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Abstract

Shapelets are time series segments that e ectively distinguish labels of
time series. Recently, shapelet-based time series classi ers have garnered
attention from the academic community, primarily due to their ability to
produce accurate results while also being interpretable. However, these meth-
ods still confront challenges in both the shapelet initialization and shapelet
learning phases, which can hinder their performance. In this dissertation, we
propose two novel methods to e ectively address these problems.

In our rst work, we propose the Perceptual Position-aware Shapelet
Network (PPSN), a novel shapelet-based classi er, to discover and optimize
shapelets e ciently. PPSN leverages perceptually important points for ex-
tracting a limited number of high-quality shapelet candidates. These can-
didates are then evaluated using position-aware subsequence distance. In
addition, we introduce Fixed Normalization (FN) and Stop-gradient Epochs
(SGE) as two novel techniques for learning shapelets. Speci cally, FN ad-
dresses the detrimental e ects of di erent value ranges of shapelets’ trans-
formed values, while SGE mitigates the negative e ects of non-optimal weights
in the nal linear layer. Results from experiments on 112 UCR datasets il-
lustrate that our PPSN surpasses previous non-ensemble methods, and is
competitive with HIVE-COTE 2.0, the current most accurate classi er while
maintaining the bene ts of interpretability and e cient computation time.

In our second work, we point out two other issues faced by existing
shapelet-based methods. Firstly, they employ the soft-minimum function
which only retrieves the minimum distance between a shapelet and its best-
matching subsequences in the time series, neglecting other distances. Addi-
tionally, this function is prone to generating over ow values, which can result
in the model not functioning properly in various scenarios. Secondly, previ-
ous methods use a General Classi cation Head to train shapelets, which is
not optimized to capture the speci c patterns in time series data. To address
these problems, we propose PPSN++, a stronger shapelet-based time series
classi er that extends our previous work PPSN. PPSN++ uses a Distance
Learning Layer instead of the soft-minimum function, we also introduce a
Binary Auxiliary Head which supports General Classi cation Head in train-
ing the shapelet for each speci c class. Results from experiments on 112
UCR datasets show that PPSN++ outperforms PPSN, making it become
the state-of-the-art shapelet-based method for this task.

Keywords: time series ´ classi cation ´ shapelet discovery ´ e ciency.
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Chapter 1

Introduction

Time series data is a crucial component of Industry 4.0, which is the ongo-
ing digital transformation of the manufacturing industry. In Industry 4.0,
sensors and other monitoring devices are used to collect substantial volumes
of data from machines, production lines, and other equipment. This data is
then analyzed to identify patterns and insights that can be used to improve
e ciency, quality, and productivity. Time series data is particularly impor-
tant in this context, as it allows manufacturers to monitor the performance
of their equipment over time and detect deviations from normal operating
conditions. By using advanced analytics and machine learning techniques,
manufacturers can gain a deeper understanding of their operations and make
data-driven decisions to optimize their processes. Time series analysis has
thus become a critical tool in Industry 4.0, enabling manufacturers to im-
prove their operations, reduce costs, and deliver better products and services
to their customers. Theoretically, a time series is a collection of observations
of well-de ned data objects gathered over time using repeated measurement.
It has relevance to several elds not only manufacturing systems [10], but
also biology [3], medicine [13], and economic [24]. A classic example of a
time series is the number of heartbeats per minute measured by an electro-
cardiogram (ECG).

Time series classi cation (TSC) has attracted considerable interest from
the industrial and research community due to its crucial role in numerous
practical applications. Several algorithms for TSC have been developed
in recent decades, with ensemble-based [18, 26], feature-based [7, 6], and
shapelet-based techniques [17, 20, 19] considered as the current state-of-the-
art. Among these, shapelet-based methods are distinguished by their poten-
tial to yield more comprehensible decisions compared to other techniques,
as they utilize critical local patterns (known as shapelets) extracted from
the primary time series to determine their class. Intuitively, shapelets are
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de ned as subsequences of time series that accurately classify time series la-
bels. This approach enables greater interpretability by providing an intuitive
representation of the underlying structure of the time series data.

However, previous shapelet-based methods [27, 17] pose certain issues in
both the phases of initializing shapelets and learning shapelets, including:

• Problem 1: For the shapelet initialization phase, they usually use the
Full Extractor to extract all potential shapelet candidates and then
used the Euclidean Distance method to evaluate the distance between
these candidates and the target time series, resulting in an excellent
performance, but bearing high level of complexity in computing. To
overcome this issue, the Fixed-Length Extractor [11] was proposed,
which only extracted candidates of the same length and clustered them
using k-Means. It considers k-Means centroids as the initial shapelets,
nevertheless, this method assumes a xed shapelet length, even though
the dataset may contain shapelets of various lengths. Recent attempts
to speed up the shapelet extractor process and optimize parameters
automatically have used piecewise aggregate approximation (PAA) [15,
23, 28], but the utilization of this technique carries the risk of missing
certain data characteristics.

• Problem 2: For the learning shapelet phase, conventional techniques
have relied on direct learning from subsequence distances, which poses
challenges in training and convergence owing to some shapelets pro-
viding extremely high values and others signi cantly smaller values.
Additionally, the linear layer in the nal network typically produces un-
satisfactory predictions in the rst training epochs due to non-optimal
weights. These challenges may reduce the overall performance of the
model.

• Problem 3: Prior methods based on shapelets employ the soft-minimum
function, which solely obtains the minimum distance between a shapelet
and its best-matching subsequences in the time series, disregarding
other distances. Moreover, this function has a tendency to generate
over ow values, thereby making the model dysfunctional in various sit-
uations.

• Problem 4: Existing shapelet-based classi ers utilize a General Classi-
cation Head for training shapelets, which is not designed to e ectively

identify the particular patterns that are inherent in time series data.

In our rst work, we propose a novel shapelet-based method for TSC,
namely Perceptually and Position-aware Shapelet Network (PPSN, Chapter
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3) to tackle two rst problems. Speci cally, PPSN e ciently extracts a
relatively small number of high-quality shapelets with various lengths by
leveraging the perceptually important points, next these candidates will be
evaluated by utilizing the position-aware subsequence distance (Problem 1).
After that, these selected shapelets are used to transform the original time
series dataset for the ultimate purpose of classifying time series. In addition,
we propose to use two novel techniques, namely Fixed Normalization (FN)
and Stop-gradient Epoch (SGP) to overcome the mentioned problems in the
shapelet learning phase. In particular, FN aims to tackle the detrimental
impact of various value ranges of transformed values, while SGP is used in the
initial few epochs of the process to lessen the undesirable e ects of the nal
linear layer’s suboptimal weights. (Problem 2). The results demonstrate
that our PPSN achieves better performance and reduces the computation
time.

In our second work, we aim to propose a stronger shapelet-based classi er,
which is designed based on the PPSN framework (called PPSN++, Chap-
ter 4). Our PPSN++ involves the utilization of a Distance Learning Layer
(DLL) in lieu of the soft-minimum function (Problem 3), as well as the
incorporation of a Binary Auxiliary Head (BACH) to support the General
Classi cation Head in training shapelets for individual classes (Problem
4). Through these enhancements, PPSN++ e ectively addresses the two
last-mentioned issues and demonstrates superior performance in time series
classi cation. Empirical results on 112 UCR datasets indicate that PPSN++
outperforms existing methods (including our rst work, PPSN), and achieves
state-of-the-art results in this task.

The rest of this dissertation is organized as follows. Chapter 2 provides
background and related work. Chapter 3 presents our novel Perceptual and
Position-aware Shapelet Network for TSC (PPSN), followed by Chapter 4, we
build a stronger shapelet-based classi er upon PPSN framework (PPSN++).
In Chapter 5, we conclude this work and draw out some potential directions
for future work.
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Chapter 2

Background and Related Works

2.1 State-Of-The-Art Time Series Classi ers

Time series classi cation (TSC) is the process of analyzing data that changes
over time to classify it into di erent classes. This is achieved by identifying
patterns or features within the data. Over the past few decades, several algo-
rithms have been proposed for Time Series Classi cation (TSC). At present,
ensemble-based and feature-based approaches are the most advanced. The
state-of-art algorithms (SOTA) for TSC currently include HIVE-COTE [18]
and its variations [22], InceptionTime [14], TS-CHIEF [26], ROCKET [6],
and its improved version (MiniROCKET [7]).

SOTA ensemble-based TSC methods, including:

• InceptionTime was rst introduced by Fawaz et al. [14], which is cur-
rently the most e ective deep learning model for TSC. This architecture
consists of ve convolutional neural networks based on Inception. By
combining these networks, the variance of the model is reduced, result-
ing in a signi cantly more accurate method than other TSC techniques
based on deep learning, such as the Fully Convolutional Network (FCN)
and Residual Network (ResNet).

• TS-CHIEF is a scalable Time Series Classi cation (TSC) algorithm
proposed by Shifaz et al. [26] that achieves competitive accuracy with
HIVE-COTE [18]. TS-CHIEF is based on the Proximity Forest, which
is an ensemble of decision trees that employ distance measurements as
the splitting criterion at each node. By combining interval and spec-
trum based splitting criteria, TS-CHIEF enhances Proximity Forest
and allows the ensemble in order to capture a more diverse range of
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representations.

• HIVE-COTE [18], a meta-ensemble classi er for time series, that in-
cludes the most accurate ensemble classi ers from di erent domains of
time series representation. The original HIVE-COTE comprises ve
ensemble classi ers: Ensemble of Elastic Distances (EE) [16], Shapelet
Transform Classi er (STC) [12], Bag of SFA Symbols (BOSS) Ensemble
[25], Time Series Forest (TSF) [9], and Random Interval Forest (RIF)
[18], each of which is the most accurate classi er in its respective do-
main. Therefore, HIVE-COTE is much more accurate than each of its
component parts, thus it has served as a high standard for classi cation
accuracy.

• Lately, a novel model for classifying time series data has been proposed
known as HIVE-COTE 2.0 [22], which was developed by Middlehurst
et al. [22]. This model has demonstrated superior average accuracy
rankings when compared to various state-of-the-art techniques across
both the univariate UCR archive [5] and the multivariate UEA archive
[1]. HIVE-COTE 2.0 is constructed as a meta-ensemble of four pri-
mary components, including STC [12], Arsenal, Temporal Dictionary
Ensemble (TDE) [21], and Diverse Representation Canonical Interval
Forest (DrCIF) [22].

SOTA feature-based TSC methods, including:

• ROCKET was rst introduced by Dempster et al. [6]. This method
involves the transformation of time series data using a multitude of con-
volutional kernels that are characterized by random attributes such as
length, weights, bias, dilation, and padding. The resulting transformed
features are subsequently utilized to train a linear classi er (using ridge
regression for all, with the exception being the largest datasets, for
which logistic regression is also utilized).

• MiniRocket [7] is an enhanced model of the ROCKET that makes a
few modi cations to its kernels and signi cantly improves the convo-
lutional process. Both ROCKET and MiniRocket use convolutional
kernels to transform the original input series. MiniRocket employs a
predetermined set of 84 kernels and creates several dilations and biases
for each kernel. As a default, this process generates 10,000 features for
the convolution operations.

In general, with the exception of ROCKET and MiniROCKET, most
SOTA methods for TSC su er from considerable computational complexity.
While ROCKET and its variant lack interpretative power.
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2.2 Shapelet-based Time Series Classi ers

Shapelet-based classi ers [27, 17] is another type of feature-based method.
Nevertheless, they can produce more interpretable decisions since they rely
on critical local patterns (shapelets) extracted from the primary time series
to determine their class.

Two initial classi ers explore all feasible shapelet candidates in a given
dataset, subsequently choosing the nal shapelets according to their informa-
tion gain. Following this, a shapelet decision tree was constructed, whereby
the optimal shapelet was assigned to each of its nodes [27]. Alternatively,
another approach involved transforming the target time series based on their
distance to shapelets and then applying a range of standard techniques (such
as SVM, Decision Tree,...) to classify the transformed values in lieu of the
original time series [17]. Recent research has incorporated both shapelets
and learning algorithms, resulting in the direct training of shapelets capable
of identifying time series belonging to di erent classes [11, 19, 20]. Notably,
several methods have made notable contributions to this task, including:

• Learning Time Series Shapelets (LTS) was rst proposed by Grabocka
et al. [11] in 2004, it presents a novel approach to learning shapelets
for time series classi cation tasks. The proposed method involves it-
eratively selecting discriminative subsequences from a dataset of time
series. The most informative shapelets are then selected and used to
transform the original time series into a more discriminative representa-
tion, which is subsequently used to train a classi er on the transformed
data.

• Triple-shapelet Network (TSN) [19] is a novel approach to learning dis-
criminative features from time series data by extracting three shapelets
(namely, Category-speci c Shapelet, General Shapelet, Sample-speci c
Shapelets) per class and combining them into a single representation.
This e ectively captures the distinctive patterns within each class of
time series, leading to improved accuracy and robustness to noise and
outliers.

• Adversarial Dynamic Shapelet Network (ADSN), proposed by Ma et al.
[20] in 2020, the authors introduce the concept of dynamic shapelets.
ADSN rst uses the convolutional neural network (CNN) to extract the
shapelet (Shapelet Generator). This method also builds the Discrim-
inator to determine whether the shapelet is generated from Shapelet
Generator or actually comes from time series (by the traditional way).
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From that, they can ensure the shapelet generated from Shapelet CNN
Generator is similar to the real subsequence of time series in the dataset.

Figure 2.1: The process for obtaining the rst six Perceptually Important
Points (PIPs). In that, PD is calculated by Eq. 2.1.

Algorithm 1. PIPExtractor
Input:

• T : time series
• k: number of PIPs

Output:
• PT : set of PIPs in T

1: PT = [1, n]
2: for i [1, k 2]:
3: Find pos [1, n] and pos PT with max PD(T [pos],PT )
4: PT .add(pos)
5: PT .sort()

2.3 Perceptually Important Points (PIPs)

The Perceptually Important Points (PIPs) method was initially introduced
by Chung et al. [4] to extract salient points from a pricing series and has since
been widely utilized in time series data mining for various duties, for example,
expressing data in a certain way and decreasing the number of dimensions.
Assume that T = [t1, , tn] is a time series and k is the number of important
points to extract. Initially, the rst and the last index of T are added to
a list of PT , which is represented as PT = [1, n]. Subsequently, a recursive
process is employed to identify the index in T with the highest Perpendicular
Distance from the line created from two previously added elements in PT . In
that, Perpendicular Distance between one position, pos, and PT is computed
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by Eq. 2.1.

PD(pos,PT ) =
a Ppos Tpos + c

a2 + 1
(2.1)

a =
Te Ts

Pe Ps

; c = Te a Pe

Given g where 1 g k and PT
g < pos < PT

g+1, assign s = PT
g and e = PT

g+1,
and P is list of position with z normalization, P = z norm([1, , n]).

The complexity of detecting important points is O(kn), however, detect-
ing PIPs for each time series can be pre-computed before calculating the
distance. An illustration of extracting the rst six PIPs from the target
time series is shown in Fig. 2.1. Algorithm 1 presents the pseudocode for
extracting PIPs.

2.4 Preliminaries

This section aims to present all the essential de nitions and notations.

De nition 1: Time Series Dataset. A collection of m time series is denoted
as a time series dataset M, where M = [T 1, , Tm]. Each time series T i

has an associated label yi Y . Furthermore, L represents the number of
distinct classes in M, from that Y = [Yi, , YL].

De nition 2: Time Series. A time series denoted by T = [t1, , tn] of
length n is a sequence of n real numbers obtained at regular intervals over a
speci ed duration of time.

De nition 3: Subsequence. Given a time series T = [t1, , tn], a subse-
quence Ti,i+l 1 = [ti, , ti+l 1] is a sequence of contiguous data points from
the original series T , in which i presents the beginning point and l is the
length of Ti,i+l 1 with l n.

De nition 4: Time Series Distance Measrure. Time series distance measure
is an essential function for calculating the similarity between two time series.
In this thesis, we mention two existing popular distance measurements for
time series and these distance measures are related to this work, including:

• Euclidean Distance (ED). Given two time series with the same length of
n, Q = [q1, , qn] and C = [c1, , cn]. The Euclidean Distance between
Q and C is calculated by Eq. 2.2.

ED(Q,C) =
n

i=1

(qi ci)2 (2.2)
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• Complexity Invariant Distance (CID). That measure was introduced
by Batista et al. [2]. The motivation of CID is based on the obser-
vation that complex time series are often more similar to simple time
series than to other complex time series. CID of Q and C utilizing the
complexity-invariant estimate, CI, is calculated as follow:

CID(Q,C) = ED(Q,C)
max(CI(Q), CI(C))

min(CI(Q), CI(C))
(2.3)

CI(Q) =
n 1

i=1

(qi+1 qi)2

Note that CI of all time series in the dataset can be pre-computed before
calculating the distance, hence the complexity of CID can be the same as
that of ED, O(n).

De nition 5: Subsequence Distance (SubDist). Given time series T and a
subsequence S with n and l are length of T and S respectively. Note that
l n, the subsequence distance, SubDist, of T and S is calculated as:

SubDist(T, S) = min(DV(T, S)) (2.4)

where DV(T, S) is the distance vector which contains distances between S
and all subsequence Tj,j+l 1 T, j [1, n l + 1].

DV(T, S) = [D1, , Dn l+1] (2.5)

In the classic shapelet-based method, they leverage ED (Eq. 2.2) to
calculate Dj. In this work, we leverage the Complexity-Invariant Distance
for the calculation of SubDist. Therefore, its Dj is calculated as follows:

Dj = CID(Tj,j+l 1, S) (2.6)

where, CID(Tj,j+l 1, S) is calculated by Eq. 2.3.

De nition 6: Soft-minimum Function. However, this classic minimum func-
tion poses an important issue. Speci cally, the minimum function of Eq.2.4
cannot be directly di erentiated. This means that this minimum function is
not a continuous function, which means that it does not have a derivative in
the traditional sense since it has jump discontinuities. Therefore, it is pro-
posed to exploit the soft-minimum function in order to pick out the minimum
distance value, SubDist can be calculated by the soft-minimum function as
follows:

SubDist(T, S) = SoftMin(DV(T, S)) =
n l+1
j=1 Dje

Dj

n l+1
j=1 e Dj

(2.7)
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when , the soft-minimum approaches the true minimum.

De nition 7: Information Gain (InfoGain). Given a time series dataset M
containing the labels A and B, with p(A) and p(B) denoting the respective
percentages of instances belonging to each class, a split method, referred to
as , is employed to partition M into two distinct subsets, namely, M1 and
M2. As a result of this splitting, the following InfoGain is calculated:

InfoGain( ) = E(M)

( M1

M E(M1) +
M2

M E(M2)

)
(2.8)

The M represents the count of instances present in the dataset M,
while E(M) denotes the entropy of M, and is computed according to the
following equation:

E(M) = p(A)log(p(A)) p(B)log(p(B)) (2.9)

De nition 8: Optimal Split Point (OSP). Given a datasetM and a shapelet
candidate S, the initial step entails computing the SubDist between S and
every instance belonging to M, which is followed by arranging the set of
distances in a sorted manner. Subsequently, given a set of thresholds =
[ 1, , m], each t can divide M intoM1 and M2 with SubDist(S, T i) t if
T i M1 and SubDist(S, T i) > t if T

i M2. The OSP(S) is the threshold
that provides the highest information gain:

InfoGain(S,OSP(S)) InfoGain(S, t), t (2.10)

De nition 9: Shapelet. Given a shapelet candidates set SC, S S is
regarded as a shapelet if it provides the highest InfoGain compared to other
S SC\S.

InfoGain(S,OSP(S)) InfoGain(S ,OSP(S )), S SC\S (2.11)

Note that, we use the binary information gain for evaluating shapelets to
distinguish a class Yi from other classes Y \ Yi .
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Chapter 3

Proposed Method 1 - A
Perceptual Position-aware
Shapelets Network for Time
Series Classi cation (PPSN)

3.1 Research Motivation

Ye et al. [27] introduced a novel concept of shapelets for TSC in 2009, which
refers to subsequences of time series data capable of e ectively di erentiat-
ing between various classes. As local patterns are generally more informative
than global structures for this task, shapelets have proven to be a remark-
able success in TSC. Additionally, shapelet-based approaches have the added
advantage of producing easily interpretable results.

Typically, shapelet-based classi ers are comprised of two primary stages:
(i) a shapelet initialization phase that picks the nal shapelets using quality
assessments (such as Kruskal-Wallis statistic, F-statistic, or information gain)
after identifying shapelet candidates from the training time series; (ii) a
shapelet learning phase that ne-tunes the shapelets using a neural network
model through a gradient descent algorithm. However, current shapelet-
based approaches su er from limitations in both of these stages.

In the case of the shapelet initialization phase, the initial shapelet-based
classi ers [27, 17] use Full Extractor to nd all potential shapelet candidates.
After that, they utilized the Euclidean Distance method to quantify the dis-
tance between these candidates and the target time series. Although this
approach produces high performance, su ering a high level of computational
complexity. To tackle this issue, [11] proposed to use the Fixed-Length Ex-
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tractor, which only extracts candidates of the same length. They then clus-
tered these candidates using k-Means and utilized the k-Means centroids as
the initial shapelets. Nevertheless, this method assumes that the length of
shapelets is xed, even though the dataset may contain shapelets of var-
ious lengths. To overcome the issue of computational complexity, several
recent attempts have been made to speed up the shapelet extractor pro-
cess and optimize complex parameters (for instance, the quantity and length
of shapelets) automatically by utilizing piecewise aggregate approximation
(PAA). However, this approach may result in the loss of data characteristics
[15, 23, 28]. Additionally, relying on Euclidean Distance to compute the sub-
sequence distance between shapelet candidates and the primary time series
requires considerable time and unintentionally disregards the location of the
shapelets (Problem 1).

For the learning shapelet phase, conventional techniques have utilized di-
rect learning from subsequence distances, which refer to transformed values of
shapelets and target time series. Nevertheless, this approach poses challenges
in training and convergence, as certain shapelets may provide extremely high
values, while others may yield signi cantly smaller values. Additionally, the
linear layer in the nal network typically produces unsatisfactory predictions
in the rst training epochs due to suboptimal weights. These challenges may
reduce the overall performance of the model (Problem 2).

3.2 Research Contribution

In our rst work, we propose a novel method for time series classi cation,
namely Perceptual Position-aware Shapelets Network (PPSN) to solve all
mentioned problems. For the shapelet initialization phase, we rst build a
Perceptual Shapelet Extractor (Section 3.3.1) that uses three consecutive im-
portant points to automatically extract a few prominent shapelet candidates.
Next, we propose Position-aware Subsequence Distance (Section 3.3.2) in or-
der to evaluate shapelets, which e ectively leverage position information to
calculate the distance of the shapelet candidate and its corresponding time
series instead of comparing it to the whole original time series, as a result,
improving performance and speeding up computational time. Ultimately,
high-quality shapelets of di erent lengths are successfully kept (Problem
1). To tackle the detrimental e ects of each shapelet’s various value ranges,
our model applied Fixed Normalization (Section 3.3.3) to the transformed
values of each shapelet throughout the learning phase. In addition, our
PPSN also employs stop-gradient connections during the rst few epochs
(Stop-gradient Epochs, Section 3.3.3) to minimize the undesirable e ects of
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Figure 3.1: The overall architecture of the Perceptual Position-aware
Shapelet Network (PPSN).

suboptimal weights in the nal linear layer’s (Problem 2).
The main contributions of our rst work can be summarized as follows:

(i) We propose PPSN - a novel shapelet-based approach, that incorporates
an e ective shapelet extractor and use positional information to compute
subsequence distance. (ii) We propose two novel techniques, namely xed
normalization and stop-gradient epochs techniques to enhance the accuracy
of the model. (iii) We carry out in-depth experiments on 112 UCR datasets,
and the results indicate that PPSN surpasses non-ensemble methods and
achieves SOTA performance. Furthermore, PPSN retains the interpretability
of the model and has a low computational time.

3.3 Methodology

In this part, we provide a comprehensive explanation of PPSN. For the
shapelet initialization phase, we propose two novel methods, namely Percep-
tual Shapelet Extractor (Section 3.3.1), and Position-aware SubDist (Section
3.3.2). For the shapelet learning phase, we propose two novel techniques,
namely Fixed Normalization (Section 3.3.3) and Stop-Gradient Epochs (Sec-
tion 3.3.3). Fig. 3.1 outlines the general PPSN’s architecture.

3.3.1 Perceptual Shapelet Extractor

The most crucial part of shapelet-based classi ers is extracting shapelet can-
didates. As a result, the performance of the model can be improved by the
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Figure 3.2: Shapelets from the Beef dataset that were chosen by several
evaluated extractors. Ground truths are shapelets that have the most infor-
mation gain .

Number of consecutive PIPs 2 3 (Default) 4 5 Full Extractor
Average InfoGain 0.501 0.631 0.601 0.581 0.652

Table 3.1: Average Information Gains of PSE on the rst 10 UCR datasets
using various consecutive PIP numbers.

high-quality shapelets [15, 28]. The existing extractors, however, have their
own issues. For instance, the Full Extractor employed in [27, 17] extracts
from the dataset all candidates that, after evaluation, can deliver the highest
quality, but its complexity is the main issue. To tackle this problem, Fixed-
Length Extractor [11] picks out candidates with the same length l in order to
get around the issue. Finding the ideal xed length is challenging, however,
the approach needs the shapelet’s length as a parameter. Moreover, shapelets
in time series can vary in terms of lengths; hence, limiting shapelet length can
diminish accuracy. For example, the Fixed-Length Extractor that produces
the highest information (with l = 52) is unable to extract the shapelets that
perfectly cover the second ground truth of length 37. It should be noted that
the ground truths are the shapelets with the highest infogain extracted by
the Full Extractor. To minimize the complexity, [23, 15, 28] suggested using
the PAA-based extractor. The loss of speci c data qualities could, however,
hurt the methods. As can be seen in Fig. 3.2(c) the extracted shapelet
has larger dimensions on both ends than the ground truths as it only uses
segments with less information.

In this section, we propose the Perceptual Shapelet Extractor (PSE) ap-
proach, which utilizes Perceptually Important Points (PIPs) to e ectively
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identify high-quality shapelet candidates of varying lengths. We carried out
an experiment, as detailed in Table 3.1, to demonstrate that three consecu-
tive PIPs result in the highest infogain score, which is nearly equivalent to the
score achieved by the Full Extractor (0.631 compared to 0.652). Algorithm
2 presents the pseudocode for PSE. In particular, for each newly extracted
Perceptually Important Point (PIP), p, three potential new candidates are
assessed and added to the pool of candidates, provided that they exist (lines
9 15). Fig. 3.2(d) provides a visualization of how PSE is capable of
extracting shapelets that are strikingly similar to the ground truths.

Algorithm 2. Perceptual Shapelet Extractor
Input:

• M = [T 1, , Tm]: dataset
• k: number of PIPs
• n: time series length

Output:
• SC: a set of shapelet candidates
• SC start pos: a set of starting position for each candidates
• SC end pos: a set of ending position for each candidates

01: SC = SC start pos = SC end pos = []
02: for i [1,m]:
03: P = [1, n] # a list of PIPs
04: for j [1, k 2]
05: Find p [1, n] and p P with max PD(T i[pos],P)
06: P .add(p).sort()
07: for z [0, 2]:
08: # if candidates are valid add them into SC
09: if p z 1 and p z + 2 P then
10: start pos = P [p z]
11: end pos = P [p z + 2]
12: SC.add(T i[start pos : end pos])
13: SC start pos.add(start pos)
14: SC end pos.add(end pos)

3.3.2 Position-aware Sub-Distance for Shapelet Eval-
uation

Position-aware Sub-Distance (PSD). The distance between a shapelet
and its best matching location in a time series instance is known as the
sequence distance (SubDist). The SubDist of shapelet candidates is typi-
cally calculated using ED, which disregards the positional information of the
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Figure 3.3: The same shapelet appears di erently in two classes of the
CinCECGTorso dataset.

shapelet, to the full target time series. As a result, when the position of
the shapelet serves as the primary distinction between time series of various
classes, it considerably increases their computing cost and makes them vul-
nerable. As can be seen in Fig. 3.3, two of the rst time series all come to
class A, while the two last time series are in class B. Clearly, they all have
the same subsequence, but the occurrence positions are di erent. To solve
this problem, we employ a Position-aware SubDist (PSD) approach, which
exclusively computes the SubDist between the shapelet and the subsequence
in the target time series, while taking into account the original position of
the shapelet, but widens on the left and right sides with a window size w.
Provided a time series T that has a length of n, a shapelet Si that spans
from the starting point si to the nal point ei, and a window size w, as a
result, PSD of T and Si is determined using Eq. 3.1. It is important to note
that instead of using Euclidean Distance (ED), we utilize the Complexity-
Invariant Distance (CID) for SubDist calculation, as described in Eq. 2.5.

PSD(T, Si) = SubDist(PDV(T, Si)) (3.1)

PDV(T, Si) = DV(T [s posi : e posi], Si) (3.2)

s posi =

{
si w + 1, si w + 1 1

1, otherwise

e posi =

{
ei + w, ei + w n

n, otherwise
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where SubDist is presented at Eq. 2.4 and DV at Eq. 2.5. It is signi cant
to note that since it only expands the ranges of calculating distances within
a window size w, DV(T [s posi : e posi], Si) only has a length of 2w + 1.

Shapelet Evaluation with PSD. Given a set of shapelet candidates
denoted as SC = [S1, , Sc], we determine the OSP for each shapelet can-
didate Si by calculating the PSD between Si and all instances of D. Next,
we select the g shapelet candidates with the highest infogain score as the
chosen shapelets S = [S1, , Sg]. Assuming that S is an arbitrary element
in SC\S.

IG(Si, OSP (Si)) IG(S ,OSP (S )) (3.3)

3.3.3 Learning Shapelet Network

The training time series instance might not have the same discriminant abili-
ties as the ground truth shapelets. In this module, we aim to optimize it using
a learning shapelet network leveraging the collection of chosen shapelets as
the learnable parameters. The model consists of four parts, namely Position-
aware Shapelet Transform, Fixed Normalization, Classi cation Head, and
Stop-Gradient Epochs.

Position-aware Shapelet Transform. Our method transforms the time
series using the PSD (Eq. 3.1) rather than the original SubDist using the
potentiality of PSD described in Section 3.3.2. Given the input time series
T and the set of shapelets S = [S1, , Sg]. The transformed vector, Z =
[Z1, , Zg] of T is calculated as below:

Zi = PSD(T,S i), i [1, , g] (3.4)

Fixed Normalization. The distinct OSP of each shapelet enables it to
classify its respective class and other classes, resulting in varying ranges of
SubDist values. This poses a challenge in achieving convergence during model
training, as certain shapelets may generate excessively high SubDist values
while others yield considerably lower values. To overcome this challenge, we
propose a xed normalization approach that is applied to the transformed
values of each shapelet. Speci cally, provided the vector of transformed
Position-ware SubDist over a mini-batch: B = [Z1

i , , Zb
i ] of Shapelet S

i, in
that b is the quantity of time series instances in the batch. The normalization
vector V i = [V i

1 , , V i
b ] of Zi is computed as follows:

V i
j = 1

Zi
j
, j [1, , b] (3.5)
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Figure 3.4: (a, b) The changing of shapelets un-
der Batch Norm and our Fixed Norm at the 1st,
20th, and 100th epochs. (c) The average accura-
cies obtained from ve di erent runs of compared
methods in the Beef dataset[5]

.

Figure 3.5: Average ac-
curacies obtained from
ve di erent runs in Beef

dataset [5] of compared
methods.

in which = max( ,max(Z i)) is the learned parameter. Fixed normaliza-
tion di ers from batch normalization in that is updated only once, during
the rst epoch. The results presented in Fig. 3.4 demonstrate that by halt-
ing the update of , the shapelets of PPSN are less susceptible to excessive
changes while achieving higher accuracies than those attained by batch nor-
malization. It illustrates the e ectiveness of our proposed xed normalization
method.

General Classi cation Head. Following the normalization of the trans-
form value, we utilize a basic neural network comprising an activation func-
tion, ReLU, a single Linear Layer to optimize selected shapelets. The Soft-
max function is then applied to determine the predicted label. Utilizing the
normalization vector V = [V 1, , V g], the predicted label y = [y1, , yL] can
be determined as shown below:

yi = GCH(V ) =
ehi

L
j=1 e

hj

, i [1, , L] (3.6)

hi = Wi,0 +

g

j=1

Wi,jReLU(V j), i [1, , L]

where Wi,j and Wi,0 refer to the weights and bias of the Linear Layer,
respectively. The activation function used is ReLU, which is de ned as
ReLU(V j) = max(0, V j). In this model, we employ the cross-entropy loss
function:

Lossgen =
L

i=1

yi log(yi) (3.7)

18



Stop-Gradient Epochs. For classifying time series, our Perceptual Shapelet
Extractor o ers shapelets of the best quality. Unfortunately, due to its non-
optimal weights, the linear layer in the nal network typically produces
extremely unsatisfactory predictions during the rst training epochs. The
results presented in Fig. 3.5 demonstrate a signi cant decline in valida-
tion accuracies during the rst few epochs of PPSN without Stop Gradient
Epochs (SGE) when compared to PPSN with SGE. This leads to a larger gap
in the model’s performance. It highlights the adverse e ects of suboptimal
weights and the bene ts of implementing stop-gradient epochs to enhance
the accuracy of the model.

3.4 Experimental Result

In our rst work, we conduct experiments on 112 datasets from the UCR
Time Series Archive [5], utilizing the original train/test split as per the ap-
proach described in [22]. It should be noted that the datasets considered in
our experiments do not include those with unequal length or missing values,
and exhibit variations in their categories, the quantity of classes, the number
of instances, and lengths of time series.

Following the recommendation in [8], we compare various classi ers across
various datasets and present the results on a critical di erence diagram that
uses average ranks rather than error rates. To determine whether the pair-
wise classi cation accuracy di erence between methods is statistically sig-
ni cant, a two-sided Wilcoxon signed-rank test is conducted, with a black
horizontal line connecting the methods that exhibit no signi cant di erence
( = 5%). Additionally, the Holm correction is employed as a post-hoc test
to the Friedman test [8] for all comparisons.

We have built a website 1 to reproduce our experiments which contains
the results on 112 UCR datasets along with the source code.

3.4.1 Hyperparameter Setting

The experiment parameters for PPSN are set as follows: Stop-Gradient
Epochs and PIPs are kept constant at 1 and 0.3 of the time series length,
respectively. The number of shapelets, g, is explored within the range of
0 1, 0 2, 0 5, 1, 2, 5, 10 of the time series length. The window size, w, is de-

termined using a simple heuristic approach, where the information gain for
shapelet candidates is computed for all 5, 10, 20, 30, 50, 100, 200 for each

1https://github.com/xuanmay2701/ppsn
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Figure 3.6: Critical di erent diagram presents the average ranks of PPSN
and seven shapelet-based classi ers on 85 UCR Dataset. The groups with
no signi cant di erence (p-value > 0 05) are represented by solid lines.

value of g. The window size with the highest average information gain of the
top g selected shapelets is then selected. Notably, PPSN requires only one
parameter, g, to be tuned.

Using PyTorch, we conducted experiments and utilized the AdamW op-
timizer with a learning rate of 0.01 and momentum of 0.9. We then ap-
plied a Smoothing Label of 0.1 for all datasets and determined the batch
size based on the dataset size. In particular, we selected the batch size
from 16, 32, 64, 128, 256 when the number of training instances exceeded
0, 100, 200, 400, 800 , respectively. For instance, if there were 500 training

instances, we assigned the batch size as 128.

3.4.2 Compared with Shapelet-based Methods

This section presents the experimental comparison between our proposed
PPSN and six existing shapelet-based classi ers that represent the state-
of-the-art in the eld. These include Learning Time Series Shapelet (LTS)
[11], Shapelet Transform (ST) [17], Fast Shapelet (FS) [23], BSPCOVER [15],
Triple-Shapelet Network (TSN) [19], and Adversarial Dynamic Shapelet Net-
work (ADSN) [20]. Following the methodology outlined in previous studies
[20, 19, 15], we present our results on 85 of the UCR datasets. Our compari-
son does not include ELIS++ [28] since their reported results are limited to
only 35 out of the 85 datasets. The critical di erence diagram presented in
Fig. 3.6 enables us to compare the performance of our PPSN model with the
baseline classi ers. The results show that our proposed method outperforms
all other shapelet-based classi ers, achieving the highest rank. Additionally,
we present a pair-wise comparison of our PPSN with ADSN in Fig. 3.7(a)
and with ELIS++ in Fig. 3.7(b). The results demonstrate that PPSN per-
forms better (including equal performance) than ADSN and ELIS++ on a
majority of datasets, speci cally on 64 out of 85 datasets for ADSN and 29
out of 35 datasets for ELIS++.
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(a) PPSN vs ADSN (b) PPSN vs ELIS++ (c) PPSN vs MiniRocket

Figure 3.7: Scatter charts indicate the accuracy of our proposed method
(PPSN), ADSN, ELIS++, and MiniRocket. Each data point depicted the
accuracy achieved on a particular dataset. In order to ensure a fair com-
parison, we only evaluate the result of datasets that had been previously
reported. Speci cally, the comparison was conducted on a total of 85, 35,
and 109 datasets for ADSN, ELIS++, and MiniRocket, correspondingly.

3.4.3 Compared with Current State-Of-The-Art Meth-
ods

We evaluate the performance of PPSN against seven state-of-the-art (SOTA)
methods, which are considered to be the most precise techniques for time
series classi cation at present. These methods include: (i) 4 ensemble-based
methods HIVE-COTE (HC1) [18], HIVE-COTE 2.0 (HC2) [22], TS-CHIEF
[26], InceptionTime [14]; (ii) 2 feature-based methods Rocket [6], MiniRocket
[7]; and (iii) interval-based algorithms DrCIF [22]. We select these methods
for comparison based on their high level of accuracy.

In this section, we perform experiments on a total of 112 datasets, but
we report the results of only 109 datasets to comply with the protocol de-
scribed in [7]. Fig. 3.8 presents the average ranking of our proposed model
(PPSN) and other SOTA methods. On average, PPSN achieves higher ac-
curacy than MiniRocket and InceptionTime but is relatively less accurate
than the most accurate ensemble classi ers available, particularly TSCHIEF,
HIVE-COTE, and HIVE-COTE 2.0, although these di erences are not sta-
tistically signi cant. Nevertheless, it should be noted that InceptionTime,
HIVE-COTE, TS-CHIEF, and HIVE-COTE 2.0 are all ensemble methods
that combine numerous models, including multiple shapelet-based classi ers.
Additionally, our proposed model is signi cantly faster than these ensemble
methods in terms of computation time. We also present a scatter chart for
pairwise comparison of PPSN and the top-performing non-ensemble method,
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Figure 3.8: A critical di erent diagram indicates the average ranks of com-
pared methods on 109 UCR datasets. As we can see, PPSN signi cantly
outperforms all methods except HIVE-COTE 2.0. Note that, HIVE-COTE
2.0, TS-CHIEF, HIVE-COTE, and InceptonTime are ensemble methods that
all have extremely high computational costs.

Methods DrCIF Rockett MiniRocke InceptionTime HC1 TS-CHIEF HC2
Training time 45.412 2.853 0.254 86.581 340.212 1016.874 427.183

Our Methods
PPSN (64 thread) PPSN (32 threads) PPSN (1 threads)

Initializing
Shapelet

Shapelet
Learning

Initializing
Shapelet

Shapelet
Learning

Initializing
Shapelet

Shapelet
Learning

Training time 2.472 0.624 4.233 0.624 13.732 0.624

Table 3.2: The run time (in hours) necessary to train 109 UCR datasets was
calculated by executing the shapelet initialization phase on a single thread
utilizing an AMD EPYC 7H12 2.6GHz CPU and running the shapelet learn-
ing phase threads on an NVIDIA A40 GPU.

MiniRocket (refer to Fig. 3.7(c)). The chart illustrates that PPSN is supe-
rior or equally accurate to MiniRocket on the majority of datasets (68 out of
109 datasets), with a p-value of 0 10334. All experimental results of PPSN
are presented in Table 4.2.

3.4.4 Computation Time Comparison

Table 3.2 demonstrates that PPSN trains all 109 UCR datasets in 14.35
hours, which is much less time than all other SOTA techniques except Rocket
and MiniRocket. Particularly, PPSN is 34 times quicker than HC2 and two
orders of magnitude faster than TS-CHIEF. Furthermore, the processing time
is substantially sped up by running PPSN in several threads. For instance,
if we train PPSN using 32 or 64 threads, the training time is reduced signi -
cantly to only 4.23 and 2.47 hours, respectively. It is noted that the shapelet
initialization phase in PPSN is responsible for the majority of the running
time, it takes 13.73 hours, which is much longer than only 0.62 hours for the
shapelet learning phase when using a single thread. This implies that PPSN
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Figure 3.9: The average ranks of the LTS baseline and four ablation versions
of PPSN.

has a very fast testing time, requiring only around 10 minutes to run on all
109 UCR datasets. These outcomes indicate the superiority of our proposed
method in terms of computing e ciency.

3.4.5 Ablation Study and Sensitivity Study

In order to assess the impact of proposed components and the important
parameter selection for PPSN, we perform a variety of experiments on the
rst 30 UCR datasets.

Component Evaluation. Initially, we access the in uence of four proposed
components of our PPSN model, namely, the Perceptual Shaplet Extractor
(PSE) in Section 3.3.1, Position-aware SubDist (PSD) in Section 3.3.2, Fixed
Normalization (FN), and Stop-Gradient Epochs (SGE), also at Section 3.3.3.
To determine the impact of each component on the nal accuracy, we incor-
porated them one by one. Fig. 3.9 demonstrates that all four components
positively a ected the nal model’s results by increasing its accuracy.

Number of Perceptually Important Points. We perform experiments
to run our PPSN with various PIP values, and we calculate the average in-
formation gain (Eq. 2.11) of a few chosen shapelets. The parameter used is
associated with the length of the time series. This implies that, for a time
series of length n, the value of k is determined as k = n npips. As can be
seen in 3.3, the average information gain of PPSN with npips = 0 3 (the de-
fault parameter) is almost equivalent to that of npips = 0 4 and npips = 0 5,
while signi cantly fewer candidates are extracted. Moreover, the information
gain of PPSN with npips = 0 3 is remarkably similar to that of Full Extrac-
tor, at 0.633 and 0.652, respectively, even though PPSN extracts only 280
candidates, while Full Extractor extracts 102,380 candidates.

Number of Stop-Gradient Epochs. The impact of varying the number
of Stop-Gradient Epochs (SGE) on the performance of our PPSN model is
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Number of PIPs (npips) 0.1 0.2 0.3 (Default) 0.4 0.5 Full Extractor
Avg. Information Gain 0.592 0.611 0.631 0.633 0.635 0.652
Avg. No. Extracted Candidates 100.1 195.2 280.2 370.5 475.5 102380.9

Table 3.3: The table compares the averaging information gain and number
of extracted shapelet candidates of our PPSN with various number of PIPs.

Figure 3.10: The average ranks for PPSN with various numbers of Stop-
Gradient Epochs.

illustrated in Fig. 3.10. The results indicate that all versions of PPSN with
di erent numbers of SGE (varying from 1 to 1000) outperform the baseline.
However, there is little advantage in increasing the number of SGE. Eventu-
ally, the best performance was achieved by PPSN with SGE set to 1.

Normalization. The comparison of Fixed Normalization, Batch Normal-
ization, and Baseline (without Norm) is presented in Fig. 3.11. The results
show that while applying normalization improves the performance of PPSN,
Fixed Normalization provides a considerably better outcome compared to its
counterparts.

Figure 3.11: The average ranks for two novel techniques in the learning
shapelet phase, namely Fixed Normalization and Batch Normalization.

3.4.6 Experiments on Interpretability

The interpretability of shapelets is a valuable capability that enhances data
comprehension. Fig. 3.12 demonstrates that shapelets can discriminate be-
tween two classes of the ECGFiveDays dataset [5], which is used in the study
of the heart through electrocardiography (ECG). The time series instances
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Figure 3.12: Shapelets were chosen by PPSN for the ECGFiveDays dataset.

in Fig. 3.12 (a) and (b) belong to Class A, while those in Fig. 3.12 (c)
and (d) belong to Class B. The selected shapelets by PPSN (orange lines)
e ectively highlight the major di erences between the segments of the two
classes. In particular, the rst shapelet depicts a QRS complex, while the
second shapelet depicts a T wave of ECG. It is evident that the T wave
shows a larger peak than the QRS complex in Class B, which is known as
a hyperacute T wave in the medical eld, occurring in certain illnesses like
ischemia or hyperkalemia.

25



Chapter 4

Proposed Method 2 - A
Stronger Shapelet-based Time
Series Classi er using Distance
Learning and Binary Auxiliary
Head (PPSN++)

4.1 Research Motivation

In our rst work, we propose a novel method called Perceptually Position-
aware Shaplet Network for TSC (PPSN, Chapter 3). It has demonstrated
achieving remarkable accuracy in the task. However, PPSN as well as shapelet-
based classi ers still have some shortcomings.

Firstly, they utilized a soft-minimum function to pick out the lowest dis-
tance features. This function calculates the minimum distance between a
shapelet and its best-matching subsequences within the time series, only
considering the distance of the best-matching subsequence and disregarding
others. Consequently, crucial information could be missed during the train-
ing process, and signi cant patterns within the data could be overlooked.
Additionally, the function has been shown to occasionally generate a value
exceeding the system’s maximum limit, resulting in model failure in some
cases (Problem 3).

Secondly, the general classi cation head (GCH) is undoubtedly a valuable
component for various time series classi cation tasks. However, its e ective-
ness may be limited when used in the speci c context of shapelet-based
methods. The major issue is that GCH may not be optimized to suit the
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particular characteristics of the input time series data. The use of shapelets
can e ciently di erentiate between distinct classes and mitigate the prob-
lem of data imbalance. To achieve this, PPSN proposes the extraction of
shapelets using binary information gain and an equal number of shapelets
for each class. Nevertheless, PPSN only employs the general classi cation
head to train these shapelets, leading to shapelets that learn more global
information and less speci c information about their respective classes. This
directly impacts the model’s performance, as capturing the speci c patterns
of the data is crucial for the success of shapelet-based models (Problem 4).

4.2 Research Contribution

In our second work, we propose a stronger shapelet-based classi er that is
built upon the PPSN framework (called PPSN++) to address the problems
mentioned in Section 4.1.

On the one hand, we propose to use a Distance Learning Layer (DLL)
instead of relying solely on the minimum distance selection. The DLL ef-
fectively utilizes a signi cant pattern of the distance vector to compute the
shapelet-transformed feature between the shapelet and the target time series.
By utilizing PSD (as described in Chapter 3, Section 3.3.2), the number of
elements in the distance vector is reduced to only 2w + 1, which is much
less compared to the conventional SubDist. Furthermore, to prevent over-
ow values, the DLL is designed to utilize xed normalization, which ensures

that the distance values remain within the range of 0 to 1 (Problem 3).
On the other hand, we propose to use both the General Classi cation

Head (GCH) and the Binary Auxiliary Classi cation Head (BACH) simulta-
neously in order to improve the accuracy of time series classi cation. BACH
is designed to enable more speci c learning of shapelet candidates from their
respective classes. Combining BACH with GCH can also enhance the ef-
fectiveness of the distance learning layer by ensuring that the output of the
DLL always tends towards the value of 1 for all target time series of its class
(Problem 4).

The main contributions of our second work can be summarized as fol-
lows: (i) We propose PPSN++ which is a stronger shapelet-based method
using a Distance Learning Layer to capitalize on signi cant distances (ii)
We introduce Binary Auxiliary Classi cation Head to capture speci c pat-
terns of their respective classes (iii) We conduct extensive experiments on 112
UCR datasets, and the results indicate that PPSN++ outperforms PPSN,
making it become the state-of-the-art shapelet-based classi er for time series
classi cation.
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Figure 4.1: The chart illustrates the general architecture of PPSN++. First,
it extracts high-quality shapelets using the O ine Perceptual Position-aware
Shapelet Extractor. Second, PPSN++ transforms time series data using the
Position-aware Shapelet Transform with a Distance Learning Layer and then
feeds the transformed values into both a General Classi cation Head and a
Binary Auxiliary Head. This model is an extended version of our previous
work, PPSN, with two main improvements, including a Distance Learning
Layer to capitalize on signi cant distances and a Binary Auxiliary Head to
capture speci c patterns of their respective classes.

4.3 Methodology

In this section, we present an extended Shapelet-based Time Series Classi er,
referred to as PPSN++, which builds upon the PPSN framework with two
primary enhancements: Distance Learning Layer (Section 4.3.1) and a Bi-
nary Auxiliary Head (Section 4.3.2). Firstly, PPSN++ extracts high-quality
shapelets by employing the O ine Perceptual Position-aware Shapelet Ex-
tractor (Section 3.3.1). Subsequently, the selected shapelets are incorporated
into the Position-aware Shapelet Transform with a Distance Learning Layer
to transform the original time series data. Ultimately, the transformed val-
ues are concurrently fed into both the General Classi cation Head and the
Binary Auxiliary Head, with the overarching goal of classifying time series
data. The comprehensive architecture of PPSN++ is depicted in Fig. 4.1.

28



4.3.1 Distance Learning Layer

Numerous prior approaches have employed a soft-minimum function to de-
termine the distance between shapelets and the target time series. This func-
tion extracts the minimal distance between a shapelet and its best-matching
subsequences within the time series (the lowest of SubDist). As a result, it
only considers the best-matching subsequence and disregards other distances,
which could lead to important information being overlooked and signi cant
patterns within the data being missed during the training process. Further-
more, the function is known to occasionally generate a value surpassing the
maximum value the system can handle, leading to model failure in speci c
instances.

To tackle this issue, we propose to use a Distance Learning Layer (DLL)
rather than exclusively selecting the minimum distance. Our DLL e ciently
capitalizes on a signi cant pattern of distances vector to compute the shapelet
transformed feature between the shapelet and target time series. Thanks to
exploiting PSD (Section 3.3.2), the number of elements in the distance vector
is only 2w + 1, which is signi cantly less than the conventional SubDist.
Additionally, the distance learning layer (DLL) is designed to prevent the
production of over ow values by using xed normalization, which keeps the
distance within the range of 0 and 1.

Given a time series T and a shapelet Si S, the distance vector of T and
Si using our Position-aware Sub-Distance (PSD) is represented by:

Di = [Di
0, Di

2w] = PDV(T, Si) (4.1)

In that, PDV is computed using Eq. 3.2. It is important to note that
PSD solely computes the SubDist between shapelet Si and the corresponding
subsequence in the target time series T . Additionally, we extend the width
on both sides by w, resulting in the distance vector containing only 2w + 1
elements.

The DLL initially normalizes the distance feature vector Di to obtain
D̄i = [D̄i

0, , D̄i
2w], where D̄i

j [0, 1], based on xed normalization (Eq.
3.5) using Bi

Di , which encompasses all distances within the batch, and =
max( ,max(Bi

Di)):

D̄i = ReLU(FixNorm(Bi
Di , i)) = ReLU(1

Di

) (4.2)

We utilize the ReLU function to prevent the FixNorm from acquiring negative
values, which can occur since is only updated during the rst epoch, while
the distance value may exceed in subsequent training epochs.
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Subsequently, the normalized distance vector is transformed to Zi =
[Z i

0, , Z i
2w] as follows:

Zi
j = DLL(D̄i

j) = D̄i
j M(D̄i

j) B(j) (4.3)

We propose two additional terms to enhance the learning of the distance
vector D̄i. The rst one, M(D̄i

j), is inspired by the soft-minimum function,
with the aim of reducing the impact of low distances. It is de ned as follows:

M(D̄i
j) = e (1 D̄i

j) (4.4)

Given that the values of D̄i lie within the range [0, 1], it is ensured that
M(D̄i

j) will not cause an over ow, provided that the value of remains within
reasonable bounds. This function thus e ectively diminishes the in uence of
low distances without generating over ow errors.

The second term is designed to emphasize the importance of the position
information of the shapelet by reducing the impact of features located at the
border positions of D̄i. Notably, the vector D̄i is obtained by computing
the distance between the shapelet Si and the corresponding subsequence
in the target time series T . Additionally, we widen the window on both
sides by w, resulting in a distance feature vector containing only 2w + 1
elements. Hence, the outermost position in D̄i corresponds to the highest
shift of the subsequences. We then develop a learnable function that can
decrease the outer values in D̄i by a quantity controlled by the learnable

[0, 1] parameter, as expressed by the following equation:

B(j) =
(1 )

(1 + )w2
(j w)2 + 1 (4.5)

Examples of B(j) are illustrated in Fig. 4.2, where it can be observed
that:

• B(j) takes the shape of an upside-down parabola function, with the
highest value B(j) = 1 at j = w. This makes the middle values main-
tain a constant value of 1 and diminish toward the two boundaries.

• B(j) [0, 1], j [0, 2w]. This makes sure that Z i
j values decrease or

remain within the range of 0 to 1.

• A higher value of results in a smaller slope of the parabolic curve.
Thus, the function B can reduce the outer values in D̄i by an amount
determined by the learnable parameter.
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Figure 4.2: The graph illustrates the di erent values of function B(j), j
[0, 2w] with di erent values of . Speci cally, the function B(j) exhibits the
shape of an inverted parabolic curve, reaching its maximum value of 1 at
j = w, resulting in middle values that remain constant at 1 and diminish
towards the two boundaries. Furthermore, the function is restricted to the
interval of [0, 1] for all values of j in the range of [0, 2w]. This guarantees
that the value of the function will either decrease or remain within the limits
of 0 and 1, precluding any negative values. Additionally, the slope of the
parabolic curve is determined by the learnable parameter , which when
increased, results in a smaller slope and reduces the outer values in D̄i.

Finally, we utilize linear regression to learn the shapelet transformed fea-
ture, which is represented by the equation:

V =
1

2w + 1

2w

i=0

W i Z i + bi (4.6)

where Z i is the ith element of the shapelet transformed feature vector Z,
W i is the corresponding weight, and bi is the bias term. The aim of this
process is to derive a linear combination of distance vector and e ciency to
determine the weight for each position in the vector D̄i.
The interpretability of DLL: The objective of DLL is that can produce
a distance feature with avoiding over ow values, while still retaining inter-
pretability. From that, is used solely to control the slope of B(j), which
can better indicate the similarity of shapelet and subsequences in T . After
that, nal linear regression is used to only determine the weight for each po-
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Figure 4.3: The graph illustrates how the DLL and classic minimum func-
tions work. We solely compare the classic minimum function in order to bet-
ter illustrate the di erences between them. Additionally, although the soft-
minimum function employs distinct computational techniques, it nonetheless
generates the same results. It is of signi cance to mention that for ease of
comprehension, we utilize the normalization process represented by Eq. 4.2
to scale the value range between 0 and 1. Herein, a value of 1 indicates the
smallest distance, whereas a value of 0 represents the highest distance.

sition in the vector D and the inherent property of linear regression is that it
involves the averaging sum of the vector D. Therefore, it is noteworthy that
neither of these techniques compromises the interpretability of the model.
Moreover, the output of the DLL may be interpreted as an approximate
distance between the shapelet S and the time series T.

A comparison of DLL and classic minimum function is illustrated at Fig.
4.3. Our comparison is focused only on the traditional minimum function to
highlight the contrasts between them more e ectively. Moreover, even though
the soft-minimum function uses di erent computational methods, it produces
identical outcomes compared with classic minimum functions. By presenting
the examples in Fig. 4.4, we demonstrate that the previous functions, which
concentrate solely on the most signi cant value (i.e., the smallest distance),
yield equivalent values for all three instances in both class A and class B.
However, DLL can produce distinct values for each example by utilizing all
the pattern information in the distance vector.
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Figure 4.4: The graph illustrates how the DLL can discriminate better the
classic minimum/soft-minimum functions. Since previous functions only fo-
cus on the highest value (smallest distance), they generate equal values for all
examples in both classes. On the other hand, DLL can generate the di erent
values between them by using all pattern information in Distance Vector.

4.3.2 Binary Auxiliary Classi cation Head

Undoubtedly, the general classi cation head (GCH) of PPSN can be a useful
tool for multiple time series classi cation tasks. However, its e ectiveness
may be limited when applied to the speci c context of using shapelets. The
major problem is that GCH may not be optimized for the speci c characteris-
tics of the input time series data. According to theory, shapelets are e ective
at distinguishing speci c classes that can address the minority class problem.
Along with solving the problem of data imbalance, PPSN proposes extracting
shapelets using binary information gain and equal amounts of shapelets for
each class. However, PPSN only employs the general classi cation head to
train these shapelets, resulting in shapelets that learn more global informa-
tion and less speci c information about their respective classes. This directly
a ects the performance of the model since capturing the speci c patterns of
the data is the key to the success of shapelet-based models.

To address these limitations, we propose the concurrent utilization of
the GCH in conjunction with our proposed approach, the Binary Auxiliary
Classi cation Head (BACH), to classify time series more accurately. BACH
aims to enable the shapelet candidates to be learned more speci cally from
their respective classes. Additionally, using BACH together with GCH can
help the distance learning layer learn more e ectively, as it ensures that all
output of the DLL is always towards the value of 1 for all target time series
of its class. The architecture of BACH is shown in Fig. 4.5 (right).

Given the shapelet transformed features V = [V 1, , V g], V is divided
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Figure 4.5: The General Classi cation Head (GCH, left) may not be op-
timized for the speci c characteristics of input time series data, leading to
issues in distinguishing speci c classes and addressing data imbalance. PPSN
attempts to solve this by using shapelets extracted using binary information
gain and equal amounts for each class. However, training these shapelets
using only GCH results in shapelets that learn more global information and
less speci c information about their respective classes, negatively impacting
the performance of the model. While PPSN++ proposes to use concurrently
GCH and Binary Auxiliary Classi cation Head (BACH, right) intending to
capture speci c-class patterns in the data.

into L group represented for L classes of datasets.

V = [V1, , VL], (4.7)

Vl = [V 1
l , , V

g/L
l ], l 1, , L

We also de ne L linear layer to classify each element Vl V . The binary
predicted yl label for each class is calculated as follows:

yl = BACH(Vl) =
ehl

ehl + 1
, l 1, , L (4.8)

hl = W 0
l +

g/L

j=1

W j
l ReLU(V

j
l ), l 1, , L

Here, given Y = [Y1, , YL] is the set of di erent classes in M, the binary
entropy function is employed for this module:

Lossaux =
L

l=1

(yllog(Yl) + (1 yl)log(1 Yl)) (4.9)

The GCH is directly employed for V using Eq. 3.6 as yi = GCH(V ),
and the loss function is obtained based on Eq. 3.7. Finally, the general loss
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function is calculated as follows:

Loss = Lossgen + Lossaux (4.10)

In that, is the tuning parameter.

4.4 Experimental Result

4.4.1 Hyperparameter Setting

For experiments for PPSN++, since our proposed method is not related to
the tuning of the number of shapelets g and window size w. Therefore,
we keep the tuned parameters of PPSN which is searched over 0 1, 0 2, 0 5,
1, 2, 5, 10 for g and 5, 10, 20, 30, 50, 100, 200 for w. The detail of this tuning
can be found in Chapter 3, Section 3.4.1. In the case of (Eq. 4.4) and of
the nal loss function (Eq. 4.10), we conducted the ablation study at Section
4.4.4 and xed = 5 and = 1 respectively.

We employed PyTorch to carry out our experiments and utilized the
AdamW optimizer with a learning rate of 0.01 and a momentum of 0.9.
Additionally, we applied a Smoothing Label of 0.1 for all datasets and chose
the batch size based on the dataset size. Speci cally, we follow the setting
of PPSN (Chapter 3, Section 3.4.1)and select the batch size from the set 16,
32, 64, 128, 256 when the number of training instances exceeded 0, 100, 200,
400, 800, respectively. For instance, if the dataset contained 500 training
instances, we set the batch size to 128.

We have built a website 1 to reproduce our experiments which contains
the results on 112 UCR datasets.

Figure 4.6: Critical di erent diagram presents the average ranks of PPSN++
and seven shapelet-based classi ers on 85 UCR Dataset. The groups with
no signi cant di erence (p-value > 0 05) are represented by solid lines.

1https://github.com/xuanmay2701/ppsnplus
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4.4.2 Compared with Shapelet-based Methods

In Fig. 4.6, we show an experimental result for comparing our second work
PPSN++ against seven state-of-the-art shapelet-based approaches, consist-
ing of LTS [11], ST [17], FS [23], BSPCOVER [15], TSN [19], ADSN [20],
and our rst work PPSN (Chapter 3). We follow the protocol in [20, 15] and
only illustrate the result on 85 UCR datasets. Similar to the experiments
of PPSN in Chapter 3, Section 3.4.2, we also do not include ELIS++ [28]
in our comparison as their results are only available for 35 out of the 85
datasets. Fig. 4.6 displays the critical di erence diagram used to compare
our PPSN++ model with the baseline classi ers.

(a) PPSN++ vs ADSN (b) PPSN++ vs TSN

(c) PPSN++ vs ST (d) PPSN++ vs PPSN

Figure 4.7: (a,b,c) Scatter charts show the accuracy of our second work
(PPSN++), ADSN, TSN, and ST in a total of 85 datasets. (d) The chart
compares PPSN++ and PPSN on 112 datasets. Each data point on the
charts represented the accuracy achieved on a speci c dataset.
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Our experimental results demonstrate that our second work PPSN++
outperforms all other shapelet-based classi ers, including our rst work PPSN
and achieves the highest rank. Additionally, we present pair-wise compar-
isons between PPSN++ and ADSN in Fig. 4.7 (a), between PPSN++ and
TSN in Fig. 4.7 (b), and between PPSN++ and ST in Fig. 4.7 (c). The
results indicate that our PPSN++ performs better or equally well compared
to ADSN, TSN, and ST in the majority of datasets (67/85, 67/85, and 66/85
datasets, correspondingly). The improvements are primarily because of the
e ciency of using the Distance Learning Layer and the combination of uti-
lizing the General Classi cation Head and Binary Auxiliary Classi cation
Head.
Compared with PPSN: In this experiment, we make a comparison of
our two proposed methods PPSN (Chapter 3) and PPSN++ (Chapter 4) in
terms of accuracy. Fig. 4.7 (d) shows the pairwise accuracy of PPSN versus
PPSN++ for the same 112 datasets. Speci cally, PPSN++ is more accurate
than PPSN on 51 datasets, and less accurate on 44 datasets. The large di er-
ence in accuracy between PPSN++ and PPSN on two datasets. The rst one
is ShapesAll, the accuracy of PPSN++ is 92.2 compared to PPSN 83.7. The
second is EOGHorizontalSignal dataset, in that, PPSN++ is more accurate
than PPSN with 65.2 vs 58.8, respectively. These results demonstrate the
bene ts of our proposed methods and claim the contributions of this work.

Figure 4.8: A critical di erent diagram indicates the average ranks of com-
pared methods on 109 UCR datasets. As we can see, PPSN++ signi cantly
outperforms all methods except HIVE-COTE 2.0. Note that, HIVE-COTE
2.0, TS-CHIEF, HIVE-COTE, and InceptonTime are ensemble methods that
all have extremely high computational costs.

4.4.3 Compared with Current State-Of-The-Art Meth-
ods

In Fig. 4.8, our second work PPSN++ is compared with eight SOTA ap-
proaches: (i) two feature-based approaches: MiniRocket [7], Rocket [6]; (ii)
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(a) PPSN++ vs HIVE-
COTE

(b) PPSN++ vs Inception-
Time

(c) PPSN++ vs MiniRocket

Figure 4.9: Scatter charts indicate the accuracy of our second work
(PPSN++), HIVE-COTE, InceptionTime, and MiniRocket on 109 datasets.
Each data point on the charts presented the accuracy achieved on a speci c
dataset.

an interval-based approach: DrCIF [22]; (iii) a shapelet-based classi er (our
rst work): PPSN (Chapter 3); (iv) four ensemble-based approaches TS-

CHIEF [26], HIVE-COTE 2.0 [22], HIVE-COTE [18], and InceptionTime
[14].

To follow the protocol at [7], we experimented on all 112 UCR datasets
but only show the results of 109 datasets. It is demonstrated that PPSN++
is more accurate than PPSN (our rst work), MiniRocket, InceptionTime,
TSCHIEF, and HIVE-COTE and its results are comparatively less than the
most accurate ensemble classi er, HIVE-COTE 2.0. The improvements, how-
ever, are not statistically signi cant. The experiment results show that our
second work PPSN++ is a state-of-the-art non-ensemble method. Noted that
HIVE-COTE 2.0 is an ensemble approach that involves the combination of
approximately 40 di erent models (including multiple shapelet-based classi-
ers). As a result, our PPSN++ is signi cantly faster in terms of computing

time than the ensemble techniques and the high accuracy of PPSN++ may
also increase the accuracy of HIVE-COTE 2.0. All experimental results of
PPSN++ are presented in Table 4.2.

4.4.4 Ablation Study and Sensitivity Study

To assess the impact of proposed components and the important parameter
selection for PPSN++, we run a number of experiments on the rst 30 UCR
datasets.
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Figure 4.10: Average ranks of PPSN baseline and two ablation versions of
PPSN++.

Figure 4.11: Average ranks for PPSN++ with di erent number of Alpha in
DLL component.

Component Evaluation. We rst assess the impact of two proposed com-
ponents of our PPSN++, namely Distance Learning Layer (DLL, Section
4.3.1) and Binary Auxiliary Classi cation Head (BACH, Section 4.3.2) These
components were added incrementally to measure their e ect on the nal ac-
curacy of the model. As can be seen in Fig. 4.10, the proposed model’s
results can be improved positively by both of its components.

Figure 4.12: Average ranks for PPSN++ with di erent number of Gamma
in BACH component.

Number of Alpha in DLL. Fig. 4.11 demonstrates the impact of vary-
ing the number of Alpha values in the Distance Learning Layer (DLL) of
our PPSN++ model, with values ranging from -20 to -5. In comparison to
the baseline model, all iterations of PPSN++ featuring varying numbers of
Alpha exhibited superior performance. The PPSN++ model with Gamma
equal to -5 achieved the highest level of performance.

Number of Gamma in Final Loss Function. Fig. 4.12 indicates the
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comparison of our proposed Binary Auxiliary Classi cation Head with vari-
ous values of Gamma. All variations of PPSN++ with di erent numbers of
Gamma performed better than the baseline model. However, decreasing the
number of Gamma did not provide any signi cant improvement. The best
performance was achieved by the PPSN++ model with Gamma set to 1.
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Chapter 5

Conclusion

In this dissertation, we have proposed two novel shapelet-based methods for
time series classi cation.

The rst one is a Perceptually Position-aware Shapelet Network (called
PPSN) which consists of two phases. In the rst phase, we propose an ef-
fective method for extracting shapelet candidates that involve utilizing per-
ceptually important points and evaluating them through position-aware sub-
sequence distance. In the second phase, we propose novel two techniques,
namely xed normalization and stop-gradient epochs, to overcome the neg-
ative e ect of di erent subsequence distance ranges and the suboptimal
weights of the nal linear layer. Our experiments show that PPSN outper-
forms existing non-ensemble methods and is competitive with HIVE-COTE
2.0, the current most accurate classi er while preserving the advantages of
interpretability and computational e ciency.

The second one is a stronger shapelet-based classi er which is built upon
the PPSN framework (called PPSN++) with two main improvements. Firstly,
we propose to use Distance Learning Layer to leverage important distances
which are inadvertently ignored by previous methods, and secondly, a Bi-
nary Auxiliary Head has been added along with General Classi cation Head
to capture distinctive patterns of individual classes. We demonstrate that
our PPSN++ outperforms PPSN in terms of classi cation accuracy, mak-
ing it become the state-of-the-art result in TSC tasks by conducting various
experiments.

In future works, we tend to explore the potential of PPSN++ in address-
ing other time series issues, for example, the classi cation of multivariate
time series data.
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