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Estimating the Center of Mass of an Unknown Object via Dynamic Pushing

Ziyan Gao, Armagan Elibol, and Nak Young Chong

Abstract— An object’s inertial parameters, such as the mass,
the center of mass (CoM), and the moment of inertia, affect
the response to the external forces exerted on it. It is important
to estimate these parameters in order to facilitate robot-led
automation including grasping and manipulation. Traditionally,
the estimation is conducted by a specific hardware in a
controlled environment, which may not be always available for
a robotic system. We propose an efficient novel method for
estimating the CoM of an object via force sensor-less dynamic
pushing and a vision sensor detecting the change in the object’s
pose. The simulation results showed that the proposed method
achieved an accurate and stable estimation under both the
unknown isotropic and anisotropic floor friction conditions.

I. INTRODUCTION

In robotic grasping and manipulation, it is widely assumed
that an object’s inertial parameters are a priori known. The
parameters can be estimated using a special hardware in a
controlled environment, which may not be suitable for com-
monly used industrial robots. In this work, we aim to estimate
the CoM of a novel object via planar pushing using only
a position-controlled robot arm and a vision sensor avail-
able commercially off-the-shelf. Following the taxonomy in
[1] the estimation methods for inertial parameters can be
categorized into three categories: purely visual, exploratory,
and fixed-object. The purely visual category employs vision
sensors to measure the volume of an object, assuming the
object density. The exploratory category requires the robot
to interact with the object to measure the object motion
and applied force, then estimate the parameters by solving
physical laws. The fixed-object category requires the object
firmly attached to the robot’s end-effector.

Our proposed method with planar pushing falls into the
exploratory category. A close work was done by Yu et al. [2],
utilizing a two-fingered robot arm equipped with a force
sensor to slide a rectangular object across a isotropic floor.
Different from [2], our method neither assumes a isotropic
floor nor utilizes the force sensor to measure the applied
force. Xu et al. [3] showed that pushing the object at high
speed (referred to as dynamic pushing) makes the object’s
physical properties more distinguishable than pushing at low
speed (referred to as quasi-static pushing). In quasi-static
pushing interaction, the inertia term can be ignored, and the
object motion are equally affected by the applied wrenches
of both the pusher and the floor. In dynamic interaction, the
wrench of the pusher is dominant compared to the floor
frictional force. We propose to use dynamic pushing to
interact with the object.
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Fig. 1. Estimating the CoM region: The red arrow in the direction of the
contact normal represents the pushing action. The black dash lines delimit
the friction cone. CW and CCW refer to clockwise and counter-clockwise
rotations, respectively. The yellow regions represent the CoM region and
the dark green regions do the non-CoM region.

In this work, we claim that dynamic pushing can improve
the accuracy and robustness of the CoM estimation of an
unknown object to unknown inertial and friction parameters.
Specifically, we propose a novel CoM estimation method
using only a position-controlled robot arm and a vision
sensor. We conduct a series of simulation experiments to
compare the impact of pushing speed and (an)isotropic
flooring surface frictions on the estimation accuracy.

II. METHODS

Following the right-hand rule for rotation, z-axis points
perpendicular to the plane of the paper. Here, counter-
clockwise rotations are considered positive. We refer to a
region that contains the CoM as the CoM region, and other-
wise the non-CoM region. We model the CoM estimation as
a progressive decision process based on the Voting Theorem
(VT) by Mason [4]. After a few interactions, the CoM
location can be narrowed down to a small region whose
centroid will be considered the most probable CoM estimate.

VT states that three rays, RL and RR representing the
left and right boundaries of the friction cone as well as
RP representing the pushing direction at the contact point,
vote on the sense of rotation. The vote is conducted by
examining which sign of moment (positive or negative) the
ray has to the CoM of an object. If two or more rays vote
on positive rotation, then the object will rotate positively.
Based on VT, for a known object, the CoM region can be
narrowed down by applying a series of pushes. For each push
and the corresponding object rotation, a CoM region without
any ambiguity can be found by using the ray in the middle
as the boundary between the CoM region and the non-CoM
region. For unknown objects, however, this method cannot
be applied, as RL and RR at the contact point are unknown.
Therefore, Rp cannot be determined.



Fig. 2. Simulation objects for CoM estimation.

Our main idea is to constrain the pushing direction to the
contact normal to ensure that RP lies in the middle of the
two boundaries of the friction cone. By doing so, the CoM
region can be uniquely determined by the spatial relationship
of pushing direction as well as the CoM. In practice, there
are some circumstances that the object rotates so small that
this amount cannot be easily detected by a vision sensor due
to sensor limitations (e.g., resolution or distance between the
object and the sensor). Fortunately, in such cases, the distance
between CoM and RP is small. Therefore, we intuitively set a
threshold θT for object rotation and a confidence bandwidth
Cbw for possible CoM region selection. If the resultant object
rotation is less than the threshold, the region whose inner
pixel locations to RP is less than the selected confidence
bandwidth is regarded as the CoM region. Fig. 1 illustrates
the selection rules for the proposed method.

The pseudocode of the proposed method is illustrated in
Algorithm 1 and Algorithm 2. The CoM region is initialized
in Algorithm 1 with the region inside the convex hull of the
object mask. For each push, we use Principal Component
Analysis of the current CoM region to find its centroid c and
principal components V. Then, we check if the corresponding
line of each pushing action passes through the CoM region
or not.

We compute the distance vector d between c and each line
of pushing specified by the contact normal Nct . We then use
a linear cost function to score each pushing action given by

s = w⊤
(

d⊤

(NctV1)
⊤

)
, (1)

where w is a two-dimensional weight vector and V1 is the
main principal vector. As both Nct and V1 are normalized,
(NctV1)

⊤ represents the cosine similarity between Nct and
V1. We aim to find the pushing action that has a small cosine
similarity to V1 to avoid a prolate-shaped CoM region. Using
this cost function, the pushing action can be selected that
has a close distance to c and small cosine similarity with V1.
Following resultant object rotation, Algorithm 2 updates the
CoM region.

III. SIMULATION EXPERIMENTS

eWe use CoppeliaSim and Vortex physics engine for
the simulation experiment under the conditions detailed in
Table I. We set two different friction coefficients for the floor
and pusher, respectively, leading to 4 different combinations
of frictional conditions. We set the slider friction coefficient
to 0.5. Thre are 20 objects with different sizes and shapes as

Algorithm 1: CoM Region Decision Process
Input: agent,Pch,Pct ,Nct ,w,θT ,Cbw,npush
/* Pch, which consists of a set of pixel

locations, represents the region inside

the convex hull of the object. Pct, Nct are

the sampled contour points and normal

directions associated. Pch, Pct, Nct are all

(∗×2) matrices, where * is the number of

sampled contour points or the size of

region inside the convex hull of the

object. npush is the number of pushes that

we set. */

Output: PCoM
/* PCoM is probable CoM Region which consists

of a set of pixel coordinates. */

1 PCoM ← Pch // probable CoM region

initialization

2 for i = 1 to npush do
/* opencv library */

3 c, V, x ← PCA(PCoM)
/* shapely library */

4 Pct , Nct ← valid(Pct ,Nct ,PCoM)
/* calculate distances between c to the

lines specified by Pct and Nct */

5 d← c−Pct
∥c−Pct∥ ×Nct

/* Calculate scores for each contacts. */

6 s = w⊤
(

d⊤

(NctV1)
⊤

)
7 j = argmin s
8 θrot ← agent.execute(Pct j ,Nct j)

9 PCoM ←UPDATE(PCoM , Pct j ,Nct j , θrot , cbw,θT )

shown in Fig. 2. For each object, we assign 10 different
CoM locations randomly. We set the mass of all objects
to 0.2kg. To examine the impact of the mass moment of
inertia of an object about the z-axis, denoted by Izz, we scale
the default value of Izz by a factor of 1 and 10. We use
two different pushing speeds: one (40cm/s) is considered
dynamic pushing, and the other (4cm/s) quasi-static pushing.
In each run of CoM estimation, we execute 5 pushes,
resulting in 6,400 CoM estimations in total. Furthermore, to
evaluate the performance on the anisotropic floor, we create
a surface plane with two different frictional coefficients (0.1
and 1, respectively) along two principal axes, and set the
pusher friction coefficient to 0.5.

The object mask is obtained by a depth camera of 224×
224 pixels aligned to perpendicular to the floor. The floor is
a flat square with an area of 0.36m2. We obtain the surface
normal vector at the contact point from the simulator having
inherent errors due to the scale of the surface triangulation.
For the CoM estimation of an object, we follow Algorithm 1
and set w to [1,0.5]⊤. We set rotation threshold θT and
confidence bandwidth Cbw to 1° and 10 pixels. The pushing
length is set to 3cm.



Fig. 3. Experimental results on isotropic frictional floor.

Fig. 4. Experimental results on anisotropic frictional floor.

Fig. 5. Robustness comparison between dynamic and quasi-static pushing.

The simulation results of CoM estimation on isotropic
frictional floor are detailed in Fig. 3 and Table III. The result
shows that the CoM estimation error with dynamic pushing
is smaller than quasi-static pushing. We observed one notable
case with quasi-static pushing that the estimation error tends
to be large when an object has a large Izz, or pushed across
a high frictional floor, which results in a small amount of

rotation misleading CoM region selection. On the other hand,
in the case of dynamic pushing, as the wrench exerted by the
floor on the object no longer dominates the object motion,
the object motion follows the VT and the resultant rotation
is larger than that of quasi-static pushing.

The simulation result of CoM estimation on anisotropic
frictional floor is shown in Fig. 4 and Table III. It can be ob-
served that dynamic pushing still exhibits good performance
even on the anistropic frictional floor. Compared with the
result on the isotropic frictional floor, the estimation error
does not increase much. However, the estimation error with
quasi-static pushing increases significantly. Fig. 5 shows the
influence of friction on estimation error with dynamic and
quasi-static pushing, respectively. Encouragingly, compared
with the quasi-static pushing case, friction has a limited
influence on estimation accuracy with dynamic pushing.
The anisotropic frictional setting affects estimation accuracy
small with dynamic pushing but deteriorates estimation ac-
curacy significantly with quasi-static pushing.

IV. CONCLUSION
In this work, we proposed an efficient method for pre-

dicting the center of mass of an unknown object. Unlike
other works, our method requires only a position-controlled
robot arm and a commercial off-the-shelf vision sensor. We
showed that dynamic pushing can improve the accuracy and



Algorithm 2: Probable CoM Region Update
Input: PCoM , Pct j ,Nct j , θrot , cbw, θT
Output: PCoM

1 Function Update(PCoM , Pct j ,Nct j , θrot , cbw, θT):
2 if ∥θrot∥> θT then
3 if sign(θrot > 0) then
4 for PCoMi in PCoM do
5 if Nct j × (PCoMi −Pct j)≤ 0 then
6 Delete(PCoM , PCoMi )

7 return PCoM

8 else
9 for PCoMi in PCoM do

10 if Nct j × (PCoMi −Pct j)≥ 0 then
11 Delete(PCoM , PCoMi )

12 return PCoM

13 else
14 for PCoMi in PCoM do
15 d← (PCoMi −Pct j)×Nct j

16 if d ≥Cbw then
17 Delete(PCoM , PCoMi )

18 return PCoM

TABLE I
SIMULATION EXPERIMENTAL SETTING

flooring surface friction coefficient µg 0.1, 1
pusher friction coefficient µp 0.1, 1
slider friction coefficient 0.5
pushing speed 40 cm/s, 4 cm/s
number of objects 20
number of CoM locations per object 10
mass 0.2 kg
scale factor for Izz 1, 10
pushing speed 40 cm/s, 4 cm/s
maximum number of pushes per object 5

TABLE II
RESULTS OF COM ESTIMATION ON ISOTROPIC FLOOR

Object High Speed Pushing Low Speed Pushing
mean std max min mean std max min

obj1 0.489 0.206 1.034 0.166 0.949 0.657 3.251 0.255
obj2 0.476 0.278 1.208 0.123 0.915 0.364 1.932 0.137
obj3 0.423 0.205 1.008 0.091 0.591 0.362 1.804 0.15
obj4 0.631 0.29 1.136 0.0 2.06 0.844 3.604 0.536
obj5 0.481 0.351 1.568 0.05 1.071 0.553 2.537 0.176
obj6 0.605 0.274 1.154 0.134 1.297 0.599 2.611 0.149
obj7 0.713 0.315 1.789 0.196 1.3 0.673 3.015 0.217
obj8 0.651 0.303 1.597 0.299 1.936 1.174 5.018 0.299
obj9 0.742 0.32 1.379 0.134 2.2 1.177 4.939 0.67
obj10 0.66 0.389 1.43 0.092 2.067 0.963 4.999 0.625
obj11 0.619 0.342 1.723 0.174 1.805 1.031 5.999 0.402
obj12 0.619 0.291 1.285 0.054 1.423 0.7 3.599 0.054
obj13 0.598 0.365 1.695 0.153 1.004 0.602 3.027 0.203
obj14 0.53 0.258 1.252 0.064 1.253 0.901 3.502 0.052
obj15 0.521 0.28 1.367 0.11 0.678 0.356 1.368 0.187
obj16 0.689 0.274 1.292 0.054 1.103 0.603 3.187 0.054
obj17 0.645 0.309 1.533 0.136 0.919 0.567 3.332 0.136
obj18 0.8 0.472 2.624 0.143 1.735 1.132 4.238 0.155
obj19 0.87 0.532 2.227 0.176 1.811 1.17 6.288 0.088
obj20 0.812 0.282 1.542 0.377 1.862 1.079 5.276 0.476

TABLE III
RESULTS OF COM ESTIMATION ON ANISOTROPIC FLOOR

High Speed Pushing Low Speed Pushing
mean std max min mean std max min

obj1 0.597 0.296 1.478 0.255 1.408 0.667 2.283 0.166
obj2 0.595 0.351 1.208 0.097 1.744 1.014 4.382 0.137
obj3 0.607 0.284 1.173 0.019 1.602 0.644 2.953 0.688
obj4 0.598 0.295 1.046 0.0 3.651 1.836 5.439 0.758
obj5 0.51 0.365 1.384 0.086 2.039 0.818 3.536 0.552
obj6 0.649 0.38 1.576 0.134 2.006 0.93 3.835 0.34
obj7 0.742 0.483 2.323 0.196 2.098 1.115 4.347 0.615
obj8 0.631 0.303 1.597 0.027 3.22 1.184 5.488 1.349
obj9 0.832 0.324 1.379 0.134 3.789 1.413 5.517 0.858
obj10 0.667 0.407 1.43 0.092 2.073 0.676 2.697 0.334
obj11 0.606 0.32 1.266 0.174 2.513 0.937 3.608 1.058
obj12 0.655 0.288 1.26 0.299 1.76 0.929 3.294 0.308
obj13 0.556 0.328 1.28 0.05 1.938 0.881 3.601 0.364
obj14 0.596 0.363 1.399 0.089 1.83 1.174 4.493 0.502
obj15 0.771 0.321 1.368 0.31 1.347 0.68 2.898 0.232
obj16 0.764 0.296 1.286 0.388 2.525 1.126 4.502 0.388
obj17 0.599 0.272 1.288 0.233 2.428 1.479 4.809 0.45
obj18 0.832 0.456 1.787 0.164 2.863 1.532 5.179 0.649
obj19 0.822 0.381 1.376 0.12 3.026 1.756 6.287 0.267
obj20 1.15 0.491 2.148 0.383 3.319 2.189 6.807 0.641

robustness of estimation, supported by a series of simulation
experiments. As a result, the proposed CoM estimation
method with dynamic pushing achieved impressive perfor-
mance on CoM estimation for novel objects both in isotropic
and anisopropic frictional floors. As we only evaluate the
proposed method in simulation, one straightforward strategy
to improve the estimation accuracy would be increasing the
number of pushing steps or the image resolution. In the fu-
ture, we will carry out experiments on a real robotic platform.
In addition, we will attempt to exploit the CoM estimates
toward facilitating robotic grasping or manipulation.
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