
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Circular assume-guarantee reasoning of

synchronous systems using Kind 2 and Z3Py

Author(s) NGO, Tien Duc

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18735

Rights

Description
Supervisor:石井 大輔, 先端科学技術研究科, 修士(情報

科学）

Master’s Thesis

Circular assume-guarantee reasoning of synchronous systems
using Kind 2 and Z3Py

Ngo Tien Duc

Supervisor Daisuke Ishii

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

August, 2023

Abstract

Background. SMT-based model checking (MC) is a technique for verify-
ing the correctness of a system using satisfiability modulo theories (SMT)
solvers. SMT solvers are a tool for checking the satisfiability of first-order
predicate logic formulas. In SMT-based MC, a system model (described as
a state transition system) and a temporal property are encoded into a set of
logic formulas; then, an SMT solver is applied to verify whether the system
satisfies the property. As a target system becomes large and complex, so
do the encoded logic formulas, leading to an increased execution time of the
verification.

Kind 2 is an SMT-based MC tool that is designed for Lustre programs.
Lustre is a synchronous data-flow programming language that is often used
in safety-critical system development. Kind 2 deals with safety properties
on a program P . The input is an annotated program {A}P{G} (called
triple) where A and G are sets of properties (an assume-guarantee contract).
Kind 2 verifies the correctness of the triple; namely, for any input signal al-
ways satisfying A, the output signal always satisfies G. Kind 2 implements
standard SMT-based MC methods such as the BMC and k-induction meth-
ods. Kind 2 supports compositional verification to improve the efficiency
of the MC process based on the node-wise component structure of Lustre
programs. In a compositional MC process, Kind 2 considers a set of anno-
tated nodes {{A1}N1{G1}, . . . , {An}Nn{Gn}} and verifies that each of them
is correct. In the MC of parent nodes, the descriptions of child nodes Ni are
abstracted with their contracts Ai and Gi to make the process efficient.

Kind 2 has limitations in handling practical Lustre programs when a
given property depends on lengthy behaviors or when a node description
contains circular referencing of signals. Lengthy behaviors result in large logic
formulas in the MC process and the compositional process can be effective
to analyze them. Circular referencing of signals occurs when two nodes N
and N ′ depend on each other. For instance, the output of N provides the
input for N ′ and vice versa. When verifying a program containing such a
circular pair of nodes, the compositional MC function of Kind 2 does not
work, resulting in a spurious counterexample.
Objectives. This thesis proposes a new compositional MC method for Lus-
tre programs that can handle circular programs. The research consists of the
following activities: 1) We study the relationship between Lustre programs
and the theory of synchronous modules. Lustre nodes can be translated to

i

synchronous modules so that the existing compositional reasoning methods
can be applied. For instance, this will enable to apply a reasoning rule for cir-
cular composite modules. 2) We study the automation of deductive reasoning
based on the composition rules. Using the Z3 SMT solver with compositional
reasoning rules encoded as universally quantified formulas, it is possible to
automate the proposed method. We implement a tool that translates Lustre
nodes to synchronous modules and then performs compositional reasoning.
3) We conduct experiments based on examples to evaluate the validity and
performance of the proposed method.
Originality. Circular cases are only supported partially in Kind 2, so
we study how to perform compositional verification more completely. Our
method is original because it is different from the compositional verifica-
tion function of Kind 2, as we regard Lustre node instances as synchronous
modules and exploit the dedicated deduction rules for circular reasoning.
Significance. Verifying the safety of practical synchronous systems is impor-
tant to prevent accidents and ensure correct operation, especially in safety-
critical systems. For example, Kind 2 and our method can be used to verify
a control system for a transport-class aircraft.

Practical synchronous systems are described as a large and complex set
of Lustre nodes, possibly involving circular referencing. Our compositional
MC method is significant because the compositional approach is an effective
way to improve the scalability of verification tools.
Methodology. This research contains a survey on SMT solvers, synchronous
modules, model checking methods, and the Kind 2 tool.

We design a method whose input is an annotated Lustre program and
output is the correctness of the input. The basic steps of the proposed
method are: 1) Translation from Lustre nodes into synchronous modules.
We convert Lustre node instances NIi and properties AIi and GIi into syn-
chronous modules M(NIi), M(AIi) and M(GIi), respectively. The we inter-
pret triples {AIi} NIi {GIi} into implementation relations on the modules
M(NI i) || M(AI i) |= M(GI i). 2) Automatic construction of a proof tree
based on the deduction rules. We encode the definition of the compositional
reasoning rules, the declarations of modules, and the implementation rela-
tions among modules into a set of logic formulas. Then, we run an SMT
solving process to search for a proof tree. Kind 2 is used to check the cor-
rectness of leaf nodes. We discuss the soundness of the method. It is followed
from the correctness of the translation between Lustre nodes and synchronous
modules and the soundness of the deduction rules.

ii

We have implemented the method as a Python script using Kind 2 and
Z3Py. The tool consists of: 1) A translator module. Given node instances and
annotated properties, the module generates an intermediate representation
of synchronous modules. 2) A printer module that prints intermediate data,
such as a monolithic form of the input program and separated Lustre node
instances. 3) A validator module that performs the proof tree search using
Z3Py.
Evaluation. We conducted an experiment to compare the execution time of
a monolithic verification process of Kind 2 and a compositional verification
process of the proposed method.

We prepared an example of an integrator delayed by two nested coun-
ters. The execution time increased because the number of execution steps
required to be analyzed in the verification increased as the values of the two
parameters increased. In the experiment, we observed correlations between
the parameter values, the number of analyzed steps, and the execution time.
Along with parameter values, execution time increased rapidly (up to 16
times for one increase) for the monolithic process, while the compositional
process took much less time (up to a 150-fold improvement). The reason is
that the number of analyzed steps in the monolithic verification was affected
by the delay of the two counters, while compositional verification could verify
each node separately without taking into account the delay.

We conducted another experiment to evaluate whether our implementa-
tion verifies the Lustre programs correctly and efficiently. We prepared two
circular examples that cannot be handled by the compositional verification
function of Kind 2: 1) A simple parallel composition of synchronous modules.
2) A more complex example containing two digital filters. We confirmed that
our implementation verified the two examples correctly. Besides, the process
for the second example was inefficient due to the large search space among
many possible deductions in the compositional reasoning.
Conclusion. In the research, we studied how to apply deduction rules for
circular reasoning so that we can perform compositional verification on Lustre
programs with a different approach from the Kind 2 tool.

Keywords: SMT-based model checking, Lustre programming language, syn-
chronous systems, assume-guarantee reasoning, compositional verification

iii

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Associate
Professor Daisuke Ishii. Although the time was limited and I was totally new
to this research area, he was always patient and gave me guidance step by
step. I have learned a lot from my supervisor, not only knowledge but also
academic skills. I would not be able to complete my master’s program on
time without his enthusiastic instructions.

I want to say thank you to all the Professors and lecturers at JAIST for
teaching me and giving me advice. I am also grateful to my teachers at
PTIT, my university in Vietnam. They provided me with a lot of assistance
so that I could come to Japan to study and have unforgettable experiences.

I would like to send my thanks to my friends at JAIST for their encour-
agement. My daily life will be boring without them. A special thank you to
members from Aoki-lab and Ogata-lab for giving me helpful instructions on
my first days here.

Finally, thank you, my family and friends from Vietnam, for always sup-
porting me on my way.

Ngo Tien Duc.

iv

Contents

Abstract i

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Summary of the research . 3
1.4 Organization of the thesis . 4

2 Preliminaries 6
2.1 SMT solvers and Z3Py . 6

2.1.1 SMT solvers . 6
2.1.2 Z3Py . 7

2.2 SMT-based model checking 8
2.3 The Lustre programming language 9
2.4 LTL and assume-guarantee contracts 10

2.4.1 Linear temporal logic 10
2.4.2 Assume-guarantee contracts 11

2.5 Kind 2 . 12
2.5.1 CoCoSpec . 13
2.5.2 Compositional verification in Kind 2 14

3 Formalization 18
3.1 Basic synchronous model . 18
3.2 Lustre nodes interpretation 21

4 Proposed method 22
4.1 Problem statement . 22
4.2 Process of the method . 23

v

4.3 Compositional programs interpretation 26
4.3.1 Node instances interpretation 26
4.3.2 Properties interpretation 29
4.3.3 Triples interpretation 31

4.4 Proof tree construction . 32
4.4.1 Deduction rules for compositional reasoning 32

4.5 Soundness of the method . 35

5 Experiments 36
5.1 Implementation . 36
5.2 First experiment . 39
5.3 Second experiment . 42
5.4 Discussions . 49

6 Related work 52

7 Conclusion 53
7.1 Conclusion . 53
7.2 Future work . 54

This thesis was prepared according to the curriculum for the Collabora-
tive Education Program organized by Japan Advanced Institute of Sci-
ence and Technology and Posts and Telecommunications Institute
of Technology.

vi

List of Figures

2.1 A Python script for the BMC using Z3Py. 8

4.1 Example of annotated Lustre program containing circular ref-
erencing. 24

4.2 An example deductive proof tree. 26
4.3 An example Lustre node instantiation. 28
4.4 An annotated Lustre program with node rest. 30
4.5 Operation diagrams for Example 10. 31
4.6 An example tree structure of nodes. 33

5.1 Verification result for the simplified circular program. 44
5.2 Proof tree for the circular program. 45
5.3 Proof tree for the program of two digital filters. 50

vii

List of Tables

2.1 An example execution of a Lustre node. 10

5.1 Execution time and analyzed steps required for monolithic ver-
ification. 41

5.2 An example execution when performing monolithic verification. 42
5.3 Execution time and analyzed steps required for compositional

verification. 42

viii

Chapter 1

Introduction

1.1 Background

SMT-based model checking (MC) (Section 2.2) is a technique for verifying
the correctness of a system or program using Satisfiability Modulo Theories
(SMT) solvers (Section 2.1). SMT solvers are a type of logic solver that
can reason about first-order logic formulas with constraints from various
theories, such as arithmetic, bit-vectors, and arrays. In SMT-based MC,
the system is modeled as a state transition system. SMT solvers are then
applied to verify whether a model satisfies the property. SMT-based MC is
important for safety-critical systems because it ensures the correct operation
of the systems. As a target system becomes larger and more complex, so do
the encoded logic formulas, leading to an increased execution time for the
verification.

Verifying the safety of those systems is important to prevent accidents
and ensure correct operation, especially safety-critical systems. For exam-
ple, a software error in the Therac-25, a machine that was used to treat
cancer patients, caused it to deliver massive overdoses of radiation to several
patients, resulting in their deaths [6]. The accident showed that any software
errors could cause serious consequences. After the accident, there has been
a growth in the effort to verify safety-critical systems.

Kind 2 (Section 2.5) is an SMT-based MC tool that is designed for Lustre
programs. Lustre (Section 2.3) is a synchronous data-flow programming lan-
guage that is often used in safety-critical system development. Kind 2 deals
with safety properties on a program P . The input is an annotated program

1

{A}P{G} (called triple) where A and G are sets of properties (an assume-
guarantee contract). Kind 2 verifies the correctness of the triple; namely, for
any input signal always satisfying A, the output signal always satisfies G.
Kind 2 implements standard SMT-based MC methods such as the BMC and
k-induction methods. Kind 2 supports compositional verification to improve
the efficiency of the MC process based on the node-wise component struc-
ture of Lustre programs. In a compositional MC process, Kind 2 considers
a set of annotated nodes {{A1}N1{G1}, . . . , {An}Nn{Gn}} and verifies that
each of them is correct. In the MC of parent nodes, the descriptions of child
nodes Ni are abstracted with their contracts Ai and Gi to make the process
efficient.

Kind 2 has limitations in handling practical Lustre programs when a
given property depends on lengthy behaviors or when a node description
contains circular referencing of signals. Lengthy behaviors result in large logic
formulas in the MC process and the compositional process can be effective to
analyze them. Circular referencing of signals occurs when two nodes N and
N ′ depend on each other. For instance, the output ofN provides the input for
N ′ and vice versa. During compositional reasoning, it is also often necessary
to assume the correctness ofN to verifyN ′ and vice versa [7]. When verifying
a program containing such a circular pair of nodes, the compositional MC
does not work, resulting in a spurious counterexample.

1.2 Objective

In this thesis, we propose a new compositional MC method for Lustre pro-
grams that can handle circular programs and implement the method as a
tool using Kind 2 and Z3Py. Our research consists of the following activities:

• We study the relationship between Lustre programs and the theory of
synchronous modules. Lustre nodes can be translated to synchronous
modules so that the existing compositional reasoning methods can be
applied. For instance, this will enable to apply a reasoning rule for
circular composite modules.

• We study the automation of deductive reasoning based on the compo-
sition rules. Using the Z3 SMT solver with compositional reasoning
rules encoded as universally quantified formulas, it is possible to auto-
mate the proposed method. We implement a tool that translates Lustre

2

nodes to synchronous modules and then performs compositional rea-
soning.

• We conduct experiments based on examples to evaluate the validity
and performance of the proposed method.

The main contributions of this research include a compositional verifi-
cation method for circular Lustre programs, a tool implementation of the
method, and the experimental results.

1.3 Summary of the research

Originality

Circular cases are only supported partially in Kind 2, so we study how to
support them more completely. Our method is original because it is different
from the compositional verification function of Kind 2, as we regard Lustre
node instances as synchronous modules and exploit the dedicated deduction
rules for circular reasoning.

Significance

Verifying the safety of practical synchronous systems is important to prevent
accidents and ensure correct operation, especially in safety-critical systems.
For example, Kind 2 and our method can be used to verify a control system
for a transport-class aircraft.

We investigate a compositional safety MC method for Lustre programs
based on the Kind 2 tool and Z3Py. Our method is significant because
the compositional approach is an effective way to improve the scalability
of verification tools, and synchronous systems may be described as a large
and complex set of Lustre nodes. Also, circular referencing often occurs in
practical systems.

Methodology

We design our method whose input is an annotated Lustre program and
output is the correctness of the input. The basic steps of the proposed
method are:

3

1. Translation from Lustre nodes into synchronous modules: We convert
Lustre node instances NIi and properties AIi and GIi into synchronous
modules M(NIi), M(AIi) and M(GIi), respectively. The we interpret
triples {AIi} NIi {GIi} into implementation relations on the modules
M(NI i) || M(AI i) |= M(GI i).

2. Automatic construction of a proof tree based on the deduction rules:
We encode the definition of the compositional reasoning rules, the dec-
larations of modules, and the implementation relations among modules
into a set of logic formulas. Then, we run an SMT solving process to
search for a proof tree. Kind 2 is used to check the correctness of leaf
nodes.

We implemented a tool as a Python script using Z3Py and Kind 2, which
consists of a translator, a printer, and a validator module. Then we conducted
experiments to evaluate the efficiency of the proposed method and confirmed
that our implementation verified the examples correctly.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows:

• Chapter 2: Preliminaries
This chapter introduces background knowledge. We introduce SMT
solvers, Z3Py, a Python API for the Z3 theorem prover, and SMT-
based MC. We also illustrate the Lustre language, the Kind 2 tool with
the assume-guarantee contract, and compositional verification.

• Chapter 3: Formalization
This chapter shows the formalization of the proposed method. We
describe the basic synchronous model, including definitions of syn-
chronous modules, implementation relation, compatibility, and parallel
composition operation. Then we describe the interpretation from Lus-
tre nodes to synchronous modules.

• Chapter 4: Proposed method
In this chapter, we illustrate our proposed method for checking the
correctness of Lustre programs annotated with assume-guarantee con-
tracts. The chapter includes the problem statement, process of the

4

method, compositional programs interpretation, deduction rules, and
some lemmas we used for reasoning.

• Chapter 5: Experiments
This chapter describes the implementation of our proposed method
using Kind 2 and Z3Py. Examples and our experiments to evaluate the
method are also presented.

• Chapter 6: Related work
This chapter mentions some studies related to our research.

• Chapter 7: Conclusion
The final chapter summarizes the main contents of the thesis, our pro-
posed method along with some limitations and future work based on
the research.

5

Chapter 2

Preliminaries

This chapter describes background knowledge. We introduce SMT solvers
and Z3Py (a Python API for the Z3 theorem prover) in Section 2.1, SMT-
based model checking in Section 2.2, the Lustre language in Section 2.3,
assume-guarantee contracts involving LTL properties in Section 2.4, and the
Kind 2 tool in Section 2.5.

2.1 SMT solvers and Z3Py

2.1.1 SMT solvers

Satisfiability modulo theories (SMT) [13] generalizes Boolean satisfiability by
adding equality reasoning, integer and real arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. SMT solvers are
automated tools that can check the satisfiability of first-order predicate logic
formulas. The satisfiability of a given formula refers to the existence of a
valid assignment of variables that makes the formula true.

SMT solvers [13] can handle complex formulas and explore large search
spaces. They have practical applications in extended static checking, predi-
cate abstraction, test case generation, etc.

6

2.1.2 Z3Py

Z3Py1 is a Python API for Z3. Z3 [17] is a powerful SMT solver developed
by Microsoft Research. It is widely used for automated reasoning, formal
verification, program analysis, and constraint solving.

Z3Py provides a user-friendly way to interact with the Z3 solver through
the Python programming language. Users can construct logical formulas and
constraints in Python, and then use the Z3 solver to check the satisfiability
of these formulas. Some advantages of Z3Py:

• Python Integration. Z3Py allows users to leverage the full capabilities
of the Z3 solver using Python, a popular and easy-to-use programming
language. This integration makes it more accessible for users who are
familiar with Python.

• Syntax. Z3Py can make the construction of logical formulas more nat-
ural and intuitive since it provides a high-level syntax that aligns with
the syntax of Python.

• SMT Solver Functionality. Z3Py supports a wide range of logical theo-
ries and constraints, such as arithmetic, bit-vectors, arrays, quantifiers,
etc.

• Performance. Z3 is able to handle large and complex formulas, which
is suitable for formal verification.

• Customizability. Z3Py allows users to customize the behavior of the
solver using several options and parameters.

Example 1. We implemented bounded model checking (BMC) method [14]
in Z3Py to verify the satisfiability of an integrator (Fig. 2.1).
We have an integrator whose input is a stream of real numbers ranging from
0 to 1. Output stream values are computed as follows

outi =

{
ini if i = 1,

ini + 0.9 ∗ outi−1 otherwise.

where s is the step number, ini and outi are values of input and output at
step s. In this program, we want to check that the output value will be
greater than 9.9 in a step. The result is “sat in step 43,” which means
the output value in step 43 of the stream can be over 9.9.

1https://z3prover.github.io/api/html/namespacez3py.html

7

def bmc(i, y0):

x1, y1 = Consts("x%d y%d" % (i,i), RealSort())

s.add(And(x1 <= 1.0, x1 >= 0.0, y1 == x1 + 0.9 * y0))

s.push()

if s.check(y1 > 9.9) == sat:

print("sat in step", i)

m = s.model()

for j in range (0, i+1):

ys = Real("y%d" % j)

print("step %d: output = %r" % (j,m[ys]))

return

s.pop()

bmc(i+1, y1)

y0 = Real("y0")

set_option(rational_to_decimal=True)

s = Solver()

s.add(And(y0 <= 1.0, y0 >= 0.0))

s.push()

if s.check(y0 > 9.9) == sat:

print("sat in step 0")

print(s.model())

s.pop()

bmc(1, y0)

Figure 2.1: A Python script for the BMC using Z3Py.

2.2 SMT-based model checking

SMT-based model checking [1] is a formal verification technique used to ver-
ify the correctness of software or hardware systems, which is based on SMT
solvers and the model checking (MC) methods. MC [2] is a formal method
to explore all possible states of a system and verify whether a given prop-
erty holds. It involves constructing a finite-state model of the system and
exploring its state space to check the specified properties.

In SMT-based MC, a model is described as a state transition system, and
a temporal property is encoded into a set of logic formulas. An SMT solver
is then applied to verify whether a model satisfies the property.

8

SMT-based MC has several advantages, such as the ability to handle a
wide range of theories and complex logical formulas or provide more efficient
solutions than traditional exhaustive MC. The automation provided by SMT
solvers is also helpful for improving the velocity of the verification process.

However, SMT-based MC also has limitations, such as the problem of
state space explosion [5], which often occurs when the number of states in
the system’s model becomes too large to handle efficiently. Several research
activities on improving SMT solvers have been conducted for finding solutions
and developing new techniques to overcome these challenges and make SMT-
based MC more effective and scalable for verifying complex systems.

2.3 The Lustre programming language

Lustre [3, 9] is a synchronous data-flow programming language that is suit-
able for describing reactive systems. A reactive system is composed of compo-
nents that can react to changes in their environment (e.g., parent component
or the physical environment) in real-time. The description of a Lustre pro-
gram can be separated into nodes. Inputs and outputs of a node are streams,
i.e., a sequence of values of the same type. The execution is divided into
discrete time steps, and all variables in the system are updated simultane-
ously and consistently at every step. At the n-th execution step (or cycle) of
the program, all the involved streams take their n-th value. The synchronous
and data-flow model of Lustre ensures predictability and determinism. These
characteristics make Lustre suitable for developing safety-critical systems,
where accuracy and real-time responsiveness are very important.

Example 2. In Lustre, a node can be defined as:

node Sample (in: int) returns (out: int)

var c: int;

let

c = 2 ;

out = in -> (in + c * pre out) ;

tel

A Lustre node begins with its declaration, which includes the keyword
node and the name of the node. This name must be unique within a pro-
gram. Input variables are specified after the node’s name. Output variables
are specified after the keyword returns. Auxiliary variables (or local vari-
ables) can be declared by keyword var. These variables are used for naming

9

Table 2.1: An example execution of a Lustre node.
i 1 2 3 4 ...
ini 1 1 1 2 ...
outi 1 1 + 2 ∗ 1 = 3 1 + 2 ∗ 3 = 7 2 + 2 ∗ 7 = 16 ...

expressions and have no influence on the program semantics. The body of
the node consists of an equation list between keywords let and tel.

The pre operator allows referring to a value at step n− 1 in step n. The
-> (followed by) operator allows to initialize streams, which are equal to the
value on the left-hand side of the operator at the first instance, and then
always equal to the value on the right-hand side.

We can mathematically interpret the computation of output variables as

outi =

{
in1 if i = 1,

ini + 2 ∗ outi−1 otherwise.

which means the value of out is equal to the value of in at step 1, then the
value of out in step s is calculated based on the value of in at step i and the
value of out at the previous step i− 1.

An execution result example of the node is shown in Table 2.1.

Basic value types of Lustre include reals (real), integers (int), and
Booleans (bool). In the body of a Lustre node, equations are used to define
outputs and values of local variables: x = e, where x is a variable and e is a
Lustre expression. The equation indicates that the value of x is always equal
to e. Expressions in Lustre are made of variable identifiers, constants, arith-
metic, Boolean operators, conditional operators, and two operators pre and
->. For example, the equation x = y + z means that at step i, xi = yi + zi.
Or the equation x = c where c is a constant means that xi = c for every
step i.

2.4 LTL and assume-guarantee contracts

2.4.1 Linear temporal logic

Temporal logic is used to reason about properties that change over time. The
linear tempraral logic (LTL) [16] is a type of temporal logic that deals with
linear time, where time is considered a sequence of discrete steps.

10

There are two key operators in temporal logic (we assume φ is an LTL
formula):

• The always operator □. □φ holds iff φ is true in every step. These
formulas represent safety properties. Safety properties are concerned
with the absence of unsafe behaviors to prevent violations or errors
within the system.

• The eventually operator ⋄. ⋄φ holds iff φ is true in some steps. These
formulas represent liveness properties. Liveness properties specify that
something good eventually happens during the system’s execution.

2.4.2 Assume-guarantee contracts

Compositional reasoning [12] is a technique to improve the scalability of veri-
fication tools. It allows breaking a large system into smaller components and
analyzing each component separately. The basic idea is that the correctness
of a system can be checked by verifying the correctness of its individual com-
ponents, and then composing those components by analyzing the interactions
between them to ensure that the overall system is correct. When performing
compositional reasoning on a parent node, the descriptions of child nodes are
abstracted by their contracts.

An assume-guarantee contract is a pair of a set of assumptions A and
guarantees G. We assume A and G are LTL safety properties. We con-
sider that a target (Lustre) program is annotated with contract (A,G), and
represent an annotated program as a triple

{A} P {G}.

We say that a triple is correct if every execution of P satisfies the LTL formula

□(□A → □G),

that is, the fact that A always holds then G always holds is an invariant.
Examples of assume-guarantee contracts will be described in Section 2.5.1

11

2.5 Kind 2

Kind 2 2 [4] is an SMT-based MC tool for Lustre programs annotated with
CoCoSpec (Section 2.5.1). Kind 2 can verify a given Lustre program P in
various ways. First, it can check if P satisfies the invariance of a property
φ, which is a Boolean Lustre expression (that can encode safety properties).
Kind 2 verifies the invariance for all inputs or outputs a counterexample if
it is falsified. Second, Kind 2 can be fed a triple {A} P {G}, where A and
G are sets of Boolean Lustre expressions. Then, it verifies the correctness of
the triple.

In addition to monolithic mode, Kind 2 provides a compositional verifi-
cation function (Section 2.5.2). When performing verification, Kind 2 may
encounter some limitations in handling Lustre programs, such as when the
size of the encoded logical formulas increases and the time required for the
verification process may become large. In such a case, compositional veri-
fication can be performed more efficiently. In the compositional mode, the
input is given as a set of triples representing a tree-structured system. The
whole process is performed in a bottom-up fashion. First, Kind 2 verifies the
leaf triples individually. Then, it verifies the higher-level triples, where child
nodes are abstracted with their contracts.

Users can plug in various SMT solvers for Kind 2. Z3 is the recommended
SMT solver and the default option. Kind 2 supports several encoding meth-
ods (BMC, k-induction, IC3, etc.) and runs several MC processes in parallel
and in cooperation.

Example 3. We consider a simple program:

node Sample() returns (out: int);

let

out = 0 -> pre out + 1 ;

--%PROPERTY out > 0;

tel

The annotation --%PROPERTY followed by a Boolean Lustre expression is
used to specify an invariant property to verify in the node. Kind 2 performs
the BMC to falsify the invariance of the property and provides a counterex-
ample that is a signal for out whose initial value is 0. If we modify the prop-
erty to out >= 0, Kind 2 is able to prove its invariance by k-induction.

2https://kind2-mc.github.io/kind2/

12

2.5.1 CoCoSpec

The CoCoSpec language [15] supports annotating safety properties in Lustre
programs. CoCoSpec extends Lustre to give assume-guarantee contracts to
Lustre nodes. Contracts can be declared inline, external, or stand-alone.

We consider the internal contract as special comments which is added
inside the declaration of the node. The syntax of an inline contract is:

(*@contract

assume <Boolean Lustre expression> ;

guarantee <Boolean Lustre expression> ;

*)

Example 4. The code below shows a simple example of an assume-guarantee
contract.

node N1 (in: bool) returns (out: bool)

(*@contract

assume in;

guarantee not out;

*)

let

out = not in;

tel

The node N1 is fed a bool stream in and produces another bool stream
out, in which the value of out is calculated as the negation of in for each
step. It is easy to see that if we assume in is always true then out is always
false. Therefore, the annotated node N1 is correct.

Example 5. We consider a more complex example.

node Integrator (in : real) returns (out : real);

(*@contract

assume 0.0 <= in and in <= 1.0 ;

guarantee 0.0 <= out and out <= 9.9 ;

*)

let

out = in -> (in + 0.9 * pre out);

tel

We assume every value of input stream in is always greater than or equal
to 0 and less than or equal to 1 simultaneously, while the corresponding
output out is always greater than or equal to 0 and less than or equal to 9.9.

13

In this case, the guarantee does not hold, it can be proved by BMC that
the value of out will be greater than 9.9 in an execution step (Example 1).
Therefore, the annotated node Integrator is incorrect.

If we modify the guarantee to 0.0 <= out and out <= 10.0, allowing
the output value to be 10, Kind 2 can verify its invariance with k-induction.
Therefore, the annotated node is verified to be correct.

2.5.2 Compositional verification in Kind 2

Kind 2 takes the compositional approach by allowing the declarations of
assume-guarantee contracts for each node and using reasoning techniques:
compositional reasoning and modular reasoning.

Compositional reasoning in Kind 2 involves the analyzing of the top-
level node by abstracting all calls to the sub-nodes. Every node, whose
contract contains at least one guarantee, is abstracted by their contracts,
then Kind 2 will verify the abstract system. Since the contract has fewer
states in comparison to the specified node, compositional reasoning enhances
the scalability of Kind 2 by using the information provided by users to reduce
the complexity.

Modular reasoning, on the other side, refers to the ability to verify every
Lustre node in the hierarchy, bottom-up, without considering the dependen-
cies with other nodes. It allows for the analysis of each node independently,
focusing on local properties and contracts. Once the verification is com-
plete for a node, the results can be reused and integrated into the overall
verification process of the system.

Only successful results from compositional reasoning are not enough to
ensure the correctness of the concrete system since the sub-nodes have not
been verified. Therefore the combination of compositional reasoning and
modular reasoning is necessary when Kind 2 performs compositional verifi-
cation. The process can be described as follow:

1. Individual node verification: Kind 2 begins by verifying every Lustre
node independently. It analyzes the contract of each node, checking if
the assumptions hold under all possible executions and if the guarantees
hold. This step ensures that each node satisfies its contract.

2. Dependencies verification: After verifying individual nodes, Kind 2 pro-
ceeds to verify the consistency of the system. It considers the inter-
actions between nodes, analyzing how the assumptions and guarantees

14

of one node relate to the assumptions and guarantees of its dependent
nodes.

3. Incremental verification: Kind 2 performs verification incrementally
by adding one node context, starting with the top-level node in the
system, and verifies it with the abstract calls to its sub-nodes. Once
the verification process of the top-level node has been completed, Kind
2 continues with the next level of interconnected nodes until all nodes
have been analyzed.

4. Counterexample generation or safety conclusion: If any violations are
detected during the verification process, Kind 2 provides a counterex-
ample. The counterexample supports identifying the cause of the vi-
olation and helps users to debug the program. If the correctness of
all systems in the hierarchy is proved, then the system as a whole is
concluded to be safe.

5. Refinement: This step may occur when Kind 2 found a counterexample.
The counterexample might be spurious for the concrete system, as a
sub-node is abstract, the failure may not happen if we used the concrete
one. In this case, if invalid sub-nodes were analyzed and proved correct,
Kind 2 will try to refine the call by undoing the abstraction and using
the implementation, or the body of those nodes in a new analysis. This
failure points out that the system or specification may contain some
problems. If the system is proved correct after refining, we should check
the contract of invalid sub-nodes and try to perform compositional
verification again until the result succeeds without using refinement.

Example 6. We consider an example to compare verification methods.

node Integral (Iin: real) returns (Iout: real);

(*@contract

guarantee Iout <= 9.9 ;

*)

let

Iout = Iin -> (Iin + 0.9* pre Iout);

tel

node TopLevel (in: real) returns (out: int);

(*@contract

assume 0.0 <= in and in <= 1.0 ;

15

guarantee out = 1 ;

*)

let

out = if (Integral(in) <= 9.9) then 1 else 2;

tel

In the program, node TopLevel calls to Integral and produces output
values based on the output value of Integral for each step. If the
output value of Integral is less than or equal to 9.9, the output value
of TopLevel is 1, otherwise, the output value of TopLevel is 2. We use
Kind 2 to verify whether the output of TopLevel is always equal to 1
for every value of the real-number input stream ranging from 0 to 1.
We call Iout <= 9.9 a safety property of node Integral, while out =

1 a safety property of TopLevel.

First, we performed monolithic verification. Kind 2 skipped the con-
tract of Integral and used the BMC method to prove that the value
of out will be greater than 9.9 after 43 execution steps, and the safety
property out = 1 was violated.

Then, we performed only compositional reasoning. Kind 2 abstracted
the call from TopLevel to Integral by the contract of Integral

and skipped the body of the sub-node. In this method, the prop-
erty of Integral is assumed to be invariant, and only the property
of TopLevel was checked. Because the guarantee of Integral ensures
that its output is always less than or equal to 9.9, then the Boolean
Lustre expression (integral(in) <= 9.9) is always true and leads to the
value of out is always 1. Hence, the property of TopLevel is invariant.

After that, we performed only modular reasoning. Kind 2 started with
the verification for node Integral. It provided a counterexample in
which the input value Iin is 10.9 at the first execution step, then the
output value would be 10.9 and violated the guarantee. The safety
property of a sub-node was violated. Kind 2 then ran the refinement
to check the concrete node and the result was as same as the monolithic
verification process. In this method, both safety properties are violated.

Finally, we performed both compositional reasoning and modular rea-
soning. The result illustrated that the node Integral did not satisfy
its contract (as the result of the modular reasoning process), while
the node TopLevel satisfied its contract since the call to the sub-node

16

was abstracted (as same as compositional reasoning). In general, the
safety property of Integral is violated, and the property of TopLevel
is invariant.

17

Chapter 3

Formalization

This chapter shows the formalization of the proposed method. We introduce
the basic synchronous model, including definitions of synchronous modules,
implementation relation, compatibility, and parallel composition operation.
Then we describe the interpretation from a Lustre node to a synchronous
module.

3.1 Basic synchronous model

Typed variables

Types include bool, int and real, referring to {true, false}, Z and R, re-
spectively. Typed variables construct typed expressions.

Synchronous modules

We consider a set of synchronous modules [8, 10, 11]. A module of name m is
a tuple Mm = (Im, Om, Sm, Initm,Reactm) where each of Im, Om, and Sm is
a set of input/output/state variables (Im ∩Om ∩ Sm = ∅), Initm is an initial
condition description, and Reactm is a reaction description. We denote the
domains of Im, Om and Sm by D(Im), D(Om) and D(Sm), respectively. Initm
is interpreted as a subset of D(Sm).

We have a reaction in D(Sm)×D(Im)×D(Om)×D(Sm) by an interpre-
tation of Reactm; and an execution of a module (of length k) is formalized

18

as a stream i.e. a sequence of reactions

s−1
i0/o0−−−→ s0

i1/o1−−−→ s1 · · · sk−2
ik−1/ok−1−−−−−−→ sk−1,

where sj ∈ D(Sm), ij ∈ D(Im) and oj ∈ D(Om) and s−1 satisfies Initm
(j ∈ {−1, . . . , k − 1}). A sequence of values (i0/o0 · · · ik−1/ok−1) taken from
execution is called a trace.

Example 7. Wemodel a counter with a “reset” mode as a synchronous module
MCnt with:

• ICnt = {reset},

• OCnt = {C},

• SCnt = {pre(C)},

• InitCnt ≡ (pre(C) = 0), and

• ReactCnt is described as

C = pre(C)′ =

{
0 if reset = true,

1 + pre(C) otherwise.

Here, the state variable pre(C) represents “the value of C in the previous
round.” The updated pre(C)′ in the reaction will be used on the right-hand
side in the next round. As an example of executions of MCnt, when an input
stream (false false false true) is fed, the output is (0 1 2 0).

Implementation relation

From the formalization in [10], the implementation relation and the paral-
lel composition mechanism are described as follows. We say a module M1

implements a module M2 if

1. O2 ⊆ O1,

2. I2 ⊆ I1 ∪O1,

3. A dependency in the evaluation of x ∈ I2 ∪ O2 on y ∈ I2 is preserved
in M1, and

19

4. For every trace t of M1, the projection of t onto O2 is a trace of M2.

We denote this relation by M1 |= M2. The implementation relation is reflex-
ive (M1 |= M1), and transitive (M1 |= M2 and M2 |= M3 then M1 |= M3 is
obtained).

Compatibility

Given two modules M1 = (I1, O1, S1, Init1,React1) and M2 =
(I2, O2, S2, Init2,React2). We say two modules M1 and M2 are compatible if

1. Outputs of the two modules are disjoint: O1 ∩O2 = ∅,

2. React1 ∪ React2 is acyclic.

Parallel composition

Given two compatible modules M1 = (I1, O1, S1, Init1,React1) and M2 =
(I2, O2, S2, Init2,React2). We consider the parallel composition of M1 and
M2, denoted M1 ||M2 = (I, O, S, Init ,React), where O = O1 ∪O2, I = (I1 ∪
I2) \O, S = S1 ∪ S2, Init = (Init1, Init2) and React = React1 ∪React2. This
operation combines two component modules and captures their reactions into
a single module. From the definition, commutativity and associativity of the
composition operator follow.

• Commutativity : M1 ||M2 = M2 ||M1

• Associativity : (M1 ||M2) ||M3 = M1 || (M2 ||M3)

Example 8. We consider two modules Mm where n ∈ {1, 2}, with Im =
{inm}, Om = {outm}, and Reactm is described as outm = not inm. Each
module receives a bool input stream and outputs the negation values. We
consider the module M3 with I3 = {in1, in2}, O3 = {out1, out2}, and React3
is out1 = not in1 and out2 = not in2. Then M3 represents the parallel
composition of M1 and M2, denoted M3 = (M1 ||M2).

By the definition of implementation relation, we also have M3 |= M1 and
M3 |= M2.

20

3.2 Lustre nodes interpretation

Lustre programs can be naturally interpreted as synchronous modules. Each
Lustre node is corresponded with a synchronous module. Then, the input
and output variables of the Lustre node are represented by those of the
synchronous module. Samewise, the body description is interpreted as the
reaction description.

In interpreting reactions, we first expand the right-hand side of the local
variables within the expressions in the let block. Next, state variables are
identified based on the pre expressions.

Example 9. We consider a Lustre node:

node Sample (in: real) returns (out: bool)

var c, sum: real;

let

c = 0.0 -> pre sum ;

sum = in -> in + 0.9*c ;

out = sum > 9.9 ;

tel

The above node is interpreted as a module (IS, OS, SS, InitS,ReactS), where:

• IS = {in},

• OS = {out},

• SS = {pre(sum)},

• InitS ≡ (pre(sum) = 0), and

• ReactS represents

pre(sum)′ = in+ 0.9× pre(sum), out = pre(sum)′ > 9.9.

.

Note that the values of c and sum are local to an evaluation of the reaction
at a round, therefore we do not need to regard them as variables.

21

Chapter 4

Proposed method

In this chapter, we propose a new method for checking the correctness of
Lustre programs annotated with assume-guarantee contracts (Section 4.1).
One of the advantages of our method (summarized in Section 4.2) is that we
can handle circular programs. The method translates Lustre nodes and con-
tract properties into synchronous modules (Section 4.3) and then constructs
a proof tree based on the deduction rules (Section 4.4).

4.1 Problem statement

The input of our method is an annotated Lustre program P formalized as a
set of n triples

{{A1} N1 {G1}, . . . , {An} Nn {Gn}},

where each triple consists of the following items:

• For 1 ≤ i ≤ n, Ni is a Lustre node. We assume that P is structured
as a tree with a top-level node Nn. Nodes N1,. . . , Ni−1 are sub-nodes
including some leaf nodes. A parent node N invokes a child node N ′

within its body description. Leaf nodes do not have a child.

• Ai is a Boolean Lustre expression on the input variables and previous
output values of Ni, which is given in the assume section of a CoCoSpec
contract.

• Gi is a Boolean Lustre expression on the output variables of Ni, which
is given in the CoCoSpec guarantee section.

22

The method will output either of the following two answers:

• “Correct” when all the triples are verified to be correct. A triple
{Ai} Ni {Gi} is correct if Ni satisfies the contract, i.e. Ni satisfies
the temporal property □(□Ai → □Gi) where □ is the LTL “always”
operator (Section 2.4).

• “Unknown” when the method fails to verify any of the triples. The
method answers unknown when we verify a leaf node using Kind 2 and
it fails with a counterexample. Also, it results in an unknown answer
without a counterexample when it fails to construct a proof tree.

Example 10. We consider an annotated Lustre program in Figure 4.1 as an
input. The input program P consists of three nodes N1, N2 and N3 named
as n1, n2 and toplevel. A1 and G1 are the Boolean Lustre expressions s1
and s2 meaning that the input and output are constant true signals. For
toplevel, we verify that s2 always holds assuming always true. The output
is “correct” because {A1} N1 {G1}, {A2} N2 {G2}, and {A3} N3 {G3} are
all correct.

4.2 Process of the method

The basic process of the proposed method is as follows:

1. Translate Lustre nodes into synchronous modules. First, we analyze the
tree structure of nodes N1, . . . , Nn and consider a set of node instances
NI 1, . . .NIm, where. m ≥ n. There can be several instances of a node
if it is invoked several times from parent nodes. Then, we interpret
each triple instance {AI i} NI i {GI i} as an implementation relation
M(NI i) || M(AI i) |= M(GI i), where M(NI i), M(AI i) and M(GI i)
are synchronous modules that correspond to NI i, AI i and GI i. We
carefully translate from a triple instance to an implementation relation
so that they become equivalent. Note that we also translate properties
into modules. Details will be described in Section 4.3.

2. Construct and validate a proof tree: We construct a proof tree whose
nodes are

M(NI i) || M(AI i) |= M(GI i),

23

node n1 (s1: bool) returns (s2: bool)

(*@contract

assume s1;

guarantee s2;

*)

let

s2 = s1;

tel

node n2 (s2: bool) returns (s1: bool)

(*@contract

assume s2;

guarantee s1;

*)

let

s1 = true -> pre s2;

tel

node toplevel (_: bool) returns (s2: bool)

(*@contract

guarantee s2;

*)

var s1: bool;

let

s2 = n1(s1);

s1 = n2(s2);

tel

Figure 4.1: Example of annotated Lustre program containing circular refer-
encing.

24

where 1 ≤ i ≤ m. In the following, we abbreviate them as

TN i ≡ (M(NI i) || M(AI i) |= M(GI i)).

The top-level node instance TNm is the root (goal). Here, for simplicity,
we assume that TN i (1 ≤ i ≤ m−1) are all leaves of the proof tree. The
proof is based on the deduction rules for the compositional reasoning
of synchronous modules. The tree is constructed as follows:

(a) We verify the correctness of each leaf TN i (1 ≤ i ≤ m − 1) by
using an existing model checking method (Kind 2). If the checking
for a leaf fails, the process terminates.

(b) We search for a proof tree using an SMT solver (Z3Py). We encode
deduction rules, module declarations, and the fact that TN i holds
for 1 ≤ i ≤ m − 1 in the predicate logic. Then, by checking the
satisfiability of ¬TNm, we can check whether there exists a proof
tree.

If not all nodes are leaves, we can repeat the above process for each
sub-tree whose root is an intermediate node TN i where i < m. Details
will be described in Section 4.4.

Example 11. Example 10 consists of the three Lustre node instances

{AI 1} NI 1 {GI 1}, {AI 2} NI 2 {GI 2}, {AI 3} NI 3 {GI 3},

corresponding to n1, n2 and toplevel, respectively. The triples can be
translated as the following implementation relations:

TN 1 ≡ M(NI 1) ||M(AI 1) |= M(GI 1),

TN 2 ≡ M(NI 2) ||M(AI 2) |= M(GI 2),

TN 3 ≡ M(NI 3) |= M(GI 3).

Since AI 3 ≡ true, M(AI 3) is omitted. Also, since M(AI 1) = M(GI 2), we
denote them by P1, and since M(AI 2) = M(GI 1) = M(GI 3), we denote
them by P2. The implementation relations now become:

TN 1 ≡ M(NI 1) ||P1 |= P2,

TN 2 ≡ M(NI 2) ||P2 |= P1,

TN 3 ≡ M(NI 3) |= P2.

25

M(NI1) || P1 ⊨ P2 M(NI2) || P2 ⊨ P1

P1 || P2 ⊨ P2M(NI1) || M(NI2) ⊨ P1 || P2

M(NI1) || M(NI2) ⊨ P2

Kind 2 Kind 2

(AG) (SI)

(Trans)

Figure 4.2: An example deductive proof tree.

TN 1 and TN 2 can be verified to be correct using Kind 2. Then, the correct-
ness of TN 3 can be proved as in Figure 4.2. Here, we additionally assume
that M(NI 3) = M(NI 1) ||M(NI 2). The existence of the proof tree can be
checked using Z3Py. □

By following these steps, our proposed method enables us to verify the
correctness of an annotated Lustre program including circular ones. This is
different from the compositional verification of Kind 2 as we regard Lustre
node instances as synchronous modules and exploit the dedicated deduction
rules for circular reasoning. The soundness of the method is followed from
the correctness of the translation between Lustre nodes and synchronous
modules and the soundness of the deduction rules (Section 4.5).

4.3 Compositional programs interpretation

We interpret both input Lustre nodes and annotated properties into syn-
chronous modules in a way the implementation relation on the modules im-
plies the correctness of the original triple.

4.3.1 Node instances interpretation

In the proposed method, we instantiate nodes invoked by the top-level node
(which is also instantiated) and then interpret them as synchronous modules
as described in Section 3.2.

Instantiation of nodes can be done by parsing the body description of the
nodes and traversing the node invocations from the top-level. For each node
invocation, we replace the input and output variables of the called node with
the argument expressions (or fresh variables assigned appropriately by the

26

caller). As a result, the namespace of input and output variables is shared
by all node instances (hereafter, we also refer to node instances as nodes).

We represent the translation from node instances to modules as a function
M , which applies an interpretation of a Lustre node (instance) as described
in Section 3.2.

Example 12. We consider a Lustre program consisting of a parent node
TopLevel and a sub-node Filter (Figure 4.3). Filter is instantiated twice
by TopLevel. We call these two instances f1 and f2. The input and output
variables of M(f1) and M(f2) are as follows:

If1 = {pre b2, s2}, Of1 = {b1, s1},
If2 = {b1, in}, Of2 = {b2, s2}.

Although standalone Lustre nodes (i.e. leaf nodes) are easy to inter-
pret, composite node instances NIm that call other nodes NI 1,. . . , NIm−1

require a special process. Since it is not always the case that M(NIm) =
M(NI 1) || · · · ||M(NIm−1), we introduce a node instance NR that repre-
sents the reaction of NIm other than calling the child nodes. Accordingly,
we interpret NIm as

M(NIm) = M(NI 1) || · · · ||M(NIm−1) ||M(NR).

A rest node instance generated from a node instance NIm consists of the
same elements as NIm, but additionally

• has input variables that are corresponded with the output variables of
the child nodes (TN 1, . . . , TNm−1),

• has output variables that are corresponded with the input variables of
the child nodes, and

• has reaction equations to assign (i) the outputs of the child nodes to
the additional input variables and (ii) the expressions inputted to the
child nodes to the additional output variables.

Example 13. In Example 11, we have simply interpreted as M(NI 3) =
M(NI 1) ||M(NI 2) without a rest node. A Lustre program in Figure 4.4
illustrates the interpretation with a rest node for this example. The rest

27

node Filter (bin : bool; in : real) returns (bout : bool; out

: real)

(*@contract

assume bin;

assume -1.0 <= in and in <= 1.0;

guarantee bout;

guarantee -1.0 <= out and out <= 1.0 ; -- valid (k=25)

*)

var sum, D1, D2: real;

let

bout = bin;

sum = 0.0582*(if bin then in else -in) - (-1.49*D1) -

0.881*D2;

D1 = 0.0 -> pre sum;

D2 = 0.0 -> pre D1;

out = (sum - D2) / 1.25;

tel

node Toplevel (in : real) returns (s1, s2 : real)

(*@contract

assume -1.0 <= in and in <= 1.0;

guarantee -1.0 <= s1 and s1 <= 1.0;

*)

var b1, b2, pre_b2 : bool;

let

b1, s1 = Filter(pre_b2, s2);

b2, s2 = Filter(b1, in);

pre_b2 = true -> pre b2;

tel

Figure 4.3: An example Lustre node instantiation.

28

node rest for toplevel operates as an identify function, which takes the
outputs of n1 and n2 as input, and outputs the inputs. Figure 4.5 shows the
operation diagrams of the original program and modified program.

We also generate a contract for rest automatically. Assumptions are
inherited from the guarantees of n1 and n2. Likewise, the guarantees are
inherited from the assumptions of the child nodes. Since the input and output
signals are identical for this example, the assumptions and the guarantees
become equivalent, and thus rest satisfies the contract.

4.3.2 Properties interpretation

We interpret Boolean Lustre expressions φ as synchronous modules M(φ).
We give the function M such that, when applied to AI , NI and GI in a
given triple instance {AI } NI {GI }, the following holds:

{AI } NI {GI } is correct ↔ M(AI) ||M(NI) |= M(GI)

We denote the set of variables in φ by var(φ). Then, the output variable set
of the module is Oφ = var(φ). We assume Iφ contains all input variables in
the program such that the variables in var(φ) depend on. We do not explain
how to construct the module M(φ) but it should behave as follows:

• Basically, M(φ) should output any signal for var(φ) that satisfies □φ.

• Also, M(φ) should behave the same as the target Lustre program P as
long as the behavior of P can satisfy □φ. P is NI when φ ≡ GI and
P is the external nodes when φ ≡ AI .

• On the other hand, when P cannot satisfy □φ due to the valuation of
the input variables, M(φ) should output an arbitrary signal that still
satisfies □φ; therefore, the output of P and M(φ) must be different.

For example, we can create M(φ) from a composite of NI and a monitor for
□φ.

Example 14. In Example 10, node (instance) n1 assumes the invariance of s1
being true. We denote this property by p1. The interpreted module M(p1)
only outputs the constant true signal.

29

node n1 (s1_: bool) returns (s2: bool)

(*@contract

assume s1_;

guarantee s2;

*)

let

s2 = s1;

tel

node n2 (s2_: bool) returns (s1: bool)

(*@contract

assume s2_;

guarantee s1;

*)

let

s1 = true -> pre s2;

tel

node rest (s1: bool; s2: bool) returns (s1_: bool; s2_: bool)

(*@contract

assume s1;

assume s2;

guarantee s1_;

guarantee s2_;

*)

let

s1_ = s1;

s2_ = s2;

tel

node toplevel (_: bool) returns (s2: bool)

(*@contract

guarantee s2;

*)

var s1: bool;

let

(s2, s1) = rest(n1(s1), n2(s2));

tel

Figure 4.4: An annotated Lustre program with node rest.

30

Figure 4.5: Operation diagrams for Example 10.

4.3.3 Triples interpretation

Given a triple {A}N {G}, we first instantiateN as described in Section 4.3.1.
Then, A and G are instantiated by simply substituting the variables as for
N . Next, we apply the interpretation function M to each of AI , NI and
GI as described in Section 4.3.2. As a result, we obtain a triple instance
{AI } NI {GI }.

Note that M(NI) and M(AI) are compatible so we can always have
the parallel composition M(NI) ||M(AI). The relation M(NI) ||M(AI) |=
M(GI) will depend on that the output signals ofM(NI) ||M(AI) andM(GI)
are consistent.

According to the definition of the implementation relation in Section 3.1,
the following proposition justifies our method.

Proposition 1. Consider a triple {A} N {G}, and its instance TN ≡
{AI } NI {GI }. Let OGI be the output variable set of M(GI). TN is correct
iff, for every trace t of M(AI) ||M(NI), the projection of t onto OGI is a
trace of M(GI).

Proof sketch. Straightforward from the definition of M for the properties
(Section 4.3.2). According to whether or not TN is correct, the output trace
of M(AI) ||M(NI) onto OGI should be the same as or different from the
output of M(GI).

31

4.4 Proof tree construction

Given a set of triple instances TN 1,. . . , TNm, we aim to construct a proof
of the correctness of the top-level node instance TNm (hereafter, we also
refer to triple instances as triples). We assume that we know which of the
triples becomes a leaf in the constructed proof tree (it is determined by the
structure of the original program).

To construct a proof tree, we manage a set S of triple instance. It is
initially empty. We construct a proof tree with the following steps:

1. We verify the correctness of leaf triples using Kind 2. If successful,
append it to S; otherwise, terminate.

2. For each of the unprocessed triples whose child triples are all in S,
we construct a proof tree. If successful, append it to S; otherwise,
terminate.

3. Repeat Step 2 until TNm is processed.

Example 15. Assume we have a tree-structured Lustre program P consisting
of eight node instances TN i (1 ≤ i ≤ 8). Figure 4.6 shows the overall proof
tree. It is constructed as follows:

1. We verify TN 1, TN 2, TN 3, TN 4 and TN 7 with Kind 2.

2. We construct a sub-tree for TN 5 with the leaves TN 1 and TN 2.

3. We construct a sub-tree for TN 6 with the leaves TN 3 and TN 4.

4. We construct a sub-tree for TN 8 with the leaves TN 5, TN 6 and TN 7.

If all steps are successful, we output “correct.” Otherwise, the process ter-
minates with the output “unknown.”

4.4.1 Deduction rules for compositional reasoning

In this section, we introduce deduction rules for the construction of a proof
tree. The nodes of the proof tree are of the form Mi |= Mj where Mi and
Mj (i, j ∈ N) are synchronous modules. The compatibility of Mi and Mj is
denoted compat(Mi,Mj).

32

TN1 TN2 TN3 TN4

TN5

5

TN6

5
TN7

5

TN8

5

Figure 4.6: An example tree structure of nodes.

• The assume-guarantee (AG) rule [10] is a rule for the circular parallel
composition of synchronous modules.:

M1 ||M3 |= M4 M2 ||M4 |= M3
(AG: if compat(M1,M2) ∧ compat(M3,M4))

M1 || M2 |= M3 || M4

Note that the side condition requires the compatibility of the modules
to be composed in the conclusion. The rule has been proved to be
sound [10]; namely, the goal node holds whenever the premises and the
side condition hold.

• The sub-node implementation (SI) rules represent a characteristic of
the parallel composition:

(SI: if compat(M1,M2))

M1 || M2 |= M1

33

(SI: if compat(M1,M2))

M1 || M2 |= M2

• The transitivity rule:

M1 |= M2 M2 |= M3
(Transitivity)

M1 |= M3

• The substitution rules :

M1 |= M2
(Substitution: if M1 = M3)

M3 |= M2

M1 |= M2
(Substitution: if M2 = M3)

M1 |= M3

The following equations can be utilized:

– Commutativity : M1 ||M2 = M2 ||M1.

– Associativity : (M1 ||M2) ||M3 = M1 || (M2 ||M3).

Deduction on the compatibility relation

In parallel to the above deductions, we deduce compatibility relations from
initially known ones. The deduction is based on the following rules:

compat(M1,M2) ∧ compat(M1,M3) ∧ compat(M2,M3)

→ compat(M1 ||M2,M3),

compat(M1,M2) ∧ compat(M1,M3) ∧ compat(M2,M3)

→ compat(M1 ||M3,M2),

compat(M1,M2) ∧ compat(M1,M3) ∧ compat(M2,M3)

→ compat(M2 ||M3,M1),

compat(M1,M2) ↔ compat(M2,M1).

34

4.5 Soundness of the method

The soundness of the proposed method can be stated as follows:

Proposition 2. Given an annotated Lustre program consisting of triples
{A1} N1 {G1}, . . . , {An} Nn {Gn}, where Nn is a top-level node, if the pro-
posed method outputs “correct,” then {An} Nn {Gn} is correct.

Proof sketch. Checking the correctness of {An} Nn {Gn} means to check
that of {AIm} NIm {GIm}. As described in Section 4.3, the correctness of
{AIm} NIm {GIm} is equivalent to M(AIm) ||M(NIm) |= M(GIm). When
constructing a proof tree, leaf nodes are verified with Kind 2, which should
provide a sound process. Based on the verified leaf nodes, deductions are
made to prove M(AIm) ||M(NIm) |= M(GIm) based on the rules in Sec-
tion 4.4.1, each of which is sound.

35

Chapter 5

Experiments

This chapter describes the implementation of our proposed method using
Kind 2 and Z3Py. We also present examples and experiments to evaluate the
method.

Our experiments were conducted on the Surface Pro 2020 with an Intel
Core i5-8350U processor and 8 GB of RAM.

5.1 Implementation

We implemented a prototype tool in Python based on the proposed method.
The implementation is intended to show how the proposed method works
with different examples. By observing and analyzing the results, we are able
to evaluate the efficiency of our method.

The tool uses Kind 2 and Z3Py to perform compositional verification
on an input program. The input of the tool is not an annotated Lustre
program but a Python script that describes a set of triple instances. The
implementation consists of:

1. A translator module. Given node instances and annotated properties,
the module generates an intermediate representation of synchronous
modules.

2. A printer module. Prints intermediate data, such as a monolithic form
of the input program and separated Lustre node instances.

3. A validator module. Feeds the definition of the deduction rules, the

36

declarations of modules, and the compatibility relations among modules
to Z3Py and searches for a proof tree using the Z3 solver.

The input Python script consists of:

• A dictionary object properties whose keys are the property identi-
fiers and whose values are dictionary objects. A value of the inner
dictionary consists of a list vars of the variables of the property and a
string expression of the Boolean Lustre expression (used when print-
ing Lustre programs). These properties are taken from the contracts
of the nodes.

• A dictionary object nodes whose keys are the identifiers of node in-
stances and whose values are dictionary objects. The inner dictionary
consists of lists iv and ov of input and output variables, another dic-
tionary contract containing assume and guarantee properties, and a
string body of a Lustre code fragment for a let block.

• A dictionary object dependencies whose keys are the names of node
instances and whose values are lists of the names of the (direct) child
node instances.

As an output, the tool prints “correct” or “unknown” according to the result
of the verification process.

Example 16. We consider the program in Example 10. Its interpretation as
a set of synchronous modules is described in Section 4.2. The properties

described as a Python script is as follows:

• Dictionary properties describes the properties P1 and P2:

properties = {

’p1’: {

’vars’: [’s1’],

’expression’: ’s1’

},

’p2’: {

’vars’: [’s2’],

’expression’: ’s2’

}

}

37

• Dictionary nodes describes Lustre node instances n1, n2 and toplevel,
corresponding to M(NI1), M(NI3), M(NI3), respectively:

nodes = {

’n1’: {

’iv’: [{ ’name’: ’s1’, ’type’: ’bool’ }],

’ov’: [{ ’name’: ’s2’, ’type’: ’bool’ }],

’contract’: {

’assume’: [’p1’],

’guarantee’: [’p2’]

},

’body’: ’’’let

s2 = s1;

tel’’’

},

’n2’: {

’iv’: [{ ’name’: ’s2’, ’type’: ’bool’ }],

’ov’: [{ ’name’: ’s1’, ’type’: ’bool’ }],

’contract’: {

’assume’: [’p2’],

’guarantee’: [’p1’]

},

’body’: ’’’let

s1 = true -> pre s2;

tel’’’

},

’toplevel’: {

’is_main’: True,

’iv’: [],

’ov’: [{ ’name’: ’s2’, ’type’: ’bool’ }],

’contract’: {

’assume’: [],

’guarantee’: [’p2’]

},

’body’: ’’’var s1: bool;

let

s2 = n1(s1);

s1 = n2(s2);

tel’’’

}

}

38

• Dictionary dependencies describes that n1 and n2 are leaves, and that
they are the children of toplevel:

dependencies = {

’toplevel’: [’n1’, ’n2’],

’n1’: [],

’n2’: []

}

• The script also contains commands to instantiate the Verifier class
and to call its method (first, the translator module will be invoked):

verifier = Verifier()

verifier.verify(nodes, properties, dependencies)

5.2 First experiment

We conducted the first experiment to demonstrate the increase of the ex-
ecution time of MC and to confirm the effectiveness of the compositional
approach. In the experiment, we performed a monolithic verification process
using Kind 2 and a compositional verification process using our tool.

The example used an integrator delayed by two nested counters. We
analyze each part of the program. First, there are two constants: max is the
limit for the counters, and threshold is the limit for the integrator. These
two parameters are important as they affect the number of calculations and
execution time.

const max = 3;

const threshold = 9.9;

The output of the first counter increases by 1 after each step. The output
of the second counter increases by 1 when the input value c1 is equal to max,
otherwise, the output value remains unchanged. Both counters are reset to
0 after reaching the max value.

node counter1 () returns (c1: int)

(*@contract

guarantee c1 <= max;

*)

39

let

c1 = 0 -> if pre c1 = max then 0 else pre c1 + 1;

tel

node counter2 (c1: int) returns (c2: int)

(*@contract

assume c1 <= max;

guarantee c2 <= max;

*)

let

c2 = 0 -> if pre c2 = max then 0 else if c1 = max then pre c2 +

1 else pre c2;

tel

The integrator was introduced in Example 5. In this example, its output
is only updated when the input value c2 is equal to max.

node integral (in: real; c2: int) returns (out: real)

(*@contract

assume c2 <= max;

assume -1.0 <= in and in <= 1.0;

guarantee out < threshold;

*)

let

out = in -> if c2 = max then (in + 0.9* pre out) else pre out;

tel

Finally, the top-level node calls to all the sub-nodes above with a guar-
antee about the output of the integrator.

node toplevel (in: real) returns (out: real)

(*@contract

assume -1.0 <= in and in <= 1.0;

guarantee out < threshold;

*)

var c1 : int;

var c2 : int;

let

c1 = counter1() ;

c2 = counter2(c1) ;

out = integral(in, c2) ;

tel

40

Table 5.1: Execution time and analyzed steps required for monolithic verifi-
cation.

Max
Threshold

4.0 6.0 8.0 9.0 9.9

1 0.2s 0.3s 0.5s 0.7s 1.6s
k=8 k=16 k=30 k=42 k=86

2 0.3s 0.6s 1.6s 3.6s 16.4s
k=24 k=48 k=90 k=126 k=258

4 1.1s 5.4s 22.7s 59.1s TO
k=80 k=160 k=300 k=420

6 2.9s 18.8s 154s TO -
k=168 k=336 k=630

8 8.6s 75.6s TO - -
k=288 k=576

10 34.6s 267s - - -
k=440 k=880

12 72.1s TO - - -
k=624

14 201s - - - -
k=840

15 260s - - - -
k=960

16 TO - - - -

The program can be proved to be incorrect if threshold is less than 10
(explained in Example 6). We gradually increased those values and observed
correlations between them and the execution time as well as the number
of analyzed steps. The timeout was set at 300 seconds. The experimental
results are showed in Table 5.1 and Table 5.3.

The monolithic process requires the verification tool to execute every step
until the property is proved or time out. Since the increase of counter 2 is
delayed by counter 1 (for an amount of max steps), and the increase of the
integrator is delayed by counter 2 (for an amount of max× (max+1) steps),
the number of analyzed steps for the integrator to go over the threshold
increases along with the values of max and threshold. We can see that

41

Table 5.2: An example execution when performing monolithic verification.
Step 1 2 3 4 5 6 7 8 9 10 11 12
c1 0 1 2 0 1 2 0 1 2 0 1 2
c2 0 0 1 1 1 2 0 0 1 1 1 2
in 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
out 1.0 1.0 1.0 1.0 1.0 1.9 1.9 1.9 1.9 1.9 1.9 2.71

Table 5.3: Execution time and analyzed steps required for compositional
verification.

Max
Threshold

4.0 6.0 8.0 9.0 9.9

any 1.7s 1.9s 6.7s 16s 170s
k=4 k=8 k=15 k=21 k=43

execution time increased rapidly, possibly up to 16 times for one increase
(threshold = 9.0 and max increased from 2 to 4). The number of analyzed
steps increased significantly, too. As the threshold value approached 10 (but
was not equal to 10), the timeout occurred quickly.

For instances, if max = 2 and threshold = 2.0, the execution is shown in
Table. 5.2.

Normally, if the integrator is executed separately, it takes only 3 steps
to go over the threshold, while the example above took up to 12 steps. In
general, as we increase the values of max and threshold, the number of
analyzed steps also increases and execution time follows.

The compositional process, on the other hand, took much less time and
analyzed step. For instance, 1.7 seconds and 4 steps in comparison to 259
seconds and 959 steps (threshold = 4.0 and max = 15), which means up to
a 150-fold improvement in execution time. This method verified each node
individually so the increase of the integrator was not affected by the counters.

5.3 Second experiment

The second experiment was conducted to evaluate whether our implementa-
tion verifies the Lustre programs correctly and efficiently. In this experiment,

42

we verified several circular examples that cannot be handled by the compo-
sitional verification function of Kind 2.

Simplified circular program

We considered the Lustre program in Example 10.
As we mentioned before, this example cannot be handled by the compo-

sitional verification function of Kind 2. Note that Kind 2 could verify it with
the monolithic mode. Although the correctness of sub-nodes N1 and N2 are
proved by modular analyzing when verifying the entire system with depen-
dencies, compositional reasoning takes into account the interactions between
nodes and generates a spurious counterexample, in which input signals of
both sub-nodes are false and leads to the output signals are also false.

First, we applied our method to the simplified program, in which we
assumed that the interpretation module of toplevel node is the parallel com-
position of the leaves (Section 4.3): M(NI 3) = M(NI 1) ||M(NI 2).

The proof tree of the program was given in Section 4.2. Our tool gave
the result correct after 0.006 seconds (Fig. 5.1).

Circular program

We applied our method to the circular program with node rest generated.
Detail about node rest is introduced in Section 4.3.

Now the program consists of four synchronous modulesM(NI 1), M(NI 2),
M(NR) and M(NI 3) corresponding to the instance of nodes n1, n2, rest
and toplevel, respectively. The triples can be translated as the following
implementation relations:

M(NI 1) ||M(AI 1) |= M(GI 1),

M(NI 2) ||M(AI 2) |= M(GI 2),

M(NR) ||M(AR) |= M(GR),

M(NI 3) |= M(GI 3).

We interpreted the Boolean Lustre expression s1, s2, s1 , s2 as synchronous
modules P1, P2, P1

′, P2
′, respectively. Then we had

M(AI1) = P1′,M(GI1) = P2,M(AI2) = P2′,M(GI2) = P1,

M(AR) = P1 ||P2,M(GR) = P1′ ||P2′,M(GI3) = P2.

43

Verifying node n1 by Kind 2...

Result: Success.

Verifying node n2 by Kind 2...

Result: Success.

Leaf nodes are verified.

n1 = cv.new_node()

n2 = cv.new_node()

cv.add(compat(n1,n2))

p1 = cv.new_node()

p2 = cv.new_node()

cv.add(compat(p1,p2))

cv.add(compat(p1,n1))

cv.add(impl(pc(n1, p1),p2))

cv.add(compat(p2,n2))

cv.add(impl(pc(n2, p2),p1))

cv.check(impl(pc(n1, n2),p2))

Program verification result: Correct.

time: 0.006000

memory: 17.240000

Figure 5.1: Verification result for the simplified circular program.

The implementation relations become:

M(NI 1) ||P1
′ |= P2,

M(NI 2) ||P2
′ |= P1,

M(NR) ||P1 ||P2 |= P1
′ ||P2

′,

M(NI 3) |= P2.

We constructed the proof tree for the program (Fig 5.2).
Then we verified the program with our tool and got the result correct

after 0.011 seconds of execution time.

...

Program verification result: Correct.

time: 0.011000

memory: 18.200000

44

s1
s2
s1_
s2_
(M(NI1) || P1') || P1 ⊨ M(NI1) || P1'

 M(NI1) || P1' ⊨ P2

(M(NI2) || P2') || P2 ⊨ M(NI2) || P2'

 M(NI2) || P2' ⊨ P1

M(NI1) || P1' || P1 ⊨ P2

M(NI2) || P2' || P2 ⊨ P1

(M(NI1) || P1') || (M(NI2) || P2') ⊨ P1 || P2

M(NR) || (P1 || P2) ⊨ P1' || P2'

(M(NI1) || M(NI2)) || M(NR) ⊨ (P1 || P2) || (P1' || P2')

(P1 || P2) || (P1' || P2') ⊨ P1 || P2

(M(NI1) || M(NI2)) || M(NR) ⊨ P1 || P2

P1 || P2 ⊨ P2

(M(NI1) || M(NI2)) || M(NR) ⊨ P2

(1) (2) (3) (4)

(7) (8)

(9) (10)

(11) (12)

(13)

(5) (6)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

(9)
(10)

(11)

(12)

(13)

P1

P2

P1'
P2'

(1)

(SI) (SI)

(SI)

(SI)

(Trans)

(Trans)

(Trans) (Trans)

(AG)

(AG)

Kind 2 Kind 2

Figure 5.2: Proof tree for the circular program.

Circualar program with intermediate node

In the example above, we handled a program that has one top-level triple
instance and the others are all leaves. Now we consider an extended program
containing an intermediate node.

The node toplevel was renamed to intermediate. Then we defined a

45

node n3 and a new toplevel node which calls to intermediate and n3.

node n3 (s2: bool) returns (s3: bool)

(*@contract

assume s2;

guarantee s3;

*)

let

s3 = s2;

tel

node intermediate () returns (s2: bool)

(*@contract

guarantee s2;

*)

var s1: bool;

let

s2 = n1(s1);

s1 = n2(s2);

tel

node toplevel () returns (s3: bool)

(*@contract

guarantee s3;

*)

var s2: bool;

let

s2 = intermediate();

s3 = n3(s2);

tel

The dependencies of the input Python script was updated to

dependencies = {

’toplevel’: [’intermediate’, ’n3’],

’intermediate’: [’n1’, ’n2’],

’n1’: [],

’n2’: [],

’n3’: []

}

which means the tree structure contains two sub-trees. One sub-tree has

46

intermediate as the root, while n1 and n2 are leaves. The other sub-tree
has toplevel as the root, while intermediate and n3 are leaves.

The verification process follows the description in Section 4.4:

1. The tool verifies all leaf nodes n1, n2 and n3 with Kind 2. All leaf
nodes are verified to be correct and appended to S - a list containing
verified nodes.

2. The tool checks that node intermediate is not verified and all children
of intermediate are in S. It continues to verify node intermediate.
After the verification succeeded, intermediate is added to S.

3. The tool checks that node toplevel is not verified and all children
of toplevel are in S. It continues to verify node toplevel. After
the verification succeeded, toplevel is added to S. The verification
process is complete.

We performed the verification and got the results correct after 0.024
seconds of execution time in total.

Verifying node n1 by Kind 2...

Result: Success.

Verifying node n2 by Kind 2...

Result: Success.

All leaf nodes have been verified.

Start verifying new sub-tree:

...

cv.check(impl(pc(rest, pc(n1, n2)),p2))

Verification result for the node intermediate: Correct.

time: 0.008000

memory: 18.200000

Start verifying new sub-tree:

...

cv.check(impl(pc(rest, pc(intermediate, n3)),p3))

Verification result for the node toplevel: Correct.

time: 0.016000

memory: 18.430000

Verification completed.

47

Two digital filters

We conducted an experiment on a complex example containing two digital
filters, which was introduced in Example 12.

The program declares a node Filter as the sub-node and node toplevel
as the top-level node. toplevel invokes Filter twice so there are two in-
stances of filter or two filters with the same functionality.

By applying our tool, we printed out two instances of node Filter:

node f1 (pre_b2: bool; s2: real) returns (b1: bool; s1: real)

(*@contract

assume pre_b2;

assume -1.0 <= s2 and s2 <= 1.0;

guarantee b1;

guarantee -1.0 <= s1 and s1 <= 1.0;

*)

var sum, D1, D2: real;

let

b1 = pre_b2;

sum = 0.0582*(if pre_b2 then s2 else -s2) - (-1.49*D1) - 0.881*

D2;

D1 = 0.0 -> pre sum;

D2 = 0.0 -> pre D1;

s1 = (sum - D2) / 1.25;

tel

node f2 (b1: bool; in: real) returns (b2: bool; s2: real)

(*@contract

assume b1;

assume -1.0 <= in and in <= 1.0;

guarantee b2;

guarantee -1.0 <= s2 and s2 <= 1.0;

*)

var sum, D1, D2: real;

let

b2 = b1;

sum = 0.0582*(if b1 then in else -in) - (-1.49*D1) - 0.881*D2;

D1 = 0.0 -> pre sum;

D2 = 0.0 -> pre D1;

s2 = (sum - D2) / 1.25;

tel

48

These two instances also contain circular referencing as each of them
provides input for the other. When verifying each instance individually, Kind
2 performed the k-induction method. The process took a lot of time (270
seconds) and 25 inductive steps because the computations inside the node
are very complicated. Hence we verified the node Filter first and confirmed
it was correct. Then we assumed the node has been correct when applying
our tool in this program so that we could save time from the verification
process of the leaf node.

We constructed a proof tree (Fig. 5.3). The program consists of four syn-
chronous modules M(NI 1), M(NI 2), M(NR) and M(NI 3) corresponding to
the instance of nodes f1, f2, rest and toplevel, respectively. Denotations
of Boolean Lustre expressions are also shown in Fig. 5.3.

The proof tree was not difficult to construct by hand. But when we
applied our tool to the program, the result was unknown because of the
timeout, even though we raised the timeout limitation to 1000 seconds.

We checked the number of premises to construct the proof tree and saw
that there were 73 premises generated. This large number of premises created
many possible deductions and took a lot of time to search for the correct
answers. We tried to find solutions to deal with this problem. We realized
that during the construction of the proof tree, there were several properties
which are always appeared together in each deduction step, e.g., pre b2 and
-1.0 <= s2 and s2 <= 1.0. Hence, we modified the translator module by
adding a pre-process to group those properties into a single property. This
aimed to reduce the number of modules and the size of the search space.

After the modification, the number of premises decreased to 43. And the
result correct was provided after 0.311 seconds (without verification of the
leaf nodes by Kind 2).

5.4 Discussions

The result of the first experiment shows that monolithic MC may become
time-consuming when it requires analyzing a number of execution steps.
Compositional verification can be more effective in such cases. As a future
work, we can conduct a temporal composition, which splits the execution
timeline of a system into several segments and analyzes each of them, in-
stead of separating the system by each component.

In the second experiment, our implementation of the proposed method

49

pre_b2 and -1.0 <= s2_ and s2_ <= 1.0

b1 and -1.0 <= s1 and s1 <= 1.0

b1_ and -1.0 <= in_ and in_ <= 1.0

b2 and -1.0 <= s2 and s2 <= 1.0

-1.0 <= in_ and in_ <= 1.0

-1.0 <= s1 and s1 <= 1.0

 (M(NI1) || P1) || P4 ⊨ (M(NI1) || P1)

 M(NI1) || P1 ⊨ P2

 M(NI2) || P3 ⊨ P4

(M(NI1) || P1) || P4 ⊨ P2

(M(NI2) || P3) || P2 ⊨ P4

(M(NI1) || P1) || (M(NI2) || P3) ⊨ P2 || P4

 (M(NI2) || P5) || (P2 || P4) ⊨ P1 || P3

(M(NI1) || M(NI2)) || (M(NR) || P5) ⊨ (P1 || P3) || (P2 || P4)

P1 || P3 || P2 || P4 ⊨ P2

M(NI1) || M(NI2) || M(NR) || P5 ⊨ P2

P2 ⊨ P6

(1) (2) (3) (4)

(7) (8)

(9) (10)

(11) (12)

M(NI1) || M(NI2) || M(NR) || P5 ⊨ P6

(5) (6)

(13)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

 (M(NI2) || P3) || P2 ⊨ (M(NI2) || P3)

(13)

P1

P2

P3

P4

P5

P6

(10)

(8)

(9)

(11)

(12)

(SI) (SI)

(SI)

(SI)

(Trans)

(Trans)

(Trans) (Trans)

Kind 2 Kind 2

(AG)

(AG)

Figure 5.3: Proof tree for the program of two digital filters.

was able to verify circular Lustre programs. We confirmed that the results
were correct. With the monolithic mode, Kind 2 is also able to verify simple
examples efficiently. With the compositional mode, Kind 2 cannot handle

50

the examples, resulting in spurious counterexamples.
We identified a scalability issue with our tool. For some examples involv-

ing complex contracts, the proof construction process by the validator module
becomes time-consuming. We consider that this is due to the increase of the
number of equivalent composite module terms and the number of the compat
terms (then, the number of combinations examined by Z3 will increase). A
workaround to handle such cases is to assert implementation relations that
are expected to hold in the middle of the proof tree. We confirmed that this
workaround actually reduces the execution time of Z3. Improvement of the
proof tree construction process is a future work.

51

Chapter 6

Related work

Alur and Henzinger have proposed the concepts of synchronous modules and
the compositional reasoning on them [10]. They also implemented the Mocha
tool [19] for the compositional verification of real-time systems. While Mocha
requires manual efforts by the users, we aim at an automated method in this
research.

Champion et al. have proposed Kind 2 [4] and CoCoSpec [15], which are
tools for the compositional verification of Lustre programs as described in
Section 2.5. As mentioned earlier, the compositional verification function of
Kind 2 has a limitation in handling circular programs.

While most of the research on circular compositional reasoning addresses
safety properties, McMillan [7] studied how to reason for liveness properties.

Studies have been conducted to automatically generate contracts by using
the L* algorithm for example [12]. In this research, we assume that input
programs are annotated appropriately by the users. We can use a contract
generation method to facilitate the compositional verification process.

52

Chapter 7

Conclusion

7.1 Conclusion

Verifying the safety of practical synchronous systems is important and com-
positional verification is promising since practical programs may be very large
and complex. In this thesis, we studied how to apply deduction rules for cir-
cular reasoning so that we can perform compositional verification on Lustre
programs with a different approach from the Kind 2 tool.

We proposed a new compositional MC function for Lustre programs an-
notated with an assume-guarantee contract. The method has one advantage
is that it can handle circular programs, which is not completely supported
in Kind 2. Our approach is also different from the compositional verification
of Kind 2 as we translate Lustre nodes and contract properties into the con-
cepts of synchronous modules and exploit the dedicated deduction rules for
circular reasoning, then by checking the existence of a proof tree, we are able
the verify the correctness of an annotated Lustre program including circular
ones.

We implemented a tool as a Python script using Z3Py and Kind 2 to
evaluate the efficiency of the proposed method and our implementation. The
results showed that the examples of Lustre programs are verified correctly.
During the experiment, we discovered that the process may become inef-
ficient due to the large search space among many possible deductions in
compositional reasoning.

53

7.2 Future work

Our proposed method works for assume-guarantee contract of CoCoSpec
language but has not yet supported mode [15]. Therefore, we will try to
handle annotated Lustre programs with mode contracts.

The experiments that we conducted were still based on simple examples.
We need to work on improving the efficiency of the proposed method and
applying it to practical Lustre programs.

Besides, we can study a new temporal composition method to verify the
Lustre programs with lengthy behaviors.

Finally, the compositional MC function of Kind 2 requires manually an-
notating the contract. It will be more practical if the annotation process can
be automated. In the future, we may study how to generate contracts for
infinite domains in Lustre. We consider using learning techniques such as
the L* algorithm.

54

Bibliography

[1] Barrett, C., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook
of Model Checking, chap. 11, pp. 305–343 (2018)

[2] Clarke, E. M., Henzinger, T. A., Veith, H.: Introduction to Model
Checking. In: Handbook of Model Checking, chap. 1, pp. 1–26 (2018)

[3] Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: A declar-
ative language for programming synchronous systems. In: POPL. pp.
178–188 (1987)

[4] Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The KIND 2 Model
Checker. In: Computer Aided Verification, pp. 510—517 (2016)

[5] Nejati, F., Ghani, A. A. A., Yap, N. K., Jafaar, A. B.: Handling State
Space Explosion in Component-Based Software Verification: A Review.
In: IEEE Access, vol. 9, pp. 77526–77544 (2021)

[6] Nancy, G. L., and Clark S. T.: An Investigation of the Therac-25 Acci-
dents. In: IEEE Computer, pp. 18–41 (1993)

[7] McMillan, K.L.: Circular Compositional Reasoning about Liveness. In:
Correct Hardware Design and Verification Methods, pp. 342-–346 (1999)

[8] Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous Observers and
the Verification of Reactive Systems. In: Algebraic Methodology and
Software Technology (AMAST). pp. 83–96 (1993)

[9] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous
dataflow programming language LUSTRE. In: Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320 (2000)

55

[10] Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in Sys-
tem Design 15(1), 7–48 (1999)

[11] Alur, R.: Synchronous Model. In: Principles of Cyber-Physical Sys-
tems, chap. 2, pp. 13–64. MIT Press (2015), http://mitpress.mit.
edu/books/principles-cyber-physical-systems

[12] Giannakopoulou, D., Kedar, S., Corina, S.: Compositional Reasoning.
In: Handbook of Model Checking, chap. 12, pp. 345–383 (2018)

[13] Kroening, D., Strichman, O.: Decision Procedures, 2nd ed. Springer,
Heidelberg (2016)

[14] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., Zhu, Y.: Bounded
model checking. In: Handbook of satisfiability, pp. 457–481 (2009)

[15] Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: A
mode-aware contract language for reactive systems. In: SEFM, pp. 347–
366 (2016)

[16] Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In:
Handbook of Model Checking, chap. 2, pp. 27–73 (2018)

[17] de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340
(2008)

[18] Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems.
(1995)

[19] Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K.,
Tasiran, S.: MOCHA: Modularity in model checking. In: Computer
Aided Verification, pp 521—525 (1998)

56

