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Abstract

Building dialogue systems that can smoothly communicate with humans
is an enduring topic in artificial intelligence. Nowadays, the task-oriented
dialogue system is widely used in real-world business to help users complete
specific tasks. In the task-oriented dialogue system, the pipeline system is
a popular solution so far. Although the end-to-end system was shown as
good performance as the pipeline system recently, the pipeline system is
advantageable on that each module of the pipeline system can be separately
analyzed and studied. This makes the pipeline system more suitable on
researching specific problems. Considering this advantage for research, our
research focuses on the pipeline system.

With the developments of services and applications, an existing system is
required to be extended to new domains that describe new tasks and topics.
In adapting to new domains, conventional systems often needed to retrain
the model to handle new task-related classes in new domains, which was
inefficient in practice. For this problem, one of the ultimate goals of the task-
oriented dialogue system was proposed, that is to build a domain-adaptable
system that could be adapted to any given domain without training instances,
so-called zero-shot domain adaptation.

In the pipeline system, the slot filling module is the immediate module
connecting the user and the system. Slot filling aims to extract the user’s
intended components by predicting slot entities and slot types. The slot
entity indicates the tokens that belong to a slot. The slot type indicates the
specific slot that the slot entity is belonging to. The intended components
carry the information about completing the task. These components are
the basis for the subsequential modules’ processes. Therefore, the zero-shot
capacity of the entire dialogue system relies on the zero-shot capacity of the
slot filling module a lot.

Towards the ultimate goal, conventional slot filling methods were ineffi-
cient since they needed to retrain to handle unseen slots in new domains.
Zero-shot slot filling was proposed to deal with this problem. Zero-shot
slot filling aims to train a model on source domains and adapt the model
on target domains directly. Previous zero-shot slot filling methods handled
target domains mainly relying the domain similarities based on explicit
information. However, the improvements in zero-shot slot filling were limited.
The main reason is because the explicit information is sensitive to domain
shift problems. Specifically, domain shift problems influence the model
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performance from three aspects. The first one is the unseen slots that were
not appeared in training domains can be encountered in new domains. The
second one is seen slots can be differently explained due to the topic changes
in new domains. The third one is the context distributions is generally
different in new domains. Due to these domain shift problems, it is hard
to treat new domains based on the knowledge learned in training.

The overall objective of our research is to mine intrinsic representations
that describe intrinsic characteristics of slots and values to alleviate domain
shift problems in zero-shot slot filling towards the ultimate goal. Generally,
as the intrinsic characteristics of an object could be stable whatever its
specific appearance is, the intrinsic characteristics of slots and values could
be expected to be more common across domains, thus providing effective
transferable information. Specifically, we separately mined intrinsic repre-
sentations from three aspects to alleviate domain shift problems in zero-shot
slot filling. These representations are the inference relation path (IRP), the
multi-relation-based representation, and the ontology-based representation.

We proposed the IRP from the knowledge graph to deal with the domain
shift problem of unseen slots. We conducted a statistical analysis and showed
that IRPs implicitly carry the relationships between slots and the values of
specific meanings. Such relationships were not domain dependent. Thus
IRPs could be expected to provide transferable information across domains
to alleviate domain shift problems. Experimental results of utilizing IRPs in
zero-shot slot filling demonstrated that using IRPs improved zero-shot slot
filling by alleviating domain shift problems, especially on the unseen slots.
However, IRPs were not flexible to be used since the extraction of IRPs
needed the slots and values to be identified as entities, while many slots and
values could not be identified as entities in practice. Moreover, the absolute
improvement by using IRPs on zero-shot slot filling was not high.

To overcome the limitations of IRPs to alleviate domain shift problems,
we proposed the multi-relation-based representation to deal with the domain
shift problem of different context distributions. The multi-relation-based rep-
resentation captures general meanwhile specific characteristic of slot entities
among a variety of context environments and slots. Thus it could be expected
to provide effective transferable information across domains. Experimental
results and analysis demonstrated that the proposed representation alleviated
the domain shift problem on the slot entity prediction, thus improving zero-
shot slot filling. However, improving slot entity predictions alone could not
improve zero-shot slot filling for unseen slots much due to the limitations in
the slot type prediction.

To fill the gap of lacking knowledge in slot type predictions to handle
domain shift problems of unseen slots and differently explained seen slots,
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we proposed the ontology-based representation for the slot type prediction.
The ontology is a pre-defined knowledge base that describes the intrinsic
relationships between slots and their values. In our research, we assume the
ontology for each new domain is fully defined, which contains all slots and
possible values. When a domain changes from one to another, the definitions
in the ontology will not change. Thus the ontology could establish the
relationships between slots and values across domains to handle the slots
in new domains. Experimental results and analysis demonstrated that using
the ontology-based representation significantly improved zero-shot slot filling.
We combined the use of the multi-relation-based representation with the
ontology-based representation and showed further alleviation of domain shift
problems in zero-shot slot filling.

Finally, we investigated whether the improvements of zero-shot slot filling
contribute to the performance of the task-oriented dialogue system, which
was unclear in previous studies. We compared dialogue systems using
different slot filling modules, including the modules based on conventional
methods and the modules based on zero-shot methods. Experimental results
demonstrated that zero-shot methods generally contribute to improve the
zero-shot capacity of the task-oriented dialogue system from different aspects
when encountering unseen domains.

In conclusion, by alleviating the domain shift problems in zero-shot
slot filling, the proposed intrinsic representations were effective towards the
ultimate goal of the task-oriented dialogue system.

Keywords: Task-oriented dialogue system, zero-shot slot filling, neural
network, knowledge graph, ontology, machine learning
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Chapter 1

Introduction

1.1 Research Background

Dialogue is a fundamental communication approach for human beings. We
exchange information, emotions, and opinions through dialogues. In the
research area of computer science, developing an automatic dialogue system
that can make dialogues like humans is an enduring topic. Since the ELIZA
[1] system in the 1960s, various dialogue systems have been developed. From
rule-based systems [1, 2] to frame-based systems [3, 4], from statistical
method-based systems [5] to deep neural network-based and pre-trained-
based systems [6, 7, 8, 9].

Dialogue systems can be widely seen in daily life. Based on the primary
function, dialogue systems can be divided into two categories: the task-
oriented dialogue system and the non-task-oriented system, which is also
called the chatbot system. The task-oriented dialogue system focuses on
satisfying users’ requests to complete specific tasks, such as booking hotels
and trains, searching for requested music and movies, and showing weathers.
The chatbot system focuses on making smooth and natural dialogues to
engage users. Nowadays, task-oriented dialogue systems are widely used in
the real world, such as customer services and smart applications.

Due to the requirements of task-oriented dialogue systems in real-world
business, building task-oriented dialogue systems has become a hot topic
in industry and research areas [10]. In the task-oriented dialogue system,
the pipeline structure is a popular approach. A pipeline system generally
consists of multiple modules, each module has its own function on handling
dialogues. Besides pipeline systems, the end-to-end system [13, 69] that aims
to generate responses from the input utterances directly has also attracted
much attention to streamline the system process. So far, the pipeline system
was considered better performance than end-to-end systems [14]. Recently, a
fully end-to-end system was shown as high performance as the pipeline system
[13], although it was in a different evaluation setting to [14]. Accordingly,
pipeline systems and end-to-end systems have their advantages on handling

1



Figure 1.1: The structure of the task-oriented dialogue system

different situations. Nonetheless, the pipeline system has an advantage
that the end-to-end system has not, that is each module of the pipeline
system can be separately analyzed and studied. This makes the pipeline
system more suitable on researching specific problems. The advantage of the
pipeline system also makes the system more reliable in the industry area.
For analyzing and solving problems that will be decribed later, our research
focuses on the pipeline system.

Generally, the pipeline task-oriented dialogue system consisted of four
modules. Figure 1.1 shows the modules and the system’s interaction process
with users. When the user gives an utterance to the system, the natural
language understanding (NLU) extracts the intended components by the
slot filling module and recognizes the user’s intention by the intention
detection module. The intended components are the basis for subsequential
modules since those components carry the contents and requests of the user’s
utterance. After the NLU, the dialogue state tracking (DST) module receives
the semantic components and updates the current dialogue states. Those
dialogue states record the information about the task from the beginning of
the dialogue. Next, the dialogue policy (DP) module select response actions
based on the current dialogue states. Finally, the natural language generation
(NLG) module generates the response to the user.

With the extension and development of applications, a task-oriented dia-
logue system is required to handle increasing scenes and to be generalizable to
deal with diverse domains. The domain here indicates a specific topic or task,
such as booking hotels, asking weather, and setting up services. According
to these requirements, researchers pointed out one of the ultimate goals
of the task-oriented dialogue system: that is to build a domain-adaptable
system that can be adapted to any given domain without training instances
[10], so-called zero-shot domain adaptation. Towards this ultimate goal, the
task-oriented dialogue system is required to be zero-shot adaptable to new
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domains, which means a system must handle unseen classes, such as unseen
slots in new domains.

As described above, in the task-oriented dialogue system, slot filling
extracts the intended components from given utterances. The correctness
of those components influences the accuracy of the subsequential processes.
Therefore, whether the slot filling module could deal well with the slots in
new domains determines the system’s performance when extending to new
domains. Accordingly, the zero-shot capacity of slot filling influences the
zero-shot capacity of the task-oriented dialogue system a lot. Improving the
zero-shot domain adaptation capacity for slot filling is an important task
towards the ultimate goal of the task-oriented dialogue system.

In slot filling, a slot is usually a predefined unit for describing a specific
semantic meaning, topic, or category of an intended component in a specific
domain. The intended component that belongs to a specific slot is generally
called the value of the slot. For example, in the domain of booking hotels,
the slot ‘stay people’ can be predefined for describing the number of people
that want to stay. The values of ‘stay people’ could include ‘1’and ‘2.’ The
slots with the same name can express different meanings in different domains.
For example, the slot ‘object name’ describes book names in the domain of
rating books, while this slot describes movie names in the domain of searching
creative works.

As the mission of slot filling is to extract the intended components from
the user’s utterances and fill the components into specific slots, slot filling is
usually realized as a sequence tagging task. Specifically, slot filling aims to
tag each token in the given utterance to indicate two components: the slot
entity and the slot type. The slot entity is an entity that belongs to a slot,
which is usually consisted of several tokens. The slot entity is equivalent to
the slot value in describing a specific entity that belonging to a slot. But the
slot entity is usually used in the context that identifying the entity, the slot
value is usually used in the context of describing the relationship between the
slot and the value. The slot type is the specific type that the slot entity is
belonging to, which is usually described by the slot name. The slot entity is
usually indicated by the inner-outer-beginning (IOB) tags. The I and B tags
indicate that the corresponding token is the inner or the beginning of a slot;
the O tag means that the corresponding token is out of any slot. The slot
type is usually indicated by the slot type (slot name) tag. In conventional
slot filling approaches, the IOB tag and the slot type tag was usually used
in combination of IOB-slot type tags to indicate the slot entity and the slot
type for each token. Figure 1.2 shows an example of slot filling using the
IOB-slot tagging system. As seen in the figure, for the given utterance “Will
it be windy at 4 pm in NY?” the slot filling module tags windy, 4 pm,
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Figure 1.2: Example of IOB-slot type tagging results by slot filling

and NY as B-condition description, B-time range, I-time range, and B-state,
respectively. These tags indicate that the windy, 4 pm, and NY are slot
entities and belong to the slot types of ‘condition description’, ‘time range,’
and ‘state,’ respectively. The slot filling module tags other tokens as O, which
means other tokens are out of any slot. As a result, the slot filling module
extract ‘condition description: windy,’ ‘time range: 4 pm’, and ‘state: NY’
as the intended components and convey those components to subsequential
modules.

Towards the ultimate goal of the task-oriented dialogue system, the slot
filling module will encounter unseen slots that were not appeared in training
and the seen slots with different explanations when the domain shifts from
one to another. Moreover, the context environments in new domains may
change much than in training domains. However, conventional slot filling
methods are unsuitable for those problems. The main limitation is that
conventional methods cannot handle unseen slot classes without modifying
the parameters of the classification layer, so they fail to deal with unseen
domains.

Zero-shot slot filling was proposed to deal with unseen slots in new
domains. Zero-shot slot filling aims to train a model on source domains
and directly adapt the model on target domains without training instances
of target domains. The domain adaptation relies on the implicit similarities
between domains. These similarities can be reflected on many aspects, such
as slots and contexts. To handle any given domain containing different slots,
zero-shot slot filling methods generally predict slot entities and slot types
separately to avoid retraining the model for unseen slots. Specifically, two
approaches were used to realize zero-shot slot filling, the one-stage approaches
and the two-stage pipeline approach. The one-stage approach predicted slot
entities for each given slot type directly. The two-stage approach generally
used two stages by predicting slot entities in stage one and predict slot types
for each slot entity in stage two.
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1.2 Research Motivation

Zero-shot slot filling is a challenging task so far since no training instances of
new domains are given. No training instances leads to the situation that new
domains are difficult to be handled by the knowledge learned in training. To
date, previous studies on zero-shot slot filling mainly focused on developing
new models or algorithms on utilizing the similarities between domains [19,
20, 21] and improving the predictions of slot entity [22] and unseen slots [23].
However, the improvements so far were limited. The main reason was that
previous studies mainly relied on the domain similarities based on explicit
information, such as similar utterances or topics. Such explicit information
is sensitive to domain shift problems, since when domain shift from one to
another, the explicit information may change significantly due to the topic
changes in different domains. Domain shift problems influence the model
performance a lot from multiple aspects, we summarize three main points
below. The first two points are from the view of slots, the third point is from
the view of context.

1. The first aspect is the unseen slots in new domains. Unseen slots are
the slots that did not appear in source domains, so the knowledge about
unseen slots were not learned in training. Although previous studies could
deal with unseen slots to some extent when the unseen slots describe similar
semantic topics to training slots, most unseen slots in practical scenarios
are semantically dissimilar that are unrelated to training slots [86, 88, 89].
Previous methods could not work well for those unseen slots since they are
difficult to be handled by the knowledge learned in the source domains. This
is the most challenging problem in zero-shot slot filling and few studies [23]
paid attention to this problem.

2. The second aspect is the differently explained seen slots. The
differently explained seen slots are the seen slots with different explanations
in new domains, such as the slot ‘object name’described in the previous
section. It is also difficult to treat these slots by the knowledge learned in
training. Thus, this problem influences the model performance. However,
this problem was not attracted much attention in previous studies.

3. The third aspect is the different context distributions in new domains.
The contexts in target domains generally differ from the source domains
since different domains describe different topics and scenes. This is a general
problem in many research areas facing domain adaptations [15, 16, 17, 18].
The context differences have a general influence on the model performance,
which degrade the accuracies of the predictions for both slot entity and slot
types.
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The overall objective of our research is to mine the intrinsic representa-
tions for slots and their values to address domain shift problems described
above. The intrinsic representations in this research are the representations
that describe intrinsic characteristics of slots and values. Generally, as the
intrinsic characteristics of an object could be stable, whatever its specific
appearance is. The intrinsic characteristics of slots and values could be
expected to be common across domains, thus providing stable domain
similarities besides explicit information. Accordingly, we expect to use
intrinsic representations to provide transferable information across domains
to alleviate domain shift problems.

As the intrinsic characteristics can be reflected in many aspects, such
as commonsense knowledge or dense representations, we explore the rep-
resentations from multiple aspects separately. Then this research utilizes
the intrinsic representations in zero-shot slot filling to alleviate domain shift
problems. Furthermore, this research investigates whether the improvements
in zero-shot slot filling contribute to the zero-shot capacity of the task-
oriented dialogue system. By alleviating domain shift problems in zero-shot
slot filling and improving the dialogue system in dealing with unseen domains,
our research could be expected to improve the dialogue system towards the
ultimate goal of the task-oriented dialogue system.

1.3 Research Contributions

This research aims to mine intrinsic representations that describe the intrinsic
characteristics of slots and their slot values to address the domain shift
problems in zero-shot slot filling, and further improves the zero-shot capacity
of the task-oriented dialogue system towards the ultimate goal of the task-
oriented dialogue system. We introduce our contributions on general and
specific levels:

On the general level, this research found that the intrinsic characteristics
are effective on providing transferable information across domains for allevi-
ating domain shift problems. Accordingly, this research gives a suggestion
that exploring intrinsic characteristics within objects could benefit to domain
adaptation tasks that facing domain shift problems.

On the specific level, this research explored the intrinsic representations
from three aspects separately for zero-shot slot filling, including the common-
sense knowledge, dense representation, and the ontology in dialogue systems:

We proposed the inference relation paths (IRPs) from the aspect of
commonsense knowledge to tackle the domain shift problem 1, semantically
dissimilar unseen slots. Specifically, we mined this representation from the
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knowledge graph. By a statistical analysis, we found that the IRP implicitly
carried the intrinsic relationships between slots and values based on the
knowledge graph and was robust across domains. Then we constructed a
model to utilize the IRPs in zero-shot slot filling. The experiments and
analysis showed that using IRPs improved zero-shot slot filling on unseen
domains by alleviating the domain shift problems, especially on semantically
dissimilar unseen slots.

We proposed the multi-relation-based representation from the aspect of
dense representation to deal with the domain shift problem 3, different
context distribution. Specifically, we mined this representation for slot entity
predictions in the two-stage approach to deal with the context corresponding
to the domain shift problem 1 unseen slots and the domain shift problem 2
differently explained seen slots. Since slot entity prediction is the first stage
of the two-stage approach, alleviating the domain shift problem on slot entity
prediction is the premise of improving overall zero-shot slot filling. The multi-
relation-based representation describes the relationships between slot entities
and slot types, meanwhile considering the relationships between slot entities
and various context environments. Accordingly, the multi-relation-based
representation describes the intrinsic characteristic of slot entities among
different slots and contexts. Therefore, the proposed representation was
a high generalization capacity for slot entity predictions on a diversity of
contexts in different domains. We constructed a model to utilize the multi-
relation-based representations in zero-shot slot filling. The experiments and
analysis showed that the proposed representation alleviated the domain shift
problem in the slot entity prediction compared to previous methods.

We proposed the ontology-based representation from the aspect of the
ontology in dialogue systems to deal with the domain shift problem 1 unseen
slots and problem 2 differently explained seen slots. Specifically, we mined
this representation for slot type predictions in the two-stage approach to deal
with domain shift problems. The ontology-based representation describes the
intrinsic relationships between slots and values based on the ontology knowl-
edge base. We assume the ontology is fully-defined for both seen and unseen
domains. When a domain changes from one to another, the relationships
described in the ontology will not change. Therefore, the ontology-based
representation is robust to the domain shift problem and effectively fills the
knowledge gap of new domains in zero-shot slot filling. We constructed a
model to utilize the ontology-based representation in zero-shot slot filling
and showed significant improvement by alleviating the domain shift problems
on the slot type prediction. We further constructed a model to utilize the
multi-relation-based representation for the slot entity prediction with the
ontology-based representation for the slot type prediction to compensate the
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advantages of the two representations and further alleviated domain shift
problems in zero-shot slot filling.

Finally, after mining intrinsic representations, this research explored
whether the improvements in zero-shot slot filling contribute to the zero-shot
capacity of the task-oriented dialogue system towards the ultimate goal of the
task-oriented dialogue system. To do so, we employed and compared dialogue
systems using different slot filling modules. The investigation results showed
that alleviating domain shift problems in zero-shot slot filling generally
contributes to improve the zero-shot capacity of the dialogue system when
encountering unseen domains.

1.4 The organization of the dissertation

This dissertation is comprised of seven chapters. Figure 1.3 shows the
organization of this dissertation. After this Chapter 1 of the introduction,
the contents of Chapter 2 to Chapter 7 are briefly described as follows:

Chapter 2 reviewed the lectures on dialogue systems and zero-shot slot
filling. This chapter first briefly summarized the development of dialogue
systems, focusing on task-oriented dialogue systems to introduce the cur-
rent stage of each module in the system. Then this chapter focused on
the methods of zero-shot slot filling to give a specific background to this
dissertation. After that, this chapter also introduced widely used datasets,
evaluation process in zero-shot slot filling, and the current states of zero-shot
slot filling.

Chapter 3 described the inference relation path (IRP). This chapter first
presented the motivation and introduced what the IRP is and how the IRP
could be expected to be robust across domains for zero-shot slot filling. Then,
this chapter described the analysis of IRPs for various slots and their values
in a large-scale dataset, the Snips dataset. The analysis showed that the IRP
carries intrinsic information about slots and their values across domains for
zero-shot slot filling. The next section of the chapter described the model
constructions for utilizing IRPs in zero-shot slot filling. Then, this chapter
described the experiments to evaluate the effectiveness of IRPs compared
to previous strong baselines. The final section analyzed the results of the
experiments.

Chapter 4 described the multi-relation-based representation. The first
section of the chapter described the motivation for mining the multi-relation-
based representation. The second section gave the representation definition
and showed the advantages compared to the slot entity representations in
previous studies. The following section introduced the model structure of
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utilizing the multi-relation-based representation. The final section described
the experiments and analyzed the results to show the effectiveness of the
proposed representation.

Chapter 5 described the ontology-based representation. The first section
of the chapter described the motivation for mining the ontology-based
representation. The second section introduced two kinds of ontology-based
representation. The following two sections described the preliminary exper-
iments to choose a more effective ontology-based representation, including
the model constructions for utilizing two kinds of representation and the
experiments. After that, this chapter introduced the model structure com-
bining the use of multi-relation-based representation and the better ontology-
based representation for zero-shot slot filling. The final section described the
experiments and the result analysis.

Chapter 6 described the investigation of whether the improvement of
zero-shot slot filling by the proposed intrinsic representations contributes to
the task-oriented dialogue system when encountering unseen domains. This
chapter first introduced the motivation and the building of the task-oriented
dialogue system. Then, this chapter described the experiment settings, in-
cluding the experiment process, comparison methods, and evaluation metrics.
The following sections described the results and analysis.

Chapter 7 summarized the dissertation and gave the conclusion of this
research.
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Figure 1.3: Orgnization of the dissertation
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Chapter 2

Literature review

2.1 Dialogue system

A dialogue system is a computer system intended to converse with humans.
Building a dialogue system that can communicate smoothly and naturally
with humans is an enduring topic in artificial intelligence. In this section,
we first reviewed the development of the dialogue system so far. Then, we
focused on describing the present states and limitations of the widely used
dialogue system, the task-oriented dialogue system.

2.1.1 The development of dialogue systems

To build a dialogue system is to make the computer understand the semantics
of human languages. This has been an enduring task since the first boom
of artificial intelligence from the 1960s. The first dialogue system ELIZA [1]
was proposed as a medical care assistant. ELIZA is a rule-based system
that converts the input utterance into a response by changing the word
orders or making questions based on the input. ELIZA made dialogues
with humans smoothly in the experiment, laying the foundation for dialogue
systems. After that, the frame-based dialogue system [3, 4, 24], such as
the GUS system [3]. GUS was proposed to help people complete tasks.
GUS could understand semantic contents in the dialogue by parsing with
a pre-defined set of frames representing specific semantic meanings. In the
early 1990s, TOSBURG [24] was proposed as a keyword detection system
in restaurant ordering scenes. TOSBURG focused on detecting the specific
semantic components (keywords) to identify the customers’ order and become
more flexible than the early frame-based system to handle spoken languages.
Then, in the early 21st century, with the development of statistical methods,
the HMM-based system [5] was proposed for identifying semantic components
more accurately. Due to increasing both computational powers by GPU
hardware and available large-scale data, deep neural networks-based (DNN-
based) dialogue systems [6, 7, 25, 26, 27] were proposed to improve the
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dialogue systems for completing tasks and chatting. Such as the sequence-to-
sequence dialogue generation systems [7], language understanding based on
contextual encoding [25, 26], and attention mechanism [27, 28]. Recently, the
pre-trained paradigm further improved the dialogue system on understanding
users’ requests for completing tasks and communicating with users more
naturally in chatting [9, 28, 29, 30, 41]. Besides just generating texts,
incorporating commonsense knowledge [31, 32, 33] and making dialogues
reflecting personalized information [34, 35, 36, 37] have attracted more
attention in recent years.

Nowadays, building task-oriented dialogue systems has become a hot
topic in research and industry areas [10]. Our research focused on the task-
oriented dialogue system.

2.1.2 Task-oriented dialogue system

The task-oriented dialogue system aims to help the user complete specific
tasks by satisfying users’ requests. The pipeline system [14] are popular for
the task-oriented dialogue system so far, which usually consisted of multiple
modules. Each module has their functions on processing specific aspect for
handling dialogue, such as understanding the user’s utterance or generating
the response to the user. Recently, the end-to-end system were also attracted
much attention [13, 108]. The end-to-end system generates responses from
the input utterance directly and does not contain separate modules.

Although pipeline systems and end-to-end systems have their advantages
on handling different situations [13, 14]. Nonetheless, the pipeline system
has an advantage that the end-to-end system has not, that is each module
of the pipeline system can be separately analyzed and studied. This makes
the pipeline system more suitable on researching specific problems. The
advantage of the pipeline system also makes the system more reliable in the
industry area. For analyzing and solving problems that will be decribed later,
our research focuses on the pipeline system.

For introducing each module in the system hereafter, we show the pipeline
structure mentioned in Chapter 1 again in Figure 2.1.

From the user side, the natural language understanding (NLP) module
first processes the user’s input utterance by slot filling and intention de-
tection. Slot filling identifies the intended semantic components related to
the task completion within the utterance. As mentioned in Chapter 1, Slot
filling is usually treated as a sequence tagging task, so the sequence modeling
methods [71, 72] were general approaches for slot filling. Recently, pre-trained
models were also applied for slot filling [30, 40].

The intention detection module detects the user’s intention from the
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Figure 2.1: The task-oriented dialogue system’s structure

input utterance. There are two definitions for the user’s intentions in the
task-oriented dialogue system. One describes the intended action that the
user wants to convey through the utterance [42, 43, 44], such as informing
information from the user itself or requesting further information from the
system; The other one indicates the domain and topics the user is asking
for [45, 46, 47], such as booking flights. In general, intention detection is
treated as a classification task for given utterances. Accordingly, RNN-based
or LSTM- based methods were popular with their advantages in encoding
utterances [46, 47, 48]. Recently, similar to slot filling, pre-trained models
were employed to further improve the detection accuracy [30, 49].

After NLU, the dialogue state tracking (DST) module receives the in-
tended components and the user’s intentions to update the dialogue state.
Rule-based methods have been well-used for DST [14, 50, 51, 52], but
this kind of method needs elaborate pre-defined rules, leading to much
consumption. DST based on statistical methods was proposed to address
this problem, such as DST with condition random fields [53] and maximum
entropy model [54, 55]. Those methods were mainly presented for the
dialogue state tracking challenge (DSTC), which is still a popular challenge
for DST tasks until now. With the development of deep learning, recent
works attempted to perform the process of NLU and DST jointly to obtain
dialogue states from the input utterance directly [56, 57, 58, 59]. However,
jointed methods were shown not to be as effective as elaborated-designed
rule-based DST for the performance of the whole dialogue system [14].

After obtaining the dialogue states, the dialogue policy (DP) module
select appropriate system actions for the response. Similar to DST, rule-
based methods have been well-used for constructing a DP module [14, 60].
However, the rule-based DP is also limited by the pre-defined rules, so
extending is not easy. Reinforcement learning-based AS was proposed [61, 62]
to realize DP towards more complicated policies in the dialogue. Reinforce-
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ment learning-based methods train the DP module based on dialogue states,
user and system actions, and the situation of final goals. In reinforcement
learning-based DP, user simulators [60, 63] are generally conducted to realize
a user-system interaction without employing real users, which leads to labor
consumption. However, for the overall performance of the dialogue system,
the rule-based DP was shown to be effective compared to reinforcement
learning approaches [14]. Besides those approaches, recent studies proposed
word policies to [11, 64, 65] to jointly choose DP and generate dialogues.

Finally, the natural language generation (NLG) module generates the
response to the user. The template-based NLG method [14] is a simple and
effective approach to generate acceptable responses. However, similar to the
rule-based approaches for other modules, the template-based NLG relies on
pre-defined templates, so it is not flexible to generate responses with diverse
styles. With the development of deep learning, deep learning methods were
proposed to improve the semantical correctness and fluency of dialogues,
such as RNN-based generation [70], semantically conditioned LSTM [67],
and multi-task learning methods [68]. Recently, due to the advantages of
large-scale pre-trained models, the pre-trained models have been applied for
dialogue generation with fine-tuning, such as GPT-based dialogue generation
models [9].

After the NLG, the dialogue system finally gives the response back to the
user. With the modules introduced above, a task-oriented dialogue system
could communicate with users and help users to complete specific tasks.

2.1.3 Zero-shot methods for building domain adaptable
task-oriented dialogue system

With the development of applications and services, an existing dialogue
system is required to handle more domains describing different topics and
requests.

In the extension of the dialogue system to different domains, the domain
shift problem is the main problem since different domains have diverse
contexts and topics. A system usually hardly deals well with such differences
since the knowledge of new domains was not learned in training. Retraining
models to adapt to new domains is a typical approach to alleviate the domain
shift problem. However, as the requirements for domain extension increase,
retraining the system often is generally inefficient and time-consuming in
real-world business.

For the problem above, one of the ultimate goals of the task-oriented
dialogue system was proposed [10]. This ultimate goal is to build a system
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that is adaptable to any given domain without any training instance of
the given domain, so-called zero-shot domain adaptation. The system that
meets this goal is expected to handle any extensions of domains in practice.
Meanwhile, no retraining is required.

Towards this ultimate goal, conventional methods for modeling the mod-
ules in the system are insufficient. The main reason is that conventional
methods are hard to handle this situation: when new domains are encoun-
tered, not only the new distribution of semantic information encountered,
but new classes that need to be predicted may also be encountered. Since
these new classes were unseen in the training process, conventional methods
are unable to deal with those classes as there is no output to obtain the
predictions for the unseen classes.

Transfer learning methods [17] were general approaches to address the
domain shift problems for domain adaptation. Towards the ultimate goal
of the task-oriented dialogue system, the zero-shot paradigm from transfer
learning is suitable for handling unseen classes in new domains. Zero-shot
methods were originally proposed in the computer vision area [73, 74] and
extended to the natural language understanding area [75, 76]. The basic
idea for realizing zero-shot methods was to utilize the similarities between
the classes in source domains and the zero-shot classes in target domains
[74]. Recent methods realized zero-shot methods by designing training and
prediction strategies to avoid retraining [19, 21]. These methods train the
model on source domains and directly adapt the model on zero-shot target
domains. The domain adaptations are relied on the similarities between
domains rather than between classes. The similarities between domains can
be reflected on many aspects, such as utterances, vocabularies, and classes.
The following reviewed lectures are mainly based on the latter paradigm.

In the task-oriented dialogue system, since the performance of each
module influence the whole system’s performance, each module’s zero-shot
capacity is related to the system’s performance in dealing with domain shift
problems. Thus, previous studies for zero-shot methods on each module have
been conducted in recent years.

For the slot filling module in NLU, zero-shot slot filling [19, 22] was
proposed to deal with unseen slot classes by predicting slot entities and slot
types separately. Detailed reviews of zero-shot slot filling will be introduced
in the next section.

For the intention detection module in NLU, previous studies were con-
ducted based on the intention definitions described in Section 2.1.1. For the
intention that indicates the domain and topics the user is asking for, the
intention is basically equivalent to the domain. Accordingly, the intention
changes when the system is extended to new domains. Therefore, the zero-
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shot intention detection for such an intention definition is usually handling
zero-shot domain detection. Zero-shot domain detection aims to identify the
domain of the user’s utterance. Previous studies used the capsule network to
obtain the probabilities of the unseen domains considering the relationships
between classes and context situations [77]. The capsule network is a
structure that could describe classes considering not only the representation
of the classes themselves but also multiple components [78]. Further works
using the capsule network improved the zero-shot domain detection by not
only identifying the correct unseen domains but also detecting the correct
domain from both training domains and unseen domains [79]. For the
intention that describes the user’s intended action, the intention is generally
stable across domains since the actions of users and systems are generally
described in a limited and small set [42, 43]. Therefore, zero-shot intention
detection for such an intention definition was not attracted much attention.

For the DST module, the dialogue states are dynamic in different do-
mains. Previous studies handled dynamic dialogue states by merging NLU
and DST processes and used similarity-based methods to obtain dialogue
states directly from the given utterance [12, 59, 91]. The combining of NLU
and DST processes means that previous methods need to handle not only the
unseen dialogue states in new domains but also face the domain shift problem
caused by the unseen slots. Therefore, the zero-shot setting for DST is more
demanding, so the accuracy was limited.

For the DP and NLG modules, although they face domain shit problems
when the dialogue system encounters new domains, zero-shot settings are not
urgently required. This is because the policies can be described in a universal
and finite set across different domains, so the conventional DP approach still
works in the zero-shot scenario. While the NLG module mainly faces out-
of-vocabulary (OOV) words and dialogue style changes. The OOV problem
has been addressed much in the dialogue generation research [80, 81, 82].
The dialogue style changes can be alleviated by pre-defined templates, so the
conventional NLG approaches could also work in zero-shot scenarios.

According to previous studies introduced above, towards the ultimate
goal of the task-oriented dialogue system introduced above, the slot filling
module and the DST module are more required to be able to handle zero-
shot scenarios. Based on the result in previous studies [14] that a complete
pipeline task-oriented dialogue system performed significantly better than
a dialogue system with a merged NLU + DST module, and with the
consideration that the outputs of slot filling are the basis of subsequential
process, the zero-shot capacity of slot filling is considered to determine
the system’s zero-shot capacity to a large extent. Therefore, our research
concentrates on zero-shot slot filling, focusing on alleviating domain shift
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problems towards the ultimate goal of the task-oriented dialogue system.

2.2 Zero-shot slot filling

Zero-shot slot filling is to train a model on source domains and adapt the
model to target domains directly without any training instances. Specifically,
the model can only use the instances and slot sets in source domains in the
training process. The model cannot use any instance from target domains in
the training process, no matter whether the instances belong to the unseen
slots that only appear in target domains or the seen slots that appear in
source and target domains. In the test process, the model performs zero-
shot slot filling based on the premise that the slot sets of target domains are
known. Moreover, the model can use the knowledge of the slots in target do-
mains, such as the values of slots used in previous work [21]. As mentioned in
the previous section, zero-shot slot filling methods were designed to correlate
source domains and target domains rather than directly correlating classes.
Specifically, zero-shot slot filling methods use implicit similarities between
source and target domains to provide transferable information to handle
zero-shot domain adaptation. The implicit similarities can be reflected in
multiple aspects, including slot types and context situations.

To realize zero-shot slot filling, two popular approaches were proposed:
the one-stage method [19, 20, 21] and the two-stage pipeline method [22, 23,
83]. Recently, with the development of pre-trained models, pre-trained-based
methods were also proposed [84, 85]. However, the pre-trained models are
in different paradigms with typical zero-shot slot filling approaches because
they may have learned knowledge about new domains and slots in the pre-
training process. Our research aims to explore intrinsic representations to
alleviate domain shift problems under the typical setting of zero-shot slot
filling described above, no knowledge of new domains can be learned priorly.
Moreover, if the representation in the typical setting is effective, it could be
expected to be effective for improving pre-trained models. Accordingly, the
pre-trained paradigm is an aside approach in our research.

2.2.1 One-stage approach

The one-stage approach was first proposed to handle unseen slot classes
for zero-shot slot filling [19]. One-stage methods aim to identify the slot
entities for each slot type in the given domain by considering the context
information and slot type information. The context information can be
obtained by encoding the utterance. The slot type information is usually
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Figure 2.2: Basic process of the one-stage approach

obtained from the representation of slot descriptions. Here a slot description
indicates the text description of a slot. The slot name is generally used as
the slot description [19, 21]. While the sentence description was also used in
previous studies [20] but the sentence description is not universal for different
datasets and different human-defining.

Figure 2.2 explains the basic idea of the one-stage methods. As seen in
the figure, for the given utterance ’Will it be windy at 4 pm in NY’, an one-
stage model identifies corresponding slot entities for each slot type in the
given domain from the utterance. For instance, the model identifies ’windy’
for the slot ’condition description,’ ’4 pm’ for the slot ’time range,’ and ’NY’
for the slot ’state.’ While the model does not predict slot entities for other
possible slots in the domain. Finally, the model merges the predictions for
all possible slot types and outputs the results. In this process, an one-stage
model only classifies the IOB tags to indicate the chunk of slot entities,
so the model could still predict the slot entity chunks for the unseen slots
without modifying the output layer for IOB tags even if unseen slots were
encountered.

Figure 2.3 shows a representative one-stage method, the concept tagger
(CT) [19]. In the model process, an encoder first encodes the input utterance
into context representation. Then the model concatenates the given slot’s
representation with each token’s context representation. Finally, another
encoder with the IOB classification layer is used to encode the combined
representation to obtain the probability for IOB tags. The IOB tags indicate
the slot entity chunk for the given slot type. After predicting IOB tags for
each given slot type, the model merges the slot type tags with corresponding
IOB tags into an IOB-slot tag sequence as the final output. CT had a simple
structure and realized zero-shot slot filling for unseen slots.

The zero-shot adaptive transfer network (ZAT) [20] was proposed to
improve the generalization capacity of the CT. ZAT employed an attention
mechanism to obtain the context-aware slot representation to improve the
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Figure 2.3: The structure of CT

generalization capacity for dealing with different context situations. ZAT
also added a CRF layer for the IOB classification to improve the sequence
modeling in predicting slot entity chunks.

To improve the model’s robustness in handling the slots in new domains
that are semantically similar to the training slots, the robust zero-shot
transfer learning with examples (RZT) [21] was proposed using slot value
examples. RZT added several slot values as example values with the
assumption that semantically similar slots share similar slot values. For
instance, the slot ’leave by’ is a slot in the training domain of booking trains,
while the slot ’depart at’ is an unseen slot in the unseen domain of booking
flights. The slots ’leave by’ and ’depart at’ are semantically similar, and
they both represent the meaning of leaving time. ’leave by’ may have slot
values such as ’12:00’ and ’13:00,’ while ’depart at’ may have slot values such
as ’14:00’ and ’15:00.’ Accordingly, the slot values are semantically similar.
RZT used slot values that could carry additional information for dealing
with unseen and semantically similar slots and improved the robustness of
zero-shot slot filling on unseen domains.

In summary, one-stage methods were proposed to handle the predictions
for unseen slots and realized zero-shot slot filling. The developments of
one-stage methods improved the generalization capacity and the accuracy
towards specific slots (i.e., semantically similar slots in the new domains).
However, one-stage methods were argued to be less capable of predicting
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Figure 2.4: Basic process of the two-stage approach

whole slot entities [22] for new domains. This is because one-stage methods
learn to predict slot entities considering the context situations for each
specific slot type, but the context environments in new domains could be
much different from that in training domains due to domain shift problems.
Moreover, in the prediction process of one-stage methods, the I and B tags
are separately predicted from utterances for one given slot type. This lead to
low interpretability of explaining the predictions for slot entities of the slot
type.

2.2.2 Two-stage approach

To address the problem that one-stage methods are less capable of predicting
whole slot entities, the two-stage pipeline approach was proposed [22, 23,
83] to predict slot entities and slot types separately. Figure 2.4 explains
the basic idea of the two-stage approach. As seen in the figure, in stage
one, a model first identifies general slot entities from the given utterance
without considering specific slots. For instance, ’windy,’ ’4 pm’, and ’NY’
are identified as slot entities in stage one. In stage two, the model uses
the algorithm without learning parameters (e.g., similarity matrix) to obtain
the slot type predictions for each slot entity. For instance, the two-stage
model predicts ’windy’ belonging to the slot ’condition description,’ the ’4
pm’ belonging to the slot ’time range,’ and the ’NY’ belonging to the slot
’state.’ Finally, the model merges slot entity predictions from stage one and
slot type predictions from stage two into an IOB-slot type sequence as the
final output.

Figure 2.5 shows a representative two-stage method, coarse-to-fine ap-
proach (Coach) [22]. In stage one, Coach used a sequence encoder-decoder
to predict IOB tags without considering the specific slot information like
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Figure 2.5: The structure of Coach

one-stage methods do. Therefore, Coach learns general slot entity patterns
among various context environments to improve the generalization capacity
of slot entity predictions. In stage two, Coach extracted the slot entities
indicated by the IOB tags and used another encoder to obtain slot entity
encoding representations. Next, Coach concatenates the representations of
all possible slot types’ slot descriptions in the given domain into a matrix.
This matrix is then multiplied with the slot entity encoding representation
to obtain similarity scores between the slot entity and each slot type. The
slot type with the highest score was chosen as the prediction. Finally, Coach
merged the predictions from stage one and stage two as the final output.

After Coach, contrastive zero-shot learning with adversarial attack
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(CZSL-adv) [83] was proposed to employ contrastive learning to improve
the learning for domain information. Prototypical contrastive learning and
label confusion (PCLC) [23] pointed out that the improvement on unseen
slots was limited and used prototype learning and label confusion to improve
the prediction for unseen slots.

In summary, the two-stage methods improved zero-shot slot filling than
one-stage methods [23], especially on unseen slots. The two-stage structure
made the zero-shot slot filling more interpretable than one-stage methods
because separate predictions of slot entities and slot types allow the model
to correlate slot types with complete slot entities rather than I or B tags.
The two-stage method has the potential to be developed by improving each
stage to improve zero-shot slot filling benefiting from the separate prediction.

2.2.3 The datasets for zero-shot slot filling

For evaluating zero-shot slot filling, previous studies conducted experiments
on multi-domain datasets.

The most widely used dataset to evaluate zero-shot slot filling is the Snips
dataset [86]. The Snips dataset is a multi-domain dataset containing seven
domains. These domains are all describing the user’s requests for smart
devices. Each domain contains about 2000 utterances of user speakers alone.
There are no system speakers in the Snips dataset. So far, two versions of the
Snips dataset are available, one version was used previous studies [22, 23],
and the other version was not. The two versions has the same domains and
slot sets. The number of utterances in each domain were similar, which were
about 2000 utterances. The difference was on the contents of the utterances.
We compared two versions and found that averagely 14% of utterances are
different among seven domains between the two versions. To distinguish the
versions, we call the version used in previous studies as the ‘Snips dataset‘
hereafter. And we call the other version as the ‘Snips2017 dataset‘ since it
was benchmarked in 2017. In our research, we used the Snips2017 dataset
in Chapter 3. Then, we used the Snips dataset in Chapter 4 and Chapter 5
to fairly compare with baselines, as the baselines in these two chapters used
the Snips dataset in their official implementations.

The MultiWOZ 2.0 dataset [42] is another large-scale multi-domain
dataset for task-oriented dialogue system tasks. This dataset contains seven
domains that describe the tasks and scenarios in daily life, such as booking
hotels and trains. The dataset contains dialogues of user-system interactions,
the utterances from both the user and system speaker were annotated with
slots and dialogue actions. The MultiWOZ 2.0 dataset has been developed in
several versions. The MultiWOZ 2.1 [87] and MultiWOZ 2.2 [107] corrected
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annotation errors in the original dataset. The latest version is MultiWOZ
2.3 [88], which added the annotations of coreference resolution to adapt the
dataset to more tasks. We use the MultiWOZ 2.3 dataset in this research.

The Schema Guided Dialogue (SGD) dataset [89] is an unprecedented
large-scale dataset for diverse tasks in the task-oriented dialogue system.
The SGD dataset contains 20 domains describing various scenarios of user-
system interactions, such as setting alarms, booking hotels, and asking for
the weather. Due to the scale of the SGD dataset, previous studies were
extended for dialogue tasks on a large scale [90]. Similar to the MultiWOZ
dataset, the SGD dataset contains dialogues from the user and the system
speakers. The utterances are annotated with slots and dialogue actions, and
the dialogues are annotated with dialogue states. We use the current version
of the SGD in this research.

For each dataset, the slots mentioned in each domain can be categorized
by how they appear in different domains: multi-domain slots are shared by
multiple domains, and single-domain slots are contained by only one domain.
For instance, in the Snips dataset, the slot ‘city’ mentioned in the Book
restaurant domain and the Get weather domain is an multi-domain slot;
while the slot ‘served dish’ only mentioned in the Book restaurant domain is
a single-domain slot.

2.2.4 Evaluation process and metrics

In evaluating zero-shot slot filling, previous studies mainly used the left-one
strategy [19, 20, 21, 22, 23]. Specifically, for a given dataset containing
n domains, one domain is set to be the zero-shot target domain, and
remaining n-1 domains were used as source domains. Then, n separate models
were trained by setting each domain as the zero-shot target domain. The
evaluations were mainly on the performance of each target domain and the
average performance among all models. We also follow this evaluation process
in this research for fair comparisons with previous studies. Accordingly, the
single-domain slots are unseen slots if the corresponding domain is set to be
the zero-shot domain since those slots appear in the zero-shot domain alone
and would not be seen in training domains. The multi-domain slots are seen
slots if one of the corresponding domains is set to be the zero-shot domain
since those slots appear in training domains.

The slot F1 score [92] is the most popular metric to evaluate the
performance of zero-shot slot filling. The slot F1 score computes the F1 score
from chunks of each slot. A chunk is a complete slot entity corresponding to
a specific slot type. For instance, ‘windy,’ ‘4 pm,’ and ‘NY’ in Figure 2.2 are
chunks corresponding to their slots.
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In the process of slot F1 score computation, true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) samples are first
counted for each slot’s chunks. For a given slot si, TPi counts the chunks that
should be predicted to si were predicted correctly; FPi counts the chunks
that should not be predicted to si were predicted as si; TNi counts the chunks
that should not be predicted to si were predicted not belong to si correctly;
FNi counts the chunks that should be predicted to si were predicted not
belong to si.

Then, the slot F1 score can be used to compute the F1 score for overall
performance and each slot’s performance. For the overall performance, the
slot F1 score can be computed as:

precision =

∑Ns

i=1 TPi∑Ns

i=1 TPi + FP+i
(2.1)

recall =

∑Ns

i=1 TPi∑Ns

i=1 TPi + FN+i
(2.2)

F1 = 2 ∗ precision ∗ recall
precision + recall

(2.3)

where Ns is the set of all slots in the slot filling results, precision and recall
are the precision and recall computed for all slots, respectively.

For the performance of a given slot si, the slot F1 score F1i can be
computed as follows:

precisioni =
TPi

TPi + FPi

(2.4)

recalli =
TPi

TPi + FNi

(2.5)

F1i = 2 ∗ precisioni ∗ recalli
precisioni + recalli

(2.6)

where precisioni and recalli are the precision and recall for slot si, respec-
tively.

Besides the slot F1 score on evaluating the performance of slot filling,
the IOB F1 score can be used to evaluate the performance of the slot entity
predictions alone. IOB F1 score computes the F1 score for chunks alone
without considering specific slot types. Similar to the process of computing
slot F1 score, TPIOB, FPIOB, TNIOB, FNIOB for the IOB F1 score are first
counted to compute the IOB F1 score. TPIOB counts the chunks that should
be a complete slot entity were correctly predicted; FPIOB counts the chunks
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that should not be a complete slot entity were predicted as a slot entity;
TNIOB counts the chunks that should not be a complete slot entity were
predicted not to be a slot entity; FNIOB counts the chunks that should be
a slot entity were predicted not to be a slot entity. Then the IOB F1 score
F1IOB could be computed as:

precisionIOB =
TPIOB

TPIOB + FPIOB

(2.7)

recallIOB =
TPIOB

TPIOB + FNIOB

(2.8)

F1IOB = 2 ∗ precisionIOB ∗ recallIOB

precisionIOB + recallIOB

(2.9)

where precisionIOB and recallIOB are the precision and recall computed
for slot entities, respectively.

2.2.5 The current states of zero-shot slot filling perfor-
mance

Next, we introduce the current states of zero-shot slot filling performances
based on evaluation process. Table 2.1 lists a domain averaged results on
the Snips dataset from the paper of Coach [22] and PCLC [23]. The results
were from the one-stage methods of CT and RZT, and two-stage methods
of Coach, and PCLC. As seen in the table, two-stage methods Coach and
PCLC generally outperformed one-stage methods CT and RZT, and PCLC
was reported to achieve the state-of-the-art performance.

However, from the official implementations of PCLC and Coach, we found
these methods have two premises on achieving the good performance. One is
that they used modified slot names as slot descriptions, which is not universal
descriptions for slots in different datasets. For instance, PCLC and Coach
used ‘owner’ as the description for the slot type ‘playlist owner’ in the Snips
dataset, which changed the semantic meaning of the original slot. In practice,
the exact slot name should be used for describing the slot to guarantee that
the slot description is universal and available in different domains. For the
previous instance, the description of the slot ‘playlist owner‘ should be the
words of ‘playlist owner.‘

The other premise is due to the version of the neural network framework,
PyTorch. The official implementations was based on old versions of PyTorch,
which were v1.3 and v1.4. Those versions allowed PCLC and Coach used an
incorrect optimization process that updated the model parameters multiple
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Table 2.1: The performance of zero-shot slot filling reported in previous
studies

Dataset CT RZT Coach PCLC
Snips 30.55 32.85 37.39 42.82

Table 2.2: The performance of zero-shot slot filling with universal slot
descriptions and correct optimization processes

Dataset CT ZAT RZT Coach PCLC
Snips 37.94 38.06 38.50 33.42 30.93
Snips2017 33.50 40.72 33.22 40.03 28.20
MultiWOZ 2.3 65.91 - 58.51 59.55 57.01
SGD 57.80 - 56.03 68.72 63.32

times based on the loss computed from the non-updated model parameters.
Specifically, in the training process, these two-stage methods obtained the
slot entity predictions’ distributions and slot type predictions’ distributions
for each slot entity. Then they computed the loss of slot entity predictions
and performed loss backward to update the model parameters of stage one.
After that, they used the distribution of pre-obtained slot type predictions
to compute the slot type predictions’ loss and updated model parameters
of stage one and stage two. However, in this updating process, stage one’s
parameters should not be updated again by the slot type predictions’ loss
since the pre-obtained slot type predictions were not obtained from the
updated parameters of stage one. Moreover, the loss of slot type predictions
should only correspond to stage two since the loss was computed by the slot
type predictions’ distributions alone. To correct the optimization process,
the slot type predictions’ distributions should be detached from stage one
at first. Then the loss could be computed for stage two to update model
parameters.

To reduce the influence of the premises and to clarify the current
states of zero-shot slot filling, we reproduced PCLC, Coach, CT, and RZT
based on the official implementations and our own implementations. The
evaluation setting and metrics are based on the process described in the
previous subsection. We reproduced previous studies not only on the Snips
datasets, but also on Snips2017, MultiWOZ 2.3, and SGD datasets to make
a comprehensive clarification. Moreover, we reproduced ZAT on Snips and
Snips2017 datasets although previous studies did not compared with ZAT.
We did not reproduced ZAT on MultiWOZ 2.3 and SGD datasets since ZAT
have an unacceptable time-consuming on the two datasets. This inefficiency
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Table 2.3: The best method on each dataset
Dataset Best Method
Snips RZT
Snips2017 ZAT
MultiWOZ 2.3 CT
SGD Coach

problem of ZAT can be considered to be the reason that previous studies did
not compared with it.

Table 2.2 lists the domain average performance of different methods on
each dataset. The bold numbers indicate the best results on each dataset.
As seen in the table, the PCLC and Coach degraded their performance
with universal slot descriptions and corrected optimization processes on the
Snips dataset. In contrast, one-stage methods CT and RZT showed better
performances than two-stage methods on the Snips dataset. By comparing
the performances on each dataset, we found that no one method had a leading
performance on all dataset, each model had their advantages on different
datasets. Accordingly, the two-stage methods are not always better than
one-stage methods as shown in previous studies, constructing a zero-shot
slot filling model should choose the framework according to the situations.

Based on the results in Table 2.2, we summarize the best method for
each dataset in Table 2.3. With the clarifications on the best methods
for each dataset, we can evaluate whether our proposed methods generally
well-performed or not in subsequential chapters by comparing with the best
methods .

2.3 Problems in zero-shot slot filling

The ideal performance of zero-shot slot filling on unseen domains should be
as good as conventional methods trained on those domains. However, the
performance of zero-shot slot filling was limited and still not comparable to
conventional slot filling methods on specific domains. For instance, the best
zero-shot method RZT achieved 38.50 of slot F1 score on the Snips dataset,
while a well-performed conventional method BERT achieved about 97.00% of
slot F1 score on the Snips dataset [49]. As described in Chapter 1, the main
reason is that the previous studies mainly relied on the similarities based on
explicit information, such as similar topics and contexts. Such information
is sensitive to domain shift problems since when the domain changes to new
domains, the text and slots also change to make the explicit information much
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different from training domains. The intrinsic characteristics of slots and
values can be expected to provide transferable information besides explicit
information. Although some representations in previous studies [22] actually
captured the intrinsic characteristic of values, they did not focus on utilizing
intrinsic characteristics on alleviating domain shift problems much so the
improvements were not high. In this research, we focus on mining intrinsic
representations that describe the intrinsic characteristics of slots and values
to provide effective transferable information across domains to alleviate
domain shift problems of unseen slots, differently seen slots, and different
context distributions.
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Chapter 3

Inference relation path

3.1 Objective

As described in previous chapters, previous studies on zero-shot slot filling
mainly relied on explicit information and suffered from domain shift prob-
lems. In the three domain shift problems summarized in Chapter 1, the
problem of unseen slots is the most challenging problem. If the descriptions
of unseen slots are semantically similar to that of some training slots, previous
methods could work. However, due to the domain shift problem, previous
methods were hard to handle the unseen slots that are not semantically
similar to training slots. In this chapter, we propose the inference relation
path that describe the intrinsic relationships between slots and their values
via the knowledge graph to address the domain shift problem of semantically
dissimilar unseen slots.

3.2 Inference relation path

For the problem that conventional slot descriptions were ineffective in pro-
viding transferable information for handling semantically dissimilar slots in
new domains, we move our sights to how people estimate objects with less
semantic similarity. In practice, people often use many implicit semantic
relations as estimation cues, such as inferring the situation of the fish from
the kind of fishing rod the professional is using. The rob is an implicit
semantic relation carrier, implying the information about the fish’s situation.
Inspired by this, we focus on finding a semantic relation carrier that can
provide the semantic relation information between slots and their values.
We try to utilize such a semantic relation carrier to estimate unseen slots’
values in zero-shot slot filling. Since human inferences are often utilized for
obtaining semantic relations between the intent and target, analogically, the
inference paths between slots and values may have implicit semantic relations.
The knowledge of entities and their relations is necessary to describe the
inference between slots and values. Therefore, we use the knowledge graph
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Figure 3.1: Example of nodes and edges in the knowledge graph

that describes the entity knowledge and the relations of entities to mine
intrinsic representations of slots.

In the knowledge graph, entities are described as nodes, and the edges
connecting entity nodes represent the relations between entities. For ex-
ample, Figure 3.1 illustrates a part of the knowledge graph Wikidata to
show the entity nodes and relation edges. As seen in the figure, ’JAIST’,
’university’, and ’academic institution’ are the entities described as nodes
in the knowledge graph. ’Instance of,’ ’subclass of,’ and ’different from’
are the relations between entities. The relations are described as edges in
the knowledge graph. We can infer from one entity node to another by a
specific path of relation edges. The entities and relations within an inferring
process consist of an inference path. For instance, we can infer from the
entity ’JAIST’ to the entity ’educational institution’ with the inference path
of [JAIST, instance of, university, subclass of, higher education institution,
subclass of, educational institution].

In our research, we aim to find a semantic relation carrier that can
correlate the semantically dissimilar slots. For this purpose, we focused on
relations rather than entities since entities were usually used for providing
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Figure 3.2: Examples of inference paths from values to corresponding slots
in the Snips2017 dataset

explicit semantic information [93, 94]. Such explicit information hardly
provides transferable information to handle semantically dissimilar unseen
slots. On the other hand, the relations are in a finite set pre-defined in
the knowledge graph. We speculated that the relations in different inference
paths could be similar to some extent.

To preliminarily verify the speculation, we first tried to extract several
inference paths between slots and their values from the Snips2017 dataset via
a large-scale knowledge graph Wikidata. Since the Snips2017 dataset does
not contain the knowledge base describing the slots and all their values (i.e.,
ontology), we first extracted several slots and corresponding values for each
slot based on annotated utterances. After that, we extracted the inference
path from the value to the slot via Wikidata. To do so, we first identified
the entity nodes of the value and the slot via Wikidata, respectively. Next,
we performed the route search from both the value node and the slot node.
Then, we obtain the shortest inference path from the value node to the slot
node by finding the intersection of the inference paths that began from the
two nodes. We set such a shortest inference path as the inference path from
the value to the slot.

Figure 3.2 shows two examples of the inference paths from values to the
corresponding slots. One is from the value ‘Pelham Bay Park’ to the slot
‘POI.’ The inference path is [Pelham Bay Park, instance of, park, subclass
of, geographic location, subclass of, POI]. The other one is from the value
‘Guernsey’ to the slot ‘country.’ The inference path is [Guernsey, instance of,
state, subclass of, political territorial entity, subclass of, country]. As seen in
this example, the inference paths are different. However, if we focus on the
relations alone, the inference relation paths (IRPs) are [instance of, subclass
of, subclass of] and [instance of, subclass of, subclass of], which are the same.
Therefore, although the entity nodes in different inference paths are different,
the IRPs within the inference paths could be similar. Moreover, the values
‘Pelham Bay Park’ and ‘Guernsey’ represent place names. Accordingly,
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a certain IRP may implicitly correspond to certain semantic information,
correlating slots to certain values.

3.3 Statistical analysis

To testify to the generality of an IRP carrying certain semantic information
implicitly, we analyzed a number of IRPs between the slots and their values
in the Snips2017 dataset. The Snips2017 dataset contains seven domains and
53 slots in total (We treat same-named slots in different domains as different
slots). We extracted all slots and their values from the annotated utterances
to build an ontology that contains all slots and their values. Since the
numbers of each slot’s values are much different (from one to over hundreds),
we then randomly selected up to 30 values for each slot to balance the values
of each slot for extracting IRPs. As a result, we obtained a knowledge base
containing all 53 slots, each with up to 30 values.

Then we identified the entity nodes of the 53 slots and their values
via Wikidata to obtain the IRPs between slots and their values. In the
identification process, some slots could not be identified as entity nodes
directly. We explored the entity in the knowledge graph with similar semantic
meanings to the slots and then used the new-found entities as such slots’
entity nodes to extract IRPs in subsequent processing. For instance, the slot
‘served dish’ could not be identified as an entity node directly. We found
that the entity ‘dish’ describes a similar semantic meaning to the slot ‘served
dish,’ so we use the entity ‘dish’ for extracting IRPs for the slot ‘served dish.’

Next, depending on whether the slot’s values could be identified as entity
nodes or not, we separated the IRPs into two groups: (1) If at least one
value of a slot could be identified as entity nodes in Wikidata, we extract the
IRPs by the process described in the previous section; (2) For some slots,
no corresponding values could be identified as entity nodes in Wikidata. For
instance, the values of the slot ‘playlist owner’ are all possessive pronouns
that could not be identified as entity nodes. We set the IRP as [instance of]
between such slots and their values. After this processing, the slots in Group
(1) had multiple kinds of IRPs corresponding to their values., and the slots
in Group (2) had only one kind of IRP, which is [instance of]. Among the
53 slots in the Snips2017 dataset, 46 slots belonged to Group (1), and seven
slots belonged to Group (2).

For analyzing the extracted IRPs, we converted the values corresponding
to each IRP into vector representations via word embeddings. Then we
clarified the distributions of the IRP-corresponded values in the semantic
space. Figure 3.3 shows an example of IRP-corresponded value distributions.
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Figure 3.3: Visualization example of value distributions in semantic space
corresponding to four IRPs

To explain the distributions intuitively, we reduce their dimensions using
the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [95] to
obtain the distributions in the 2-D semantic space. To explain the value
distributions in the semantic space clearly, we selected four representative
IRPs, referred to as IRP 0 to IRP 3. Specifically, IRP 0 is [occupation,
instance of, has instance]; path 1 is [instance of, subclass of]; path 2 is
[instance of, has subclass]; path 3 is [instance of, subclass of, subclass of,
has subclass]. Accordingly, IRP 1 and IRP 2 are similar since they have
only one different step, while other steps are identical. IRP 0 and IRP 3
differ from each other and are also different from IRP 1 & IRP 2. Therefore,
those IRPs could be treated as three groups: IRP 0, IRP 1 & IRP 2, and
IRP 3. Figure 3.3 illustrates the value distribution corresponding to the four
IRPs. As seen in the figure, the values corresponding to IRP 0, IRP 3, and
IRP 1 & 2 are distributed separately as three clusters in the semantic space,
where the values corresponding to IRP 1 and IRP 2 are overlapped heavily.
The analysis of IRP-corresponded value distribution confirmed that the
IRPs carry implicit semantic information, correlating the slot and its values
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with certain semantic meanings. Therefore, the IRPs could be regarded as
semantic cues that implicitly carry semantic relation information of slots
and their values. This kind of relation information describes the intrinsic
characteristics of slots and the relationships between slots and their values
and are rarely related to domains and contexts. If we treat the IRPs as a
property of a slot, similar to estimating the fish’s situation by the rob that
the professional fisher is using, we can estimate the values based on the slot’s
IRPs. Therefore, the IRP can provide transferable information for estimating
the values of unseen slots.

Furthermore, we analyzed the IRPs and found that the IRPs of each slot
can be grouped into several patterns for efficient use in practice. For instance,
the slot ‘artist’ has 30 corresponding values due to the process above. Among
them, the IRPs from 28 values to the slot are the same, which is [occupation,
instance of, has instance]. The IRPs from the other two values to the slot
are in another pattern, which is [instance of, subclass of, subclass of, has
part]. Accordingly, the IRPs of the slot ‘artist’ could be grouped into two
IRP patterns.

Next, we investigated whether or not similar IRP patterns exist in
different domains to confirm whether the IRP could be used for providing
transferable information in practice. For this purpose, we count the number
of the slots’ IRP patterns in one domain that are similar to those in other
domains. Table 3.1 shows the counted results. Note that the numbers in
the table do not reflect the amount of transferable information provided
by IRP patterns since the effectiveness of transferable information is task-
dependent. In Table 3.1, SD and MD are the number of counted IRPs of
the single-domain and multi-domain slots, respectively. As seen in the table,
numerous similar IRP patterns exist in different domains for SD slots and
MD slots. Therefore, IRPs could be used to provide transferable information
on tackling the domain shift problem for unseen slots in practice.

Table 3.1: The same IRP patterns among slots in all domains in the
Snips2017 dataset

Domains SD slot MD slot
AddToPlaylist 5 7
BookRestaurant 28 17
GetWeather 8 10
PlayMusic 19 11
RateBook 4 7
SearchCreativeWork 0 14
SearchScreeningEvent 5 7
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3.4 Experiments

3.4.1 Graph embeddings

Before introducing the model structure, to utilize IRPs in zero-shot slot
filling, we first introduce the graph embedding representations that are
necessary to convert IRPs into vector representations. Graph embedding
is a kind of algorithm to convert the nodes and edges into vectors while
guaranteeing the vector’s relationships are the same as the nodes and edges’
relationships in the knowledge graph.

A widely used graph embedding is TransE [96] embedded graphs by
guaranteeing the relationships in the triplet of (head entity, relation, tail
entity) in given graphs. The head entity and tail entity indicate the entity
nodes connected by a specific relation with a direction. The relation in the
triplet is one specific relation connecting two entities. TransE assumes the
sum of the head entity’s vector, and the relation’s vector should be equal
to the tail entity’s vector to guarantee the relationship of the triplet in the
vector space. This assumption can be formulated as:

et = eh + er (3.1)

where eh and et indicate the vectors of head and tail entities, respectively.
er is the vector of relation. By training the embedding model to satisfy
all triplets in the training graph, each entity node and each relation has an
identical vector. After TransE, more complicated Trans-series methods were
proposed to improve the representations towards the diversity of large-scale
knowledge graphs, such as TransH [97] and TransD [98].

In this study, we employed the TransE model pre-trained on the Wiki-
data knowledge graph to convert the relations in IRPs into embeddings.
Specifically, for each relation edge defined in Wikidata, we could use TransE
to obtain an identical representation. Thus, we can obtain a sequence of
vectors corresponding to the sequence of relations for each IRP.

3.4.2 Model construction

To investigate the effectiveness of IRPs, we proposed a model to utilize IRPs
as the IRP slot description in zero-shot slot filling. We followed the one-stage
approach to conduct our model, by which the model predicts slot entities
from utterances by IOB tags for each given slot. Figure 3.4 shows the model
structure.

In the model process, we first converted the IRP patterns into the
embedding vector sequences by TransE model for the given slot. Then,
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Figure 3.4: Model structure utilizing IRP slot descriptions for zero-shot slot
filling

we used a long-short-term memory (LSTM) network as the path encoder
to encode the relation path of each IRP pattern separately. The last hidden
state of the path encoder was used as path encoding for the corresponding
IRP pattern. Next, the pattern encoder takes the path encodings as inputs
and used a self-attention mechanism to encode the path encodings into one
pattern encoding vector, such a vector represents the combining information
of all IRP patterns of the given slot and could be adaptively determine the
weights of each IRP pattern through training. The self-attention mechanism
is computed as:

P = softmax(MLP (V ))T ∗ V (3.2)

where V is the path encodings of IRP patterns, MLP (·) is a fully con-
nected layer, softmax is the softmax function, T indicates the transpose of
softmax(MLP (V )), and P is the output pattern encoding vector. Note that
we did not use mean pooling of path encodings because we did not know the
importance of each path encoding towards various domains and contexts. We
used self-attention to let the model learn to decide the importance of each
IRP path through the training process.
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Besides the IRP slot description that carries implicit semantic informa-
tion, we also used the conventional slot description as the explicit semantic
information. To incorporate the conventional slot description into our
model, we first converted the tokens in the conventional slot description
into embeddings by word embeddings. Then we performed mean pooling
among the tokens to obtain the vector representation of the conventional slot
description, denoted as S in the figure. Then, after obtaining the pattern
encoding P of the given slot, we concatenate P and S as the combined slot
description that considers both explicit and implicit semantic information of
a given slot.

Next, the model encodes the given utterance. We converted the tokens
of the given utterance into embeddings by word embeddings and used a
bidirectional LSTM (BiLSTM) to encode the token embeddings into context
encodings. At each time step i, we concatenated the combined slot descrip-
tion with the i − th token’s context encoding and input the concatenation
into the BiLSTM global encoder to obtain the global encoding. Finally, a
conditional random field (CRF) decoder decodes the global encoding into the
digits of IOB tags. The model final outputs the sequence of the merged IOB
tags for each given slot.

3.4.3 Experiment setting

In this study, we conducted the experiment on the Snips2017 dataset. The
Snips2017 dataset contains seven domains with 14484 utterances in total.
There are 28 single-domain slots that are only appearing in one domain and
25 multi-domain slots that appear in multiple domains. As introduced in
Chapter 2, we followed left-one strategy to evaluate zero-shot slot filling.
Specifically, we train a model by setting one domain as the target domain for
the zero-shot test and the other six domains as source domains for training.
In total, we trained seven models independently by setting each domain in
the Snips2017 dataset as the target domain.

In the training process, the data from source domains were merged and
divided into the training set and the validation set; while the data from the
target domain was used as the test set alone. As our model follows the
one-stage paradigm that trains the model to predict slot entities for each
given slot, a given slot is generally not mentioned in all training instances of
utterances. Accordingly, we followed previous one-stage methods’ settings to
sample training instances. In particular, for each slot, the training instances
were divided into positive instances if the given slot was mentioned in the
utterance or negative instances if the given slot was not mentioned. To make
a fair comparison with previous studies, we randomly sampled positive and
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negative instances in a ratio of 1:3, which is the same as previous studies
[20]. We used the slot names as the conventional slot description, which is
the universal description and could always be available in different domains
since the slot name is necessary for defining the semantic meaning.

For parameter settings, we used the word embeddings based on the neural
probabilistic language model [99], which is nnlm-en-dim128, for converting
tokens into embeddings. We used the dim-100 TransE [100] model to obtain
the relation embeddings for IRPs. We set the LSTM in the path encoder
as 128 units, the BiLSTM and LSTM in the utterance encoder, and the
global encoder as 200 units, respectively. We employ the cross entropy
loss function to compute the loss between the predicted IOB digits and the
ground truth IOB labels. The average loss among all tokens in the given
utterance is used for optimizing the model parameters. We used the Adam
[101] optimizer for optimization with a learning rate of 0.0005. We used
the conlleval script [92] to compute the overall slot F1 score to evaluate the
model performance on each domain. We computed the slot F1 score for each
specific slot to evaluate the model performance on each slot. All experiments
were conducted three times to reduce the influence of random initialization.
The one-way ANOVA was used to measure the significance of the difference
between model performances.

For the baselines, since we follow the one-stage approach in constructing
our model, we compare with the baselines from the one-stage methods.
Specifically, we use the concept tagger (CT) [19], zero-shot transfer learning
(ZAT) [20], and robust zero-shot transfer learning with examples (RZT) [21]
as baselines to evaluate the effectiveness of IRPs. As introduced in Chapter
2, ZAT is the best method on the Snips2017 dataset. Therefore, we compare
our model with the best method and do not compare with other baselines
from the two-stage approach.

We also conducted ablation experiments to clarify the effectiveness of IRP
slot descriptions and conventional slot descriptions. To do so, we trained
ablation models in the same experiment settings as our original models but
using IRP slot descriptions alone and conventional slot descriptions alone.
After that, we compare the model performance between the original model
and the ablation models.
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3.5 Results and discussions

3.5.1 Experimental results and discussions

Table 3.2 shows the results of the model performance on each domain. IRPs is
the proposed model using IRP slot descriptions. The Average is the average
result over all domains. The underlined numbers indicate the best result of
baselines. Bold numbers are the best result for each domain and average.
By comparing our model and ZAT, one can see that the proposed model
outperformed ZAT in all domains, improving ZAT by 3.61 on average slot
F1 score. The ANOVA showed a significant difference between our model and
ZAT on the level of p < 0.001. These results demonstrated that by taking
the implicit semantic information of slots into account, IRP slot descriptions
effectively provided transferable information across domains in zero-shot slot
filling.

Table 3.2: Results of different model performance for each domain of the
Snips2017 dataset

Baselines Ours
Domain CT ZAT RZT IRP
AddToPlaylist 28.94 37.66 26.64 44.62
BookRestaurant 24.54 34.05 27.67 34.62
GetWeather 42.73 55.82 31.54 60.05
PlayMusic 27.18 31.54 24.82 39.42
RateBook 20.56 19.47 25.42 20.28
SearchCreativeWork 65.95 73.46 65.98 74.29
SearchScreeningEvent 24.57 33.05 30.44 37.04
Average 33.50 40.72 33.22 44.33***

To clarify the effectiveness of IRP slot descriptions on unseen and seen
slots, we compared the F1 score on each slot between our model and ZAT
and showed the comparison result in Table 3.3. The underlined numbers
indicate better results on each slot. The slots with * marks are unseen slots
in each domain. To investigate the effectiveness of IRP in more detail, we
defined the MSS of unseen slots and the slot type as follows:

MSS of unseen slots: To measure how an unseen slot is semantically
similar to the slots in training domains, we defined the max cosine similarity
between a given unseen slot and all slots in training domains as the max
semantic similarity (MSS). Accordingly, the seen slots do not have MSS. The
level of MSS reflects whether the explicit information carried by conventional
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slot descriptions could provide transferable information to handle unseen
slots or not to some extent. Based on the values of MSS, we divided unseen
slots into two categories: the low-MSS unseen slots (MSS < 0.5) and the
high-MSS unseen slots (MSS ≥ 0.5).

Slot type: To clarify the effectiveness of IRP on different types of slots,
we divided slots into entity-type slots and abstract-type slots based on the
slot’s semantic meanings. The entity-type slot describes entities or existence
in the real world, such as ‘album’ and ‘city’; The abstract-type slot describes
concept semantic meanings, such as ‘genre’ and ‘time range.’ In Table 3.3,
’E’ indicates that the corresponding slots are entity-type slots. ’A’ indicates
that the corresponding slots are abstract-type slots.

Table 3.3: Results of different methods on each slot

MSS of unseen slots Type Domain/Slots Slot F1 score
AddToPlaylist ZAT Ours

- E artist 47.14 55.47
0.73 E entity name* 8.75 9.26

- A music item 84.06 86.75
- E playlist 31.75 47.14

0.72 A playlist owner* 0.43 0.00
BookRestaurant

- E city 66.64 68.96
- E country 69.81 83.92

0.35 A cuisine* 0.00 0.26
0.45 E facility* 2.32 0.68
0.65 A party size description* 2.46 0.00
0.49 A party size number* 0.06 0.00
0.68 E poi* 4.09 3.93
0.8 E restaurant name* 16.30 18.45
0.69 A restaurant type* 1.92 0.08
0.32 E served dish* 2.01 7.50

- A sort 30.16 14.73
- A spatial relation 68.09 60.68
- E state 84.13 88.47
- A timeRange 45.33 53.95

GetWeather
- E city 63.38 70.74

0.65 A condition description* 0.28 0.00
0.42 A condition temperature* 0.00 4.39

- E country 52.52 71.12
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0.62 A current location* 0.00 0.19
0.68 E geographic poi* 7.61 9.19

- A spatial relation 64.83 77.08
- E state 79.95 73.48
- A time range 83.78 82.76

PlayMusic
0.62 E album* 0.62 8.15

- E artist 57.49 67.56
0.52 A genre* 3.55 2.82

- A music item 61.56 69.76
- E playlist 6.60 9.37

0.44 E service* 3.74 15.10
- A sort 41.27 46.14

0.35 A track* 1.14 0.64
0.39 A year* 0.08 8.37

RateBook
0.23 A best rating* 0.00 0.00

- E object name 45.25 35.31
0.69 A object part of series type* 0.77 1.40
0.65 A object select* 0.00 18.84

- A object type 61.01 43.95
0.45 A rating unit* 0.42 3.34
0.4 A rating value* 1.53 10.28

SearchCreativeWork
- E object name 89.30 87.08
- A object type 40.06 51.46

SearchScreeningEvent
0.8 E location name* 37.76 43.80
0.72 E movie name* 40.41 40.92
0.65 A movie type* 2.63 15.61
0.9 A object location type* 21.25 14.75
- A object type 0.08 0.00
- A spatial relation 65.81 74.35
- A time range 84.24 83.76

From Table 3.3, one can see that our model outperforms ZAT on most
slots, no matter whether the slots are unseen or seen. To make the
comparison clearer and further discussions, we computed the ratio of the
slots that our model outperformed ZAT and illustrated the results in sector
diagrams.

Figure 3.5 shows the comparison diagrams of low-MSS unseen slots, high-
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MSS unseen slots, and seen slots. The blue parts indicate the ratio of the
slots that the proposed method outperformed ZAT (Rours), while the orange
ones show that ZAT performed better (RZAT ). To evaluate the performance
difference, we introduce an improvement ratio Rimp as follows:

Rimp = Rours–RZAT (3.3)

As seen in Figure 3.5, our model achieved an improvement ratio of 40% for
low-MSS unseen slots, 28% for seen slots, and 18% for high-MSS unseen slots.
These results confirmed that the IRP slot descriptions provided effective
transferable information across domains for handling both unseen and seen
slots, especially for the unseen slots with less semantic similarity to the
slots in source domains, which is hard to deal with by the conventional
slot descriptions. On the other hand, our model has a relatively smaller
improvement over ZAT for the high-MSS unseen slots. The reason probably is
that we utilized the mean pooling of slot tokens’ embeddings for conventional
slot descriptions in our model, which is not as exquisite as the attention-based
representations of slot descriptions used in ZAT.

Figure 3.5: Comparison of different methods on different slot categories

Figure 3.6 shows the comparison diagrams of entity-type unseen and seen
slots and abstract-type unseen and seen slots. As seen in the figure, our model
achieved an improvement ratio of 60% and 50% for unseen and seen entity-
type slots, respectively. Moreover, our model achieved an improvement ratio
of 6% and 20% for unseen and seen abstract-type slots, respectively. These
results demonstrated that the IRP slot descriptions provided transferable
information effectively in handling entity-type slots. On the other hand,
our model achieved relatively smaller improvements on abstract-type slots.
The reason is that unlike entity relations obtained from the commonsense

42



knowledge graph Wikidata, abstract-type slots are not so effective in having
the inference path.

Figure 3.6: Comparison of different methods on different types of slots

3.5.2 Ablation studies

Next, Table 3.4 shows the comparison results of the ablation experiments.
In the table, Origin indicates the performance of the original model. IRP
alone and conventional alone are the performance of the ablation models
using IRP slot descriptions alone and using conventional descriptions alone,
respectively. As seen in the table, without the explicit slot information
carried by the conventional slot descriptions, using IRP slot descriptions
alone achieved 23.88 on slot F1 score, which is over half of the slot F1 score
of the using conventional slot descriptions alone. This result demonstrated
that without using the explicit semantic information that is the basic cue to
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correlate domains, using the implicit semantic information carried by IRPs
alone could still provide effective transferable information across domains for
zero-shot slot filling. The results also show that adding IRP slot descrip-
tions to the conventional slot descriptions significantly improved the model
performance on all domains, improving the average F1 score by 4.16. These
results demonstrated that the IRP slot descriptions and the conventional slot
descriptions have a complementary effect on zero-shot slot filling.

Table 3.4: Results of ablation model performance on each domain of the
Snips2017 dataset

Domain Origin IRP alone Conventional alone
AddToPlaylist 44.62 43.72 37.93
BookRestaurant 34.62 12.42 33.56
GetWeather 60.05 35.72 59.32
PlayMusic 39.42 22.72 30.16
RateBook 20.28 6.92 18.80
SearchCreativeWork 74.29 33.11 68.08
SearchScreeningEvent 37.04 12.57 33.36
AVER 44.33 23.88 40.17

3.6 Summary

In this chapter, we proposed the IRP for alleviating the domain shift problem
of semantically dissimilar unseen slots. As described above, using IRP slot
descriptions improved the zero-shot slot filling on handling both unseen and
seen slots. Although we used IRPs with the one-stage approach, IRPs can
also be used with two-stage approach since IRPs describe the property of
slots and can provide transferable information for slot type prediction in
stage two of the two-stage approach.

However, the absolute improvements were not high on unseen slots.
Furthermore, obtaining IRPs are not flexible in practice. Specifically, in the
process of extracting IRPs on the Snips2017 dataset via Wikidata described
in Section 3.2, we have already encountered the situations that some slots
or values could not be identified as entities. This is partially because the
characteristics of Wikidata, since Wikidata is a commonsense knowledge
graph that mainly describes entities and the relations between entities in
the real world and is not effective to identify the slots and values that have
concept semantic meaning. Another reason is that some slots and values
are the combination of entities, such as ‘object select’ and ‘location name’,
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those slots and values cannot be identified as an entity or a concept by
the knowledge graph, so that it is hard to extract exact IRPs for such
slots. In addition, due to the interpretability limitation of the one-stage
approach described in Chapter 2, it is hard to analyze and explore intrinsic
representations in zero-shot slot filling.
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Chapter 4

Multi-relation-based representa-
tion

4.1 Objective

To overcome the limitations of IRPs and the one-stage approach to deal with
domain shift problems in zero-shot slot filling, we moved our sight to the
two-stage approach of zero-shot slot filling. Since the correct prediction for
slot entities is the premise for improving zero-shot slot filling, we focused
on mining the intrinsic representation to alleviate the domain shift problem
of different context distributions in slot entity predictions. Specifically, we
aimed to improve slot entity predictions from the context corresponding to
unseen slots and the context corresponding to seen slots. Meanwhile, the
intrinsic representation should be flexible that can be obtained easily. For
this purpose, this chapter introduces the multi-relation-based representation
for improving slot entity predictions to improve zero-shot slot filling.

4.2 Previous representations for slot entity

predictions

Zero-shot slot filling approaches predicted slot entities and slot types sep-
arately to avoid retraining the model for handling unseen slots. One-stage
methods [19, 20, 21] predicted slot entities for each slot type, while two-
stage methods [22, 23, 83] predicted slot types based on the predictions of
slot entities. Accordingly, the correctness of slot entity predictions is the
premise to guarantee the performance of zero-shot slot filling.

As introduced in Chapter 2, in one-stage methods, concept tagger (CT)
realized the slot entity prediction by combining the contextual information
and the slot description’s information at each time step. Zero-shot adaptive
transfer learning (ZAT) used an attention mechanism to obtain a context-
aware slot description and realized the slot entity prediction by considering
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contextual information and context-aware slot description’s information.
Robust zero-shot slot filling tagger with examples (RZT) combined the
information of example slot values at each time step as additional semantic
information to consider contextual information, slot description’s informa-
tion, and examples’ information.

Accordingly, one-stage methods combined contextual information with
slot type’s information. The slot entity prediction process for one-stage
methods could be briefly formulated as follows:

IOBk = Dec(Enc(ec1, eslotk), Enc(ec2, eslotk), ..., Enc(eci , eslotk), ...), slotk ∈ Ns

(4.1)
here, Ns is the slot set of a domain. eslotk is the representation of the k−th slot
type, which can be obtained from the mean or sum pooling of slot description
token’s embeddings. eci is a context vector of the i − th token in a given
utterance. IOBk is the sequence of the IOB tags corresponding to the k− th
slot type. Enc(·) is an encoder to encode the combined information of eci and
eslotk , and Dec(·) is a decoder to obtain the IOB tag distribution. Previous
studies used RNN-based structure, such as LSTM, as the encoder and used
feedforward layers or CRF layer as the decoder.

In one-stage methods, the E(eci , eslotk) is a slot-type-based representation
that reflects the specific characteristics of slot entities regarding to the k− th
slot type. It can provide transferable information to predict slot entities
corresponding to specific slot types in target domains. However, one-stage
methods were argued to have less capability to capture the complete slot
entity for a given slot type in new domains [22] because they learn the slot
entities for corresponding slot types.

Two-stage methods [22] were proposed to learn context-based represen-
tations to improve the prediction of complete slot entities for zero-shot slot
filling. A context-based representation captures the general characteristics of
slot entities according to various context environments without considering
specific slots. Specifically, the two-stage methods so far [22, 23, 83] all
used the same algorithm to realize the slot entity prediction by considering
contextual information alone. The prediction process of these two-stage
methods can be formulated as follows:

IOB = Dec(ec1, e
c
2, ..., e

c
i , ...) (4.2)

here, IOB is the sequence of the IOB tags, eci is the context vector of the
i − th token in a given utterance. Dec(·) is a decoder. Previous studies
usually used CRF for the decoder to consider the contextual dependency of
context vectors.
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In the two-stage methods, the context vector eci is a context-based
representation that reflects the general characteristics of slot entities without
considering specific slots. However, because of domain shift problems, for the
context corresponding to the unseen slots and the context corresponding to
the differently explained seen slots, it is hard to predict correct slot entities
based on the general slot entity patterns learned in training without using
any additional information.

For the problems mentioned above, we aimed to mine a representation
that captures general slot entities in diverse context environments and still
be able to deal with the unseen contexts in new domains even if the contexts
correspond to unseen slots or differently explained seen slots. Meanwhile,
considering the limitation of IRPs mentioned above, the representation
should be obtained easily based on slots and utterances to guarantee flexi-
bility.

4.3 Multi-relation-based representation

For our purpose, we revisited the representations for slot entity predictions in
previous studies. In an one-stage method, the slot-type-based representation
carried entity-type relations between the slot entity and a specific slot type.
While the context-based representation in the two-stage method reflected the
entity-context relation between a given slot entity and a variety of contextual
environments among different domains. To tackle the domain shift problem
mentioned above, it would be better to combine the advantages of the one-
stage and two-stage methods. The context-based representation was effective
on capturing complete slot entities. The slot-type-based representation
could provide the similarities between domains from the aspect of slots,
thus can be expected to provide additional information for capturing slot
entities from unseen contexts in new domains. Accordingly, we proposed a
multi-relation-based representation to take both the entity-type and entity-
context relations into account and use this representation for the slot entity
prediction. The multi-relation-based representation is obtained by averaging
the representations of entity-type relations for all slot types in a given
domain, which is formulated as follows:

repri =
1

|Ns|

|Ns|∑
k=1

Enc(eci , eslotk), slotk ∈ Ns (4.3)

IOB = Dec(repr1, repr2, ..., repri, ...) (4.4)

where |Ns| is the size of the slot set Ns.
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In eq 4.3, repri = 1
|Ns|

∑|Ns|
k=1 Enc(eci , eslotk) is the multi-relation-based

representation. This representation takes the slot type information into
account and captures the general slot entity pattern by involving all possible
slot types in a given domain but not a specific one. The multi-relation-
based representation provides a unified representation of the general and
specific characteristics of slot entities. The general characteristic guarantees
the capacity on capturing complete slot entities, while the specific charac-
teristic provide additional information for capturing the slot entities from
unseen contexts. Thus, this representation potentially offers transferable
information across domains. Meanwhile, the proposed representation can
be obtained from utterances and slots. Thus it guarantees the flexibility
of obtaining and overcoming the limitations of IRPs. Consequently, the
proposed representation can be expected to improve zero-shot slot filling by
alleviating domain shift problems in the slot entity prediction.

4.4 Experiments

4.4.1 Model construction

Since the multi-relation-based representation is used for predicting the slot
entity without considering specific slots, it is suitable to construct a two-
stage model to use the proposed representation for one stage of slot entity
predictions. Accordingly, we constructed a two-stage model, in which stage
one used the proposed representation for predicting slot entities, and stage
two used the same method as Coach [22] to predict slot types based on the
predicted slot entities.

Figure 4.1 shows the model structure. In stage one, we first converted
the tokens in the given utterances into embedding representations. We also
converted the tokens of the slot descriptions into embedding representations
and obtained a slot type vector representation esloti for each slot type’s
description via pooling. In this chapter, we investigated the effectiveness of
different pooling methods, which were mean pooling and sum pooling. The
details will be described in the next section. Then, we used a BiLSTM layer as
an encoder to encode the input utterance into context vectors. At each time
step, the context vector and the k − th slot type’s vector representation are
concatenated as the input to the second BiLSTM layer. The second BiLSTM
layer calculates the fusion encoding of the contextual information and the
k − th slot type’s information. Following the definition of the proposed
representation, fusion encodings are obtained for all slot types in a given
domain. Then we computed the multi-relation-based representation for the
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Figure 4.1: Two-stage model structure using the multi-relation-based repre-
sentation for slot entity predictions in stage one

i− th token as the average of the fusion encoding as follows:

repri =
1

|Ns|

|Ns|∑
k=1

Enc(eci , eslotk) (4.5)
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finally, we inputted the sequence of all token’s multi-relation-based represen-
tation into the CRF layer to obtain the IOB tags for the slot entity prediction.

In stage two, we followed the similarity-based method to predict slot types
for the slot entities from stage one. Specifically, we first extracted the slot
entities based on the IOB tags. To do so, we extract the token with the
B tag as a beginning of a slot entity and the tokens with I tags following
the beginning token as the inner of the slot entity. Then we extracted the
context vectors of the slot entity from the first BiLSTM encoder, and we
used a BiLSTM to encode these context vectors into entity encodings. In
this chapter, we also investigated the effectiveness of different ways to obtain
entity encodings, which will be described in the next section. Finally, we
computed the softmax similarity score between the slot entity and all slot
types in the given domain as follows:

simk = ese · eslotk , slotk ∈ Ns (4.6)

slotpred = argmax(softmax(sim1, sim2, ..., simk, ...)) (4.7)

where ese is the entity encoding of the slot entity, eslotk is the vector
representation of the k − th slot type, simk is the similarity score between
ese and eslotk . softmax is the softmax function that converts the similarity
scores into a probability distribution. argmax is the function to choose the
slot type with the highest softmax similarity score. slotpred is the slot type
prediction.

After the two stages, the model merges the slot entity predictions and
slot type predictions into a final output formed as an IOB-slot tag sequence.

4.4.2 Comparison of slot type vector representations
and slot entity encoding representations

To achieve better performance in zero-shot slot filling, previous studies
proposed several different forms for both the slot type vector representation
esloti and for the slot entity encoding representation ese. However, there is
less knowledge about the effect of those representations. In this chapter,
to investigate the characteristics and efficiency of each representation, we
compared the performance of various combinations of the slot type vector
representations and slot entity encoding representations.

For the slot type vector representation, some studies [19, 21] showed that
the mean embedding of slot description tokens obtained by mean pooling
is effective in zero-shot slot filling. While other studies proposed a sum
embedding of the description tokens obtained by sum pooling, as in the case
of [22]. For brevity, we hereafter refer to the former kind of representation
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as ‘mean-slot’ and the latter as ‘sum-slot.’ If a slot description contains m
tokens, we can formulate the slot type vector representations as follows:

reprslotmean =
1

m

m∑
i=1

embi, i ∈ [1,m], (4.8)

reprslotsum =
m∑
i=1

embi, i ∈ [1,m]. (4.9)

where reprslotmean and reprslotsum are the mean-slot and sum-slot representations,
respectively. embi is the embedding of the i− th token.

The slot entity encoding representation is the encoding representation of
a given slot entity text sequence. The last time step of the sequence encoding
vectors [102] and the sum of each time step vector [22] were widely used for
encoding representations. For brevity, we hereafter refer to the former kind
of representation as ’last-enc’ and the latter as ’sum-enc.’ If a slot entity
contains n tokens, the representations can be formulated as follows:

hi =E(hi−1), (4.10)

reprenclast =hn, (4.11)

reprencsum =h1 + ... + hn. (4.12)

here, reprenclast and reprencsum are the last-enc and sum-enc representations,
respectively. hi is the encoding vector of the i − th token in the given slot
entity, and E(·) is an encoder.

4.4.3 Experiment setting

In this chapter, we conducted our experiments on three multi-domain
datasets to evaluate the effectiveness of the proposed multi-relation-based
representation, Snips, SGD, and MultiWOZ 2.3 datasets. In addition, we
also conducted the experiment on the Snips2017 dataset to compare the
performance between the multi-relation-based representation to IRPs that
introduced in the last chapter.

Since zero-shot slot filling aims to process the input utterances of users,
we performed data cleanings to obtain the utterances from the user speaker
alone. To do so, we removed the utterances from the system speaker in
the SGD and MultiWOZ 2.3 datasets. Then, we removed the utterances
without any slot, as the slots are the key objects for zero-shot slot filling. The
Snips dataset contains utterances only from the user side, and all utterances
mention at least one slot. Accordingly, the Snips dataset was fully used
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Table 4.1: Statistics of datasets after data cleaning
Dataset Domains Utterances SD slots MD slots
Snips 7 14484 28 25
SGD 20 70166 63 38
MultiWOZ 2.3 6 43591 6 24

in this research. After the data cleaning, we found that two domains in
the MultiWOZ 2.3 dataset (the ’Hospital’ and ’Police’ domains) contained
much less data than others. For meaningful evaluations, we merged these
two domains into a single domain called ’Others.’ After data cleaning,
Snips contains seven domains, MultiWOZ 2.3 contains six domains, and SGD
contains 20 domains.

To show the details of each dataset clearly, Table 4.1 lists domains,
utterances, SD slots, and MD slots in each domain for Snips, SGD, and
MultiWOZ 2.3 datasets, respectively.

Similar to the experiments in Chapter 3, this chapter also follows the
same training process as previous studies. Specifically, we conducted our
experiments on each dataset separately. For each dataset, we set one domain
as the zero-shot target domain and other domains as training domains. For
each zero-shot target domain, we trained a model on the data of training
domains and evaluated the model performance on the zero-shot domain.
Accordingly, we trained seven models for the Snips dataset, six models for
the MultiWOZ 2.3 dataset, and 20 models for the SGD dataset.

In the training process, we merged all data from the training domains
as the training set for training. Furthermore, we split the data from the
zero-shot targe domain into a validation set to choose the best model and a
test set to evaluate the model performance, which was the same approach as
in the previous works [22]. In particular, there are two splitting situations
based on the instances in the zero-shot target domain: (1) Most domains
have more than 600 instances. For those domains, we followed the setting
in previous works [22] to use the first 500 instances in the zero-shot target
domain as the validation set and use the remaining data as the test set; (2)
Some domains have less than 600 instances, such as the ’Message’ domain in
the SGD dataset. To perform a meaningful evaluation on those domains, we
used the first 40% instances as the validation set and the remaining 60% as
the test set.

For the parameter settings, the two BiLSTMs in stage one were both
set as one layer with 256 hidden units. The encoder BiLSTM in stage two
was set as two layers with 256 hidden units in each layer. We used a 400-
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dimension word representation to obtain the embeddings for tokens. The
400-dimension representation is the concatenation of a 300-dimension word
embedding and a 100-dimension character embedding. The word embedding
was obtained from Fast-Text [103, 104], and the character embedding was
obtained from torchtext [105]. We used the CRF loss to compute the loss for
the IOB prediction in stage one. We used the cross-entropy loss to compute
the loss among slot type predictions in stage two. The Adam optimizer was
used for optimization with a learning rate of 0.0005. All experiments were
conducted three times to reduce the influence of random initialization. One-
way ANOVA was used to measure the significance level of difference between
methods.

For evaluation metrics, to precisely evaluate the effectiveness of the
proposed multi-relation-based representation on the slot entity prediction,
we use the Conlleval script [92] to compute the IOB F1 score that only
computes the accuracy of slot entities without considering specific slots.
Then, to investigate the model performance on predicting the slot entities
corresponding to seen and unseen slots, we proposed the prediction accuracies
of the seen slots’ entities and unseen slots’ entities. Note that we computed
accuracies rather than the IOB F1 score for separate evaluations on seen
and unseen slots. This is because we can pick the ground-truth slot entities
corresponding to seen and unseen slots from utterances and compute the
recall, but we cannot compute the precision since the predictions are not
specified to seen or unseen slots.

After that, to investigate how the proposed representations contribute to
zero-shot slot filling by contributing to slot entity predictions, we computed
the slot F1 score to evaluate the performance of zero-shot slot filling on each
domain. We also computed the slot F1 score for unseen and seen slots to
evaluate the model performance on each slot.

We used the two-stage method Coach [22] as the baseline to precisely
evaluate the effectiveness of the proposed representation used in stage one,
because stage two of our model is the same as Coach. We also used the
best methods on each dataset as baselines. As introduced in Chapter 2, the
best methods on Snips, MultiWOZ 2.3, and SGD datasets are RZT, CT,
and Coach, respectively. Accordingly, we compare two baselines on Snips
and MultiWOZ 2.3 datasets, and we only compare with Coach on the SGD
dataset.
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4.5 Results and discussions

4.5.1 Experimental results and discussions

Tables 4.2, 4.3, and 4.4 show the IOB F1 score results of different methods
for the Snips, MultiWOZ 2.3, and SGD datasets, respectively. Due to the
limitations of space, we cannot show the methods’ results for each domain in
a single row for Snips and MultiWOZ 2.3 datasets. Therefore, we split the
table into two parts for these two datasets, in which (a) lists the results from
baseline methods, and (b) lists the results from the proposed method. In
the table, domain indicates the model performance on each zero-shot target
domain. Underlined numbers are the best results of baselines on each domain
and average on Snips and MultiWOZ 2.3 datasets. Bold numbers indicate
the best results on each domain and average, respectively. The performance
of our model were obtained with different slot type vector representations
and slot entity encoding representations. For brevity, we denote these four
combinations as follows: ’mean-last’ is the combination of the mean-slot slot

Table 4.2: IOB F1 scores on the Snips dataset
(a) Results of the baseline methods
Domain Coach RZT
AddToPlaylist 61.26 54.45
BookRestaurant 58.43 53.11
GetWeather 61.94 64.52
PlayMusic 50.55 45.43
RateBook 31.66 32.24
SearchCreativeWork 51.27 38.51
SearchScreeningEvent 39.92 32.59
Average 50.72 45.84
(b) Results of the proposed methods
Domain mean-last mean-sum sum-last sum-sum
AddToPlaylist 63.17 61.75 62.13 60.93
BookRestaurant 64.39 62.55 64.31 62.82
GetWeather 70.14 67.52 66.07 66.66
PlayMusic 68.16 64.58 66.72 66.13
RateBook 29.78 30.96 33.81 29.20
SearchCreativeWork 50.93 52.72 51.74 54.39
SearchScreeningEvent 50.60 50.18 47.88 48.74
Average 56.74** 55.75* 56.10** 55.55**
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Table 4.3: IOB F1 scores on the MultiWOZ 2.3 dataset
(a) Results of the baseline methods
Domain Coach CT
Attraction 68.25 66.10
Hotel 69.65 71.66
Restaurant 76.05 72.47
Taxi 54.60 58.51
Train 73.62 82.27
Others 58.59 59.66
Average 66.79 68.44
(b) Results of the proposed methods
Domain mean-last mean-sum sum-last sum-sum
Attraction 65.49 64.67 72.49 72.65
Hotel 70.36 72.89 69.72 72.26
Restaurant 74.08 74.61 76.05 74.80
Taxi 65.31 66.61 63.74 66.25
Train 76.85 78.24 77.12 76.88
Others 56.47 58.20 58.75 59.19
Average 68.09 69.20 69.64 70.34

type vector representation and last-enc slot entity encoding representation.
Similarly, ’mean-sum’ is the combination of the mean-slot slot type vector
representation and the sum-enc slot entity encoding representation. On
the other hand, ’sum-last’ and ’sum-sum’ are the sum-slot representation
with the last-enc and sum-enc representations, respectively. The ’*’ and ’**’
beside the average results are the significance level based on one-way ANOVA
between the better baseline and the corresponding model, which indicate the
level of p < 0.05 and p < 0.01, respectively.

As seen in the tables, Coach achieved an average IOB F1 score of 51.53,
66.79, and 89.52 on Snips, MultiWOZ 2.3, and SGD datasets, respectively.
From Table 4.2, one can see that our model using mean-last representations
achieved the best performance on the Snips dataset and improved the baseline
by 6.02 of the IOB F1 score. From Tables 4.3 and 4.4, one can see that
our model using sum-sum representations achieved the best performance on
MultiWOZ 2.3 and SGD datasets, improved the baseline by 3.55 and 0.64
of average IOB F1 score on MultiWOZ 2.3 and SGD datasets, respectively.
These results demonstrated that by capturing the general and specific char-
acteristics of slot entities, the proposed multi-relation-based representation
alleviated the domain shift problem on the slot entity prediction.

Besides comparing with Coach, the comparison between out best model

56



Table 4.4: IOB F1 scores on the SGD dataset
Baseline Ours

Domains Coach mean-last mean-sum sum-last sum-sum
Alarm 85.72 84.47 82.97 81.80 83.12
Banks 88.81 91.82 94.02 89.85 90.20
Buses 99.36 99.19 99.34 99.39 99.24
Calendar 82.89 83.03 82.79 83.16 83.04
Events 90.06 91.23 91.91 90.89 91.94
Flights 97.43 97.34 97.63 98.15 98.04
Homes 96.58 97.26 97.13 97.26 97.46
Hotels 81.75 81.09 81.36 81.10 82.82
Media 90.72 92.10 92.31 93.47 93.05
Messaging 88.10 85.02 87.32 83.41 85.50
Movies 89.87 89.54 89.56 90.15 90.05
Music 53.79 52.66 56.38 52.27 59.22
Payment 94.75 95.51 96.48 94.84 95.51
RentalCars 98.48 98.55 98.90 98.95 98.99
Restaurants 77.38 81.65 80.74 80.53 81.26
RideSharing 81.45 76.62 78.48 76.31 79.88
Services 96.64 98.24 97.66 98.21 97.39
Trains 99.58 99.51 99.58 99.44 99.58
Travel 98.45 97.05 98.37 98.59 98.26
Weather 98.66 98.88 98.87 98.39 98.59
Average 89.52 89.54 90.09 89.31 90.16

mean-last and RZT on the Snips dataset showed that mean-last outperformed
RZT by 10.9 on the IOB F1 score. By comparing our best model sum-
sum with the best method CT on the MultiWOZ 2.3 dataset, one can see
that sum-sum outperformed CT by 1.9 on the IOB F1 score. These results
confirmed that the proposed representation is effective on alleviating domain
shift problems.

Note that our model achieved a relatively small improvement on the SGD
dataset. This is because the seen slots in the SGD dataset are usually not
explained differently due to the unseen context in different domains, unlike
that in the other two datasets. For instance, in the Snips dataset, the slots
‘object name’ and ‘object type’ are explained differently in the Rate Book
domain and Search Creative Work domain. In the Rate Book domain, the
slot ‘object name’ indicates a book the user wants to rate for, and the slot
‘object type’ indicates the type of a book. On the other hand, in the Search
Creative Work domain, the slot ‘object name’ indicates the name of a movie
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Table 4.5: Prediction accuracies on different datasets. (a) shows the predic-
tion accuracies on the slot entities corresponding to unseen slots; (b) shows
the prediction accuracies on the slot entities corresponding to seen slots
(a) Prediction accuracies on the slot entities corresponding to unseen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines
Coach 40.31% Coach 28.82%

Coach 85.52%
RZT 14.91% CT 23.08%

Ours

mean-last 49.59%** mean-last 21.92% mean-last 86.04%
mean-sum 47.45%* mean-sum 29.05% mean-sum 86.74%
sum-last 47.17%** sum-last 28.92% sum-last 84.58%
sum-sum 46.70%** sum-sum 26.83% sum-sum 85.88%

(b) Prediction accuracies on the slot entities corresponding to seen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines
Coach 58.75% Coach 71.85%

Coach 89.36%
RZT 52.85% CT 72.53%

Ours

mean-last 65.57%*** mean-last 73.17% mean-last 89.97%
mean-sum 64.91%*** mean-sum 73.85% mean-sum 90.25%
sum-last 64.48%** sum-last 73.78% sum-last 89.52%
sum-sum 65.14%** sum-sum 74.62%* sum-sum 90.55%*

or a song, and the slot ‘object type’ indicates the type of creative work. While
in the SGD dataset, most seen slots do not change the semantic meanings
in different domains. Therefore, the proposed representation’s advantage in
handling the slot entity corresponding to the differently explained seen slots
was not fully brought out on the SGD dataset.

Then, we investigated model performance on the slot entities correspond-
ing to unseen and seen slots. Table 4.5 shows the prediction accuracies
of different methods on all three datasets. ’*’, ’**’, and ’***’ indicate the
corresponding result has significant difference to the better baseline at the
level of p < 0.05, p < 0.01, and p < 0.001. As seen in Table 4.5 (a),
Coach outperformed than RZT on the prediction accuracies of unseen and
seen for Snips and MultiWOZ 2.3 datasets. Coach also outperformed CT
on the prediction accuracy of seen slots for the Snips dataset. While CT
outperformed Coach a bit on the prediction accuracy of seen slot for the
MultiWOZ 2.3 dataset. These results showed that the two-stage method
Coahc is better than one-stage methods on most situations of slot entity
predictions, which is consistent with the arguement in the paper of Coach
[22].

By comparing our models and baselines, one can see that mean-last
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Table 4.6: Zero-shot slot filling performance on the Snips dataset
Baselines Ours

Domain Coach RZT sum-sum
AddToPlaylist 47.30 50.27 51.56
BookRestaurant 31.30 34.52 36.90
GetWeather 45.97 61.44 52.66
PlayMusic 29.99 39.70 38.66
RateBook 9.60 25.01 14.78
SearchCreativeWork 50.55 38.40 53.90
SearchScreeningEvent 19.19 20.15 25.63
Average 33.42 38.50 39.16

combination is the best model for predicting unseen slots’ entities for the
Snips dataset, improving the better baseline Coach by 9.28% on prediction
accuracy. The mean-sum combination is the best model for predicting unseen
slots’ entities for MultiWOZ 2.3 and SGD datasets, improving the better
baseline Coach by 2.30% and 1.22% on MultiWOZ 2.3 and SGD datasets,
respectively. As seen in Table 4.5 (b), the mean-last combination is the
best model for predicting seen slots’ entities for the Snips dataset, improving
Coach by 6.82% on prediction accuracy. The sum-sum combination is the
best model for predicting seen slots’ entities for MultiWOZ 2.3 and SGD
datasets, improving the better baselines CT of the MultiWOZ 2.3 dataset
and Coach of the SGD dataset by 2.09% and 1.19%, respectively. These
results demonstrated that capturing general and specific characteristics ef-
fectively alleviated the domain shift problem of predicting the slot entities
corresponding to unseen and seen slots.

To identify the most effective combination of slot type vector represen-
tations and slot entity encoding representations, we performed a one-way
ANOVA among four combinations on each dataset. As a consequence, the
one-way ANOVA showed no significant difference among four combinations
(p > 0.05) in each dataset. Therefore, we then compared the average
performance over three datasets for the four combinations to choose the most
effective one. According to the results in Tables 4.2, 4.3, and 4.4, the average
performance of mean-last, mean-sum, sum-last, and sum-sum are 71.46,
71.68, 71.68, and 72.02. Therefore, the sum-slot + sum-enc combination
outperforms others on the average performance over three datasets, so it
is the most effective combination for the model structure of this chapter.
Following the results, we chose the model of sum-sum combination as our
representative model and used it for subsequential analysis.

59



Table 4.7: Zero-shot slot filling performance on the MultiWOZ 2.3 dataset
Baselines Ours

Domain Coach CT sum-sum
Attraction 66.07 65.94 69.97
Hotel 64.24 66.89 64.99
Restaurant 70.40 71.06 72.40
Taxi 39.17 52.86 40.97
Train 62.66 80.19 68.88
Others 54.75 58.49 56.74
Average 59.55 65.91 62.32

Next, we evaluated how the improvement by the proposed representation
contributes to zero-shot slot filling. Tables 4.6, 4,7, and 4.8 show the model
performance of zero-shot slot filling on Snips, MultiWOZ 2.3, and SGD
datasets, respectively. As seen in the tables, the baseline method Coach
achieved an average slot F1 score of 33.42, 59.55, and 68.72 of average
slot F1 score on Snips, MultiWOZ 2.3, and SGD, respectively. Our model
using sum-sum representation outperformed Coach by 5.74, 2.77, and 0.87
on Snips, MultiWOZ 2.3, and SGD datasets, respectively. As our model
using the same stage two for slot type predictions as used in Coach, these
results demonstrated that by alleviating the domain shift problem on the slot
entity prediction, the proposed representation improved zero-shot slot filling
performance.

To investigate the consistency between the improvements in the slot
entity prediction and zero-shot slot filling, we computed the prediction error
reduction rate Re to show the relative improvement compared to the baseline
method as follows:

Re = (F1ours–F1baseline)/F1baseline (4.13)

where the F1ours and F1baseline are the average performance of our repre-
sentative model and the baseline method. The difference F1ours–F1baseline is
the improvement of our model. From Tables 4.2, 4.3, and 4.4, we can obtain
the Re of the sum-sum model on the slot entity prediction, which are 9.52%,
5.32%, and 0.07% on Snips, MultiWOZ 2.3, and SGD datasets, respectively.
From Tables 4.6, 4.7, and 4.8, we can obtain the Re of the sum-sum model
on zero-shot slot filling, which are 17.18%, 4.65%, and 1.27% on the Snips,
MultiWOZ 2.3, and SGD datasets, respectively. Accordingly, these results
showed that the tendency of error reduction in the slot entity prediction was
similar to the tendency of improvement in zero-shot slot filling. Therefore,
the results demonstrated that due to the improvements in the slot entity
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Table 4.8: Zero-shot slot filling performance on the SGD dataset
Baseline Ours

Domain Coach sum-sum
Alarm 85.72 83.12
Banks 58.37 31.41
Buses 34.47 34.30
Calendar 81.51 82.17
Events 64.24 69.06
Flights 44.21 60.61
Homes 95.48 96.49
Hotels 44.86 38.27
Media 51.13 54.83
Messaging 73.50 71.25
Movies 64.93 70.17
Music 31.52 39.92
Payment 82.33 89.85
RentalCars 37.79 38.20
Restaurants 59.21 65.03
RideSharing 81.45 79.88
Services 95.36 95.92
Trains 91.11 94.44
Travel 98.45 98.26
Weather 98.66 98.59
Average 68.72 69.59

prediction, our model improved the baseline method consistently on zero-
shot slot filling.

By comparing with the best methods of RZT, CT, and Coach on Snips,
MultiWOZ 2.3, and SGD datasets, one can see that our model outperformed
the best method of RZT and Coach on almost domains and achieved better
performance on average. On the other hand, our model did not outperform
CT, which is the best method on the MultiWOZ 2.3 dataset. We consider
the limitation was on stage two of slot type predictions since our model was
shown better than CT on slot entity predictions from Table 4.3 and Table
4.5, stage two did not bring out the improvements of stage one for zero-shot
slot filling. Accordingly, improving slot type prediction is also necessary to
improve the overall zero-shot slot filling.

Then, we analyzed the model performances on unseen and seen slots to
investigate how the improvements in the slot entity prediction contribute to
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Table 4.9: Average slot F1 score for unseen and seen slots on each dataset.
(a) shows slot F1 scores on unseen slots; (b) shows slot F1 scores on seen
slots

(a) Slot F1 score on unseen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines
Coach 5.23 Coach 16.82

Coach 41.00
RZT 5.02 CT 16.56

Ours sum-sum 5.07 sum-sum 17.14 sum-sum 41.03
(b) Slot F1 score on seen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines
Coach 47.34 Coach 64.79

Coach 49.11
RZT 54.46 CT 73.36

Ours sum-sum 53.33 sum-sum 68.13 sum-sum 54.01

the predictions of unseen slots and seen slots. Table 4.9 shows the averaged
slot F1 score of all unseen slots and seen slots in each dataset. As seen in the
table, for seen slots, our model significantly improved Coach by 5.99, 3.34,
and 6.18 on Snips, MultiWOZ 2.3, and SGD, respectively. These results
demonstrated that with the improvement in the slot entity prediction as the
premise, our model improved zero-shot slot filling for seen slots. For unseen
slots, our model improves Coach by 0.32 and 0.03 of the average slot F1 score
on MultiWOZ 2.3 and SGD datasets, respectively. On the other hand, our
model was defeated a little on the Snips dataset. The reason is that the model
was simultaneously optimized for stage one and stage two. The performances
were obtained from the model with the best overall performance on zero-shot
slot filling. In practice, stage one and stage two were usually not able to be
best optimized at the same time. Therefore, although our model improved
the slot entity predictions in stage one, stage two in our model was not
optimized as in Coach, so our model was defeated a little on some unseen
slots.

By comparing our model with the best methods of RZT, CT, and Coach
on Snips, MultiWOZ 2.3, and SGD dataset, one can see that our model
outperformed best baselines on unseen slots of all datasets. On the other
hand, our model did not outperform RZT and CT on seen slots of Snips and
MultiWOZ 2.3 datasets. As discussed above, stage two of our model was
the limitation to achieve better performance than CT on the MultiWOZ 2.3
dataset. The results on seen slots suggested that stage two of Coach was
not as effective as the one-stage methods on handling seen slots. Therefore,
considering to improve the robustness towards seen slots can be considered
an approach to improve slot type predictions for two-stage methods.
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Table 4.10: Comparison result of the multi-relation-based representation to
IRPs on the Snips2017 dataset

Domain IRP Multi-relation-based
AddToPlaylist 44.62 40.78
BookRestaurant 34.62 37.55
GetWeather 60.05 51.76
PlayMusic 39.42 33.22
RateBook 20.28 20.56
SearchCreativeWork 74.29 81.58
SearchScreeningEvent 37.04 38.01
Average 44.33 43.35

Finally, we show the comparison result of the multi-relation-based repre-
sentation and IRPs on the Snips2017 dataset in Table 4.10. As seen in the
table, although IRP performed better than the multi-relation-based represen-
tation on the average performance, the multi-relation-based representation
outperformed IRP over half of domains. This result demonstrated that the
multi-relation-based representation and IRP have their own advantages on
zero-shot slot filling.

4.5.2 Case studies

Finally, to intuitively show the improvements on slot entity predictions due to
the proposed representation, we show two examples by our model compared
to Coach in Figures 4.2 and 4.3.

Figure 4.2 shows the utterance ’Can you play a sonata.’ from the Play
Music domain from the Snips dataset. The correct IOB-slot tags indicate that
’sonata’ is a slot entity and corresponding to the slot type ’genre.’ In the
experiments, when the Play Music is set to be the zero-shot target domain,
the slot ’genre’ was an unseen slot that was not appeared in training. The
IOB tags of ours, Coach, and RZT are the slot entity prediction results of
corresponding models. As seen in the figure, Coach and the best method of
the Snips dataset, RZT, incorrectly predicted the ’sonata’ as a slot entity.
This is because, due to the domain shift problem, they hardly predicted the
slot entities from the context corresponding to unseen slots. On the other
hand, our model predicted the slot entity correctly. This case confirmed that
the proposed representation is effective in dealing with the slot entities that
correspond to unseen slots.

In Figure 4.3, the Rate Book domain is a seen domain in the experiment,
the Search Creative Work domain is the unseen domain. The slot ‘object
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Figure 4.2: Example of slot entity prediction results on the slot entity
corresponding to unseen slots

Figure 4.3: Example of slot entity prediction results on the slot entity
corresponding to seen slots

type’ in the Search Creative Work domain is explained differently from that in
the Rate Book domain. Specifically, the ‘object type’ indicates a book type in
the Rate Book domain, such as a novel or literature. While this slot indicates
the type of creative work in the Search Creative Work domain, such as a
movie or song. In Figure 4.3, the utterance and correct IOB-slot tags from
the Rate Book domain show an instance that mentioned ‘object type’ in the
Rate Book domain. The utterance and correct IOB-slot tags from the Search
Creative Work domain show an instance that mentioned ‘object type’ in the
Search Creative Work domain. In the utterance ‘Find a movie called no more
sadface,’ the ‘movie’ is a slot entity that corresponds to the slot ‘object type.’
As seen in the figure, Coach and RZT missed predicting the ‘movie’ as a slot
entity. This is because although the ‘movie’ corresponds to a seen slot type
‘object type,’ the context corresponding to the differently explained ‘object
type’ was unseen in training. Coach only considering contextual information
but not considering the semantic information of slots. RZT learned the
slot entity patterns corresponding to specific slots but does not consider
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the change of context environments. Therefore, they hardly handles the
slot entities from the unseen context that correspond to differently explained
seen slots. In contrast, our model using the proposed representation correctly
predicted the ‘movie’ as a slot entity. This case confirmed that the proposed
representation is more effective in predicting the slot entities from the context
corresponding to differently explained seen slots.

4.6 Summary

In this chapter, we proposed the multi-relation-based representation for deal-
ing with the domain shift problem of different context distributions on slot
entity predictions. As discussed above, our model using the proposed multi-
relation-based representation effectively alleviated domain shift problems for
slot entity prediction and improved zero-shot slot filling. Note that we used
simple structures on constructing models and did not use algorithms that
can be expected to improve model performance further, such as attention
mechanism. This is because our main goal was to evaluate the effectiveness
of the proposed representation. Adding attention mechanism is considered
as future work to further improve the model performance.

However, as shown in the results, the method of the previous study
for slot type predictions was ineffective in dealing with the domain shift
problem of unseen slots, so the improvement on slot entity predictions was
not fully brought out and the performance on unseen slots was not improved
much. Meanwhile, since the performance of complete zero-shot slot filling
is the key towards the ultimate goal of the task-oriented dialogue system,
only improving the slot entity prediction was not enough. Therefore, it is
necessary to explore the representation that could alleviate the domain shift
problems on slot type predictions.
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Chapter 5

Ontology-based representation

5.1 Objective

To deal with the domain shift problems of unseen slots as well as differently
explained seen slots on slot type predictions, we aimed to mine a repre-
sentation that could fill the knowledge gap between the source domains and
target domains. For this purpose, this chapter introduces the ontology-based
representation that describes the relationships between slots and values.
Specifically, we proposed two methods using ontology-based representations
to deal with domain shift problems in zero-shot slot filling. This chapter first
compared the two methods by preliminary experiments to choose a better
one from section 5.1 to section 5.4. From section 5.5, we combine the better
ontology-based representation with the multi-relation-based representation
to further alleviate domain shift problems in zero-shot slot filling.

5.2 Ontology

As discussed in previous chapters, the knowledge of unseen slots and differ-
ently explained seen slots are hardly learned by the model. We moved our
sights to the ontology to fill the knowledge gap between the source domains
and target domains. In general, the basic mission of an ontology is to figure
out what objects are, what ideas are, and how they relate to each other.
In dialogue systems, the ontology usually represents a knowledge base that
describes the relationships between slots and their values in a given dataset
[42, 43, 88].

Figure 5.1 gives an example of a part of the ontology of the Get Weather
domain from the Snips dataset. As seen in the figure, we could obtain all
possible values for a given slot. For instance, given a slot ’country,’ we
can obtain all possible values as ’Belgium’ and ’Canada’ from the ontology.
By reversing the use of the ontology, we could also obtain the slots that
correspond to a given value. For instance, given a value ’storm,’ we can
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Figure 5.1: Example of relationships between slots and values described in
the ontology

obtain all slots that have this value, which is the slot ’condition description’
in this example.

5.3 Ontology-based complementary knowledge

In practice, an ontology defines all possible slots and all possible values
of each slot for a given dataset. In this chapter, we assume the ontology
for each domain, whether source domain or target domain, is fully-defined.
Based on the fully-defined ontology, we use the definitions belonging to the
source domains in the training process. In the test process, we use the
definitions belonging to target domains in the ontology as the knowledge
of target domains. Since the ontology is used as a knowledge base that
is independent of any specific domain, the ontology does not change even
if the domain changes from one to another. Thus, the definitions in the
ontology become the representations that describe the intrinsic relationships
between slots and their values across domains. We used the ontology for
complementary knowledge to alleviate the problem of lacking knowledge in
new domains for handling unseen slots and seen slots.

We proposed two two-stage methods to utilize the ontology in zero-shot
slot filling. Specifically, stage one in both methods predicts slot entities, and
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we used the ontology for slot type prediction in stage two.
We first proposed a two-stage method that predicts slot entities in stage

one and predicts slot types in stage two by matching slot entities with the
values in the ontology. Specifically, we used identical matching that judge
whether two texts are totally the same or not. For brevity, we name this
method ’ontology-matching.’ In stage one, we used slot entity prediction
methods, such as Coach’s stage one, to predict IOB tags from the given
utterance to identify slot entities. In stage two, based on the IOB tags, we
extract the text sequence of each slot entity from the given utterance. Then,
we tried to match the slot entity’s text to the values in the ontology. For
any value that matched the slot entity’s text, the slot corresponding to the
matched value was chosen as the slot type candidate. After attempting to
match for all values in the ontology, we choose the slot type predictions based
on the following three situations of the number of candidates: (1) If there
is only one slot type candidate, the slot type candidate is chosen as the slot
type prediction for the given slot entity; (2) If there are multiple slot type
candidates, we randomly choose one candidate as the slot type prediction;
(3) If there are no slot type candidates, the slot type prediction will not be
performed, which means no slot type will be predicted as output. Meanwhile,
the situation of no slot candidates means no values were matched to the given
slot entity. This means the given slot entity should not be a value since this
slot entity does not appear in the ontology containing all possible values. We
treat the slot entity in this case as an incorrect prediction, and we correct the
IOB tags of such a slot entity to ’O’ tags to make the corresponding token
chunk not to be a slot entity.

The ontology-matching method handles the slot type prediction using
the relationships between slots and values in the ontology. The ontology
complements the knowledge gap between the source domains and target
domains to some extent. Therefore, this method could be expected to
alleviate domain shift problems to handle unseen slots and seen slots in zero-
shot slot filling. However, one problem should be considered in the situation
(2) of the method. In this situation, we randomly chose a slot candidate as
the prediction since there is no other context or slot information to choose
the candidate. This could lead to incorrect slot type predictions.

Considering the problem mentioned above, we proposed another two-
stage method in which we use the ontology for constraints on choosing
the slot type candidates and predict slot types from candidates considering
context and slot information. For brevity, we name this method ’ontology-
constraints.’ In this method, similar to the ontology-matching method, stage
one predicts IOB tags to identify slot entities in the given utterance. In stage
two, we tried to match the given slot entity to the values in the ontology to
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obtain slot type candidates and perform the slot type prediction following the
process of the ’ontology-matching’ method, except the situation (2), which
corresponds to multiple slot type candidates.

In the situation (2) of multiple slot type candidates, we first extracted the
context vector of slot entities from stage one. Then we used an encoder such
as BiLSTM to encode the context vectors into slot entity encoding repre-
sentation. Next, we obtain the vector representations of each slot candidate
by pooling the embedding representations of each slot description’s tokens,
which is the same process in obtaining the slot type vector representation
as described in Chapter 4. After that, we computed the softmax similarity
score between the slot entity encoding representation and each candidate’s
vector representation. The candidate with the highest score is then chosen
as the prediction result. The computations of the similarity score and the
slot type prediction are formulated as follows:

simj = ese · eslotj , slotk ∈ Sc, (5.1)

slotpred = argmax(softmax(sim1, sim2, ..., simj, ...)). (5.2)

here, Sc is the set of slot type candidates, ese is the slot entity encoding
representation, eslotj indicates the slot type representation of the j − th
candidate in Sc. The similarity score simj is the inner product of ese and
eslotj . The softmax function changes the values of similarity scores into
probability distributions. The slotpred is the slot type prediction.

In this method, the ontology provides the relations between slots and
their values as constraints to choose slot type candidates. The ontology-
based representation can thus fill the knowledge gap between domains to
some extent. Meanwhile, the slot type prediction from multiple candidates
considers the context information based on the slot entity encodings and the
slot type information based on the slot types. Thus, multiple slot candidates
could be distinguished by the proposed method, and a suitable one could be
chosen. Therefore, the proposed method can be expected to complement the
lack of knowledge between domains and handle unseen slots and seen slots.

5.4 Preliminary experiments

5.4.1 Model construction

We constructed two two-stage models to use the proposed methods us-
ing ontology-based representations into zero-shot slot filling. To precisely
evaluate the effectiveness of the ontology-based methods, we control the
variable of the slot entity prediction. Specifically, we used the previous
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Figure 5.2: Two-stage model structure of using the ontology-matching
method for slot type predictions in stage two

entity-context representation from Coach [22] as stage one of each model to
handle slot entity predictions. Stage two of each model handles slot type
prediction using the ontology-matching method and ontology-constraints
method, respectively. Figure 5.2 and 5.3 shows the structure of the two
models. For convenience, we name the two models ’ontology-matching model’
and ’ontology-constraints model.’ The slot description in the figure indicates
the slot type vector representation, and the slot entity encoding in the figure
indicates the slot entity encoding representation.

In stage one of both models, we first converted the tokens in the given
utterance into embedding representations. Then, we used a BiLSTM layer
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Figure 5.3: Two-stage model structure of using the ontology-constraint
method for slot type predictions in stage two

to encode the tokens’ embeddings into context encodings. The context
encodings are then fed to the CRF layer to obtain the IOB digits on each
token. The IOB tag with the highest probability is chosen as the prediction
for each token.

As shown in Figure 5.2, in stage two of the ontology-matching model,
we first identified the slot entities to extract the text sequence of each slot
entity based on the IOB tags from stage one, following the same process
described in Chapter 4. After obtaining the slot entities, we obtained the slot
type candidates by matching the slot entities to the values in the ontology.
Based on the situations of the slot type candidates, we chose the slot type
prediction following the process described in section 5.2. As a consequence,
we obtained slot type predictions for the slot entities that could match at
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least one value, or we canceled the slot entities that matched no values in
the ontology. Finally, the model merges the IOB predictions from stage one
and the slot type predictions from stage two into an IOB-slot tag sequence
as the final output.

As shown in Figure 5.3, In stage two of the ontology-constraints model, we
first identified the slot entities to extract the text sequence of each slot entity
in the same process as that in the ontology-matching model. Meanwhile, we
extracted the context vector sequences corresponding to each slot entity.
With the text sequences of slot entities, we obtained the slot type candidates
in the process described in section 5.2. Then, we used a BiLSTM to encode
the context vectors of each slot entity separately. As a consequence, we
obtained the slot type candidates and slot entity encoding of each slot entity.
Next, we choose the slot type prediction in the process described in section
5.2. Specifically, we obtained the slot type vector representations for the
situation of multiple candidates. We used eq 5.1 and eq 5.2 to compute
the softmax similarity score between the slot entity encoding and each
candidate’s vector representation. Then, we chose the slot type with the
highest score as the slot type prediction. Finally, the model merges the IOB
predictions from stage one and the slot type predictions from stage two into
an IOB-slot tag sequence as the final output.

5.4.2 Experiment setting

For preliminarily evaluating the effectiveness of the two ontology-based meth-
ods, we conducted our experiments on Snips and MultiWOZ 2.3 datasets.
As described in previous chapters, the Snips dataset contains seven domains
with 14484 utterances, 28 single-domain slots, and 25 multi-domain slots.
The MultiWOZ 2.3 dataset contains six domains with 43591 utterances, six
single-domain slots, and 24 multi-domain slots after the data cleaning. We
built ontologies for Snips and MultiWOZ 2.3 datasets by extracting all slots
and their values from the annotations of the datasets. The ontology of the
Snips dataset contains 53 slots with 245 values for each slot in average. The
ontology of the MultiWOZ 2.3 dataset contains 30 slots with 80 values for
each slot in average. The numbers of the values for different slots were diverse.
The slots describing names or times contains much more values than other
slots.

We used the two-stage methods Coach [22] and PCLC [23] as baseline
methods. Since stage one of these two baselines is the same as used in our
models, the evaluation could reflect the effectiveness of stage two of our
models more precisely. In the preliminary experiment, we aimed to find
a better method to use the ontology-based representation, so we did not
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compare with the best method for each dataset.
For the slot entity and slot type representations, we used the sum-slot and

sum-enc representations that are the same as in Coach to control variables.
For the parameter settings, we set the BiLSTM in stage one as one layer with
256 hidden units. In stage two of the ontology-matching model, no learning
parameters need to be set. In stage two of the ontology-constraints model,
we set the entity encoder BiLSTM as two layers with 256 hidden units in
each layer. For the word representations, loss functions, and optimizer, we
used the same setting as the experiment in the last chapter. For the training
strategies, evaluation metrics, and the settings for training, validation, and
test sets, we also used the same settings as the experiments in the last chapter
to make fair comparisons.

We used the slot F1 score for evaluating the model performance on each
domain, and we used the slot F1 score on each slot to evaluate the model
performance on unseen and seen slots. One-way ANOVA was used to measure
the significance level of the difference between methods.

5.5 Preliminary results and discussions

Tables 5.1 and 5.2 show the slot F1 scores of different methods on Snips
and MultiWOZ 2.3 datasets, respectively. In the tables, domain indicates
the model performance on each zero-shot target domain. Average means
the average performance among all domains in a dataset. The underlined
numbers indicate the better baseline method, and the bold numbers are the
best results on each domain and on average. The OM and OC indicate the
ontology-matching model and the ontology-constraints model, respectively.
The ’***’ indicates the corresponding proposed model has a significant
difference compared to the better baseline method on the level of p < 0.001.

As seen in Tables 5.1 and 5.2, Coach is the better baseline method on
almost all domains and average performances compared to PCLC, achieving
33.42 and 59.55 in the average slot F1 scores on Snips and MultiWOZ 2.3
datasets, respectively. By comparing the OM model and Coach, one can
see that the OM model outperformed Coach by 27.07 and 1.17 on Snips
and MultiWOZ 2.3 datasets, respectively. By comparing the OC model
and Coach, one can see that the OC model outperformed Coach on Snips
and MultiWOZ 2.3 datasets by 28.22 and 8.12, respectively. These results
demonstrated that by using the relationships between slots and values, the
ontology-based methods generally improved zero-shot slot filling.

Table 5.3 shows the averaged slot F1 scores of different methods on unseen
and seen slots in Snips and MultiWOZ 2.3 datasets. Table 5.3 (a) shows the
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Table 5.1: Results by different methods on the Snips dataset
Baselines Ours

Domain Coach PCLC OM OC
AddToPlaylist 47.30 46.92 68.93 71.11
BookRestaurant 31.30 27.25 67.89 67.59
GetWeather 45.97 37.92 75.23 72.01
PlayMusic 29.99 20.11 60.94 63.88
RateBook 9.60 20.08 38.86 42.54
SearchCreativeWork 50.55 49.21 64.37 65.95
SearchScreeningEvent 19.19 14.99 47.18 48.41
Average 33.42 30.93 60.49*** 61.64***

Table 5.2: Results by different methods on the MultiWOZ 2.3 dataset
Baselines Ours

Domain Coach PCLC OM OC
Attraction 66.07 68.49 69.79 67.43
Hotel 64.24 62.16 61.34 67.23
Restaurant 70.40 68.73 75.81 81.28
Taxi 39.17 38.30 32.64 49.04
Train 62.66 48.63 54.12 67.99
Others 54.75 55.77 70.60 73.02
Average 59.55 57.01 60.72 67.67***

results on unseen slots, and (b) shows the results on seen slots. The ’**’
and ’***’ indicate that the corresponding proposed model has a significant
difference compared to the better baseline method on the level of p < 0.01,
and p < 0.001. As seen in the table, Coach is a better baseline on unseen
and seen slots for both datasets. By comparing our models’ performances
with baselines, one can see that the OM model outperformed Coach by 42.01
and 12.28 on Snips and MultiWOZ 2.3 datasets for unseen slots, respectively.
The OC model further outperformed Coach by 44.69 and 20.96 on Snips and
MultiWOZ 2.3 datasets, respectively. While for the seen slots, the OM model
outperformed Coach by 22.19 on the Snips dataset but defeated by Coach
by 0.89 on the MultiWOZ 2.3 dataset. The reason will be discussed in the
following parts. On the other hand, the OC model outperformed Coach by
20.79 and 6.06 on Snips and MultiWOZ 2.3 datasets, respectively.

By comparing OM and OC models, the OC model achieved better
performance than the OM model on the unseen slots for both datasets and the
seen slots for the MultiWOZ 2.3 dataset. While the OM model outperformed
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Table 5.3: Results by different methods on unseen and seen slots
(a) Slot F1 score on unseen slots
Dataset Snips MultiWOZ 2.3

Baselines
Coach 5.23 Coach 16.82
PCLC 5.01 PCLC 16.47

Ours
OM 47.24 OM 29.10**
OC 49.92 OC 37.78**

(b) Slot F1 score on seen slots
Dataset Snips MultiWOZ 2.3

Baselines
Coach 47.34 Coach 64.79
PCLC 39.35 PCLC 63.03

Ours
OM 69.53*** OM 63.90
OC 68.13*** OC 70.85**

the OC model a bit on the seen slots for the Snips dataset. The main reason
was that some slots in one domain had shared values, and the OM method
could not judge the correct slot for a given value by random choosing. For
instance, in the Taxi domain from the MultiWOZ 2.3 dataset, the slots ’arrive
at’ and ’leave by’ have shared values of time, such as 11:00, 12:00. The OM
method could not judge which slot a given time should belong to. On the
other hand, the OC method took context information into account to choose
the correct slot, so the OC method is more robust in dealing with the values
shared by different slots. In addition, the MultiWOZ 2.3 dataset contains
many slots that have shared values. Besides the ’arrive by’ and ’leave at’
introduced above, the ’book people’ and ’stars’ in the Hotel domain have
shared values of numbers, and the ’departure’ and ’destination’ in the Train
domain have shared values of locations. Compared to the MultiWOZ 2.3
dataset, the Snips dataset has much fewer slots that have shared values. This
is also the reason that the OM method achieved much lower performance than
the OC method and even lower performance than the baseline on seen slots
on the MultiWOZ 2.3 dataset.

In summary, compared to the OM’s limited advantage on seen slots
of the Snips dataset, the insufficient of distinguishing the slots of shared
values could be considered a critical miss on zero-shot slot filling in practice.
Therefore, the results demonstrated that by choosing the slot type with the
consideration of context and slot information, the OC method deals with the
slot type prediction better than the OM method. With this, we combined
the method using multi-relation-representation and the ontology-constraint
method to further alleviate the domain shift problems in zero-shot slot filling.
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5.6 Experiment of combined method

5.6.1 Model construction

To further alleviate domain shift problems in zero-shot slot filling, we
combined the multi-relation-based representation and the ontology-based
representation to construct a two-stage model. Figure 5.4 shows the model
structure. Stage one follows the process of using the multi-relation-based
method described in section 4.3 in Chapter 4. Specifically, we obtained the
IOB tag predictions from stage one, which indicates the slot entities in the
given utterance. Stage two of the model follows the process of the ontology-
constraint model described in section 5.3. Specifically, we obtained slot type
predictions from stage two. Finally, the model merges the IOB predictions
from stage one and slot type predictions from stage two into an IOB-slot tag
sequence as the final output.

In this part, we compared the effectiveness of the mean-slot and sum-
slot slot type vector representations and the effectiveness of the last-enc and
sum-enc slot entity encoding representations.

5.6.2 Experiment setting

To comprehensively evaluate the proposed method using the multi-relation-
based and the ontology-based representations, we conducted experiments
on the Snips, MultiWOZ 2.3, and SGD datasets. As described in previous
chapters, the Snips dataset contains seven domains with 14484 utterances, 28
single-domain slots, and 25 multi-domain slots. The MultiWOZ 2.3 dataset
contains six domains with 43591 utterances, six single-domain slots, and 24
multi-domain slots after the data cleaning. The SGD dataset contains 20
domains with 70166 utterances, 63 single-domain slots, and 38 multi-domain
slots after data cleaning. In addition, we also conducted the experiment on
the Snips2017 dataset to compare the performance with IRPs that introduced
in the Chapter 3.

We follow the same process to build the ontology for SGD to that for
Snips and MultiWOZ 2.3 datasets. Specifically, we built the ontology for the
SGD dataset by extracting all slots and their values from the annotations of
the dataset. The ontology of the SGD dataset contains 101 slots with 109
values for each slot in average. Similar to Snips and MultiWOZ 2.3 datasets,
for the SGD dataset, the slots describing names or times contains much more
values than other slots.

To comprehensively evaluate our methods, we used the methods from
one-stage methods and two-stage methods including the best method on each
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dataset. Specifically, we used CT [19] (best on the MultiWOZ 2.3 dataset),
RZT [21] (best on the Snips dataset), Coach [22] (best on the SGD dataset),
and PCLC [23] as baselines. Note that we did not use ZAT [20] as a baseline
since ZAT has a huge time-consuming when training on the MultiWOZ 2.3
dataset and has an unacceptable time-consuming when training on the SGD
dataset.

For parameter settings, we used the same parameters described in section
4.3 in Chapter 4 for stage one. We used the same parameters for stage two
as the ontology-constraint model described in section 5.3. For the training
strategies, evaluation metrics, and the settings for training, validation, and
test sets, we followed the same settings as the experiments in previous
chapters to make fair comparisons.

In addition, we also conducted one-shot and few-shot learning experi-
ments on Snips and MultiWOZ 2.3 datasets to evaluate the robustness of our
models. Specifically, we use on instance from the zero-shot target domain for
training in the one-shot setting. And we use 25% and 50% instances from the
target domain in few-shot setting. To guarantee the reproducibility, we use
the one, 25%, and 50% instances from the beginning of each domain’s index.
According to the one-shot and few-shot settings, we cannot split the same
validation set from the zero-shot target domain as our previous experiments
did, as the previous validation set used the first 500 instances from the target
domain that overlapped with few-shot training instances. Therefore, we split
the validation set from source domains and use this validation set to choose
the best models. Specifically, we use first 80% instances of each source domain
and all data of few-shot instances from the target domain for training, and
we use the remained 20% instances from each source domains for validation.
The remaining data from the target domain was used for test. To make a
fair comparison among zero-shot setting, one-shot and few-shot settings, we
also conducted zero-shot slot filling in the similar setting by using the first
80% instances of each source domain for training the last 20% instances for
validation. In this setting, all instances from zero-shot target domains were
used for test.

5.7 Results and discussions

5.7.1 Experimental results and discussions

Tables 5.4, 5.5, and 5.6 list the slot F1 score results for zero-shot slot filling
for Snips, MultiWOZ 2.3, and SGD datasets, respectively. Limited by the
format of the dissertation format, we could not show the methods’ results
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Table 5.4: Results on the Snips dataset
(a) Results of Baseline methods
Domain CT RZT Coach PCLC
AddToPlaylist 46.03 50.27 47.30 46.92
BookRestaurant 39.26 34.52 31.30 27.25
GetWeather 66.72 61.44 45.97 37.92
PlayMusic 39.33 39.70 29.99 20.11
RateBook 13.83 25.01 9.60 20.08
SearchCreativeWork 36.65 38.40 50.55 49.21
SearchScreeningEvent 23.76 20.15 19.19 14.99
Average 37.94 38.50 33.42 30.93
(b) Results of proposed methods
Domain mean-last mean-sum sum-last sum-sum
AddToPlaylist 70.74 71.49 71.22 71.02
BookRestaurant 70.69 73.57 71.52 72.02
GetWeather 82.94 83.80 80.42 83.55
PlayMusic 78.84 80.32 78.49 78.88
RateBook 40.37 43.66 38.84 38.41
SearchCreativeWork 65.01 64.27 65.17 68.07
SearchScreeningEvent 57.85 59.69 57.87 58.81
Average 66.63*** 68.12*** 66.22*** 67.25***

for one domain in a single row. Accordingly, we split each table into two
parts, in which (a) lists the results from baseline methods and (b) lists the
results from the proposed models. In the tables, underlined numbers indicate
the best baselines for each dataset. Bold numbers indicate the best results
among the methods in each domain. The results from the proposed model
were obtained with four combinations of slot type vector representations and
slot entity encoding representations. The ’*,’ ’**,’ and ’***’ indicate that
the corresponding proposed model has a significant difference compared to
the best baseline method on the level of p < 0.05, p < 0.01, and p < 0.001.

By comparing the results for our models in Tables 5.4, 5.5, and 5.6, one
can see that the mean-sum combination demonstrated the best performance
on the Snips and SGD datasets, and the sum-sum combination demonstrated
the best performance on the MultiWOZ 2.3 dataset. For the Snips dataset,
RZT was the best baseline method. Our model outperformed RZT in all
domains. The best-preforming mean-sum combination outperformed RZT by
29.62 of the average slot F1 score. For the SGD dataset, Coach was the best
baseline method. In this case, our models outperformed Coach in almost all
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Table 5.5: Results on the MultiWOZ 2.3 dataset
(a) Results of Baseline methods
Domain CT RZT Coach PCLC
Attraction 65.94 64.86 66.07 68.49
Hotel 66.89 54.32 64.24 62.16
Restaurant 71.06 58.74 70.40 68.73
Taxi 52.86 51.16 39.17 38.30
Train 80.19 63.03 62.66 48.63
Others 58.49 58.93 54.75 55.77
Average 65.91 58.51 59.55 57.01
(b) Results of the proposed methods
Domain mean-last mean-sum sum-last sum-sum
Attraction 70.28 71.15 71.34 75.39
Hotel 66.62 67.85 66.82 66.93
Restaurant 78.10 77.28 77.43 76.57
Taxi 45.81 50.09 49.85 51.27
Train 72.82 75.09 71.21 74.78
Others 73.23 73.14 70.99 73.86
Average 67.81 69.10* 67.94 69.80*

domains. The best-performing mean-sum combination outperformed Coach
by 10.38 of the average F1 score. Finally, for the MultiWOZ 2.3 dataset, CT
was the best of the baseline methods. Our models outperformed CT in almost
all domains. The best-performing sum-sum combination outperformed CT
by 3.89 of the average slot F1 score. These results demonstrated that by
further alleviating domain shift problems, the use of the multi-relation-
based and ontology-based intrinsic representations significantly improved
the performance of zero-shot slot filling. Note that the results of PCLC
are not consistent with the results in our publication [1]. This is because
we employed the original implementation of PCLC in the publication [1].
The original implementation used modified slot name descriptions and the
incorrect optimization process, which were introduced in Chapter 2. We
used the universal slot name descriptions and correct optimization process for
PCLC to obtain the results in this chapter so that the results were different.

The results showed that our models improved baselines more significantly
on the Snips dataset than on the other two datasets. According to the
slot distributions in each domain described in Chapter 2, we speculate the
reason is that in the Snips dataset, the slots and contexts in the target
domains are more unrelated to the slots and contexts in source domains
than that in the other two datasets. For instance, for the target domain Book
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Table 5.6: Results on the SGD dataset

(a) Results of Baseline methods
Domain CT RZT Coach PCLC
Alarm 77.72 70.13 85.72 84.57
Banks 26.31 21.93 58.37 9.03
Buses 37.38 35.43 34.47 34.23
Calendar 77.56 77.80 81.51 77.52
Events 65.50 59.08 64.24 64.98
Flights 36.57 37.59 44.21 42.68
Homes 82.28 92.76 95.48 73.74
Hotels 39.57 46.68 44.86 40.82
Media 53.31 50.14 51.13 46.18
Messaging 53.51 49.57 73.50 59.94
Movies 55.50 59.19 64.93 60.56
Music 36.63 23.68 31.52 37.82
Payment 42.11 40.87 82.33 71.64
RentalCars 43.60 49.32 37.79 50.56
Restaurants 62.15 60.06 59.21 58.80
RideSharing 31.33 9.58 81.45 78.85
Services 91.95 91.39 95.36 90.47
Trains 52.56 56.08 91.11 87.08
Travel 94.75 94.07 98.45 98.26
Weather 95.76 95.26 98.66 98.61
Average 57.80 56.03 68.72 63.32
(b) Results of proposed methods
Domain mean-last mean-sum sum-last sum-sum
Alarm 86.64 84.02 81.04 82.83
Banks 83.66 84.48 84.91 83.01
Buses 36.62 36.75 38.71 38.84
Calendar 86.93 86.99 86.79 87.16
Events 75.11 75.17 75.91 75.61
Flights 42.39 44.13 43.00 40.91
Homes 98.98 98.86 98.83 98.75
Hotels 47.53 57.56 50.37 44.92
Media 75.64 75.18 73.30 74.07
Messaging 91.42 91.95 93.56 92.47
Movies 93.93 94.22 93.61 93.48
Music 66.19 65.07 67.50 67.85
Payment 96.60 97.81 96.81 97.08
RentalCars 40.60 40.12 41.34 41.66
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Restaurants 74.90 73.98 73.64 73.94
RideSharing 85.37 84.82 88.15 88.91
Services 99.34 99.40 99.33 99.33
Trains 93.82 94.03 93.61 94.44
Travel 99.88 99.82 99.66 99.76
Weather 99.25 99.19 99.22 99.23
Average 78.74*** 79.18*** 78.96*** 78.71***

Restaurant from the Snips dataset, the models were required to deal with
unseen slots, including ’restaurant name’ and ’served dish’ that is unrelated
to the training slots, such as ’album’ and ’time range.’ On the other hand,
for the target domain ’Homes’ in the SGD dataset, the models were required
to deal with unseen slots, including ’area’ and ’visit date’ that are similar
to some of the training slots, such as ’location’ and ’date.’ While in the
MultiWOZ 2.3 dataset, the unseen slots were much fewer than that in Snips
and SGD datasets. Based on such slot distributions, baseline models without
using the knowledge of target domains were ineffective in dealing with those
unseen slots and unseen contexts in the Snips dataset, while our model using
intrinsic representations complemented the knowledge gap between domains.
Therefore, our models improved baseline methods more significantly on the
Snips dataset than on the other two datasets.

To identify the most effective combination of slot type vector repre-
sentations and slot entity encoding representations, we performed a one-
way ANOVA among four combinations on each dataset. Similar to the
experiments in previous experiments, the one-ANOVA showed no significant
difference among four combinations (p > 0.1) in each dataset. Therefore, we
chose the most effective one by comparing the average performance of our
models over three datasets. According to the results in Tables 5.4, 5.5, and
5.6, the average performance of mean-last, mean-sum, sum-last, and sum-sum
combinations are 71.06, 72.13, 71.04, and 71.92, respectively. Accordingly,
the mean-sum combination outperformed others on the averaged performance
over three datasets, so it is the most effective combination to some extent.

According to the comparison results on the combinations of slot type
vector representations and slot entity encoding representations so far, we
could summarize that the sum-enc slot entity encoding representation is
generally more effective than the last-enc representation in zero-shot slot
filling. On the other hand, the mean-slot and sum-slot slot type vector
representations each has their own advantage in different situations, but they
do not significantly differ from each other. Therefore, the comparison results
suggested that it is better to use the sum-enc representation to obtain the
slot entity encodings, while the uses of mean-slot and sum-slot depend on
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Table 5.7: Comparison result of the combined model to IRPs on the
Snips2017 dataset

Domain IRP Combined model
AddToPlaylist 44.62 72.89
BookRestaurant 34.62 76.28
GetWeather 60.05 80.64
PlayMusic 39.42 81.23
RateBook 20.28 51.30
SearchCreativeWork 74.29 86.54
SearchScreeningEvent 37.04 60.91
Average 44.33 72.83***

situations.
Following the results, we chose the model of mean-sum combination as

our representative model and used it for the subsequential analysis.
Then, we show the comparison result of the combined model and IRPs

on the Snips2017 dataset in Table 5.7. As seen in the table, the combined
model outperfomed IRP on all domains and the average performance. This
result demonstrated that by further alleviate domain shift problems, the
combination of multi-relation-based and ontology-based representations are
more effecitve than IRPs for zero-shot slot filling.

5.7.2 Results on unseen and seen slots

Next, we investigated the effectiveness of our model on different slot types.
We compared the performance of our representative model and baselines for
both unseen and seen slot types. Similar to our previous experiments, we
computed the average slot F1 scores in a given dataset over all unseen slots
and seen slots to compress the domain-dependent problem on performances.
Table 5.8 shows the results. The bold and underlined numbers indicate
each dataset’s best results and the best baseline methods, respectively. The
’*,’ ’**,’ and ’***’ indicate that the corresponding proposed model has a
significant difference compared to the best baseline method on the level of p
< 0.05, p < 0.01, and p < 0.001.

As seen in Table 5.8 (a), for the prediction of unseen slots, Coach was the
best baseline method for the Snips and SGD datasets, and RZT was the best
baseline method for the MultiWOZ 2.3 dataset. In terms of the average slot
F1 score, our model outperformed the best baselines of Coach on Snips and
SGD, RZT on MultiWOZ 2.3 by 52.54, 19.47, and 9.49, respectively. These
results demonstrated that the proposed intrinsic representations significantly
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Table 5.8: Results on unseen and seen slots
(a) Slot F1 score on unseen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines

CT 3.99 CT 16.56 CT 37.55
RZT 5.02 RZT 19.95 RZT 38.44
Coach 5.23 Coach 16.82 Coach 41.00
PCLC 5.01 PCLC 16.47 PCLC 29.21

Ours mean-sum 57.77*** mean-sum 29.44* mean-sum 60.47***
(b) Slot F1 score on seen slots
Dataset Snips MultiWOZ 2.3 SGD

Baselines

CT 56.60 CT 73.36 CT 45.82
RZT 54.46 RZT 58.94 RZT 40.65
Coach 47.34 Coach 64.79 Coach 49.11
PCLC 39.35 PCLC 63.03 PCLC 46.35

Ours mean-sum 74.63*** mean-sum 74.12 mean-sum 66.08**

improved zero-shot slot filling on unseen slot types.
As seen in Table 5.8 (b), CT was the best baseline method for the Snips

and MultiWOZ 2.3 datasets, and Coach was the best baseline method for
the SGD dataset. In terms of slot F1 score, our model outperformed the
best baselines on Snips, MultiWOZ 2.3, and SGD datasets by 18.03, 0.76,
and 16.97, respectively. These results demonstrated that the proposed in-
trinsic representations effectively handled seen slot types by the complement
knowledge provided via the ontology.

5.7.3 Results on one-shot and few-shot settings

Then, we investigated the robustness of our model by one-shot and few-shot
experiments. Figure 5.5 shows the comparison results between our repre-
sentative model and the best methods on Snips and MultiWOZ 2.3 datasets.
Note that as described in section 5.6.2, we used a different experiment setting
for obtaining zero-shot slot filling performances for comparing with one-shot
and few-shot results, so the zero-shot results in this section is different to that
in previous sections. As seen in the figure, as training instances increase, the
performance of our model and baseline models all increased. Our model
outperformed baselines on every setting from one-shot to the few-shot of
50% training instances. These results demonstrated that our model is robust
on different data situations by alleviating domain shift problems.
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Figure 5.5: Comparison results between our model and the best method on
each dataset in one-shot and few-shot settings. (a) shows the results on the
Snips dataset; (b) shows the results on the MultiWOZ 2.3 dataset

5.7.4 Case studies

Finally, to intuitively show the improvement due to our model, we show
two examples of the zero-shot slot filling results by our representative model
compared with baseline methods in Figures 5.6 and 5.7.

Figure 5.6 shows the utterance ’Book Tun Tavern for morning in Norfolk
Island’ from the Book Restaurant domain in the Snips dataset. The correct
tags indicate that ’Tun Tavern’, ’morning’, and ’Norfolk Island’ are slot
entities, and they correspond to the slot types ’restaurant name’, ’time range’,
and ’country’, respectively. In the experiments, the ’restaurant name’ was an
unseen slot type, while ’time range’ and ’country’ were seen slot types. As
seen in the figure, the one-stage methods CT and RZT failed to capture the
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B- cityO I- city O B- time_range O B- country I- countryPCLC

Figure 5.6: Example of zero-shot slot filling results showing improvement in
the prediction of unseen slot

entire slot entity of ’Tun Tavern’, which is consistent with the argument in
[22]. For the ’Tun Tavern’ slot entity, Coach and PCLC incorrectly predicted
the slot type as ’cuisine’ and ’city’ because of the lacking knowledge in
the Book Restaurant domain due to domain shift problems. Coach also
incorrectly predicted ’book’ as a slot entity. In contrast, our representative
model correctly predicted each slot entity and each slot type.

In Figure 5.7, the slot type ’object name’ was a seen slot type that
appeared in the training domain Rate Book but has different explanations
due to the contexts in the zero-shot target domain Search Creative Work.
Specifically, the utterance and the correct tags of the Rate Book domain
indicate that the ’object name’ corresponds to ’The Forest’, which is a book
to be rated. On the other hand, the utterance and the correct tags of the
Search Creative Work domain indicate that the ’object name’ corresponds
to a requested song called ’Bliss Torn from Emptiness’. As seen in the
figure, the baseline methods CT, RZT, Coach, and PCLC all failed to predict
the complete slot entity ’Bliss Torn from Emptiness’ thus failed to predict
the slot type ’object name’. In contrast, by capturing the general and
specific characteristics of slot entities, our model using the multi-relation-
based representation predicted the slot entity ’Bliss Torn from Emptiness’
correctly. Then, by establishing the relationship between slots and values
by the ontology-based representation, our model correctly predicted the slot
type ’object name’ for the slot entity.

In summary, these examples confirmed the effectiveness of the proposed
intrinsic representations, and the combined use of the representations further
alleviated the domain shift problems on the slot entity predictions from
unseen contexts and the slot type predictions for unseen and seen slots.
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Figure 5.7: Example of zero-shot slot filling results showing improvement in
the prediction of differently explained seen slot

5.8 Summary

In this chapter, we proposed ontology-based representations for dealing
with domain shift problems of unseen slots and differently explained seen
slots. As discussed above, by establishing the relationships between slots
and values, the proposed representations effectively alleviated the domain
shift problems and significantly improved zero-shot slot filling by improving
slot type predictions. By combining the advantages the ontology-based
representation and the multi-relation-based representation, the combination
of intrinsic representations further alleviated domain shift problems and
improved zero-shot slot filling.

In summary, towards the ultimate goal of the task-oriented dialogue sys-
tem, the proposed representations generally alleviated domain shift problems
in zero-shot slot filling. However, how the improvements on zero-shot slot
filling contributes to the dialogue system was still not clear. Evaluating
the improvements on zero-shot slot filling on the dialogue system level is
necessary.

87



Chapter 6

Zero-shot slot filling’s contribu-
tion on the task-oriented dia-
logue system

6.1 Objective

In this research, we have mined intrinsic representations to improve zero-shot
slot filling. However, (1) the process of subsequential modules may alleviate
the influence of the errors from previous modules. Zero-shot slot filling
may not improve the performance of the entire dialogue system as much as
slot filling compared to conventional methods. In previous studies, whether
zero-shot slot filling benefits a complete dialogue system when encountering
unseen domains remained unclear. (2) Furthermore, previous studies mainly
focused on improving the overall performance of zero-shot slot filling, but
they may improved the performance on different slots. These improvements
may have different effects on the dialogue system. It was unclear how the
improvements of zero-shot slot filling affects the performance of the entire
dialogue system.

Clarifying these problems can provide suggestions for improving zero-shot
slot filling. Therefore, we investigated how zero-shot slot filling affected and
benefited the performance of the task-oriented dialogue system in this study.
To do so, we constructed and compared dialogue systems using different slot
filling modules when encountering unseen domains. Specifically, to make
a precise investigation on the slot filling module, we built a base system
and fixed the modules except the slot filling. Then, we replaced the slot
filling module with models trained on zero-shot and conventional methods.
Moreover, we employed an ideal slot filling process that could perfectly
perform slot filling for comparison.
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6.2 Dialogue system construction

6.2.1 ConvLab-2 platform

We employed the ConvLab-2 [14] platform to construct the dialogue system.
ConvLab-2 is a toolkit for building, evaluating, and diagnosing dialogue sys-
tems. This toolkit has various pre-trained or pre-defined modules for quickly
constructing a task-oriented dialogue system. Those prepared modules were
trained or defined by adapting specific datasets, such as the MultiWOZ
dataset [42]. Besides, ConvLab-2 provides an analyzer for diagnosing errors
and mistakes in the dialogue systems. To conduct dialogue experiments,
ConvLab-2 also provides a simulation agency to act as users to test the
dialogue system.

ConvLab-2 supports the pipeline, semi-end-to-end, and end-to-end struc-
tures by using specific modules. For instance, ConvLab-2 can be used to build
a pipeline system with the NLU of BERT-NLU, DST of rule-based DST, DP
of rule-based policy or MLEPolicy, and NLG of Template NLG. ConvLab-2
can also be used to build a semi-end-to-end system with the NLU+DST of
TRADE or SUMBT, the DP module, and the NLG module.

6.2.2 System construction

To reduce the influence of the accuracies of other modules on the performance
of the dialogue system, we used the pipeline system that showed high
performance as the base system: BERT-NLU + rule-based dialogue state
tracking + rule-based policy + template-based natural language generation
[18]. Each part of the base system can be directly employed with pre-trained
or pre-defined modules from ConvLab-2, which were adapted to specific
datasets.

To precisely investigate the contribution of zero-shot methods in dia-
logue systems when encountering unseen domains, we must guarantee the
accuracies of other modules on unseen domains. Since we cannot control
the influence of the domain shift problems on other modules, we simulated
a situation that only the slot filling module was influenced by the domain
shifts when encountering unseen domains. Additionally, we maintain other
modules to be able to deal with unseen domains.

To do so, we set the dialogue system as follows: Only for the slot filling
module, we trained the models by considering seen and unseen domains, as
described in Section 3.1. We did not change other modules so that they could
still deal with all possible domains based on pretraining or pre-defined rules
and templates for specific datasets.
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Figure 6.1: The process of the constructed task-oriented dialogue system

The process of our system is shown in Figure 6.1. In the process, we first
obtained the BERT-NLU’s results containing the domain, intention, slot, and
value. The domain and intention here indicate the task domain and user’s
intended actions, such as ’Attraction-Inform’ and ’Hotel-Request.’ Generally,
zero-shot slot filling approaches play the role of extracting the values from
given utterances, which corresponds to the action ’Inform.’ Accordingly,
we performed the following process based on three situations: (i) For the
’Request’ action, the slot filling module is not required to identify the values
for slots from given utterances. We maintained the full results of (domain,
intention, slot, value) that contained the ’Request’ actions from the BERT-
NLU; (ii) Some slots belonging to the ’Inform’ action were not required
to be identified from given utterances, such as the slot ’internet’ in the
Hotel domain, which requires the NLU module to determine whether there
is internet service. We also maintained the results containing such slots from
the BERT-NLU; (iii) Except for these two situations, we discard the slot and
value results and maintain the domain and intention results from BERT-
NLU. Then, we use the replaced slot filling module to obtain the slot filling
results for each maintained domain and combine the domain-intention results
with the slot filling results as the output results.

Afterward, we fed the results from all three situations to subsequential
modules. Finally, the system generated and provided responses to the user.

6.3 Experiment

6.3.1 Dataset

To evaluate the dialogue systems based on the settings described above,
as well as to guarantee that the dialogue situation is close to the real
world, we conducted our experiments on the MultiWOZ dataset [88]. In
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the dataset, the user and system generally complete dialogue with multiple
turns across multiple domains. Meanwhile, the domains in the dataset
are often encountered in daily life. In addition, the ConvLab-2 platform
has the pre-trained BERT-NLU and pre-defined rule-based DST, rule-based
policy, and template-based NLG modules that are adapted to the MultiWOZ
dataset. The performance of the system using these modules was shown
to be much better than that using other modules [14] on the MultiWOZ
dataset. Therefore, conducting our experiments on the MultiWOZ could be
benefited from these modules’ accuracy to precisely investigate the influence
of using zero-shot slot filling for the dialogue system when encountering
unseen domains.

6.3.2 Zero-shot slot filling training

To simulate the situation of encountering unseen domains, we trained zero-
shot slot filling and slot filling module on the MultiWOZ 2.3 dataset, which is
the latest version of the MultiWOZ dataset. We followed the same zero-shot
settings in our previous experiments to train all zero-shot slot filling models
but with a little modification.

For the zero-shot methods, in previous experiments, we used a part of the
zero-shot domain’s data as the validation set to choose the best model and
used the remaining as the test set. To simulate the zero-shot scenario in the
real world, where the zero-shot domain’s data is unavailable, we did not split
the zero-shot domain into the validation set and the test set. Specifically, we
used the last 20% instances from each training domain as the validation set
for choosing the best model. We used the zero-shot domain’s data as the test
set alone to evaluate the performance of zero-shot slot filling models. Then,
each model was used to construct a complete dialogue system following the
process described in section 6.2.

6.3.3 Dialogue system experiment setting

To evaluate the dialogue system’s performance, we employed the evaluation
process from ConvLab-2. In the evaluation process, another pipeline dialogue
system was used as the user agent to act as a user. The user agent was
based on the same pipeline system as the base system, which also consisted
of BERT-NLU + rule-based dialogue state tracking + rule-based policy +
template-based natural language generation.

In the experiments, the dialogues between the user agent and the dialogue
system were conducted as follows:
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1. At the beginning, the user agent obtained the user’s goals from the
pre-defined constraints in the MultiWOZ dataset.

2. Then, the user agent generated utterances based on the goals to ask
the system.

3. The system received and processed the given utterances and generated
responses.

4. The user agent received the system’s utterances and processed them.
5. The user agent generated new goals based on the dialogue and gener-

ated the dialogues for the system.

Then the dialogues were repeated from step 3 to step 5. When the user
agent determined that the dialogue was completed or the dialogue reached
the pre-defined max turn, the dialogue was over. In this study, we used the
default setting for the max turn 40. For every dialogue, an analyzer recorded
the user’s goals and dialogues for evaluation.

Since we trained six separate models by setting each domain in the
MultiWOZ 2.3 dataset as the zero-shot domain and trained three times
for each separate model, we constructed 18 dialogue systems for one slot
filling method. We evaluated them separately to obtain the performances.
For each system, we conducted 100 dialogues. Each dialogue consisted of
multiple turns. We conducted the experiments for each system three times
to reduce the influence of random initialization. Consequently, we conduct
5400 dialogues for each slot filling method in our experiment. The average
performance of the dialogue system was used for evaluation.

6.3.4 Evaluation metrics

To evaluate the performance of zero-shot slot filling, we applied the widely
used metric slot F1 score.

In evaluating the dialogue system performance, we applied a metric to
evaluate the performance of slot filling in the dialogue process [14]:

Slot F1 in dialogue: To investigate the relationship between the
performance of zero-shot slot filling and the performance of slot filling
through the dialogue process in which unseen domain is encountered, we used
slot F1 in dialogue to evaluate the slot filling during the dialogue process.
We compute the slot F1 in dialogue for the NLU results of case (3) described
in section 6.2. We did not count the results of case (1) and case (2) since we
did not perform slot filling by the replaced slot filling modules for these two
cases.

Complete rate: The ratio of the dialogues in which user goals were
completed by the system. The user goals generally indicate the slots that
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need to be requested. For instance, in the Hotel domain, a user may request
the information on the hotel’s price or area. Those goals are generated by the
user simulator. If the system answered all user’s requests after a dialogue
and filled the unknown values in the user’s request states, the dialogue is
treated as a completed dialogue. On the other hand, if the user’s request
states still contain unknown or uncertain values when the dialogue ends, the
dialogue is not completed. For instance, the initial user’s goal for the Hotel
domain is (Request, price, ?) and (Request, phone, ?). When the user asked
the system about the price, and the phone about a hotel and the system
answered with correct information, the user agency will record those answers
to change the uncertain value “?” into specific values, such as “area-west” and
“phone-0123456”. In this case, the dialogue is completed. The completion
rate is computed by dividing the total number of dialogues by the number
of completed dialogues.

Success rate: The ratio of the dialogues in which all user requests were
informed, and the booked entities satisfied the pre-defined constraints in
the dataset. Accordingly, judging whether a dialogue is ‘success’ or not
contains three aspects. The first one is that the dialogue system informed
all requested components by users. This aspect is similar to the judgment
of dialogue completion but more focused on the dialogue contents. The
dialogue completion considers whether the user’s goals were clear, and the
success focuses on whether the requested components within the dialogue
were informed. The second and third ones are whether the booked entities
satisfy the constraints and whether the domains of the booked entities
satisfy the constraints. Since we simulate a dialogue process by employing
user agency, the constraints could be obtained for each dialogue from the
definitions in the dataset. The booked entities indicate what entities the
dialogue system booked for the user; the domains of the booked determine
which domain the system performed booking. These two aspects reflect
whether the system correctly performed booking for the user. For a dialogue,
if the system informed all requested components correctly and booked that
satisfied the pre-defined constraints of entities and domains, the dialogue is
treated as ‘success.’ Otherwise, the dialogue is not successful. The success
rate is computed by dividing the total number of dialogues by the number
of the success dialogues.

Inform F1: The metric in evaluating how the dialogue system correctly
informed information. In the computation process of inform F1, if we treat
the requests in the user’s goal as the golden truths, the requests that were
informed correctly by the system are counted as true positive samples (TP).
While the requests that were not informed are counted as false negative
samples (FN). The system incorrectly informed requests, which are the
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requests that the user did not need to request, are the false positive samples
(FP). Then the inform F1 can be computed as follows:

F1 =
TP

TP + 1
2
(FP + FN)

(6.1)

Book rate: The ratio of booked entities satisfied the pre-defined user
constraints. This metric is specific to evaluate how the bookings were
performed. Although the success rate considered the correctness of booked
entities, since the booking actions are not necessary for all dialogue scenarios,
the booking rate is used to exactly evaluate the booking accuracy. The
booking rate is computed by dividing the number of all necessary booking
contents by the number of satisfied booked entities.

For all metrics, one-way ANOVA is used to examine whether the differ-
ence is significant or not between every two methods or systems.

6.3.5 Comparison methods

For our purpose, we used three kinds of methods as the slot filling module
in the dialogue system.

Zero-shot slot filling methods: We employed our best model of
combining the multi-relation-based and ontology-based representations as a
method for replacing the slot filling module. For convenience, we name our
model the intrinsic representation approach (IRA). We also used CT [19] and
Coach [22] as the representative methods from the one-stage approach and
the two-stage approach, respectively. For the dialogue system using these
zero-shot methods, we followed the process described in Section 6.2.

Conventional methods: To investigate whether zero-shot methods
contribute to the dialogue system compared with conventional methods, we
used BiLSTM-CRF [9] method to construct baseline systems. Generally,
unlike zero-shot methods that could predict slots for each domain maintained
from NLU’s results, conventional methods could not perform slot filling for
specific domains. To employ the BiLSTM-CRF method for comparison, we
designed two training and predicting processes:

1. We used the output label form (domain-IOB-slot) to train the model.
Thus, the model can simultaneously predict slots and domain names.
In slot filling evaluation on zero-shot target domains, since the ground
truth labels do not include domain names, we use the model to predict
the labels formed as (domain-IOB-slot) and discard the ’domain’ com-
ponent from the results for evaluation. In the process of the dialogue
system, for the three cases described in Section 2, we did not change
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the process for case (i) and case (ii). For case (iii), we further discarded
the domain names in BERT-NLU results. Then, we used the BiLSTM-
CRF model to predict domain, slot, and value results and combined
the action ’Inform’ as the NLU’s output in the dialogue system.

2. Since process (1) can only predict the domain names that appear in
training and cannot predict unseen domain names, the model with
process (1) will not correctly predict any results for unseen domains.
This may make the comparison ambiguous since we could not know
whether the difference in system performances was due to the domain
name prediction or slot filling. We designed another training and
predicting process to make the comparison clearer for our purpose.
Specifically, we used the label form (IOB-slot) to train the model, where
the model was not required to predict domain names. Although the
model still cannot predict unseen slots, the model can predict seen slots
in unseen domains.
In slot filling evaluation, we directly used the labels formed (IOB-slot)
for evaluations. In the process of the dialogue system, for case (iii) in
Section 2, we first obtained all possible domains that appeared in the
utterance, which is similar to our action for zero-shot methods. Then,
we used the BiLSTM-CRF model to obtain slot filling results. Next,
we attempted to match each slot in the results to possible domains to
find whether the slot belonged to any domain. If only one domain
was matched, we combined the slot-value result with the domain-
action (domain-Inform) result as the output; If multiple domains were
matched, we randomly selected one domain as the matched domain
and combined the slot filling result with the domain-action result as
the output; If no domains were matched, we discard the slot filling
results.

According to the process settings, process (1) could be expected to
maintain close performances of original BiLSTM-CRF on handling seen
domains but could not deal with unseen domains. On the other hand,
process (2) improved the robustness of handling unseen domains if the unseen
domains contained seen slots. Moreover, process (2) could be expected to
improve the robustness for seen domains because the slot set space was
smaller in process (2) than in process (1). The reason is that when seen
domains have overlapped seen slots, the overlapped slots in different domains
are treated as the same class in process (2) but are treated as different classes
in process (1).

The ideal method: Finally, we investigated whether the constructed
dialogue systems are generally well-performed or not compared to an ideal
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system with a perfect slot filling module. To realize the ideal system, in the
simulation process described above, we could access the ground-truth NLU
results generated by the user’s agency. We use the ground-truth results as
the NLU results in the ideal dialogue system. Accordingly, the ideal system
will have a perfect prediction for slot filling and domain detections. The ideal
system would only be investigated for comparison with the dialogue systems’
performances and will not be compared in zero-shot slot filling performance.

In summary, we compared six dialogue systems using different slot filling
modules or slot filling settings, including two conventional methods based
on BiLSTM-CRF, three zero-shot methods of CT, Coach, and IRA, and an
ideal system with a perfect slot filling module.

6.4 Results and discussions

6.4.1 Experimental results and discussions

We first investigated the zero-shot slot filling performance. Figure 6.2 shows
the domain average performance of zero-shot slot filling of different methods.
P1 and P2 indicate the BiLSTM-CRF model using process (1) and process
(2) in Section 3.4. According to the one-way ANOVA, the differences between
every two methods, except between P1 and P2, were significant on the level
of p < 0.001. While the difference between P1 and P2 was not significant.
The average results of P1 and P2 show that P2 outperformed P1 by 0.55
on the average slot F1 score. The results of zero-shot methods and better
conventional model P2 show that Coach achieved an improvement of 9.94 on
the average slot F1 score. CT and IRA further improved P2 by 14.46 and
18.70 on average slot F1 scores, respectively. These results confirmed that
by alleviating the domain shift problems, zero-shot methods more effectively
handle unseen domains than conventional methods.

Next, we investigated whether zero-shot slot filling benefited the dialogue
system. Figure 6.3 shows slot F1 in dialogue performances of different
methods. In Figure 6.3, according to one-way ANOVA, the difference
between every two methods was significant on the level of p < 0.001
except for the difference between the P2 and Coach, which was not shown
a significant difference. For clear looking, we did not make annotations
of significant levels. Figure 6.4 shows four dialogue performance metrics,
including complete rate (a), success rate (b), inform F1 (c), and book rate
(d). In Figure 6.4, the ’*,’ ’**,’ ’***’ annotated between the two methods
showed the significant difference levels between the two methods according to
one-way ANOVA, which are p < 0.05, p < 0.01, and p < 0.001, respectively.
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Figure 6.2: Average performance in zero-shot slot filling of different methods

Figure 6.3: Average performance on slot F1 in dialogue by dialogue systems
using different slot filling modules

By comparing the results in Figure 6.2 and Figure 6.3, with the improve-
ment of 9.94 on zero-shot slot filling, the system using Coach improved the
system using P2 by 0.10 on slot F1 in dialogue. Next, with the improvement
of 14.46 on zero-shot slot filling, the system using CT improved P2 by 2.2
on slot F1 in dialogue. Finally, with the improvement of 18.70 on zero-
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Figure 6.4: Average performance on dialogue evaluation metrics by dialogue
systems using different slot filling modules. (a) Performance on the complete
rate; (b) performance on the success rate; (c) performance on the inform F1;
(d) performance on the book rate

shot slot filling, IRA further improved P1 by 6.08 on slot F1 in dialogue.
These results demonstrated that the improvement of zero-shot slot filling
generally contributes to the performance of slot filling in dialogue systems
when encountering unseen domains. Note that the zero-shot methods
improved P2 relatively less on slot F1 in dialogue than on zero-shot slot
filling. The reason is that the system faced utterances about unseen domains
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as well as utterances about seen domains through dialogues. Therefore,
the advantages of zero-shot methods on zero-shot target domains were not
completely reflected in slot filling through dialogues.

The performances in Figure 6.3 and Figure 6.4 show that although
the ideal system performed perfectly on slot filling with a slot F1 in the
dialogue of 100, the ideal system did not outperform all others on inform F1.
Moreover, Coach was defeated by P2 on complete rate and inform F1 by 3.5%
and 3%, respectively, although Coach and P2 had close performances on slot
F1 in dialogue. CT was defeated by P2 on inform F1 by 0.7%, although
CT outperformed P2 on slot F1 in dialogue. Accordingly, complete rate and
inform F1 performances showed different tendencies to slot F1 in dialogue.

To find the reasons for these results, we fixed one random seed to make
all dialogue systems face the same user goals and analyzed the dialogue
logs. We found that in some dialogues, the user agent did not ask about
all the contents that should be requested. For instance, in a dialogue about
booking a restaurant and hotel, the pre-defined goals contained the requests
for the phone number and address of a restaurant and the phone number
of a hotel. These goals should be requested in the dialogue so that the
dialogue system can give the user information to help the user to complete
the booking. However, the user agent asked about the phone number of
the hotel in some cases but did not in other cases. One reason could be
considered that the dialogue process is different due to the dialogue state
tracking and dialogue policy in both the user agent and the dialogue system
sides. For instance, with the same goal setting mentioned above: in one
case, the user agent asked about the hotel in the north area, but the dialogue
system did not find any satisfied candidates, so the user agent did not further
ask about the hotel’s phone number; in another case, the user agent asked
about the hotel in the north area but had a different context. The dialogue
system found candidates for the user, so the user further asked for the phone
number, and the system responded to that. In the latter case, the dialogue
was determined as ’complete’ because the system informed all contents that
should be requested. The former case was not ’complete’ because the hotel’s
phone number was not informed. Similar to the complete rate, for the inform
F1, if the user agent did not ask about all requests in the pre-defined goals,
the system could not inform about those requests, which degraded the inform
F1. These results explain the inconsistency between the complete rate and
slot F1 in dialogue and between inform F1 and slot F1 in dialogue. These
results also suggested that the complete rate and inform F1 are sensitive
to other modules rather than slot filling. The errors of other modules can
degrade the entire system, even if the slot filling module does a good job.
Therefore, although improving the slot filling module contributes to the
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system performance, such an improvement may not consistently improve all
aspects due to the limitations of other modules.

On the other hand, the success rate and book rate showed more consistent
tendencies with slot F1 in dialogue than the complete rate and inform F1.
The only inconsistent result was between Coach and P2. As shown in Figure
6.3, Coach and P2 had close performances on slot F1 in dialogue, while
in Figure 6.4 (c), Coach was slightly defeated by P2 on success rate. By
analyzing and comparing the dialogue logs between Coach and P2, we found
the main reason to be that the Coach’s errors usually led the dialogue system
to mismatch values and slots. For instance, for the utterance ’I also need a
hotel. It should have free WIFI. It doesn’t need to have parking. I would like
a 3 star hotel though, please.’ Coach incorrectly predicted the number ’3’ as
the hotel type, while the correct slot of ’3’ should be the number of stars of
the hotel. The error caused by the Coach made the system provide incorrect
information or unable to find satisfactory candidates for the user. Thus, this
type of error may break the dialogue before the user makes all requests. On
the other hand, P2’s errors were usually missing predictions. For instance, for
the same utterance above, the dialogue system using P2 correctly predicted
the ’hotel’ as the hotel type but did not make any prediction for ’3’. The
error caused by P2 can make the system provide candidates with uncompleted
constraints, but the user still has the chance to ask about the points that
were not satisfied (although the user may not ask), so the dialogue system
can complete the dialogue and satisfy the user’s goals. Therefore, Coach
was defeated by P2 on the success rate. Moreover, CT and IRA had a few
errors of mismatching values and slots. Other errors by CT and IRA were
similar to P2. Therefore, the performance of CT and IRA showed consistent
tendencies in the success rate and book rate to slot F1 in dialogue. These
results suggested that alleviating the error of mismatching slots and values
in zero-shot slot filling can be important in improving the performance of the
dialogue system.

Finally, towards the ultimate goal, the domain adaptable task-oriented
dialogue system need to be as good performance on unseen domains as the
system that trained on unseen domains. We compared the performance of
the system using IRA module with the base system (BERTNLU + rule-based
DST + rule-based DP + template-based NLG) to investigate the performance
difference between a domain adaptable system with a well-performed conven-
tional system to show the improvement directions in future. The slot filling
performance of BERTNLU was reported as 89.03 on the test set containing
all domains of MultiWOZ 2.3 dataset [88]. Although this performance was
obtained from a different experiment setting to our research, BERTNLU can
be considered generally better than IRA on unseen domains since BERTNLU
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Figure 6.5: Comparison results between the domain adaptable system using
IRA and the base system

was trained on all domains. Figure 6.5 shows the comparison result between
systems. As seen in the figure, the system using IRA outperformed the
base system on complete rate and inform F1. However, as discussed above,
these two metrics were sensitive to other modules besides the NLU, so the
base system may suffered from the limitations of other modules. The better
performance of the system using IRA cannot demonstrate that the domain
adaptable system was better than conventional system. Nonetheless, these
results suggested that the bottleneck for the system using IRA is on other
modules rather than slot filling. It is important to comprehensively improve
the system by considering all modules and their combined effects. On the
other hand, the domain adaptable system using IRA was defeated by the
base system on success rate and book rate. This is because these two metrics
are related to the NLU module’s performance, and IRA was not as good
performance as BERTNLU on unseen domains. These results suggested that
developing domain adaptable system by improving the zero-shot capacity
for unseen domains is still necessary towards the ultimate goal of the task-
oriented dialogue system.
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Figure 6.6: Example of explaining how zero-shot methods benefit to the
dialogue system

6.4.2 Case study

In this section, we give an example in Figure 6.6 to show the most benefit
of zero-shot methods to the dialogue performance. In Figure 6.6, the
’Attraction’ domain is the unseen domain. Additionally, ’user in’ and ’sys in’
indicate the NLU outputs of the user agent and dialogue system, respectively,
and ’user out’ and ’sys out’ are the goals generated by the user agent and
dialogue system to generate the next utterance. ’User’ and ’Sys’ are the
dialogue logs. As seen in the figure, after the user requested an attraction,
the user informed detailed needs of the attraction. The user’s detailed
information is usually related to the detailed requests, which is important for
making a satisfactory booking and completing all requests of the user. The
dialogue system using conventional methods missed the prediction for the slot
’Type’ for detailed needs, so the dialogue system recommended an attraction
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that did not satisfy all requests of the user, which made the dialogue system
finally fail to satisfy the user’s requests and made the dialogue unsuccessful.
On the other hand, the system using zero-shot methods correctly understood
the details based on the correct slot filling results, so the system gave a
satisfactory recommendation and finally filled all requests of the user to make
the dialogue successful. This case study demonstrated that by alleviating
domain shift problems for handling unseen domains, the largest benefit of
using zero-shot methods in the dialogue system is to avoid miss predictions
to satisfy all requests of the user.

6.5 Summary

In this chapter, we investigated whether zero-shot slot filling benefits the
task-oriented dialogue system when encountering new domains that contain
unseen slots. Furthermore, we investigated whether the improvements in
zero-shot slot filling contribute to the performance of the dialogue system.
The results demonstrated that by handling slots well in unseen domains, zero-
shot methods generally improved the slot filling in dialogues and consistently
improved the success rate and book rate. Nonetheless, due to the limitations
of other modules in the dialogue process, the improvements by zero-shot slot
filling sometimes cannot consistently improve the performance of the dialogue
system in specific aspects, such as the complete rate and inform F1. The
results also suggested that alleviating the errors of mismatching values and
slots in slot filling can improve the performance of dialogue systems. These
results also confirmed that our research on mining intrinsic representations
to improve zero-shot slot filling is an effective approach towards the ultimate
goal of the task-oriented dialogue system.
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Chapter 7

Conclusion and future works

7.1 Summarization of the research

This research aimed to address domain shift problems towards the ultimate
goal of the task-oriented dialogue system, which is to build a domain-
adaptable system that can perform zero-shot adaptation to any given domain
without training instances. Specifically, we focused on the zero-shot capacity
of the slot filling module in the dialogue system since the intended compo-
nents extracted by the slot filling module are the basis of the subsequential
processes in the dialogue system. For our purpose, we mined the intrinsic
representations that describe the intrinsic characteristics of slots, values,
and the relationships between slots and values for dealing with the domain
shift problems in zero-shot slot filling. These intrinsic representations were
expected to provide transferable information across domains effectively.

In this research, we first proposed inference relation paths (IRPs) from the
knowledge graph on dealing with the domain shift problem of semantically
dissimilar unseen slots. We found that IRPs implicitly carry the relation-
ships between slots and their values by analyzing a number of IRPs. We
used IRPs as slot descriptions with the one-stage approach for zero-shot
slot filling. Experimental results demonstrated that IRP slot descriptions
provided effective transferable information compared to using conventional
slot descriptions alone. Further analysis showed that IRP slot descriptions
were more effective than conventional descriptions in dealing with unseen
slots. However, although IRP alleviated domain shift problems of unseen and
seen slots, the results showed that the absolute improvements were not high.
Moreover, obtaining IRPs was not flexible since the knowledge graph usually
does not cover all possible slots and values in practice. In addition, it is hard
to analyze and explore intrinsic representations under the interpretability
limitation of the one-stage approach.

To overcome the limitations of IRPs and the interpretability limitation of
the one-stage approach, we proposed the multi-relation-based representation
to alleviate the domain shift problems to deal with the domain shift problem
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of different context distribution with the two-stage approach. Specifically, we
focused on the slot entity prediction. The slot entity prediction is the premise
of overall zero-shot slot filling, so improving slot entity predictions is expected
to improve zero-shot slot filling. The multi-relation-based representation
captures the entity-slot relation by considering all possible slots in a given
domain and the entity-context relation by considering various context envi-
ronments. Therefore, the proposed representation was expected to describe
intrinsic characteristics of slot entities to alleviate the domain shift problem.
Moreover, the proposed representation could be obtained from the given slots
and utterances and thus was more flexible than IRPs. Then, we constructed
a model to utilize the multi-relation-based representations in zero-shot slot
filling. Experimental results demonstrated that the proposed representation
was effective on predicting slot entities from the context corresponding to
unseen slots as well as the context corresponding to differently explained seen
slots. Further analysis showed that by alleviating domain shift problems in
slot entity predictions, the proposed representation improved zero-shot slot
filling compared to previous studies. However, the improvements on unseen
slots were not high, and the limitations of slot type predictions cannot bring
out the advantages by the improvements of slot entity predictions.

To alleviate domain shift problems on unseen slots and seen slots in
slot type predictions, we proposed ontology-based representations to fill the
knowledge gap between domains. The ontology is a knowledge base that
describes the relationship between slots and values. With the assumption
that the ontology is fully-defined for both unseen and seen domains, the
ontology would not change when the domain shifts from one to another, thus
describing intrinsic relationships between slots and values across domains.
We proposed two methods to use the ontology for zero-shot slot filling: using
the ontology as a text-matching base and using the ontology for constraints.
The results demonstrated that the two methods both improved zero-shot slot
filling compared to previous studies, and using the ontology for constraints
was more robust at distinguishing the slots that have shared values. We
further combined the multi-relation-based representation and the ontology-
based representation to alleviate domain shift problems. The results demon-
strated that the combination of two representations further alleviated domain
shift problems and significantly improved zero-shot slot filling. Further
analysis showed that the proposed representations significantly improved the
predictions on unseen slots as well as differently explained seen slots.

With the three proposed intrinsic representations, we alleviated domain
shift problems on unseen slots, differently explained seen slots, and different
context distributions. We summarize the domain average results in Table
7.1. In the table, I indicates the performance using IRPs, M indicates the
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Table 7.1: Summarization of the performance of using intrinsic representa-
tions

Dataset I M O M+O
Snips2017 44.33 43.35 - 72.83
Snips - 39.16 61.64 68.12
MultiWOZ 2.3 - 62.32 67.67 69.10
SGD - 69.59 - 79.18

performance using the multi-relation-based representation, O indicates the
performance using the ontology-based representation, and M + O indicates
the performance of the combined use of the multi-relation-based representa-
tion and the ontology-based representation.

As seen in Table 7.1, the performances by using IRPs and using the
multi-relation-based representation were on a similar level, while using the
ontology-based representation significantly improved the performance. The
combined use of the multi-relation-based and ontology-based representations
further improved zero-shot slot filling. From these results, we can summarize
that the ontology-based representation is the most effective one since it
establishes the relationships between slots and values, which is important
for handling unseen slots as well as seen slots. The limitation of using the
ontology is that it needs to be fully defined in our research. How to deal
with the situation that the ontology is not fully defined for all domains
is considered to be a future work. Compared to the ontology-based rep-
resentation, the multi-relation-based representation’s strength is to predict
slot entities correctly. With the improvement in slot entity predictions, the
advantages of the ontology were more brought out. The limitation of the
multi-relation-based representation is that when the slot sets increase, the
computation complexity will increase. How to use a limited set of slots
to compute the multi-relation-based representation could be a future work
to reduce computation complexity. Compared to the two representations
above, the IRP took commonsense knowledge into account, which makes
IRPs potentially handle unseen slots in a similar way as humans do. However,
it is not flexible to extract IRPs based on present technologies. Developing
the representations of knowledge graphs that can be used to extract IRPs
between arbitrary entities could be expected to alleviate the inflexibility of
IRPs.

On the other hand, the results show that the best performances using
the intrinsic representations still have a gap to the perfect slot filling. To
further alleviate domain shift problems to improve zero-shot slot filling,
it is necessary to clarify how domain shift problems influence the model
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performance more quantitatively. However, it is hard to analyze the role of
each component of domain shift problems in zero-shot slot filling so far.
For instance, by revisiting the performance of each specific slot in three
datasets, we found that the performance on the unseen slot ’playlist owner’
from the Add To Playlist domain was low, which was about 0.38 on the slot
F1 score. The reason for the low performance can be that the slot is unseen,
but the performances on other unseen slots were not as low as the ’playlist
owner.’ The reason for the low performance could also because the context
situation of ’playlist owner,’ but the context situations of other unseen slots
were also diverse for the model. It is hard to analyze how domain shift
problems influenced the performance of the slot ’playlist owner.’ Therefore,
developing the methods of quantitatively analyzing domain shift problems
can be effective for further analyze domain shift problems to improve zero-
shot slot filling.

After improving zero-shot slot filling by intrinsic representations, whether
the improvements on zero-shot slot filling contribute to the performance
of the whole dialogue system was still not clear. For this problem, we
investigated the performances of different dialogue systems encountering
zero-shot domains. We constructed dialogue systems using different slot
filling modules, including conventional method-based modules and zero-shot
method-based modules. The investigation results demonstrated that the
dialogue systems using zero-shot slot filling modules were more effective
than those using conventional slot filling modules when encountering unseen
domains. Furthermore, the improvements in zero-shot slot filling generally
contributed to the performance of dialogue systems from different aspects,
although some specific aspects did not consistently improve with the im-
provements of zero-shot slot filling. Therefore, improving zero-shot slot filling
could be an approach towards the ultimate goal of the task-oriented dialogue
system.

7.2 Conclusion

In conclusion, towards the ultimate goal of the task-oriented dialogue system,
this research mined three intrinsic representations from multiple aspects to
address domain shift problems of unseen slots, differently explained seen
slots, and different context distributions. Specifically, this research mined
the inference relation path representation to describe implicit relationships
between slots and values, the multi-relation-based representation that cap-
tures the general and specific characteristics of slot entities, and the ontology-
based representation that describes intrinsic relationships between slots and

107



values. Experiments demonstrated that the proposed representations effec-
tively alleviated domain shift problems on zero-shot slot filling. This research
further confirmed that the improvements in zero-shot slot filling contributed
to improve the performance of the whole dialogue system. Therefore, by
alleviating the domain shift problems in zero-shot slot filling, the proposed
representations were effective towards the ultimate goal of the task-oriented
dialogue system.

7.3 Future work

Towards the ultimate goal of the dialogue system, this research concentrated
on alleviating domain shift problems by mining intrinsic representations.
Future studies may be improved from the following aspects:

1) Methods for analyzing domain shift problems
As discussed in Section 7.1, it is necessary to analyze the influence

of domain shift problems on specific slots to clarify the reasons for low
performances. However, it is hard to quantitatively clarify the influences
so far. Therefore, developing the methods for clarifying the domain shift
problems on each specific slot can be expected to be a tool to further
alleviate domain shift problems for improving zero-shot slot filling. One
idea is to quantitatively statistic the difference of vocabularies and utterance
patterns between source domains and target domains to clarify the influence
of the difference in context distributions. Another idea is to compare the
mentioning patterns of unseen slots and training slots to clarify the difference
between unseen slots and seen slots besides semantical similarity.

2) Obtaining knowledge from pre-trained models
Since a real understanding of languages is considered necessary to handle

unseen contents as people do, the knowledge, such as commonsense knowl-
edge defined in the knowledge graph, is necessary for zero-shot slot filling.
However, as discussed in Section 7.1, the knowledge from the knowledge
base, such as the inference relation path used in this research, is not flexible
to be used in practice. Therefore, finding a flexible knowledge representation
to describe the relations between slots and values is necessary. One idea
is to fine-tune a knowledge-enhanced pre-trained model with the task of
optimizing the representations of entity relationships.

3) Methods dealing with non-fully-defined ontology
The ontology was useful to constrain the slot candidates in zero-shot slot

filling. However, although the ontology is assumed to be fully-defined to
include all possible values for a slot, new values can be appearing fast in
practice. Therefore, developing a method to deal with incomplete ontology
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could be better than relying on a complete ontology.
4) Multimodal methods for zero-shot dialogue system
Human interactions in dialogue not only rely on linguistic information,

but also rely on paralinguistic and nonlinguistic information. Other modali-
ties besides text could also be effective in providing transferrable information
across domains to complement the limitations of using text alone. This can
be expected to further alleviate domain shift problems when adapting the
dialogue systems to new domains. Therefore, taking audio, vision, and other
modalities into account and developing a multi-modality dialogue system
could be an approach towards the ultimate goal of the task-oriented dialogue
system.
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