ..., N (t)} ∧ υ(x
(t)
i ) ≥ γ(t)}

Itest = {i|i ∈ {1, ..., N (t)} ∧ υ(x
(t)
i ) < γ(t)}

The experts annotate the signatures whose indices are contained in I(t)train to form

A(t). A(t) and the training dataset D(t−1)
train are combined into D(t)

train. Then, D
(t)
train is

used to train w(t). After performing training, the target signature dataset X
(t)
test =

{x(t)
i |i ∈ Itest} is classified by the machine learning model. The above process is

repeated with t incremented each time a signature is distributed.

5.2.2 Uncertainty estimation performance improvement

There are two approaches to improving the performance of the proposed system.
One is to investigate machine learning algorithms and feature designs with better
classification and reject option performance. The second is to find a better method
for preferentially transferring signatures with a high risk of misclassification to the
expert using uncertainty sampling. In other words, to find a calibration method
that brings the predicted probability vector output by the classification model
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closer to the actual probability. We investigate the latter since we have already
performed the former approach in Chapter 4.

We evaluate the performance of the proposed system when MC-Dropout[18] or
a DE[19] is used for the classification model to improve the system’s performance
in Section 5.3.3. MC-Dropout is a method in which dropout[112], generally used
during training, is also used during the inference process. The final output is the
average of the probability vectors calculated from multiple feedforward steps. A
DE is a classifier consisting of multiple neural networks. [114] conducted a study
that examined the combination of active learning and uncertainty estimation. In
the field of image recognition, this research experimentally showed that while MC-
Dropout was adequate, the DE gave better results. However, in the experiments
described below, we show that MC-Dropout performs better than the DE on the
dataset used in this dissertation.

Both MC-Dropout and DE require multiple feedforward steps during inference.
Assuming that the common variable K represents the number of feedforward steps
of each method, the prediction probabilities are as follows.

P (y|x,w(t)) =
1

K

K∑
k=1

P (y|x,wk)

In the case of MC-Dropout, wk is the parameter of the neural network that is
changed by the dropout operation at the k-th feedforward step. In the case of DE,
wk is the parameter of the k-th neural network.

MC-Dropout and the DE can use Bayesian active learning by disagreement
(BALD) [122] as the uncertainty estimation function in addition to entropy. En-
tropy and BALD are the two most popular acquisition functions in active learning-
based uncertainty sampling. BALD determines the mutual information content
between data points and weights wk. This measure is the entropy of the probabil-
ity vector output by the classification model minus the average conditional entropy
for a given weight. The BALD function is as follows.

υBALD(x) = υH(x)− λ(x)

λ(x) is the average conditional entropy for a given weight, which is given as follows.

λ(x) =
1

K

K∑
k=1

C∑
c=1

−P (y = c|x,wk) logP (y = c|x,wk)

49



5.3 Evaluation of a proposed machine learning

system

In this chapter, we evaluate the proposed system using the TMAD collected in
cooperation with experts (Chapter 3). We also define our evaluation metric that
matches the problem of classifying signatures in the real world with the imbalance
between classes.

5.3.1 Experimental settings

An evaluation metric

In this section, we describe our evaluation metric. The typical top-1 classification
accuracy and BACC measures, which do not consider the timing of data genera-
tion, are not appropriate for measuring the degree to which the problem in this
dissertation is solved. It is impossible to measure the improvement of challenge
(a)-(c) using Top-1 classification accuracy or BACC, typical metrics for machine
learning. We define our metric, which takes the following three points into account.

• Requirement for the challenge (a): It must be possible to quantify the
performance of the RO. As in AU-ARC, the performance measure needs to
be raised by forwarding samples that would otherwise be misclassified to an
expert.

• Requirement for the challenge (b): It must be possible to compare the
classification accuracy on the labeled training datasets with the same number
of samples. The number of training data is, in other words, the number of
annotations by the experts. Furthermore, the number of annotations is the
number that the system transfers to the experts. Its evaluation metric must
be calculated on the condition that the number of transfers from the machine
learning system to the expert is specified.

• Requirement for the challenge (c): It must be a measure of overall
performance throughout the time series. It must be computed assuming a
labeled data set organized in time-series order.

In addition to these requirements, we also need to consider the imbalance of the
class distributions that appear in the signature dataset. The class distribution
imbalance is shown in Table 3.2.

The simulations evaluate the proposed system on a set of expert-labeled datasets
D = {D(0),D(1), ...,D(t), ...,D(T )}. D(t) = {x(t)

i , y
(t)
i }N

(t)

i=1 is a dataset consisting

of the signatures generated at time tand their labels. Let X
(t)
y = {x(t)

i |x
(t)
i ∈

50



X(t) ∧ y(t)i = y ∧ i = 1, ..., N (t)} be a subset of X(t) that consists only of signatures
labeled y. The system prompts experts to label some signatures, retrains them,
and classifies the rest of the signatures, repeating the sequence in discrete time
order.

We define the co-balanced accuracy (CO-BACC) as an evaluation metric for
this problem as follows:

CO-BACC(t; s(t)) =
1

|Y|
∑
y∈Y

∑t
t′=1

∑
x∈X(t′)

y
β(x, y, t)∑t

t′=1 |X
(t′)
y |

β(x, y, t) = min(1(y = ŷ) + 1(υ(x) > τ (t)), 1) (5.1)

The CO-BACC is a metric to be maximized, and it is calculated given s(t), the
number of signatures transferred to the experts at each time step t. Through t =
1, ..., T , we assume that the signatures transferred to the experts are correct. This
evaluation metric was inspired by the ARC used in the RO. The ARC allows us
to visualize the tradeoff between the rejection rate and the classification accuracy
when the rejected samples are considered correct. The classification accuracy of
the ARC does not account for imbalance, but our CO-BACC is developed with
this idea in mind.

Equation 5.1 shows that CO-BACC improves by either rejecting samples that
misclassify or improving classification accuracy. Therefore, a comparison of the
challenge (a) can be made. CO-BACC can compare methods on the same s(t),
allowing the number of training data for the classification model to be fixed and
allowing comparisons regarding the challenge (b). It is also possible to measure
the degree of improvement of the challenge (c) since it is a comprehensive index
over the time series.

One experiment is a simulation in which an expert and a classification model
collaborate to classify signatures while t = 1, ..., 23. The CO-BACC is then cal-
culated and plotted at each time step t. Let r be the acquisition rate for each
step t = 1, ..., 23. We perform a simulation for each r = 10%, 11%, ..., 50% and
calculate the corresponding CO-BACC. If the number of samples to be acquired
is not divisible, the decimal point is rounded down. For example, in the case of
r = 30%, s(1) is ⌊283× 30%⌋ = 84. The experiment is run 50 times with the same
parameters, and the average value is used as the result.

Feature sets

In this experiment, the features of the proposed system are those that combine
only 5-tuple of SFs and WMFs (Figure 5.3). Section 4.3.2 results, see table 4.5,
since the combination of these features shows the best classification performance.
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Figure 5.3: The feature extraction process of the experiments in Chapter 5

Comparative methods

The classification model in this experiment is implemented based on a neural
network as a machine learning model. The architecture of the neural network
is a three-layer MLP with the following hyperparameters. A three-layer struc-
ture with an intermediate layer containing 100 nodes is trained using the er-
ror backpropagation method. The activation function for all nodes is a ReLU.
L2 regularization is used to suppress overlearning. The regularization parame-
ter is set to 0.0001. The optimization method is Adam with default parameters
(α = 0.0001, β1 = 0.9, β2 = 0.99, andϵ = 10−8)[120]. The neural network training
process is terminated when the loss value for the training data is less than 0.0001
from the minimum value at least 10 times (early stopping). The maximum number
of epochs is set to 200.

In our experiment, the following six systems are implemented and compared
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to confirm the effectiveness of the proposed system.

• MLP-Random: A neural network is used alone as the classification model,
and random sampling is applied as the uncertainty estimation function.

• MLP-Entropy: A neural network is used alone as the classification model,
and entropy is applied as the uncertainty estimation function.

• DE-Entropy: DE are employed as the classification model, and entropy is
used as the uncertainty estimation function.

• DE-BALD: DE are employed as the classification model, and BALD is used
as the uncertainty estimation function.

• MCD-Entropy: MC-Dropout is used when inferring neural networks, and
entropy is used as the uncertainty estimation function.

• MCD-BALD: MC-Dropout is used when inferring neural networks, and
BALD is used as the uncertainty estimation function.

The DE has 100 members. All hyperparameters are common among them, and
the only randomness concerns the initial values of the weights and the choices of
minibatches. The MC-Dropout probability is set to 0.5, and the feedforward step
is performed 100 times.

5.3.2 Experimental results

In this section, we conduct experiments with the above datasets, evaluation met-
rics, and six systems and make comparisons. The first two simplest systems (MLP-
Random and MLP-Entropy) are compared. Next, we validate the proposed im-
provements yielded by introducing the uncertainty estimation method to deep
learning (DE-Entropy, DE-BALD, MCD-Entropy and MCD-BALD).

Comparing MLP-Random and MLP-Entropy

From left to right, Figure 5.4 shows the results obtained in the experiment with
acquisition rates of 10%, 30% and 50%. The horizontal axis is t, and the vertical
axis shows the CO-BACC at the corresponding step t. At all acquisition rates,
MLP-Entropy outperforms MLP-Random in most of the steps t. In particular,
MLP-Entropy outperforms MLP-Random even when the amount of training data
is small and t is small. MLP-Entropy can efficiently transfer samples to experts
that are either appropriate for the training data or prone to errors.

Figure 5.5 shows the final CO-BACC values obtained for all acquisition rates
tested. The acquisition rate leads to the number of samples submitted to the
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Figure 5.4: Experimental results comparing the performance of the proposed sys-
tem with entropy-based uncertainty sampling (MLP-Entropy) with that of an MLP
with a random acquisition function (MLP-Random).
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expert at each step; i.e., it represents the size of the cost paid by the expert. It is
an essential aspect of whether the proposed system works at any of the acquisition
rates. Compared to MLP-Random, MLP-Entropy confirms its superiority in all
cases, ranging from approximately 7% to 14% improvements. This indicates that
the usability of the proposed system is high due to the wide range of acquisition
rates the user can set.
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Figure 5.5: CO-BACCs at time step t = 23 (last step) for all acquisition rates.

In summary, MLP-Entropy works well in online signature classification tasks.
Performing active learning with a simple neural network and the most primitive
uncertainty sampling function as the acquisition function is effective for real-world
situations.

Verification of the proposed improvements

We incorporate MC-Dropout and the DE into the proposed system to verify the
resulting performance improvements. Figure 5.6 shows the experimental results
in the same style as Figure 5.4 but with a different system described. Figure
5.7 also shows the final CO-BACCs, as in Figure 5.5. It can be seen that the
performance of the combined MCD systems, especially MCD-BALD, is generally
higher than that of the combined DE systems and MLP-Entropy. MCD-BALD
achieves a CO-BACC increase under relatively low numbers of transfers to experts
with acquisition rates of 10% and 30% and at earlier stages in the time series.
Eventually, the CO-BACCs of many systems converge to similar values, but MCD-
BALD appears to be slightly dominant (Figure 5.7).

In [114], image recognition benchmarks were used, and DE performed better
than MC-Dropout. In our experiments, however, MC-Dropout is preferred. The
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image recognition and signature classification tasks differ significantly in the ar-
chitecture of the neural network used for the classification model. The former uses
a large neural network such as a convolutional neural network (CNN) to capture
the complexity of images, while the latter uses a simple MLP. Inference with MC-
Dropout can be interpreted as inference with different neural networks, i.e., pseudo
DE. Although diversity among the neural network members is considered essential
for DE [109, 110], MC-Dropout exhibits more diversity under the conditions of this
experiment. This may be due to the positive effect of MC-Dropout on uncertainty
sampling for relatively small neural networks. We suspect that the simple MLP,
which classifies signatures, has fewer parameters than the CNN and thus cannot
exhibit the diversity that results from random initial values. MC-Dropout per-
forms better than the DE, which have been validated mainly on image recognition
benchmarks and have been reported to perform well, so this is a surprising and
valuable finding.

5.3.3 Analysis

The analysis focuses on MC-Dropout, which is the best-performing method. All
values observed in the analysis are averages obtained over 50 trials.

Class distribution of the acquired samples

Since the experimental results show that MCD-BALD is superior, we analyze its
behavior. First, we check the distribution of the importance levels of the acquired
samples through simulations. We compare the MLP-Entropy values, MCD-BALD
values and expected values (Random) for r = 10%, 30%, 50%. The results are
shown in Table 5.1. MCD-BALD acquires more samples with “medium” labels
than the other approaches. The “medium” sample is the second minority class and
is harder to predict as “medium” than the majority class (“low”). The acquisition
of these samples and their forwarding to the experts may reduce the number of
errors. The dataset has three importance labels: “low”, “medium”, and “high”,
which are ordered. The “medium” label is in the middle of these three labels and
may be uncertain for the classification model since its importance is uncertain even
for experts.

Time series in the distribution in the training dataset

Imbalance within the training dataset is an undesirable property that increases the
concern that the classification model learns to neglect minority classes. The class
distribution in the training dataset for each time step t reveals that the proposed
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system mitigates the imbalance issue. Figure 5.8 shows the training dataset dis-
tributions observed over time for r = 10%, 30%, 50%. The vertical axis indicates
the percentage of signatures with “medium” or “high” importance in the dataset,
and the horizontal axis indicates the time step. The green lines indicate the ex-
pected values of the class distribution when the signatures are transferred ran-
domly. MLP-Entropy (blue lines) and MCD-BALD (red lines) also have roughly
higher percentages of minority samples than the random acquisition strategy. This
trend is particularly pronounced in the latter half of the period, indicating that
the imbalance issue is rapidly dissipating.
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Figure 5.6: Comparison among the performances of the plain proposed system
(MLP-Entropy) and four proposed systems combined with the uncertainty esti-
mation method (MCD-Entropy, MCD-BALD, DE-Entropy, and DE-BALD)
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Figure 5.7: CO-BACCs obtained at step t = 23 for the plain proposed system
(MLP-Entropy) and the four proposed systems (MCD-Entropy, MCD-BALD, DE-
Entropy, and DE-BALD) combined with the uncertainty estimation method.
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Table 5.1: Class distributions of the acquired samples

Acquisition rate 10% 30% 50%

Method \Class low medium high low medium high low medium high

MLP-Entropy 471.3 223.5 32.2 1683.0 469.0 59.0 3071.4 549.5 72.0
MCD-BALD 470.9 221.2 34.9 1660.4 494.5 56.0 3043.9 576.8 72.3
Random 668.1 62.5 9.7 2004.3 187.5 29.1 3340.5 312.5 48.5
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Figure 5.8: The class distributions in the training dataset for each time step.
These are the percentages of data samples (signatures) with “medium” or “high”
importance labels in the training dataset. The training data imbalance issue is
suppressed in the cases of MLP-Entropy (blue lines) and MCD-BALD (red lines)
compared to the case where the signatures are acquired randomly (green lines).
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5.3.4 Discussion

The key idea of our proposed system is to overcome the multiple challenges that
arise when applying signature classification models within an active learning frame-
work to real-world situations. We explain why the proposed system can overcome
the challenges (a)-(c).

• Discussion about (a) Security incidents caused by classification er-
rors: Transferring signatures to experts in the active learning acquisition
function corresponds to a reject option, a function that avoids classification
errors by canceling uncertain classifications. CO-BACC represents the inte-
grated classification accuracy when a human and a machine learning model
share the classification task. Specifically, only when the machine learning
model makes an error mistake is it considered incorrect. In the Figure 5.4,
the machine learning model can reduce the number of classification errors
since the value is superior to that of the random transfer.

In particular, MCD-BALD transferred more “medium” signatures to the ex-
perts (Table 5.1). Experts prefer that the “medium” signature, considered
the boundary between “low” and “high” signatures, be transferred preferen-
tially. Analysis using Table 5.1 suggests reducing misclassification by man-
ually checking samples on the boundaries.

• Discussion about (b) High annotation costs: In the active learning
process, which is the basis of the system, the system picks up data that
are considered helpful for training and trains on a smaller set of labeled
data by asking humans to label the data. Whether the annotation cost has
been reduced can be determined by comparing the classification accuracy
between methods trained with the same annotation cost. The acquisition
rate in the Figure 5.4 corresponds to the annotation cost. Even with the
same annotation cost, the proposed system (MLP-Entropy) shows better
CO-BACC, indicating that it mitigates the annotation cost issue.

Analysis using Table 5.8 showed that active learning reduced the imbalance
in the training data. In other words, more minority class samples can be
added to the training data. This leads to fewer classification errors for mi-
nority classes, suggesting that training can be done more efficiently with less
annotation cost.

• Discussion about (c) Classification accuracy decreases due to do-
main shifts: The classification model is also naturally updated sequentially
to keep up with the periodically generated signatures. The proposed system’s
mechanism of adding new data to the training data as needed is thought to
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allow it to keep up with new data. In other words, it can reduce the in-
fluence of domain shift. Figure 5.4 of the experimental results shows that
the proposed system’s CO-BACC of both MLP-Entropy and MLP-Random
increases gradually. After time step t = 3, MLP-Entropy has a more rapid
CO-BACC increase than MLP-Random until the halfway point. Assuming
that the better performance is better at following new data, MLP-Entropy,
which is based on active learning, is better at following new data.

The proposed system is based on active learning, which allows the system and
humans to cooperate. The system reduces the burden on experts by performing
some of the manual signature classifications. In addition, while the system is in
operation, humans classify signatures as usual, which leads to an expansion of the
effective training dataset and contributes to improving the classification accuracy
by the system. Thus, the system works for the benefit of people, and their actions
also benefit the system.

Feedback from the system to the human can also be provided, but that is a
topic for future work. An example of feedback is when a human and a system
perform classification in parallel, and the system communicates disagreements to
the human. However, to provide feedback to humans, it is necessary to guarantee
the reliability of the feedback. Therefore, we must first assume that the expert’s
determination is true and verify the estimation performance of the system.

5.4 Concluding remarks

To classify signatures generated over time, we proposed a system in which a human
and a machine learning model cooperate by applying active learning. We defined
the CO-BACC as a performance measure that considers the class imbalance issue,
the time series of the given signatures, and the behavior of the experts asked to
make classification decisions. Experiments conducted on the TMAD showed that
the attained CO-BACC was higher with active learning-based uncertainty sam-
pling than with random signature sampling. Furthermore, it was confirmed that
incorporating MC-Dropout, a deep learning-based uncertainty estimation method,
into the proposed system further yielded improved performance. The analysis
showed that incorporating MC-Dropout resulted in the transfer of more signa-
tures with “medium” importance to the experts and a gradual alleviation of the
imbalanced nature of the training data.

In this chapter, we proposed a system based on active learning in cooperation
with experts. The system can be applied to other data by replacing the feature
extraction process. There are other tasks in network security operations where
data are generated periodically and classified by experts. For example, software
vulnerability information, such as CVE, is released periodically, and experts may
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decide whether to classify this information as necessary. The proposed system can
be applied to such tasks and can be widely applied to other tasks as well.
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Chapter 6

Conclusion

This dissertation addressed the challenges in building a machine learning system
that cooperates with humans to classify intrusion detection and prevention system
(IDPS) signatures. Conclusions and future works are described below.

First, we collected three datasets with experts from real network operating or-
ganizations. The first dataset was named automatically annotated dataset (AAD).
AAD consists of classified signatures using if-then rules, which are scripts for auto-
matically classifying signatures. Experts prefer to classify signatures using if-then
rules whenever possible. Hence, we know that experts code the if-then rule scripts
based on all their explicit knowledge. The second dataset was named manually
annotated dataset (MAD). The experts constructed the MAD by manually anno-
tating signatures that if-then rules could not classify. All signatures that can be
classified based on explicit knowledge are included in the AAD. Therefore, the
signatures in the MAD are classified based on the experts’ tacit knowledge. The
third dataset was named time-series manually annotated dataset (TMAD). Signa-
tures in TMAD were manually classified and given the date and time they were
distributed. AAD, MAD, and TMAD consist of 4, 465, 1, 300, and 7, 577 labeled
signatures, respectively. Until now, the IDPS signature classification task dataset
has not been made publicly available for reasons of conventions and security. We
also investigated their IDPS signature classification procedures through interviews
with experts and described them. With these works, we have completed the nec-
essary preliminaries for our research.

Second, IDPS signature classification models were built and analyzed using
AAD and MAD. In this dissertation, two approaches were used for feature de-
sign that is easy to analyze. The first approach is based on the if-then rule. In
this approach, two types of features, symbolic features (SFs) and keyword features
(KFs) were designed. The second approach was designed through interviews with
experts. The interviews revealed that natural language elements in the signatures
and information on the Internet are important. We designed a set of features
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named web information and message features (WMFs). In our experiments, we
combined these features with several machine learning methods to build a classi-
fication model. The experiments revealed the following points.

• In the AAD, the maximum value of BACC was measured to be 95.69 percent
for the feature set that combined SFs and KFs. This indicates that the design
of these features aimed at reproducing the if-then rule was successful.

• In MAD, the SFs and KFs achieved a maximum BACC of only 59.59 percent,
while the combination of SFs and WMFs achieved a maximum performance
of 86.82 percent. This indicates that the WMFs better capture the human
decision criteria.

• WMFs performed well when the area under the accuracy-rejection curve
(AU-ARC) was measured as a reject option (RO) performance.

• The performance of the RO was improved by using deep ensembles (DE), an
uncertainty estimation method in deep learning.

• The analysis showed that when experts manually classify signatures, they
focus first on msg and second on reference (information scraped from the
Internet).

The above work makes it possible to construct an IDPS signature classification
model, a human-collaborative machine earning system module. Among the pro-
posed features, WMF is superior in classification accuracy and RO performance,
and we should adopt WMF as a feature. Incorporating DE into the classification
model improved reject option performance, indicating that it is also an effective
method for building a cooperative system with experts. The analysis shows that
external information referenced by msg and reference is important, confirming the
validity of the WMF design, which was inspired by the results of interviews with
experts.

Third, to overcome three challenges in applying signature classification models
to real-world applications (a) security incidents caused by classification errors,
(b) high annotation cost, and (c) classification accuracy decrease due to domain
shifts, we proposed and evaluated an active learning-based system with uncertainty
sampling as the acquisition function. Whenever the proposed system receives
signatures sent like a subscription service, it forwards some of them to an expert
for annotation. The annotated signatures are added to the training data, re-
trained, and the remaining signatures are classified. The signatures transferred to
the experts are determined based on uncertainty sampling. The proposed system
aims to improve the accuracy of uncertainty sampling by using the uncertainty
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estimation method in deep learning. The following results were obtained through
simulation experiments based on the actual operation using the dataset.

• The proposed system outperforms random sampling. This indicates that the
active learning method worked as intended.

• The performance was improved using Monte Carlo dropout (MC-Dropout),
a deep learning uncertainty estimation method. Although we confirmed the
performance improvement of RO with DE in Chapter 4.3 of the research,
MC-Dropout showed more promising results.

• MC-Dropout was found to transfer more “medium” signatures to the experts,
which are considered highly important to people but also tricky for them to
make decisions.

• Experiments showed that the proposed system reduces the imbalance in the
training data.

The above work shows that an active learning-based system can efficiently clas-
sify signatures in cooperation with experts. Incorporating MC-Dropout was ex-
perimentally demonstrated to be effective in increasing the ability of experts to
transfer signatures with a high risk of incorrect answers. Furthermore, it mitigates
imbalances in the training data, and more signatures with “medium” signatures
on the importance boundary are forwarded to experts, suggesting that it positively
impacts the classification model’s training.

Future work in machine learning IDPS signature classification is the need to
train classification models for each organization. A classification model trained
for one organization may perform much worse for another organization because
the importance determination of signatures is based on the IDPS used by the
organization to which the expert belongs. These facts indicate that each organi-
zation needs to perform its annotation, which is even more expensive. Other than
active learning, there are other ways to deal with this problem, such as weakly
supervised learning [123] that can learn with a small number of labeled data sets,
such as transfer learning [124] and semi-supervised learning [125]. For transfer
learning, models trained in different organizations can be fine-tuned for other or-
ganizations to improve performance. This is in line with the characteristics of a
network operation organization, where sensitive information cannot be exchanged.

There is also a need to address tasks other than IDPS signature classification.
The three challenges addressed in Chapter 5, (a) security incidents caused by clas-
sification errors, (b) high annotation costs, and (c) classification accuracy decreases
due to domain shifts, also appear in other tasks in network operations. The pro-
cessing procedures of the system proposed in this dissertation can be applied to
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different types of data. However, careful investigation, including feature design,
is required for each individual task. Each organization has a different aspect of
network operation, and the event itself, the communication network, is complex.
This makes it difficult to take an approach where many researchers explore one
standard benchmark, for example, in image recognition tasks. This is because
network tasks can be unique, and completing one does not necessarily mean that
everything has been solved. The signature classification task addressed in this
dissertation may yield different results if labeled signatures from different organi-
zations are used. However, even in such a case, we must gain as much knowledge
as possible by individually verifying each signature one by one. Due to the sensi-
tivity of the information handled, it is not easy to exchange specific data between
network operating organizations. Federative learning [126], in which individually
trained models are merged after the fact, maybe a good approach. The ultimate
task is to tackle other specific tasks individually and, finally, to find a general rule.

In this dissertation, we proposed a system based on active learning that allows
the machine learning system to cooperate with experts. Specifically, the machine
learning system performs a part of signature classification on behalf of the expert,
and the expert assists in the continuous training of the system through his/her
daily work. The collaboration in this dissertation refers to the efficient sharing of
tasks between systems and humans. It is just one example of collaboration, and
other collaboration cases are possible. In this dissertation, a human determination
is treated as absolute, but in reality, humans can make errors in determination.
In such cases, an interaction framework is needed in which systems and humans
mutually exchange opinions to find a solution. We can consider the interaction
between a system and a person as a collaboration. Another example of collabora-
tion is the use of trained machine learning systems as supervisors to train novices.
The search for better training methods for experts is a significant challenge for
network operation, and cooperation in the form of education using machine learn-
ing systems has social significance. In addition to task sharing, problem solving
through system-human interaction and training of experts using learned models
are future challenges for machine learning technology to support network opera-
tions. We hope that the ideas and evaluation results in this dissertation will help
solve signature classifica- tion problems as well as other tasks.
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