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Abstract
Coded modulation increases the spectral efficiency of wireless communication sys-

tems. Lattice codes are elegant and powerful structures for coded modulation that not only

can achieve the capacity of the additive white Gaussian noise (AWGN) channel, but also

are a key ingredient to many multi-terminal schemes that exploit linearity properties [1–3].

There is an always-increasing demand for increased spectrum efficiency, massive connectiv-

ity and higher data rates; in post-5G or 6G wireless networks, lattice codes are a potential

candidate to achieve these goals [4–7].

Low-density lattice codes (LDLC) defined over the real numbers is one type of lattice

codes which show the decoded efficiently in high-dimensional Euclidean space, and error free

decoding is possible within 0.6 dB of the unconstrained power channel capacity [8]. These

real-valued LDLC were extended to the complex numbers. Such complex low-density lattice

codes (CLDLC) provide several advantages for future wireless network and also outperforms

real LDLC. However, belief propagation (BP) decoding of CLDLC confronts the same issue

as real LDLC, that an infinite Gaussian mixture must be approximated for the decoder

implementation.

This dissertation provides three contributions for complex low-density lattice codes

(CLDLC). First, a decoding algorithm for CLDLC using a likelihood-based reliability func-

tion is used to determine the number of complex Gaussian functions at the variable node.

This allows each message to be approximated by a variable number of Gaussians depending

upon its reliability. An upper bound on the Kullback-Leibler (KL) divergence of the approx-

imation is formed to find selection thresholds via linear regression. Second, a construction of

complex low-density lattice codes (CLDLC) using Eisenstein integers is given. Third, a gen-

eralized CLDLC Latin square construction and a corresponding condition for convergence of

variances under belief propagation (BP) decoding is given. The proposed CLDLC decoding

algorithm has higher performance and lower complexity compared to existing algorithms.

When the reliability-based algorithm is applied to Eisenstein integer CLDLC decoding, the

complexity is reduced to O(n · t ·1.35d−1) at volume-to-noise ratio of 6 dB, for lattice dimen-

sion n, with degree d inverse generator matrix and t decoding iterations. Decoding CLDLC

using Eisenstein integers has lower complexity than CLDLC using Gaussian integers when

n ⩾ 49.

In addition, this dissertation has a contribution on low-density parity-check code

(LDPC) decoders for NAND flash memory. The data read system for NAND flash memory

can be modeled by a discrete memoryless channel (DMC) with unknown channel transi-

tion probabilities. However, LDPC decoders need a channel estimate, and incorrect channel

estimation degrades the performance of LDPC decoder. This abstract proposes using the ex-



pectation maximization (EM) algorithm to estimate channel transition probabilities, needed

to compute log-likelihood ratios (LLRs) for the LDPC decoders. At word-error rate 10−5,

the performance of the EM system was only 0.02 dB loss compared to the system that knows

the channel exactly.

Keywords: Complex low-density lattice codes, Belief propagation decoder, Eisen-

stein integers, Low-density parity-check codes, NAND flash memory.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background and Motivation

Starting from the 1890s, a famous wireless telegraphy experiment was conducted

by Nobel Laureate G. Marconi [10]. This was the first time that the signals

were transmitted wirelessly using electromagnetic waves. It took around 90 years

before this technology was turned into commercial applications in which people

can connect with each other in real-time. 1G-6G technologies are as follows.

1) The first-generation of mobile communications (1G) was introduced for voice

communications in the 1980s, which transmits information via analog signals,

the data throughput is around 2.4 Kbps [11].

2) In the 1990s, the second-generation (2G) of mobile communications was in-

troduced. In this technology, division multiple access (TDMA) and code

division multiple access (CDMA) are digital modulation techniques which

can carry both voice and short message services, the data throughput is

around 64 Kbps [12].

3) In 2000, the 3G network was launched for communications and internet ac-

cess at a speed of at least 2 Mbps.

1



Chapter 1. Introduction

4) In 2010, the fourth generation (4G) network was launched and it can support

high-speed, high-quality, and high-capacity services with a speed of at less

than 1 Gbps [12].

5) Currently, we are in the era of fifth-generation (5G) of mobile communica-

tion networks. This 5G was launched in 2019 and the international telecom-

munication union (ITU) has defined three major application scenarios for

5G new radio (NR): enhanced mobile broadband (eMBB), massive machine

type communication (mMTC), and ultra-reliable low latency communication

(URLLC). 5G is expected to obtain a data rate of 1-10 Gbps and a latency

of one millisecond [13].

6) Moving towards 2030 and beyond, 6G will be deployed to provide a truly

global coverage with an extreme high data (100 Gbps at the peak data rate),

an extreme low latency, an extreme high reliability and an enormous number

of connectivity [14].

There is an always-increasing demand for massive connectivity and higher

data rates. One solution to achieve this goal is increase spectrum efficiency using

coded modulation. Lattice codes are elegant and powerful structures for coded

modulation compared to the current quadrature amplitude modulation (QAM).

Lattice codes is not only can achieve the capacity of the additive white Gaussian

noise (AWGN) channel, but also are a key ingredient to many multi-terminal

schemes (can support massive connectivity) that exploit linearity properties [1–3].

Therefore, lattice codes are a potential candidate to achieve these goals [4–7]. For

example, lattice codes are used in compute and forward (CF) which is a well-known

relay paradigm in wireless communications. In post-5G or 6G wireless network, CF

may play a role in multi-user multi-relay [15] or massive multi-input multi-output

(MIMO) system in low earth orbit (LEO) satellite communication system [16].

The CF strategy, which is based on lattice codes, was proposed by Nazer

and Gastpar [17]. This strategy implements network coding where the receivers

decode finite-field linear combinations of transmitted messages, instead of decod-

ing the transmitted messages in the traditional decode-and-forward paradigm. A

2



Chapter 1. Introduction

receiver that receives a sufficient number of linear combinations can recover the

transmitted messages by solving a system of independent linear equations that

relate the transmitted messages. [18] extend the nested lattice codes over integers

for CF paradigm of Nazer and Gastpar to the use of nested lattice codes over

Eisenstein integers. The results show that both the outage performance and error-

correcting performance of nested lattice codebooks over Eisenstein integer outper-

forms lattice codebooks over integers considered by Nazer and Gastpar with no

additional computational complexity.

Low-density lattice codes (LDLC) is one type lattice codes which can be

decoded efficiently in a large dimension. LDLC defined over the real numbers were

proposed by Sommer et al. [19]. These lattice codes can be encoded and decoded

efficiently in high-dimensional Euclidean space, and error-free decoding is possible

within 0.6 dB of the unconstrained power channel capacity [8].

These real-valued LDLC were extended to the complex numbers by Yona

and Feder [20]. Such complex low-density lattice codes (CLDLC) provide several

advantages. For instance, CLDLC are naturally matched to complex-valued chan-

nels, and they are a suitable construction for the compute-and-forward paradigm

as an alternative strategy for wireless networks [21]. Another advantage is that

CLDLC increases the coding gain compared to real LDLC [20]. An n-dimensional

CLDLC is not simply a 2n-dimensional real LDLC, but rather the CLDLC is

directly generated over the domain of complex numbers. CLDLC outperforms

2n-dimensional real LDLC because the real-valued parity check matrix normally

suffers from short loops.

1.2 Problems to be Solved

LDLC and CLDLC lattices have a sparse inverse generator matrix. Based on this

property, LDLC and CLDLC can be decoded on principles similar to low-density

parity-check (LDPC) codes using a belief propagation (BP) decoding algorithm

[22], where the messages in the iterative processing of LDLC and CLDLC are real

number and complex number Gaussian functions, respectively, and the algorithm

3



Chapter 1. Introduction

has complexity which is linear in lattice dimension n. BP decoding of LDLC and

CLDLC confront the same issue that are an infinite Gaussian mixture must be

approximated for the decoder implementation.

1.3 Related Works

In this section, we summarize existing works that proposed to approximate the

infinite Gaussian mixture in BP decoding.

1.3.1 Related Works to LDLC

For the case of real-valued LDLC, in 2008, [23] introduced a parametric LDLC

decoding algorithm employing GMR algorithm to approximate the Gaussian mix-

ture messages. All possible pairs of Gaussians on a list are searched and the

closest pairs are replaced with a single Gaussian. Further, using single Gaussians

as the messages between the variable and check nodes leads to reduced memory

requirements with minor performance penalty [8]. Yona and Feder [24] presented

a parametric LDLC decoder based on real numbers where the Gaussian mixture

approximation algorithm is similar to [20] in the complex lattice case. In 2016, [25]

proposed the three/two Gaussian decoding algorithm to reduce the number Gaus-

sian mixtures in LDLC. The three/two Gaussian decoding algorithm eliminated

searching and sorting, which were used by previous works [8, 23, 24], conversely,

the infinite Gaussian mixtures are approximated by three or two Gaussians. Each

variable message is computed based on 3d−1 and 2d−1 Gaussian functions for three

and two Gaussians decoding algorithm, respectively, where d is the degree of the

inverse generator matrix. [26] reduced the complexity of the three/two Gaussians

decoding algorithm by calculating each variable message based on 2d − 2 Gaus-

sian functions. Recently, an innovative real-valued LDLC decoder was given by

Wang and Mao, which uses list sphere decoding at the variable node, but with the

corresponding complexity of sphere decoding [27].

4
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1.3.2 Related Works to CLDLC

For lattice codes based on Gaussian integers, in the complex-valued LDLC case,

Yona and Feder [20] presented a CLDLC decoder employing the Gaussian mix-

ture reduction (GMR) algorithm. Their decoder sorts the whole list of Gaussian

mixtures and the Gaussians which satisfy a given condition will be grouped. Each

incoming message at the variable node is approximated by 9 complex Gaussian

functions. The GMR algorithm must be performed at every multiplication at the

variable node, on each iteration. Due to the large number of approximated Gaus-

sian functions, the complicated GMR algorithm, and the large number of uses of

the GMR algorithm at the variable node, this proposed algorithm may not be

suitable for hardware implementation. That paper also extended a condition on

convergence of the variances during BP decoding of Latin square LDLCs from the

real case [19] to the complex case, but did not give a proof.

1.4 Goal and Contributions

The goal of this dissertation is to develop low-complexity construction and de-

coding of CLDLC. To achieve this goal, we first started our development on the

real-valued LDLC, then extended it to CLDLC.

For LDLC, we propose reliability-based decoding of low-density lattice

codes (LDLC). We define the reliability of the check-to-variable messages for two

purposes. The first one is to choose to approximate the infinite Gaussian mixtures

by one or two Gaussian. The reliability of each check-to-variable message is cal-

culated. If there is higher reliability than a decided threshold value, one Gaussian

will be selected; otherwise two Gaussians will be used. The other purpose is for

the updating sequence of variable nodes of the parametric shuffled BP (SBP) de-

coding algorithm [28]. The parametric SBP increases the convergence speed. The

updating sequence of SBP follows the order of reliability of the check-to-variable

messages from high to low. The numerical results show that the proposed algo-

rithm gives superior performance and lower complexity compared to two or three

Gaussian decoding algorithm [25].

5
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The major advantage of this work is it reduces the number of the Gaussian

mixtures at the variable node and increases the convergence speed compared to the

two or three Gaussians decoding algorithm [25]. Another advantage is the proposed

algorithm shows that: 1) the single Gaussian can be used, 2) each variable node

input does not need to be expanded using a constant number of integers, and 3)

without SBP algorithm, the maximum number of Gaussian approximation equals

two is not sufficient to maintain a good probability of symbol error performance.

A higher number of Gaussian in the approximation is required.

For CLDLC, this dissertation has three major contributions. The first

is reliability-based CLDLC decoding which is extended from LDLC. Similar to

LDLC, in reliability-based decoding, the number of Gaussians in the check-to-

variable message is adaptively selected depending upon the reliability. It provides

a small number of Gaussians in each check-to-variable message; in particular, it

allows the use of a single Gaussian when the message has high reliability. Fewer

Gaussians means lower decoder complexity. However, we know from the real-

valued case that two Gaussians approximation is not sufficient to maintain a good

performance when the messages have low reliability. In CLDLC, more than two

Gaussians can be selected for low-reliability messages. Reliability-based decoding

of CLDLC also uses a threshold to select the number of Gaussians which is similar

to LDLC, but two thresholds are defined to allow us selected more than two Gaus-

sians. In addition, this threshold can be found using the Kullback-Leibler (KL)

divergence between the approximation and the true distribution, but explicitly

computing the divergence is inefficient. Instead, we form an upper bound on this

KL divergence, and linear regression is used to efficiently estimate this threshold.

The second contribution is a CLDLC construction using Eisenstein inte-

gers (EI). This new construction reduces the complexity of message-passing de-

coders where an infinite Gaussian mixture is represented by a finite mixture. The

advantage of the Eisenstein integers over the Gaussian integers is that the hexag-

onal Voronoi cells of the Eisenstein integer lattice has the tightest packing in two

dimensions. As a result, the quality of the message-passing approximation is im-

proved and mixtures have a smaller number of Gaussians. This smaller number

of Gaussians leads to lower decoder complexity. While the extension to Eisen-

6
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stien integers is straightforward, the contribution is that the Eisenstien integer

construction lowers decoding complexity, compared to Gaussian integers.

Reliability-based decoding is applied to decoding both Eisenstein inte-

ger and Gaussian integer CLDLC constructions in this paper. For decoding GI-

CLDLC, reliability-based decoding has lower complexity, and slightly better per-

formance, than the previous CLDLC decoder of Yona and Feder [20]. Moreover,

EI-CLDLC decoding has lower complexity than GI-CLDLC decoding for dimen-

sion n ⩾ 49.

The last contribution is a generalized CLDLC construction we call relaxed

Latin square. Similar to real-number LDLC, CLDLC has a condition for expo-

nential convergence of messages under belief-propagation decoding, specifically a

condition on the matrix coefficients of the inverse generator matrix. We give a new

convergence condition for the relaxed Latin square construction, which provides

some guidance for designing the inverse generator matrix for a broader range of

CLDLC than previously possible. This generalizes results in [19, 20]. The advan-

tage of the relaxed Latin square is that each row and column does not require to

have the same coefficients and weight d; or, it can be seen as an irregular CLDLC.

Based on this property, we can design the triangular structure which is good for low

complexity and fast encoding process, and it is suitable for the shaping operations.

1.5 Notation and Definitions

We use C, R and Z to denote the fields of complex numbers, real numbers and in-

tegers, respectively. We use boldface lowercase and boldface uppercase to denote

column vectors and matrices, e.g. x and H, respectively. We use three inter-

changeable ways of writing complex numbers: z = a + bi, vector z = [a b]T , and

reiθ where r =
√
a2 + b2 and θ = tan−1( b

a
). Also, xRe = a and xIm = b denote the

real and imaginary parts of the complex number x. The conjugate transpose or

Hermitian transpose of G is G†, and the complex conjugate of c is c∗. The n-by-n

identity matrix is In.

7
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1.6 Organization

This dissertation is organized as follows. Chapter 2 describes a basic knowledge

of lattice codes and fundamentals of CLDLC which are included CLDLC con-

struction, BP decoder and the infinite Gaussian mixture in the BP decoding.

Chapter 3 introduces a new CLDLC construction called relaxed Latin square,

and a proof of variance convergence are also provided. Chapter 4 explains the

proposed reliability-based decoding of real-valued LDLC. Chapter 5 explains the

proposed reliability-based decoding of CLDLC Using Gaussian and Eisenstein in-

tegers. Chapter 6 shows the minor research which is expectation maximization

(EM) algorithm for discrete memoryless channel (DMC) estimation in NAND flash

memory. Chapter 7 summarizes the dissertation. The last chapter is about future

works. In addition, the proof of the convergence condition for the relaxed Latin

square construction and the upper bound on KL divergence are given in Appendix

A and B, respectively.

8
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Chapter 2

Complex Low-Density Lattice

Codes (CLDLC)

The main role of this chapter is to introduce the fundamentals of complex low-

density lattice codes (CLDLC). However, before explaining CLDLC, we provide

basic knowledge of lattice codes which can help readers for understanding CLDLC

easier.

LDLC defined over the real numbers was proposed by Sommer et al. [19].

These lattice codes can be encoded and decoded efficiently in high-dimensional

Euclidean space, and error-free decoding is possible within 0.6 dB of the uncon-

strained power channel capacity [19].

Yona and Feder [20] described complex low-density lattice codes (CLDLC)

which extend LDLC principles to lattices defined over the Gaussian (complex) in-

tegers [20]. CLDLC are naturally matched to complex-valued channels and they

are a candidate for the compute-and-forward (C&F) relaying CLDLC increases

the coding gain for small dimensional lattices compared to real LDLC [20]. An

n-dimensional CLDLC is not simply a 2n-dimensional real LDLC, but rather the

CLDLC is directly generated over the domain of complex numbers. CLDLC out-

performs 2n-dimensional real LDLC because the real-valued parity check matrix

normally suffers from short loops. Similar to the real LDLC case, CLDLC lattices

9



Chapter 2. Complex Low-Density Lattice Codes (CLDLC)

have a sparse inverse generator matrix. Based on this property, CLDLC lattices

can be decoded using belief propagation (BP) algorithm [22], however, the mes-

sages in the iterative processing of CLDLC are complex Gaussian functions. Due

to the BP decoding, CLDLC confronts the same issue as real LDLC, which is

that an infinite complex Gaussian mixture functions occurs in the iterative decod-

ing process. This infinite complex Gaussian mixtures must be approximated for

any implementation. The infinite Gaussian mixture approximated is presented in

Chapter 5.

2.1 Definition of lattices

An n-dimensional lattice Λ is a discrete additive subgroup of Euclidean space Rn.

Since Rn is a vector space and Λ is a subgroup, so Λ is also vector subspace.

Consequently, a lattice has the following properties.

• If lattice points x, y ∈ Λ, then x+ y ∈ Λ.

• The zero point is a lattice point.

• A lattice Λ is a set of infinite size. For example, assume x ∈ Λ, then x+x+

· · ·+ x ∈ Λ.

• Assume x ∈ Λ, and a ∈ Z is an integer, then a · x ∈ Λ.

In summary, lattice Λ is group under vector addition, and it is also Euclidean-space

code.

2.2 Generator Matrix

An n × n generator matrix G whose columns are the basis vectors g1,g2, . . . ,gn

is the generator matrix of the lattice

10
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G =

 g1 g2 . . . gn

 . (2.1)

Since a lattice λ is an n-dimensional subspace of Rn, this space can be

spanned by a set of n linearly independent basis vectors g1,g2, . . . ,gn where,

g =


g1

g2
...

gn

 (2.2)

is a column vector representing a point in Rn.

A vector x is a lattice point if x can be formed as a linear combination of

the basis vectors scaled by integers bi ∈ Z, where i = 1, 2, . . . , n. The lattice point

x can be expressed as

x = g1b1 + g2b2 + · · ·+ gnbn. (2.3)

Or it can be represented in the matrix form as:

x = Gb. (2.4)

For example, the 2× 2 hexagonal lattice, denoted as A2 has the generator matrix

g =

[√
3
2

0
1
2

1

]
. (2.5)

The A2 lattice can be construct as in Fig. 2.1. The blue dots are the lattice

point, and the blue lines are the Voronoi region of the lattice. Other property of

the lattice is the kissing number, which is the number of closest neighbors to the

lattice point. Lattice A2 has kissing number equals six.

11
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-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 2.1: 2 × 2 hexagonal lattice A2, the blue dots are the lattice points, and
the blue lines are the Voronoi region of the lattice. Each lattice point of the A2

lattice has 6 neighbors or the kissing number is 6.
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The Voronoi region of a lattice point is the set of points in Rn are closer to

a lattice point than to any other lattice point. The volume of the Voronoi region

defined as V (Λ) equals

V (Λ) = | det(G)|. (2.6)

For a lattice Λ, a fundamental region V ⊂ Rn is a shape that is shifted

by each lattice point in Λ will cover the whole real space Rn exactly. It can be

express as:

Rn =
⋃
x∈Λ

V + x and (2.7)

{V + x} ∩ {V + y} = ϕ, (2.8)

for any x ̸= y. Any point y ∈ Rn is in one fundamental region exactly.

2.3 Lattice Properties

2.3.1 Minimum Distance

A lattice is a Euclidean-space code, so it has a squared minimum distance d2min.

Since a lattice is linear, d2min is given by:

d2min = min
x∈Λ\0

||x||. (2.9)

If any two points x, y satisfy ||x−y2|| = d2min, then another lattice point z = x−y
satisfies ||z||2 = d2min by linearity.

The squared minimum distance d2min of a lattice Λ, and the squared mini-

mum distance d
′2
min of a scaled version Λ

′
= kΛ are related by:

d2min = k2d2min. (2.10)

A lattice could be scaled arbitrarily largely to increase d2min. The disadvantage is

that this reduce the density of point (or increase the average power transmission

for lattice codes) as well.

13
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2.3.2 Coding Gain

The coding gain normalizes the minimum distance and is a useful measure of

lattice’s suitability for error-correction.

For an n- dimensional lattice Λ with squared minimum distance d2min, the

coding gain is [29]:

γ =
d2min

V (Λ)2/n
. (2.11)

The coding gain is independent of lattice scaling. Coding gain can be

interpreted as the reduction in average energy for using Λ as the codebook, over

using the uncoded integer lattice Zn.

2.3.3 Packing radius and Packing Density

The packing radius ρ is half the minimum distance dmin. It can be expressed as:

ρ =
d2min

4
. (2.12)

The packing density ∆ of a lattice is the fraction of the whole space occu-

pied by the spheres:

∆ =
volume of one sphere

volume of the fundamental region
, (2.13)

which is:

∆ =
Vnρ

n

V (Λ)
, (2.14)

where ρ is the packing radius and Vn is the volume of a unit sphere in n-dimensions,

given by:

Vn =
2π2/n

nΓ(n/2)
. (2.15)

Note that Γ is the gamma function.
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The packing density ∆ is related to the coding gain γ as the following:

∆2/n =
Vn

4
γ. (2.16)

2.3.4 Lattice Quantization

Lattice quantization or lattice decoding finds the lattice point x ∈ Λ which is

closest to an arbitrary y ∈ Rn. Quantization refers to approximating an arbitrary

real-valued vector y by a lattice point x ∈ Λ. Decoding refers to finding the lattice

point closest to a lattice point plus noise, y = x+z. In either case, x is the lattice

point which is closest to y in the Euclidean distance. x can be calculated from

x = argmin
λ∈Λ
||y − λ||2. (2.17)

2.4 CLDLC and Unconstrained Power AWGN

System

An n-dimensional complex lattice Λ is a discrete additive subgroup of Cn, defined

by a non-singular square generator matrix G. A lattice point x is an integral linear

combination of basis vectors in G. Each lattice point is constructed from:

x = Gb. (2.18)

Complex-valued lattices are a generalization of real-valued lattices. In CLDLC, the

inverse of G, H = G−1 is restricted to be sparse to develop a linear-time iterative

decoding scheme [19], where H is called the check matrix or inverse generator

matrix. For encoding, CLDLC can use the Jacobi method as in the real-valued

LDLC case [19]. In this dissertation. we consider two types of complex integers b,

Gaussian integers (GI) Z[i] (i =
√
−1) and Eisenstein integers (EI) Z[ω] where ω =

−1+i
√
3

2
. A vector of GIs is written b = (b1,Re+ib1,Im, b2,Re+ib2,Im, ..., bn,Re+ibn,Im),

and a vector of EIs is written b = (b1,Re +ωb1,Im, b2,Re +ωb2,Im, ..., bn,Re +ωbn,Im),

where bRe, bIm ∈ Zn.
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The Voronoi region of a lattice point is the set of points in Cn that are

closest to the lattice point. For a square generator matrix G, the Voronoi region

volume for lattices with Gaussian integers equals

V (Λ) = det(G†G). (2.19)

For lattices with Eisenstein integers V (Λ) equals

V (Λ) =

(√
3

2

)n

det(G†G) (2.20)

[30]. We consider here the unconstrained power system. This paper uses the

volume-to-noise ratio (VNR) as an analog to the signal-to-noise ratio. The VNR

for Gaussian and Eisenstein integer lattices is defined as:

V NR =
V (Λ)2/n

2πeσ2
. (2.21)

The Poltyrev capacity [31], or unconstrained lattice capacity, is σ2 = 1
2πe

[32],

which corresponds to V NR = 0 dB. In the sequel we normalize the generator

matrix G or its determinant such that V (Λ) = 1.

Since we consider the unconstrained lattice only, a complex lattice point

x ∈ Λ is transmitted over a complex additive white Gaussian noise (CAWGN)

channel, and the received sequence y = (y1, y2, ..., yn) ∈ Cn is:

y = x+ z (2.22)

where the vector zj ∼ CN (0, σ2I2) is complex additive Gaussian noise. CN de-

notes complex-normal distribution, σ2 is noise variance of each element of complex

number. The maximum likelihood lattice point estimate x̂ is:

x̂ = argmax
x∈Λ

Pr(y|x). (2.23)

If x = x̂ the correct codeword is received, or an error occurred otherwise.
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2.5 Inverse Generator Matrix/Check Matrix H

Similar to low-density parity-check (LDPC) codes, CLDLC codes are also block

codes with inverse generator matrix or check matrices H that contain only a very

small number of non-zero entries. This sparseness of H is essential for an iterative

decoding complexity that increases linearly with the code length. The biggest

difference between LDPC and CLDLC codes is LDPC codes design is based on

the finite file GF(2) while CLDLC is based on the selection of the h1, h2, . . . , hi

coefficients , where hi ∈ C.

One of the well-known real number LDLC constructions is the Latin square

construction for check matrix H which was proposed by Sommer et al. [19] and

extended by Yona and Feder [20] to CLDLC. A Latin square CLDLC can be

constructed by designing a check matrixH having constant row and column weight

d. Let

h = [1, h2, h3, ..., hd] (2.24)

be a generating sequence, where hi ∈ C. The non-zero entries of each row and

each column are h1, h2, h3, ..., hd, so that each row (respectively, column) is a per-

mutation of any other row (column), except for complex rotations, including sign

changes. In addition, H should be 4-cycle free. An n dimensional CLDLC can be

considered as a regular construction if all the row degrees and column degrees of

the check matrix are equal to a common degree d.

A sufficient condition [19] to achieve exponential convergence of the mes-

sage variance is to select the generator sequence such that:

α =

∑d
j=2 |hj|2

|h1|2
< 1, (2.25)

where | · | denotes the Euclidean norm [19]. To achieve the condition in (2.25), a

generator sequence h must satisfy |h1| ⩾ |h2| ⩾ ... ⩾ |hd|. For example, the matrix

H is a parity check matrix of Latin square CLDLC with lattice dimension n = 8,

degree d = 3, the generating sequence is |h1| = 1 and |h2| = |h3| = 1√
d
, and in the

sequel, we normalize V (Λ) = 1. An example check matrix H is:
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H =



1 0 0 h2 0 0 h3 0

h∗
2 1 0 0 0 0 0 h3

0 −h∗
3 1 0 0 0 0 h2

0 0 −h∗
3 1 0 0 h2 0

−h3 0 0 0 1 h2 0 0

0 0 −h∗
2 h3 0 1 0 0

0 −h∗
2 0 0 h3 0 1 0

0 0 0 0 h2 h3 0 1


, (2.26)

where the generating sequence h in the rectangular coordinate form is {1,
√

2
9
+

i
√

1
9
,
√

2
9
+ i
√

1
9
}.

2.6 Bipartite Graph

Similar to low-density parity-check (LDPC) codes, CLDLC can be decoded using a

bipartite graph: it is a graph with variable nodes at one side and check nodes at the

other side. Figure 2.2 (i) represents the bipartite graph which is constructed from

the check matrixH in (2.26). Vj and Ci represent the check node i and the variable

node j, respectively. Each variable node corresponds to a single element of the

lattice codeword x = Gb in (2.18). Each row of the check matrix H corresponds

to a check node which is represented the equation of the form
∑

k hkxik = integer,

where ik denotes the positions of non-zero elements at the corresponding row of

the check matrix H, hk are the values of H at these non-zero element locations

and the integer at the right-hand side is unknown.

Figure 2.2 (a) - (h) give an illustration of how to construct a bipartite graph

from (2.26). For example, at the first row of the check matrix, H corresponding

to the check node C1, positions 1, 4, and 7 are non-zero elements which are 1, h2

and h3 respectively. The check node C1 will be connected to the non-zero element

positions which are the variable node V1, V4, and V7, then each edge is assigned

value 1, h2 and h3, respectively. Edges of check node C2 to C8 can be constructed

in the similar way. Finally, Figure 2.2 (a) to (h) are combined together and the
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completed bipartite graph is shown in Figure 2.2 (i).

On the bipartite graph, a cycle is a sequence of connected nodes which

starts and ends at the same node in the graph. The length of a cycle is the

number of edges it contains, and it is always an even number. Generally, longer

cycles yield better error rate performance of decoding because there are more nodes

that can exchange the information. A 4-cycle exists when two variable nodes are

both connected to the same pair of check nodes degrade the decoding performance,

so it should be avoided.

2.7 Belief Propagation Decoder

In this section the decoding algorithm for CLDLC lattices is described. The de-

coding algorithm is based on the belief propagation (BP) algorithm.

Belief propagation is also known as sum–product message passing algo-

rithm. This technique was invented in 1982 by Pearl [33], and it is commonly used

in artificial intelligence and information theory, and has demonstrated experimen-

tal success in numerous applications such as low-density parity-check codes, turbo

codes, free energy approximation, and satisfiability. We called this algorithm the

message-passing because their operation can be described by passing of messages

along the edges of a bipartite graph. Each bipartite graph node works individually,

having access only to the messages on the edges connected to it. Message-passing

algorithms are a type of iterative decoding algorithm; the messages pass back and

forward between the variable nodes and check nodes iteratively until reaching the

target number of iterations. In addition, they are named for sum–product because

the check node implements the summation and the variable node the product.

In 2008, Sommer et al. introduced BP decoder for real-valued LDLC, and

the messages between variable and check nodes are the probability density function

(pdf) of Gaussian function (in the case that channel is Additive white Gaussian

noise (AWGN)). This decoder has very high complexity. Then, [23] introduced a

parametric LDLC decoding algorithm the pdf of Gaussian function can be repre-

sented by 3 parameters which are mean, variance and amplitude. Further, using
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C1 C2 C3 C4 C5 C6 C7 C8

V1 V2 V3 V4 V5 V6 V7 V8

V1

C1 C2 C3

C4 C5 C6

C7 C8

V4 V7

1 h2 h3

V1 V2 V8 V2 V3 V8

V3 V4 V7 V1 V5 V6 V3 V4 V6

V2 V5 V7 V5 V6 V8

*

2h 1 h3 h21
*

3h

*

3h 1 h2 3h 1 h2 *

2h h3 1

h3 1*

2h h2 h3 1

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Figure 2.2: The bipartite graph of an CLDLC constructed from (2.26).20
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single Gaussians as the messages between the variable and check nodes leads to

reduced memory requirements with minor performance penalty [8]. Yona and

Feder [20] extended the parametric BP decoder based on the real-valued LDLC to

the complex numbers for CLDLC decoder in 2010.

2.7.1 Operations on Complex Gaussian Mixtures

This section describes operations on complex Gaussian functions which are mes-

sages in belief propagation decoding, described in Section 2.7.2. The probability

density function (pdf) of a complex Gaussian function with 2× 1 mean vector m

and 2× 2 covariance matrix V is:

N (z;m,V) =
1

2π
√
|V|

e−
1
2
(z−m)TV−1(z−m). (2.27)

From the AWGN channel assumption, the BP messages are Gaussian mixtures.

The message f(z) is a mixture of N Gaussians,

f(z) =
N∑
j=1

cjN (z;mj,Vj), (2.28)

where cj ≥ 0 are mixing coefficients with
∑N

j=1 cj = 1, mj and Vj are mean and

covariance of the Gaussian mixture. In this way, each Gaussian mixture can be

described by a set of triples (m1,V1, c1), ..., (mN ,VN , cN).

Let f(z) =
∑N

j=1 fj(z) and g(z) =
∑M

k=1 gk(z) be two Gaussian mixtures.

Their product is a mixture ofNM Gaussians. Each mixture element is the pairwise

product of two components fj(z) = c1N (z;m1,V1) and gk(z) = c2N (z;m2,V2),

a Gaussian s(z) = cN (z;m,V) with mean m, variance V and mixing coefficient

c given by:

V = (V−1
1 +V−1

2 )−1, (2.29)

m = V(V−1
1 m1 +V−1

2 m2), (2.30)
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c =
c1c2

2π
√
|V1 +V2|

e−
1
2
(m1−m2)T (V1+V2)−1(m1−m2). (2.31)

Let f(z) be a Gaussian mixture. The moment matching approximation

(MM) which minimizes the Kullback-Leiber divergence between f(z) and q(z) is

used to approximate f(z) with a single Gaussian q(z) [34]. The MM approximation

finds the single Gaussian q(z) which has the same mean m and variance V as f(z),

given by:

m =
N∑
j=1

cjmj, (2.32)

V =
N∑
j=1

cj(Vj + (mj −m)(mj −m)T ). (2.33)

This operation is denoted as:

q(z) = MM(f(z)). (2.34)

2.7.2 Parametric Belief Propagation Decoder

BP decoding of CLDLC confronts the common issue as real LDLC, that there

is an infinite Gaussian mixture in the iterative decoding. This infinite Gaussian

mixture must be approximated for the decoder implementation. Due to this issue,

this dissertation proposes to approximate the infinite complex Gaussian mixture

function with a finite number of complex Gaussian functions using the reliability

of check-to-variable messages and a threshold function. This approximation takes

place at the variable node. This subsection describes the overall picture of the

CLDLC parametric BP decoding algorithm. Details of the approximation at the

variable node is explained in Chapter 5.

CLDLC parametric BP decoding can be performed on a bipartite graph,

where rows of H correspond to check nodes, and columns of H correspond to

variable nodes. The variable-to-check messages are qk(z) and the check-to-variable

messages are Rk(z). The proposed CLDLC reliability parametric BP decoding
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algorithm is as follows.

• Initialization: For the AWGN channel (3.3), the initial variable-to-check

message is

yi(z) = N (z;yi, σ
2I2), (2.35)

for i = 1, 2, ..., n. Received messages are sent to connected check nodes in

the initial step.

• Check-to-variable message: The check node incoming messages are k =

1, ..., d−1 single Gaussians and output is k = d. The corresponding non-zero

coefficients from h are h1, ..., hd. The output Rd(z) is:

Rd(z) = N (z;md,Vd). (2.36)

where mean md and covariance matrix Vd can be found from

md = −[hd]
−1

d−1∑
k=1

[hk]mk, (2.37)

Vd =
d−1∑
k=1

[
hk

hd

]Vk[
hk

hd

]T (2.38)

with [hk

hd
] =

[
Re{hk

hd
} −Im{hk

hd
}

Im{hk

hd
} Re{hk

hd
}

]
.

• Variable-to-check message: The messages Rk(z) coming from the check nodes

are expanded to a periodic function R̃k(z), but with a finite number of

Gaussians depending on their reliability. This expansion or the approxi-

mation number of finite Gaussian will be described in Chapter 5. Then, the

moment matching approximation MM is used to find the single-Gaussian
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message fd(z) sent back to the check node:

fd(z) = yi(z)
d−1∏
k=1

R̃k(z), and (2.39)

qd(z) = MM(fd(z)). (2.40)

Efficient implementation of the variable node is one of the contributions

of this dissertation. Section 5.1 shows how to select Gaussians near the

channel value yi. The specific number of Gaussians selected should be as

small as possible, and are selected using reliability as shown in Section 5.2.1.

Section 5.2.3 gives the variable node function in detail.

The variable node computes the product of mixtures of Gaussians using

(2.29)–(2.31). The outputs of variable node which are Gaussian mixtures

will be approximated by a single Gaussian using MM approximation using

(2.32)–(2.34), before sending the messages to check nodes.

• Final decision: At the last iteration the product without omitting any mes-

sage is performed:

qfinali (z) = yi(z)
d∏

k=1

R̃k(z). (2.41)

The lattice point estimate x̂ and the integer estimate b̂ are:

x̂i = argmax
z

qfinali (z), and (2.42)

b̂ = ⌊Hx̂⌉. (2.43)

Note that a forward-backward recursion is applied at the variable node to

reduce the number of operations inside variable node. This recursion is similar

to the existing forward-backward algorithm of [25] (real-valued case) but it is

different [20] (complex-valued case) in how the channel value yi is handled, in [25]
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the channel message yi is multiplied at the last step of the recursion while in [20]

the channel message yi is multiplied at the first step of the recursion.

The forward-backward recursion is done as follows :

1) The forward recursion defined as:

αk(z) = αk−1(z) · R̃k(z) (2.44)

for k = 2, 3, . . . , d− 1 with α1(z) initialized as equal to R̃1(z).

2) The backward recursion βk(z) is computed, for k = d, d− 1, d− 2, . . . , 1 as:

βk−1(z) = βk(z) · R̃k−1(z), (2.45)

with βk(z) initialized as the approximation of R̃d(z).

3) Then combining the forward and backward recursion, we get:

f̃d(z) = αk(z) · βk−1(z). (2.46)

4) Finally, the single complex Gaussian output of the variable node is calculated

by using the moment matching approximation:

fd(z) = MM(yi(z) · f̃d(z)). (2.47)

2.8 Concluding Remarks

This chapter starts with the basic knowledge of lattice codes and lattice properties.

Then, we describe the fundamental knowledge of complex low-density lattice codes

(CLDLC) in this chapter. Similar to low-density parity-check (LDPC) codes,

CLDLC codes are also block codes with inverse generator matrix or check matrices

H that contain only a very small number of non-zero entries. CLDLC lattices

have a sparse inverse generator matrix. Based on this property, CLDLC can be

decoded on principles similar to LDPC codes using a belief propagation (BP)
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decoding algorithm. The biggest difference is CLDLC defined over the complex

numbers while LDPC codes design is based on the finite file GF(2). Since CLDLC

is definded based on the complex number, the messages in the iterative decoding

process are the probability density functions (pdf) of complex Gaussian for each

lattice symbol, while the messages in the iterative decoding process of LDPC are

the log likelihood ratios (LLR).

For the encoding part, we start from how to construct lattice points, inverse

generator matrix/check matrix, and the unconstrained power AWGN system.

For decoding part, we introduce the bipartite graph and parametric belief

propagation (BP) decoder. Especially, the BP decoding process illustrates how

the infinite complex Gaussian mixtures happen.
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Chapter 3

Relaxed Latin Square

Construction for CLDLC

In this chapter, we propose a new CLDLC construction called relaxed Latin square

for a check matrix H. This construction is extended from the Latin square con-

struction which was proposed by Sommer et al. for real number LDLC [19] and

it was proposed by Yona and Feder [20] for CLDLC. The Latin square matrix for

LDLC [19] and CLDLC [20] can be constructed by designing a check matrix H

having constant row and column weight d, or this construction can be considered

as a regular LDLC and CLDLC. Unlike existing works, the relaxed Latin square

that we proposed has fewer restrictions for the coefficient and weight design. Each

row and column does not require to have the same coefficients and weight d; or, it

can be seen as an irregular CLDLC.

Sommer et al. [19] provided a condition for exponential convergence of mes-

sage variances under belief-propagation decoding for real-number LDLC, specifi-

cally a condition on the matrix coefficients of the check matrixH. For CLDLC, [20]

extended the condition on the convergence of the variances during BP decoding of

Latin square LDLCs from the real case [19] to the complex case, but did not give

a proof. We give a new convergence condition for the relaxed Latin square con-

struction, which provides some guidance for designing the inverse generator matrix
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for a broader range of CLDLC than previously possible. The proof of exponen-

tial convergence of variances under belief-propagation decoding is also provided in

Appendix A.

Since the variance convergence proof of the relaxed Latin square construc-

tion of CLDLC is extended from the Latin square construction of real-valued

LDLC [19]. The Latin square construction, the belief-propagation decoding, and

the variance convergence of real-valued LDLC will be introduced as a background

at the beginning of this chapter. Afterward, the relaxed Latin square construction

of CLDLC, its convergence conditions, and the proof of exponential convergence

of variances will be explained

3.1 Real-Valued LDLC

Construction and decoding of real-valued LDLC are similar to CLDLC that have

been introduced in Section 2.4, but it is defined on the real numbers R.

An n-dimensional real-valued lattice Λ is a discrete additive subgroup of

Rn, defined by a non-singular square generator matrix G whose column are the

basis vectors. A lattice point x is the set of all linear combinations of basis vectors

in G. Each lattice point is constructed from:

x = Gb. (3.1)

b is an n-dimensional vector of integers, and the check matrix is H = G−1. The

Voronoi region volume equals

V (Λ) = det(G). (3.2)

We consider here the unconstrained power system. An LDLC lattice point

x ∈ Λ is transmitted over an additive white Gaussian noise (AWGN) channel, and

the received sequence y = (y1, y2, ..., yn) ∈ Rn is:

y = x+ z (3.3)
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where the vector z ∼ N (0, σ2) is an additive Gaussian noise. The Gaussian prob-

ability distribution is defined as:

N (z;m,σ2) =
1√
2πσ2

e−
(z−m)2

2σ2 . (3.4)

The probability density function (pdf) of a real-valued Gaussian function has mean

m and variance σ2.

Since we consider here the unconstrained power system. The volume-to-

noise ratio (VNR) is defined as:

V NR =
V (Λ)2/n

2πeσ2
. (3.5)

The Poltyrev capacity, or unconstrained lattice capacity, is σ2 = 1
2πe

[32], which

corresponds to V NR = 0 dB.

3.1.1 Latin Square Construction of Real-Valued LDLC

Sommer et al. introduced the Latin square construction for the check matrix H

for LDLC. Every row and column of an n-dimensional Latin square matrix has

the same d nonzero real-valued coefficients (except for sign changes). A sufficient

condition to achieve exponential convergence of the message variance in the BP

decoder is to select the generator sequence h1 ⩾ h2 ⩾ ... ⩾ hd such that:

α =

∑d
j=2 h

2
j

h2
1

< 1. (3.6)

For example, the matrix

H =



0 −0.8 0 −0.5 1 0

0.8 0 0 1 0 −0.5
0 0.5 1 0 0.8 0

0 0 −0.5 −0.8 0 1

1 0 0 0 0.5 0.8

0.5 −1 −0.8 0 0 0


, (3.7)
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is a check matrix H of the Latin square LDLC with lattice dimension n = 6, degree

d = 3 and generating sequence h1 = 1, h2 = 0.8, h3 = 0.5. α can be calculated as

this example:

α =
h2
2 + h2

3

h2
1

=
0.82 + 0.52

12
= 0.89 < 1. (3.8)

This check matrix H should be further normalized by the constant n
√
| det(H)| in

order to have | det(H)| = | det(G)| = 1, as required by the Definition 1 in [19].

3.1.2 Belief-Propagation Decoding of Real-Valued LDLC

The LDLC BP decoding algorithm proposed by Sommer et al [19] the messages are

real pdf functions over the interval (−∞,∞), whereas the parametric BP decoding

algorithm of CLDLC in Section 2.7.2 represents the pdf of the complex Gaussian

by 4 parameters which are mean, variance, covariance, and message coefficient.

The LDLC decoder algorithm presented in [1] is as follows:

Denote the variable nodes by v1, v2, . . . , vn and the check nodes by c1, c2, . . . , cn.

• Initialization: each variable node vk sends to all its check nodes a Gaussian

function message f(z)

fk(z) = yk(z) = N (z; yk, σ
2), (3.9)

for k = 1, 2, 3, . . . n.

• Check-to-variable message: The messages that the check node ck send back

to the variable node are calculated in three steps.

1) The convolution step: all messages except fj(z), are convolved after

expanding each message by its generator sequence h:

p̃j(z) = f1

(
z

h1

)
⊛ · · ·⊛ fj−1

(
z

hj−1

)
⊛ fj+1

(
z

hj+1

)
⊛ · · ·⊛ fd

(
z

hd

)
,

(3.10)

where j = 1, 2, . . . , d and ⊛ denotes convolution.
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2) The stretching step: The messages p̃j(z) are stretched by −hj to:

pj(z) = p̃j(−hjz). (3.11)

3) The periodic extension: The message pj(z) is extended to a periodic

function with period 1
|hj | :

Rj(z) =
∞∑

i=−∞

pj

(
z − i

hj

)
. (3.12)

• Variable-to-check message: each variable node vk sends a message back to

each check node that is connected to it. For a variable node vk, it is assumed

that there are variable-to-check messages ck1 , ck2 , . . . , ckd are sent to the check

nodes, where d is the appropriate column weight of the check matrix H. The

message cke that is sent back to the check node is calculated in two following

steps.

1) The product step is

f̃j(z) = e−
(yk−z)2

2σ2

d∏
l=1,l

Rl(z). (3.13)

2) The normalization step is

fj(z) =
f̃j(z)∫∞

−∞ f̃j(z)dx
(3.14)

These steps are repeated until reaching the desired number of iterations.

• Final decision: After completing the desired number of iterations, the integer

information vector b is estimated. First, the final pdfs of the codeword
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elements is

f̃final(z) = e−
(yk−z)2

2σ2

d∏
l=1

Rl(z). (3.15)

Then, estimate each codeword by finding the peak of its PDF as

x̂ = argmax
z

f̃final(z). (3.16)

Finally, we estimate b as

b̂ = ⌊Hx̂⌉. (3.17)

The ⌊·⌉ denotes rounding to the closest integer operation.

Note that for both variable-to-check messages and check-to-variable mes-

sages, all Gaussians that in a given mixture have the same variance.

3.1.3 Convergence of Variances

The messages in the iterative decoding process are probability density functions

(pdfs) for each lattice symbol. The convergence of the message variances to zero

implies that the Gaussians approach impulses, this is an important property to

decode successfully. The convergence rate, slow or fast depends on the design of

the check matrix H. If the design of the generator sequences h1, h2, . . . hd follow

(3.6), the convergence rate of message variances can be converged exponentially.

If α ≥ 1 the variances may still converge, but the convergence rate may be as slow

as O(1/t) at iteration t [19].

In this section, we introduce the proof of the variance convergence for the

LDLC lattice decoder in [19].

In the Latin square LDLC construction, there are d edge types correspond-

ing to the d coefficients. For any iteration t, the variable-to-check messages (3.14)

that are sent along edges with the same absolute value have the same variance.
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Let v
(t)
i be the mixture variance for the input of a check node along the edge for hi,

for i = 1, 2, 3, . . . , d, and the mixture variance of the outgoing message to variable

node is ui.

Consider d = 4 and the convergence of v2. The variance at the variable

node output is given by:

1

v
(t+1)
2

=
1

u1

+
1

u3

+
1

u4

+
1

σ2
≥ 1

u1

, (3.18)

where ui ≥ 0 is assumed.

For the check node, the mixture variance of the outgoing massage u1 is:

u1 =
h2
2v2 + h2

3v3 + h2
4v4

h2
1

. (3.19)

If we assume that v1 ≥ v2 ≥ v3 ≥ v4, (3.19) also can be written as:

u1 ≤
h2
2 + h2

3 + h2
4

h2
1

· v2 = αv2. (3.20)

Then, (3.18) and (3.20) are combined. Finally, we get

1

v
(t+1)
2

≥ 1

u1

, (3.21)

1

v
(t+1)
2

≥ 1

αv
(t)
2

, (3.22)

v
(t+1)
2 ≤ αv

(t)
2 . (3.23)

Since v
(1)
2 = α2, the sequence of v

(t)
2 is going to approach to zero exponentially in

the t iterations. To obtain the exponential convergence of the decoding α must

satisfy this condition α < 1. Fig 3.1 shows the message propagation for variance

converge analysis.
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Figure 3.1: Message propagation for variance converge analysis at variance v
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3.2 Relaxed Latin Square of CLDLC

Yona and Feder [20] extended the Latin square construction for the real-valued

LDLC [19] to CLDLC. Even though, the Latin square construction of CLDLC

have been introduced in Section 2.5. But to make readers understand and see the

differences between the Latin square and the relaxed Latin square construction of

CLDLC clearly, in this section, we make the summary of Latin square construction

again before explaining about the relaxed Latin square construction.

A Latin square CLDLC can be constructed by designing a check matrix

H having constant row and column weight d. Let h = [h1, h2, h3, ..., hd] be a

generating sequence, where hi ∈ C and i = 1, 2, .., d. The non-zero entries of each

row and each column are h1, h2, h3, ..., hd, so that each row (respectively, column) is

a permutation of any other row (column), except for complex rotations, including

sign changes. This construction can be considered as a regular construction.

The belief-propagation decoder described in Subsection 2.7.2 uses single-

Gaussian messages as an approximation. In exact belief-propagation decoding,

the messages are a mixture of an infinite number of Gaussians, and the variances

of all Gaussians in a given mixture are the same, say vt for edge t. Sommer

et al. showed that a sufficient condition to achieve exponential convergence of the

message variance in the BP decoder is to select the generator sequence |h1| ⩾ |h2| ⩾
... ⩾ |hd| such that α < 1, see (2.25) in Section 2.5. The convergence is exponential

in the sense that vt ≤ αiσ2, where ℓ is the iteration number and where vt is the

mixtures’ variances at the variable node output for the edges associated with edge

ht, for t = 2, 3, . . . , d. This was proved for real LDLC lattices [19, Theorem 1], but

not for CLDLC lattices [20].

We propose a more general construction of CLDLC called Relaxed Latin Square

which has fewer restrictions for the coefficient and weight design. The relaxed Latin

square can be seen as an irregular CLDLC. Moreover, we give a new convergence

condition for the relaxed Latin square construction.

Relaxed Latin Square: In row i of H, let h′
1,i, h

′
2,i, . . . , h

′
di,i

be the non-

zero coefficients having degree di, where |h′
1,i| > |h′

2,i| ≥ · · · ≥ |h′
di,i
|; except for the
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strict inequality, this is a labeling and not a restriction on the values. Each column

of H has one coefficient of h1 type and one coefficient of h2 type; in column j the

remaining elements are less than h2.

Proposition 1 For i = 1, . . . , n, let αi be the row alpha which is represented the

convergence of variance in each row:

αi =
1

|h′
i,1|2

di∑
k=2

|h′
k,i|2. (3.24)

For the relaxed Latin square construction, if all αi < 1 for i = 1, 2, . . . , n then

the variable node message variances vt,j on edges h2,j, . . . , hd,j satisfy for t =

2, 3, . . . , d:

vt,j ≤ αℓ
maxσ

2, (3.25)

where αmax is maximum of α1, α2, . . . , αn.

In other words, the variances converge exponentially fast in iterations if

(3.24) is satisfied. The proof is in Appendix A. An example of a Latin square check

matrix and relaxed Latin square check matrix HLatin and HRelaxedLatin are shown

in (3.26) and (3.27) , respectively. HLatin has constant row and column weight 3,

and HRelaxedLatin has row and column weight between 2–4.

HLatin =



h1 0 0 h2 0 0 h3 0

h2 h1 0 0 0 0 0 h3

0 h3 h1 0 0 0 0 h2

0 0 h3 h1 0 0 h2 0

h3 0 0 0 h1 h2 0 0

0 0 h2 h3 0 h1 0 0

0 h2 0 0 h3 0 h1 0

0 0 0 0 h2 h3 0 h1


, (3.26)
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HRelaxedLatin =



h1 0 0 h2 0 0 h3 0

h3 0 0 0 h2 h1 0 0

0 0 h1 0 0 h2 0 h3

0 0 h2 h1 0 0 0 0

0 h1 0 0 h3 0 0 h2

0 h2 0 h3 0 0 h1 0

0 0 h3 0 h1 0 h2 0

h2 0 h4 0 0 0 0 h1


. (3.27)

3.3 Triangular Structure of Relaxed Latin

Square CLDLC Based on Modified Array Low-

Density Parity-Check (LDPC) Codes

In section 3.2, we introduced a new CLDLC construction called the relaxed Latin

square which can be considered as an irregular CLDLC. Each row and column of

the check matrix H allows to has the differences of coefficient and weight design.

Based on this property, the triangular structure of the check matrix H is possible.

The triangular structure is desirable for low complexity and fast encoding

process, it is also suitable for the shaping operations. The Gaussian elimination

could be used to obtain the triangular structure, but this method increase the

complexity of encoding process as the dimension increases, so this method is not

practical for the hardware implementation. The modified array low-density parity-

check (LDPC) codes [35], [36] have the triangular structure, and it can be applied

to the relaxed Latin square construction of CLDLC to obtain the triangular struc-

ture.

Since the modified array codes is designed based on the quasi-cyclic LDPC

(QC-LDPC) codes. First, the QC-LDPC codes are introduced, follows by the

modified array LDPC codes. Finally, the triangular structure of relaxed Latin

square matrix which is designed based on the modified array LDPC codes are

illustrated.
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3.3.1 Quasi-Cyclic LDPC Codes

LDPC codes first is discovered by Galager [37], then discovered again by Sipser

et al. [38] and Mackey et al. [39]. After rediscovering, LDPC codes have created

much interest since they are show remarkable performance close to the Shannon

limit over additive white Gaussian noise (AWGN) channels when the code length

or the parity check matrix size is large.

However, the large parity check matrix requires a significant amount of

memory to store it. Quasi-cyclic LDPC (QC-LDPC) codes are one of a good

candidate to solve the memory problem. This is because the parity check ma-

trix of QC-LDPC consists of small square blocks which are circulant permutation

matrices. Let P be the L× L permutation matrix given by

P =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

1 0 0 . . . 0


. (3.28)

Note that P i is just the circulant matrix which shifts that identity matrix I to

the right by i times for any integer i 0 ≤ i ≥ L.

Assume H is the mL× nL parity check matrix which is defined by

H =


Pa11 Pa12 . . . Pa1(n−1) Pa1n

Pa21 Pa22 . . . Pa2(n−1) Pa2n

...
... . . .

...
...

Pam1 Pam2 . . . Pam(n−1) Pamn

 , (3.29)

where aij ∈ {0, 1, . . . , L− 1}.
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3.3.2 Modified Array LDPC Codes

Eleftheriou et al. [35] proposed a modified array code with the following parity

check matrix for an efficient encoding:

H =



I I I . . . I . . . I

0 I P . . . P (j−2) . . . P (k−2)

0 0 I . . . P2(j−3) . . . P2(k−3)

...
...

... . . .
... . . .

...

0 0 . . . 0 I . . . P (j−1)(k−1)


, (3.30)

where 0 is the L × L zero or null matrix. This modified array can be considered

as an irregular QC-LDPC code which is defined by three parameters; a prime

number q and two integers j and k such that q ≥ k ≥ j, where j and k represent

the number of non-zero elements by row and column respectively, called the row

and column weight or degree of the parity check matrix.

Due to the upper triangular form of the modified array matrix, it can be

encoded efficiently and also easily checked that there is no cycles of length 4 in the

corresponding bipartite graph or Tanner graph.

3.3.3 Modified Array CLDLC

This subsection represents the triangular structure of relaxed Latin square matrix

which is designed based on the modified array LDPC codes. We call this new

construction as Modified Array CLDLC.

Since the relaxed Latin square matrix is square matrix, the maximum row

weight and column weight equals d for the modified array CLDLC. The modified

array CLDLC can be constructed as the following steps.

1) Generate the modified array code as in (3.30) with 4 cycle free based on the

finite file GF(2).

2) The non-zero elements are replaced by h1, h2, h3, ..., hd with random sign.

The design of h1, h2, h3, ..., hd must follow the convergence of variance in
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(3.24). The array LDLC lattice inverse generator matrix H is:

H =



h1I h2I h3I h4I . . . hdI

0 h1I h2P h3P
2 . . . hd−1P

(d−2)

0 0 h1I h2P
2 . . . hd−2P

(d−1)

0 0 0 h1I
2 . . . hd−3P

(d−3)

...
...

...
...

. . .
...

0 0 0 0 0 h1I


. (3.31)

Even if the triangular structure is good for encoding and shaping opera-

tions, but the codeword components whose column degree is low have less protec-

tion. For example, the first column with only one non-zero element is uncoded

because it only participates in a single check equation. One possible solution is to

increase the protection of the less protected elements by increasing the power of

the less protected elements. This can be done by scaling those elements by some

factor [40].

3.4 Concluding Remarks

In this chapter, we propose a new CLDLC construction called relaxed Latin square

for a check matrix H. This construction is extended from the Latin square con-

struction. The advantage of the relaxed Latin square is that each row and column

does not require to have the same coefficients and weight d; or, it can be seen

as an irregular CLDLC. The proof of exponential convergence of variances under

belief-propagation decoding is also provided. In addition, we also provided the tri-

angular structure of relaxed Latin square CLDLC which is designed based on the

modified array LDPC Codes. The triangular structure is good for low complexity

and fast encoding process, and it is suitable for the shaping operations.
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Chapter 4

Reliability-Based Decoding of

Real-Valued LDLC

Before going to the reliability-based decoding of CLDLC which is the main theme

of this dissertation. We first would like to introduce the reliability-based decoding

of the real-valued LDLC in this chapter. Then, we extend the reliability-based

decoding to CLDLC in Chapter 5. The reliability-based decoding of the real-

valued LDLC can help readers to understand the complex number case easier.

LDLC codes are lattices which are constructed and decoded on principles

similar to low-density parity-check (LDPC) codes. They can be decoded in large

dimensions and error-free decoding is possible within 0.6 dB of the unconstrained-

power channel capacity [8]. These lattice codes have sparse parity-check matrices.

From this property, LDLC can be decoded using linear complexity iterative decod-

ing based on belief propagation (BP) which is similar to LDPC codes. In iterative

decoding of LDLC codes, the messages are continuous functions. When the chan-

nel is AWGN, these messages are a mixture of Gaussian functions. The number of

these Gaussian functions grows quite rapidly as the number of iterations increase.

For any implementation, the number of Gaussian mixtures must be reduced. In

prior work [19], the Gaussian mixtures were quantized. However, this work still

has high computation complexity and requires large storage. In [23] , a parametric

41



Chapter 4. Reliability-Based Decoding of Real-Valued LDLC

LDLC decoding algorithm employing Gaussian mixture reduction (GMR) to ap-

proximate the messages was presented. The messages passed between the variable

and check nodes were represented by triples of three parameters, mean, variance,

and mixing coefficient. All possible pairs of Gaussian on a list are searched and

the closet pairs are replaced with a single Gaussian using Kullback-Leiber di-

vergence. Further, using single Gaussians as the messages between the variable

and check nodes leads to reduced memory requirements with minor performance

penalty [8]. [25] proposed the three/two Gaussians parametric decoding algorithm.

This work used the same parametric decoding algorithm as [8], [23], but the infinite

Gaussian mixtures are approximated by three or two Gaussians at variable node.

The results showed that the three or two Gaussians yield the better performance

and lower complexity compared to the GMR algorithm.

We define the reliability of the check-to-variable messages for two purposes.

The first one is to choose to approximate the infinite Gaussian mixtures by one

or two Gaussian. The reliability of each check-to-variable message is calculated.

If there is higher reliability than a decided threshold value, one Gaussian will

be selected; otherwise, two Gaussians will be used. The other purpose is for the

updating sequence of variable nodes of the parametric shuffled BP (SBP) decoding

algorithm [28]. The parametric SBP increases the convergence speed of the BP

decoder. Each variable node will average the reliability of their input messages,

and the variable node which has highest reliability will be updated first.

The major advantage of this work is it reduces the number of the Gaussian

mixtures at the variable node and increases the convergence speed compared to the

two or three Gaussians decoding algorithm [25]. Another advantage is the proposed

algorithm shows that: 1) the single Gaussian can be used, 2) each variable node

input does not need to be expanded using a constant number of integers, and 3)

without SBP algorithm, the maximum number of Gaussian approximation equals

two is not sufficient to maintain a good probability of symbol error performance.

A higher number of Gaussian in the approximation is required.

The basic theory of LDLC is described in Section 3.1. And this chapter

is organized as follows. Section 4.1 describes the differences between BP and
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SBP decoder. Section 4.2 describes operations over Gaussian mixtures and the

moment matching approximation. Section 4.3 gives the explanation about one or

two Gaussian approximation. Section 4.4 describes the reliability of the check-to-

variable messages and how to select one or two Gaussian based on their reliability.

In addition, the updating sequence of the variable nodes of the parametric SBP

algorithm based on the input reliability is included in this section. The last section,

Section 4.5 gives the numerical results.

4.1 BP and SBP Decoder

Similar to low-density parity check (LDPC) codes, the LDLC decoder uses a bi-

partite graph for the iterative decoding. The bipartite graph of LDLC consists

of variable nodes at one side and check nodes at the other side. Each variable

node corresponds to a single element of the codeword x = Gb. Each check node

corresponds to a check equation,
∑

k hkxik = integer, where ik are the positions of

the non-zero elements at the corresponding row of H, hk are the values of H at

these locations and the integer is unknown. An edge connects check node i and

variable node j if and only if Hi,j ̸= 0. The iterative decoding of LDLC passes

messages over the bipartite graph called belief-propagation (BP) decoding, in each

iteration the check nodes send messages to the variable nodes along the edges of

bipartite graph and vice versa. The messages between check nodes and variable

nodes are real functions while the messages of LDPC codes are scalar values (e.g.,

log likelihood ratio (LLR) of a bit). In the standard BP algorithm, every variable-

to-check messages or check-to-variable messages can be computed in parallel. (All

variable nodes pass messages to the connected check nodes in the same time and

vice versa.)

Shuffled belief-propagation (SBP) decoding is a sequential belief propaga-

tion algorithm which can speed up the convergence of BP decoding [28]. In the

SBP algorithm, the initialization, stopping criterion test and output steps remain

the same as BP algorithm. The difference between the two algorithms lies in the

updating procedure of the variable nodes. While BP decoding is performed in

parallel, SBP sequentially updates the variable nodes. An example is shown in
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Figure 4.1: Updated sequence of shuffled BP decoding

Fig. 4.1. Initially, all channel messages are passed to the check nodes. The next

step (a) is the check-to-variable message. The check nodes which are connected to

the first variable node sends the messages to the first variable node. In computing

the variable-to-check message (b), the first variable node returns the messages to

the connected check nodes and the check nodes recalculate the messages. The

remaining variable nodes have the same step as the first variable node. After the

last variable node is updated, this completes 1 iteration. In this way, the latter

variable nodes will have more information or reliability. However, the updating

order of variable nodes can be changed. (It is not necessary that the first variable

node must update first.) For decoding of LDLCs, a good sequence for updating

is the key for a good performance. We will explain the updating sequence for the

variable nodes in Section 4.4 .

4.2 Operations on Gaussian Mixtures

The LDLC decoding algorithm estimates PDFs: fxi| y(x|y), i = 1, ..., n.) using

a message passing algorithm over the bipartite graph. Since the variables xi are

continuous, the message are functions. A Gaussian with mean m and variance v

is denoted as:

N (z;m, v) =
1√
2πv

e−
(z−m)2

2v . (4.1)
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For the AWGN channel, these functions are Gaussian mixtures. The message f(z)

is a mixture of N Gaussians

f(z) =
N∑
i=1

ciN (z;mi, vi) (4.2)

where ci ≥ 0 are the mixing coefficients with
∑N

i=1 ci = 1. In this way, each Gaus-

sian mixture can be described by a set of triples, where each triple consists of three

parameters: mean, variance, and mixing coefficient, (m1, v1, c1), ..., (mN , vN , cN).

4.2.1 Product over Gaussian mixtures

Since the variable node output can be calculated from the product of input mes-

sages, the product of two Gaussian mixtures will be described. Let f(z) =∑N
i=1 fi(z) and g(z) =

∑N
i=1 gi(z) be two Gaussian mixtures. The product of two

components fi(z) = c1N (z;m1, v1) and gi(z) = c2N (z;m2, v2) is a single Gaussian

s(z) = cN (z;m, v) with mean m, variance v and mixing coefficient c given by:

1

v
=

1

v1
+

1

v2
, (4.3)

m

v
=

m1

v1
+

m2

v2
, (4.4)

c =
c1c2√

2π(v1 + v2)
exp

− (m1−m2)
2

2v1+2v2 . (4.5)

4.2.2 Moment Matching Approximation for Gaussian Mix-

tures

The operation over variable is described in this subsection. Let f(z) be the

Gaussian mixture. To reduce the complexity, the messages which are sent back

to the check nodes or the output of variable node must be a single Gaussian

q(z) = N (z;m, v). The moment matching approximation (MM) which minimizes

the Kullback-Leiber divergence between f(z) and q(z) is used to approximate the

Gaussian mixture f(z) to a single Gaussian q(z) [41]. The MM finds the single
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Gaussian q(z) which has the same mean m and variance v as f(z). The mean m

and variance v is given by:

m =
N∑
i=1

cimi, (4.6)

v =
N∑
i=1

ci(vi +m2
i )−m2. (4.7)

This operation is denoted as:

q(z) = MM(f(z)). (4.8)

4.3 One or Two Gaussian Approximation

The check-to-variable message over a set of integers B, given by (4.9). In principle

it should be computed over all integers, but it is not convenient in practice, so

the number of integers must be reduced. We assume that the channel message

Y (z) is a single Gaussian which has mean ma and variance va = σ2. The infinite

periodic Gaussians R̃(z) with period
1

h
for h ∈ h has mean mc and variance vc.

Consider the multiplication between the channel message Y (z) and and the infinite

periodic Gaussians R̃(z). The periodic Gaussians far from the channel message

have near-zero mixing coefficients and can be safely ignored. Therefore, R̃(z) can

be restricted using some finite integer set B which are near the channel message

as,

R(z) =
∑
i∈B

N (z;mc +
i

h
, vc), (4.9)

Having a good approximation at variable node leads to a good perfor-

mance in the parametric LDLC decoder. The idea is to approximate an infinite

Gaussian mixture Y (z)R̃(z) with Y (z)R(z), which consists of a finite number of

Gaussian. [25] showed that the approximation in the tails of Gaussian function is

very important. They proposed |B| = 2 or 3 to approximate the infinite Gaussian

and shows that the decoder will lose the performance if |B| = 1 or MM approxi-

mation is applied.
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In this work, we show that the finite number of integer |B| = 1 or 2

is possible to use and gives the better performance compared to [25]. We will

explain this in the next section. At the considered variable node, each incoming

check-to-variable message will be expand by two Gaussians or can be used as the

single Gaussian without expansion.

Here the two cases of |B| = 1 and |B| = 2 Gaussians nearma are considered.

Let the single Gaussian set be B = {b0}, and the two Gaussians set be B = {b1, b2}
where b2 = b1 + 1.

For the single Gaussian, b0 is

b0 = ⌈−h(mc −ma)⌋. (4.10)

The resulting Gaussian mixture is:

R(z) = N (z;mc +
b0
h
, vc), (4.11)

For the two-Gaussian set, two integer are selected. The first one is less than a

noninterger estimate, and the other one is more than a noninteger estimate. b1

can be found as:

b1 = ⌊−h(mc −ma)⌋. (4.12)

The resulting Gaussian mixture is:

R(z) = N (z;mc +
b1
h
, vc) +N (z;mc +

b2
h
, vc). (4.13)

4.4 Reliability-Based Parametric LDLC Decod-

ing

In this section, we present the reliability-based parametric SBP decoding algo-

rithm. The number of Gaussians for the periodic expansion and updating order of

SBP both use the reliability of the incoming check-to-variable messages. There-

fore, the reliability calculation is described first, followed by the parametric SBP
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decoding algorithm.

4.4.1 Reliability of Check-to-Variable Messages

In this part, we describe the reliability of the incoming check-to-variable message.

The reliability is based on the likelihood of the mean and the nearest integer of the

check-to-variable message. The proof is similar to CLDLC, it is given in Section

5.2.1. We use (4.10) to calculate the integer a, a ∈ Z nearest to b ∈ R. b and a

represent the mean and its integer approximation, respectively. When the channel

is noiseless, a will be equal to b. Therefore, the difference between a and b can

represent the intensity of the Gaussian noise or the reliability of the message. If

there is a large difference between a and b, it means that the message has low

reliability or high intensity of Gaussian noise. The reliability of each message can

be calculated as follows,

Reliability =
1

|a− b|
=

1

|⌈−hd(md −ma)⌋+ (hd(md −ma))|
. (4.14)

4.4.2 Reliability-Based Parametric SBP Decoder

The proposed decoding algorithm is presented here. The SBP algorithm decodes

over the bipartite graph that was described in Section II-C. There are n·d variable-

to-check messages qk(z), and n·d check-to-variable messages R̃k(z), k = 1, 2, ...n·d.
Since the periodic expansion step takes place at the variable node, the messages

are the mixtures of Gaussians. The variable node computes the product of the

incoming messages from (4.3)-(4.5). To reduce the memory requirement between

variable and check nodes, the outputs of variable node which are Gaussian mixtures

will be approximated by a single Gaussian using MM approximation from (4.6)-

(4.8), before sending the messages to check nodes. Single Gaussians are represented

by its mean and variance called parametric decoding.

The parametric iterative decoding algorithm is as follows:

• Initialization: According to (3.3), the channel is AWGN, the initial variable-
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to-check message is

yi(z) = N (z; yi, σ
2), (4.15)

for i = 1, 2, ..., n. All received messages are sent to the check nodes in initial

step.

• Check-to-variable message: The incoming messages of check nodes are k =

1, ..., d− 1 single Gaussians and output d. The corresponding non-zero coef-

ficients from H are h1, ..., hd. The output R̃d(z) is:

R̃d(z) = N (z;md, vd), (4.16)

where,

md = −
∑d−1

k=1 hkmk

hd

, and vd = −
∑d−1

k=1 h
2
kvk

h2
d

. (4.17)

• Variable node update sequence: We add this step to sequence the variable

nodes for updating. n · d outgoing messages from the check nodes will be

calculate Reliabilityk, k = 1, 2, ...n · d by (4.14). Then, find the sequence for

updating variable node. Consider the variable node vi, i = 1, 2, ..., n has the

inputs from the check nodes k = 1, ..., d. The average Reliability of vi can

be calculate by,

Avg Reliability vi =

∑d
k=1 Reliabilityk

d
, (4.18)

Avg Reliability vi will be sequenced from high to low. The updated or-

der of the variable nodes start from the variable node which has the highest

Avg Reliability v to the variable node which has the lowestAvg Reliability v.

The SBP decoding algorithm was described in Section II-C. Note that we

can use the average reliability to find the updated sequence of SBP decoding

algorithm because the reliability is always a positive value, so it is not neces-

sary to use the higher complexity algorithm for the hardware implementation

such as the root mean square (RMS) to find the updated sequence of SBP.

• Variable-to-check message: The messages coming from the check node are
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single Gaussians N (z;md, vd). Then the messages are expanded to a periodic

function with period 1/|hd|, if b ∈ B. The periodic Gaussian is:

Rd(z) =
∑
b∈B

N (z;md(b), vd), (4.19)

where the mean m of each Gaussian is

md(b) = md +
b

hd

. (4.20)

The set B represents a subset of the integer. The input messages of the vari-

able node will select |B| = 1 ifReliabilityk > Threshold, and ifReliabilityk <

Threshold then |B| = 2 is used. (We set the threshold value for choosing

the number of expansion.) The message fd(z) sent back to the check node

is a single Gaussian approximated by:

fd(z) = yi(z)
d−1∏
k=1

Rk(z), (4.21)

qd(z) = MM(fd(z)), (4.22)

• Final decision: At the last iteration the product without omitting any mes-

sage is performed:

qfinali (z) = N (z; yi, σ
2)

d∏
k=1

Rk(z). (4.23)

And the the lattice point estimate x̂ and the integer information estimate b̂

are

x̂i = argmax
z

qfinali (z), and b̂ = ⌊Hx̂⌉. (4.24)

4.5 Numerical Results

The reliability-based parametric LDLC decoding was evaluated numerically on

the unconstrained input power AWGN channel. We compared three algorithms:
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1. two or three Gaussians decoding [25], 2. the proposed reliability-based decoding

without SBP and 3. the proposed reliability-based decoding with SBP. Lattices

with dimension n = 100 and 1000 were used, and the matrixH had row and column

weights d of 5 and 7, respectively. The inverse generator matrix was created with

the generator sequence h = {1, 1√
d
, ...,

1√
d
}, and the matrix was normalized to

have | det(G)| = 1.

To find the threshold, we start with a small-valued of the threshold to ob-

tain, then test the decoder symbol error rate (SER). Afterward, gradually increase

the threshold and test the SER again. This process is repeated until the decoder

SER has noticeable degradation, and that point will be set as the threshold. (when

Threshold equals 0, all check-to-variable messages are expanded using |B| = 2)

we select Threshold = 0.2 as a compromise between performance and complex-

ity. Fig. 4.2 shows the average number of Gaussian that we use in the periodic

expansion versus Threshold. The average number of Gaussians over the VNR

range is 1.4 when we select Threshold = 0.2. The complexity of the proposed

algorithm depends on the lattice dimension n,the number of iterations t, number

of the Gauusians in the periodic expansion, and the degree of the inverse generator

matrix d. Assuming that the selection of one and two Gaussians is independent,

the complexity of the proposed decoder is O(n · t · 1.4d−1). For comparison, the

complexity of the two or three Gaussians are O(n · t · 2d−1) and O(n · t · 3d−1).

In Fig.4.3, the average number of iterations required for decoder conver-

gence is shown. The number of iterations recedes when the VNR increases and

the proposed algorithm lowers the number of iterations required for convergence.

Fig.4.4 shows the probability of symbol error for the proposed decoding

algorithms vs. VNR. The proposed reliability-based decoding with SBP decoding

outperforms the two or three Gaussians decoder. When the probability of symbol

error equals 10−4 and n = 100 and 1000, the proposed algorithm gains 0.25 dB

and 0.2 dB, respectively. If we compare to the proposed reliability-based decoding

without SBP decoding, the reliability-based SBP decoding gains 0.5 dB and 0.3

dB for n = 100 and 1000, respectively.
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4.6 Concluding Remarks

This chapter proposes reliability-based parametric decoding of low-density lattice

codes (LDLC). We define the reliability of the check-to-variable messages for two

purposes. The first one is to choose to approximate the infinite Gaussian mixtures

by one or two Gaussian. The reliability of each check-to-variable message is cal-

culated. If there is higher reliability than a decided threshold value, one Gaussian

will be selected; otherwise two Gaussians will be used. The other purpose is for the

updating sequence of variable nodes of the parametric shuffled BP (SBP) decoding

algorithm. The parametric SBP increases the convergence speed. The updating

sequence of SBP follows the order of reliability of the check-to-variable messages

from high to low.

The numerical results show that the proposed algorithm gives superior

performance and lower complexity compared to two or three Gaussian decoding

algorithm. At a probability of symbol error equal 10−4 and n = 100 and 1000, the

proposed algorithm gains 0.25 and 0.2 dB, respectively. Moreover, the complexity

of the proposed decoder is O(n · t · 1.4d−1) which is lower than the two or three

Gaussians [25] which have the complexity O(n · t · 2d−1) and O(n · t · 3d−1).

From the reliability-based LDLC decoding, we know that:

1) the single Gaussian can be used,

2) each variable node input does not need to be expanded using a constant

number of integers, and

3) without SBP algorithm, the maximum number of Gaussian approximation

equals two is not sufficient to maintain a good probability of symbol error

performance. A higher number of Gaussian in the approximation is required.

From this summary, we extended the reliability-based decoding to the complex

number case in the next chapter.
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Figure 4.2: Threshold vs number of Gaussian for lattice dimension n = 100 and
degree d = 5

Figure 4.3: Average number of iterations required for decoder convergence in term
of VNR for lattice dimension n = 100 and degree d = 5
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Figure 4.4: The performance comparison in term of VNR vs probability of symbol
error
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Chapter 5

Reliability-Based Decoding of

CLDLC Using Gaussian and

Eisenstein Integers

As we introduced in Section 2.7.2, BP decoding of CLDLC confronts the infinite

Gaussian mixture issue in iterative decoding, and this infinite Gaussian mixture

must be approximated for the decoder implementation. This chapter describes an

approximation of an infinite Gaussian mixture using a finite Gaussian mixture;

this is done for both CLDLC based on Gaussian integers and Eisenstein integers.

This approximation is used at the variable node of the belief-propagation decoding

algorithm for CLDLC lattices in Section 2.7.2.

The CLDLC decoding algorithm presented by Yona and Feder [20] employs

Gaussian mixture reduction (GMR) algorithm. The decoder sorts the list of Gaus-

sian mixtures and the Gaussians which satisfy a given condition will be grouped.

Each incoming message of the variable node is approximated by 9 complex Gaus-

sian functions. The GMR algorithm is be performed at every multiplication, at

each variable node, on each iteration. Due to the large number of Gaussian func-

tions, the complicated GMR algorithm, and the large number of its uses, this

algorithm may not be suitable for hardware implementation.
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To approximate the infinite Gaussian mixture to a finite number, we pro-

pose reliability-based CLDLC decoding. In reliability-based decoding, the number

of Gaussians in the check-to-variable message is adaptively selected depending

upon the reliability. We define a likelihood-based reliability function and use it to

determine the number of complex Gaussians at the variable node. This leads to an

optimized number of Gaussians in each check-to-variable message. For example,

when the message has high reliability a single Gaussian is selected, otherwise a

greater number of Gaussian is selected for the message which has lower reliability.

To determine that the check-to-variable message has high or low reliability, we

define a threshold function which can be found using the Kullback-Leibler (KL)

divergence between the approximation and the true distribution, but explicitly

computing the divergence is inefficient. Instead, we form an upper bound on this

KL divergence, and linear regression is used to efficiently estimate this threshold.

In addition, we proposed a CLDLC construction using Eisenstein integers

(EI) in this chapter. The advantage of Eisenstein integers over Gaussian integers

is that Eisenstein integers give a more accurate approximation for a fixed number

of Gaussians in the mixture. In the approximation, Gaussians with means clos-

est to the channel value, corresponding to either Gaussian integers or Eisenstein

integers, are selected because these have the highest likelihood. If a fixed num-

ber of Gaussians is considered, for example three Gaussians, then three Eisenstein

integers will together give a higher likelihood than three GI because Eisenstein in-

tegers have hexagonal packing, which is tighter than the cubic packing of GI (the

hexagonal packing is the tightest in two dimensions). Due to the tighter packing,

the distance to the channel value will be lower on average.
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5.1 Gaussian Approximation for CLDLC Decod-

ing

In CLDLC, the check-to-variable message is an infinite complex Gaussian mixture,

which for GI is given by

R(z) =
∑
j∈Z[i]

N
(
z;mc +

j

h
,Vc

)
, (5.1)

and for EI, the sum is over Z[ω]. The infinite periodic Gaussians R(z) with period

1/h has mean mc and variance Vc. The channel message Y (z) is a single complex

Gaussian function with mean ma and variance Va = σ2I2. The exact product of

Y (z) and R(z) at the variable node is also an infinite complex Gaussian mixture.

This infinite Gaussian mixture Y (z)R(z) must be reduced to a finite number of

Gaussians Y (z)R̃(z) in practice. R̃(z) is the summation in (5.1) restricted to some

finite subset B, given by

R̃(z) =
∑
j∈B

N
(
z;mc +

j

h
,Vc

)
, (5.2)

where B ⊂ Z[i] in the GI case and B ⊂ Z[ω] in the EI case.

Choosing a finite subset of integers B of R̃(z) which is sufficient to represent

the infinite Gaussian mixtures R(z) is the key for an accurate approximation. The

periodic Gaussians far from the channel message have near-zero mixing coefficients

and can be safely ignored. Therefore, R(z) can be restricted using some finite

integer set B which are near the channel message Y (z). How to select B is the

subject of the next two subsections.

5.1.1 Gaussian Integer Approximation

We present an approximation of R̃(z) based on a subset of Gaussian integers

B ⊂ Z[i] at the variable node in this subsection. The three cases of |B| = 1, |B|
= 2 and |B| = 4 Gaussians near Y (z) are considered. Each case of |B| is used

to approximate check-to-variable messages which have different reliability. If a
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check-to-variable message has high reliability, |B| = 1 is sufficient to represent the

infinite Gaussian mixtures. But if the check-to-variable message has intermediate

or low reliability |B| = 2 or 4 will be applied, respectively.

For the high-reliability case, let the single Gaussian set be B = {b0}, where
b0 is

b0 = ⌈−[h] (mc −ma)⌋, (5.3)

and [h] =

[
Re{h} −Im{h}
Im{h} Re{h}

]
. The resulting Gaussian mixture is

R̃(z) = N (z;mc + [h]−1b0,Vc). (5.4)

For intermediate reliability, two Gaussian integers are selected, B = {b0,b1}.
b0 is found from (5.3). Define b̃0 = −[h] (mc −ma) as the soft value of b0. b1

is found from the minimum Euclidean distance between b̃0 and the eight integers

nearest b0. Define ζ0 = b0+{[−1,−1]T , [−1, 0]T , [−1, 1]T , [0,−1]T , [0, 1]T , [1,−1]T ,
[1, 0]T , [1, 1]T} so that b1 is:

b1 = min
x∈ζ0
||x− b̃0||2. (5.5)

The resulting Gaussian mixture is

R̃(z) = N (z;mc + [h]−1b0,Vc) +N (z;mc + [h]−1b1,Vc). (5.6)

For low reliability, four Gaussian integers are selected, B = {b0,b1,b2,b3}.
b0 and b1 can be found from equation (5.3) and (5.5). b2 can be computed as

b2 = min
x∈ζ1
||x− b̃0||2, (5.7)

where ζ1 = ζ0 − b1, and − denotes set subtraction. b3 can be found as,

b3 = min
x∈ζ2
||x− b̃0||2, (5.8)
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Figure 5.1: Gaussian approximation based on reliability of check-to-variable mes-
sage for Gaussian integers for three example check-to-variable messages r1, r2 and
r3.

where ζ2 = ζ1 − b2. The resulting Gaussian mixture is

R̃(z) = N (z;mc + [h]−1b0,Vc) +N (z;mc + [h]−1b1,Vc)+

N (z;mc + [h]−1b2,Vc) +N (z;mc + [h]−1b3,Vc).
(5.9)

For Gaussian integers, example b0,b1,b2 and b3 are shown in Fig. 5.1.

In summary, b0 is the closest to the soft value b̃0, b1 is second closest, etc. In

the figures, T1 and T2 are thresholds to select between high, intermediate and low

reliability, and will be described in Section 5.2.
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5.1.2 Eisenstein Integer Approximation

We propose an approximation of R̃(z) based on a subset of Eisenstein integers

B ⊂ Z[ω] in this subsection. The approximation is made at the variable node, as

in case of Gaussian integers. Three cases of |B| = 1, |B| = 2 and |B| = 3 Gaussians

near Y (z) are considered. For check-to-variable messages with high reliability, a

single Gaussian B = {b0} is selected, which can be found using coset decoding of

the hexagonal lattice [29] as follows:

1. Calculate

b̃0 = −[h] (mc −ma) (5.10)

2. Let Λ1 be a scaled integer lattice with generator matrix G =

[
1 0

0
√
3

]
. Λ1

is the direct sum Z ⊕
√
3Z— this allows us to quantize in each dimension

independently. Quantize b̃0 to the nearest point in Λ1:

z0 = QΛ1(b̃0) = [⌈̃b0,Re⌋
√
3 · ⌈̃b0,Im/

√
3⌋]T , (5.11)

3. Find the point z1 in the coset Λ1 + s closest to b̃0 as:

z1 = QΛ1(b̃0 − s) + s, (5.12)

where s = [1
2

√
3
2
]T .

4. The point b0 closest to b̃0 is:

b0 =

z0, if ||z0 − b̃0||2 ⩽ ||z1 − b̃0||2

z1, if ||z0 − b̃0||2 > ||z1 − b̃0||2
. (5.13)

The resulting Gaussian mixture is R̃(z) =
∑

j∈{b0}N (z;mc + [h]−1j,Vc).

R̃(z) = N (z;mc + [h]−1b0,Vc). (5.14)
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For intermediate reliability, two Eisenstein integers are selected, B =

{b0,b1}; b0 is from (5.10)–(5.13) and b1 is found from the minimum Euclidean

distance between b̃0 and the six integers nearest b0. Define as ε0, where b̃0 =

−[h] (mc−ma) and ε0 = b0+{[−1, 0], [1, 0], [−1
2
,
√
3
2
], [1

2
,
√
3
2
], [−1

2
,−

√
3
2
], [1

2
,−

√
3
2
]}

so that b1 is:

b1 = min
x∈ε0
||x− b̃0||2. (5.15)

The resulting Gaussian mixture is

R̃(z) = N (z;mc + [h]−1b0,Vc) +N (z;mc + [h]−1b1,Vc). (5.16)

For low reliability, three Eisenstein integers are selected, B = {b0,b1,b2},
where b0 and b1 can be found as above, and b2 can be computed as

b2 = min
x∈ε1
||x− b̃0||2, (5.17)

where ε1 = ε0 − b1. The resulting Gaussian mixture is

R̃(z) = N (z;mc + [h]−1b0,Vc) +N (z;mc + [h]−1b1,Vc)+

N (z;mc + [h]−1b2,Vc).
(5.18)

For Eisenstein integers, example b0,b1, and b2 of Eisenstein integers are

shown in Fig. 5.2. In the figures, T1 and T2 are thresholds to select between high,

intermediate and low reliability, and will be described in Section 5.2.

The maximum value for |B| of 4 and 3 for Gaussian and Eisenstein integers

is related to the number of lattice points connected to a deep hole. The deep hole

is the furthest point from the lattice point on the Voronoi cell and are shown in

Fig. 5.1 and 5.2. If the check-to-variable message r is at the deep hole in the worst

case, the number of high-likelihood integers |B| near r is 4 and 3 for Gaussian and

Eisenstein integers, respectively.
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Figure 5.2: Gaussian approximation based on reliability of check-to-variable mes-
sage for Eisenstein integers for three example check-to-variable messages r1, r2 and
r3.
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5.2 Reliability-Based Implementation at Variable

Nodes

This section describes reliability-based selection of Gaussians to be used at the

variable node in Section 2.7.2. From Section 5.1, the infinite complex Gaussian

mixtures can be approximated by 1, 2 or 4 Gaussians in the GI case, or 1, 2 or

3 Gaussians in the EI case. This section addresses how to select the number of

Gaussians. We define the reliability, 1/ρ of the check-to-variable messages which is

used to choose the number of Gaussians for each incoming message at the variable

node. Two thresholds T1 < T2 will be set at the variable node. If the reliability

is high, that is ρ satisfies ρ ≤ T1, then one Gaussian will be selected. If the

reliability is intermediate, that is, ρ satisfies T1 < ρ ≤ T2, then two Gaussian

will be selected. Otherwise, the reliability is low and four Gaussians or three

Gaussians will be selected for Gaussian integers or Eisenstein integers, respectively.

The thresholds T1, T2 are selected such that the Kullback-Leiber divergence of the

resulting approximation is no greater than a target value.

5.2.1 Reliability Function

The reliability is based on the likelihood of the soft check-to-variable message

b̃0 = −[h] (mc − ma) given its nearest integer approximation b0, as given by

(5.3). When the channel is noiseless, b̃0 will be equal to b0, and the highest

likelihood value is obtained. The likelihood of b̃0 given b0 can represent the

inverse magnitude of the noise, or the reliability of the message. If there is a large

difference between b̃0 and b0, it means that the message has low reliability or high

noise magnitude. The likelihood is:

Pr(b̃0|b0) =
1

2π
√
|V|

e−
1
2
(b̃0−b0)TV−1(b̃0−b0). (5.19)

For any given Gaussian with variance V, b̃0 and b0 are the only variables in (5.19),

the other parameters are constant. Therefore, the reliability 1/ρ depends on b̃0

and b0 only. We define ρ as the relevant part of the likelihood:
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ρ = |b̃0 − b0| = |(−[h] (mc −ma))− ⌈−[h] (mc −ma)⌋|, (5.20)

which satisfies 0 ≤ ρ ≤ 1. A smaller value of the magnitude of the Gaussian noise

means higher reliability, so the reliability is written as 1/ρ. Fig. 5.1-(a) and (b)

show three example check-to-variable messages r1, r2 and r3 which have reliabilities

ρ1, ρ2 and ρ3, respectively; both Gaussian integers and Eisenstein integers are

shown. ρ1 < ρ2 < ρ3 represent low, intermediate and high intensity of the Gaussian

noise, respectively. The first message with the smallest ρ1 has the highest reliability

1/ρ1, the second and third message with ρ2 and ρ3 have intermediate and low

reliability, 1/ρ2 and 1/ρ3, respectively.

5.2.2 Threshold and Bound on Kullback-Leibler Divergence

This subsection describes how to obtain the thresholds T1, T2, using the Kullback-

Leibler (KL) divergence. In particular, the smallest number of Gaussians are

chosen such that an estimate of the resulting KL divergence does not exceed a

target value. The KL divergence between two Gaussian mixtures does not have a

closed-form solution in general. Our approach is to form an upper bound on the

KL divergence and use this to upper bound the thresholds, T1, T2. Then, linear

regression is used as an approximation.

The KL divergence represents the similarity between two probability den-

sity functions (pdfs) [42, 43]. If the two pdfs are the same, the divergence is zero.

Our main interest is the KL divergence between the infinite Gaussian mixture

Y (z)R(z) and the finite Gaussian mixture Y (z)R̃(z):

D(Y (z)R(z)||Y (z)R̃(z)) =

∫
C
Y (z)R(z) log

Y (z)R(z)

Y (z)R̃(z)
dz, (5.21)

where Y (z) is channel message with mean ma and variance Va. R(z) and R̃(z)

are given in (5.1) and (5.2). The KL divergence of the Gaussian approximation

depends on 5 parameters: h, mc, ma, Vc and Va. If h, Vc and Va are fixed, the

KL divergence depends on mc −ma only.
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Let κ denote the maximum allowed KL divergence in (5.21) — we seek

approximations with KL divergence not greater than κ. Without loss of generality,

set ma = 0 and b0 = 0; then the KL divergence depends on mc only. Fig. 5.3

shows the KL divergence between one Gaussian Y (z) with Va = 0.025 · I2 and a

four-Gaussian mixture R̃(z) with Vc = 0.015 · I2 and h = 1.

The region R are the values of mc where the KL divergence is less than or

equal to the target value κ, that is:

R = {mc ∈ C | KL(mc) ≤ κ}. (5.22)

The threshold T is the radius of the largest disc that is fully contained in R. The
region R is not a disc, but we restrict the effective region to be the disc |mc| ≤ T ,

for ease of computation. Interpret T as T1 if R̃(z) is one Gaussian, and as T2 if

R̃(z) is two Gaussians.

Next, in order to bound the KL divergence, assume that Vc and Va have

covariance zero, and the larger of the two variances is used as this has the greater

effect on the KL divergence. Accordingly, the maximum element of the covariance

matrix Vc and Va is vc,max and va,max respectively.

Since the target is to find the thresholds T1 (one Gaussian) and T2 (two

Gaussians), R̃(z) is an l-Gaussian mixture where l equals one or two. To form

a bound, k Gaussians are selected from R(z) where k ∈ Z+ (ideally, k → ∞,

but since most resulting Gaussians have near-zero mixing coefficients, it is more

effective to consider k most relevant Gaussians). Using these assumptions, an

upper bound on (5.21) can be formed.

Proposition 2 Let Rk(z) consist of k Gaussians with mean mc as in (5.1). If

R̃(z) is a single Gaussian approximation, then:

D(Y (z)R(z)||Y (z)R̃(z)) ≤ (k − 1)va,max

2|h|2(vc,max + va,max)

(
1 + e

−2(mc,RehRe−mc,ImhIm)+1

2|h|2(vc,max+va,max)

) .

(5.23)
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Figure 5.3: KL divergence of Gaussian integer between 1 and 4 Gaussian when
|h| = 1, Va = 0.025 · I2, Vc = 0.015 · I2.
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If R̃(z) is a two Gaussian approximation, then:

D(Y (z)R(z)||Y (z)R̃(z)) ≤ (k − 1)va,max

|h|2(vc,max + va,max)

(
1 + e

2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc,max+va,max)

)2 .

(5.24)

The proof is given in Appendix B.

This can be used to form an upper bound on T1 and T2. The value of T1

and T2 is 0 ≤ {T1, T2} ≤ 1/h because T1 and T2 are calculated from the check-

to-variable message after stretching by 1/h. We are interested in the value of mc

for which the bound attains κ; this value is T1 (l = 1) or T2 (l = 2). In (5.21),

D(Y (z)R(z)||Y (z)R̃(z)) has the worst case when mc,Re = mc,Im, so we assume

mc,Re = mc,Im in (5.23) and (5.24). We have T1 as:

T1 =
|h|

(hRe − hIm)

(
1

2
− |h|2(va,max + vc,max) log

((
(k − 1)(va,max)

2κ|h|2(vc,max + va,max)

)
− 1

))
,

(5.25)

For the two-Gaussian approximation, we have T2 as:

T2 =
|h|

(hRe − hIm)

(
1

2
+ |h|2(va,max + vc,max) log

(√(
(k − 1)(va,max)

κ|h|2(vc,max + va,max)

)
− 1

))
.

(5.26)

Note that from (5.20), 0 ≤ ρ ≤ 1 applies to the check-to-variable message before

stretching by 1/h. So that T1 and T2 is comparable with ρ, the scalar |h| is included
in (5.25) and (5.26).

While (5.25) and (5.26) is not linear, we observed that it is roughly linear

for parameters of interest, so linear regression is used to estimate T1 and T2. Fig. 5.4

and 5.5 show an example of T1 and T2 obtained from the upper bound and its linear

approximation for Gaussian integer approximation.
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For Gaussian integer decoding, the linear regression was found as:

T1 = 0.4251− 4.9594va,max − 0.6407vc,max − 24.0404va,maxvc,max, (5.27)

T2 = 0.6141− 7.8082va,max − 1.4818vc,max − 0.9999va,maxvc,max, (5.28)

respectively. For the Eisenstein integer decoding, the linear regression was found

as:

T1 = 0.4442− 5.6516va,max − 1.2379vc,max − 10.3436va,maxvc,max, (5.29)

T2 = 0.4326− 5.5644va,max − 1.0497vc,max + 4.2929va,maxvc,max, (5.30)

respectively.

The constant value κ is set at 10−2. This value was chosen to give a

favorable performance-complexity trade off. The constant κ can be obtained from

a numerical search of KL divergence. We start with small-valued of KL divergence,

and use this value as the threshold to obtain T1 and T2 , then test the decoder

symbol error rate (SER). Afterward, gradually increase it to obtain another T1

and T2 and test the SER again. This process is repeated until there is noticeable

degradation in decoder SER, as determined by substantial simulations. That point

will be set as κ, to optimize the trade off between complexity and performance. For

GI and EI reliability-based CLDLC decoding, we set the constant value κ = 10−2,

For the number of Gaussians in R(z), k, we selected k = 4 and 3 for Gaus-

sian integer and Eisenstein integer, respectively. In order to implement a practical

algorithm, the same threshold for all check-to-variable messages independently

of coefficient h is desired, so h = 1 was selected because this gives the smallest

(i.e. most pessimistic) threshold value.

5.2.3 Gaussian Approximation at Variable Node

This section describes the approximation at the variable node in Section 2.7.2.

Unlike existing decoding algorithms based real and complex numbers [8,19,20,23–

26], the variable node function of the proposed algorithm adaptively selects the
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Figure 5.4: T1 of Gaussian integer approximation, for k = 4 and κ = 10−2. Solid
lines represent T1 calculated from the upper bound. Dashed lines represent T1

approximated by linear regression.
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number of Gaussians using the reliability of check-to-variable message. At each

iteration, the variable node function is as follows.

• Step 1, calculate reliability : At a variable node, the input messages are Ri(z)

with mean mi and variance Vi, for i = 1, 2, . . . , d. Find the corresponding

reliabilities ρ1, ρ2, ..., ρd using (5.20).

• Step 2, find the number of Gaussians in message expansion: For i = 1, 2, . . . , d,

the reliability ρi of each message is compared to the threshold T1 and T2. If

the reliability satisfies ρi ⩽ T1, then the number of Gaussians in the message

expansion is |Bi| = 1. If T1 < ρi ⩽ T2, then |Bi| = 2. Otherwise, |Bi| = 3 or

4 for Gaussian or Eisenstein integers integers, respectively.

• Step 3, message expansion: Each message R1(z), R2(z), ..., Rd(z) is expanded

to a periodic function using |Bi| Gaussians from step 2. The periodic Gaus-

sian is

R̃i(z) =
∑
b∈Bi

N (z;mi(b),Vi). (5.31)

where the mean of each Gaussian is:

mi(b) = mi + [hi]
−1b. (5.32)

The set Bi for Gaussian and Eisenstein integers is found in Section 5.1 and

5.1.2, respectively.

In Step 2, the maximum number of Gaussians in the expansion |B| for
Eisenstein integers is lower than for Gaussian integers. This is because Eisen-

stein integers have hexagonal Voronoi cells which has the tightest packing in two

dimensions. Fig. 5.1 and 5.2 illustrate the case of check-to-variable message has

high intensity of Gaussian noise r3. Only 3 Eisenstein integers (b0,b1 and b2)

are sufficient to cover all possibilities of check-to-variable message while Gaussian

integers require up to 4 integers (b0,b1,b2 and b3) to cover all possibilities.

In Step 3, a question that might arise is how many Gaussians are sufficient

for the expansion or approximation. To answer this question, we calculate the reli-
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ability ρ of check-to-variable messages and set the threshold T1 and T2 for choosing

the number of expansion |B|. The set B represents a subset of the Gaussian inte-

ger or Eisenstein integer. For Gaussian integer, the input messages of the variable

node will select |B| = 1 if the reliability ρ ⩽ T1 (high reliability), then |B| = 2 if

T1 < ρ ⩽ T2 (medium reliability), otherwise |B| = 4 is used (low reliability). For

example, Fig. 5.1 shows the periodic expansion based on Gaussian integer. The

first message r1 with the smallest ρ1, the value of ρ1 is less than T1 so, the single

Gaussian set B = {b0} will be used, where b0 can be calculated from (5.3). In the

second case, consider the message r2 with ρ2, the value of ρ2 is between T1 and T2

so, the two Gaussian set B = {b0,b1} will be used, where b1 can be calculated

from (5.5). And the last one, consider the message r3 with ρ3, the value of the

value of ρ3 is more than T2 so, the four Gaussian set B = {b0,b1,b2,b3} will be
used, where b2,b3 can be calculated from (5.7) and (5.8).

In the case of Eisenstein integers, the input messages to the variable node

will select |B| = 1 if the reliability ρ ⩽ T1, then |B| = 2 if T1 < ρ ⩽ T2, otherwise

|B| = 3 is used. Fig. 5.2 shows the periodic expansion based on Eisenstein integer.

The periodic expansion concept is similar to the Gaussian integer case but, in the

last case, when ρ3 is more than T2, the three Gaussian set B = {b0,b1,b2} will

be used, where b0,b1,b2 can be calculated from (5.10)-(5.13), (5.15) and (5.17),

respectively.

5.3 Numerical Results

5.3.1 Error Rate for Reliability-Based Decoder

The error rate of the reliability-based parametric CLDLC decoder was evaluated

on the unconstrained input power complex AWGN channel. We compared five

decoding algorithms: 1) real-valued LDLC with the 3 Gaussian decoder [25], 2)

CLDLC based on GMR algorithm with 9 Gaussians [20]; CLDLC decoding with

a fixed number of Gaussians: 3) 4 Gaussians (4 GI-CLDLC) and 4) 2 Gaussians

CLDLC (2 GI-CLDLC), which are the extension of real-valued decoding [25] to the

complex case. Finally, 5) the proposed reliability-based CLDLC decoder. Here,
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complex-valued lattices with dimension n = 8, 49, 500 and 5,000 were used, and the

matrixH had row and column weights d of 3, 3, 5 and 7, respectively. The elements

of the GI and EI vector b in equation (2.18) are randomly chosen from the set of

integers bRe, bIm ∈ Z, where Z = {−10,−9, . . . , 9, 10}. For 9 Gaussians with GMR

algorithm, we follow the settings of [20] usingM = 10, K = 3, V arRangeLen = 0.4

and CheckRangeLen = 0.05.

For real-valued LDLC lattices, dimension n = 16, 100, 1,000 and 10,000

was used, and the row and column weights are the same as CLDLC and the

elements of the real integer vector b are randomly chosen from Z. Note that we

choose the three-Gaussian LDLC decoding algorithm [25] for decoding real-valued

LDLC because this decoding algorithm yields similar performance to the quantized

decoding algorithm but with less complexity. The quantized decoding algorithm

proposed by [19] in 2008. This algorithm give very good performance but the

Gaussian mixtures are quantized, so leads to high computational complexity, it

also requires large storage.

The inverse generator matrix was created with the generator sequence

h = {1, 1√
d
, ...,

1√
d
}, and the matrix was normalized such that V (Λ) = 1. At

each VNR, we simulated until the number of symbol errors and word errors reach

1,000 and 500 at least, respectively (must satisfy both conditions). The maximum

number of iterations for the belief propagation (BP) decoder is 50 iterations.

The constant κ can be obtained from a numerical search of KL divergence

as described in Section 5.2.2. We start with small-valued of KL divergence, and

use this value as the threshold to obtain T1 and T2 , then test the decoder symbol

error rate (SER). Afterward, gradually increase it to obtain another T1 and T2 and

test the SER again. This process is repeated until the decoder SER has noticeable

degradation, and that point will be set as κ for trade off between complexity

and performance. For GI and EI reliability-based CLDLC decoding, we set the

constant value κ = 10−2, and T1 and T2 can be calculated from (5.27)–(5.30).

Fig. 5.6 shows the symbol error rate of each decoding algorithm for CLDLC

based on Gaussian integers (a symbol error occurs when b̂i ̸= bi). The result
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shows that reliability-based decoding gives the best performance, when n ⩽ 500.

In addition, CLDLC outperforms real-valued LDLC when n ⩽ 500. For n =

5000 all CLDLC decoding algorithms based on Gaussian integers yield the same

performance as the real-valued LDLC.

Fig. 5.7 shows the symbol-error rate of decoding CLDLC based on Eisen-

stein integers. We also compared five algorithms: 1) 3 Gaussians LDLC, 2) 7

EI-CLDLC, 3) 3 EI-CLDLC, 4) 2 EI-CLDLC, and 5) EI reliability-based CLDLC

decoder. The general tendency of the results are similar to CLDLC based on

Gaussian integers. The reliability-based decoding algorithm based on Eisenstein

integers gives the best performance among four CLDLC decoding algorithms, and

EI-CLDLC outperforms the real-valued LDLC when n ⩽ 500.

Fig. 5.8 shows the word error rate (WER) comparison between GI and EI

reliability-based CLDLC and polar lattices [9]. This result shows that GI and EI

reliability-based CLDLC outperforms polar lattices by 0.5 and 0.6 dB at WER =

10−4. The decoding complexity is mentioned in the next subsection.

5.3.2 Reliability-Based Decoder Complexity

The complexity of the proposed reliability-based decoding algorithm and existing

algorithms are described in this subsection.

For GMR decoding of CLDLC lattices [20], the storage requirement needed

after the GMR algorithm is O(n · d ·M). The computational complexity is O(n ·
d · t ·K2 ·M3), and is dominated by sorting and searching in tables, where n is the

lattice dimension, d is the degree of the inverse generator matrix, t is the number

of iterations, K is the number of replications and M is the number of Gaussians

in each list. K = 3 and M = 10 were used in [20].

[25] proposed the three/two Gaussians decoding algorithm to reduce the

number Gaussian mixtures in LDLC (real number case). It is straightforward to

extend this algorithm to the complex case; we call this GI-CLDLC and EI-CLDLC

decoding. The computational complexity of GI-CLDLC are O(n · t · 2d−1) and

O(n · t · 4d−1) for 2 Gaussian replications and 4 Gaussian replications, respectively.
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For EI-CLDLC, the complexity are O(n · t · 2d−1) and O(n · t · 3d−1) for 2 Gaussian

replications and 3 Gaussian replications, respectively. After the moment matching

(MM) step, the storage requirement needed is 5 · n · d because the message passed

between the check and variable nodes are single complex Gaussian functions which

are represented by five parameters, 2×1 mean vectorm and 2×2 covariance matrix

V.

The computational complexity of the proposed reliability-based decoding

algorithm is O(n · t · |B̃|d−1), where |B̃| is an average number of Gaussians in the

periodic expansion step. This complexity analysis assumes that |B| is independent
for each edge. While not strictly independent, the sparse graph is locally tree-

like, making this a good approximation. After the MM algorithm, the storage

requirement is 5 · n · d. |B̃| as a function of the 3 parameters n, d and VNR is

shown in Fig. 5.9. For example, for a fixed VNR, we can see that |B̃| decreases
when n and d increases. On the other hand, for a fixed n and d, |B̃| decreases
when VNR increases. The mean of |B̃| ranges from 3.75 (at VNR = 0.5 dB) to
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Figure 5.9: Average number of Gaussians |B| of the reliability-based parametric
decoder in the periodic expansion step vs VNR for each lattice dimension, solid
lines and dash lines show GI-CLDLC and EI-CLDLC, repectively.
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Figure 5.10: Time comparison between 9 Gaussians GMR, 4 GI-CLDLC, 2 GI-
CLDLC, GI reliability-based CLDLC, 7 EI-CLDLC, 3 EI-CLDLC, 2 EI-CLDLC
and EI reliability-based CLDLC, for CLDLC dimension n = 8 and degree d = 3.
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Figure 5.11: Time comparison between 9 Gaussians GMR, 4 GI-CLDLC, 2 GI-
CLDLC, GI reliability-based CLDLC, 7 EI-CLDLC, 3 EI-CLDLC, 2 EI-CLDLC
and EI reliability-based CLDLC, for CLDLC dimension n = 500 and degree d = 5.
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Figure 5.12: Average number of iterations required for GI-CLDLC decoder con-
vergence in terms of VNR, for CLDLC demension n = 500 and degree d = 5.
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Figure 5.13: Average number of iterations required for EI-CLDLC decoder con-
vergence in terms of VNR, for CLDLC demension n = 500 and degree d = 5.

1.35 (at VNR = 6 dB) Gaussians on average for GI reliability-based, and 2.9 (at

VNR = 0.5 dB) to 1.38 (at VNR = 6 dB) Gaussians on average for EI reliability-

based. Significantly, when GI and EI reliability-based decoding are compared, the

EI decoder has lower complexity at n = 49, 500 and 5000, when the VNR range is

1–4 dB. This is due to the tighter packing of the Eisentein integers which allows

fewer Gaussians for a good approximation, as was discussed earlier.

Polar lattices [9] have lower decoding complexity than CLDLC lattices.

The overall decoding complexity is O(rn log n), where r is the number of levels of

lattice partitions, r = 2 in this paper.

The computation time of the reliability-based decoder based on Gaussian

integers and Eisenstein integers, 9 Gaussians GMR algorithm, 4 GI-CLDLC, 2 GI-

CLDLC, 7 EI-CLDLC, 3 EI-CLDLC and 2 EI-CLDLC are shown in Fig. 5.10 and

5.11. Here, we consider two lattice dimensions n = 8 and 500 with degree d = 3

and 5, respectively. For n = 8, 2 GI-CLDLC and 2 EI-CLDLC give comparable
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performance to other algorithms, as was shown in Fig. 5.6 and 5.7, and also give

the lowest computation time when VNR < 4.5 dB. When VNR⩾ 4.5 dB reliability-

based decoders provide the lowest computation time.

For n = 500, Fig. 5.11 shows that 2 GI-CLDLC and 2 EI-CLDLC give the

lowest computation time when VNR < 4.5 and 4.25 dB, respectively. However, the

2 Gaussians expansion loses performance when n ⩾ 49, as was shown in Fig. 5.6

and 5.7. Therefore, reliability-based decoders provide the lowest computation time

that also have good decoder error rates when n ⩾ 49. In addition, if we compare

GI reliability-based decoding and EI reliability-based decoding, EI shows lower

computation time when VNR ⩽ 4.6 dB, again because the EI integers provide a

good approximation with fewer Gaussians.

In Fig. 5.12 and 5.13, the average number of iterations required for de-

coder convergence is shown. We took a sample of 10,000 converged codewords

(non-converging codewords are ignored) and evaluate the mean of the number of

iterations required. The number of iterations reduces when the VNR increases.

Fig. 5.12 and 5.13 show the number of iterations for GI decoding and EI decod-

ing, respectively. The complex-valued LDLC decoder needs fewer iterations for

convergence compared to the real-valued LDLC. Both GI and EI reliability-based

decoding require the fewest iterations for convergence.

5.4 Concluding Remarks

We propose a construction of CLDLC based on Eisenstein integers, to reduce

the complexity of CLDLC decoding. We defined the likelihood-based reliability

of the check-to-variable messages and the threshold for choosing the number of

finite Gaussian for each incoming message at the variable node. This allows each

message to be approximated by a variable number of Gaussians depending upon

its reliability; a single Gaussian when the message has high reliability leads to low

complexity and good performance. The threshold can be found using the Kullback-

Leibler (KL) divergence between the approximation and the true distribution, but

explicitly computing the divergence is inefficient. Instead, we form an upper bound
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on this KL divergence, and linear regression is used to efficiently estimate this

threshold.

We compared 6 algorithms: 1) 9 Gaussians with GMR algorithm based on

Gaussian integer [20], 2) 7 EI-CLDLC (the maximun number of Eisenstein integer

approximation), and the extended algorithms from [25] (real number case) to the

complex case which are 3) 4 GI-CLDLC, 4) 2 GI-CLDLC, 5) 3 EI-CLDLC, 6) 3

EI-CLDLC.

Our results show that the reliability-based decoding algorithm for Eisen-

stein integers gives the lowest complexity when n ⩾ 49. In addition, reliability-

based decoding algorithms based on both Eisenstein integers and Gaussian in-

tegers shows the best performance when n ⩽ 500. Eisenstein integers provides

lower complexity than Gaussian integers because the hexagonal Voronoi cells of

the Eisenstein integer lattice has the tightest packing in two dimensions, leading to

a higher reliability than Gaussian integers for the same fixed number of Gaussians

in the approximation.
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Chapter 6

Research on LDPC: EM

Algorithm for DMC Channel

Estimation in NAND Flash

Memory

NAND flash memory systems read data by setting a threshold to obtain binary

channel outputs, but the allowed number of reads is limited. Due to manufac-

turing variations, device aging and high storage temperature, the true underlying

channel parameters may be difficult to model accurately. Thus, the channel can

be approximated by a discrete memoryless channel (DMC) with unknown channel

transition probabilities and a small number of outputs. Low-density parity-check

(LDPC) decoders require a channel estimate, and incorrect channel estimation

degrades the word-error rate (WER) of the LDPC decoder.

In this abstract, the expectation maximization (EM) algorithm is used to

estimate unknown DMC transition probabilities. In general, the EM algorithm

estimates the parameters of a statistical model. The LDPC decoder plays a key

role, providing a priori estimates of the code bits, required by the EM algorithm.
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Figure 6.1: Block diagram for an LDPC-coded NAND flash memory system. The
decoder uses the EM algorithm in turbo equalization-style setting.

The only previous work we are aware of applying the EM algorithm to

DMC estimation is by Boutros et al. [44]. This work also includes an LDPC code

to aid estimation. However, only the symmetrical errors-and-erasures channel with

three outputs was considered, whereas our aim is to consider general DMC chan-

nels. [45] proposed alternative methods using ML, MAP or MSE for estimating

the flash memory error model. However, those metrics are calculated based on

the number of bits that were read from the same voltage bin and participate in

unsatisfied parity check equations, whilst the EM algorithm does not need above

information. Recurrent neural networks (RNNs) can also be applied to this prob-

lem; the method proposed in [46] is targeted at NAND flash memories, but requires

a large amount of training data, whereas the EM algorithm requires no training

data.

6.1 EM algorithm

Consider a statistical model which produces an observed sequence y, and has an

unobserved sequence x. These are generated by a set of unknown parameters, rep-

resented by the vector p. Maximum likelihood estimation p∗ = argmaxp log Pr[y|p]
is usually computationally intractable.

The EM algorithm is an iterative method to estimate the unknown channel

parameters p. The following is the general EM algorithm [47, p. 441]:
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1. Choose initial pold.

2. E Step Evaluate Pr(x|y,pold).

3. M Step Evaluate

pnew = argmax
p

∑
x

Pr(x|y,pold) log Pr(x,y|p) (6.1)

4. Check for convergence of the log likelihood or the parameter values. If con-

vergence is not achieved, then pold ← pnew and go to Step 2.

With each iteration, the log-likelihood will increase until it approaches a local

maximum.

While the EM algorithm can be applied to general DMCs, for clarity the

description is given for a general two-output channel; this may be termed the

binary asymmetric channel (BAC). The BAC has error probability [1|0] = p0 and

[0|1] = p1. The channel input sequence is = (x1, x2, . . . , xn) and the channel output

sequence is = (y1, y2, . . . , yn). The a priori information is l
¯
= (l1, l2, . . . , ln) where

li = Pr[i= 0]. The goal is to estimate the BAC error probability p̂0, p̂1 from i and

l1, . . . , ln using the EM algorithm.

For the E Step, use the initial estimates p̂0 ← pold0 and p̂1 ← pold1 , and

compute the function q(x, y, l) given by:

=



(1−p̂0)l
(1−p̂0)l+p̂1(1−l)

(x, y) = (0, 0)

p̂1(1−l)
(1−p̂0)l+p̂1(1−l)

(x, y) = (1, 0)

p̂0l
p̂0l+(1−p̂1)(1−l)

(x, y) = (0, 1)

(1−p̂1)(1−l)
p̂0l+(1−p̂1)(1−l)

(x, y) = (1, 1)

(6.2)
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For the M Step, perform the following optimization:

p̂0, p̂1 = argmax
p0,p1

n∑
i=1

∑
x

q(xi, yi, li) log[xi, yi]. (6.3)

Using Lagrange multipliers, the estimates p̂0 and p̂1 are:

p̂0 =

∑
i:yi=1 q(0, 1, li)∑

i:yi=1 q(0, 1, li) +
∑

i:yi=0 q(0, 0, li)
(6.4)

p̂1 =

∑
i:yi=0 q(1, 0, li)∑

i:yi=0 q(1, 0, li) +
∑

i:yi=1 q(1, 1, li)
(6.5)

6.2 LDPC-coded NAND flash memory system

Consider the use of the EM algorithm in the following LDPC-coded system in

fig:blockDiagram. Information u is encoded to an LDPC codeword x of an (n, k)

LDPC code. Then, the codeword c is programmed to each cell of NAND flash

memory. To model possible charge leakage, a constant offset a ≥ 0 is subtracted

from programmed levels. Additive white Gaussian noise zi, with mean 0 and

variance , is added to the signal ỹi = xi + zi − a, for i = 1, . . . , n. The SNR

definition is 1/. To model the NAND flash read process, ỹ is quantized to two

levels by a threshold at 0, producing two channel output levels. This is a binary

asymmetric channel (BAC) where the error probabilities p0, p1 depend on a, σ2.

Numerical evaluations are performed using this channel. The (4608,4096)

and (36864,32768) LDPC codes have rate 8/9, column weight of 3, and the row

weight varies from 26–29 and 26–28, respectively. This LDPC code is constructed

using the progressive-edge-growth (PEG) algorithm [48]. For the LDPC decoder,

we use the belief propagation (BP) algorithm. Numerical results for three systems

are shown in fig:vnr-vs-wer.

In the nonblind system, the detector knows pxy exactly and these are

used in channel estimation. Decoding is performed for ILDPC = 30 and 90 itera-
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tions. This represents the ideal case, since the channel is known.

In the blind system, the detector does not know pxy. Instead, it assumes

a symmetric channel with low SNR, specifically â = 0 and ŜNR = 5 dB. Decoding

is performed for ILDPC = 30 iterations.

In theEM system, the decoder uses the EM algorithm in a turbo equalization-

style setting, as shown in fig:blockDiagram. Initially, the decoder has no knowl-

edge of pxy and makes an initial estimate p̂xy. This is used to compute LLRs,

Lin = log Pr[x=0|yi]
Pr[x=1|yi] = log

p̂0yi
p̂1yi

. Using these, the LDPC decoder operates for ILDPC

iterations, and produces soft outputs l
¯
. Next the EM algorithm performs channel

estimation. It has inputs , a priori information l
¯
and the old estimate p̂oldxy . It op-

erates for IEM iterations. It outputs a new channel estimate p̂newxy . This is used to

improve the computation of the LLRs, which is used for the next ILDPC decoding

iterations.

In the numerical results, the EM system initially assumes the same condi-

tions as the blind system. Three iteration schedules are shown, ILDPC × Iturbo =

10× 3, 15× 2 and 30× 3. The EM algorithm operates for IEM = 8 iterations. The

results show that the 15 × 2 and 30 × 3 EM system give the closest WER to the

nonblind system with ILDPC = 30 and 90 iterations, respectively. The 10× 3 EM

system loses the performance around 0.1 dB due to worse estimation of p̂xy.

6.3 Concluding Remarks

The main conclusion from the numerical results is that the EM algorithm can

estimate unknown channel error probabilities well enough to provide the similar

WER as the nonblind detector which knows the channel exactly. This is about 0.3

dB better than the blind system which has no channel knowledge.
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Figure 6.2: WER results for channel with offset a = 0.5. Rate 8/9 LDPC code
with n = 4608 (solid lines) and 36864 (dashed lines).
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Chapter 7

Conclusion

We proposed a construction of CLDLC based on Eisenstein integers, to reduce

the complexity of CLDLC decoding. We defined the reliability of the check-to-

variable messages for choosing the number of finite Gaussian for each incoming

message at the variable node. Each incoming message at the variable node can

be approximated by a varying number of finite Gaussians, depending on its re-

liability. Therefore, the number of finite Gaussians will be minimized for each

incoming message, reducing complexity. The reliability-based decoding algorithm

was applied to CLDLC based on Gaussian integers as well.

We compared 6 algorithms: 1) 9 Gaussians with GMR algorithm based on

Gaussian integer [20], 2) 7 EI-CLDLC (the maximun number of Eisenstein inte-

ger approximation), and the extended algorithms from [25] (real number case) to

the complex case which are 3) 4 GI-CLDLC, 4) 2 GI-CLDLC, 5) 3 EI-CLDLC,

6) 3 EI-CLDLC. Our results show that the reliability-based decoding algorithm

for Eisenstein integers gives the lowest complexity when n ⩾ 49. In addition,

reliability-based decoding algorithms based on both Eisenstein integers and Gaus-

sian integers shows the best performance when n ⩽ 500. Eisenstein integers pro-

vides lower complexity than Gaussian integers because the hexagonal Voronoi cells

of the Eisenstein integer lattice has the tightest packing in two dimensions, lead-

ing to a higher reliability than Gaussian integers for the same fixed number of
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Gaussians in the approximation.

For CLDLC construction, we propose a new CLDLC construction called

relaxed Latin square which can be considered as an irregular CLDLC and also

provide a new convergence condition.Based on this new construction, we intro-

duce the triangular structure of relaxed Latin square CLDLC which is designed

based on the modified array LDPC Codes. The triangular structure is good for low

complexity and fast encoding process, and it is suitable for the shaping operations.

Research on LDPC: For minor research, we proposes using the expectation

maximization (EM) to estimate channel transition probabilities of NAND flash

memory. The numerical results is that the EM algorithm can estimate unknown

channel error probabilities well enough to provide the similar WER as the nonblind

detector which knows the channel exactly. This is about 0.2 dB better than the

blind system which has no channel knowledge.

89



Chapter 8. Future Works

Chapter 8

Future Works

For CLDLC, the future works are as follows:

1) For a new CLDLC construction called relaxed Latin square for a check matrix

H, this construction can be used to design the triangular structure which is

good for low complexity and fast encoding process, and it is suitable for

the shaping operations. However, the message in the corner of the triangular

structure will have less protection because the row/column weight is only one.

This will lead to performance loss compared to the Latin square structure.

Finding the method to protect the message in the conner is necessary. In

addition, since the relaxed Latin square is the regular CLDLC, an optimal

row and column weight are still unknown. These two topics are future works

for the relaxed Latin square matrix.

2) For CLDLC decoder, the constant κ can be obtained from a numerical search

of KL divergence. The new method to find κ is the future work.

For EM algorithm for DMC channel, the future work is that we plan to

develop a fixed-point implementation of the EM estimation algorithm.
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Appendix A

Convergence Analysis of CLDLC

for Latin Squares

Proof of Proposition 1 For transmission over the complex AWGN channel, the

variance Y has zero covariance. The messages between the variable nodes and

check nodes are a mixture of complex Gaussians. The central observation is that

when no approximations are performed, all the Gaussians in the mixture have

the same variance, and for each Gaussian has zero covariance, and real variance

component and complex variance component are equal. At check node i, the

incoming message variance on the hk edge is Vk,i. At variable node j, the incoming

message variance on the hk edge is Uk,j, expressed as:

Yj =

[
σ2 0

0 σ2

]
, (A.1)

Vk,i =

[
vk,i 0

0 vk,i

]
, (A.2)
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Uk,j =

[
uk,j 0

0 uk,j

]
. (A.3)

At check node i, only the h1 output from the check node contributes to

the variance convergence proof. At check node i the variance has zero covariance:

U1,i =

di∑
k=2

[
h′
k,i

h′
1,i

]Vk,i[
h′
k,i

h′
1,i

]T (A.4)

=

∑d
k=2

(
Re{h

′
k,i

h′
1,i
}2 + Im{h

′
k,i

h′
1,i
}2
)
vk,i 0

0
∑d

k=2

(
Re{h

′
k,i

h′
1,i
}2 + Im{h

′
k,i

h′
1,i
}2
)
vk,i

 .

(A.5)

This can be written as

u1,i =
1(√

h′
1,i,Re

2 + h′
1,i,Im

2
)2 d∑

k=2

(√
h′
k,i,Re

2 + h′
k,i,Im

2
)2

, (A.6)

vk,i =
1

|h′
1,i|2

d∑
k=2

|h′
k,i|2vk,i. (A.7)

Here and following, h′
k,i is the coefficient in row i that has label hk and h′′

k,j is the

coefficient in column j that has label hk.

Recall that for the relaxed Latin square design, at check node i, |h′
1,i| ≥

|h′
2,i| ≥ |h′

t,i| for t = 3, . . . , di, and at variable node j, |h′′
1,j| ≥ |h′′

2,j| ≥ |h′′
k,j|

for k = 3, . . . , dj. Using the above check node rule, it can be shown that, for

t = 3, . . . , d, if the check node inputs satisfy v1,i ≥ v2,i ≥ vt,i, then the check node

outputs satisfy u1,i ≤ u2,i ≤ ut,i, for all check nodes i. Using this, u1,i as in (A.5)

may be bounded by:

u1,i ≤ αiv2,i. (A.8)
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At variable node j, the output Vt,j is:

Vt,j =

 d∑
t′=1\t

U−1
t,j +Y−1

j

−1

, (A.9)

where Vt,j has zero covariance in the form of (A.3) and the variance vt,j is:

1

vt,j
=

d−1∑
t′=1\t

1

ut′,j
+

1

σ2
, (A.10)

from which vt,j ≤ ut,j for t ≥ 2 holds. This can also be used to show that if

degree-dj variable node j has inputs satisfing u1,j ≤ u2,j ≤ ut,k, for t = 3, . . . , dj,

then variable node outputs satisfy v1,j ≥ v2,j ≥ vt,j. Since initially vt,i = σ2, then

by induction v1,i ≥ v2,i ≥ vt,i holds generally.

The above can be used to show that v2,i′ ≤ αiv2,i, where i is the check

node on iteration ℓ and i′ is the check node on iteration ℓ + 1. Let αmax be the

maximum of α1, α2, . . . , αn. Then:

vt,i ≤ αℓ
maxσ

2 (A.11)

for t = 2, 3, . . . , di, where the initial condition of vt,i = σ2 and v2,j ≥ vt,j was used.
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Appendix B

Proof of Proposition 2

The proof of Proposition 2 is given. The check-to-variable messages R(z) and R̃(z)

have mean mc, variance Vc, where the k-Gaussian mixture R(z) expressed as:

R(z) =
k−1∑
i=0

N (z;mc + bi/h,Vc) (B.1)

and the l-Gaussian approximation is R̃(z), expressed as:

R̃(z) =
l−1∑
j=0

N (z;mc + bj/h,Vc). (B.2)

The channel message has meanma, varianceVa, expressed as Y (z) = N (z;ma,Va).

And it is assumed that Vc and Va are diagonal covariance matrices.

Define f and g as Y (z)R(z) and Y (z)R̃(z), respectively, and these products

are:

f = Y (z)R(z) =
k−1∑
i=0

πiN (z;mi,V)︸ ︷︷ ︸
fi

, and (B.3)
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g = Y (z)R̃(z) =
l−1∑
j=0

ωj N (z;mj,V)︸ ︷︷ ︸
gj

, (B.4)

where V,mi, πi and ωj are:

V = (V−1
c +V−1

a )−1, (B.5)

mi = V(V−1
c (mc + bi/h)), (B.6)

π′
i =

1

2π
√
|Vc +Va|

e−
1
2
(mc+bi/h)

T (Vc+Va)−1(mc+bi/h), (B.7)

πi =
π′
i∑k−1

i=0 π
′
i

, (B.8)

ωj =
π′
j∑l−1

j=0 π
′
j

. (B.9)

Without loss of generality, π′
0 ≥ π′

1 ≥ · · · ≥ π′
k−1 and ma = 0 is assumed, which

implies |m0| ≤ |m1| ≤ · · · ≤ |mk−1|.

Then, the KL divergence between Y (z)Rk(z) and Y (z)R̃(z) can be ex-

pressed as:

D(Y (z)R(z)||Y (z)R̃(z)) = D(
k−1∑
i=0

πifi||
l−1∑
j=0

ωjgj). (B.10)

This can be upper bounded using the variational upper bound on KL divergence

[43]:

D(Y (z)R(z)||Y (z)R̃(z)) ≤
k−1∑
i=0

l−1∑
j=0

πiωjD(fi||gj). (B.11)
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In general, the KL divergence between two complex Gaussian functions f̂

and ĝ has a closed formed expression,

D(f̂ ||ĝ) = 1

2

(
log
|Vĝ|
|Vf̂ |

+ Tr[V−1
ĝ Vf̂ ]− 2 + (mf̂ −mĝ)

TV−1
ĝ (mf̂ −mĝ)

)
.

(B.12)

Here, f and g have the same variance V. Then, V and m in (B.5) and (B.6) are

substituted into (B.12), so that:

πiωjD(fi||gj) =

0, if i = j

πiωj
va|mi−mj |2
2(vc+va)

, ifi ̸= j
. (B.13)

Equation (B.11) has l(k − 1) non-zero terms, and π0ω1D(f0||g1) = π1ω0D(f1||g0)
are equal and the greatest, so the term π0ω1 determines the upper bound.

For single Gaussian approximation ω0 = 1, and π1 is given by:

π1 =
π′
1∑k−1

i=0 π
′
i

(B.14)

= (
e−

|mc+b1/h|
2

2(vc+va)∑k−1
i=0 e

− |mc+bi/h|2
2(vc+va)

), (B.15)

Now make the restriction to k = 2

π1 ≤ (
e−

|mc+b1/h|
2

2(vc+va)

e−
|mc+b0/h|2
2(vc+va) + e−

|mc+b1/h|2
2(vc+va)

) (B.16)

=
1

1 + e
−(mch+m∗

ch
∗)+1

2|h|2(vc+va)

(B.17)
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=
1

1 + e
−2(mc,RehRe−mc,ImhIm)+1

2|h|2(vc+va)

(B.18)

where b0 = 0 and b1 is any integer at the minimum Euclidean distance of 1,

|b1| = 1, so without loss of generality, take b1 = −1. Then, (B.18) is substituted
into (B.13), where |mi−mj|2 is upper bounded by |mi−mj|2 ≤ 1/|h|2. Form the

upper bound from (B.11) by replacing the (k−1) non-zero terms with the greatest

term, so the upper bound of single Gaussian approximation is:

D(Y (z)R(z)||Y (z)R̃(z)) ≤ (k − 1)va

2|h|2(vc + va)|(1 + e
2(mc,RehRe−mc,ImhIm)+1

2|h|2(vc+va) )

. (B.19)

For two Gaussian approximation, the term π0ω1 can be written as:

π0ω1 =
π′
0∑k−1

i=0 π
′
i

π′
1∑l−1

j=0 π
′
j

(B.20)

= (
e−

|mc+b0/h|
2

2(vc+va)∑k−1
i=0 e

− |mc+bi/h|2
2(vc+va)

)(
e−

|mc+b1/h|
2

2(vc+va)∑l−1
i=0 e

− |mc+bi/h|2
2(vc+va)

). (B.21)

π0ω1 ≤

 e−
|mc+b0/h|

2

2(vc+va)∑l−1
i=0 e

− |mc+bi/h|2
2(vc+va)

2

. (B.22)

Make the restriction to l = 2

π0ω1 ≤

 e−
|mc+b0/h|

2

2(vc+va)

e−
|mc+b0/h|2
2(vc+va) + e−

|mc+b1/h|2
2(vc+va)

2

(B.23)

=

(
1

1 + e
2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc+va)

)2

, (B.24)
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where b0 = 0 and , b1 = −1. Then, (B.24) is substituted into (B.13), where

|mi −mj|2 ≤ 1/|h|2. Form the upper bound from (B.11) by replacing the 2(k −
1) non-zero terms with the greatest term, so the upper bound of two Gaussian

approximation is:

D(Y (z)R(z)||Y (z)R̃(z)) ≤ (k − 1)va

|h|2(vc + va)(1 + e
2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc+va) )2
. (B.25)
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