
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Original Entry Point detection of packed code

based on graph similarity

Author(s) Pham, Thanh Hung

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18740

Rights

Description
Supervisor: 小川 瑞史, 先端科学技術研究科, 修士(情報

科学）

Master’s Thesis

Original Entry Point detection of packed code
based on graph similarity

2010436 Pham Thanh Hung

Supervisor Prof. Mizuhito Ogawa
Examiners Associate Prof. Razvan Beuran

Prof. Minh Le Nguyen
Prof. Kazuhiro Ogata

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2023

Abstract

For many years, one of the great hazards to computers is malware which can cause a
dramatic impact on their victim. Meanwhile, the number of new malware has increased
exponentially each year, and most of them are obfuscated by packers for protecting mal-
ware from different anti-virus systems and many algorithms.

The Original Entry Point (OEP) of packed code is the place indicating the beginning
point of the original payload during the execution of packed code. When OEP is de-
tected, we can observe and investigate the original functionality. However, finding OEP
automatically is still a challenging task because of the diversity of packers. In some previ-
ous works, OEP can be found in the specific region with some patterns (e.g., jump to the
reserved region), but finding these patterns is still difficult for many packers. Therefore,
a method to automatically detect OEP is essential and meaningful.

Based on our observation, most of packers will encrypt the original payload and com-
bine it with an unpacking stub, which decrypts the packed payload during the execution
of the packed code. After the last instruction in the unpacking stub is executed, the
control flow will jump to the OEP. Hence, the unpacking stub can be regarded as a signa-
ture for each packer and we expect some pattern in each stub. To find such patterns, we
observe CFG of various packed codes, which is generated by BE-PUM (Binary Emulation
for PUshdown Model), a dynamic symbolic execution tool of Intel x86 binaries. We store
the template of each unpacking stub by applying BE-PUM on example-packed codes.
Since we know the original code, we can compare the original and the restored code by
BE-PUM, and obtain the CFG of the unpacking stub as the difference.

This paper proposes a method for packer identification and OEP (Original Entry Point)
detection based on the graph similarity on control flow graphs of packed codes. Packed
code consists of an unpacking stub and a packed payload, which is recovered to the orig-
inal after the unpacking stub execution. We start with the hypothesis that the CFG
of the unpacking stub characterizes a packer. The CFGs of packed code are generated
by a DSE (Dynamic Symbolic Execution) tool BE-PUM on x86-32/Windows, and when
their original payloads and used packers are known, we can identify the unpacking stub
in a packed code. First, for 771 samples packed by 12 packers from given payloads, we
classify them by a clustering algorithm DBSCAN to confirm the hypothesis. We ob-
serve that when the allowance eps is enough small (e.g., eps = 0.02 in DBSCAN), (1)
each class does not cross different packers (whereas some packer has multiple classes of
CFGs of the unpacking stubs, e.g., WINUPACK has 2), and (2) the end instruction se-
quence (the prefix of the exit of an unpacking stub with the specified length) is the same
in each class. Hence, we define the template of the class as the pair of the average of
Weisfeiler-Lehman histogram vectors and the end sequence. Each template is computed
packer-wise (i.e., clustering packed codes by the same packer) for the ease to cover a
new packer. Next, for unknown packed code, BE-PUM incrementally generates the CFG.
When the end sequence matches with the tail of a CFG fragment, we check the similarity

between its Weisfeiler-Lehman histogram vector and that in templates. Among them,
the CFG fragment with the highest cosine similarity is regarded as the unpacking stub,
which also detects the used packer and the OEP as the jump destination from the exit.
Our experiment focuses on 12 packers, UPX, ASPACK, FSG, YODA’S Crypter, MEW,
PACKMAN, PECOMPACT, PETITE, (WIN)UPACK, JDPACK, MPRESS, TELOCK,
and the OEP of 688 among 700 non-malware packed samples (of which the original pay-
load is also known) is correctly detected. Further, we apply the method to 1239 malware
samples. Among them, 1089 samples are detected packed and 150 samples are packed
by the 11 packers (except for TELOCK). We conclude that our method is highly effec-
tive as long as we have access to an executable of a target packer to compute its templates.

Keywords— Original Entry Point, x86 malware, packer, clustering algorithm, graph kernel,
graph theory.

2

Acknowledgement

First and foremost, I would like to express my sincere gratitude and respect to my
supervisor, Prof. Mizuhito Ogawa for his continuous support and guidance during my
study at Japan Advanced Institute of Science and Technology. During this time, he has
given me invaluable advice on how to think deeply and he has taught me how to write a
technical document in a logical way and make it become a story. The process of under-
going training with him has helped me practice patience and meticulousness in my work.
I believe that what I learned from him will help me a lot in the future.

I also appreciate Prof. Tu Minh Phuong and many teachers, and staff from PTIT be-
cause I have had the chance to study at JAIST because of their support.

I could not forget to mention the goodness of Mr. NGUYEN, Thai Son. He always told
me that if I have any difficulty in my new life in Japan, I can tell him. He will support
me as much as possible.

I would like to thank Giaohangtietkiem, particularly, Mr. Ma Trong Khoi, Mr. Dao
Cong Anh, Mr. Pham The Hien, and my team Vision. When I expressed my decision
to go to Japan, they supported me a lot. From my deep down, I am really grateful to them.

Thanks also go to Ms. KHONG, Phuong Thao from Le Quy Don University and Mr.
NGUYEN, Thanh Tung from Giaohangtietkiem for their advice to me when I begin learn-
ing basic knowledge in the Security domain.

Especially, I would like to express my appreciation to my friends, Mr. TRAN, Cong
Thanh, Mr. NGO, Tien Duc, Ms. NGUYEN, Thi Van Anh, Ms. NGUYEN, Thi Hai
Yen, Ms. TRAN, Thi Anh Thu, Mr. NGUYEN, Vu Khac Hiep, and Mr. Pham Trung
Tin. Thank you for your help not only in academic activities but also in daily life. I will
remember those days when we studied together and ran together to keep our health and
reduce my stress during my wonderful and tough time in JAIST.

Obviously, my big thanks go to my family, they always ask me about my health and
my work during the year I am at JAIST. I always received their love and encouragement
motivated me to study and keep moving forward.

Last but not least, my gratitude and love are to my wife NGUYEN, Thu Quynh. I
cannot complete this work without her love, support, and faith.

1

Contents

List of Figures 4

List of Tables 0

1 Introduction 1

2 Preliminaries 6
2.1 Terminology and notation related to graph 6
2.2 Weisfeiler-Lehman Kernels . 7
2.3 DBSCAN . 10

3 X86 on Windows 14
3.1 X86 instruction set . 14
3.2 Windows . 17
3.3 API call in Windows . 19

4 Malware and packer 23
4.1 Malware . 23
4.2 Obfuscation techniques . 24
4.3 Packer . 27

5 Deobfuscation and BE-PUM 30
5.1 Deobfuscation and DSE . 30
5.2 BE-PUM . 32

6 The CFG of binary code 36
6.1 Problem Statement . 36
6.2 The CFG of binary code . 40
6.3 CFG of packed code . 44

7 Control Flow Graph of unpacking stub 47
7.1 Reasons for avoiding retreating edges . 47
7.2 The CFG of the unpacking stub characterizes a packer 49
7.3 Consistency of the end sequence . 56

2

8 Packer identification and OEP detection 59
8.1 Template matching for packer identification and OEP detection 59
8.2 Computing weisfeiler-lehman graph and its histogram vector 60

8.2.1 Computing weisfeiler-lehman graph 61
8.2.2 Computing weifeiler-lehman histogram vector 62

8.3 Template setup for each packer . 66
8.3.1 Clustering procedure . 66
8.3.2 Clustering Weisfeiler-Lehman histogram vector 68
8.3.3 Computing average Weisfeiler-Lehman histogram vector 68

9 Experiments 70
9.1 Experimental environments . 70
9.2 Packer identification . 73
9.3 OEP detection . 74
9.4 Packer identification and OEP detection on malware samples 77

10 Conclusion 78
10.1 Discussion, Conclusion and Current limitation 78

10.1.1 Conclusion and current limitation 78
10.1.2 Discussion . 79

10.2 Future works . 81

List of Figures

2.1 WLK Iteration . 7
2.2 WLK Subtree . 10
2.3 DBSCAN . 11
2.4 DBSCAN Illustration . 12

3.1 Example of Conditional Jump . 15
3.2 PE Structure . 17
3.3 autologon in detectiteasy . 19
3.4 User mode and kernel mode in Windows 20
3.5 An overview of OS service . 20

4.1 Packing and Unpacking Process . 28
4.2 Jump OEP in upx-autologon.exe in ollydbg 28

5.1 Symbolic Execution . 31
5.2 On the fly manner . 31
5.3 BE-PUM Architecture . 33
5.4 Binary Emulator . 34
5.5 GetDateFormat Flow Process . 35

6.1 Packer Identification using Detect It Easy 37
6.2 AccessEnum non pack and packed . 38
6.3 The last instruction . 38
6.4 Unpacked AccessEnum.exe . 38
6.5 Overview . 39
6.6 a jump condition node in autologon.exe packed by UPX 41
6.7 CFG of high-level programming language 43
6.8 API name Capitalization . 44
6.9 OEP node and end-of-unpacking node . 46

7.1 CFG of Unpacking code and unpacked payload 48
7.2 Treating edges depends on DFS travel . 49
7.3 CFG with Cycle . 50
7.4 Reverse of a directed graph . 52
7.5 Predecessor Subgraph Extraction . 53

4

7.6 Reachable subgraph . 54
7.7 End-of-unpacking graph . 55
7.8 Different structure of end-of-unpacking graph in winupack 56

8.1 End-of-unpacking graph . 59
8.2 Relabelling function . 62
8.3 Frequency feature extraction . 65
8.4 Standard end-of-unpacking clustering . 67
8.5 DBSCAN clustering . 68

9.1 OEP acquisition . 71
9.2 GUI of GUnPacker . 74

10.1 jump start in PACKMAN . 80

List of Tables

7.1 End-of-unpacking sequence . 57
7.2 The effect of eps on DBSCAN clustering 58

9.1 The number of packed codes for each packer 72
9.2 The results of the packer identification task 73
9.3 The results of the OEP detection task . 75
9.4 The effect of end sequence in packer identification problem 76
9.5 The effect of end sequence in OEP detection problem 76
9.6 The number of malware samples can detected packer’name and OEP . . . 77

Chapter 1

Introduction

Motivation

Malware is software developed to do malicious actions on victim machines. To prevent
malware, many antivirus software has been developed to protect the system. However, the
problem of detecting and classifying malware has become harder because malware authors
utilize packers to hide their malicious code. Actually, over 80% malware is obfuscated by
packers for protecting it from anti-virus systems.
Packer is a software that often with obfuscation techniques packs the payload of soft-

ware. The original aims of packers are to reduce the size of the files and evade reverse
engineering to protect the licensed software from crackers. However, because of the ability
to evade reverse engineering, malware authors have utilised packers to hide their mali-
cious behaviors. The action of using packers to encrypt a binary is called the packing
process, and the encrypted binary is called a packed code, which consists of an unpacking
stub, this stub will decrypt the payload to the original file. After executing the unpacking
stub, the control flow will be transferred to the original entry point (OEP) where the
original program begins. At this moment, the functionality of the original program will
be recovered totally.
To handle a packed code, it is necessary to perform the unpacking process to recover

the original payload, which can be analysed for many different purposes. In the case of
malware, the unpacking process can reveal their malicious intention and many analysis
can be conducted further. Therefore, the problem of how to unpack a packed code has
been received a lot of attention in both the industry and academia. Currently, there
are many techniques for unpacking a packed code, but they can be classified into three
major approaches which are manual unpacking, static unpacking, and generic unpacking
for unpacking a packed file. Manual unpacking executes the packed program by using a
native debugger (e.g., Ollydbg, SoftIce) to analyze the encryption of packer layer and de-
compression method, and manually recover the original files. Manual unpacking requires
a huge effort and is time-consuming, while static unpacking is dedicated routines to de-
crypt executables packed by a specific packer without actually executing the malicious
program, but this approach can be bypassed by unforeseen or custom packers. Generic

1

unpacking which uses programs to execute or emulate unknown packed executables until
they are fully decrypted in memory becomes a potential approach. It can be defined as
a method do not require specific knowledge about the packer and automatically perform
unpacking. Nonetheless, regardless of the employed methodology, the detection of the
OEP consistently remains a crucial necessity. However, finding OEP automatically is still
a challenging task because of the diversity of packers. Therefore, a method to systemat-
ically detect the OEP of a packed code and easily extend it for different packers will be
very useful since it saves a lot of human effort. Currently, our method follows the generic
unpacking direction.
This paper proposes a method for packer identification and OEP (Original Entry Point)
detection based on the graph similarity on control flow graphs of packed codes. Packed
code consists of an unpacking stub and a packed payload, which is recovered to the origi-
nal after the unpacking stub execution. We start with the hypothesis that the CFG of the
unpacking stub characterizes a packer. Note that when their original payloads and used
packers are known, we can identify the unpacking stub in a packed code. Fig 7.7 shows
preliminary observation on FSG, MEW, UPX, and WINUPACK, respectively. They may
have different patterns of CFGs of the unpacking stubs (for instance, WINUPACK has
2), but their similarity is high regardless of the payloads.
First, for 771 samples packed by 12 packers from given payloads, we classify them by

a clustering algorithm DBSCAN to confirm the hypothesis. We observe that when the
allowance eps is enough small (e.g., eps = 0.02 in DBSCAN), (1) each class does not cross
different packers (whereas some packer has multiple classes of CFGs of the unpacking
stubs, e.g., WINUPACK has 2), and (2) the end instruction sequence (the prefix of the
exit of an unpacking stub with the specified length) is the same in each class. Hence, we
define the template of the class as the pair of the average of Weisfeiler-Lehman histogram
vectors and the end sequence. The length of a Weisfeiler-Lehman histogram vector rapidly
increases if we consider a larger diameter of neighborhoods. For instance, if the number
of instructions appearing in a CFG is m (often m > 20), the sum of 1-neighbors to
k-neighbors (the vector length) grows Cm,k. Therefore, we choose k = 2.
Next, the template of each packer is prepared, which is computed packer-wise (i.e., clus-

tering packed codes by the same packer) for the ease to cover a new packer (with relaxed
eps = 0.05 for the optimal clustering when the used packer is known). We prepare the
templates for 12 packers, UPX, ASPACK, FSG, YODA’S Crypter, MEW, PACKMAN,
PECOMPACT, PETITE, (WIN)UPACK, JDPACK, MPRESS, and TELOCK.
Finally, for unknown packed code, BE-PUM incrementally generates the CFG. When

the end sequence matches with the tail of a CFG fragment, we check the similarity between
its Weisfeiler-Lehman histogram vector and that in prepared templates. Among them,
the CFG fragment with the highest cosine similarity is regarded as the unpacking stub,
which also detects the used packer and the OEP as the jump destination from the exit.
To perform these two steps above, we need to prepare the template of the similarity and
the end sequence of the instructions of the unpacking stub for each packer. Therefore, the
limitation of our method will occur only with an unknown packer that we have no access
to it.

2

Since the process of searching a graph is required in our method, we need an approach
to perform the comparison between graphs. However, the direct comparison between
graphs is not easy. Indeed, there are several approaches to measuring the similarity be-
tween graphs such as Graph Edit Distance (GED) and Graph Neural Networks (GNNs).
However, the former can sometimes be working well in practice, but the problem of graph
edit distance computation generally is NP-hard [1] and is even hard to approximate [2].
Meanwhile, the latter is a powerful approach with the advantage of deep learning, but this
approach needs a huge dataset for training. Therefore, we apply a graph kernel method
which transforms effectively graphs into feature vectors in a higher-dimensional space,
making it easier for similarity comparison and applying machine learning algorithms.
Among 700 non-malware packed dataset (of which the used packer and the original pay-
load are labeled), our method correctly identifies the used packers for 689 samples, and the
OEP for 688 samples. For the used packer, VirusTotal (which is the databese collected
from various resources) identifies 699 samples beyond our result, but the OEP detection
result is distinguished from others, e.g., GunUnpacker and QuickUnpack find 501 and 275,
respectively. Further, we apply the method to 1239 malware samples. Among them, 1089
samples are detected packed and 150 samples are packed by the 11 packers (except for
TELOCK).

Our main contributions consist of:

1. We proposed a generalized method to extract the templates of the unpacking stub
for each packer by applying a clustering algorithm (as long as we have access to its
excutable to pack).

2. We introduce the end instruction sequence of the unpacking stub. This sequence
can be used as symbolic evidence indicating the exit of the unpacking stub.

We expect that precise OEP detection will enable us to understand techniques for infection
and malicious actions, which will be in the original payload of malware.

Thesis structure

This thesis is composed of 10 chapters. Chapter 1 is the introduction, the next chapters
are summarized as follows:

• Chapter 2 presents some fundamental terminology and notation used in our work.
In addition, weisfeiler-lehman graph kernels and a clustering algorithm are described
as well.

• Chapter 3 briefly provide some information of X86 on Windows. In addition, we
explain how Windows handle API calls from a user process.

• Chapter 4 firstly introduce malware and some malicious techniques. Second, we
explain some typical obfuscation techniques. Third, we introduce packer which is a
program often used to protect malware from anti-virus systems.

3

• Chapter 5 presents Dynamic Symbolic Execution which is an approach to overcome
obfuscation techniques. In addition, a tool called BE-PUM that can generate a
precise control flow graph of a binary file is also introduced.

• Chapter 6 presents the control flow graph of a binary, especially for a packed code.

• Chapter 7 discusses several reasons why we need to remove retreating edges. This
chapter also illustrates how an acyclic backbone is extracted from a graph. Next, we
present the method used to generate a predecessor graph from an acyclic backbone.
Finally, we introduce the sequence of the end of the unpacking stub.

• Chapter 8 explains how a frequency vector is converted from a graph. On the
other hand, the process of computing the average frequency vector for each packer
is presented as well. Lastly, we will provide the utilization of average frequency
vectors for both problems packer identification and OEP detection of a packed code.

• Chapter 9 firstly describe our experimental environment. Next, we show the result
of our experiment 700 non-malware samples of 12 packers and 1239 malware samples.

• Chapter 10 discuss the failed case in our method and then summarizes the main
contributions of the thesis and its current limitation. After that, some future works
are also mentioned to suggest some directions to improve our method.

Related works on the OEP detection

Most of the OEP detection is based on a dynamic analysis. If fully executed, the original
payload must be somewhere on the memory image. It would be too large to explore
and mostly Instead of the full execution, some tries to interrupt around the detected
OEP. For instance, OllyBonE1 and Renovo [3] try to stop when the control jumps to
an allocated region, where they expect that the decrypted payload is stored. OllyBonE
includes a Windows kernel driver for the page protection of a specified region. Its OEP
detection starts to choose the memory area and set the exception break-on-execute. It
then waits for the unpacking stub to complete. Then, an exception occurs and the OEP
is identified if the control flow moves to the address inside the protected area. This
plugin, however, frequently fails when packers use anti-debugging techniques using API
IsDebuggerPresent@kernel32.dll.
Meanwhile, Renovo is built on the top of an emulation environment, TEMU2, and a

shadow copy of the memory space of the targeted file is stored by Renovo. This method
monitors runtime updates on memory. Then, the OEP is detected by extracting the
recently generated code and data.
There are also some statistical analysis methods to detect OEP in [4], [5]. In the work

[4], they will execute the packed code and keep running until meet one of the instructions

1http://www.joestewart.org/ollybone
2http://bitblaze.cs.berkeley.edu/temu.html

4

such as JMP, JCC, CALL, or RET. Next, entropy analysis will be conducted by measuring
memory spaces. They assume that the end of the unpacking process happens when the
entropy no longer changes. Meanwhile, the work [5] will collect OEP candidates where a
page fault occurs, and then they will use two other OEP detection approaches to confirm
whether a candidate is OEP or not. If both approaches decide a candidate is OEP, they
conclude that OEP has been found. Here, the first approach is based on entropy, and the
remainder is based on the number of API-call instructions present in the memory.
On the other hand, we can mention some works that detect OEP based on observing

dynamic behavior, such as Polyunpack [6] and Omniunpack [7].
Another approach[8], [9] for the OEP detection prepares a candiate list of the OEP.

PinDemonium [8] dumps the memory at an OEP candidate by using Scylla[10], and tries
to reconstruct the library function table. If it works, the OEP is detected. However, the
number of OEP candidates is often quite large. [9] tries to reduce the number of OEP can-
didates by observing WrittenAndExecuted addresses and the branch instructions. They
are further refined by the command-line parameters of the main function.
The SE handler installation routine is then located by tracking the calls made by

the system startup function. Particularly, the address of this routine is the last write
instruction on fs:[0]. Finally, it considers the OEP as the WrittenAndExecuted address
that is nearest to the SE handler.
However, most of the work focuses on monitoring the behaviour of packed code so it

can be cheated by the use of obfuscation techniques, and sometimes we can just have a
list of OEP candidates. Lastly, after we have the OEP, we still need to do more steps to
retrieve the original program as an executable file.
In the work [11], the authors developed a hardware-assisted tool, API-Xray, to recon-

struct import tables to achieve the ultimate goal of Windows malware unpacking. Their
main method, API Micro Execution, investigates every possible API callsite and runs
them without knowing the values of the API argument. In parallel, they use Intel Branch
Trace Store and NX bit hardware tracing to determine API names and finally construct
import tables. On the other hand, the work [12] introduces an all-in-one unpacking sys-
tem that includes many different phases in Malware analysis such as detection, unpacking,
and verification.
Regarding the graph similarity, [13], [14] apply for malware detection and malware

analysis. After obtaining CFGs of packed codes by symbolic execution (BE-PUM and
Angr, repectively), the former uses CNN on graphs and the latter uses (1-dimensional
Weisfeiler-Lehman kernel, similar to us). However, they do not distinguish the unpacking
stubs and the payloads, and the whole CFGs of packed codes are classified. Hence, they
do not try on the packer identification and the OEP detection.

5

Chapter 2

Preliminaries

This chapter presents fundamental knowledge about the predecessor graph, Weisfeiler-
Lehman kernel and the DBSCAN clustering algorithm. These notions and algorithms
will be applied in this research.

2.1 Terminology and notation related to graph

We denote the contatenation of two vector v1 and v2 by v1 ⊕ v2. For a finite directed
graph G = (V,E) with E ⊆ V × V , let

ancestors(v) = {u | (u, v) ∈ E} successors(v) = {u | (v, u) ∈ E}.

The indegree deg−(v) and outdegree deg+(v) of v ∈ V is |ancestors(v)| and |successors(v)|,
respectively. v ∈ V is a source node (resp. sink node) if deg−(v) = 0 (resp. deg+(v) = 0).
We also sometimes denote u → v if (u, v) ∈ E. A directed graph G is acyclic if there are
no v ∈ V with a cycle v →+ v.
We assume a DFS on G, which introduces the order among children nodes. We say,

• Foward edges: from ancestor to proper descendant.

• Cross edges: from right to left.

• Retreating edges: from descendant to ancestor (not necessarily proper).

• Back edges: Retreating edges with its tail dominate its head. Given two nodes u
and v in a directed graph, node u dominates node v when every path from the root
of the DFS tree to v has to contain node u.

Definition 2.1.1. Let G = (V,E) be a directed acyclic graph. For u ∈ V , the predecessor
graph from u is a graph PreGu = (Vu, Eu) with

Vu = {v ∈ V | v ∗→ u} Eu = E ∩ (Vu × Vu) (2.1)

If G is clear from the context, we may omit it as Preu.

The label of G = (V,E) is given by a labeling function lG : V → Σ where Σ = {σk |
1 ≤ k ≤ |Σ|} is the set of labels. When lG(u) = σ, σ is the label of u in G.

6

2.2 Weisfeiler-Lehman Kernels

The Weisfeiler-Lehman Test of Isomorphism

Graph isomorphism refers to the concept of determining whether the structures of two
graphs are identical or ”isomorphic”. Alternatively, the target of this task is to determine
whether one graph can transform into other graphs by relabeling their nodes.
In order to deal with this problem, The 1-dimensional Weisfeiler-Lehman test has been
introduced. This algorithm performs with multiple iterations. The key strategy of the
algorithm is to relabel nodes in two graphs by compressing the current node labels with
the sorted set of node labels of neighbouring nodes. This process will be terminated with
2 conditions:

• The label sets of the two graphs are different.

• The number of interactions reaches a default value of h.

Figure 2.1: An example of one iteration of Weisfeiler-Lehman algorithm [15]

Figure 2.1 illustrates one iteration of the algorithm. For example, the node has label 5
in graph G has its neighbour are 2, 3 and 4. Therefore, in the first iterations, labels 2,
3, and 4 will be compressed to 234, and then 5 will be concatenated with 234 as a prefix
to obtain the new label which is 5,234. This operation will be applied to other nodes in
the same way. Next, the new labels will be compressed into a number. This step can be
considered as a function f. Here is the way f work. First, there will be a counter variable

7

for f that records the number of unique strings before the current iteration. When a
string has been compressed in previous iterations, f will map this string into a value in
the counter. In contrast, if the string is new, and it has not been recorded before, the
counter will be increased by 1, and f assigns this new value to the new string. In addition,
the purpose of sorting the set of neighbours is to ensure all identical strings are mapped
into the same number.
In this section, we refer definitions to [15].

Procedure 2.2.1. One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomor-
phism: Given two graphs G and G′, the label function ℓ : V → Σ is a function that
assigns labels from an alphabet Σ to nodes in the graph. li is the label function of the
graph after iteration i of the relabelling procedure. This procedure has four steps:

• Step 1: Multiset-label determination:

– M0(v) := l0(v) = ℓ(v).

– For i > 0, each node v will be assigned by a multiset-label Mi(v) in G and G′.
Mi(v) = {li−1(u) | u ∈ N(v)}.

• Step 2: Mi(v) sorting:

– The set Mi(v) will be arranged in ascending order and then they will be con-
catenated into a string si(v).

– si(v) = li−1(v) + si(v).

• Step 3: Label compression

– For all v from G and G′, si(v) sorted in ascending order.

– Assign each string si(v) to a new label using a function f : Σ∗ → Σ such that
f(si(v)) = f(si(w)) if and only if si(v) = si(w).

• Step 4: Relabeling.

– Compute li(v) by assign li(v) equal to f(si(v)) for all nodes in G and G′.

Note that, the above definition used the same node labelling functions ℓ, l0, ..., lh for
both G and G′. Intuitively, the idea of the relabelling procedure is similar to the N-gram
technique in NLP.

The Weisfeiler-Lehman Kernel

From the previous section, we have introduced an approach to checking the Graph iso-
morphism. However, when the structure of two graphs is not identical, how much they are
similar. In order to answer this question, this section will introduce the kernel. Intuitively,
kernels can be understood as functions measuring the similarity of pairs of graphs.

8

Definition 2.2.1. Define the Weisfeiler-Lehman graph at height i of the graph G =
(V,E, ℓ) = (V,E, l0) as the graph Gi = (V,E, li). The sequence of Weisfeiler-Lehman
graphs can be defined as:

{G0, G1, . . . , Gh} = {(V,E, l0), (V,E, l1), . . . , (V,E, lh)}

Where G0 = G and l0 = ℓ represent the Weisfeiler-Lehman sequence up to height h of G.
So, we have G0 as the original graph, and G1 = r(G0) indicates that G1 is the result of
applying the Weisfeiler-Lehman algorithm on G0. This is similar to other iterations.

Definition 2.2.2. Let k be any kernel for graphs, that we will call the base kernel. Then
the WeisfeilerLehman kernel with h iterations with the base kernel k is defined as

k
(h)
WL(G,G′) = k(G0, G

′
0) + k(G1, G

′
1) + . . .+ k(Gh, G

′
h),

Where:

• h is the number of Weisfeiler-Lehman iterations.

• {G0, . . . , Gh} and {G′
0, . . . , G

′
h} are the Weisfeiler-Lehman sequences of G and G′

respectively.

Now, we will describe an instance of theWeisfeiler-Lehman Kernel which is theWeisfeiler-
Lehman Subtree Kernel.

Definition 2.2.3. Let G and G′ be graphs. Define Σi ⊆ Σ as the set of letters that occur
as node labels at least once in G or G′ at the end of the i-th iteration of the Weisfeiler-
Lehman algorithm. Let Σ0 be the set of original node labels of G and G′. Assume all Σi

are pairwise disjoint. Without loss of generality, assume that every Σi = {σi,1, . . . , σi,|Σi|}
is ordered. Define a map ci : {G,G′} × Σi → N such that ci(G, σi,j) is the number of
occurrences of the letter σi,j in the graph G.

The Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations is
defined as:

k
(h)
WLsubtree(G,G′) =

〈
ϕ
(h)
WLsubtree(G), ϕ

(h)
WLsubtree(G

′)
〉
,

Where,

ϕ
(h)
WLsubtree(G) = (c0, (G, σ0,1), . . . , c0, (G, σ0,|Σ0|), . . . , ch(G, σh,1), . . . , ch(G, σh,|Σh|)),

And,

ϕ
(h)
WLsubtree(G

′) = (c0(G
′, σ0,1), . . . , c0(G

′, σ0,|Σ0|), . . . , ch(G
′, σh,1), . . . , ch(G

′, σh,|Σh|)),

In short words, the Weisfeiler-Lehman subtree kernel counts common original and com-
pressed labels in two graphs.

9

Example 2.2.1:

Let’s consider the figure 2.2 to see how feature vectors of two graphs are generated.

Figure 2.2: Feature vectors of two graph G and G′ obtained by Weisfeiler-Lehman subtree
kernel [15]

With the Weisfeiler-Lehman algorithm, now we can convert a graph into a feature
vector. This plays an important role in this research because we have to deal with many
graphs and compare their similarity.

2.3 DBSCAN

Machine learning

Machine learning (a branch of Artificial Intelligence) are algorithms that enable machines
to learn from data. Next, it can predict new unseen data in the future. Machine learning
algorithms can be categorized into three kinds of algorithm:

1. Supervised learning: an algorithm that predicts the output (outcome) of new data
(new input) based on previously known (input, outcome) pairs. This data pair is
also known as (data, label), i.e. (data, label). Supervised learning is the most
popular group of Machine Learning algorithms.

2. Unsupervised learning: Unsupervised learning is a machine learning technique in
which models are not supervised using a training dataset. In other words, our data
don’t have labels. An unsupervised learning algorithm will do some tasks from the

10

structure of the data. Problems in unsupervised learning can be divided into two
groups: Clustering and Association.

3. Reinforcement learning: Algorithms that help a system automatically determine
behavior based on circumstances to achieve the most benefit (maximizing the per-
formance). Currently, Reinforcement learning is mainly applied to Game Theory,
algorithms need to determine the next move to achieve the highest score.

In our work, we use a clustering algorithm belonging to an unsupervised learning algo-
rithm to find the standard frequency vectors of each packer. The algorithm we used in
this research is DBSCAN algorithm.

Density-based spatial clustering of applications with noise (DB-
SCAN)

DBSCAN is an unsupervised algorithm to handle clustering problems. This algorithm
relies on a density-based notion of clusters which is designed to discover clusters of arbi-
trary shape. The key idea is that for each point of a cluster, there are a minimum number
of points within a given radius, i.e. the density in the neighbourhood has to exceed some
threshold. For example, the Figure 2.4 gives us some intuition about the cluster and
noice.

Figure 2.3: An sample set of points [16]

Clusters in the figure above are easily detected by the sense of a typical density of
points which is considerably higher than outside of the cluster. In contrast, the density
within the noise area is really low.
Before we go further about how DBSCAN work, there is some definition of the type of

data points in this algorithm.

11

Definition 2.3.1. Let’s consider a set of data points in some space to be clustered. We
assume that ϵ is the radius of a neighbourhood with respect to some point. The data
points in the DBSCAN algorithm can be defined below:

• A point p is considered as a core point if there are a minimum minPts points within
distance ϵ of the point (including p).

• A point q is said that it can be directly reached from p when point q is within
distance ϵ from core point p. Note that, the word ”reachable” is only used when
the points are reachable from core points.

• If there is a path p1, ..., pn with p1 = p and pn = q, and each pi + 1 is directly
reachable from pi, then a point q is reachable from p. With the possible exception
of q, this implies that the starting point and every other point along the path must
be core points.

• When we can find a point o and both p and q are reachable from o, two points p
and q are density-connected.

• Outliers or noise points are all points not reachable from any other point.

Figure 2.4: An sample of different kind of points [17]

In the figure above, the value of minPts is 4. The red points illustrate the core points
because the number of points in their neighbourhood within the ϵ radius is no less than
4. In addition, these core points also form a cluster when they directly are reachable to
each other. Meanwhile, B and C are not core points but they are reachable from A. As

12

a result, B and C also belong in the cluster. Finally, N is a noise because it’s not a core
point and it cannot be reached from other points.

Definition 2.3.2. DBSCAN algorithm. This clustering algorithm contains 4 steps:

• Step 1: Searching for core points by counting all the neighbour points within eps
or visited with more than MinPts neighbours.

• Step 2: Creating a new cluster when a core point is not assigned to any cluster.

• Step 3: Recursively, travelling to all its density-connected points and merging them
to the same cluster as the core point.

• Step 4: Travelling through the rest of unvisited points in the dataset, and identi-
fying a noise if a point is not assigned to any cluster.

There are three main reasons we choose to use DBSCAN in this work.

1. DBSCAN does not require defining the number of clusters in the data. This is an
important point in our research because there are no reasons to know a packer have
a fixed number of graph structure in the CFG of unpacking stub.

2. DBSCAN can detect noise and this algorithm is robust with outliers.

3. The number of parameter of DBSCAN is small (2 parameters), these parameters is
mostly insensitive to the ordering of the points in the database.

13

Chapter 3

X86 on Windows

This chapter presents some fundamental knowledge about X86 architecture on Windows
and introduces how Windows OS handle API calls.

3.1 X86 instruction set

Because x86 is a popular architecture in computers, there are many malware developed
to work in this architecture. However, there are also many anti-virus programs supported
in this structure to prevent malware. To overcome many methods to detect malware in
computers, malware in x86 has utilised many obfuscation techniques on it to hide its
behaviour. Therefore, the research related to malware in x86 is really important.
Now, we need to go through some basic concepts of computers that are necessary to

analyze malware in x86.

Processor

CPU stands for Central Processing Unit is an electronic circuit that executes computer
program instructions by performing mathematical, logical, and comparative calculations.
and basic input/output operations from predefined code in a computer. Nowadays, CPUs
can support a much bigger memory space, and this allows them to store billions of values.
As a result, processors can perform more complex operations. In addition, CPUs’power
also increased by registers that are fast and small memory storage units inside them.
Furthermore, processors can support many instruction types that can make processors
change the control flow of execution based on certain conditions.

Register

Although processors can access a huge memory space that is provided by RAM devices,
the processing time to access data in RAM is quite long. To speed up this process,
processors are armed with small and fast internal memory storage units called registers.
They can store the immediate values that are needed when processors perform calculations

14

and data transfer.
Register have a vary names, sizes and functions depending on the architecture. However,
there are still several widely used types.

• General-purpose register: To temporarily store arguments and results for mul-
tiple arithmetics, and data transfer operations, the use of these registers is needed.

• Stack and frame pointers: They point to the top and particular fixed points of
the stack.

• Instruction pointer: This register is used to point to the next instruction that
will be executed by processors.

Memory

CPUs can process more information and perform more complicated operations such as
displaying graphical interfaces in 3D and virtual reality thanks to the ability of memory
when it can rapidly manage lots of values, text, images and video.

Instructions

Instructions are machine codes that CPUs can understand and execute. These machine
codes are represented in the form of bytes.
Overall, Instructions, regardless of the architecture, can be divided into certain groups.

• Data manipulation: This include arithmetic and bitwise operations.

• Data transfer: These instructions in this group can move data involving register,
memory and immediate values.

• Control flow: This kind of instruction can change the order execution of other
instructions.

Figure 3.1: An example of conditional jump [18]

Now we will move on to know about x86 and malware.

15

x86 architecture

Intel 86 is the most popular architecture used in computers. This is the reason why
most malware samples support this architecture. In this section, we will focus on the
instructions of this architecture that we see many times during the process of analyzing
an x86 file.
The common structure of instruction in x86 is opcode, dest, src. In this structure, dest,
src can be referred to as operands, and the number of operands in instruction can be 0,
1, 2, and 3 depending on what kind of instruction. Particularly, the detail about opcode,
dest and src will be described below:

• opcode: The name of the instruction that indicates what operation was performed.
Some instructions such as nop, pushed, popa do not have operands.

• dest: The destination, or the place where the result of the operation will be saved.
For example, add eax, acx instruction mean eax = (eax + ecx). Dest can be a
register or a place in memory.

• src: The source or another value in the calculations. It could be a register, a place
in memory or an immediate value, but it will not be used to save the results.

To understand more about x86, we will dive deeper into various instruction sets in this
architecture.

• Data manipulation instructions: This set contains the most common arithmetic
instructions such as add/sub, inc/dec, mul, dev, or instructions represent logical/bit-
wise operations like or, and, xor, not. Finally, bitwise shifts and rotations (shl/shr,
rol/ror) are also included.

• Data transfer instructions: As the name of this instruction set, the instructions
in this group can move the data. For example, mov instruction can copy a value
from src to dest. For other instructions related to stack, we can mention push/pop,
pushad/popad, etc. Lastly, string manipulation instructions are lodsb/lodsw/lods-
d/lodsq. These instructions load a byte, 2 bytes, 4 bytes, or 8 bytes from esi address
into eax, and there are many other instructions in this group.

• Control flow instructions: These kinds of instructions can change the value of
eip register, so the next executed instruction may not be the next ones sequentially.
Some common instructions can be mentioned like jmp, call, ret/retn. These instruc-
tions do not need a condition to execute. On the other hand, there are instructions
such as jnz/jz/ja/jb, loop that need a condition for their execution. In this case,
some form of comparison like cmp, test needs to be used.

In the next section, the PE Header structure will be introduced. Gaining an under-
standing of this structure and the information it contains can provide many benefits
during the analysis of an x86 file.

16

3.2 Windows

Virtual memory

In modern OSs, they can create an isolated virtual memory for each process. In addition,
applications are only designed to access their virtual memory. Here, they can read and
write code and data and execute instructions. When an application wants to access a
value stored in memory, it needs its virtual address.

PE structure

The PE header is a standard structure that all executable window files have to comply
with this structure. It contains much valuable information such as the supported system,
various metadata, and the memory layouts of sections containing code and data. These
pieces of information help the system load and execute a file correctly.

Figure 3.2: Example of PE structure [19]

PE Header

Some of the important values provided by the PE header are:

1. Machine: processor type is represented in this field.

2. NumberOfSections: The number of sections that come after the header such as the
code section, data section, or resource section.

3. TimeDateStamp: The exact date and time that this program was compiled.

4. Characteristics: The type of executable file and specifies whether it is a program or
a dynamic link library.

17

Optinal Header

Similar to the previous sections, here are some valuable information in this header:

1. Magic: The identity of the platform supported.

2. AddressOfEntryPoint: A very important field for our analysis. This value is the
starting point of program execution (i.e., the first instruction will be executed in
the program) relative to its starting address (its base).

3. ImageBase: The address where the program was designed to be loaded into virtual
memory.

4. SectionAlignment: The size of each section and all header sizes should be aligned
to this value when loaded into memory.

5. MajorSubsystemVersion: The minimum Windows version to run the application on
such as Windows XP or Windows 7.

6. SizeOfImage: The size of the whole application in memory.

7. SizeOfHeaders: The size of all headers.

8. Subsystem: This field shows that this file could be a Windows UI application,
a console application, or a driver, or that it could even run on other Windows
subsystem.

The entry point of a normal program

Definition 3.2.1. The entry point of a program is the place where the execution of a
program begins. This point is represented as a pair of ⟨address, instruction⟩.

Note that, the entry point of a program can be obtained from the header of the program.
We can use many tools such as PEiD, detectiteasy and the VirusTotal website to obtain
this point.

Example 3.2.1:

Let us consider the case of Autologon.exe.
The figure below shows the entry point of Autologon.exe read by detectiteasy tool in the
green box is 00403980. In addition, the assembly code of Autologon.exe also can see in
this figure. The first address and instruction 00403980: call 0x408490 that appeared in
the yellow box indicated that this is the entry point of Autologon.exe.

18

Figure 3.3: Autologon.exe disassembled by detectiteasy

3.3 API call in Windows

User mode and kernel mode

Because the Windows operation system shares the software resources of the computer
system and the hardware with its users, the operation system needs to ensure that the
incorrect software or malicious software can have a negative effect on other programs and
the operation system itself. To achieve this target, the execution of the operating-system
and user-defined codes must be separated. A processor in a computer running Windows
has two different modes: user mode and kernel mode. The processor switches between
the two modes depending on what type of code is running on the processor. Applications
run in user mode, and core operating system components run in kernel mode. While
many drivers run in kernel mode, some drivers may run in user mode. Windows starts
a process for the user-mode application when you launch it. The procedure gives the
application a private handle table and virtual address space. Data belonging to another
program cannot be changed since each application has its own private virtual address
space. Each application runs independently, and if one crashes, the crash only affects
that particular application. The operating system and other apps are unaffected by the
incident. A user-mode application’s virtual address space is constrained in addition to
being private. Virtual addresses that are set aside for the operating system cannot be
accessed by a process running in user mode. By restricting a user-mode application’s
virtual address area, the application is prevented from changing and potentially harming.
In contrast to user mode, A single virtual address space is shared by all code run in kernel
mode. A kernel-mode driver isn’t separate from other drivers or the operating system as
a whole because of this. Data belonging to the operating system or another driver may
be compromised if a kernel-mode driver unintentionally writes to the incorrect virtual
address. The entire operating system fails if a kernel-mode driver malfunctions.
This diagram illustrates communication between user-mode and kernel-mode compo-

nents.

19

Figure 3.4: User mode and kernel mode in Windows [20]

Operating-System Services

Operating systems provide the environment for the execution of a program, and they
also supply many specific services to programs and their users. Although these services
can vary from one operating system to another operating systems, there are still many
common classes between them.

Figure 3.5: An overview of OS service[21]

Figure 3.5 show an overview of the operating system service. The functions provided by

20

these services are helpful to the users. From the figure, functions from operating system
service can be classified into several major groups which are program execution, I/O
operations, file systems, communication, resource allocation, accounting, error detection,
and protection and security.

System call

System calls provide an interface to the services made available by an operating system.
Generally, these calls are implemented as C/C++ functions. However, assembly language
instructions also can be used to implement specific low-level tasks where hardware must
be accessed directly. In fact, one simple program can make heavy use of the operating
system. For example, to copy a file in Windows to another location, there are many
functions needed by the operating system. User interfaces are required to help users can
choose a file from the screen of Windows to copy, or reading the input file and write the
output file related to File-system manipulation. Fortunately, most programmers do not
need to know detail to this level. Instead, application developers build their applications
based on an application programming interface (API). Particularly, a set of functions will
be specified by API including the parameters and the returned values for each function.
In the Windows system, the set of these APIs is called Windows API, and the functions
that create an API basically invoke the actual system calls on behalf of the developer. For
example, the Windows function CreateProcess() that is used to create a new process
actually invokes the system call NTCreateProcess() in the Windows kernel.
In Windows, DLLs are used the most frequently by Windows applications, making them

the most obvious and significant use. With the use of DLL:

• At build time, library functions are not connected. Instead, they are linked either
at runtime (explicit linking) or at the moment the application loads. As a result,
the program image can be considerably smaller because the library routines are not
included.

• Shared libraries can be made with DLLs. Only one copy of a DLL library, which is
shared by several apps, is loaded into memory. Although each process has a unique
copy of the global variables in the DLL, all programs map the DLL code to their
process address space.

• All programs that use the library can use the new version unaltered by just providing
a new version of the DLL to support new versions or alternative implementations.

• The library will run the same processes as the calling program.

The entire Windows API is supported by a DLL that invokes the Windows kernel for
additional services. Windows processes can share DLL code, but the code, when called,
runs as part of the calling process and thread. The library will therefore be able to utilize
the resources of the calling process, such as file handles, as well as the stack of the calling
thread. Therefore, thread-safe DLLs should be created.

21

In Windows, system calls can be classified into 6 major categories. Examples for each
category will be listed below:

1. Process control: CreateProcess(), ExitProcess(), and WaitForSingleObject().

2. File management: CreateFile(), ReadFile(), WriteFile(), and CloseHandle().

3. Device management: SetConsoleMode(), ReadConsole(), and WriteConsole().

4. Information maintenance: GetCurrentProcessID(), SetTimer(), and Sleep().

5. Communications: CreatePipe(), CreateFileMapping(), and MapViewOfFile().

6. Protection: SetFileSecurity(), InitlializeSecurityDescriptor(), SetSecurityDescrip-
torGroup().

22

Chapter 4

Malware and packer

This chapter presents fundamental knowledge about malware and packer.

4.1 Malware

Malware is software trying to thief information from computer users or having malicious
actions on their machines. These actions can result in negative effects on victims. In
general, there are three steps applied in malware techniques:

1. Obfuscation: The aim of this step is to complicate the control flow to avoid the de-
tection of signature-based methods. Another purpose is to hide malicious behaviors
in virtual environment emulation.

2. Infection: Malware attaches computers through Windows security holes.

3. Malicious actions: perform malicious behaviors such as taking control illegally, de-
stroying data, and information theft.

Here, Taking control illegally refers to a situation where an attacker gains unauthorized
access to a personal computer or network using malware. Once the attacker gains control,
they can perform various illegal actions, such as:

• Theft of sensitive information: Malware can be designed to steal personal data,
financial information, login credentials, or intellectual property.

• Botnet creation: Malware can turn infected computers into part of a botnet, a
network that is remote-controlled by a command server. Whoever controls the
botnet can make those zombie computers do bad stuff.

• Distributed Denial of Service (DDoS) attacks: Malware-infected systems can be
used to flood websites or networks with traffic, causing them to become unavailable
to legitimate users.

23

• Crypto hacking: Malware can hack a victim’s computer to mine cryptocurrencies
without their consent, utilizing the computer’s resources and slowing down its per-
formance.

Meanwhile, destroying data refers to the malicious activity carried out by certain types
of malware that are specifically designed to delete, corrupt, or render data inaccessible
to a target system. This destructive intent sets these types of malware apart from other
categories that may focus on stealing data, spying on users, or using the infected system
for other nefarious purposes. several common ways of destroying data can be listed below:

• Data Deletion: Malware simply delete files or directories including critical system
files, user documents, applications, and more on the infected system.

• File Corruption: Malware can alter the content of files, making them unusable or
causing errors when attempting to access them.

• Disk Wiping: making the data irrecoverable by wiping the entire contents of a hard
drive or storage media. Certain types of malware, such as ”wiper” or ”data erasing”
malware, are designed to perform this action.

• Overwriting: As the name of this malicious action, random characters can be over-
written on data. As a result, it effectively destroys the original content.

• Encryption and Ransomware: This kind of malicious technique doesn’t typically
destroy data. Instead of that, it encrypts files, making them inaccessible until the
victim satisfied the requirement of malware authors for the decryption key. In this
case, if the victim doesn’t pay, the data effectively remains locked and may be
considered lost.

• Master Boot Record (MBR) attacks: Malware can attack the MBR of a computer,
rendering it unable to boot up, effectively causing data loss.

• Bricking: Bricking refers to the practice or act of rendering an electronic computing
device — often a smartphone becomes useless or inoperable.

So, obfuscation is the first step for each malware technique. Therefore, the ability to
deal with obfuscation techniques has an important impact on malware analysis.

4.2 Obfuscation techniques

The difficulty of analyzing packed malware comes from the use of the obfuscation tech-
nique by the packer. When a program is obfuscated, its assembly code will not be obtained
precisely in a disassembler. Therefore, these packed codes can evade firewall and antivirus
(AV) scanners. Currently, we concentrate on 14 typical obfuscation techniques, and these
techniques can be classified into 6 groups:

24

1. Entry/code placing obfuscation (Code layout): overlapping functions, overlap-
ping blocks, and code chunking.

2. Self-modification code (Dynamic code): overwriting and packing/unpacking.

3. Instruction obfuscation: Indirect jump.

4. Anti-tracing: SEH (structural exception handler) and 2API (the use of special
APIs, LoadLibrary and GetProcAddress in kernel32.dll).

5. Arithmetic operation: Obfuscated constants and checksumming.

6. Anti-tampering: Timing check, anti-debugging, anti-rewriting, and hardware
breakpoints. Anti-rewriting consists of stolen bytes and checksumming.

Entry/code placing obfuscation

Because the length of the x86 instruction sets can vary, the overlapping fragments of a
binary sequence may happen in many ways:

• Overlapping instructions

• Overlapping function

• Code chunking

To clearly understand the concept of these techniques, let’s consider the example below:

Example 4.2.1:

Let’s assume we have a binary sequence b8 eb 07 b9 eb and 0f 90 eb. These sequences
can be read as mov eax, ebb907eb and seto b1. However, if we look at the fragment
eb 0f, this fragment can be read as jmp 45402c. So, there is an overlap between instruc-
tions in this case. As a result, this case is an example of overlapping instruction.

Depending on different situations, we have overlapping functions and overlapping blocks.
When the overlapping instructions happen among functions, we call it overlapping func-
tions. On the other hand, the overlapping occurs between blocks, we have overlapping
blocks. Especially, if we can divide a code into many fragments and these fragments are
connected by jump instruction, we call this obfuscation technique code chunking.

Self-modification code

The obfuscation technique overwriting in this group tries to modify an instruction to
another instruction. While the purpose of packing/unpacking techniques is to encryp-
t/decrypt a code.

25

Instruction obfuscation

We have Indirect Jump technique in this group. In the name of this technique, the word
jump means a call, a jump, or a return, meanwhile indirect wants to express that the
target destination is not easy to know. Indeed, these target in the directed jump is
stored in a memory address, a register, or a stack frame. Furthermore, when the return
destination stored in the stack is changed, this case is called an indirect return. For
example, 54034FB CALL DWORD PTR DS:[ESI+503C] illustrates an indirect call in UPX.
From the observation above, we can see that indirect jump is really a challenge when

we want to analyze a binary code. Even if, we use symbolic execution which is a powerful
technique to explore all possible paths of execution of a binary file.

Anti-tracing

• SEH: Structured Exception Handler is an exception handler written in a user pro-
cess. The aim of this handler is to prepare for an exception and post-processes when
these situations happen. However, this handler can be used with the trap flag AL.
The trap flag AL can be changed to true and can cause a single-step exception, as
in the code.

• 2API: This technique imply the use of special APIs, LoadLibrary and GetProcAddress
in kernel32.dll.

Arithmetic operation

• Obfuscated Constants: replacing a constant with arithmetic operations. However,
the result of these operations is the same original constant value.

• Checksumming: a typical of this technique is CRC checksumming.

Anti-tampering

• Anti-Debugging: As the name of this technique, it detects the presence of a debug
mode by some instruction such as CALL kernel32.IsDebuggerPresent

• Stolen bytes: This technique will call VirtualAlloc and allocates a buffer, and then
the unpacked code will be copied to this area.

• Timing Check: This technique is used to detect timing anomaly compared to the
native Windows environment.

• Hardware breakpoint: Jump destination will be stored in debug registers such as
DR0, DR1, DR2, and DR3.

Some obfuscation techniques in this group such as Anti-debugging and timing checks
can make Dynamic analysis approaches using a debugger like OllyDbg failed to detect

26

malware. Especially, malware based on trigger-based behavior and VM-awareness. For
example, malware can detect a virtual environment, and then it will do nothing. Another
example is malware has trigger-based behavior, this malware only activates its malicious
actions at a specific time such as April Fools’ Day. Therefore, it has to be really lucky to
detect this malware by dynamic analysis.

4.3 Packer

To evade firewall and antivirus scanners, malware authors utilize packers for protecting
their malware from anti-virus systems. Originally, the first aim of packers is to reduce
the size of binary files, and the second aim is to evade reverse engineering and protect the
licensed software from crackers by encrypting a program into a packed code. However,
the ability of packers now is also used to protect malware.

Definition 4.3.1. Packer is a program that employs obfuscation techniques to pack the
payload of the original software A and transfers it into another packed code B. Packer
can be defined as a function with domain X as a set of original software A and range Y
as a set of packed code B.

Packer : X → Y and Packer(A) = B (4.1)

Definition 4.3.2. Packed code B can be defined as a tuple:

B = ⟨H,U, P ⟩ (4.2)

Where:

• H is the portable executable header.

• U is the unpacking stub.

• P is the packed payload.

Definition 4.3.3. The Original Entry Point (OEP) is the place where the execution of
the original payload begins during the execution of the packed code.

To understand more about OEP, let’s consider Figure 4.1 which expresses both the
packing process and the unpacking process.

• Packing process: a process that transforms an original program into a packed code.

• Unpacking process: a process that transforms a packed code into an unpacked
program.

In the original program, the entry point will be pointed to the beginning of the original
payload. When this file is packed by the packer, the original payload will be encrypted to
the packed payload, and this packed payload is combined with an unpacking stub to create

27

a packed code whose entry point will be the beginning of the unpacking stub. In contrast,
the unpacking process will start when the packed code is executed. In this process, the
unpacking stub will be processed first. Then, this stub decrypts the packed payload to
the unpacked payload and transfers the control to the starting point of this payload.
The starting point of the unpacked payload is the original entry point. This explains
why packed code can bypass statistic analysis or disassemble because these approaches
can only see the unpacking code and the payload have been encrypted. As a result, the
malicious behaviors of malware cannot be detected.

Figure 4.1: Packing and Unpacking Process

Example 4.3.1:

Let’s consider Autologon.exe packed by UPX. For convenience, this packed code will be
named upx Autologon.exe. When we disassemble this file by Ollydbg, the entry point
is ⟨002F54B0, PUSHAS⟩. However, when we continue to execute, we can reach a jump
instruction ⟨002F5664, JUMP upx Auto.002D3980⟩, This is the moment the control flow
transferred to the original entry point.

Figure 4.2: Jump to OEP in upx Autologon.exe

It is clear that the development of unpacking techniques has become vitally important,
and one of the problems that need to be solved during this development is OEP detection.
In addition, the ability to deal with the obfuscation technique can have a significant impact
on this problem. And, Dynamic symbolic execution has emerged as a good solution to deal

28

with obfuscation techniques. In addition, BE-PUM is a tool that applies this technique
to generate a precise control flow graph. From that, it can handle the typical obfuscation
techniques mentioned above.

29

Chapter 5

Deobfuscation and BE-PUM

5.1 Deobfuscation and DSE

In this section, obfuscation techniques can be handled by DSE below:

• Anto-debugging, Timeming Check handled by symbolic execution.

• Indirect jump handled by dynamic symbolic execution

• Self-modification code handled by the design of a node in the CFG generated by
symbolic execution.

Symbolic Execution [22] is a commonly employed technique in software testing, where a
program is executed symbolically instead of using specific input values. This approach
allows for exploring all possible scenarios that may happen during execution. In this
technique, symbolic values like α, and β will be the input. As a result, when a conditional
branch appears, the constraints will be expressed by path condition pc. By utilizing this
approach, all possible paths of a program can be explored by Symbolic Execution, and
all possible outcomes can be tested.
The figure above describes how symbolic execution work to explore all possible scenarios

of a program. From the top of the figure, we assume that the state of the program is
n0 with its path condition φ0. In addition, the condition to make the program change
from n0 state to n1 state is c1. Therefore, when the state of the program is n1, the
corresponding path condition will be φ1 = φ0 ∧ c1. In the same way, we have the path
condition for the state n2, n3, and n4. Then, an SMT Solver (e.g, Z3) will be used to
check the satisfiability of these path conditions. With this property, symbolic execution
can handle techniques such as Anti-Debugging, Timing Check because all possibilities of
execution will be explored although the malicious behaviour is only performed with some
conditions, especially for trigger-based behaviour e.g., attacks triggered by specific date
and time and vm-aware in malware.
On the other hand, exploring all possible scenarios of a program is not easy with the use

of indirect jump technique. To decide the next destination in Symbolic Execution, Static
Symbolic Execution (SSE) and Dynamic Symbolic Execution (DSE) are two options for
that purpose.

30

Figure 5.1: An illustration of symbolic execution [23]

• Static symbolic execution. The next destination candidates are statically de-
tected. Then, each destination is checked by using an SMT solver to decide the
feasibility of each path condition corresponding to these destinations. However,
theorem provers cannot easily check the satisfiability of the candidates in some
specific contexts such as complex constraints or indirect jumps in binary code.

• Dynamic symbolic execution (or concolic testing). To overcome these diffi-
cult situations mentioned above, static symbolic execution will combine with con-
crete execution, then dynamic symbolic execution be introduced. In DSE, the fea-
sibility of the next destination will be checked by using a satisfiable instance from
the precondition. This requires a binary emulator.

For example, we assume that there is a jump instruction jump eax at state n2 in Figure
5.2, and the value of eax is expressed by a symbolic value. In this case, DSE will choose
a concrete value satisfying path condition φ2 as an instance of eax. Then, the CFG will
be extended based on the determined target.
This way of extending CFG is named an on-the-fly manner.

Figure 5.2: Control flow graph constructed by using DSE [24]

31

The figure above describes a control flow graph constructed in an on-the-fly manner.
For each step, concolic testing will be used to extend the CFG while the state of the binary
program and the environment of the binary emulator (flags, registers, stack, and memory)
are also updated. This procedure will be finished when it faces an unsupported instruction
or the end of the program is reached. In addition, to handle self-modification techniques,
the node of a CFG will be represented by a pair of an address and its corresponding
instruction.
To summarize, the obfuscation techniques used in trigger-based behavior, vm-aware,

and dead-code insertion can be handled by symbolic execution. However, only the sym-
bolic execution technique cannot overcome indirect jump, and Dynamic Symbolic Execu-
tion has emerged as an effective solution to handle this obfuscation technique.

5.2 BE-PUM

BE-PUM (Binary Emulation for PUshdown Model) [25] is a binary code analyzer concen-
trating on malware on Intel x86/Win32 architecture. The power of dealing with obfusca-
tion techniques of BE-PUM is derived from the Dynamic Symbolic Execution technique
(DSE) when this technique is used to explore the control flow graph of a binary file.

Architecture of BE-PUM

Overall, the architecture of BE-PUM can be illustrated by three main components which
are a CFG storage, a binary emulator, and a symbolic execution (Figure 5.3). In addition,
BE-PUM applies JackStab 0.8.3 [26] as the disassembler, and Z3 4.3 [27] as the theorem
prover to perform test instances in the DSE process.

32

Figure 5.3: The architecture of BE-PUM [24]

First, a symbolic state at the end of an explored execution path will be selected from the
frontiers as in the left-hand side of the figure. Next, BE-PUM tries to extend one step by
Single-Step Symbolic Execution. At this step, If the instruction is a data instruction (i.e.,
only the environment is updated and the next location is statically decided), BE-PUM
will disassemble the next instruction. In contrast, if the instruction is a control instruction
(e.g., conditional instruction jumps) then the concolic testing is applied to decide the next
location. In addition, the design of BE-PUM restricts the binary emulator that is required
by concolic testing in a user process and handles APIs by stubs [25]. The advantage of
this choice is giving flexibility in symbolic execution. Particularly, trigger-based behavior
can be handled due to this choice. For example, the malware only executed on New
Year’s Day represents the property of trigger-based behavior. When we use OllDbg or
Intel/Pin to analyze this malware, the malicious behavior may be failed to detect because
these tools simulate the entire system. Therefore, if the system time is not New Year’s
Day, malware will not do anything. In contrast, BE-PUM can return the value of API in
both symbolic value and concrete value. Therefore, the condition for exposing intended
malicious activities on New Year’s Day can be checked. After conducting concolic testing,
a new CFG node or a new CFG edge will be created. In both cases, all of them are stored
in CFG storage. In addition, a configuration is added to the frontiers. This procedure is
terminated when either the exploration has converged or comes to unknown instructions,
system calls or addresses.

33

Figure 5.4: One-step concolic testing in BE-PUM [24]

On the other hand, Figure 5.4 shows the execution of a single step of concolic testing
in BE-PUM. There are two kinds of functions of the binary emulator. The first one is to
interpret an x86 instruction, and the second is to spawn a Windows API stub. Here, the
Windows API sub is used to handle system API calls.

Windows API Stubs in BE-PUM

In BE-PUM, each Windows API call is considered a single instruction, and it updates the
environment based on the technical document from MSDN.
With the use of Java Native Access (JNA)1, Windows API stubs in BE-PUM are proxy

objects capable of invoking native API functions and updating the simulation environ-
ment after the API call. It makes flexibility in symbolic execution and avoids the cost of
manual APIs approximation. Currently, the work [28] has proposed a method to generate
Windows API Stubs automatically for BE-PUM.

The flow process of API stub consists of 5 stages:

1. First, The number of values are popped from the stack of a simulation environment
to the variables in the API Stub program based on the number of parameters.

2. Second, when a parameter is a pointer, the API stub program copies the referenced
memory area’s values to variables.

3. Third, JNA transfers the variables from the API stub to the native stack in the
actual environment as input parameters before calling the native API function.

4. Next, JNA return to Java stack and the results are converted to proper variables in
the API stub program.

5. Finally, based on the API definition, the API stub copies the value of variables to
the appropriate EAX register and Memory objects in the simulation environment.

1https://github.com/java-native-access/jna

34

The five stages above can be illustrated in figure 5.5 below:

Figure 5.5: GetDateFormat Flow Process [28]

35

Chapter 6

The CFG of binary code

6.1 Problem Statement

In this work, OEP detection and Packer identification are two problems we focus to solve.
These problems can be stated below.

Packer Identification Problem

Packer identification is a problem referred to the task of identifying the name of the packer
that has been used to pack a binary file.

Input: Give a packed code that we do not know how this file is packed.
Output: The name of the packer used in the input file.

Example 6.1.1:

Figure 6.1 shows the result of packer identification of AccessEnum.exe packed by Packman
packer. In the green rectangle in the figure, the tool has detected this file is packed by
Packman version 1.0.

36

Figure 6.1: Packer identification using Detect It Easy tools

OEP Detection Problem

Original Entry Point detection refers to the challenge of detecting the beginning point of
the original file during the execution of packed code

Input: Give a packed code that contains the encrypted original program.
Output: The beginning point of the original program.

Example 6.1.2:

Figure 6.2 illustrates the difference between the assembly code of AccessEnum.exe and
its corresponding packed code by UPX packer (upx AccessEnum.exe). It is clear that the
original code has been hidden in the upx AccessEnum.exe. The assembly code of the origi-
nal file begins at 00407A98: PUSH EBP, while the beginning point of upx AccessEnum.exe

is 0042B6E0: PUSHAD.

37

Figure 6.2: Original AccessEnum.exe and Packed AccessEnum.exe

When we continue to execute instructions in upx AccessEnum.exe step by step, we will
reach an instruction 0042B86C: JMP upx Acce.00407A98 as in figure 6.3.

Figure 6.3: The end of the unpacking stub

This is the end instruction for the unpacking stub, and the control flow will be trans-
ferred to the original entry point after this instruction is executed. Now, the original
program has been decrypted in figure 6.4, and this code in upx AccessEnum.exe is iden-
tical to the original code on the left-hand side of figure 6.2.

Figure 6.4: Unpacked AccessEnum.exe

Therefore, when we apply our method to upx AccessEnum.exe, our expected output is
00407A98: PUSH EBP.

38

Solution Overview

The process of OEP detection based on graph similarity can be divided into two major
parts.

• Part 1: Average frequency vector generation. This part involves the process of
obtaining average frequency vectors that represent the ”signature” graphs of the
unpacking stub for each packer. In this part, we have the original programs of
packed codes.

• Part 2: Average frequency vector searching. This part involves the process of search-
ing average frequency vectors from Part 1 in the CFG of new packed codes. From
the result of the search process, we can obtain the OEP and the name of the packer.
In contrast to Part 1, we do not have the original program of packed codes. This
part represents the action we take when we encounter a new packed code with no
information about the name of the packer and its original entry point.

The overview of our method will be illustrated in the figure below:

Figure 6.5: Overview of OEP detection based on graph similarity

39

The figure above illustrates how packer identification and OEP detection are performed
in our work. The right-hand side of the figure with blue colour is related to Part 1: Average
frequency vector generation. Meanwhile, the left-hand side with red colour belongs to Part
2: Average frequency vector searching. In both parts, the packed code needs the same
graph refinement process which is API capitalization and acyclic backbone extraction. In
addition, all graphs are required to convert into frequency vectors for the convenience of
graph similarity computation. After the graph refinement process, graphs in Part 1 will
be clustered into groups to find the average frequency vectors and the sequence of the
end of the unpacking stub. Then, they will be used in Part 2 to find the graph of the
unpacking stub in a packed code. After finishing the search process, the OEP and the
packer’s name will be obtained.

6.2 The CFG of binary code

To analyse malware, we need to have an abstract model that represents the packed code
without actually running the binary. After obtaining an abstract model, many further
analyses can be conducted based on the generated model. A popular model used in this
approach is Control Flow Graph. It is clear that the precision of the CFG greatly influ-
ences the analysis in the next step, especially with the presence of obfuscation techniques.
Fortunately, we know that obfuscation techniques can be handled by Dynama Symbolic
Execution, and this technique can be used to generate a precise control flow graph in
Chapter 5. Therefore, the first step in our method is generating a precise control flow
graph using BE-PUM.

Definition 6.2.1. A Control Flow Graph (CFG) of a binary code P is a directed graph
CFGP = (EP , VP) that represents the execution process of P . In this graph, each node
represents a pair ⟨Add, Inst⟩ which are the address and its corresponding instruction. Or,
the node just has a single value when it represents an API. Meanwhile, each edge can be
expressed as a tuple ⟨u, v, l⟩ where:

• u is the tail node.

• v is the head node.

• l is the label of the edge. Three values of l are True, False, and NIL. If P represents
a conditional jump, L can have a value True or False. Otherwise, l is NIL.

Example 6.2.1:

Figure 6.6 represents a part of the CFG of autologon.exe packed by UPX. In this CFG, the
node in the green rectangle of the figure is a pair of address 0x004254d1 and instruction
jb 0x004254c0. This node represents a conditional jump jb, so we can see that the edge
connects this node with its child ⟨0x004254c0, movb (%esi), %al⟩ has label True.

40

Figure 6.6: a node representing a jump condition in the CFG of autologon.exe packed by
UPX

Definition 6.2.2. Given a control flow graph G = (VG, EG), the label of a node v ∈ VG

can be defined below:

• If v present a ⟨address a, instruction i⟩ then the label of v is the opcode of instruc-
tion i.

• If v present an API then the label of v is the name of the API.

Example 6.2.2:

Let’s consider a node ⟨0x00419650, movb (%edi), %al⟩. The label of this node is movb.
Meanwhile, if a node represents API LOADLIBRARYA@KERNEL32.DLL, its label is
LOADLIBRARYA@KERNEL32.DLL.

Unlike the CFG of high-level programming language which is a directed graph where
each edge represents the flow of control between basic blocks and each node represents a
basic block, the CFG of binary code can be distinguished by the following characteristics:

• Representation:

– Binary code CFG: The graph is constructed directly from the binary code, and
identifies instructions and the control flow between them.

– High-level programming language CFG: The graph is generated from the source
code, and identifies functions, control structures, and the flow of control within
the code.

• Level of abstraction:

– Binary code CFG: The abstraction is the low level. It directly represents the
execution of instructions.

41

– High-level programming language CFG: High-level abstraction is the property
of this kind of CFG. It focuses on the structure of programs such as loops, and
conditionals.

• Complexity:

– Binary code CFG: The construction of this kind of CFG is complex. It need
to disassemble a binary file and identify instructions. It is hard to understand
the logic and structure of the binary.

– High-level programming language CFG: This kind of CFG is less complex than
the CFG of binary code because the source code has a clear structure, and
therefore the information about functions, control structures, and the flow of
control is easy to obtain.

• Ease of Understanding:

– Binary code CFG: understanding the CFG of binary code can be challenging
because of its low-level property. It requires readers to have knowledge of
assembly language and familiarity with machine instructions.

– High-level programming CFG: Because of the characteristic of high-level ab-
straction, the CFG of high-level programming language can be more friendly
to humans.

42

Figure 6.7: An example of control flow graph of high-level programming language [29]

Figure above illustrates the CFG of the Sums program that is on the left-hand side
of the figure. In this illustration, a statement is considered a basic block, and the node
number of the CFG corresponds to a statement number. In addition, nodes representing
a transfer control will have two labelled edges that go out from it, and other edges are
unlabelled. For example, node 4 in the CFG corresponds to statement 4 in the code.
Because this statement is a while loop, node 4 in the CFG will have two branches True
and False expressing whether the condition in the while loop is satisfied or not.

Furthermore, one of our observations in the CFG of binary files is one API can be repre-
sented by many nodes due to the case-sensitive. However, Windows does not distinguish
Upper/Lower characters in API names and needs to unify by capitalization.

Procedure 6.2.1. API name capitalization process: Let the set of API names we need
to capitalize are {a1, a2, a3, ..., an}, and:

• accessors(u) is the set of accessors of node u

• successors(u) is the set of successors of node u

43

Assume that these API names are capitalized into a new API name a, then we have:

accessor(a) =
⋃
i

accessor(ai) and successor(a) =
⋃
i

successor(ai) (6.1)

Former API names {a1, a2, a3, ..., an} and their edges will be removed from the graph.

Example 6.2.3:

Figure 6.8 illustrate the process of API name capitalization. On the left-hand side is the
original CFG of packed code. In this case, the name of the API is case-sensitive. In
addition, the green node represents the API VirtualFree@KERNEL32.dll. This node has
accessor nodes n2 and n3, and successors n4. Meanwhile, nodes n1 is the accessor node of
the blue node and its successor nodes are n5 and n6. After API name capitalization, the
original CFG becomes the CFG on the right-hand side with a red node representing both
API names in the original CFG. Now, this new node has n1, n2, and n3 as its accessor
nodes, and n4, n5 and n6 are its successor nodes in this new CFG.

Figure 6.8: An example of API name capitalization

6.3 CFG of packed code

It is important to remind that the CFG of a packed code can be changed during the
execution of unpacking stubs. Therefore, we want to clarify that the control flow graph

44

of the packed code mentioned in this work implies the CFG of the packed code when the
unpacking stub has finished. As a result, we can find the CFG of the unpacked payload
in the CFG of packed code at this time. In addition, there will be a node in the CFG of
packed code that represents its OEP.

Definition 6.3.1. In the CFG of packed code, the original entry point node (OEP
node) is a node in the graph such that the subgraph with the OEP as a source node is
the control flow graph of unpacked code.

Therefore, The OEP detection problem now can define as the task of finding the OEP
node in the CFG of packed code.

Definition 6.3.2. In the CFG of packed code, the end-of-unpacking nodes are the
parents of the OEP node.

From our observation in CFG of packed codes, the OEP node has only one parent.

Example 6.3.1:

Figure 6.9 shows an example of an OEP node and end-of-unpacking node in the CFG of
Bginfor.exe packed by FSG packer. The OEP node here is the ⟨0x005b5d42, call 0x5c4706⟩,
while its parent ⟨0x008050e1, je 0x005b5d42⟩ is an end-of-unpacking node.

45

Figure 6.9: An example of OEP node and end-of-unpacking node

46

Chapter 7

Control Flow Graph of unpacking
stub

7.1 Reasons for avoiding retreating edges

To solve our problems, we begin with the hypothesis that a similar class of CFGs of
unpacking stubs does not cross different packers. If this hypothesis works, our problems
can be solved based on detecting the unpacking stub because the unpacking stub can be
regarded as a signature for each packer. Also, the OEP of a packed code can be detected
because the control flow will be transferred to OEP when the execution of the unpacking
stub is finished. To verify this hypothesis, we have tried to observe the CFG of unpacking
stubs of several packed codes by the same packer. Therefore, we have to obtain the CFG of
the unpacking stubs. To do that, we need to know the original program of a packed code,
then we will know where is the exit of unpacking stubs because the difference between
the original program and the packed code can be regarded as the unpacking stub. Next,
the CFG of unpacking stubs will be the predecessor graph at the exit of the unpacking
stub. However, we also observed that there are edges whose tails belong to the CFG of
the payload and their heads belong to the CFG of the unpacking stub in some cases.

47

Figure 7.1: An illustration of back-edge from unpacked payload to unpacking code

For example, in the CFG of whois.exe packed by yodaC, node ⟨0x004089f5, call %esi⟩
go to node API GetProcAddress@KERNEL32.dll that has been used in unpacking stub.
This situation is illustrated on the right-hand side of Figure 7.1. From our observation,
when the unpacking stub and the unpacked payload call the same API, it is likely a cycle
will be created. From our point of view, this design for illustrating API call as a node in
the CFG of a program may be not a good choice because API does not belong to packed
code. Then, when we represent API as a node of CFG of a program may be not suitable.
To mitigate these cases, we decided to approximate the CFG of packed code by removing

all retreating edges in this CFG to break the cycle before generating the predecessor graph.
However, the set of retreating edges in a graph depends on the order of nodes traveled in
the DFS procedure.

Example 7.1.1:

Figure 7.2 illustrate that different DFS order can lead to a different set of retreating edge.
On the left-hand side of this figure, the DFS travel order is n1 → n2 → n3, because n2
already is in the travel path, so the edge connect from n3 to n2 is a retreating edge. In
contrast, the travel order on the right-hand side of the figure starts from n1 to n3, and

48

then from n3 to n2. Next, n2 go back to n3. In this case, the edge from n2 to n3 is a
retreating edge.

Figure 7.2: An example of retreating edges on different travel order of DFS

Fortunately, all most normal program has a control flow graph that is reducible [30].
This implies that retreating edges in this graph are also back-edges and these edges are
unique. Although this research doesn’t mention the CFG generated from a binary code,
we expect this property also holds for binary code as well. In addition, we also introduce a
strategy for our DFS procedure to remove retreating edges that connect unpacked payload
and unpacking stub that happens because of calling the same API. The details of our DFS
procedure will be described in Section 7.2. Now, after removing retreating edges, the new
graph will become a directed acyclic graph (DAG). Therefore, we can easily obtain the
predecessor graph at the exit of the unpacking stub.

7.2 The CFG of the unpacking stub characterizes a

packer

Acyclic backbone extraction

After API name capitalization, we need to remove retreating edges to break cycles in this
CFG and a DAG will be extracted. From a DAG, we can separate this graph from a node
u into two graphs more easily.
Now, to remove retreating edges, we can use depth-first search (DFS) to detect these
edges. In particular, we will traverse the CFG from the entry node of it, then we keep a
stack where we push a node into the top of the stack when this node is reached by DFS
and pop it when the algorithm backtracks. If the algorithm ever hit a node that’s already
on the stack, then we found a retreating edge indicating that there is a cycle. Next, we
will just remove this edge from the graph to break the cycle.

49

Figure 7.3: An example of CFG with back-edges

For example, let’s assume we are traversing the CFG in Figure 7.3. The DFS starts
at the entry point BB1. First, the DFS explores the leftmost branch of BB1 but quickly
backtracks as it hits a dead end. It then enters the middle branch, leading from BB1 to
BB3, and continues its traverse through BB5. After that, it hit the BB3 again because
the node BB3 currently is in the stack. Therefore, there is a back-edge from BB5 to BB3.
Let’s observe the stack during this procedure. The example below shows how the DFS
state evolves and how this algorithm detects retreating edges in the CFG. In step 5, we
can see that BB3 already have been in the stack, so the algorithm detects a retreating
edge.

The state of stack during the process of DFS
0: [BB1]

1: [BB1, BB2]

2: [BB1]

3: [BB1, BB3]

4: [BB1, BB3, BB5]

5: [BB1, BB3, BB5, BB3]

Although we can expect these retreating edges to be unique because most of the CFG
of a normal program to have retreating edges are back edges in [30], this paper still is
an empirical study and cannot ensure this holds for all the cases. Therefore, we also
introduce a strategy for travelling order of DFS with two purposes:

1. The set of retreating edges will be unique with this strategy when the DFS procedure
is performed.

50

2. With this strategy, retreating edges from the unpacked payload to the unpacking
stub that happened when they call the same API will be removed.

Because we want to remove treating edges u → v with v representing an API, our
strategy will try to make API nodes visited as soon as possible.

Definition 7.2.1. DFS order travelling strategy:
Let’s assume DFS is performing, and node u is the current visited node in the travelling
path of DFS.
Let M = sorted{v1, v2, v3, ..., vn} be the sorted set by descending priority of successor
nodes of u that are not visited. The node that has maximum priority will be the next
visited node.
Let’s consider node vi and node vj in M. Their priority can be defined below:

1. If vi represent a API and vj represent a ⟨address, instruction⟩, then priority(vi) >
priority(vj).

2. If both vi and vj represent a API, priority(vi) > priority(vj) if

• indegree(vi) > indegree(vj)

• indegree(vi) = indegree(vj) and alphabet(vi) > alphabet (vj).

3. If both vi and vj represent a ⟨address, instruction⟩, priority(vi) > priority(vj) if
address in vi > address in vj.

Example 7.2.1:

Let’s consider the set
M = {⟨0x004c4993, adcb %dl, %dl⟩ , LoadLibraryA@kernel32.dll, ⟨0x004c49e8, jb 0x004c49fb⟩}.
After sorting, the descending order is:
{LoadLibraryA@kernel32.dll, ⟨0x004c49e8, jb 0x004c49fb⟩ , ⟨0x004c4993, adcb %dl, %dl⟩}.
Therefore, the node LoadLibraryA@kernel32.dll will be selected to visit first.

Predecessor graph generation

Before diving into the way how a predecessor graph is generated, we want to introduce
the definition of a reverse graph.

Definition 7.2.2. The reverse of a directed graph G = (V , E) is a direct graph GR =
(V R, ER) satisfying:

ER = {(v, u) : (u, v) ⊆ V } and V R = V (7.1)

Example 7.2.2:

Figure 7.4 shows a directed graph (left-hand side graph) and its reverse (right-hand side
graph). On the left-hand side, we have node C going to node A. In contrast, node A goes
to node C on the right-hand side. Similar to other edges, the direction of each edge in
the original graph has been reversed on the right-hand side.

51

Figure 7.4: An example of reverse of a directed graph

Now, from the definition of the predecessor graph PreKu from node u in DAG K, we
can see that when we reverse the direction of each edge in K, all of the nodes can reach
u in K will be nodes reached by u in the revered graph. Therefore, with the purpose of
easy implementation, we will generate PreKu via the reverse graph KR.
Now, we will describe how we obtain a predecessor graph of a node U in the DAG of

the CFG of a packed code.

The procedure of predecessor graph extraction can be expressed with three steps in
Figure 7.5.

52

Figure 7.5: Predecessor graph extraction

Definition 7.2.3. Let’s assume we have a directed acyclic graph K = (VK , EK), and a
given node u ∈ VK . The predecessor graph extraction from node u includes 3 steps:

• Step 1: From K obtain its reverse graph KR.

• Step 2: Perform DFS procedure from node u in KR.
Let I = {v : v ∈ VK , u

∗→ v}.

• Step 3: Extract a predecessor graph from node u with its vertex set is I, and its
edges set is {(u→v) : (u,v) ∈ EK , u, v ∈I}.

53

Figure 7.6: An example of predecessor graph

Now, after performing retreating edges removal and predecessor graph extraction. The
example in Figure 7.3 will become the predecessor graph in Figure 7.6. This graph contain-
ing BB1, BB3, BB4, BB5, BB6, and BB7. These nodes are labelled by green colour,
meanwhile, red node BB2 indicates that this node does not belong to the predecessor
graph. In addition, the dashed edge is removed because it is the retreating edge.
From our observation, these predecessor unpacking graphs in packed codes by the same

packer are similar.

Example 7.2.3:

Figure 7.7 shows the predecessor unpacking graph of packed codes from 3 different packers
which are FSG, MEW, and UPX. These graphs from the same packer are similar. We
have computed the similarity between the predecessor unpacking graph in packed codes
by the same packer in the figure above, and the score between them is more than 0.95.

54

Figure 7.7: The similarly between end-of-unpacking graph in the same packer

On the other hand, we also observed that a packer can have several structures of the
predecessor unpacking graph. For example, the figure below shows 2 kinds of structures
of predecessor unpacking graphs in packed codes by WinUpack.

55

Figure 7.8: An example of winupack has 2 kinds of end-of-unpacking graph

It is clear that the predecessor graph with the end-of-unpacking node as a sink node
can be a property to detect the end-of-unpacking stub. Then, the OEP can be detected
based on this end-of-unpacking node.

7.3 Consistency of the end sequence

Although these predecessor graphs at the exit of unpacking stub by the same packer are
similar, they still are not identical because of many obfuscation techniques applied by the

56

packer. However, we found that the end sequences of the last k instruction before the
control flow transferred to OEP in packed code are consistent. Currently, we observe with
k = 5. The definition of end sequences will be described below:

Definition 7.3.1. Given a predecessor graph K = (VK , EK) with node u ∈ VK is the
sink node. The end sequence of K is seqK can be defined below:

seqK = ⟨label(u), label(v1), label(v2), ..., label(vq)⟩ (7.2)

Here, label(u) is an function such that:

label(u) =

{
the opcode of instruction u if u is a node representing an instruction

API name if u represents an API.

And vi ∈ VK , vi is the parent of vi−1 if i > 1 and i ≤ q, the indegree of vi−1 equal to 1, v1
is the single parent of u.

Definition 7.3.2. Given a predecessor unpacking graph K ′ = (VK′ , EK′). The end
sequence seqK′ of this graph will be called the end-of-unpacking sequence.

Example 7.3.1:

Let’s consider table 7.1. This table shows several end-of-unpacking sequences for UPX,
FSG, MEW packers. For instance, the end-of-unpacking sequence of UPX is jmp, subl,
jne, cmpl, pushl.

Packer the sequence of the end of unpacking stub

UPX jmp, subl, jne, cmpl, pushl
FSG je, decb, jne, decb, je
MEW ret, jne, testl, stosl, GETPROCADDRESS-KERNEL32-DLL

Table 7.1: End-of-unpacking sequence of UPX, FSG and MEW

The end sequence of unpacking stubs has an important role in our method because
weisfeiler-lehman kernels is a statistical method and it just approximates a graph into a
vector. So, sometimes, the noise in a graph can make this method detect the unpacking
stubs incorrectly. However, an end sequence is a property of the unpacking stub for each
packer. Therefore, it can reduce the number of unpacking stub candidates and confirm
again whether a node in a graph is an exit of an unpacking stub or not.
Besides empirical examples from the previous section, we also confirm our hypothesis by

applying a clustering algorithm. If the CFG of unpacking stubs characterizes a packer, we
believe that after the clustering procedure, (1) each class does not cross different packers
and (2) the end sequence is the same in each class. Particularly, we use DBSCAN [31]
algorithm for the task of clustering on all 771 non-malware packed codes from 12 packers.
In addition, we run DBSCAN with fixed parameters min sample = 2 and metric =
cosine. Next, we will experiment with different values of the eps parameter.

57

eps 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
number of class 11 11 12 14 16 16 18 18 21
Hypothesis (1) False False False False False False True True True
Hypothesis (2) False False False False False False False False True

Table 7.2: The effect of eps on DBSCAN clustering

Table above shows the effect of the eps parameter on clustering mixed-packed code
from different packers. In this experiment, eps = 0.04 is enough to make hypothesis
(1) hold, but there are some classes where the end sequence is not consistent. Finally,
both hypotheses hold with eps = 0.02. Overall, when the value of eps becomes smaller,
the number of classes (templates) will increase, but the end sequence will become more
consistent. So, with the allowance eps is enough small, our hypothesis is correct, and this
shows that the CFG of unpacking stubs can be regarded as a signature for each packer.

58

Chapter 8

Packer identification and OEP
detection

8.1 Template matching for packer identification and

OEP detection

Based on our observation from previous sections, our approach consists of two phases.
In phase 1, template setup is performed. In this phase, we will obtain the template for
unpacking stubs of each packer. This template is the pair of the average of Weisfeiler-
Lehman histogram vectors and the end sequence. In phase 2, we have an unknown packed
code, and templates prepared in phase 1 will be used for template matching to find the
unpacking stub. From this unpacking stub, we can detect packer identification and OEP.
The template matching process consists of 4 steps below:

Figure 8.1: Template matching for Packer Identification and OEP detection

59

• Step 1: The first step involves generating predecessor graphs for all nodes in the
directed acyclic graph of the CFG of the packed code.

• Step 2: Converting these graphs into Weisfeiler-Lehman histogram vectors.

• Step 3: For each predecessor graph from previous steps, When the tail of the graph
matches with the end sequence of a template, we check the similarity between its
Weisfeiler-Lehman histogram vector and that in templates.

• Step 4: Finally, we can find an optimal pair of a template and a predecessor graph.
In which, the similarity between the histogram vector in the template and that of
the graph is highest. Denote the sink node of the graph as k, k will be the exit of the
unpacking stub, OEP can be detected based on k. Besides, the packer corresponding
to the template serves as the answer for packer identification.

Fig. 8.1 shows steps 3 and 4 in the template matching procedure after we have con-
verted all predecessor graphs into Weifeiler-Lehman histogram vectors. In this figure, the
Weisfeiler-Lehman histogram vector generated from note 7 and that vector in template
packer P has highest similarity. In addition, the two corresponding end sequences in node
7 and the template are identical. Therefore, node 7 is the exit of the unpacking stub,
node 8 is the OEP, and packer P is the used packer. The complex parts of our methods
will be computing Weisfeiler-Lehman graphs, Weisfeiler-Lehman histogram vectors, and
template setup. Therefore, these parts will be described in the next two sections.

8.2 Computing weisfeiler-lehman graph and its his-

togram vector

From our observation in Chapter 7, the predecessor graph at the exit of unpacking stubs
characterizes a packer. Now, we also know how to obtain these predecessor graphs from
any node in a CFG of packed code. The next task is to find an efficient way that measure
the similarity between graphs. There are many ways to compare graphs such as edit
distance computation, or graph embedding with the development of deep learning meth-
ods. However, these methods have their drawbacks. For these graph similarity methods
based on edit distance computation, they need a huge computation. On the other hand,
methods based on deep learning require a lot of data. To overcome this, the idea of this
section is to introduce an efficient method that generates a vector from a graph, then we
can easily measure the similarity between them by using some distance metrics.
The algorithm we choose to transfer a graph into a vector based on Weisfeiler-Lehman
kernels. However, this method was originally designed for undirected graphs, meanwhile,
graphs in this research are directed graphs. Therefore, it is not reasonable if we apply
this method directly to our graphs. As a result, we decided to make a slight adjustment
to it. Particularly, there are two changes from Weisfeiler-Lehman Kernels in our research:

• The Weisfeiler-Lehman relabeling function: This change aims to adapt to the tar-
geted graph in our research are directed graph.

60

• Kernel function: This aims to normalize the similarity into the range 0 to 1, so we
choose cosine similarity in this work.

8.2.1 Computing weisfeiler-lehman graph

In the definition 2.2.1, the new label of a node will depend on the label of its neighbour.
However, to emphasize of property of a directed graph, we only update the label of a node
based on the label of its accessors in the graph. Therefore, the procedure of computing
weisfeiler-lehman graph in our work can be described below.

Procedure 8.2.1. The weisfeiler-lehman relabeling function on a directed graph G =
(V,E) is a function r such that r((V,E, li−1)) = (V,E, li) where li is the label function of
graph G after iteration i and l0 is the label function of original graph G without performing
Weisfeiler-Lehman relabeling procedure.
The computation of function r will include 3 steps:

• Step 1:Multiset-label determination.

– Each node v in V is assigned Mi(v) = {li−1(u) : u ∈ accessors(v)}.

• Step 2: Sorting each multiset.

– The set Mi(v) will be sorted in ascending order and si(v) is created by con-
catenating all element in Mi(v).

– si(v) = li−1(v) + si(v).

• Step 3: Relabeling.

– For all node v in V , li(v) is equal to si(v).

Example 8.2.1:

Let’s consider the example in the figure 8.2. The left-hand side is a directed graph G,
its node labels are {A,B,C,D,E}. Assume that we are in iteration i, the procedure of
relabeling will happen as below:

• Step 1: :Multiset-label determination.

– Mi(node 1) = ∅
– Mi(node 2) = {A}
– Mi(node 3) = {A}
– Mi(node 4) = {C,B}
– Mi(node 5) = {B,D}

• Step 2: Sorting each multiset.

– Mi(node 1) = ∅ & vi(node 1) = A

61

– Mi(node 2) = {A} & vi(node 2) = BA

– Mi(node 3) = {A} & vi(node 3) = CA

– Mi(node 4) = {B,C} & vi(node 4) = DBC

– Mi(node 5) = {B,D} & vi(node 5) = EBD

• Step 3: Relabelling.

– li(node 1) = A

– li(node 2) = BA

– li(node 3) = CA

– li(node 4) = DBC

– li(node 5) = EBD

Figure 8.2: An example of relabelling function

So, with the weisfeiler-lehman relabeling function above, we can computer the weisfeiler-
lehman graph at height i (denoted as Gi) of the labelled graph G = (V,E) following the
definition 2.2.1 by applying relabeling function i times on graph G.

8.2.2 Computing weifeiler-lehman histogram vector

Let us denote:

62

• Σi as the set of node labels of weisfeiler-lehman graph Gi = (V,E, li) of graph G.

• Frequency function of graph Gi is:

fi : Σi → N and fi(l) = |{u : u ∈ V, li(u) = l}|

Example 8.2.2:

In figure 8.2, we have Σi+1 = {A,BA,CA,DBC,EBD}, and the results of function fi+1

for all nodes are one.

Now, we will define the weifeiler-lehman histogram vector of a directed graph G below:

Definition 8.2.1. The weifeiler-lehman histogram vector of the directed graph G with h
iteration is a tuple.

vG = t1 ⊕ t2 ⊕ . . .⊕ th (8.1)

Where,
ti = ((σi,1, fi(σi,1)), . . . , (σi,|Σi|, fi(σi,|Σi|)))

Because we may need to computer the similarity between many graphs and the node
labels of these graphs may be different, we need to store the node labels in a weifeiler-
lehman histogram vector to distinguish the labels of these graphs. For example, we as-
sume there are two vectors and their frequency vectors are v1 = ((A, 2), (B, 2), (C, 5)) and
v2 = ((E, 2), (F, 2), (G, 5)). If we do not store the labels these vectors will be considered
the same (2, 2, 5) but actually not because their labels are different. Especially, the node
labels in our work are really important because they present the instructions of a binary
and show us how a binary is executed.
Furthermore, with this strategy, we can see that the dimension of weifeiler-lehman his-
togram vectors can vary between many graphs. Therefore, we cannot compute the cosine
similarity between them. Consequently, it is necessary to convert their vectors to new
vectors sharing the same dimension.

Definition 8.2.2. Given n directed graph {Gi : 1 ≤ i ≤ n}. Let:

• Γi is the set of node labels that occur at least once in {Σk
i : 1 ≤ k ≤ n}. Here, Σk

i

is the set of node labels of weisfeiler-Lehman graph at height i of graph Gk.

• fk
i be the frequency function of weisfeiler-lehman graph at height i of graph Gk.

Without loss of generality, assume that every Γi = {γi,k : 1 ≤ k ≤ |Γi|} is ordered.

The weisfeiler-lehman histogram vector of graph Gk with h iteration can be defined as:

φGk
= c1 ⊕ c2 ⊕ . . .⊕ ch (8.2)

Where,
ci = (fk

i (γi,1), . . . , f
k
i (γi,|Γi|))

63

To be convenient, when we need to compute the similarity between frequency vectors in
this work, we assume that we have performed the above procedure to make these frequency
vectors share the same dimension, and the number of iterations h of Weisfeiler-Lehman
kernel in our work is 2.

Definition 8.2.3. Given n directed graph {Gk : 1 ≤ k ≤ n} , graph similarity between
graph Gi and graph Gj is the cosine similarity between frequency vector φGi

and φGj
.

Example 8.2.3:

Let’s consider the example in figure 8.3. We now have 2 directed graphs G1 and G2. The
Weisfeiler-Lehman relabelling is performed with one iteration. In this case, we have:

• Γ0 = {A,B,C,D,E, F}

• Γ1 = {A,BA,CA,DBC,DBF,EBD,FA}

Therefore, the frequency vectors corresponding to G1 and G2 are:

• φG1 = ⟨1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0⟩

• φG2 = ⟨1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1⟩

64

Figure 8.3: An example of frequency feature extraction between two graphs

65

8.3 Template setup for each packer

8.3.1 Clustering procedure

In the previous sections, we observed that the CFG of unpacking stubs between packed
code by the same packer are similar, and WINUPACK packer has two kinds of predecessor
unpacking subgraphs. From these observations, it is feasible to find several weifeiler-
lehman histogram vectors for each packer.
To reduce the computation cost in weifeiler-lehman histogram vector searching, we want

to create several average weifeiler-lehman histogram vector for each packer. From these
vectors, we can find the exit of unpacking stub and OEP node later. The process of
average weifeiler-lehman histogram vector generation can be described below:

Procedure 8.3.1. The process of average weifeiler-lehman histogram vector generation
for a fixed packer includes 5 steps:

• Step 1: Generating predecessor graph at the exit of unpacking stubs for each packed
code.

• Step 2: Computing Weisfeiler-Lehman histogram vector for each graph from step
1.

• Step 3: To ensure consistent dimensions, these vectors from Step 2 are converted
to align with a uniform dimension.

• Step 4: Apply the clustering algorithm (i.e., DBSCAN) to the vectors from Step 3.

• Step 5: The Weisfeiler-Lehman histogram vectors within each cluster from Step
4 are averaged and combined with the corresponding end sequence to obtain the
template.

66

Figure 8.4: The flow of average feature vectors generation

Figure 8.4 show the process of average Weisfeiler-Lehman histogram vectors generation
and the sequence of the end of unpacking stub generation for each packer. We assume
that there are n packed codes pi of a packer. In addition, we also assume that we know
their original programs because we can use a packer to pack many toy samples to get
packed code by this packer. As a result, we will know the exit of the unpacking stub of
pi. Next, we will generate a predecessor unpacking graph of pi (denoted as Prepi). Then,
the Weisfeiler-Lehman graph computation will be applied to convert these predecessors
graphs into Weisfeiler-Lehman histogram vectors vPrepi . Because we need to cluster many
frequency vectors of packed codes, these vectors will be converted to the same dimension.

67

Then, φPrepi will be obtained for all packed codes. Next, these vectors will be classified
into many groups. Finally, all Weisfeiler-Lehman histogram vectors will be averaged in
each group. The detail of the clustering procedure will be described in the 8.3.2, and the
process of averaging Weisfeiler-Lehman histogram vectors will be described in 8.3.3.

8.3.2 Clustering Weisfeiler-Lehman histogram vector

After converting Weisfeiler-Lehman histogram vectors into uniform dimensions, we will
apply the DBSCAN algorithm to assign these vectors into clusters. This procedure can
be illustrated in the figure below:

Figure 8.5: DBSCAN clustering procedure

First, we will have many Weisfeiler-Lehman histogram vectors to put into DBSCAN.
At this time, the eps parameter will have a default value of 0.05. Next, DBSCAN will
cluster these vectors into t groups. We assume vectors in each group are similar and the
end sequence of unpacking stubs corresponding to these vectors are the same, and we can
average these vectors to obtain an average Weisfeiler-Lehman histogram vector. However,
because the result of DBSCAN depends on eps, the condition of the end sequence may not
be satisfied. In this case, we decrease the eps value by 0.01 and perform the clustering
procedure with the new eps value. The average Weisfeiler-Lehman histogram vector
clustering will finish when all end sequences in the same group are consistent. Finally, we
will obtain average Weisfeiler-Lehman histogram vectors in each group.

8.3.3 Computing average Weisfeiler-Lehman histogram vector

In this section, we will compute the average Weisfeiler-Lehman histogram vector from the
Weisfeiler-Lehman histogram vectors in the same group. First, we also need to convert
the dimension of these vectors into the same dimension, then we can take the average.
Let’s assume we are considering a group d generated from DBSCAN. This group contains

68

a set of packed codes:
Cd = {pdk : 1 ≤ k ≤ |Cd|}

Their corresponding histogram vectors {Prepdk : 1 ≤ k ≤ |Cd|} are assigned to graph d.
And, their corresponding Weisfeiler-Lehman histogram vectors are:

{vPre
pdk : 1 ≤ k ≤ |Cd|}

Let’s assume these histogram vectors in this form:

vPre
pdi = ((ωdi

1 , c
di
1), . . . , (ω

di

|v
Pre

pdi |
, cdi|v

Pre
pdi |

))

Let:
Ω = {l : ∃p, q(ωp

q = l)} = (ω1, . . . , ω|Ω|)

Definition 8.3.1. The average Weisfeiler-Lehman histogram vector of a group d is defined
as:

sd = ((ωk, ak), . . . , (ω|Ω|, a|Ω|)) (8.3)

Where:

ak =

∑
p,q

ωp
q=ωk

cpq

|Cd|

Example 8.3.1:

For example, Assuming we have 3 Weisfeiler-Lehman histogram vectors in the same cluster
d packed by packer i. Let these vectors be:

• v1 = ((A, 1), (B, 3), (C, 5), (D, 1)

• v2 = ((A, 1), (B, 2), (C, 5), (D, 1)

• v3 = ((A, 1), (B, 3), (C, 4))

So, the average Weisfeiler-Lehman histogram vector of this cluster is:

sid = ((A, 1), (B, 2.67), (C, 4.67), (D, 0.66))

After finishing the average Weisfeiler-Lehman histogram vector generation, the genera-
tion of end sequences becomes easy. We just take the last k instructions on each cluster in
previous sections as the end sequence of the unpacking stub. In this work, we choose the
value of k is 5. Now, each packer has obtained its average Weisfeiler-Lehman histogram
vector vectors and the end sequence of the unpacking stub, and we have templates for
these packers.

69

Chapter 9

Experiments

This chapter presents our results on packer identification and OEP detection problem. In
addition, the information about the dataset and how we confirm an OEP in packed code
when the original program is available is also mentioned.

9.1 Experimental environments

Dataset

Our packed code observed and tested in this research is taken from a resource1. Besides,
TELOCk samples are taken from this repository2 on Git Hub. Currently, we are focusing
on 12 packers which are UPX, FSG, PECOMPACT, PUTITE, WINUPACK, YODA’s
Crypter, MEW, ASPACK, JDPACK, PACKMAN, and TELOCK. For each packer, not
all packed codes we can have their original program. In addition, to verify our method,
we must know the OEP of packed codes. To more trust this dataset, we also try to check
whether the files in this dataset is packed or not by uploading these file into VirusTotal
to confirm the name of the packer.

CFG generation from BE-PUM

Before analyzing packed codes to detect the OEP and the name of the packer, we have
to obtain the CFG of packed codes first. Currently, we run BE-PUM on Windows 7
32-bit built on VMware Workstation Pro 17 with Host is Ubuntu 20.04, Processor 13th
Gen Intel(R) Core(TM) i9-13900K 3.00 Ghz for 11 packers excepts TELOCk. Samples of
TELOCK will be run on a Windows XP environment.
Although BE-PUM can generate precise CFG and precise disassembly of x86 binary

code, the time running can be long. Therefore, we set a time limit of running for each
packed code as 1 hour. Only packed code whose CFG was generated successfully from
BE-PUM will be used in this work.

1https://github.com/chesvectain/PackingData
2https://github.com/packing-box/dataset-packed-pe

70

After generating CFG for packed codes, we need to find their corresponding OEPs for
template matching and template setup. Therefore, the process to obtain the OEP of a
packed code by using its original program will be described in the next section.

OEP acquisition

The procedure to obtain an OEP of packed based on its original program is described in
the figure below:

Figure 9.1: OEP acquisition process

There are two conditions in our testing to confirm a ⟨address, instruction⟩ is the OEP

71

of packed code.

1. The address is equal to the entry point of the original program (non-packed pro-
gram).

2. The graph cut-off from the directed acyclic graph (DAG) of the control flow graph
(CFG) of the packed code is similar to the CFG of the original program.

Note that, BE-PUM will stop CFG generation when it identifies the packer name of the
packed code, so the CFG of the original program may not be complete. Therefore, we will
just extract nodes that have a distance of 20 to the root in both DAG graphs from the
packed code and the original program to compare. In addition, we set the threshold for
considering two graphs are similar is 0.9. Besides, the entry point of an original program
can also be obtained if we have the corresponding packed code of the program by UPX.
Because UPX publishes its algorithm, we know the OEP in the packed code by UPX.
After performing the OEP acquisition, we obtained 771 packed codes and their OEPs.

The total packed code for each packer is described in the table 9.1.

Packer Number of samples

UPX 94
ASPACK 75

FSG 83
PECOMPACT 30

MEW 83
YODA’s Crypter 82

PETITE 37
WINUPACK 28
MPRESS 86

PACKMAN 87
JDPACK 57
TELOCK 29

Table 9.1: The number of packed codes for each packer

Now, we will split randomly these packed codes into two sets called database and testing
set with ratio 1:9. The purpose of these two sets is:

• Database: This set contains packed code that we have its original program. So,
this set will be used for template setup.

• Testing set: In this set, we assume that we don’t know the original programs of
packed code. Therefore, our method will be applied to detect their OEP and packer
names. Then, our results will be verified later by their actual OEP and packer name.

72

9.2 Packer identification

This section will show our results in the packer identification task. In this experiment,
we use 71 samples for obtaining templates, and 700 samples for testing. Besides, we also
utilize VirusTotal and PyPackerDetect3 to identify the packer’s name. Particularly, the
mechanisms of PyPackerDetect are the use of PEID signatures, Known packer section
names, Entrypoint in non-standard section, Threshhold of non-standard sections reached,
Low number of imports, and Overlapping entrypoint sections to know the name of the
packer.
The table below shows the results of the packer identification task where:

• Packer: The name of packer.

• samples: The number of tested samples.

• BE-PUM: The number of samples predicted the packer’s name correctly by BE-
PUM.

• VirusTotal: The number of samples predicted the packer’s name correctly by
VirusTotal.

• PyPackerDetect: The number of samples predicted the packer’s name correctly
by PyPackerDetect.

• Our method: The number of samples predicted correctly by our method.

Packer Samples VirusTotal PyPackerDetect BE-PUM Our method

UPX 85 85 30 84 85
ASPACK 68 68 68 68 68

FSG 75 75 75 75 75
PECOMPACT 27 27 27 27 27

MEW 75 75 75 75 75
YODA’s Crypter 74 74 74 62 74

PETITE 34 34 34 34 34
WINUPACK 26 26 26 26 15
MPRESS 78 78 None 78 78

PACKMAN 79 79 79 None 79
JDPACK 52 51 None None 52
TELOCK 27 27 27 27 27

Table 9.2: The results of the packer identification task

The table above illustrates the number of cases which detect the name of the packer
correctly. Among tested packed code, our method detects the packer name of these files

3https://github.com/cylance/PyPackerDetect

73

without error except for WINUPACK. The reason for this error is that this packer has
two kinds of templates. However, the database in our setting has only one of two kinds of
unpacking graphs. This led to our methods having some errors in WINUPACK, but we
can overcome this case by collecting more toy samples packed by WINUPACK. On the
other hand, BE-PUM has some wrong packer names in UPX and YODA’s Cyber packer.
However, this error can come from the supported version of these packers in BE-PUM
being different in the test set and the number of tested samples is not large. Finally, the
result of BE-PUM for PACKMAN and JDPACK is none because BE-PUM doesn’t have
the signature sequences of these packers at this moment. Meanwhile, PyPackerDetect does
not have the result on MPRESS and JDPACK may come from the different supported
versions of packers. Overall, our method yields results that are either better or at least
equal to other tools in 12 packers, with the exception of WINPACK, as we explained
before.

9.3 OEP detection

In this section, we will represent our results of the OEP detection task. In addition, we
also utilize Gunpacker4 and QuickUnpack5 which are generic unpacker to detect the OEP.
Figure 9.2 below shows the Graphical user interface of Gunpacker on Windows.

Figure 9.2: GUI of GUnPacker

We can see that GunPacker tools can return the possibility of OEP detected by its algo-
rithm. However, the possibility of OEP from GunPacker is not easy to get automatically
from a GUI. Therefore, we have to perform a semi-automated way to get this information.
In the GUI of Gunpacker, we have observed that there is an option for a dump file, and
we expected that the dump file is an extracted payload from the possibility of OEP in
the GUI. So, the entry point of the dump file is equal to the possibility of OEP in the
GUI. Therefore, our semi-automated way to get the possibility of OEP from GunPacker
includes two steps:

• Step 1: We manually unpack a file by GunPacker from its GUI to get the dump file.

4https://webscene.ir/tools/show/GUnPacker-v0.5
5https://www.aldeid.com/wiki/QuickUnpack

74

• Step 2: After obtaining all of the dump files, we use pefile library to read the entry
points of these files. Finally, we can obtain the original entry point information
from the GUI of Gunpacker.

We also perform the a similar way for QuickUnpacker to obtain OEP detection results.
The table below shows the results of the OEP detection task where:

• Packer: The name of packer.

• Samples: The number of tested samples.

• Gunpacker: The number of samples detected OEP correctly by Gunpacker.

• Our method: The number of samples detected OEP correctly by our method.

Packer Samples Gunpacker QuickUnpack Our method

UPX 85 78 78 85
ASPACK 68 56 68 68

FSG 75 70 75 75
PECOMPACT 27 0 8 27

MEW 75 74 8 75
YODA’s Crypter 74 73 8 74

PETITE 34 0 8 34
WINUPACK 26 26 4 15
MPRESS 78 0 8 78

PACKMAN 79 79 8 78
JDPACK 52 45 2 52
TELOCK 27 24 1 27

Table 9.3: The results of the OEP detection task

The table above shows the results of the OEP detection task based on graph similarity.
Except in one case in PACKMAN and 11 cases in WINUPACK, the OEP of packed codes
is correctly detected. From this table, we can observe that our method has a better result
than GunPacker and QuickUnpack except in the case of WINUPACK. The reason has
also come from we do not have all the templates of WINUPACK.
In addition, we also experience the effect of end-of-unpacking sequences in OEP detec-

tion task. In this experiment, we will just only use average histogram histogram vectors
to search OEP in packed codes. The two tables below will show our results. The meaning
of each column in these tables will be described below:

• Packer: The name of packer.

• samples: The number of tested samples.

75

• Without end sequence: The number of samples predicted correctly by our
method without using the end sequence of the unpacking stub.

• Using end sequence: The number of samples predicted correctly by our method
using the end sequence of the unpacking stub.

Packer Samples Without end sequence Using end sequence

UPX 85 85 85
ASPACK 68 62 68

FSG 75 75 75
PECOMPACT 27 27 27

MEW 75 75 75
YODA’s Crypter 74 73 74

PETITE 34 34 34
WINUPACK 26 15 15
MPRESS 78 73 78

PACKMAN 79 79 79
JDPACK 52 52 52

Table 9.4: The effect of end sequence in packer identification problem

Packer Examples Without end sequence Using end sequence

UPX 85 85 85
ASPACK 68 2 68

FSG 75 75 75
PECOMPACT 27 0 27

MEW 75 67 75
YODA’s Crypter 74 72 74

PETITE 34 34 34
WINUPACK 26 15 15
MPRESS 78 69 78

PACKMAN 79 78 78
JDPACK 52 46 52

Table 9.5: The effect of end sequence in OEP detection problem

From these two tables, we can observe that the end sequence of the unpacking stubs has
a positive impact on both packer identification and OEP detection problems. Particularly,
its impact on the OEP problem is much more substantial than on packer identification.
The reason is the answer to the OEP problem needs a specific point in packed codes, so
it must be really accurate. Therefore, the end sequence of unpacking stubs can help to
remove many incorrect candidates during the process of searching OEP.

76

9.4 Packer identification and OEP detection on mal-

ware samples

In this experiment, we have run 5190 malware samples. Among them:

• There are 1239 samples finished within 1 hour.

• There are 1089 samples, our method detects the sample is not packed by our current
support packers.

• There are 1034 samples, BE-PUM detects the sample is not packed.

• Our method detects 150 samples with their packer’s name and the end of unpacking
stub. The detailed number of samples for each packer is in the table below.

Packer Number of samples

UPX 80
ASPACK 26

FSG 1
PECOMPACT 27
YODA’s Crypter 13
WINUPACK 20
MPRESS 1

Table 9.6: The number of malware samples can detected packer’name and OEP

Although, currently, we cannot verify whether this OEP is correct or not. However, the
sequence of the end of the unpacking stub rarely appears by luck, and the similarity of
these samples to our average frequency feature vectors is high with more than 0.7. In
some sense, our methods worked on these samples.

77

Chapter 10

Conclusion

10.1 Discussion, Conclusion and Current limitation

10.1.1 Conclusion and current limitation

This thesis proposed an automatic approach to detect the OEP and packer’s name of
packed codes. In the experiment, 700 packed codes from 12 packers were used to test
our methods. Among them, 688 samples have been correctly detected OEP. Furthermore,
5190 malware samples were tested in this work, and there are 1239 samples generated
control flow graphs within the time limit of 1 hour. After applying our method, there are
150 samples that have been detected with their OEP and packer’s name. We expect that
our methodology can extend to many other packers without much effort. In summary,
this study has contributed:

• A tool to locate the OEP of packed codes with the presence of their original pro-
grams. This can be used to obtain the data for testing and average frequency feature
generation for each packer.

• Average Weisfeiler-Lehman histogram vector generation: We have obtained several
average Weisfeiler-Lehman histogram vectors for each packer. These vectors rep-
resent unpacking stubs. In addition, this module also reduces computation costs
for graph similarity computation because the number of average Weisfeiler-Lehman
histogram vectors is less than or equal to the number of collected samples of each
packer.

• Average Weisfeiler-Lehman histogram vector search: We have proposed an approach
to detect the OEP and packer’s name based on graph similarity.

Our results show that our hypothesis about the similarity and the consistency of the
sequence of the end of the unpacking stub has been worked. From that, we can obtain
a signature of the unpacking stub for each packer, and the OEP and the packer’s name
can be detected correctly. As a result, a lot of human effort can be reduced to unpack
a packed code. Finally, malware utilizing packers to hide their malicious behaviours will

78

be revealed and many further analyses can be conducted to protect machines from this
threat.
Advantage:

1. Our method is an automatic approach: Every module in our method can run auto-
matically.

2. Our method is generalized: It can be extended to many other packers just need to
collect the packed code for a new packer.

Drawbacks:

1. Dependency on BE-PUM: Because our method needs a precise CFG from BE-PUM
and the cost of running time of BE-PUM is heavy, our method also needs quite a
long time for the whole process.

2. The repeat of decryption routine: If the packed code can perform the decryption
algorithm of unpacking stubs several times before it transfers the control flow to
OEP, our method cannot handle this case at this moment.

10.1.2 Discussion

Failed on OEP acquisition using the original program

During the preparation of the OEP for each packed code, we noticed that there are some
packed codes we cannot find its OEP although we have its original program. One of the
reasons is BE-PUM will terminate its process when it concludes with the packer name, so
the CFG of the unpacked payload is not generated in these cases. Therefore, we cannot
verify whether a point is OEP or not based on the similarity between the cut-off CFG
from a specific point in packed code and the CFG of the original program.

Incorrect OEP detection on PACKMAN

Currently, we have investigated the only wrong case in PACKMAN, and we observed that
there is an instruction jump start during the execution of the packed code. After that,
the unpacking process was repeated one more time before the control flow was transferred
to the original entry point. Therefore, although the sequence of the end of the unpacking
stub has been matched and the similarity between the frequency feature vector at the
incorrect node and the average frequency feature vector of PACKMAN is high, the result
is still not correct.

79

Figure 10.1: a jump start in PACKMAN

Figure 10.1 shows the incorrect the exit of unpacking stub in FileTypesMan.exe packed
by PACKMAN. In this case, our method detects 0x004231f4: jmp 0x00420200 (orange
node) as the exit of the unpacking stub, but the actual result is

80

0x00420200: jmp 0x4109f0.

10.2 Future works

Currently, our method can detect the OEP and identify the packer’s name, but the repeat
of the decryption routine can lead to an incorrect answer in our method. Therefore, we
intend to continue this work to expand the capacity of our method, make it able to cover
more packers, as well as to deal with the repeat of the decryption routine.

1. Extend to more packers: There are many other packers on the Internet, some of the
most complex packers like themida are not supported in our work. Therefore, we
need to update these packers in our work to make our method stronger.

2. Improve incorrect answer: Our method still yields incorrect results, indicating that
there is room for improvement to enhance its capacity, especially in the case of a
repeat decryption algorithm.

3. Direct detect OEP: Currently, our method detects the exit of the unpacking stub
first, and then the OEP node will be detected later because the OEP node is the
successor of the exit of the unpacking stub. Although we observed that the OEP
node has only one accessor on the CFG, we aim to enhance the generality of our
method by directly detecting OEP, eliminating the need to detect it through an
end-of-unpacking node.

4. Dealing with unknown packer: Unknow packers referred to packers that we can
access to it (i.e., we don’t have the packer program to pack samples). This is really
a challenging problem. In the future, we intend to extend our method to deal with
it.

In the future, our plan is:

• Collecting more samples of packed code to support many other packers.

• Propose more conditions to confirm whether a point is OEP or not.

• Changing our method to directly detect OEP by marking the OEP node as a special
node (e.g, $), then instead of obtaining the average Weisfeiler-Lehman histogram
vectors from the predecessor graph, we obtain these vectors from the predecessor
graphs with their sink node is $.

• Try to observe packed codes with the hidden packer information.

81

Bibliography

[1] Z. Zeng, A. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing stars: On approxi-
mating graph edit distance.,” PVLDB, vol. 2, pp. 25–36, Jan. 2009.

[2] P. Alimonti and V. Kann, “Hardness of approximating problems on cubic graphs.,”
vol. 1203, Jan. 1997, pp. 288–298.

[3] M. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for packed
executables,” WORM’07 - Proceedings of the 2007 ACM Workshop on Recurring
Malcode, Nov. 2007. doi: 10.1145/1314389.1314399.

[4] G. Jeong, E. Choo, J. Lee, M. Bat-Erdene, and H. Lee, “Generic unpacking using
entropy analysis,” in 2010 5th International Conference on Malicious and Unwanted
Software, 2010, pp. 98–105. doi: 10.1109/MALWARE.2010.5665789.

[5] R. Isawa, M. Kamizono, and D. Inoue, “Generic unpacking method based on detect-
ing original entry point,” vol. 8226, Nov. 2013, pp. 593–600, isbn: 978-3-642-42053-5.
doi: 10.1007/978-3-642-42054-2_74.

[6] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack: Automating
the hidden-code extraction of unpack-executing malware,” Jan. 2007, pp. 289–300.
doi: 10.1109/ACSAC.2006.38.

[7] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast, generic, and safe
unpacking of malware,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), 2007, pp. 431–441. doi: 10.1109/ACSAC.2007.15.

[8] S. D’Alessio and S. Mariani, “Pindemonium: A dbi-based generic unpacker for win-
dows executables,” in BlackHat, 2016, pp. 1–56.

[9] G.-M. Kim, J. Park, Y.-H. Jang, and Y. Park, “Efficient automatic original entry
point detection,” J. Inf. Sci. Eng., vol. 35, pp. 887–901, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53549413.

[10] NtQuery, Scylla – x64/x86 imports reconstruction, https://github.com/NtQuery/
Scylla.

[11] B. Cheng, J. Ming, E. A. Leal, et al., “Obfuscation-resilient executable payload
extraction from packed malware,” in USENIX Security Symposium, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:235246272.

82

https://doi.org/10.1145/1314389.1314399
https://doi.org/10.1109/MALWARE.2010.5665789
https://doi.org/10.1007/978-3-642-42054-2_74
https://doi.org/10.1109/ACSAC.2006.38
https://doi.org/10.1109/ACSAC.2007.15
https://api.semanticscholar.org/CorpusID:53549413
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://api.semanticscholar.org/CorpusID:235246272

[12] M.-J. Choi, J. Bang, J. Kim, H. Kim, and Y.-S. Moon, “All-in-one framework for
detection, unpacking, and verification for malware analysis,” Security and Commu-
nication Networks, vol. 2019, pp. 1–16, Oct. 2019. doi: 10.1155/2019/5278137.

[13] A. V. Phan, M. L. Nguyen, Y. L. H. Nguyen, and L. T. Bui, “Dgcnn: A convolu-
tional neural network over large-scale labeled graphs,” Neural networks : the official
journal of the International Neural Network Society, vol. 108, pp. 533–543, 2018.
[Online]. Available: https://api.semanticscholar.org/CorpusID:53566112.

[14] C.-H. Bertrand Van Ouytsel and A. Legay, “Malware analysis withnbsp;symbolic
execution andnbsp;graph kernel,” in Secure IT Systems: 27th Nordic Conference,
NordSec 2022, Reykjavic, Iceland, November 30–December 2, 2022, Proceedings,
Reykjavic, Iceland: Springer-Verlag, 2023, pp. 292–310, isbn: 978-3-031-22294-8.
doi: 10.1007/978-3-031-22295-5_16. [Online]. Available: https://doi.org/
10.1007/978-3-031-22295-5_16.

[15] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research,
vol. 12, pp. 2539–2561, 2011.

[16] Dbscan sample points, https://www.geeksforgeeks.org/dbscan-clustering-
in-ml-density-based-clustering/, Accessed: 2023-08-02.

[17] An sample of different kind of points, https://en.wikipedia.org/wiki/DBSCAN,
Accessed: 2023-08-02.

[18] A. Kleymenov and A. Thabet, Mastering Malware Analysis: The Complete Mal-
ware Analyst’s Guide to Combating Malicious Software, APT, Cybercrime, and IoT
Attacks. Packt Publishing, 2019, isbn: 9781789610789. [Online]. Available: https:
//books.google.co.jp/books?id=Nj4txgEACAAJ.

[19] Pe structure, https://www.trustwave.com/en-us/resources/blogs/spiderlabs-
blog/basic-packers-easy-as-pie/, Accessed: 2023-08-02.

[20] User mode and kernel mode in windows, https://learn.microsoft.com/en-
us/windows- hardware/drivers/gettingstarted/user- mode- and- kernel-

mode, Accessed: 2023-08-02.

[21] A. Silberschatz and P. Galvin, Operating System Concepts, 4th edition. Addison-
Wesley, Jan. 3, 2002, isbn: 0-201-50480-4.

[22] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
no. 7, pp. 385–394, Jul. 1976.

[23] V. V. Anh, “Formal semantics extraction from natural language specifications for
arm,” Master’s Thesis, School of Information Science, JAIST, December 2018.

[24] M. Nguyen, M. Ogawa, and T. Quan, “Packer identification based on metadata sig-
nature,” in The 7th Software Security, Protection, and Reverse Engineering Work-
shop (SSPREW-7), ACM, 2017.

[25] N. M. Hai, M. Ogawa, and Q. T. Tho, “Obfuscation code localization based on cfg
generation of malware,” in FPS, 2015.

83

https://doi.org/10.1155/2019/5278137
https://api.semanticscholar.org/CorpusID:53566112
https://doi.org/10.1007/978-3-031-22295-5_16
https://doi.org/10.1007/978-3-031-22295-5_16
https://doi.org/10.1007/978-3-031-22295-5_16
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://en.wikipedia.org/wiki/DBSCAN
https://books.google.co.jp/books?id=Nj4txgEACAAJ
https://books.google.co.jp/books?id=Nj4txgEACAAJ
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/basic-packers-easy-as-pie/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/basic-packers-easy-as-pie/
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode

[26] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based framework
for control flow reconstruction from binaries,” in Lecture Notes in Computer Science,
vol. Year, Springer Berlin Heidelberg, 2009, pp. 214–228.

[27] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” vol. 4963, Apr. 2008,
pp. 337–340.

[28] L. Vinh, “Automatic stub generation from natural language description,” Master
Thesis, JAIST, August, 2016.

[29] W. Leitner, S. Wahl, S. Popkin, J. Gaertner, T. Åkerstedt, and S. Folkard, “Ras
representation analysis software,” Jan. 2003.

[30] M. S. Hecht and J. D. Ullman, “Flow graph reducibility,” in Proceedings of the
Fourth Annual ACM Symposium on Theory of Computing, ser. STOC ’72, Denver,
Colorado, USA: Association for Computing Machinery, 1972, pp. 238–250, isbn:
9781450374576.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Knowledge Discovery
and Data Mining, 1996. [Online]. Available: https://api.semanticscholar.org/
CorpusID:355163.

84

https://api.semanticscholar.org/CorpusID:355163
https://api.semanticscholar.org/CorpusID:355163

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Terminology and notation related to graph
	Weisfeiler-Lehman Kernels
	DBSCAN

	X86 on Windows
	X86 instruction set
	Windows
	API call in Windows

	Malware and packer
	Malware
	Obfuscation techniques
	Packer

	Deobfuscation and BE-PUM
	Deobfuscation and DSE
	BE-PUM

	The CFG of binary code
	Problem Statement
	The CFG of binary code
	CFG of packed code

	Control Flow Graph of unpacking stub
	Reasons for avoiding retreating edges
	The CFG of the unpacking stub characterizes a packer
	Consistency of the end sequence

	Packer identification and OEP detection
	Template matching for packer identification and OEP detection
	Computing weisfeiler-lehman graph and its histogram vector
	Computing weisfeiler-lehman graph
	Computing weifeiler-lehman histogram vector

	Template setup for each packer
	Clustering procedure
	Clustering Weisfeiler-Lehman histogram vector
	Computing average Weisfeiler-Lehman histogram vector

	Experiments
	Experimental environments
	Packer identification
	OEP detection
	Packer identification and OEP detection on malware samples

	Conclusion
	Discussion, Conclusion and Current limitation
	Conclusion and current limitation
	Discussion

	Future works

