
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Original Entry Point detection of packed code

based on graph similarity

Author(s) Pham, Thanh Hung

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18740

Rights

Description
Supervisor: 小川 瑞史, 先端科学技術研究科, 修士(情報

科学）



Abstract

For many years, one of the great hazards to computers is malware which can cause a
dramatic impact on their victim. Meanwhile, the number of new malware has increased
exponentially each year, and most of them are obfuscated by packers for protecting mal-
ware from different anti-virus systems and many algorithms.

The Original Entry Point (OEP) of packed code is the place indicating the beginning
point of the original payload during the execution of packed code. When OEP is de-
tected, we can observe and investigate the original functionality. However, finding OEP
automatically is still a challenging task because of the diversity of packers. In some previ-
ous works, OEP can be found in the specific region with some patterns (e.g., jump to the
reserved region), but finding these patterns is still difficult for many packers. Therefore,
a method to automatically detect OEP is essential and meaningful.

Based on our observation, most of packers will encrypt the original payload and com-
bine it with an unpacking stub, which decrypts the packed payload during the execution
of the packed code. After the last instruction in the unpacking stub is executed, the
control flow will jump to the OEP. Hence, the unpacking stub can be regarded as a signa-
ture for each packer and we expect some pattern in each stub. To find such patterns, we
observe CFG of various packed codes, which is generated by BE-PUM (Binary Emulation
for PUshdown Model), a dynamic symbolic execution tool of Intel x86 binaries. We store
the template of each unpacking stub by applying BE-PUM on example-packed codes.
Since we know the original code, we can compare the original and the restored code by
BE-PUM, and obtain the CFG of the unpacking stub as the difference.

This paper proposes a method for packer identification and OEP (Original Entry Point)
detection based on the graph similarity on control flow graphs of packed codes. Packed
code consists of an unpacking stub and a packed payload, which is recovered to the orig-
inal after the unpacking stub execution. We start with the hypothesis that the CFG
of the unpacking stub characterizes a packer. The CFGs of packed code are generated
by a DSE (Dynamic Symbolic Execution) tool BE-PUM on x86-32/Windows, and when
their original payloads and used packers are known, we can identify the unpacking stub
in a packed code. First, for 771 samples packed by 12 packers from given payloads, we
classify them by a clustering algorithm DBSCAN to confirm the hypothesis. We ob-
serve that when the allowance eps is enough small (e.g., eps = 0.02 in DBSCAN), (1)
each class does not cross different packers (whereas some packer has multiple classes of
CFGs of the unpacking stubs, e.g., WINUPACK has 2), and (2) the end instruction se-
quence (the prefix of the exit of an unpacking stub with the specified length) is the same
in each class. Hence, we define the template of the class as the pair of the average of
Weisfeiler-Lehman histogram vectors and the end sequence. Each template is computed
packer-wise (i.e., clustering packed codes by the same packer) for the ease to cover a
new packer. Next, for unknown packed code, BE-PUM incrementally generates the CFG.
When the end sequence matches with the tail of a CFG fragment, we check the similarity



between its Weisfeiler-Lehman histogram vector and that in templates. Among them,
the CFG fragment with the highest cosine similarity is regarded as the unpacking stub,
which also detects the used packer and the OEP as the jump destination from the exit.
Our experiment focuses on 12 packers, UPX, ASPACK, FSG, YODA’S Crypter, MEW,
PACKMAN, PECOMPACT, PETITE, (WIN)UPACK, JDPACK, MPRESS, TELOCK,
and the OEP of 688 among 700 non-malware packed samples (of which the original pay-
load is also known) is correctly detected. Further, we apply the method to 1239 malware
samples. Among them, 1089 samples are detected packed and 150 samples are packed
by the 11 packers (except for TELOCK). We conclude that our method is highly effec-
tive as long as we have access to an executable of a target packer to compute its templates.

Keywords— Original Entry Point, x86 malware, packer, clustering algorithm, graph kernel,
graph theory.

2




