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Abstract

Developing dialog systems capable of dynamically adapting to a user’s sentiment
state in real time is a challenging task. Existing multimodal models have demon-
strated impressive performance in estimating third-party labeled sentiment levels
by incorporating features from linguistic, visual, and speech modalities. On the
other hand, physiological signals play a crucial role in estimating self-reported
sentiment as they exhibit involuntary changes associated with emotions. Previous
studies have shown the effectiveness of fusing physiological and linguistic features
for self-reported sentiment estimation.

However, these studies often neglect the contextual interaction between ex-
changes, where each exchange consists of a pair of system and user utterances. To
address this gap, we propose an efficient approach that incorporates interplay of
physiological features between exchanges in dialogue, which consists of a system
utterance followed by a user utterance. Specifically, we introduce a framework
that combines linguistic and physiological signals across exchanges. Our approach
employs attention mechanisms to capture contextual information and long-term
dependencies within the dialog, enabling a comprehensive understanding of senti-
ment evolution. Additionally, we leverage convolutional neural networks (CNNs)
to learn robust representations from physiological signals, enhancing the interpre-
tation of the user’s emotional changes.

Through extensive experiments, our approach surpasses existing multimodal
models in sentiment estimation. Our findings highlight the importance of inter-
exchange learning for effective sentiment adaptation in dialog systems. By con-
sidering time-series changes in linguistic and physiological features across multiple
exchanges, our approach captures the dynamical changes of sentiment level, lead-
ing to more accurate and adaptive dialog interactions.
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Chapter 1

Introduction

1.1 General Introduction

Creating an adaptive dialog system capable of accurately recognizing and adapting
to a user’s real-time state is important for encouraging interesting and entertaining
human-agent interactions. The system should dynamically modify its behavior
based on the user’s present emotional state during a chat session. For instance,
the algorithm should proactively steer the conversation away from the present topic
if the user is getting bored with it, imitating human behavior. This can be achieved
by using Natural Language Processing (NLP) techniques such as sentiment analysis
or emotion detection in order to detect changes in emotions within conversations.

Incorporating NLP techniques, such as sentiment analysis or emotion detec-
tion, plays a crucial role in achieving this level of adaptability. By leveraging
these techniques, the dialogue system can detect changes in the user’s emotions
within conversations. For instance, it can discern shifts from positive to negative
sentiment or fluctuations in emotional intensity during the course of the conversa-
tion. Additionally, sentiment analysis and emotion detection can assist the system
in better understanding the underlying context and tone of the user’s messages,
allowing it to respond more appropriately and empathetically. When the user ex-
presses joy or satisfaction, the system can acknowledge their positive sentiment
and provide positive reinforcement or relevant content. Conversely, if the user
appears frustrated or upset, the system can offer empathetic responses or suggest
solutions to address their concerns.

An adaptive dialogue system can also benefit from multimodal sentiment anal-
ysis, where the integration of linguistic information with nonverbal cues, such as
facial expressions and vocal tones, enables a more comprehensive understanding of
the user’s emotional state. This holistic approach helps the system to accurately
gauge the user’s emotions and tailor its responses accordingly, further enhancing
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Figure 1.1: An example of the discrepancy between self-reported sentiment and
third-party sentiment annotations.

the quality of interactions. Moreover, ongoing research in the field of affective com-
puting and emotion-aware dialogue systems can contribute to refining the system’s
abilities. Continual advancements in machine learning algorithms and large-scale
datasets for emotion recognition can lead to improved accuracy and robustness in
detecting emotions from user inputs.

In conclusion, building an adaptive dialogue system that can recognize and
adapt to a user’s real-time emotional state is essential for creating engaging and
meaningful human-agent interactions. By leveraging NLP techniques, such as
sentiment analysis and emotion detection, alongside multimodal approaches, the
system can dynamically adjust its behavior to provide more empathetic and per-
sonalized responses. This advances the vision of human-like conversational AI and
fosters a more enjoyable and satisfying user experience.

1.2 Challenges and Motivations

Building adaptive dialogue system is difficult for numerous reasons. One major
challenge arises from the fact that a user’s self-reported sentiment may not always
manifest explicitly in the linguistic information derived from their utterances. Self-
reported sentiment is the user’s own perception of their emotional state, which may
not always be accurately reflected and recognized by others. Figure 1.1 shows
an example of self-reported sentiment and third-party sentiment annotations. In
this example, the user’s self-reported sentiment is negative, but the third-party
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sentiment is positive. People have different levels of emotional intelligence and may
purposefully hide their genuine feelings in their thoughts instead of expressing them
[1]. This phenomenon, known as “emotional masking”, poses a significant hurdle
to accurately identifying a user’s emotional state solely based on linguistic cues. To
address this challenge, researchers have explored alternative sources of information,
such as voice [2] and facial expressions [3, 4], to uncover hidden emotional nuances
that may not be recognized by linguistic analysis. By leveraging these additional
aspects of human communication, dialog systems can gain deeper insights into a
user’s underlying emotional state and adapt their responses accordingly, thereby
enhancing the overall effectiveness and naturalness of the conversation.

Despite the existing investigations into the use of physiological signals for self-
sentiment estimation and the integration of linguistic information from state-of-
the-art language models, an important aspect that has often been overlooked is the
incorporation of inter-exchange information within a conversation. Dialog systems
should be able to capture the dynamics and evolving sentiment across multiple ex-
changes to adapt their responses effectively. However, current approaches such as
[5, 6] primarily focus on individual exchanges and fail to consider the interplay and
contextual dependencies between them. This limitation hinders a comprehensive
understanding of sentiment evolution and restricts the system’s ability to adapt in
real-time. Therefore, it is necessary to resolve the lack of inter-exchange informa-
tion in sentiment estimation models to enable a more accurate and comprehensive
representation of sentiment adaptation in dialog systems. By incorporating inter-
exchange learning, dialog systems can capture the nuanced aspects of sentiment
evolution, enabling more precise and adaptive interactions with users.

Figure 1.2 illustrates the challenges addressed in this study regarding the in-
tegration of physiological signals and the interplay of exchanges in sentiment es-
timation. The figure depicts a sequence of dialog exchanges between a user and
a dialog system, with each exchange represented by a textual utterance. In each
exchange, the corresponding physiological signals, e.g. Blood Volume Pulse, and
user’s sentiment score are shown. The visualization highlights the need for captur-
ing inter-exchange information to understand the change of sentiment during the
conversation. In addition, another issue in multimodal sentiment analysis is that
there are a limited number of works that fully leverage these signals and jointly
learn their feature representation along with linguistic data in an end-to-end man-
ner.

Several studies used deep neural networks that are trained end-to-end to extract
physiological features [7, 8], but they applied to emotion recognition task. While
[9, 6] exploited multimodal learning for sentiment estimation, they hand-designed
all the physiological signal features. These approaches can be limiting, as they
may not capture the full potential of the physiological signals and may require
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Figure 1.2: Example of capturing self-reported sentiment changes by using multiple
exchanges information. The users’ physiological signal may change slowly, taking
effect after several turns.

domain expertise to design effective features. To overcome this limitation, our
proposed approach employs convolutional neural networks (CNNs) to learn robust
representations directly from physiological signals. By leveraging the power of deep
learning, our framework enables an end-to-end learning process, allowing the model
to automatically extract relevant features from the physiological signals, enhancing
the utilization of these signals for sentiment adaptation in dialog systems.

1.3 Originality

In conclusion, this study primarily centers on two key contributions: the incor-
poration of inter-exchange information and physiological signals in sentiment esti-
mation for dialog systems. We prioritize linguistic information and physiological
signals, as previous research has shown that models utilizing these modalities out-
performed visual and audio modalities [5]. The key highlights of our contributions
include:

• Physiological signal representation with CNNs: The proposed approach lever-
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ages convolutional neural networks (CNNs) to learn robust representations
directly from physiological signals. The model automatically extracts rele-
vant features from the physiological signals, enhancing the utilization of these
signals for sentiment adaptation.

• Incorporation of inter-exchange information: This study addresses the limita-
tions of existing sentiment estimation models by proposing an approach that
captures inter-exchange information within dialog systems. By considering
the dynamic changes of sentiment across multiple exchanges, the proposed
approach enables more accurate and adaptive interactions with users.

1.4 Thesis Organization

We organize the structure of this report into five chapters. The first chapter pro-
vides an overview of the research topic, its significance, and the research objectives
of this study. The remaining chapters are organized as follows:

• Chapter 2: Related Works and Background conducts a comprehensive
analysis of the relevant literature, establishing a theoretical framework and
identifying gaps for the current research.

• Chapter 3: Methodology outlines the chosen research approach and de-
tails the proposed network architecture.

• Chapter 4: Experiments and Results presents the datasets, experimen-
tal setup, and results of experiments.

• Chapter 5: Conclusion and Future Works summarizes the key find-
ings, draws conclusions, highlights the study’s contributions, and provides
recommendations for future research.
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Chapter 2

Related Works and Background

This chapter provides an overview of the related works in the field of multimodal
sentiment analysis and physiological signal processing. We first introduce the text
based sentiment analysis in Section 2.1. Afterthat, we discuss the physiological
signal based sentiment analysis in Section 2.2. Section 2.3 discusses the multimodal
sentiment analysis. Finally, Section 2.4 presents the background knowledge of
several deep learning techniques, which were used in this thesis.

2.1 Text based Sentiment Analysis

Sentiment analysis, a critical area of NLP, has witnessed significant advancements
with the rise of neural network models. While conventional lexicon-based or hand-
crafted feature methods have been extensively explored, this section concentrates
on recent state-of-the-art (SOTA) neural network models that have revolutionized
sentiment analysis.

In recent times, neural network models have gained immense popularity in sen-
timent analysis tasks [10]. Notably, Convolutional Neural Networks, Long Short-
Term Memory networks, and their variants have demonstrated impressive perfor-
mance. Kim [11] introduced simple CNN models that achieved SOTA results on
multiple datasets, including the Stanford Sentiment Treebank v2 (SST-2) dataset,
boasting an accuracy of 88.1%. A notable contribution in the realm of contex-
tual word representations came from Peters et al. [12], who proposed embeddings
from language models (ELMo) based on a Bidirectional Long Short-Term Memory
(BiLSTM) approach. These deep contextualized word representations led to new
SOTA performances on six NLP tasks, including sentiment analysis.

In addition to LSTM-based approaches, Vaswani et al.[13] introduced a revo-
lutionary network architecture called the transformer. Built solely on an attention
mechanism, transformers achieved substantial improvements in computational effi-
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ciency through parallelization and demonstrated superior performance in machine
translation tasks.

Following the transformer’s success, Devlin et al.[14] developed BERT (Bidi-
rectional Encoder Representations from Transformers), a groundbreaking language
model based on a multilayer bidirectional transformer encoder. BERT remarkably
advanced the state-of-the-art on eleven NLP tasks, achieving an impressive 94.9%
accuracy on the SST-2 dataset. Consequently, BERT has become the standard for
NLP tasks and is widely adopted in various applications.

While these text-based neural network models have showcased exceptional per-
formance, it is essential to recognize that sentiment expression can be influenced
by multiple factors. Spoken language, often noisier and less structured than writ-
ten language[15], requires additional considerations beyond linguistic information
for sentiment analysis in dialogues. Explicit user sentiment, expressed as textual
information, can undoubtedly benefit from powerful NLP tools like BERT. How-
ever, to comprehensively understand user sentiment in dialogues, a multimodal
approach becomes imperative.

A multimodal approach to sentiment analysis involves the integration of infor-
mation from various modalities, such as text, audio, images, and videos. By fusing
signals from different sources, we can capture nuanced emotions and sentiment
cues that may not be adequately conveyed through text alone. This integration
can potentially lead to more accurate and holistic sentiment estimation, especially
in dynamic and interactive contexts like dialogues.

In conclusion, while text-based neural network models have significantly ad-
vanced sentiment analysis, we recognize the importance of a multimodal approach,
considering the complexity and diversity of factors that influence sentiment expres-
sion in spoken language. Integrating powerful tools like BERT with information
from other modalities holds promise in enhancing the understanding of user senti-
ment during dialogues and facilitating more contextually aware human-computer
interactions.

2.2 Physiological Signal based Sentiment Anal-

ysis

This section specifically focuses on research related to the use of deep neural net-
works for modeling the physiological signal

The comprehension of emotions and sentiments is a multifaceted process that
can be significantly enhanced by incorporating information from various modal-
ities, including language, visual cues, audio, and physiological signals. Among
these modalities, physiological signals offer a distinctive advantage in extracting
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implicit emotional responses, as they are not easily controllable by individuals on a
conscious level. For example, when observing someone watching a movie or partici-
pating in a video game, their emotional state may not be overtly expressed through
external cues, making it difficult to gauge their level of interest and engagement
solely based on external appearances.

In recent years, there has been a growing trend toward utilizing multiple modal-
ities, including visual, audio, and text, to recognize user sentiment [16]. This trend
can be attributed to the significant advancements in deep learning techniques for
processing and analyzing these modalities. However, they are outward signals that
could be masked by users [17, 8]. To overcome the limitations of traditional modal-
ities, researchers have turned their attention to physiological signals as a valuable
source of information for affective computing. For example, previous work has
leveraged Electroencephalogram (EEG), Electrocardiogram (ECG), etc. to recog-
nize user emotions [18, 19]. These signals are regarded as physiological modalities,
different from behavioral modalities such as facial expressions. Specifically, [18]
used frontal EEG signals to identify four emotional states: happy, fear, peace, and
disgust. They let the participants watch the corresponding video while recording
their brain signals.

Many approaches have been proposed to utilize physiological modalities to de-
tect an individual’s emotion, from hand-crafted feature modeling to applying deep
neural networks. For instance, Zhao et al [17] extracted the distinct emotion-
related features from the time domain, frequency domain, and nonlinear analysis.
Xu et al. [18] applied similar approaches to EEG data by extracting features from
the time domain, frequency domain, and space domain. They then filtered to re-
duce the number of features using various feature selection techniques. These fea-
tures were then used as input to traditional machine learning algorithms like sup-
port vector machines or feedforward neural networks. However, these approaches
often required domain expertise and limited the ability to capture complex pat-
terns in the data. Thus, recent studies focused on developing deep neural networks
to learn informative representations from physiological signals.

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
such as long short-term memory (LSTM) networks, have been employed to capture
the temporal dynamics and spatial patterns in physiological data. For example,
Wang et al. [20] and Yang et al. [21] proposed using CNNs, Zitouni et al. [22] pro-
posed using LSTM to extract the high-level feature representation from four kinds
of physiological signals and predict the users’ arousal-valence states. These deep
learning models have shown promising results in capturing the nuanced aspects
of emotion and sentiment encoded in physiological signals. Even so, one major
issue is that many works focus on recognizing users’ emotion scores, but sentiment
analysis using physiological signals is not widely studied. Katada et al. [6] studied
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the effects of physiological signals in different types of multimodal sentiment es-
timation. They proposed using LSTM to verify the effect of physiological signals
on sentiment recognition, then adapted a multimodal Transformer architecture to
jointly learn with other modalities. However, there is a limitation is that they
overprocessed the raw sigals, which might cause a loss of information.

In conclusion, physiological signals are a valuable source of information for
sentiment analysis. Therefore, in this work, we propose a novel deep learning
model to extract the high-level feature representation from physiological signals
and predict the users’ sentiment scores.

2.3 Multimodal Sentiment Analysis

Nonverbal information processing is a vital technique employed to extract a user’s
sentiment from sources other than linguistic data. Human communication en-
compasses not only natural language but also nonverbal behaviors like facial ex-
pressions [23, 24], vocal behavior [25], and gestures [26]. In the domain of facial
expressions, Ekman and Friesen’s Facial Action Coding System (FACS) is widely
used to map emotions, contributing to various affective computing research en-
deavors. Vocal behavior, on the other hand, reveals emotions through acoustic
features such as loudness, pitch, and rhythm, and significant efforts have been
dedicated to understanding the relationship between vocal behavior and emotion
[27]. While there are relatively fewer gesture-based emotion studies compared
to facial expressions and vocal behavior, gestures are also essential in conveying
emotions. For example, high-frequency hand clapping often expresses joy and sat-
isfaction [28]. These nonverbal cues are collectively known as social signals [27],
and their processing, termed social signal processing, is frequently employed to
build automatic user state estimation models for adaptive dialogue systems [29].
In sentiment analysis, social signals such as facial expressions, body gestures, and
prosody are frequently utilized as nonverbal information sources [30].

More recently, researchers have noted the limitations of single modalities, espe-
cially outward modalities. They shifted their focus to combining multiple types of
data in the hopes of gaining a deeper understanding of human emotions. The in-
troduction of Transformer models, in particular BERT, has transformed language
modeling and text-based sentiment estimation [13, 14, 31]. The incorporation of
audiovisual features into multimodal Transformer models has also been proposed
[32, 33, 34]. MulT [35] was the first model for sentiment analysis across multiple
modalities. MulT introduced a crossmodal attention mechanism that efficiently
adapts information across modalities. Later on, Devamanyu et al. [33] improved
feature representations by introducing modality-invariant and modality-specific
representation modules.
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Although previous studies have focused on text and audiovisual modalities,
there is a growing interest in investigating the incorporation of physiological sig-
nals into multimodal affective analysis. Several datasets have been created for
emotion and sentiment research using videos or conversational interactions [36,
37, 38, 39, 40]. These datasets offer valuable resources for investigating the effec-
tiveness of physiological signals in capturing subtle sentiment changes that may
not be evident in explicit textual or audiovisual information. However, [40] was
the only dataset that contained both textual and physiological information for the
sentiment analysis task. The dataset was generated by allowing participants to
chat with agents, and the participants themselves annotated the sentiment labels.
To capture long-term dependencies between physiological signals and the corre-
sponding linguistic tokens, a time-series multimodal Transformer model, which
was inspired by Mult, was proposed in [5]. However, these methods only consid-
ered the temporal dependencies between signals within a single utterance, limiting
their ability to capture the dynamic changes across exchanges.

In the first step of our proposed method, CNNs are used to represent the
physiologically significant features. Then, we propose a method that leverages
LSTM to model the interaction between utterances for estimation of sentiment
during human-agent interactions. Our methodology is intended to capture the
dynamic nature of sentiments within a conversation by utilizing the sequential
information from exchanges. To evaluate the efficacy of our method, we use the
Hazumi1911 dataset [40], the only publicly available dataset containing both time-
series textual and physiological information.

2.4 Background

2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have revolutionized the field of computer
vision, enabling remarkable advancements in image recognition tasks. Originally
developed to process 2D grid-like data, CNNs have since been extended to handle
various data types, including time series data. In this section, we introduce the
fundamental concepts of CNNs and delve into their innovative application in time
series feature representation.
Convolutional Neural Networks

Convolutional Neural Networks belong to a category of deep learning models
that possess the ability to automatically acquire hierarchical representations from
input data. They excel in tasks that involve spatial relationships, making them
particularly well-suited for image processing. At the heart of a CNN lies the
convolutional layer, responsible for applying filters or kernels across the input
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Figure 2.1: An example of a convolutional neural network.

data to identify and extract local patterns and distinctive features. These filters
slide over the input, performing element-wise multiplications and summing the
results to create feature maps that capture specific patterns. The ability of CNNs
to learn hierarchical features, where lower layers detect simple patterns like edges,
and deeper layers recognize complex structures, makes them powerful tools for
feature extraction in various data domains. A visualization of the convolutional
layer is shown in Figure2.1. The input is a 2D grid-like structure, such as an
image, and the convolutional filters slide over the input, performing local feature
extraction at each location. The filters are typically small in size, such as 3x3 or
5x5, and are applied across the entire input. The filters are learned during the
training process, and the resulting feature maps are passed to the next layer in
the network.
Application of CNNs in Time Series Feature Representation

While initially designed for image processing, CNNs have been adapted to
handle time series data effectively. Time series data is a sequence of values recorded
at successive time points, making it fundamentally different from grid-like data. To
apply CNNs to time series data, we need to reinterpret the 1D temporal structure
as a 2D grid-like structure, where one axis represents time steps and the other axis
corresponds to different features or channels. To capture temporal patterns, the
convolutional filters slide over the time series, performing local feature extraction
at each time step. By learning relevant patterns and features, CNNs excel in
recognizing temporal dependencies and capturing characteristic patterns present
in the data.

In summary, the adaptation of Convolutional Neural Networks to time series
data allows for automatic feature extraction, hierarchical representation, and ro-
bustness to time shifts. These advantages make CNNs highly effective tools for
time series feature representation, enabling advanced analyses and predictions in
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diverse domains.

2.4.2 Recurrent Neural Networks

In this section, we delve into the world of Recurrent Neural Networks (RNNs), a
specialized class of deep learning models designed to tackle sequential data. RNNs
differ from traditional feedforward neural networks in their ability to capture tem-
poral dependencies, making them highly effective for modeling dynamic sequences
such as time series data, natural language, and audio.

At the core of RNNs lies their recurrent nature, which enables them to maintain
hidden states that persist across time steps. Each RNN unit processes the input
at the current time step along with the hidden state from the previous time step,
allowing the model to retain memory of past information. This feedback loop
allows RNNs to understand the sequential nature of the data and make predictions
based on the context learned from preceding elements in the sequence.

The simple formulation of RNNs can be represented as follows:

ht = σ(Wxhxt + Whhht−1 + bh)

yt = σ(Whyht + by)

where xt is the input at time step t, ht is the hidden state at time step t, yt
is the output at time step t, Wxh is the weight matrix for the input, Whh is the
weight matrix for the hidden state, Why is the weight matrix for the output, bh is
the bias vector for the hidden state, by is the bias vector for the output, and σ is
the activation function.

Figure 2.2: Visualization of RNN, LSTM, and GRU.

Over time, various variants of RNNs have been developed to address some of
their limitations, such as difficulty in capturing long-term dependencies. Some of
the popular RNN variants are visualized in Figure2.2 and described below:
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• Long Short-Term Memory (LSTM) [41]: LSTM is designed to overcome the
vanishing gradient problem in traditional RNNs, which hampers their ability
to capture long-term dependencies. LSTM introduces gating mechanisms
that enable the model to retain important information over extended time
periods, making it well-suited for tasks requiring memory of distant events.

• Gated Recurrent Unit (GRU) [42]: GRU is a simplified version of LSTM
that also employs gating mechanisms but with fewer parameters. It strikes
a balance between LSTM and traditional RNNs, providing efficient memory
management while being computationally lighter.

• Bidirectional RNN (BiRNN) [43]: BiRNN processes the input sequence in
both forward and backward directions, allowing the model to access future
as well as past context. This bidirectional context incorporation can enhance
the understanding of the entire sequence.

In conclusion, Recurrent Neural Networks are powerful models for handling
sequential data due to their recurrent architecture, which allows them to cap-
ture temporal dependencies. The introduction of variants like LSTM, GRU, and
BiRNN has further improved the ability of RNNs to model long-term dependen-
cies and complex sequential patterns. These models have revolutionized various
applications in natural language processing, time series analysis, and sequential
data processing, and continue to be a focus of research and development in the
deep learning community.

2.4.3 Transformer

The Transformer is a groundbreaking deep learning architecture that has had a
profound impact on the field of NLP. Introduced in the paper ”Attention is All
You Need” by Vaswani et al. [13], the Transformer has rapidly become the de facto
standard for various NLP tasks, including machine translation, text generation,
and language understanding. Before the advent of the Transformer, traditional
sequence-to-sequence models, such as RNNs and LSTM networks, were widely used
for NLP tasks. However, these models faced challenges in capturing long-range
dependencies and suffered from computational inefficiencies due to sequential pro-
cessing. The Transformer architecture addresses these limitations by introducing
the attention mechanism, which allows the model to focus on relevant parts of
the input sequence while processing each element. This parallelization capability
significantly speeds up training and enables the model to capture dependencies
between distant elements in the sequence, revolutionizing the way sequential data
is processed. Figure 2.3 visualizes the Transformer architecture.
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Figure 2.3: Transformer architecture.

The Transformer follows an encoder-decoder architecture, which is common
in sequence-to-sequence tasks like machine translation. The encoder processes
the input sequence and produces context-aware representations, while the decoder
generates the output sequence based on the encoder’s context. The self-attention
mechanism in the encoder allows the model to understand the relationships among
different elements in the input sequence, while the decoder’s attention mechanism
helps focus on the relevant parts of the encoder’s representations during generation.

The key innovation in the Transformer is the self-attention mechanism. Unlike
traditional models that process sequences sequentially, the Transformer computes
the importance of each input element relative to the others. This is achieved by
calculating attention scores between all pairs of elements in the input sequence,
producing an attention matrix. The attention matrix is used to compute weighted
sums of the input elements, where the weights represent the importance of each
element based on its relevance to others. This allows the model to capture long-
range dependencies efficiently and effectively.

Technically speaking, attention measures the relevance of each element in the
input sequence to the current element being processed. This is done by computing
an attention score between the current element and every other element in the
sequence, producing an attention vector. The attention vector is then used to
compute a weighted sum of the input elements, where the weights represent the
importance of each element based on its relevance to the current element. This
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allows the model to capture long-range dependencies efficiently and effectively.
The mathematical formulation of the attention mechanism is as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Where Q is the query matrix, K is the key matrix, V is the value matrix, and
dk is the dimension of the key vectors. The query matrix is used to compute
the attention scores between the current element and every other element in the
sequence, while the key matrix is used to compute the attention scores between
the current element and every other element in the sequence. The value matrix
is used to compute the weighted sum of the input elements, where the weights
represent the importance of each element based on its relevance to the current
element. The attention scores are computed by taking the dot product of the
query and key vectors, and then dividing by the square root of the dimension of
the feature vectors. The attention scores are then normalized using the softmax
function, which ensures that the weights sum to one. The weighted sum of the
input elements is then computed by multiplying the attention scores with the value
vectors. This kind of attention mechanism is called scaled dot-product attention,
and could be visualized in Figure 2.4.

Figure 2.4: Graphical representation of scaled dot-product attention.

Transformer uses multi-head attention mechanism, which allows the model to
jointly attend to information from different representation subspaces at different
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positions. This enables the model to learn multiple representations of the input
sequence and capture different types of dependencies. The multi-head attention
mechanism is also used in the decoder to combine information from different parts
of the encoder’s representations.

Since its introduction, several variants of the Transformer have been proposed
to enhance its capabilities further. Notably, models like BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative Pre-trained
Transformer) have achieved remarkable success in a wide range of NLP tasks. The
Transformer has also been applied to other domains, including computer vision
and speech recognition, with promising results. The Transformer architecture
has revolutionized the field of NLP and continues to be a focus of research and
development in the deep learning community.
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Chapter 3

Methodology

Our goal is to employ a sequence of utterances to capture more context and phys-
iological changes during conversation. Therefore, we proposed a many-to-many
recurrent neural network that utilizes time-series physiological and linguistic data
from multiple exchanges to predict user sentiment. An illustration of our proposed
approach is shown in Figure 3.1. In our work, we consider physiological signals
retrieved from a wearable device as well as linguistic data. In Section 3.1, we
describe the techniques used to preprocess time-series physiological data. Then,
in Section 3.2, we present the architecture of convolutional neural network, which
will be trained end-to-end to learn representations of physiological signals. The
linguistic data is processed using a pre-trained BERT model, which is described
in Section 3.3. Finally, we introduce our proposed framework for utilizing mul-
timodal data from multiple exchanges in Section 3.4. We expect this framework
to be able to detect sudden shifts from positive to negative sentiment by analyz-
ing the sequence of utterances, given that sentiment can change abruptly during
conversation.

3.1 Physiological Signal Preprocessing

The physiological data used in this study were collected using a wristband device
with multiple sensors. Specifically, we used four signals, including electrodermal
activity (EDA), blood volume pulse (BVP), heart rate (HR), and skin temperature
(TEMP). The EDA measures the electrical activity of human skin, which reflects
the activity of sweat glands. Using spectral analyses of the blood vessels, the BVP
detects physiological changes in cardiovascular activity.

Following the preprocessing steps outlined in [22], we first normalized the raw
signals of each subject individually to account for differences in physiological re-
sponses due to age, gender, and personality, etc. In addition, the EDA signal could
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Figure 3.1: Our proposed overall architecture. In this architecture, exchange-level
physiological signals and linguistic information are fed into two modality-specific
encoder: Bert for text data and CNN for raw signals data. After retrieving the
exchange-level representations, we concatenated them to get one feature vector for
each exchange. The LSTM will be used as conversational-level predictor, which
will be trained to learn the temporal relationship between exchanges.

be decomposed into two components: skin conductance level (SCL), also known
as tonic, and skin conductance response (SCR), also known as phasic driver. As
suggested in [44], we retained the SCR because it is considered the most reliable
signal for determining an individual’s response to a stimulus.

In addition, because the four signals were collected by sensors with different
sampling frequencies, in order to synchronize various physiological signals, we re-
sampled them all to the same frequency. Concretely, we interpolated the lower
frequency signals based on the highest sampling frequency by using the nearest-
neighbor method. Formally, the user physiological signals for exchange i can be
represented by a vector xα

i ∈ RLraw , where α is type of signal (e.g. EDA) and
Lraw = ti × f , with ti is the length of utterance and f is the selected sampling
frequency. In contrast to other works such as [5, 6], we kept the preprocessing min-
imal and straightforward so as to better comprehend the effect of the proposed
model on learning representations.
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Figure 3.2: Our proposed CNNs architecture. The module contains sequence of
1D Convolution-BN-ReLU and Average Pooling

3.2 Convolutional Neural Networks for Physio-

logical Signals

(1) Convolutional front-end
Our goal is to learn the end-to-end characteristics of physiological signals without
any manually designed feature processing. Previous works [1][2][3] have demon-
strated that CNNs are able to extract fine-grained representations from this type of
low-level data, and perform well for many prediction tasks. Therefore, CNNs were
used to extract features from physiological inputs. Specifically, we implemented a
distinct CNNs block for each signal type. Inspired by [21], the convolutional front-
end module contains sequence 1D convolution block, then average pooling (shown
in Figure 3.2). Each block consists of 1D convolution layer, followed by a normal-
ization layer and activation layer (e.g. ReLU). We set the out-channels produced
by this module so that it will align with the linguistic embedding dimensions.

For every exchanges, we have four signals of length Le. Since the conversation
length of each exchange differs, zero padding the short signals and truncating the
long ones was performed after the preprocessing pipeline. Next, CNNs modules
transformed the each raw signals into latent representations of dimensions Lt×E.
Where Lt could be regarded as the number of tokens in one sentence, and E can
be viewed as the size of the token’s embedding.

19



(2) Multi-signal fusion
As emotions are subjective feelings produced by the complex coordination of multi-
ple neurophysiological systems, [45] It is recommended that using multiple signals
is better than using only one signal [21]. Thus, after transforming the signals
using CNNs module in Section 3.2, we combined the 4 type of signals together
and treated them as an entire physiological embedding that represent the hidden
affective information. The embedding can be viewed as a vector:

P = [Pbvp, PedaSCR
, Phr, Ptemp] ∈ RLt×(E∗4) (3.1)

where Pbvp, PedaSCR
, Phr and Ptemp are feature representations of BVP, EDA, HR

and TEMP extracted from the previous CNNs. Each feature embedding has di-
mension of Lt × E, and we concatenated them over the embedding dimensions.
In our study, the final dimensions are 64 × 768, as it corresponds to the linguistic
embedding dimensions.

3.3 BERT Representations

In recent years, Bidirectional Encoder Representations from Transformers (BERT)
has emerged as a state-of-the-art language representation model, demonstrating
exceptional performance across various NLP tasks [14]. Language model pretrain-
ing plays a pivotal role in enhancing model performance, and Tohoku University
has recently developed a pretrained Japanese BERT model, which has exhibited
remarkable capabilities in sentiment analysis, particularly in tweet emotion recog-
nition [46]. Leveraging this pretrained Tohoku BERT model, we adopted it as a
fundamental component in our study.

For each dialogue exchange, the participant’s and system’s utterances were
separated using a special token ([SEP]). Prior to BERT processing, utterance se-
quences underwent tokenization through MeCab and were further split into sub-
words using the WordPiece algorithm. This process enabled the representation of
text in a format compatible with the BERT model.

We then utilized the activations from the second-to-last hidden layer of the
BERT model, extracting valuable contextual information for each token in the
sequences. By employing average pooling over these activations, we obtained a
single vector of length 768, effectively summarizing the contextual information of
the entire sequence [14]. This vector was designated as the input feature vector
for each of the subsequent models employed in the study.

One significant advantage of utilizing BERT lies in its ability to eliminate the
need for complex handcrafted feature extraction. By leveraging the rich contextual
information encoded within the BERT model, we effectively bypassed the labor-
intensive process of feature engineering, streamlining the overall pipeline. Fur-
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thermore, the adoption of BERT facilitates seamless fusion with other modalities.
This multimodal fusion capability holds great potential for enriching the under-
standing of emotions by incorporating information from various sources, such as
audio, images, and video, in conjunction with textual data.

3.4 Inter-exchange multimodal feature modeling

We used LSTM [41] to learn the temporal relationships between multiple exchanges
during conversation. Our overall architecture is depicted in the Figure 3.1. It con-
sists o three phases: pre-processing, encoding, and time-fusion. Specifically, we
represented each exchange in the dialogue as a sequence of input tokens. These
tokens can include textual utterances, physiological signals, or a combination of
both. Next, we used pretrained Bert model [14] to extract the embedding of text
data and use CNNs to encode the physiological signals, as described in Section 3.2.
Thus, for each exchange t, we got an output vector et = [eL, eP ], where we con-
catenated the embedding eL of linguistic data and eP of physiological data at
exchange i over the embedding dimensions. Note that the Bert module is freezed
during training as in other works. Therefore, a LSTM model based on sequence
of multimodal representations e t can be represented as

⎛
⎜⎜⎝
f t

g t

ιt
o t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ
tanh
σ
σ

⎞
⎟⎟⎠W

(
e t

h t−1

)

ct = f t � ct−1 + g t � ιt

h t = o t � tanh(ct)

(3.2)

where f t, ιt and o t are the forget, input, and output gates, respectively; σ is
the sigmoid function; W is the weighting parameter; ct is the memory cell; h t

is the hidden state; and � is the Hadamard product. In our settings, the time t
corresponds to the number of exchanges used, could be regarded as context length.
e t is a latent vector represents the linguistic and physiological information of each
exchange.

Finally, the output of the LSTM model is fed into a fully connected layer
to predict the sentiment of the user at each exchange. The output of the fully
connected layer is a vector of continuous values, which are then mapped to a
range of [1, 7] using the scaled sigmoid function. The output of this function is the
predicted sentiment score of the user at each exchange. The loss function is the
mean squared error between the predicted sentiment score and the ground truth
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sentiment score. The overall loss function is defined as follows:

L =
1

N

N∑
i=1

(ŷi − yi)
2 (3.3)

where N is the number of exchanges, ŷi is the predicted sentiment score of the user
at exchange i, and yi is the ground truth sentiment score of the user at exchange
i. Note that in our implementation, we used many-to-many LSTM model, which
means that the LSTM model takes a sequence of multimodal representations as
input and outputs a sequence of predicted sentiment scores. Therefore, when
training, we calculated the loss function for every exchange in the input sequence by
using all hidden states corresponding to the each exchange. This setting improves
the training efficiency and allows the LSTM model to learn the underlying patterns
and dependencies between the exchanges. However, when doing prediction, we
only used the last hidden state to calculate the predicted sentiment score of the
user at the last exchange. This is because the last hidden state contains the
information of all previous exchanges, which is sufficient to predict the sentiment
score of the user at the current time step.

In summary, our proposed approach processes and encodes the physiological
data, then combines them with text representations, which will be represented as
exchange feature embedding. These representations are fed into the LSTM model,
allowing user sentiment changes during conversation to be captured.
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Chapter 4

Experiments and Results

This chapter describes the experimental settings for the evaluation of our proposed
model. We use Hazumi1911 dataset [40] to evaluate our proposed methods, and
Section 4.1 summarizes the dataset. The evaluation procedure is described in
Section 4.2 and section 4.3 describes the models used as baselines for comparison.
Section 4.4 shows the implementation details. Finally, Section 4.5 presents the
results of our experiments.

4.1 Dataset

In this study, we utilized the Hazumi1911 dataset [40], a multimodal human-
agent dialog corpus, which is a publicity available for research purpose. The data
collection process involved participants engaging in conversations with an agent,
which operated using the Wizard of Oz method. For our experiment, we focused
on data from 26 participants, resulting in a total of 2468 exchanges. The data
annotations were obtained by having participants watch videos of themselves after
the conversations and assign sentiment scores to each exchange. The sentiment
scores ranged from 1 (indicating no enjoyment of the dialog) to 7 (indicating
enjoyment of the dialog), and these scores were used as targets in our regression
tasks.

Within the Hazumi1911 dataset, the participants’ utterances were transcribed
manually, providing us with textual data. To extract language representations, we
employed BERT, following the approach described in Chapter 3. In addition to
textual data, physiological signals were recorded using an Empatica E4 wristband
developed by Empatica Inc. This wristband is non-intrusive and comfortable to
wear, making it suitable for affective computing research. It has been widely used
in previous studies, such as [47, 48, 49]. The E4 device recorded Electrodermal
Activity (EDA), Blood Volume Pulse (BVP), Heart Rate (HR), and Skin Tem-
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perature (TEMP) signals at respective frequencies of 4 Hz, 64 Hz, 1 Hz, and 4
Hz. To preprocess the time-series physiological signals, we followed the procedures
outlined in Section 3.1.

4.2 Evaluation Procedure

For evaluation, we employed a leave-one-person-out cross-validation (LOPOCV)
approach. In this method, the test data consisted of samples corresponding to
each exchange between a participant and the dialog system, while the training
data comprised the remaining samples from the other 25 participants. By ex-
cluding the test data of one participant from the training dataset, we ensured
the prevention of leakage and overestimation. To assess the performance of our
proposed approach, we calculated the mean absolute error (MAE) and Pearson cor-
relation coefficient (Corr) for each evaluation. Specifically, we computed the MAE
and Corr values for each participant using the LOPOCV method and reported the
average values across all participants. To account for variability, we conducted the
experiments three times with random initializations and averaged the evaluation
values obtained from the three repetitions. By comparing the evaluation values
among different models, we could assess the effectiveness of our proposed approach
relative to other methods.

4.3 Baselines

This section describes the baseline models that were used for comparisons with
our proposed method. The baselines include both single exchange and multiple
exchange models, as we wish to demonstrate the efficacy of multiple exchanges.
Single exchange: We describe the models trained using only one exchange in-
formation, as first to show the effectiveness of the CNNs module.

(1) Text based Transformer (TRT ): As a baseline model, we utilized a
conventional Transformer encoder from Bert model [13] for sentiment estimation,
which solely relied on linguistic information. The model consists of a Bert encoder
and using feed forward neural networks as regression head.

(2) Physiological signals CNNs (CNNP ): The CNNs architecture de-
scribed in Section 3.2, which trained using only physiological data was used as one
of our baselines to validate the effectiveness of end-to-end model.

(3) Time-series Physiological Transformer (TPTr): The TPTr was pro-
posed in [5]. This model captures multimodal signals using crossmodal attention
and achieves SOTA results in multimodal sentiment estimation. In contrast with
normal cross attention model, TPTr model applies attention with linguistic and
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Figure 4.1: Histogram of physiological lengths. Most exchanges have signal length
less than 2048.

physiological modalities and has a fixed attention direction, with the assumption
that physiological will comprehend linguistic information. In this study, authors
split the physiological signals into number of tokens, then take the average as the
token physiological information.

(4) End-to-end TPTr (ETPTr - ours): The ETPTr and Transformer mod-
els have the same parameter settings as the TPTr. However, we applied CNNs as
feature extractor for the physiological signals. As we believed that CNNs allow
learning feature representation more effectively.
Multi exchange: This part describes baselines models for multi-exchange learn-
ing. All of the models listed below will accept sequence of exchanges information
and their labels as training input, we referred number of exchanges as context
length.

(1) Multi-exchanges Feed Forward Neural network (M-FFN) This
model using a feed forward neural networks as regression head. After encoding
each exchanges information, we concatenated the exchange embedding and fed to
the FFN to predict the corresponding labels. This model settings are very minimal
and we set it as our baseline for the multi-exchanges paradigm.
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(2) Multi-exchanges TPTr (M-TPTr): In this model, we made the multi-
modal Transformer described previously applicable to multiple exchanges. Specif-
ically, the embedding dimensions of multiple exchanges were concatenated and fed
to the cross-attention modules.

(3) Multi-exchanges LSTM (M-LSTM): This is our proposed model, as
described in the Section 3. We validated the model performance with context
length of 3, 5 and 7, correspond to number of consecutive utterances in a conver-
sation. However, we keep the training parameters the same in these studies, which
caused some decrease in the performances, as described in the Section 4.5.3.

4.4 Implementation Details

We implemented our proposed system using the Pytorch framework. We used
learning rate of 0.0001 and used Adam optimizer to optimize our models. We set
dropout parameters to 0.1 to overcome overfitting. As described in Section 3.1,
we interpolated all signals to 64Hz, in order to synchronize them. In addition,
due to the varying lengths of utterances, we fixed the size of raw physiological to
2048 and zero-padded the short utterances. As shown in Figure 4.1, 2048 falls
within 95 quantiles, so it will cover nearly all cases. The CNN modules include
sequences of 5 1D convolution blocks with kernel size varies from 11 to 3, after
each blocks, an average pooling layer will reduce the signal lengths by half. We set
our final physiological embedding dimension is 768, as the same as text embedding
dimension. Thus, the embedding dimension for each signals are 768/nsignals. For
example, if we use four signals, the dimension for each should be 192.

4.5 Results and Discussion

First, we demonstrate the efficacy of models based on our proposed CNNs mod-
ule for extracting physiological features in Section 4.5.1. The models that used
CNNs as feature extractors performed better than the previous ones, which used
handcrafted feature engineering. Second, we studied the model performances un-
der different sub-modalities in Section 4.5.2. Finally, to explore the effectiveness
of the interplay between exchanges, various long-context models were evaluated.
Their performances are shown in Section 4.5.3.

4.5.1 Performance of CNNs module

The results of the relf-reported sentiment prediction using single exchange are
shown in Table 4.1. Our proposed architecture achieved better performance com-
pared with all baseline approaches. Based on the results presented in the table,
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we observe the performance of different models in terms of mean absolute error
(MAE) and Pearson correlation coefficient (Corr) for sentiment estimation. The
TRT model achieved an MAE of 1.067 and a Corr of 0.212, while our proposed
CNNP model obtained an MAE of 1.094 and a Corr of 0.189. The TPTrT + P
model demonstrated improved performance with an MAE of 1.056 and a Corr of
0.243. However, our proposed ETPTrT + P model outperformed all other models,
achieving the lowest MAE of 1.049 and the highest Corr of 0.270. These results
indicate the efficacy of our proposed approach in incorporating both linguistic in-
formation and physiological signals, resulting in improved sentiment estimation
accuracy. And the utilization of convolutional neural networks (CNNs) for pro-
cessing physiological signals demonstrates its effectiveness in capturing relevant
features and enhancing the utilization of these signals for sentiment recognition.
Overall, our proposed ETPTrT+P model showcases its superiority in accurately
estimating sentiment in single exchange prediction.

Table 4.1: Result of sing-exchanges models, using EDA signals, to validate the
effectiveness of the CNNs modules.

Model MAE↓ Corr↑
TRT 1.067 0.212
CNNP 1.094 0.189
TPTrT+P 1.056 0.243
ETPTrT+P (ours) 1.049 0.270

4.5.2 CNNs Based on Other Submodalities

In this study, we investigated the impact of different signal configurations on sen-
timent estimation. Specifically, we evaluated the models, which use CNNs as
features extractor, with varying numbers of signals: 1 signal using BVP (Blood
Volume Pulse), 2 signals combining BVP and EDA (Electrodermal Activity), and 3
signals incorporating BVP, EDA, and HR (Heart Rate) and all four signals, includ-
ing Skin Temperature. The Table 4.2 presents the results obtained with different
numbers of signals for two models: CNNP and ETPTrL+P . The CNNP model,
which contains only convolutional neural networks, was firstly tested. Among
these configurations, the model achieved the lowest MAE and the highest Corr
when using all four signals, with an MAE of 1.065 and a Corr of 0.154. On the
other hand, the ETPTrL+P model, which combines linguistic and physiological
signals, also exhibited different performance across varying signal numbers. No-
tably, the model achieved the best results with a single signal, with MAE of 1.049
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and Corr of 0.2697. However, as the number of signals increased, the performance
of the model showed slight variations. These results highlight the importance of
considering the number of signals in exchange-level sentiment estimation.

Table 4.2: The evaluation on submodalities. For 1 signal, we use BVP; for 2
signals, we add EDA; we add Hr as 3rd signal and all four signals in the final.

Model Number of signals MAE↓ Corr↑

CNNP

BVP 1.083 0.130
BVP+EDA 1.082 0.147
BVP+EDA+Hr 1.085 0.147
BVP+EDA+Hr+Temp 1.065 0.154

ETPTrL+P

BVP 1.049 0.2697
BVP+EDA 1.050 0.2064
BVP+EDA+Hr 1.052 0.2454
BVP+EDA+Hr+Temp 1.107 0.2244

4.5.3 Analysis of the Context Length

In this section, we evaluate the performance of architectures with CNNs as features
extractor using text with four physiological signals: EDA, BVP, HR, and TEMP,
with varying context lengths. The results are shown in Table 4.3. For the baseline
M-FFN model, which utilizes a feedforward neural network architecture, we got
MAE of 1.064 and Corr of 0.268. In contrast, the M-TPTr model, based on the
Transformer architecture, showed a decrease in performance. With a same context
length of 3, the model obtained a MAE of 1.137 and Corr of 0.216. This suggests
that adapting the Transformer for longer context length make it more challenging
for the model to capture the temporal dependencies effectively.

The M-LSTM models, which employ Long Short-Term Memory networks,
demonstrated a different trend. As the context length increased from 3 to 5,
there was minor decrease in the MAE but increase in the correlation score. The
M-LSTM3 achieved a MAE of 1.019 and a correlation coefficient of 0.285, while
the M-LSTM5 achieved a slightly higher MAE of 1.028 but a higher correlation
coefficient of 0.295. However, further increasing the context length to 7 led to a
slight decrease in performance. We suspect that this phenomenon is due to the
training hyper-parameters since we only optimized the hyper-parameters for the
context length of 3.

In summary, the choice of sequence length had varying effects on the per-
formance of different sentiment estimation models. But our proposed M-LSTM
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Table 4.3: Result of models with varying context length. We evaluated the context
lengths of 3, 5 and 7.

Model MAE↓ Corr↑
M-FFN3 1.064 0.268
M-TPTr3 1.137 0.216
M-LSTM3 1.019 0.285
M-LSTM5 1.028 0.295
M-LSTM7 1.070 0.256

model got the best performance, which is close to the human performance (MAE
of 1.008), indicating the importance of capturing additional context for sentiment
estimation.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In conclusion, this study addresses the challenges of accurately recognizing and
adapting to a user’s real-time emotional state in dialog systems. By incorporat-
ing physiological signals and inter-exchange information, our proposed approach
enhances sentiment estimation and adaptation capabilities. We highlight the lim-
itations of relying solely on linguistic cues, as emotional masking can hinder the
accurate identification of a user’s emotional state. To overcome this challenge, we
leverage alternative sources of information, such as physiological signals and facial
expressions, to gain deeper insights into hidden emotional nuances. By integrat-
ing inter-exchange information, our approach captures the dynamics and evolving
sentiment across multiple exchanges, enabling more precise and adaptive interac-
tions. We introduce the use of convolutional neural networks (CNNs) to learn
robust representations directly from physiological signals, eliminating the need for
hand-designed features and enhancing the utilization of these signals for sentiment
adaptation. Overall, our contributions lie in the effective integration of physiolog-
ical signals and inter-exchange information, paving the way for more accurate and
comprehensive sentiment estimation in dialog systems.

5.2 Limitations and Future Works

One notable limitation of our study is the absence of publicly available datasets
that combine exchange-level self-sentiment labels, linguistic information, and phys-
iological signals, except for the Hazumi dataset used in our research. As a result,
we were unable to evaluate our proposed model using different datasets, which
is an avenue for future exploration. Moving forward, it would be beneficial to
investigate effective strategies for integrating time-series audiovisual signals into
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our proposed approach, encompassing all four modalities. Moreover, to address
the limited training data for the convolutional neural networks (CNNs) employed
in physiological signal processing, future work could involve pretraining the CNNs
on a larger dataset to acquire more comprehensive and generalizable physiological
representations. Additionally, exploring self-supervised learning frameworks [50]
could enhance the robustness of exchange embeddings across diverse participants,
thereby bolstering the overall performance of our proposed model. These avenues
of investigation will contribute to advancing multimodal sentiment analysis and
expanding its applicability in real-world scenarios.
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