JAIST Repository
https://dspace.jaist.ac.jp/

Circular assume-guarantee reasoning of

Title synchronous systems using Kind 2 and Z3Py
Author(s) NGO, Tien Duc

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/18735
Rights

_ Supervisor: A K, Jedm A RAR SR, & 1 (i
Description

B)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Circular assume-guarantee reasoning of synchronous systems
using Kind 2 and Z3Py

2110436 Ngo Tien Duc

Background. SMT-based model checking (MC) is a technique for verify-
ing the correctness of a system using satisfiability modulo theories (SMT)
solvers. SMT solvers are a tool for checking the satisfiability of first-order
predicate logic formulas. In SMT-based MC, a system model (described as
a state transition system) and a temporal property are encoded into a set of
logic formulas; then, an SMT solver is applied to verify whether the system
satisfies the property. As a target system becomes large and complex, so
do the encoded logic formulas, leading to an increased execution time of the
verification.

Kind 2 is an SMT-based MC tool that is designed for Lustre programs.
Lustre is a synchronous data-flow programming language that is often used
in safety-critical system development. Kind 2 deals with safety properties
on a program P. The input is an annotated program {A}P{G} (called
triple) where A and G are sets of properties (an assume-guarantee contract).
Kind 2 verifies the correctness of the triple; namely, for any input signal al-
ways satisfying A, the output signal always satisfies G. Kind 2 implements
standard SMT-based MC methods such as the BMC and k-induction meth-
ods. Kind 2 supports compositional verification to improve the efficiency
of the MC process based on the node-wise component structure of Lustre
programs. In a compositional MC process, Kind 2 considers a set of anno-
tated nodes {{A1}N1{G1},..., {4} N.{G,}} and verifies that each of them
is correct. In the MC of parent nodes, the descriptions of child nodes N; are
abstracted with their contracts A; and GG; to make the process efficient.

Kind 2 has limitations in handling practical Lustre programs when a
given property depends on lengthy behaviors or when a node description
contains circular referencing of signals. Lengthy behaviors result in large logic
formulas in the MC process and the compositional process can be effective
to analyze them. Circular referencing of signals occurs when two nodes N
and N’ depend on each other. For instance, the output of N provides the
input for N’ and wvice versa. When verifying a program containing such a
circular pair of nodes, the compositional MC function of Kind 2 does not
work, resulting in a spurious counterexample.

Objectives. This thesis proposes a new compositional MC method for Lus-
tre programs that can handle circular programs. The research consists of the
following activities: 1) We study the relationship between Lustre programs
and the theory of synchronous modules. Lustre nodes can be translated to

synchronous modules so that the existing compositional reasoning methods
can be applied. For instance, this will enable to apply a reasoning rule for cir-
cular composite modules. 2) We study the automation of deductive reasoning
based on the composition rules. Using the Z3 SMT solver with compositional
reasoning rules encoded as universally quantified formulas, it is possible to
automate the proposed method. We implement a tool that translates Lustre
nodes to synchronous modules and then performs compositional reasoning.
3) We conduct experiments based on examples to evaluate the validity and
performance of the proposed method.

Originality. Circular cases are only supported partially in Kind 2, so
we study how to perform compositional verification more completely. Our
method is original because it is different from the compositional verifica-
tion function of Kind 2, as we regard Lustre node instances as synchronous
modules and exploit the dedicated deduction rules for circular reasoning.
Significance. Verifying the safety of practical synchronous systems is impor-
tant to prevent accidents and ensure correct operation, especially in safety-
critical systems. For example, Kind 2 and our method can be used to verify
a control system for a transport-class aircraft.

Practical synchronous systems are described as a large and complex set
of Lustre nodes, possibly involving circular referencing. Our compositional
MC method is significant because the compositional approach is an effective
way to improve the scalability of verification tools.

Methodology. This research contains a survey on SMT solvers, synchronous
modules, model checking methods, and the Kind 2 tool.

We design a method whose input is an annotated Lustre program and
output is the correctness of the input. The basic steps of the proposed
method are: 1) Translation from Lustre nodes into synchronous modules.
We convert Lustre node instances NI; and properties Al; and GI; into syn-
chronous modules M (N1;), M(AI;) and M(GI;), respectively. The we inter-
pret triples {AI} NI; {GI;} into implementation relations on the modules
M(NIL) || M(AL) = M(GIL). 2) Automatic construction of a proof tree
based on the deduction rules. We encode the definition of the compositional
reasoning rules, the declarations of modules, and the implementation rela-
tions among modules into a set of logic formulas. Then, we run an SMT
solving process to search for a proof tree. Kind 2 is used to check the cor-
rectness of leaf nodes. We discuss the soundness of the method. It is followed
from the correctness of the translation between Lustre nodes and synchronous
modules and the soundness of the deduction rules.

We have implemented the method as a Python script using Kind 2 and
Z3Py. The tool consists of: 1) A translator module. Given node instances and
annotated properties, the module generates an intermediate representation

of synchronous modules. 2) A printer module that prints intermediate data,
such as a monolithic form of the input program and separated Lustre node
instances. 3) A wvalidator module that performs the proof tree search using
73Py.

Evaluation. We conducted an experiment to compare the execution time of
a monolithic verification process of Kind 2 and a compositional verification
process of the proposed method.

We prepared an example of an integrator delayed by two nested coun-
ters. The execution time increased because the number of execution steps
required to be analyzed in the verification increased as the values of the two
parameters increased. In the experiment, we observed correlations between
the parameter values, the number of analyzed steps, and the execution time.
Along with parameter values, execution time increased rapidly (up to 16
times for one increase) for the monolithic process, while the compositional
process took much less time (up to a 150-fold improvement). The reason is
that the number of analyzed steps in the monolithic verification was affected
by the delay of the two counters, while compositional verification could verify
each node separately without taking into account the delay.

We conducted another experiment to evaluate whether our implementa-
tion verifies the Lustre programs correctly and efficiently. We prepared two
circular examples that cannot be handled by the compositional verification
function of Kind 2: 1) A simple parallel composition of synchronous modules.
2) A more complex example containing two digital filters. We confirmed that
our implementation verified the two examples correctly. Besides, the process
for the second example was inefficient due to the large search space among
many possible deductions in the compositional reasoning.

Conclusion. In the research, we studied how to apply deduction rules for
circular reasoning so that we can perform compositional verification on Lustre
programs with a different approach from the Kind 2 tool.

Keywords: SMT-based model checking, Lustre programming language, syn-
chronous systems, assume-guarantee reasoning, compositional verification

