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Difficulty from Human Players’ Perspectives

Keita Fujihira, Chu-Hsuan Hsueh, and Kokolo Ikeda
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Nomi, Ishikawa, Japan

{keita.fujihira, hsuehch, kokolo}@jaist.ac.jp

Abstract. In video game development, creating maps, enemies, and
many other elements of game levels is one of the important process.
In order to improve players’ game experiences, game designers need
to understand players’ behavioral tendencies and create levels accord-
ingly. Among various components of levels, this paper targets mazes
and presents an automatic maze generation method with considering
difficulty based on human players’ tendencies. We first investigate the
tendencies using supervised learning and create a test player considering
human-likeness by using the tendencies. The test player simulates human
players’ behaviors when playing mazes and judges difficulty according to
the simulation results. Maze evaluation results of subject experiments
show that our method succeeds in generating mazes where the difficulty
estimated by the test player matches human players’.

Keywords: Procedural content generation · RPG · Maze · Difficulty.

1 Introduction

Artificial Intelligence (AI) has succeeded in various fields; and for games, AI has
been applied not only to make computer players but also to generate game con-
tent, well known as Procedural Content Generation (PCG). PCG has attracted
attention from academia and industry, and was mainly researched for popular
game genres such as platformer games (e.g., Super Mario Bros) [1] and shooting
games [2]. In contrast, research for role-playing games (RPG) is relatively few.

RPG is a classical genre that includes famous titles such as The Elder Scrolls1

and Fallout2 series. In addition to defeating final bosses, players may have vari-
ous purposes, and these factors are often reflected in game design. One example
is “finding and collecting items on the maps.” Since it is not exciting that rare
items are easily found, game designers may design game maps that navigate
players away from rare items. Another example is “going to the next town.”
Although exploring game maps may be enjoyable, getting lost for a long time
is frustrating. Meanwhile, too explicit navigation (e.g., maps containing a single

1 https://elderscrolls.bethesda.net/en
2 https://fallout.bethesda.net/en/
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path or flashing marks showing the correct directions) harms the play experience.
Therefore, it is better that RPG maps leave freedom for players while implicitly
control their behaviors. These are key challenges in game design, known as “Nar-
rative Paradox” [3]. Game designers usually create maps with such complicated
mechanisms manually. To develop a large-scaled game, creating maps need many
game designers and time, making development costs high.

The main goal of this research is the automatic generation of such maps. As
the first step, we target on simple two-dimensional mazes that contain only pas-
sages and walls but no enemies, items, or NPCs. We investigate human players’
behavioral tendencies when playing such mazes. In this paper, we aim to know
the difficulty of mazes from human players’ perspectives and generate mazes
accordingly. We analyze human players’ path selection tendencies by supervised
learning and use the learned model to create a test player for maze generation.
In evaluation experiments, the results that human players play the generated
mazes are consistent with the results predicted by the test player.

The rest of the paper is organized as follows. Section 2 introduces work related
to PCG and maze generation. Section 3 and Section 4 present investigation
of human players’ tendencies using supervised learning and maze generation
approach using the test player, respectively. Section 5 shows the results of the
subject experiments on maze evaluation. Finally, Section 6 makes conclusions.

2 Related Work

PCG is the algorithmic creation of game content with limited or indirect user
input [4]. A large variety of content such as maps [5], puzzles [6], and NPCs [7]
is covered as targets of PCG. Among approaches for PCG, the following four are
representative. Constructive PCG generates content via rules that are usually
hand-crafted. Search-based PCG optimizes generated content through repeats
of generation and evaluation [8]. PCG via Machine Learning trains generation
models using existing game content to generate new one [9]. PCG via Rein-
forcement Learning is a very recent approach that trains generation models by
reinforcement learning and does not require existing game content [10, 11].

This paper focuses on the generation of maze maps. Simple Constructive
PCG algorithms include digging method [12], extending method [13], and top-
pling method [14]. Some researchers further considered difficulty and used Search-
based PCG for maze generation [15–17]. For example, Kwiecień [17] proposed a
method to generate challenging mazes based on the cockroach swarm optimiza-
tion algorithm, and defined maze complexity by path complexity and the number
of branch points. The path complexity depended on the length of a solution path
and the number of its direction changes. However, none of them explicitly con-
sidered human players’ behaviors. Even though a maze looks complicated with
many branch points, players do not always get lost. Our approach differs from
these papers’ in that ours considers difficulty from human players’ perspectives.
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3 Investigation of Human players’ Tendencies

Many mazes have been released and played around the world. Mazes can be clas-
sified into various types according to the number of dimensions, uniqueness of
solution path, etc. In this paper, we target two-dimensional mazes with unique
solution paths. It is important to grasp human players’ behavior tendencies to
adjust difficulty from humans’ perspectives. Section 3.1 presents subject exper-
iments on collecting human players’ behaviors. Section 3.2 employs supervised
learning on path selection probability to investigate the tendencies.

3.1 Subject Experiments

We generated the mazes using classical algorithms [12–14] for experiments, and
the settings are listed as follows:

• The maze size is 31 × 31 (Small), 41 × 41 (Medium), or 51 × 51 (Large).
• The maze consists of only passable cells (passage) and impassable cells (wall).
• Since the algorithms place two consecutive passages at a time, each passage

must locate at a cell whose x-, y-, or both coordinates are even numbers,
assuming that the top-left corner is (1, 1).

• A player’s goal is to get from a starting point to an end point.
• In cases that players do not visit a cell more than once, the solution path

that connects the starting point to the end point is unique.
• The starting point and the end point are located at the upper left and lower

right in the maze, respectively.
• The maze does not contain loops, cycles, and isolated cells.
• A player can move only one cell vertically or horizontally per action.
• The time limit is set for playing a maze, depending on the maze size: 80

seconds for Small, 100 seconds for Medium, 150 seconds for Large. If the
player does not reach the end point within the time limit, the game is over.

• A player has either one of the following two ranges of view.
- Wide view: A player can view the entire maze, as shown Fig. 1(a).
- Narrow view: A player can only view inside a circle centered on him-

self/herself, as shown Fig. 1(b). The diameter of the circle is half of the
side length of the maze (e.g., 31/2 = 15.5 cells for Small).

A total of twenty players (males and females in twenties to forties) partic-
ipated in the experiments. The participants included both players who were
interested in playing games and players who were not. The participants played
21 mazes with different maze sizes and view ranges.

3.2 Prediction by Supervised Learning

Human players’ tendencies are investigated by using supervised learning on prob-
abilities of selecting proceeding directions at branch point. Note that not all in-
tersections are branch points, which we will define soon later. For a given cell in
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(a) (b) (c) (d)

Fig. 1. Small size mazes with (a) the wide view and (b) the narrow view, and inter-
sections that (c) is not and (d) is a branch point, where the yellow, pink, and red cells
are the starting point, the end point, and the player, respectively.

a maze, we define a proceeding direction to be uncertain if any part of the suc-
ceeding paths is invisible within the range of the narrow view. In Fig. 1(c), going
right leads to succeeding paths in green oblique line. It can be seen that some
paths go to areas outside of the narrow view. Thus, the proceeding direction of
right is uncertain. In contrast, going left leads to succeeding paths fully visible
in the narrow view (blue vertical lines) and is not uncertain. We then define a
branch point as an intersection connected to two or more uncertain proceeding
directions. In Fig. 1(d), the player (red cell) is at a branch point, which is con-
nected to two uncertain proceeding directions. Note that branch points in both
wide and narrow view mazes are defined in the same way.

Learning Settings We collected branch points and the players’ selection pro-
portions of proceeding directions from the mazes in the subject experiments. For
example, assume that players can go right or go down at some branch point. If
16 out of 20 players went right, the selection proportion of going right at this
branch point was 16/20 = 0.8. Note that we only counted data from the first time
that players reached the branch points. In the supervised learning, the input was
maze features related to branch points, including a proceeding direction, and the
output was the predicted selection proportion. We extracted 23 input features,
as explained in Appendix A. From the subject experiments, We collected 147
and 197 branch points for wide and narrow view mazes, respectively. Since the
amount of data was small, we doubled the data by creating copies that swapped
the x-axis and y-axis values of the original maze data. The prediction models
were built based on the LightGBM3 with leave-one-out cross-validation.

Learning Results Fig. 2 shows the prediction results. Note that selection pro-
portions of the proceeding directions at a branch point were predicted separately
and the sum of the proportions might not be 1.0. Thus, We further normalized
the selection proportions at each branch point to make them a probability dis-
tribution (i.e., summing to 1.0). Root-mean-square errors between the predicted

3 https://lightgbm.readthedocs.io/en/latest/
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(a) (b)

Fig. 2. Prediction results (x-axis: predicted probability, y-axis: actual probability). (a)
wide view maze, (b) narrow view maze.

values and actual values were 0.26 (wide view) and 0.21 (narrow view). Although
the prediction accuracy still had room to improve, the Pearson correlation co-
efficients between the predicted values and actual values were 0.66 (wide view)
and 0.74 (narrow view). The former had a moderate positive correlation, while
the latter had a highly positive correlation. We concluded that the prediction
models were reliable to some extent, especially the narrow view one.

We further analyzed the players’ tendencies in both wide view and narrow
view mazes and had interesting findings that were also reflected in the prediction
models. Due to page limit, we only present the results of narrow view mazes.
We observed that (1) the players tended to go down or right instead of going
up or left and that (2) when both right and down directions were available, the
players tended to go straight. Such tendencies are shown in Fig. 3, the statistics
on the players’ selection proportions of proceeding directions according to the
shapes of branch points. To keep the figures simple and easy-to-read, data with
selection proportions less than 0.5 are excluded. Also, data with sample numbers
less than 20 are excluded since they are not reliable enough.

We considered that tendency (1) is because the end points of all mazes in
the experiments were fixed at the bottom-right corner. When further looking
into the prediction model, the “cos goal” feature had the biggest contribution
on prediction (a feature importance of 0.35). With a higher “cos goal” value,
the proceeding direction was likely promising for the players. For example, if
a player is at some branch point in the upper-right area, going down leads to
the highest “cos goal” value and is reasonable for the player to select. Thus, we
concluded that tendency (1) was adequately reflected in the prediction model.
As for tendency (2), we considered that going straight is easier to operate than
changing directions for human players. This tendency was also reflected in the
prediction model, where the “is straight” feature contributed the second most
(a feature importance of 0.15).
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Fig. 3. Human players’ selection proportions of the proceeding directions.

4 Maze Generation and Selection Approach

For generated mazes, we aim to evaluate the difficulty from human players’
perspectives. With a prediction model (e.g., the narrow view one in Section 3),
Section 4.1 creates a test player simulating human players. Section 4.2 then
defines difficulty and generates mazes accordingly.

4.1 Test Player Considering Human-likeness

The test player’s action selection is broadly divided into two cases according
to whether the passage is a branch point or not (defined in Section 3.2). For a
passage that is not a branch point, the test player proceeds as follows. The test
player directly goes to the end point when the end point is in the view range
and can be arrived. Otherwise, the test player moves forward and never step into
dead ends (e.g., never going left in the situation of Fig. 1(c)).

The following two exceptions are introduced to the above rules to make the
test player more human-like. First, the test player stops proceeding and returns
to the last passed branch point when it goes left on the horizontal edges of the
mazes or goes up on the vertical edges of the mazes. Since all mazes have end
points fixed at the bottom-right corner and do not contain loops, going left or
up on the edges never leads to solution paths. The investigation in Section 3
also supports that human players have such a tendency. Second, for narrow view
mazes, the test player returns to the last passed branch point upon knowing that
the succeeding paths lead to dead ends.

For a passage that is a branch point, the action selection at the first time
visiting and at those returning from dead ends is different. When visiting a
branch point for the first time, the test player selects directions according to the
probability distribution from the prediction models in Section 3.

When the test player returns to a branch points from some dead ends, we
predict the selection proportions again for directions that the paths have not
been traversed. When the test player is not on the solution path4, the predicted
proportions less than 0.5 are changed to 0.0, which is to prevent the test player’s
behaviors being too different from human players’. If all the not-traversed direc-
tions have proportions of 0.0, the test player returns to the last passed branch

4 We create the test player assuming that the shortest solutions of mazes are known.
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point. The reason for not applying this rule to solution paths is to make sure
that the test player can reach the end points. If at least one direction can be
selected, the proportions are normalized to sum to 1.0 no matter whether the
branch point is on the solution path or not. Taking a T-shaped branch point
on the solution path as an example, assume that the predicted proportions for
going right and down are 0.6 and 0.3, respectively. The test player goes right
with a probability of 0.6/(0.6 + 0.3) ≈ 67% and goes down with 33%.

4.2 Maze Difficulty Evaluation using Test Player

We use the test player in Section 4.1 to simulate human players’ behaviors when
playing mazes and evaluate difficulty according to estimated step numbers. In
more detail, for each maze, we know in advance the shortest number of steps to
the goal, denoted by nshortest. After the test player clears the maze, we calculate
the total number of steps cost by the player, denoted by ntotal. We then define the
number of extra steps nextra as ntotal−nshortest. With higher nextra, we consider
that the maze is more difficult. Since the test player involves randomness, we
let it play each maze several times (10 in this paper) and judge the difficulty
according to the results of all trials. We generate mazes automatically using the
digging method [12] and sample five difficulty groups as follows:

• easylowSD (low average nextra with low standard deviation).
• moderatelowSD (moderate average nextra with low standard deviation).
• moderatehighSD (moderate average nextra with high standard deviation).
• difficultlowSD (high average nextra with low standard deviation).
• difficulthighSD (high average nextra with high standard deviation).

5 Subject Experiments on Maze Evaluation

We conducted subject experiments to see whether the maze difficulty for human
players are well predicted by the test player. Section 5.1 presents settings of the
experiments and Section 5.2 shows the experimental results.

5.1 Experiment Settings

A total of 10 players (males in twenties) participated in the experiments. The
participants were different from those in Section 3, for the sake of fair evaluation.
The maze size was 51×51 and players had the narrow view. We generated 30,000
mazes and let the test player with narrow view prediction model play each maze
10 times. A maze with an average nextra in [0, 50) was classified as easy, [150, 250)
as moderate, and [350, ) as difficult. In each class, mazes with the top-7 and the
bottom-7 standard deviations of nextra were selected as highSD and lowSD,
respectively.

Fig. 4(a) and 4(b) show examples of easylowSD and difficultlowSD mazes with
the test player’s trajectories of one trial, where cells in gray are on the solution
path and those in red oblique lines are not. Fig. 4(c) shows the trajectories by
one of the human players. The participants played the 35 mazes in the order
shown in Table 1.
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(a) (b) (c)

Fig. 4. Example mazes of (a) easylowSD and (b)(c) difficultlowSD, where (a) and (b)
show the test player’s trajectories in gray (on the solution path) and in red oblique
lines (not on the solution path), and (c) shows one human player’s trajectories.

5.2 Experiment Results

Table 1 shows the means and the standard deviations of the participants’ nextra
for each maze. Generally, the difficulty judged by the test player matched human
players’ (i.e., difficult > moderate > easy). When focusing on mazes with lowSD,
the Student’s t-test (p < 0.05) showed that the results were statistically signif-
icant. Namely, difficultlowSD had the average nextra higher than moderatelowSD

(p = 0.0016), and moderatelowSD higher than easylowSD (p = 0.0083). We also
compared the standard deviations within the same difficulty. We considered that
mazes with lower standard deviations are preferred since it means that even
different human players may still experience similar difficulty. For mazes with
lowSD and highSD, the results of Student’s t-test (p < 0.05) showed statistical
significance as follows: moderatehighSD had the average standard deviation higher
than moderatelowSD (p = 0.0142), and difficulthighSD higher than difficultlowSD

(p = 0.0057). The results demonstrated that our method succeeded in generating
mazes where the difficulty matched human players’ in terms of nextra.

Interestingly, some easylowSD mazes were actually difficult for human players
and vice versa, as shown in Table 1. We suspected that the accuracy of the
prediction model was insufficient in some situations and the test player somewhat
lacked the consideration for humans’ assumption and misunderstanding. For
example, assume a maze has a very long solution path. When human players
cannot reach the end point for a long time, they may return to previous branch
points even when they are on the solution path. In contrast, the test player did
not have such hesitation. We expected that the difficulty evaluation would fit
human players’ behaviors better if we introduced more human-like characteristics
like this into the test player.

6 Conclusion and Future Work

In this paper, we proposed a procedural maze generation method with consider-
ing difficulty from human perspectives, which generated mazes by the following
two steps. The first was investigation of human players’ tendencies. We employed
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Table 1. The means and standard deviations (SD) of nextra by human players.

easylowSD moderatelowSD moderatehighSD difficultlowSD difficulthighSD
order mean SD order mean SD order mean SD order mean SD order mean SD

5 200 194 1 71 43 3 53 113 4 299 173 2 257 180
9 72 131 10 241 197 6 243 206 7 364 123 8 231 162
14 69 44 12 285 114 11 195 209 13 371 121 17 447 162
18 77 116 19 220 137 15 135 214 16 406 150 20 368 200
21 175 151 23 228 140 24 232 201 22 262 133 25 265 234
26 48 47 29 178 152 27 228 180 28 517 159 30 104 173
33 27 25 32 235 42 31 314 291 34 374 77 35 140 184

Avg. 95 101 Avg. 208 118 Avg. 200 202 Avg. 307 134 Avg. 259 185

supervised learning and built models for prediction of human players’ path selec-
tion probabilities. The prediction results had moderate or highly positive corre-
lations to human players’ selections. The second was the creation of a test player
based on the model. The test player’s results of playing maze were used as a mea-
sure of difficulty. Then, we conducted subject experiments to evaluate whether
the maze difficulty are suitable for human players. The experiments showed that
difficulty estimated by the test player matched human players’ playing results.

The followings discuss several promising research directions. We expect to
improve the difficulty evaluation by making the test player consider more human-
like characteristics. Also, the efficiency of maze generation has room to improve.
The current approach may generate many mazes before obtaining one with a
specific difficulty. We consider that combining other algorithms such as simulated
annealing and local search can help improve the efficiency. In addition, we plan to
apply the approach to generate mazes containing more elements such as enemies
and items for application to RPGs and compare our approach to existing ones.

A Appendix

The following are 23 features, mainly related to each branch point b.

• maze size: The maze size (Small, Medium, or Large).
• x, y: The x- and y-coordinates of b.
• ent: The direction from which players enter b.
• proc: The proceeding direction at b.
• proc up, proc down, proc left, proc right: Whether each direction is

an uncertain proceeding direction.
• dist wall up, dist wall down, dist wall right, dist wall left: Distance

from b to the edge in each direction.
• is straight: Whether ent and proc are in a straight line or not.
• straight depth: The number of passages that follow the straight line.
• promisingness: The number of passages on the succeeding paths of proc.
• promisingness sum: The sum of the promisingness values of all directions,

excluding ent, at b.
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• general direction: The general direction of the paths extending from proc.
• num branch: The number of other branch points in the range of narrow

view. This feature was used for both wide and narrow view mazes.
• dist start: The minimum number of passages from the starting point to b.
• avg step: The number of steps taken to reach b. We used the average number

of steps of the experiment participants.
• cos start: The cosθ of the angle between the starting point and proc.
• cos goal: The cosθ of the angle between the end point and proc.

References

1. Volz, V., et al.: Evolving Mario Levels in the Latent Space of a Deep Convolutional
Generative Adversarial Network. In: 2018 Genetic and Evol. Comput. Conf., pp.
221-228 (2018)

2. Cardamone, L., Yannakakis, G. N., Togelius, J., Lanzi, P. L.: Evolving Interesting
Maps for a First Person Shooter. In: 2011 Eur. Conf. on the Appl. of Evol. Comput.,
pp. 63-72 (2011)

3. Louchart, S., Aylett, R.: Solving the Narrative Paradox in VEs - Lessons from RPGs.
IVA 2003 Lecture Notes in Artif. Intell., 2792, pp. 244-248 (2003)

4. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is Procedural Con-
tent Generation?: Mario on the Borderline. In: 2nd Int. Workshop on Procedural
Content Gener. in Games, pp. 1-6 (2011)

5. Togelius, J., et al.: Multiobjective Exploraiton of the StarCraft Map Space. In: 2010
IEEE Conf. on Comput. Intell. and Games, pp. 265-272 (2010)

6. Oikawa, T., Hsueh, C.H., Ikeda, K.: Improving Human Players’ T-Spin Skills in
Tetris with Procedural Problem Generation. In: Adv. in Comput. Games, pp. 41-52
(2020)

7. Soares, E. S., Bulitko, V.: Deep Variational Autoencoders for NPC Behaviour Clas-
sification. In: 2019 IEEE Conf. on Games, pp. 1-4 (2019)

8. Togelius, J., Yannakakis, G. N., Stanley, K. O., Browne, C.: Search-Based Procedu-
ral Content Generation: A Taxonomy and Survey. IEEE Trans. on Comput. Intell.
and AI in Games, 3(3), pp. 172-186 (2011)

9. Summerville, A., et al.: Procedural Content Generation via Machine Learning
(PCGML). IEEE Trans. on Games, 10(3), pp. 257-270 (2018)

10. Nam. S., Ikeda, K.: Generation of Diverse Stages in Turn-Based Role-Playing Game
using Reinforcement Learning. In: 2019 IEEE Conf. on Games, pp. 1-8 (2019)

11. Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: PCGRL: Procedural Content
Generation via Reinforcement Learning. In: 16th AAAI Conf. on Artif. Intell. and
Interactive Digit. Entertainment, pp. 95-101 (2020)

12. Algoful, https://algoful.com/Archive/Algorithm/MazeDig. Accessed Sep 2021
13. Algoful, https://algoful.com/Archive/Algorithm/MazeExtend. Accessed Sep 2021
14. Algoful, https://algoful.com/Archive/Algorithm/MazeBar. Accessed Sep 2021
15. Susanto, E.K., Fachruddin, R., Diputra, M. I., Herumuti, D., Yunanto, A. A.: Maze

Generation based on Difficulty using Genetic Algorithm with Gene Pool. In: 2020
Int. Seminar on Appl. for Technol. of Inf. and Commun., pp. 554-559 (2020)

16. Adams, C., Louis, S.: Procedural Maze Level Generation with Evolutionary Cel-
lular Automata. In: 2017 IEEE Symp. Ser. on Comput. Intell., pp. 1-8 (2017)
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