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Abstract—The segmentation of ultrasound (US) images plays
a crucial role in the development of end-to-end smart diagnosis
systems. In the diagnostic stage, specific diagnosis programs can
be applied to well-cropped sub-regions within a single US image,
catering to different medical interests. In this study, we propose
and test a neural network model designed to perform end-to-
end segmentation on abdominal US images, with a focus on five
different anatomical structures: liver, kidney, vessels, gallbladder,
and spleen. The main contribution of our work lies in the
exploration of multi-organ/tissue segmentation. Unlike previous
research, our approach takes into account two inherent features
of US images: (1) significant variations in spatial sizes among
different organs and tissues, and (2) the relatively consistent
spatial relationships among anatomical structures within the
human body.

To address these considerations, we introduce a novel image
segmentation model that combines the feature pyramid network
(FPN) and the spatial recurrent neural network (SRNN). In our
paper, we describe the utilization of FPN for extracting anatomi-
cal structures of varying scales, as well as the implementation of
SRNN to capture spatial context features within abdominal US
images. Our model incorporates both top-down and bottom-up
pathways, enhancing both semantic features and spatial context
features. We refer to this as the ”two-path augmented” approach.
Furthermore, we incorporate a directional attention mechanism,
which selectively leverages spatial context information from four
principal directions. This is the essence of our ”directional context
aware” component. The performance of our proposed model is
evaluated through both quantitative and qualitative measures.
The evaluation results demonstrate the competitiveness of our
approach, and the inclusion of spatial contextual information
has resulted in improved performance compared to using the
pure feature pyramid network alone.

Index Terms - Artificial Intelligence, Medical Image Seg-
mentation, Robotic Ultrasonography

I. INTRODUCTION

A. Background

Entering the 21st century, population aging is becoming
a serious problem for many countries. Taking Japan as an
example, according to Japan Statistical Yearbook 2023 re-
leased by the Ministry of Internal Affairs and Communications
[1], Japan’s population aged 65 and over currently stands at
just over 36.21 million, accounting for 28.9% of the total
population. This number is still on its way to the peak. One of
the most challenging tasks brought about by population aging
is that senior citizens require regular and continuous health

support and/or monitoring. To make sure senior citizens can
get medical help timely and easily, besides medical facilities,
diagnosing methods in the caring center or personal residence
are also in need. Moreover, the popularity of personal medical
inspection devices will bring convenience to other citizens as
well. With the help of those devices, anyone in need can
do simple physical checks to monitor their health condition
just within their residence. For example, people with limited
mobility or pregnant mothers will not bother traveling far to
the hospital to get their regular physical check.

The demand for real-time/convenient health monitoring re-
quires remote or portable inspection devices to be popularized.
In clinical practice, US imaging is one of the most commonly
implemented imaging modalities. Because it is approachable,
effective, informative, and of low cost, US devices are easy
to be implemented. Also benefiting from its non-invasive and
non-radioactive nature, the operation of US devices is of low
threshold (Fig. 1). Medical US imaging requires an accurate
delineation or segmentation of different anatomical structures
for various purposes. For example, doctors can make a naive
health condition preview by assessing the organ size [2]. In
some surgeries, precise US image segmentation can provide
guidance for the interventions [3]. However, in contrast to US
devices’ convenience in use, US images are hard to process
because of low contrast, acoustic shadows, and speckles, to
name a few [4]. Even experienced doctors consider it a chal-
lenging task to tell the accurate contour of various organs and
tissues. To realize a robust computer-aided diagnosis system,
an automated and robust US image segmentation method
is expected to help with locating and measuring important
clinical information. Along these lines, we are developing
a control algorithm for the robot arm to perform automatic
US scans (see Fig. 2). As this system is expected to operate
without human intervention, an evaluation metric for the
robot’s movement is necessary. Besides resolution and clarity,
the integrity of anatomical structures is important as well. To
this end, a segmentation algorithm needs to be incorporated
into the robot trajectory control system. US images derived
from abdominal scanning are our primary research target. In
clinical practice, doctors can leverage abdominal US scanning
images to evaluate health conditions of various anatomical
structures [2].



Fig. 1. Wireless US Probe

Fig. 2. Our Robot-assisted US Imaging System

B. Research Contributions

We have designed and tested a new network model that can
predict semantic masks on convex US images. Compared with
previous research on US image segmentation, this network
model can perform segmentation on several different anatom-
ical structures simultaneously rather than focusing on a single
target tissue. To achieve this goal, two important inherent
properties of US imaging are taken into consideration.

On one hand, different organs/tissues in the abdominal part
vary largely in shape and size. For example in Fig. 3, the liver
(violet) is much larger than the pancreas (green). To alleviate
the influence of such class imbalance problem brought by the
difference in scale, the network model is built in an FPN
structure. On the other hand, different anatomical structures
usually form a constant spatial correlation pattern. For example
in Fig. 4, the spleen (pink) and kidney (yellow) are maintaining
a similar spatial correlation in different US images.

Utilizing these two properties, the proposed model has
managed to predict semantic masks for 5 different organs
and tissues (liver, kidney, spleen, vessel, and gallbladder).
Compared with previous research, this model realized true
end-to-end US image segmentation aiming at multiple target
structures using one single model. This work can be general-
ized to other tasks where spatial context information can help
a lot with analysis.

(a) Liver & Gallbladder (b) Mask Label
Fig. 3. Scale Variance Example.

(a) Spleen & Pancreas(1) (b) Segmentation Mask(1)

(c) Spleen & Pancreas(2) (d) Segmentation Mask(2)

(e) Spleen & Pancreas(3) (f) Segmentation Mask(3)
Fig. 4. Spatial Correlation Example

II. RELATED WORK

Traditional US image segmentation methods usually focus
on the detection of textures and boundaries based on mor-
phological or statistical methods (Fig. 5). Mishra et al. [5]
proposed an active contour solution using low-pass filters
and morphological operations to make a prediction of the
cardiac contour. Mignotte et al. [6] developed a boundary
estimation algorithm based on a Bayesian framework, where
the estimation problem was formulated as an optimization
algorithm to maximize the posterior possibility of being a
boundary. Previously Mignotte’s team used statistical external
energy in a discrete activate contour for the segmentation of
short-axis parasternal images [7], in which a shifted Rayleigh



Fig. 5. Traditional Segmentation Methods [5]

distribution was used to model gray-level statistics. Boukerroui
et al. [8] also proposed a Bayesian framework to conduct
robust and adaptive region segmentation, taking the local
class means with a slow spatial variation into consideration
to compensate for the non-uniformity of US echo signals.
Those methods serve more as a reference for doctors than
an independent diagnosis procedure.

Traditional US image segmentation is time-consuming and
prone to irregular anatomical structure shapes because of
the inherent physical defects of US. In recent years, AI has
been showing great success in the field of image processing.
Compared with morphological and statistical methods, CNN-
based solutions are more powerful and flexible thanks to
their strong nonlinear learning ability. Among all the CNN-
based methods, U-Net [9] is definitely one of the most
popular network models for biological and medical image
segmentation. Many researchers have proposed modified U-
Net for various semantic segmentation tasks. For example,
Oktay et al. [10] proposed a U-Net model with an attention
mechanism. They implemented attention gate units to trim
features that are not relevant to the ongoing task in order
to improve the segmentation performance without adding
excessive computational complexity to the model. Matteo et
al. [11] designed a Siam-U-Net for knee cartilage tracking. In
that work, Matteo et al. extended the encoder of U-Net up to a
parallel structure to extract the cross-correlation depth wisely.
Although U-Net has achieved great success in biological and
medical image segmentation, in the context of abdominal
multi-organ segmentation, the performance of U-Net is limited
by the class imbalance problem. Despite the fact that the total
amount of instances may be almost equal in training, the
relatively large organs and tissues occupy much more pixels
in the US images. As shown in Fig. 6, the violet part is the
liver which occupies most of the pixels, and the green part
is the gallbladder. This makes the algorithm classify as many
pixels into the liver as possible since a majority class has a
much bigger influence on the final score than the minority
class. Fig. 7 shows the segmentation result of an US image

containing the liver (violet) and kidney (yellow). Compared
with the ground truth, the result tends to ignore the kidney
to focus on drawing the true mask of the liver. There could
be some solutions to this problem, such as adding different
loss weights for different classes [12] or enlarging the weight
of classification loss in the total loss calculation. However, to
better leverage this property, we build our proposed network
model upon an FPN structure [13].

In the context of abdominal US image segmentation, most of
the existing methods are targeted at specific organs or anoma-
lies. Chen et al. designed a multi-scale and deep-supervised
CNN architecture for kidney image segmentation [14]. They
implemented a multi-scale input pyramid structure to capture
features at different scales and developed a multi-output super-
vision module to enable the network to predict segmentation
results from multi-scales. Huang et al. [15] developed a
detection algorithm for pulmonary nodules based on deep
three-dimensional CNNs and ensemble learning. However, the
importance of multi-organ segmentation is still ignored.

(a) US Image (b) Ground-truth
Fig. 6. Example of Class Imbalance Problem

(a) Segmentation Result (b) Ground-truth
Fig. 7. U-Net Segmentation Result

III. PROPOSED METHOD

A. Feature Pyramid Network

In the abdominal section, different anatomical structures
vary greatly in shape and size, which inspires us to leverage
the FPN network structure. FPN is not an independent object
detector by itself. It usually serves as a feature extractor for
other detectors. Also, FPN is not the exclusive name for any
specific network model. We can build any FPN structure based
on our own modified backbone targeting different tasks.

The most important difference between FPN and its com-
petitors is that FPN takes the feature maps from multiple



layers of the encoder backbone as outputs rather than only
from the deepest output [13]. Before FPN, there have been
other kinds of network models following a pyramid structure.
For example, the SSD [16] is one of the first attempts at
leveraging the feature pyramid hierarchy. The SSD reuses
multi-scale feature maps from different layers in the forward
pass. This pyramid network structure is scale-invariant in the
sense that an object’s scale changes with shifting its level
in the feature pyramid. In other words, smaller objects are
usually easier to be detected from smaller yet deeper feature
maps, and vice versa. Compared with other pyramid network
structures like SSD, FPN not only utilizes the relation between
scale and layer depth, but also uses a top-down pathway
to construct higher-resolution layers from a semantic layer.
This solves the problem that features maps composed of low-
level structures (closer to the original level) is too naive
for accurate object detection. As the reconstructed layers are
semantically strong, but the locations of objects are not precise
after all the down-sampling and up-sampling, the authors then
added lateral connections between reconstructed layers and
the corresponding feature maps to help the decoder predict the
locations better. Then the detector heads will make predictions
on all the output layers.

B. SRNN Structure

One important property of US images is that the anatomical
structures form a constant spatial relationship under the same
scan pattern. Experienced sonographers rely heavily on such
spatial context information to locate the target organs. This
prior knowledge inspired us to take spatial context information
into consideration.

Many studies have explored the utilization of RNNs to
gather contextual information. Traditionally, RNNs are utilized
to extract context from a sequence (sentence, speech, or video).
For example, Schuster and Paliwal [17] proposed a BRNN
that passes both forward and backward across a time map
to ensure the information is propagated across the entire
timeline. Tang et al. [18] designed a context-aware natural
language generation model, which encodes the contexts into
a continuous semantic representation and then decodes the
semantic representation into text sequences with recurrent
neural networks. When it comes to the context of spatial
information, Graves and Schmidhuber [19] proposed a multi-
dimensional RNN to recognize handwriting. Byeon et al. [20]
built a long short-term memory RNN structure for scene
labeling.

Bell et al. [21] proposed an object detection network
structure called Inside-Outside Net (ION). Besides taking the
information near an object’s region of interest, the introduction
of contextual information has improved the performance, for
which a module of four directional RNNs is implemented.
Fig. 8 shows the propagation of the RNNs. The structures
are placed laterally across the feature maps and move inde-
pendently in four cardinal directions: right, left, down, and
up. The outputs from the RNNs are then concatenated and
computed as a feature map containing both local and global

Fig. 8. Spatial RNN Module

contextual information. Upon the base of ION, we put an
additional direction-aware attention mechanism from the work
of Hu et al. [22]. This attention mechanism aims to making
the model selectively leverage the spatial context information
propagated through 4 directions.

In this work, SRNN is proposed. The SRNN module follows
the idea of the ION network structure. Fig. 9 shows how the
RNNs extract the contextual information. A convolution oper-
ation is settled at the beginning of the procedure to replace the
input-to-hidden translation. Then, four RNNs are propagated
through the different directions mentioned above. The outputs
from the RNNs are fused into an intermediate feature map.
Until this step, each pixel contains the context information
aiming at its four principal directions: right, left, up, and down.
Then the model will conduct the same process again to extract
global-level spatial context information. Finally, a feature map
containing the overall context information is generated. For
comparison, in the feature map on the left in Fig. 9, each
pixel only contains information about itself and its neighbors
(depending on the perspective field). After the first round of
RNN propagation, the pixels get the context information from
its 4 directions. Finally, RNNs propagate through the context-
rich pixels to extract the full-directional context information.
Therefore, the last feature map is globally context-rich.

Fig. 9. Illustration of the IRNN propagation

C. Network Structure Overview

Fig. 10 shows the overall structure of the proposed model.
On the left side, a ResNet-101 backbone is used as the
semantic feature extractor. The input image is propagated from
bottom to top, with the network generating feature maps of
lower resolution and richer semantic information. We define
the layers producing feature maps of the same size as one
stage. Then the output of the last layer of each stage represents



the output of the entire stage except the shallowest stage, as
this high-resolution layer is computationally demanding due to
the low semantic feature. Each of the blue cubes represents an
output of the stage called {res2, res3, res4, res5}, respectively.
The feature maps go separately through a 1x1 convolution
layer and the SRNN module.

The green cubes represent the feature maps after the con-
volution operation, and the red cubes represent the context
feature maps. The deep feature map is concatenated with
the context feature map and compressed to reduce depth
channels. The feature map from the upper layer, spatially
coarser but semantically stronger, is upsampled by a scale
factor of 2. (using interpolate function with nearest neighbor
upsampling). The upsampled feature maps from the upper
pyramid level and the feature map from the current pyramid
level are added together(green links) as the new feature map
to be concatenated with the spatial feature map.

Similarly, the spatial context information is coarser at the
deep level and more precise from those high-resolution levels.
Thus, we also build a bottom-up pathway(red links) to deliver
precise spatial context information to the higher levels. That is
why we call our network “Two-Path Augmented”. One thing
worth noting is that using adding outperforms the solution of
concatenating and dimensionality reducing.

The yellow cubes are the final outputs of the entire feature
extractor. After extracting semantic and spatial features, these
pyramid feature maps are then sent to RPN [23] and region-
based detectors (Fast R-CNN [23], Mask R-CNN [24]). Unlike
the classic object detectors, the FPN attaches RPN and Fast R-
CNN to each of the output layers. The parameters of the heads
are shared across all feature pyramid levels for simplicity, but
the accuracy is actually very close with or without sharing
parameters (refer to [13]). This is indirect proof that all the
levels of the pyramid share similar semantic levels. After
that, a DeepMask framework is used to generate masks. The
structure of proposers and anchor/mask generators are omitted
in the graph, since it is not our main interest.

IV. EXPERIMENTS AND RESULTS

A. Dataset

A dataset of high quality is one of the key factors to
train a neural network. However, there are few open-source
abdominal US image datasets. Most of the datasets have not
been made public for the protection of patients’ privacy. In this
work, we use the dataset provided by Vitale et al. [25]. This
dataset is released on the Kaggle website and contains both
artificial US images translated from CT images and images
from real US scans (Fig. 11). There are 926 artificial US
scans and 61 labeled real US scans, in which we can have
the annotations of the liver, kidney, gallbladder, spleen, and
vessels. Different organs are assigned segmentation masks of
different colors. Table I shows the name of the anatomical
structures and the corresponding instance number. We mixed
and separated the dataset into 3 subsets: 787 images for
training, 100 for testing, and 100 for validation.

B. Detectron2

We built our project on the top of detectron2, which is an
open-source platform containing many network architectures
and training tools [26]. This complete work allows users to
train the given networks on their specific tasks or the users
can build their own structure efficiently using the encapsu-
lated models. We build the backbone framework based on
the implementation of FPN in detectron2. We then develop
our SRNN structure inserted into the FPN framework as a
new context feature extractor. The standardized RPN, ROI,
Fast R-CNN, and Mask R-CNN heads are attached after the
feature extractor as the proposal generators. Specifically, the
output feature maps are from {res2, res3, res4, res5} of the
ResNet layers. The size of the anchor generators is set to
32× 32, 64× 64, 128× 128, and 256× 256. For each feature
map, FPN gives 1000 proposals. The ROI box head follows
the structure of Fast R-CNN with 2 fully convolutional layers
and 7 × 7 pooler resolution. The Mask R-CNN head has 4
convolutional layers and a pooler resolution of 14 × 14. The
ROI heads score threshold is set to 0.5 for both box and
mask heads. We reduce the ROI head batch size from 512
to 128, which is computationally efficient while the accuracy
is nearly the same. Some modifications for compatibility has
been made to the model, enabling it to run under the detectron2
framework.

C. Loss Functions

Multiple loss functions are included in our training proce-
dure, some of which are listed here:

1) Anchor and bounding box loss: Both RPN and ROI
(Box) heads use a smooth l1 loss for the proposed anchors
and bounding boxes. The anchors and bounding boxes are
represented as a tensor of length 4: (x, y, w, h), namely, the
x, y coordinates and width/height of the anchor or bounding
box. Then with the ground truth information, 4 deltas (dx, dy ,
dw, dh) are calculated by

dx = (gx − px)

dy = (gy − py)

dw = log (gw/pw)

dh = log (gh/pg)

(1)

where g represents the ground truth and p stand for the
predicted anchor or bounding box. The deltas will be stacked
together to compute the smooth l1 loss, given by

Lsmooth
1 (x) =

{
0.5x2 if |x| < β

|x| − 0.5 ∗ β otherwise
(2)

where β is a pre-defined smooth parameter.

TABLE I
DATASET

Name Liver Kidney Gallbladder Vessels Spleen
Number 591 377 219 289 172
Color violet yellow green red pink



Fig. 10. Proposed network structure

(a) Artificial US Image (b) Real US Image
Fig. 11. Dataset Content Example

2) Classification loss: Softmax cross entropy loss is calcu-
lated for all the foreground and background prediction scores:

LCE = −
n∑

i=1

yilog(pi) (3)

where yi is the true label and pi is the softmax probability for
the ith class.

3) Mask loss: The mask loss is defined as the average
binary cross-entropy loss. Eq. 4 computes the mask loss for
the kth class:

Lmask = − 1

m2

∑
1≤i,j≤m

[yi,j log ŷ
k
i,j + (1− yi,j) log(1− ŷki,j)]

(4)
where yi,j is the label of a cell(i,j) in the true mask for the
region of size m×m, and ŷki,j represents the value of the same
cell in the predicted mask.

D. Experiment Setup

Our experiment builds upon detectron2 framework in the
PyTorch environment. We modified the original FPN in de-
tectron2 by adding the SRNN module. We train the model
on a single GPU (NVIDIA-A400). The batch size is set to 1,
since this GPU has relatively limited memory and the dataset
is again relatively small. The model is trained for 300k epochs,
taking around 30 hours to converge. The initial learning rate
is set to 0.0025. We also tried to explore deeper layers in the
backbone, adding 2 extra pyramid layers on the top of the
backbone, but the accuracy fails to increase. It takes around
30 hours for the model to converge based on a pre-trained
Resent backbone.

V. RESULTS

A. Quantitative Result

The performance of the trained model is evaluated by the
dice coefficient. The dice coefficient is twice the number
of elements common to two sets X and Y , divided by the
sum of the number of elements in each set. In our work, X
and Y are the predicted classification map and the ground
truth. Therefore, the numerator is regarded as the intersection
pixels of the predicted mask and the ground truth, and the
denominator is the sum of mask pixels in both. Considering
we have 5 object classes (background not included), the
coefficient score is computed separately and then averaged as
the final score. As there might be no appearance of certain
classes, we added a smoothing parameter ϵ to avoid zeros
in the denominator. The modified equation is given in (5),



where n is the number of classes.

D =

∑n
i=1

2|Xi∩Yi|
|Xi|+|Yi|+ϵ

n
(5)

There are a few similar pieces of research surrounding
abdominal multi-organ segmentation. To our knowledge, nei-
ther any relevant benchmark nor competitionexists. Therefore,
we separately pick some comparable results from different
research aiming at single-organ segmentation. Respectively,
the segmentation result of the liver is compared with the
work [27] kidney [28], and their result is taken into comparison
as well. The segmentation performance of the gallbladder and
spleen are compared with [29] and [30]. The numeric result
may not seem encouraging compared with those well-aimed
studies. On one hand, the segmentation performance is limited
by our lack of high-quality data. For example, in the work of
Yuan et al. [30], they trained their model on 420 good quality
2D spleen US images. In our research, we have only 172
instances of training spleen training samples, not to mention
that most of the US images are pseudo-US images interpreted
from CT images. The difference can be seen in Fig. 12. On the
other hand, the specifically targeted studies usually introduced
some prior knowledge into their segmentation algorithm like
the detection of boundaries. Meanwhile, we trained a pure
FPN model for comparison to demonstrate the improvement
brought by SRNN. Table II shows the dice score of each class,
where we can see that the improvement of performance by
SRNN is significant. The proposed model outperformed the
pure FPN model.

TABLE II
EVALUATION RESULT

Organ/Tissue Related Work FPN FPN+SRNN
Liver 0.821 [27] 0.907 0.940

Kidney 0.5 [28] 0.806 0.865
Gallbladder 0.893 [29] 0.799 0.926

Vessels – 0.801 0.907
Spleen 0.93 [30] 0.810 0.840

Average – 0.840 0.905

B. Qualitative Result

We have tested the proposed model on artificial and real US
images from the evaluation data. Fig. 13 shows an example
of semantic segmentation on the US image. (a) is the original
US image, and (b) is the corresponding ground truth. (c) and
(d) are the segmentation result generated by the pure FPN
and our proposed model. We can see that the proposed model
outperforms the pure FPN.

Additionally, our proposed model underwent testing using
US images manually collected from an abdominal phantom
in our laboratory. The exceptional performance of our model
is illustrated in Fig. 14, where (a) represents a US image
collected from the phantom, and (b) displays the corresponding
generated semantic masks. Each bounding box is accompanied
by a trust score, which is determined by a hyperparameter.

(a) High-quality Dataset

(b) Our Dataset
Fig. 12. Dataset Difference

(a) Original US Image (b) Ground-truth

(c) FPN Result (d) Our Model Result
Fig. 13. Test Results

Essentially, any prediction with a confidence score above the
threshold value is retained, while those below are discarded.
Through multiple experiments, we observed that altering this
hyperparameter did not lead to a numerical increase in accu-
racy score, but it did cause the network to exhibit different
prediction trends.

VI. CONCLUSIONS AND FUTURE WORK

In this research, we proposed an FPN based multi-
organ/tissue segmentation method combined with the utiliza-
tion of SRNN. From the experimental results, we can see that
the introduction of spatial context information has improved
the performance of the original FPN model both in quantitative
and qualitative comparison. Notably, our model is competitive
even compared with those well-targeted studies. The success
of this work lays a solid foundation for feature extensions like



(a) In Vitro US Image (b) Our Model Result
Fig. 14. Robot-assisted US Image Capture/Segmentation

the development of a fully automated US scan system and
end-to-end abdominal US diagnosis solution. The findings of
this work would also benefit from further research including
different scan patterns, since prior knowledge of the US
scan pattern would help add more precise spatial context
information.

Our future work is to build a control algorithm for a robotic
arm to perform an automatic US scan. Along those lines, the
improved segmentation algorithm can serve as the evaluation
metric of the control system performance.
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