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Abstract

Recent natural language processing (NLP) techniques have achieved high
performance on various NLP benchmark datasets, primarily due to the signif-
icant improvement of deep learning. One of the approaches for improving the
robustness of a model is adversarial training by adversarial examples; how-
ever, in previous adversarial training works, the adversarial examples were
not guaranteed to be minimally edited and to change the model’s prediction.
Our hypothesis is adversarial training could make models more robust if the
adversarial examples were guaranteed to be minimally edited and to change
the model’s prediction. In our work, we use counterfactual explanations to
improve the robustness of the model. Because they are guaranteed to be
minimally edited and to change the model’s prediction from the original in-
puts. We evaluate our proposed methods in in-domain and out-of-domain
settings. Experimental results show that our proposed method outperforms
the pre-trained model. It indicates that using counterfactual explanation-
based adversarial training to fine-tune the pre-trained model is a promising
approach to improve the robustness of the pre-trained language models.
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Chapter 1

Introduction

Recent natural language processing (NLP) techniques have achieved high
performance on various NLP benchmark datasets, primarily due to the sig-
nificant improvement of deep learning [21]. However, the research commu-
nity has demonstrated that the NLP models are vulnerable to adversarial
attacks [19], i.e., they are susceptible to adversarial examples and tend to
make incorrect predictions. An adversarial example is to add some noise to
the original input with the purpose of confusing a deep neural network and
causing misclassification in predicting new instances. Existing pre-trained
models still need to be improved for robustness. In machine learning, “ro-
bustness” is the capacity of a model to generalize successfully on new data
and to handle unforeseen situations.

Adversarial training is one of the promising approaches for handling prob-
lems by generating perturbed examples of training data and additionally
fine-tuning models on the perturbed examples [26], [3]. However, in previous
studies on adversarial training, the generated perturbed examples were not
guaranteed to be minimally edited from the original inputs and to change
the model’s prediction. Such perturbed examples may not be able to fool
the models, leaving room for better adversarial training.

We hypothesize that adversarial training may be more effective in im-
proving robustness when the perturbed examples are guaranteed to flip the
model’s prediction and to be minimally edited to change the model’s pre-
diction. In Explainable Artificial Intelligence, such perturbed examples are
known as counterfactual explanations.

In this work, we investigate the potential of counterfactual explanations
for improving the robustness of NLP models. There are several existing
studies to generate counterfactual explanations [29], [34], [6], and we leverage
BERT-based Adversarial Examples (BAE), one of the strong methods of
adversarial attack to find a minimal edit from an input to change the model’s

1



prediction by a masked language model-based perturbation.
To test whether counterfactual explanation helps improve the model’s

robustness, we setup the following pipeline. We first sample training in-
stances that are considered less confident by a model. We then generate a
set of counterfactual explanations for these unconfident examples. Finally,
we fine-tune the model on the unconfident examples and these counterfactual
explanations, hoping that these “edge cases” inform the model more about
decision boundary.

We evaluate the counterfactual adversarial training on Natural Language
Inference (NLI) and Sentiment Analysis (SA), two representative NLP tasks,
in both in-domain and out-of-domain settings. Our experiments show that
the model fine-tuned on counterfactual explanations outperforms the orig-
inal model in both settings. Besides, we analyze the fine-tuned model’s
behaviors in predicting new examples and its counterfactual explanations,
then compare them with the pre-trained model. Overall, the results indicate
that counterfactual explanation-based adversarial training is a promising ap-
proach to improving the robustness of the pre-trained language models.

Contributions

• We introduce a new approach to adversarial training–using counterfac-
tual explanations to improve the robustness of NLP models (§3).

• We show that the counterfactual adversarial training improves the ro-
bustness of the original model on the NLI and SA tasks, two represen-
tative NLP tasks (§4.4.1, §4.4.2).

• We provide an in-depth behavior analysis of counterfactual adversarial
training (§4.4.1, §4.4.3).
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Chapter 2

Background

2.1 Robustness in Natural Language Process-

ing

Recently, there have been several approaches to improve the robustness of
NLP models. Moosavi et al. [18] extend training dataset combined with their
corresponding predicate-argument structures to make Transformer models
understand the important parts of inputs, improving the robustness of the
models. The data augmentation technique aims to increase the diversity of
the training set without collecting new data.

Feng et al. [7] conduct a comprehensive survey on data augmentation,
such as rule-based and example interpolation, for enhancing the robustness
of models. For the rule-based approach, Wei and Zou [32] used perturbation
operations, including synonym replacement, random insertion, deletion, and
swap on the token level. It demonstrates that their work boosts the per-
formance of many classification tasks and achieves strong results on small
datasets.

Mixup [36] is one of the pioneers of the example interpolation approach;
their proposed method aims to reduce the sensitivity to adversarial exam-
ples and unexpected behaviors such as memorization of large deep neural
networks. They interpolate pairs of examples and their labels for training
and regularize the neural network to prefer simple linear relationships among
those training examples.

To achieve robustness, [10] proposed to train and evaluate a model adver-
sarially using word substitutions. [11] suggest a simple but strong baseline to
generate adversarial examples, which can preserve similar semantic meaning
to the original input and fool well-trained model .

Alzantot et al. [1] also show that in the word substitution method, a
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small token replacement can seriously change the semantics of the original
input. They leverage a black-box population-based optimization method to
output semantical and syntactical adversarial examples, then successfully
cause misclassification for sentiment and textual models with rates of 97%
and 70%, respectively.

2.2 Explainable Natural Language Process-

ing

Recent years have seen a broader range of models and a strong improvement
in the quality of state-of-the-art models, but the trade-off is that models are
becoming less interpretable, and humans have no clues about how deep neural
networks actually provide a decision. In fact, we do not require Artificial
Intelligence (AI) models to be explainable all the time; however, we do need
them in scenarios where the model’s decision has a strong influence, such as
in the case of a medical diagnosis.

In Explainable AI, especially Explainable NLP a model can be addressed
by its scope and properties, mainly by two aspects: local or global inter-
pretability and self-explaining or post-hoc [5].

In the first aspect, local interpretability means that the explanation is for
understanding the model’s behaviors for an individual sample. LIME [23] is
one of the most impressive methods of local interpretability approach. They
leverage a comprehensive model to approximate the black-box model. In this
work, the authors feed the perturbed data samples into the black-box model
and then observe the corresponding outputs. Because using an interpretable
model, such as a linear model, requires a trade-off between accuracy and
interpretability.

Global interpretability means that the entire deep network’s behaviors
can be comprehended by considering the parameters, weights, etc. of the
model [13]. The complexity of this approach depends on the number of
presented features of the data, so Honegger et al. [9] mention that it could
make deep neural networks difficult to comprehend.

In the second aspect, a self-explaining approach could be considered di-
rectly interpretable; the neural networks could produce both explanation
and prediction at the same time. Arya et al. [2] mention that one of the fa-
mous models of this approach is decision trees and rule-based models. While
post-hoc approaches explain the model’s behaviors by performing additional
operations, LIME is one of the methods that apply post-hoc for explanation.
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2.3 Counterfactual Explanations

In previous work, a counterfactual explanation is expected with the small-
est number of edits in the feature that leads to the changes in the model’s
prediction [27], [4]. There are two main ways to generate counterfactual ex-
planations: manually and automatically. While handcrafted methods achieve
high correctness in grammar and naturalness, they could be costly. However,
the automatic generation method may produce inconsistent counterfactual
explanations that can not flip the model’s prediction.

Several automatic methods are proposed to create counterfactual expla-
nations and to focus on using them to explain the behavior of the black-box
model.

Tomolei et al. [29] aim to transform true negative instances into positively
predicted ones by using a tree-based ensemble classifier to obtain recommen-
dations for the transformation step. Their approach proposes an algorithm
called Feature Tweaking and is evaluated on Yahoo Gemini, an online ad-
vertising application.

Polyjuice framework [34] generates counterfactual explanations by lever-
aging GPT-2 [22]. They use the prompt format that concatenates the original
input, the control code, and the masked token ([BLANK]), then fills in the
[BLANK].

Elazar et al. [6] introduce an Amnesic Probing method that feeds the
model with the contextualized representation of input token, then returns
the output without some specific information.

Yang et al. [35] propose an approach to generate counterfactual explana-
tions for the financial domain. Their method first has a transformer variant
and is fine-tuned on a highly sensitive domain, the mergers and acquisitions
prediction task. They leverage a sampled contextual decomposition tech-
nique after the prediction to calculate importance tokens, then replace them
to generate counterfactual explanations.

Furthermore, “contrastive explanation” is another form of explanation
but much more similar to counterfactual ones. In MiCE work [25], the pur-
pose of “contrastive explanations” is to answer “why p not q” or which tokens
make the model predict p (q). They mask and replace input tokens with oth-
ers that should be fluent and similar to the original one. To choose input
tokens to be masked, binary search and beam search are adopted to track
the confidence of model prediction, then mask those tokens that cause the
highest confidence.

In our work, we leverage counterfactual explanations to improve the ro-
bustness of the pre-trained models instead of using adversarial examples or
data augmentation methods. We also require minimal edits compared with
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the original input to generate counterfactual explanations; however, we mask
the tokens that contribute the most to the predicted label and replace them
with similar semantic ones. Besides, we sample unconfident instances for
generating new examples and fine-tune the models on them to improve the
robustness of models.

2.4 Transformer

In this work, we use the fine-tuned RoBERTa model, which is built on a deep
learning model called Transformer. It can understand the whole context by
capturing the long-term dependencies of the input text. Besides, Transformer
is flexible in adapting to different tasks.

The main architecture of Transformer [30] includes an encoder and de-
coder (Figure 2.1).1

The encoder is a combination of N layers, each of which consists of two
smaller sublayers. The first sublayer is a multi-head self-attention mecha-
nism, and the second sublayer is a feed-forward network. Between each of
the two sublayers are residual connections and a normalization layer.

The purpose of the decoder is to decode the input vector into the target
vector, and it receives the information by vector key and value from the en-
coder. The decoder’s architecture is almost similar to the encoder, but there
is a multi-head attention in the middle that is used to learn the relationship
between the selected word and other words in the input sentence.

The input of the encoder is created from a word embedding and a posi-
tional embedding. word embedding has a number of rows equal to the size of
the vocabulary set. Transformer does not process input in left-to-right order
like several traditional neural networks, so the model needs to remember the
position of all words. Therefore, they use positional embedding, which has
the same size as word embedding, to encode each word in input by a vector,
then add it to word embedding.

2.4.1 Self-Attention Mechanism

Self-Attention Mechanism realizes that one word in a different sentence might
have different meanings. For the below example, token bank in sentence (1a)
means “the land alongside or sloping down to a river or lake”; while token
bank in sentence (1b) means “a financial establishment that invests money”:

(1) a. He met her when walking along the river bank.

1https://glassboxmedicine.com/2019/09/07/universal-transformers/
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Figure 2.1: Transformer’s architecture.

b. He met her when driving to the bank.

When each word is processed by the encoder, the self-attention mechanism
aims to find the best representation of this word that should fit the context of
each sentence or paragraph. It calculates three steps to obtain an attention
vector by allowing for the consideration of context information from around
words in a sentence (Figure 2.2).

In the first step, to calculate three matrices, including the query matrix
WQ, key matrix WK , and value matrix WV , in which WQ, WK and WV

are trainable weighted matrix. We multiply inputs and these matrices to
get three corresponding matrices (Q,K, V ). To calculate attention weights,
we combine the query matrix Q and key matrix K, then use the softmax
function to normalize to get the relevance between the word bank and others.
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Input = Embedding

Query

Key

Value

Query matrix

Key matrix

Value matrix

Attention = Softmax(Query x Key)

Ouput

+ Position encode

  weight matrix

  weight matrix

weight matrix

Figure 2.2: Calculating attention weights in Transformer.

Finally, we get the representation of input by multiple attention weights
Attention(Q,K) and a value matrix V .

2.4.2 Multi-head Attention

Multi-head attention allows the model to simultaneously pay attention to
the preceding word of a word, to the next word of a word, and to the related
words of a word. The model is expected to learn many types of relationships
between words. For each self-attention, a pattern can be obtained, so we sim-
ply add more self-attention to help the model learn a lot of information and
relationships between words thanks to different representations in different
positions.

We denote that n is the number of heads, WO is a final transformation
that combines information from different heads, and WQ

i , WK
i , W V

i are learn-
able weight matrices of Q,K, V respectively. The multi-head self-attention
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of an input is calculated as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headn)WO (2.1)

where: headi = Attention(QWQ
i , KWK

i , VW V
i )
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Chapter 3

Proposed Method

3.1 Overview

An overview of our proposed approach is shown in Figure 3.1. The proposed
method consists of three steps: (1) sampling unconfident instances (§3.2), (2)
generating counterfactual explanation (§3.3), and (3) fine-tuning pre-trained
language model to improve robustness (§3.4).

Formally, we are given (i) a dataset D = {(x1, y1), ...(xn, yn)}ni=1, (ii) a
pre-trained large language model fθ fine-tuned for an NLP task, and (iii) a
masked language model gϕ. In Step 1, we sample set O ⊂ D of instances
that are considered less confident by the black-box pre-trained model fθ
(henceforth, unconfident examples). These unconfident examples stand near
the model’s decision boundary, so the model is easy to be fooled with small
edits. In Step 2, for each unconfident input x ∈ O:,1

1, we generate a coun-
terfactual explanation x′, yielding set A of counterfactual explanations. The
counterfactual explanation x′ of x is an example minimally edited from x that
flips model’s prediction. We expect that these unconfident examples and cor-
responding counterfactual explanations teach the model how to distinguish
edge cases, which leads to the improvement of robustness of the model. In
Step 3, we use both O and A to fine-tune fθ.

3.2 Sampling Unconfident Instances

How can we obtain set O of unconfident examples from D? In Active Learn-
ing, several strategies are proposed to calculate the confidence score of clas-
sification models. Suppose we have an n-class classification model parame-

1Following numpy notation, we denote the subscript :,i to denote a set of i-th element
in a tuple.
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3

2

1

Generating counterfactual
explanations

Training Data

Sampling

Finetuning 

Input: This movie is insane for me

Predicted Label: Negative

Ouput 2: This movie is good for me

Predicted Label: Positive

Ouput 1: This film is insane for me

Predicted Label: Negative

Ouput 3: This cartoon is good for children

Predicted Label: Positive

Ouput 4: This movie is meh for me

Predicted Label: Positive

Pre-trained model

Figure 3.1: An overview of our proposed method.
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terized by θ, and we are calculating the confidence score of an input x. Let
Pθ(Y |x) be a probability distribution over n classes predicted by the classifier
(i.e., Y ∈ {1, 2, ..., n}).

• Random Sampling: uses a random value as a confidence score, i.e.:

srnd(x) ∼ uniform(0, 1) (3.1)

This is the most naive and commonly used method. While it preserves
the original distribution of the dataset, it does not guarantee that the
chosen examples will be the most unconfident one.

• Margin Confidence Sampling: calculates the difference between the top-
2 prediction probabilities. Let ŷ be a class with the highest probability,
and ŷ′ be a class with the second-highest probability.

smc(x) = 1 − (Pθ(Y = ŷ|x) − Pθ(Y = ŷ′|x)) (3.2)

• Least Confidence Sampling: returns the difference between the highest
probability and 1. Let ŷ be a class with the highest probability.

slc(x) = (1 − Pθ(Y = ŷ|x)) · n

n− 1
(3.3)

• Entropy-based Sampling: returns the entropy of predicted probability
distribution P (Y |x).

sent(x) = −
n∑

i=1

Pθ(Y = i|x) · log2 Pθ(Y = i|x) (3.4)

We expect to sample instances that contain such a high level of “infor-
mation” as to make models confused and unconfident. As in Information
Theory’s definition, “the entropy of a random variable is the average level of
“information”,“surprise”, or “uncertainty” inherent in the variable’s possible
outcomes.” Also inspired by how the Decision Tree method makes decisions,
it uses entropy to calculate and minimize the impurity (the uncertainty) as
much as possible at each leaf node. The higher the entropy is, the more
informative and impurity an instance contains.

In our work, for each input x ∈ O, we use Entropy-based Sampling
method to calculate the confidence score of model. Suppose we have a 3-
classes classification model for the NLI task. Table 3.1 shows two examples
of high entropy and low entropy in the NLI task, where Probs column is a

12



Table 3.1: Example of high and low entropy predictions in NLI task. N:
Neutral. C: Contradiction.

Input Label Probs Entropy
Premise: Some of the unmet needs are
among people who can pay, but who are
deterred from seeking a lawyer because of
the uncertainty about legal fees and their
fear of the profession.
Hypothesis: Some people can’t afford it

N
[0.2940,
0.3706,
0.3355]

0.9959

Premise: The park is a graceful and ele-
gant expanse with fine views of the moun-
tains, much loved by D since first opening
in 1747.
Hypothesis: The park is ugly and you
can’t even see the mountains.

C
[0.9995,
0.00029,
0.00016]

0.0039

probability distribution over each class, and Entropy column is a normalized
entropy score for the probability distribution.

For the first example, the probabilities are almost equal (0.2940, 0.3706,
and 0.3355 for three classes, respectively), and the very high entropy score
(0.9959) implies that the model finds unconfident to decide Neutral as the
label.

In contrast, in the second example, it is easy for the model to decide that
this pair of premise and the hypothesis contradict each other. The model now
gives label Contradiction with a much higher score than others (0.9995),
and the entropy is now tiny (0.0039), which means the model is confident
about its decision.

3.3 Generating Counterfactual Explanations

Given a model fθ and an input x ∈ O:,1, we generate counterfactual ex-
planations A by using BERT-based Adversarial Examples (BAE) [8], which
automatically generates adversarial examples using a large language model.

BAE calculates the importance score for every token of an input with
respect to a target model. For token importance, they follow Jin et al.’s
method [11] to inspect the difference before and after removing every token
from the original one. Those highest tokens are masked, and then they
leverage a large language model (BERT) to replace or insert other words. If
BAE could not find new words that change the label of the newly generated

13



Table 3.2: Example of importance scores for each token.
Token Score

1 Apple 0.428319
2 matter 0.292418
3 bring 0.272522
4 will 0.267955
5 of 0.242025
6 people 0.159647
7 in 0.150222
8 future 0.120858
9 millions 0.120126
10 TV 0.095554
11 to 0.005554

example, they choose the ones that decrease the prediction probability of
example the most.

In our work, we use BAE-R [8], a variant of BAE using only replacement
operations. To obtain better counterfactual explanations, we make two small
modifications: (i) to ensure replaced tokens have the same sentiment polarity
as that of the original token, and (ii) to filter out adversarial examples that
cannot change models’ original predictions. We describe our method step-
by-step below.

Step 1. Calculating token importance We first calculate the impor-
tance score for every token of input x and sort them in descending order
into a list. To calculate the importance score, we leverage the Transformers
Interpret tool2, while what BAE did is to observe the average attention that
the pre-trained language model gives to every tokens from all the layers.

For example, given an input x = In future, Apple TV will bring matter to
millions of people., Step 1 would produce importance scores for each token
such as Table 3.2.

Step 2. Finding the best perturbation We perturb the original input
x by changing important tokens one-by-one until we obtain counterfactual
explanations. Each iteration consists of two processes: (i) to replace an
important token w ∈ x with a semantically similar token, and (ii) to check
if the perturbed sentence x′ is a counterfactual explanation.

2https://github.com/cdpierse/transformers-interpret
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minimally edit

human's
decision

model's
decision
boundary

Figure 3.2: The counterfactual explanation and the original input are on
different sides of the model’s decision boundary, but on the same side of
human’s decision.

For (i), we replace the important token w with [MASK] and then use
a masked language model gϕ (in our experiments, RoBERTa-large [14]) to
predict the most-likely alternative token a for w. To ensure (i) the distance
between x and the perturbed sentence is minimal (shown in Figure 3.2) and
(ii) the perturbed sentence is grammatically correct, we enforce the following
three constraints on a candidate alternative token a′:

C1. The sentiment polarity of a′ must be the same as that of w. We use
SentiWordNet3 to search and calculate sentiment score, which is a lexi-
cal resource for opinion mining with three sentiment aspects: positivity,
negativity, and neutral.

C2. The part-of-speech (POS) of a′ must be the same as that of w. We
leverage nltk4, a natural language toolkit package, to identify POS.

For (ii), we check if the perturbed sentence x′ satisfies the following con-
dition:

• fθ(x
′) ̸= fθ(x), namely x′ must change the predicted label of the original

input x.

If x′ satisfies the condition, we terminate the process and generate x′ as
a counterfactual explanation. Otherwise, we iterate processes (i) and (ii)

3https://github.com/aesuli/SentiWordNet
4https://www.nltk.org/
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with the next-most important token. We denote A as a set of generated
counterfactual explanations.

Working example in sentiment analysis Suppose we are given an in-
put This movie is insane for me, and a sentiment analysis model predicted
Negative (i.e. fθ(x) = Negative, shown in Figure 3.1). At Step 1, sup-
pose movie, insane, and me are selected as the top-3 important tokens. We
then move onto Step 2 as follows:

1. We mask movie (i.e. This [MASK] is insane for me.) and predict
an alternative token with a masked language model. Suppose we ob-
tained This film is insane for me., and the model predicted Negative
(i.e., fθ(x

′) = Negative). Because the new modified sentence does
not satisfy the above condition, we continue the process with the next
important token insane.

2. We mask insane (i.e. This film is [MASK] for me.) and predict an
alternative token with a masked language model. Suppose we ob-
tained This film is bad for me., and the model predicted Positive
(i.e., fθ(x

′) = Positive). Note that a masked language model could
suggest an alternative token with positive sentiment polarity, such as
good, but these kinds of tokens will be removed by C1. This time,
because the new sentence satisfies the above condition, we terminate
the process and generate This film is bad for me. as a counterfactual
explanation.

We show three examples of generated counterfactual explanations for NLI
task and SA task in Table 3.3 and Table 3.4.

We denote O represents the original input and A is the counterfactual
explanation to prepare for fine-tuning the model. G column stands for the
gold label of the original input. RO, RA column are the predicted labels
by the pre-trained model for input O and counterfactual explanation A. In
Table 3.3, P and H stand for premise and hypothesis, respectively for NLI
task.

As we can see, the predicted labels RA by the pre-trained language model
of the couterfactual explanation examples are all changed compared to the
predicted label RO of the original input, so the pre-trained model is now
fooled. Moreover, when we consider the actual labels of the counterfactual
explanations E, they are still the same as the gold label G of the original
inputs O.
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Table 3.3: Examples of generated counterfactual explanations for NLI task.
N: Neutral. E: Entailment, C: Contradiction.

Input — Counterfactual Explanation G RO RA

O:
P: Is Clinton saying he didn’t commit perjury
because of tthe peculiar definition of X in the
Paula Jones suit, or is he saying he actually
didn’t have X?
H: Clinton says that the X wasn’t anything
immoral
A:
P: Is Clinton saying he didn’t commit perjury
because of the peculiar definition of X in the
Paula Jones suit, or is he saying he actually
didn’t have X?
H: Clinton says that the matter wasn’t any-
thing immoral

N N E

O:
P: What’s right is wrong and what’s wrong
is right in some cases and it’s.
H: There is not telling what is right or wr-
ong in some cases.
A:
P: What’s right is wrong and what’s wro-
ng is right in some cases and it’s.
H: There is not telling what is right or w-
rong in these cases.

E E N

O:
P: They’re not on the times that i’ve got that
i’ve watched because i haven’t had T got TV
Guide around here in ages.
H: I do not have access to a TV Guide.
A:
P: I’re not on the times that i’ve done that
i’ve watched because i haven’t had T got
TV Guide around here in ages.
H: I do not have access to a TV Guide

C C E
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Table 3.4: Examples of generated counterfactual explanations for SA task.
N: Negative, E: Neutral, P: Positive.

Input — Counterfactual Explanation G RO RA

O: How To Dress Well play Santos Party
House on October 8th with of Love and
Warm Ghost!
A: How To Dress Well plays Santos Party
Hous downtown October 34th with of Love
and Warm Ghost!

E E P

O: Photo: Blue Friday! I get to wear jeans
to work and the Colts are playing tonight!!
Woohoo!! Go Colts!!!
A: Photo: Blue Dude! I need to wear jeans
to work and the Colts are losing yesterday!!
Woophawks!! Go Colts!

P P N

O: Anti-Semitic hate speech unwarranted
on Iran. 80 synagogues happy with Muslims.
Iraq, Iran same 1st Biblical lands.
A: Orthodox-Semitic PC censorship un-
nerved on Islam. 80 synagogues happy with
Muslims.Iraq, Iran same 1st Biblical lands.

N N E
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3.4 Fine-tuning Pre-trained Language Mod-

els to Improve Robusness

Our final step is to fine-tune the pre-trained language model fθ on both O
and A.

Note that A does not have a gold label, and it cannot be used for fine-
tuning as they are. To obtain the label of x′ ∈ A, we use the same gold
label of the original input which x′ is generated from. Formally, we create
a new training dataset C = {(x′, yorigin(x′)) | x′ ∈ A}, where yorigin(x) is the
label of original input used for generating the counterfactual explanation x′

in O. We then finetune the pre-trained language model fθ on O∪C. We use
a standard multi-class cross entropy loss for fine-tuning the model.

We expect that this can improve the robustness of the model because
this teaches the model how to solve “edge” cases near the decision boundary:
O contains a set of unconfident examples, and corresponding counterfactual
explanations A are minimally edited examples that can fool the model.

For example, in sentiment analysis, O ∪ C may contain the following
training instances:

• (This movie is insane for me., Negative) ∈ O

• (This film is bad for me., Negative) ∈ C

• (Spielberg’s movie is always exciting., Positive) ∈ O

• (Cameron’s movie is always exciting., Positive) ∈ C

where our sentiment analysis model’s prediction was Negative (correct),
Positive (wrong), Positive (correct), and Negative (wrong), respec-
tively. This may be because the model relied on superficial cues, such as
Spielberg → Positive, changing the word Spielberg to something else causes
a misclassification. Our counterfactual explanations are intended to fix such
model’s behaviors, having the model pay more attention to other important
clues.
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Chapter 4

Evaluation

Our main hypothesis is that counterfactual explanations could help improve
the robustness of the pre-trained models. To test this, we aim to answer the
following questions in two domain settings: Do counterfactual explanations
help improve the accuracy of NLP models on unseen data (i) from the same
domain as the training data? and (ii) from the different domain as the
training data?

For the first question, we first calculate accuracy on new unseen data, and
then analyze the model’s behaviors to answer if fine-tuning on counterfactual
explanations helps improve performance in the same domain as training data.
For the second question, we also evaluate the model’s performance on the
data by calculating accuracy in different domains as training data.

4.1 Datasets

4.1.1 Datasets for Natural Language Inference task

To create counterfactual explanations for fine-tuning, we adopt Multi-Genre
Natural Language Inference (MNLI) [33]) and use the training dataset as D
for the NLI task. This dataset consists of 433k sentence pairs that have been
crowdsourced and annotated with textual entailment understanding.

In our work, we sample from the training dataset of MNLI approximately
1200 highest entropy (low confidence) instances as dataset O to generate
counterfactual explanations x′ ∈ A. The distribution of each label is shown
in Table 4.1.

For in-domain evaluation, we randomly sample 550 instances from MNLI
development sets (Odev) with the same distribution of each label to generate
counterfactual explanation (xce ∈ Adev).
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Table 4.1: Statistics about distribution of label for NLI task.
Label Percentage

neutral 50.14
entailment 15.90
contradiction 33.96

Table 4.2: Statistics about distribution of label for SA task.
Label Percentage

negative 32.24
neutral 31.01
positive 35.74

For out-of-domain datasets, we evaluate on following datasets: NLI Di-
agnostics, HANS, FEVER NLI, and ANLI.

• NLI Diagnostics [31] (Diagnostics) is built manually to evaluate model’s
performance and to analyze a variety of linguistic phenomena found in
natural language.

• HANS [17] is an evaluation dataset to test unreliable syntactic heuris-
tics that the NLI model tends to learn.

• FEVER-NLI (FEVER) is modified from the FEVER dataset [28], by
utilizing a short context from Wikipedia as a premise, a hypothesis as
a claim, which can be supported (entailed), refuted (contradicted), or
not enough info (neutral).

• ANLI [20] is an adversarial dataset that is created from MNLI dataset,
and the purpose is to make the model unconfident in predicting those
samples.

4.1.2 Datasets for Sentiment Analysis task

For SA task, we experiment on the English sentiment subset from the Tweet-
eval dataset [24] and use the training dataset as D to create counterfactual
explanations. This dataset consists of 59k sentences that have been crowd-
sourced and annotated from Twitter.

In our work, we sample from TweetEval approximately 1200 highest en-
tropy instances (same as in NLI task) as dataset O to generate counterfactual
explanations x′ ∈ A. The distribution of each label is shown in Table 4.2.
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Following NLI task, we randomly sample 750 instances from Tweeteval
development sets (Odev) to generate counterfactual explanation (xce ∈ Adev)
for this task.

For out-of-domain evaluation, we evaluate on following datasets including:
FinancialPhraseBank, IMDB, FiQA, StockTweet, Amazon, and Yelp.

• FinancialPhraseBank (FinP) [16] is a financial dataset including the
sentiments for financial news headlines. This dataset includes approxi-
mately 5,000 sentences that are carefully annotated to ensure the busi-
ness knowledge and educational background.

• IMDB [15] is a famous Internet Movie Database dataset, including 25k
movie reviews labeled as positive and negative.

• FiQA1 is a dataset from a financial domain, which is built from a
microblog message, news statement, or headline.

• StockTweet2 (Stock) is stock data collected from Twitter, including
1,300 tweets that are manually screened and reviewed.

• Amazon [12] is a product English reviews dataset containing the review
text and the star rating from one to five by users. The subset used in
this task is selected from multilingual text classification.

• Yelp [37] is a restaurant review dataset containing ratings from zero to
four, which stand for the satisfaction level of customers.

4.2 Evaluation Metrics

Our metric is to calculate and compare the accuracy of each model in predict-
ing an input’s label compared with its gold label. Given xdev as an input, we
sequentially use the pre-trained model and our fine-tuned model to predict
xdev’s label, then compare it with its gold label. Similarly, we calculate the
accuracy of each model when xce is given as an input.

Our metric is also to calculate and compare the accuracy of a model in
predicting an input’s and its counterfactual explanation’s label. we evaluate
the performance of the pre-trained model and our fine-tuned model in pre-
dicting a pair of inputs xdev and their counterfactual explanations xce. Given
xdev as an input and its counterfactual explanation xce, we use the pre-trained

1https://sites.google.com/view/fiqa/
2https://ieee-dataport.org/open-access/stock-market-tweets-data
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model to predict the two labels, then compare them together. Similarly, we
our fine-tuned model to predict and compare these two predicted labels.

For each dataset in out-of-domain evaluation, we use the pre-trained
model and our fine-tuned model to predict labels. We calculate accuracy
that divides the number of true predicted labels by the total predicted la-
bels, then compare the two models together.

4.3 Model Setting

Our experiments are conducted in the Pytorch framework3 and in a large
computing server with the following environment:

• CPU: Intel Xeon GOLD 5320 2.2GHz 26Core x2 Sockets: 52Cores.

• Memory: DDR4/3200 SDRAM x16 : 512GB.

• GPU: NVIDIA A100 x 2.

• Number of nodes: 10 Nodes.

4.3.1 NLI task

For the pre-trained model fθ, we employed the RoBERTa-large model fine-
tuned on the MNLI corpus.4 Before fine-tuning models, we do a pre-processing
step by setting their maximum length to 512, then pad and truncate if they
exceed the limitation setup. Moreover, in the NLI task, the input is a pair of
a premise and a hypothesis, so we insert tokens [CLS] at the first and [SEP]
at the end to separate these two sentences.

For example, given a Premise (2a) and Hypothesis (2b), we get an Input
(2c) after pre-processing:

(2) a. Premise: She is walking in the garden with her cats.

b. Hypothesis: Her cats are in the garden.

c. Input: [CLS] She is walking in the garden with her cats. [SEP] Her
cats are in the garden. [SEP]

3https://pytorch.org/
4https://huggingface.co/roberta-large-mnli
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Table 4.3: Hyper-parameter settings for NLI task.
Hyper-parameter Setting
Batch Size 8
Warm up step 50
Optimizer AdamW
Training Epoch 5

Learning Rate
1e-3
1e-5
1e-8

Table 4.4: Hyper-parameter settings for SA task.
Hyper-parameter Setting
Batch Size 8
Warm up step 50
Optimizer AdamW
Training Epoch 5

Learning Rate
1e-3
1e-5
1e-7

The configuration settings of the model are shown in Table 4.3. For learning
rate, we setup three candidates 1e-3, 1e-5, and 1e-8 and choose the one that
achieves the best result overall. We also evaluate at the end of each epoch
during training and save two checkpoints, including the last one and the best
one, if they are different.

4.3.2 SA task

For the pre-trained model fθ, we use RoBERTa-base model trained on the
Twitter dataset.5 In SA task, we also do a pre-processing step for input
sentences as the NLI task, but we do not insert more tokens before supplying
them to fine-tune because they are single sentences.

The configuration of the model is shown in Table 4.4. The hyper-parameters
is almost the same as the setting of NLI task, but we setup different learning
rate 1e-3, 1e-5, and 1e-7 to choose the best one.

5https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
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Table 4.5: In-domain evaluation.
Odev

roberta-mnli 90.01
fine-tuned roberta-mnli 91.44
roberta-twitter 74.2
fine-tuned roberta-twitter 77.15

Table 4.6: The percentage of the predicted label of original input and gen-
erated counterfactual explanations by the pre-trained language model and
fine-tuned model that are the same as the gold label.

Odev Adev

roberta-mnli 90.35 9.65
fine-tuned roberta-mnli 90.16 15.12
roberta-twitter 74.36 22.96
fine-tuned roberta-twitter 75.57 41.92

4.4 Results

The results are shown in Tables 4.5–4.15. For NLI task, roberta-mnli stands
for the pre-trained model fθ, and roberta-twitter stands for the pre-trained
model fθ in SA task.

4.4.1 In-domain Evaluation

Table 4.5 shows the result of in-domain evaluation. After fine-tuning, our
proposed method (fine-tuned roberta-mnli) gets better performance than the
pre-trained model (roberta-mnli) by about 1.44% for the NLI task. For the
SA task, we achieve approximately 3% higher when evaluating on the devel-
opment set Odev.

Fine-tuned models precisely target the inconsistent gold labels’
problem without hurting performance Table 4.6 shows the percentage
of the predicted label of the original input xdev (∈ Odev) by the pre-trained
models and our fine-tuned models that are the same as the gold label. Simi-
larly, we show the result for the generated counterfactual explanation xce (∈
Adev), these xce are generated from xdev as mentioned in §4.2.

For the NLI task, this percentage is an insignificant difference between
roberta-mnli and fine-tuned roberta-mnli (90.35% and 90.16%) when we pre-
dict the original inputs from Odev and compare with their gold labels. How-
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Table 4.7: The sensitivity of the pre-trained language model and our fine-
tuned model to counterfactual explanations.

True False
roberta-mnli 2.01 97.99
fine-tuned roberta-mnli 10.75 89.75
roberta-twitter 3.47 96.53
fine-tuned roberta-twitter 40.05 59.95

ever, for generated counterfactual explanations Adev, our fine-tuned roberta-
mnli model outperforms roberta-mnli by more than 5%.

Correspondingly, for the SA task, we also compare the pre-trained roberta-
twitter model and our fine-tuned roberta-twitter model and observe that our
model is even over 1% higher for Odev. Besides, when comparing the predicted
labels of generated counterfactuals Adev with their gold labels, our fine-tuned
roberta-twitter model gains an impressive improvement, approximately 20%
higher than the original roberta-twitter model.

The above result implies that our fine-tuned model precisely targets the
inconsistent gold labels’ problem. It does not hurt in-domain performance
and sometimes it slightly increases the accuracy.

Fine-tuned model is more difficult to be fooled Table 4.7 shows the
percentage of the predicted label by the pre-trained model and our fine-tuned
model of the original inputs are the same as their generated counterfactual
explanations.

Generally, our fine-tuned models achieve much better results than the
original pre-trained models; while fine-tuned roberta-mnli model improves
true prediction by more than 8%, the fine-tuned roberta-twitter model de-
creases false prediction by around 36.5%.

The above results reveal that after fine-tuning, our fine-tuned model is
not easy to be fooled by new counterfactual explanations and to be more
robust to them.

For in-domain evaluation, when fine-tuning models on counterfactual ex-
planations, it helps to increase accuracy on the development dataset. For
an in-depth analysis of the model’s behavior, we observe that our fine-tuned
models are more consistent in producing gold labels. Besides, they are more
robust to newly generated counterfactual examples due to a much greater
improvement in accuracy.

4.4.2 Out-of-domain Evaluation
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Table 4.8: Out-of-domain evaluation of the original roberta-mnli model and
our fine-tuned model.

Model ANLI Diagnostics FEVER HANS
3200 1104 20k 30k

roberta-mnli 31.8 66.39 70.7 73.13
fine-tuned roberta-mnli 32.37 66.49 70.87 73.75

Table 4.9: Out-of-domain evaluation of the original roberta-twitter model
and our fine-tuned model.

Model IMDB FiQA Stock Yelp FinP Amazon
25k 675 1300 50k 4846 5k

roberta-twitter 77.1 76.59 55.15 68.8 67.51 69.38
fine-tuned r-tw 78.24 78.37 57.84 69.31 69.17 69.98

Tables 4.8 and 4.9 show the results of out-of-domain evaluation for NLI
and SA tasks, respectively. For the NLI task, our fine-tuned model gains a
minor improvement (roughly 1%) for all datasets compared to the original
roberta-mnli model. Our fine-tuned roberta-mnli achieves the best on the
HANS dataset and ANLI dataset. Besides, it insignificantly improve on
the NLI Diagnostics and Fever NLI dataset. For the SA task, our fine-
tuned roberta-twitter model (fine-tuned r-tw) gets better performance (about
2%) for most out-of-domain datasets compared to the original roberta-twitter
model.

Our fine-tuned roberta-twitter model performs the best on financial datasets
including Stock Twitter, FiQA, and Finacial PhraseBank datasets; however,
for review datasets including Yelp, Amazon, and IMDB review datasets, it
achieves smaller results (0.6-1.14%).

The above results indicate that after fine-tuning on counterfactual expla-
nations, our fine-tuned models outperform the pre-trained models not only
in the same domain but also in the different domain as training data.

4.4.3 Case Study

In this section, we give examples to compare the pre-trained models and our
fine-tuned models’ behaviors in predicting labels. In each table, we show
the cases that the pre-trained model and our fine-tuned model predict both
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correctly and incorrectly.
We denote O as the original input, A is the counterfactual explanation; G

is the gold label, RO is the predicted label of the original input xdev by the pre-
trained model and RA is the predicted label of the counterfactual explanation
xce by the pre-trained model; similarly, FO and FA is the predicted labels by
our fine-tuned model.

Examples of analyzing model’s behaviors in predicting the label
of an input and compared with its gold label For SA task, we show
examples in Table 4.10 and Table 4.11. For NLI task, we show examples in
Table 4.13 and 4.12.

We show examples to cover the cases that observe the changes in the
model’s behavior in predicting in-domain input before and after fine-tuning.
We compare the predicted labels of each models (RO, FO for in-domain input
and RA, FA for counterfactual) with gold label (G).

In Table 4.10, we show examples 1 and 2 that: before fine-tuning, the pre-
trained model produces different label Neutral as the gold label (Negative
in example 1 and Positive in example 2). However, after fine-tuning, our
model predicts correctly as gold label. Example 4 and 5 show that our fine-
tuned model failed in prediction. While example 3 shows that our fine-tuned
model still can not produce a correct label as gold label, it remains the same
prediction as before fine-tuning.

Similar, in Table 4.11, we show five examples to cover five cases that
observe the changes in the model’s behavior in predicting counterfactual
explanations before and after fine-tuning. We compare the predicted labels
of each models (RA, FA) with gold label (G).
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Table 4.10: Examples of the changes in the model’s behavior in predicting
in-domain input before and after fine-tuning for SA task.

Input G RO FO

1
I saw Paper Towns on Friday, it was good I guess
but there was so much changes compares to the
book, it bothered me

N E N

2
@user @user @user No he not Kendrick is the
best rapper in mainstream right now Black Fri-
day freestyles ex.

P E P

3
that’s cool kind of like Pink Floyd or something uh yeah
basketball’s cool but football kind of after a while. Yeah,
I love basketball and football

E N N

4

While everyone is out in the freezing cold Trick or

Treating0̆02c I sit here watching White Collar.

Yes0̆02c this is how I spend my October 31st.

E E P

5
@user @user @user Quote of the night- If I were
Amarosa I would go to Brooklyn bridge and be dr-
owning myself funny

P E N

Table 4.11: Examples of the changes in the model’s behavior in predicting
counterfactual explanation before and after fine-tuning for SA task.

Counterfactual Explanation G RA FA

1
When Millennials become bandwagon fans of the
Packers because of Harry. Do y-all even know who
Aaron Rodgers is? Or what a 1st down is?

N E N

2
@user Yeah I think so. We saw Suarez score up near
us and we played pretty evenly 2nd half so it wasn

2̆019t so bad. Probably should2̆019ve had ET
P E P

3
I’ve said all along and still staunchly maintain
that the Paris attacks: Charlie Hebdo and the 13
November 2015 one were both Gladio propaganda

N N N

4
Real Madrid reportedly rule out signing De Gea in
January; making me believe they’re getting hot
feet about this deal altogether.

E E N

5

My Sunday nights hadn2̆019T been the same
since @user has been gone from Breakout Kings.

I wonder what he2̆019s doing next? Can2̆019t
wait 2 c!

P E N
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Table 4.12: Examples of the changes in model’s behavior in predicting in-
domain input before and after fine-tuning for NLI task.

Input G RO RO

1
P: get something from from the Guess Who or.
H: Get something from someone or the Guess
Who if you really want.

N E N

2
P: so well i think we’ve taken up at least five
minutes.
H:You’ve taken up the last 5 minutes.

N E N

3
P: Most produce is locally grown, with some
from the restaurant’s own organic garden.
H: All of the produce comes from Mexico.

C C C

4

P: Yes, undoubtedly the hand of Mr. Brown! Mr.
Carter paused.
H: No identity could be assigned to the severed
appendage.

C C N

Table 4.13: Examples of the changes in model’s behavior in predicting coun-
terfactual explanation before and after fine-tuning for NLI task.

Counterfactual Explanation G RA FA

1

P: You will need-all of you will need-to be highly visible
personally and professionally.
H: Everyone needs to maintain an open look to
the public in order to attain success.

N E N

2

P: Participation in the rulemaking process requires (1) the
public to be aware of opportunities to participate and (2)
systems that will allow agencies to receive comments in
an efficient and effective manner.
H: The public need only be made aware of any opportu-
nities for rulemaking processes.

C E C

3

P: that’s cool kind of like Pink Floyd or something uh
yeah basketball’s cool but football kind of after a
decade
H: Yeah, I love basketball and football.

N N N

4
P: today it runs lined with shipments, factories, and
industrial development, and its waters are badly cleaned.
H: Its products are pure nor safe to drink

E N E

5
P: British action wouldn’t have failed.
H: British action would have made a big difference.

C E N

30



Examples of analyzing model’s behaviors in predicting the label
of counterfactual explanations For the NLI task, we show examples in
Table 4.14 and Table 4.15. For SA task, we show examples in Table 4.16 and
4.17.

We show examples to cover the cases that observe the changes in the
model’s behavior in predicting in-domain input and its counterfactual expla-
nation before and after fine-tuning. We compare the predicted labels of each
models RO, RA and FO, FA.

In Table 4.14 and Table 4.15, we show examples 1 and 2 that: before
fine-tuning, the pre-trained model produces different label Neutral and
(Entailment for an in-domain input and its counterfactual explanation.
However, after fine-tuning, the model predicts the same label. Example 3
shows that our fine-tuned model failed in prediction. Before fine-tuning, the
in-domain input and its counterfactual explanation have label Contradic-
tion, but after fine-tuning, they become Contradiction and Neutral.

The number of such failure cases is completely small, the NLI task has
only two cases and the SA task has four cases.
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Table 4.14: Examples of the predicted label of the original input and its
counterfactual explanation by the pre-trained model for NLI task.

Input — Counterfactual Explanation RO RA

1

O:
P: We did it with the aid of consultants and other equal
justice stakeholders.
H: The help from consultants and other stakeholders
was useful in doing it.

A:
P: We did it with the intervention of consultants and
other equal justice stakeholders.
H: The help from consultants and other stakeholders
was useful in doing it.

N E

2

O:
P: Participation in the rulemaking process requires (1)
the public to be aware of opportunities to participate
and (2) systems that will allow agencies to receive
comments in an efficient and effective manner.
H: The public need not be made aware of any opportunities
for rulemaking processes.

A:
P: Participation in the rulemaking process requires (1)
the public to be aware of opportunities to participate
and (2) systems that will allow agencies to receive
comments in an efficient and effective manner.
H: The public need only be made aware of any oppo-
rtunities for rulemaking processes.

C E

3

O:
P: Today it is lined with shipyards, factories, and in-
dustrial development, and its waters are badly polluted.
H: Its waters are pure and safe to drink

A:
P: today it runs lined with shipments, factories, and
industrial development, and its waters are badly cleaned.
H: Its products are pure nor safe to drink

C C
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Table 4.15: Examples of the predicted label of the original input and its
counterfactual explanation by our fine-tuned model for NLI task.

Input — Counterfactual Explanation FO FA

1

O:
P: We did it with the aid of consultants and other equal
justice stakeholders.
H: The help from consultants and other stakeholders
was useful in doing it.

A:
P: We did it with the intervention of consultants and
other equal justice stakeholders.
H: The help from consultants and other stakeholders
was useful in doing it.

N N

2

O:
P: Participation in the rulemaking process requires (1)
the public to be aware of opportunities to participate
and (2) systems that will allow agencies to receive
comments in an efficient and effective manner.
H: The public need not be made aware of any opportunities
for rulemaking processes.

A:
P: Participation in the rulemaking process requires (1)
the public to be aware of opportunities to participate
and (2) systems that will allow agencies to receive
comments in an efficient and effective manner.
H: The public need only be made aware of any oppo-
rtunities for rulemaking processes.

C C

3

O:
P: Today it is lined with shipyards, factories, and in-
dustrial development, and its waters are badly polluted.
H: Its waters are pure and safe to drink

A:
P: today it runs lined with shipments, factories, and
industrial development, and its waters are badly cleaned.
H: Its products are pure nor safe to drink

C N
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Table 4.16: Examples of the changes in model’s behavior in predicting in-
domain inputs and its counterfactual explanations before and after fine-
tuning for SA task.

Input — Counterfactual Explanation RO RA

1

O: Why wait for the videos when you can come see
duels official live tomorrow? I may have vodka on
my person too! Ha

A: Why cry for the videos when you can come see
reels official live tomorrow? I may have vodka on
my person too! Ha

E P

2

O: When girls become bandwagon fans of the Packers
because of Harry. Do y’all even know who Aaron
Rodgers is? Or what a 1st down is?

A: When Millennials become bandwagon fans of
the Packers because of Harry. Do y-all even know
who Aaron Rodgers is? Or what a 1st down is?

N E

3

O: @user Yeah I think so. We saw Suarez score up near

us and we played pretty well 2nd half so it wasn2̆

019t so bad. Probably should2̆019ve had ET

A: @user Yeah I think so. We saw Suarez score up
near us and we played pretty evenly 2nd half so it

wasn2̆019t so bad. Probably should2̆019ve
had ET

P E

4

O: @user follow @user and meet her on NOVEMBER 26

0̆02c she2̆019ll be at the bell center by 4:00 pm.
PLEASE FREDO.

A: @ user follow @girl and meet her in NOOVEMBER

2019ø002c she2̆019ll be around the bell center by
4:00 pm. PLEASE FROXO.

E E

5

O: men tomorrow you will have one of your hardest
patrols...CIF turn in lets hope i have everything

A: men tomorrow you will have one of your hardest
patrols...CIF turn in lets hope i save everything

E N
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Table 4.17: Examples of the changes in model’s behavior in predicting in-
domain inputs and its counterfactual explanations before and after fine-
tuning for SA task.

Input — Counterfactual Explanation FO FA

1

O: Why wait for the videos when you can come see
duels official live tomorrow? I may have vodka on
my person too! Ha

A: Why cry for the videos when you can come see
reels official live tomorrow? I may have vodka on
my person too! Ha

P P

2

O: When girls become bandwagon fans of the Packers
because of Harry. Do y’all even know who Aaron
Rodgers is? Or what a 1st down is?

A: When Millennials become bandwagon fans of
the Packers because of Harry. Do y-all even know
who Aaron Rodgers is? Or what a 1st down is?

N N

3

O: @user Yeah I think so. We saw Suarez score up near

us and we played pretty well 2nd half so it wasn2̆

019t so bad. Probably should2̆019ve had ET

A: @user Yeah I think so. We saw Suarez score up
near us and we played pretty evenly 2nd half so it

wasn2̆019t so bad. Probably should2̆019ve
had ET

P P

4

O: @user follow @user and meet her on NOVEMBER 26

0̆02c she2̆019ll be at the bell center by 4:00 pm.
PLEASE FREDO.

A: @ user follow @girl and meet her in NOOVEMBER

2019ø002c she2̆019ll be around the bell center by
4:00 pm. PLEASE FROXO.

E P

5

O: men tomorrow you will have one of your hardest
patrols...CIF turn in lets hope i have everything

A: men tomorrow you will have one of your hardest
patrols...CIF turn in lets hope i save everything

P N
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

To improve the robustness of models, adversarial training is one of the
promising approaches. However, in previous studies of adversarial training,
the generated adversarial examples were not guaranteed to be minimally
edited and to change the model’s prediction from the original inputs. Our
hypothes is that adversarial training might be more effective in enhancing
robustness if given limitations are addressed. In this work, we leverage coun-
terfactual explanations to improve the model’s robustness. Experimental
results demonstrate that our proposed method outperforms the pre-trained
model in both in-domain and out-of domain settings. We also explore the
fine-tuned model’s behaviors in its prediction compared with the pre-trained
model. It indicates that counterfactual explanation-based adversarial train-
ing is a promising approach to improve the robustness of the pre-trained
language models.

5.2 Future Work

In the future, we plan to combine our work with active learning to have
humans check the quality of newly generated counterfactual explanations
and verify the gold label of the counterfactual explanations. Besides, we aim
to leverage a large language model such as GPT to generate counterfactual
explanations and then compare them with our methods. Additionally, in this
work, we only use one method to generate counterfactual explanations, so we
want to improve counterfactual explanation generation methods. Finally, we
will analyze the model’s attention for an input before and after fine-tuning
on counterfactual explanations.
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