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Abstract

Keywords: HPC, Performance Engineering, eBPF, Observability
The complexity of scientific computing tasks necessitates the design of

intricate software and hardware stacks in HPC systems to meet the scalability
requirements of computational kernels. However, the increased complexity
of HPC systems poses challenges for designing efficient performance analysis
methods. Currently, the HPC community employs diverse and complex
performance analysis tools to model the performance of HPC systems im-
plemented on different architectures. However, this fragmented analysis
approach requires performance experiments that are relatively constrained in
design for target applications and systems, leading to experimental methods
and results lacking portability and generality.

Our contributions mainly focus on two aspects. Firstly, we propose a
multi-level observability approach for HPC systems using eBPF (Extended
Berkeley Packet Filter). We describe several widely-used industrial-grade
HPC performance tool implementations and performance methodologies,
and identify limitations in existing performance approaches. By leveraging
native features of the Linux kernel, we enhance the portability and cross-
platform generality of code instrumentation and dynamic tracing capabili-
ties. Validation shows that eBPF incurs lower runtime overhead and offers
high controllability compared to traditional methods. Moreover, eBPF is
language-agnostic, providing robust support for programs implemented in
languages which have simpler runtimes.

Secondly, we select specific performance modeling methods from conven-
tional performance engineering approaches, including Profiling for gaining
insights into the target application’s execution flow and hot functions, Kernel
Extraction for understanding the nature of computational kernels and calcu-
lating theoretical single-core performance, Dependency Chain Identification
for assessing multi-threading performance degradation, Kernel Benchmark
for evaluating the target workload’s actual performance on the system,
and I/O and Memory Benchmark for comprehending the target system’s
I/O performance. Based on these data, we can use theoretical models of
parallel computing to fit data that closely approximates real performance.
Furthermore, leveraging the eBPF performance sampling data from the first
part, we can implement unsupervised system performance non-regression
testing. We hope that this thesis can provide a potential, portable, cross-
platform, and WORA performance methodology for future HPC systems.
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Chapter 1

Introduction

1.1 Motivation

The rapid evolution of High-Performance Computing (HPC) systems and
their applications has introduced complexities in programming, increased
abstraction levels, and higher degrees of parallelism. To meet the demand
for computational power, scientific computing applications now leverage
various parallel runtimes, thread models, and I/O frameworks to harness
the parallelism of HPC systems. However, the increased levels of parallelism
present challenges in designing efficient workload kernels and ensuring the
scalability of HPC systems. Moreover, the growing complexity of workload
kernels makes understanding the performance of exascale-scale applications
difficult. To effectively utilize HPC systems, powerful, accurate, and robust
performance analysis tools are needed in the software stack [2]. These
tools can analyze code adaptability and scalability on the target system
and guide the expansion of its parallel potential. Additionally, efficient
performance analysis tools and application-aware runtimes allow domain
experts to focus on fundamental science rather than wasting experimental
budgets on debugging target applications and adjusting parallel parameters
for specific HPC systems.

In the post-Moore’s Law era, the growth of single-core CPU performance
and the reduction of instruction-level parallelism are no longer sufficient to
meet the computational needs of scientific problems. The end of Dennard
scaling has led to increasing power consumption with each generation of
CPUs. Consequently, HPC systems have shifted towards SMP architectures,
utilizing numerous CPUs in parallel to achieve further performance gains
while improving energy efficiency. Figure 1.1 demonstrated this trend by
showing the correlation between the number of transistors on CPU and HPC
performance through years. However, this transformation imposes higher
requirements on tools for enhancing software scalability.

Scientific computing applications exhibit a duality in HPC system design,
with computational kernels demonstrating homogeneity while I/O displays
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heterogeneity. On one hand, most nodes adopt architectures with pipelining,
superscalar processing, and out-of-order processors combined with multi-
level caching. Although occasionally different instruction set architectures
are used due to distinct design objectives, microprocessors largely stem
from the same design paradigm [3]. On the other hand, the complexity of
I/O workloads requires cache hierarchy, storage infrastructure, high-speed
interconnect networks, and parallel I/O subsystems designed to provide
high configurability and scalability to support diverse I/O loads. Designing
and configuring matching I/O workloads and I/O systems are crucial for
the theoretical bandwidth and throughput of the entire HPC system [4].
Performance optimization tools supporting complex I/O stacks, distributed
storage infrastructure, and parallel file systems are highly beneficial in
optimizing HPC performance and are vital in understanding the behavior
of scientific computing loads’ I/O.

Currently, numerous mature industrial performance tools coexist with
various experimental tools. While they share similarities and overlapping fea-
tures, including parallelization paradigms (Message Passing Interface, Multi-
threading, Parallel Runtimes), performance data collection (Code Instrumen-
tation/Interpolation, Sampling, Performance Monitor Units(PMU)/Performance
Counters support), and performance data visualization (events, metrics,
statistics), they typically adopt different approaches and offer complementary
specialized functionalities [5]. Consequently, performance engineers often
need to combine multiple tools to understand application performance from
different perspectives.

Performance analysis tools can be classified into online monitoring tools
and post-execution analysis tools based on their relationship with the ap-
plication’s execution time and performance data sampling time. Online
monitoring tools provide real-time performance data and probe timestamps
during application runtime, offering immediate performance feedback. They
can operate in either a non-intrusive (observability) mode or an involving user
intervention (experimental) mode. However, such implementations usually
require complex runtimes, hardware support, and system privileges, making
them more challenging to use in HPC systems predominantly using batch
processing. In contrast, post-execution analysis tools are more commonly
used in HPC system performance engineering. Post-execution tools sample
performance data during application runtime and perform aggregate analysis
after the application execution. This provides a global view that real-time
analysis methods cannot offer, presenting the overall correlation of the entire
execution process and enabling the ability to observe performance data from
multiple perspectives.

Performance analysis tools can also be classified based on their imple-
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mentation methods, including measurement-based techniques and interrupt-
timer-based event sampling techniques. Code instrumentation involves in-
serting sampling code at runtime into specially annotated functions or code
sections, requiring specialized compilers and runtimes for analysis. It has an
advantage in analyzing global communication, data synchronization opera-
tions, high-frequency repetitions, and highly variable workloads. However, it
demands a profound understanding of computational kernels by performance
engineers, which often requires their involvement in the development of
scientific computing applications themselves, a challenge often difficult to
achieve in most cases. Additionally, inserted sampling code may affect
the program’s control flow, leading to significant runtime overhead and
reduced accuracy of performance sampling, or even affecting the stability of
the target application. Nevertheless, its precise sampling capability, highly
customizable ability, and breadth of observation are unparalleled by other
techniques. In contrast, interrupt-timer-based event sampling techniques
allow adjusting the sampling interval based on desired accuracy, balancing
data accuracy and runtime overhead. Timing sampling features black-box
properties, enabling performance engineers to identify potential bottlenecks
and recognize performance patterns with limited knowledge of the source
code.

Performance analysis paradigms in the HPC community usually combine
the aforementioned two methods. This integrated approach provides a
system-level global view, demonstrating primary factors influencing scalabil-
ity and highlighting and quantifying design bottlenecks in the software and
hardware cooperation environment, helping performance engineers better
understand the computational nature and resource demands of the work-
load. By using filtered event probes from PMUs, User Statically-Defined
Tracing(USDT) probes, and raw event counters, supercomputer designers
can address bottleneck issues as needed, and compiler maintainers can deter-
mine suitable scenarios for Profile-Guided Optimization(PGO) and reduce
overhead.

Considering the diversity of performance issues, data sources, sampling
methods, evaluation methods, and the complexity of metrics and HPC
systems themselves, performance engineering tools and methods for HPC
system design must provide cross-platform consistency and flexibility, suit-
able for HPC systems and software configurations with different architectural
designs and implementations. Lacking portability in performance assessment
environments leads to the dispersion of performance evaluation methods and
increased learning costs. This necessitates performance experiments that do
not require designing performance experiments for specific platforms and
includes highly configurable experimental mechanisms and environments.
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Relying on a single, constrained performance method will limit the evaluation
scope. Fortunately, the homogenization of computational kernels has led to
homogenization of HPC system design, allowing general abstractions shared
among different computing environments to be supported through a unified
interface structure, providing the possibility of achieving portable, cross-
platform unified performance methods. We believe this unified performance
analysis ecosystem can bring mutual benefits to users and developers.

Research suggests that measuring and comparing sequences of multiple
configurations are more meaningful for scalability analysis than collecting
extensive run data for individual configurations [6]. However, the perfor-
mance data sampling process itself is bound to influence the system or
target application’s execution flow and performance. Extensive measure-
ments naturally lead to analysis tool overhead, with some studies indicating
runtime overheads reaching 40% or higher [7] [8], impacting the efficiency of
observations among different configurations. Therefore, designing a minimal
measurement analysis approach to understand application performance helps
reduce overhead and limits the interference caused by observation methods
in program observation.

However, most existing performance tools mainly focus on the observ-
ability of application-level performance, lacking the ability to observe in-
teractions between the operating system kernel and software [9]. The role
of the operating system in modern large-scale parallel environments cannot
be ignored. Tasks or I/O schedulers, Non-Uniform Memory Access(NUMA)
support, and memory operations performed by the kernel directly impact
the overall system’s performance. Particularly, as modern HPC systems
increasingly adopt Linux-based custom-optimized kernels instead of propri-
etary systems like Cray OS, which showed in Figure 1.2 and Figure 1.3, opens
up the possibility of utilizing OS-based performance engineering methods.
To provide portable OS-based performance engineering methods, we utilize
eBPF integrated into the Linux kernel to observe kernel behavior. Essentially,
it is a protected virtual machine running in kernel space, observing the kernel
state by executing eBPF bytecode, thereby enabling instrumentation of
critical events in the Linux kernel and providing non-intrusive observability.
Based on eBPF, performance observation incurs minimal interference with
the system, runtime, or the application itself, while maintaining accurate
analysis capabilities and minimal overhead [10] [11].

Based on the above, we propose a top-down performance engineering
method for HPC systems based on eBPF. This method leverages the native
capabilities of the Linux kernel, providing unparalleled OS-level observability
and portability. It is a low-intrusion, flexible, portable, cross-platform, and
software-hardware cooperative approach that combines the advantages of
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code instrumentation and sampling. Additionally, our method supports
both black-box and white-box analysis methods, offering highly customizable
event observation and precise control to efficiently manage runtime overhead.
Furthermore, our implemented black-box method does not rely on specific
languages or compilers, making it particularly suitable for scientific comput-
ing applications written in C or Fortran. It offers high compatibility, does
not require dependence on the source code, and ensures the preservation of
the original control flow of the code, guaranteeing accuracy.

We demonstrate our method through the supercomputer KAGAYAKI
at Japan Advanced Institute of Science and Technology(JAIST) and the
classical Ab Initio computational tool Quantum Espresso [12]. We adopt a
hierarchical approach that combines traditional tools with eBPF to address
the challenges of performance pattern recognition. Through experiments, we
reveal the feasibility of our method by demonstrating certain performance
bottlenecks that can be identified and localized through traditional code
instrumentation and sampling methods. We also showcase the unique
strategies and analysis perspectives of our method. Finally, we explore
the possibility of implementing automatic online performance monitoring
using eBPF and XGBoost [13], achieving rapid and accurate modeling of
application performance across different platforms.

1.2 State of the Art

The HPC community has developed numerous mature industrial-grade per-
formance analysis tools, along with some experimental ones, which signif-
icantly contribute to the optimization of performance analysis for target
parallel computing programs. This section presents several cutting-edge
research achievements, analyzing their application scenarios and professional
domains while explaining their limitations and constraints.

1.2.1 Performance Methods

Scalasca [14], the successor to the KOJAK [15] research project, is an open-
source performance analysis toolset developed by the Jülich Supercomputing
Centre. It is specifically designed for large-scale parallel computer clusters
such as IBM Blue Gene and Cray XT. Scalasca uses Code Instrumentation
for measurement-based performance analysis, distinguishing object types,
including MPI communicator objects, for annotation and analysis in event
tracing. It supports incremental performance analysis by progressively
improving measurement configuration strategies, integrating runtime per-

5



formance analysis summaries with parallel behavior during event tracing.
Scalasca excels in recognizing waiting states, enabling the identification
of performance challenges arising from workload imbalances in large-scale
parallel I/O-intensive applications. By pinpointing abnormal waiting states,
developers can address load imbalance issues through adjustments like pro-
cess placement, cores binding, and cache affinity to optimize communication
structures.

TAU [16], initiated by the University of Oregon in collaboration with the
German Research Centre Juelich and the Los Alamos National Laboratory,
is a flexible and portable performance tool framework closely associated
with Scalasca. It adopts a three-layer modular design, providing users
with highly customizable performance experiment configurations through
sub-module configurations. TAU’s flexible instrumentation allows users to
insert code instrumentation at different levels, supporting various types of
performance events, including communication library interface events and
user-defined events. TAU’s compatibility with Scalasca is achieved through
standardized metrics defined for performance experiments. It also includes
the PerfDMF [17] tool for parallel profiling management and collaboration
with other performance analysis tools.

HPCToolkit [18], developed by Rice University, is a post-analysis tool
based on interrupt timers and hardware counters. It eliminates the need for
code instrumentation by sampling and collecting performance measurement
data from fully optimized compiled applications. HPCToolkit offers binary
application analysis techniques, associating measurement results with source
code content and structure, presenting performance data in a top-down
manner.

Vampir [19], developed by the German Research Centre Juelich and
currently maintained by the ZIH at the Technical University of Dresden, is a
well-known performance analysis tool in the HPC community. It consists of
instrumentation and measurement components (VampirTrace), visualization
component (Vampir), and parallelized extension (VampirServer). Vampir
provides a powerful and versatile performance visualization interface [20],
capable of utilizing performance data samples from Scalasca, TAU, and
Paraver to generate intuitive chart-based analysis reports.

Paraver [5], developed by the Barcelona Supercomputing Center and the
Polytechnic University of Catalonia, is a tool for visualizing and analyzing
parallel time tracking files. It studies the effects of short-term scheduling
strategies on multi-programming in distributed memory and MPI architec-
ture computers. Paraver performs performance data collection by adding
functions to the PVM [21] message-passing library and uses the distributed
memory simulator DIMEMAS for event flow analysis.
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Caliper [22], developed by Lawrence Livermore National Laboratory, is
a cross-stack, generic performance analysis framework based on code instru-
mentation. It provides an easy-to-use timer API for application developers
to merge information extracted from APIs across all software layers into a
single context, allowing data analysis and performance enhancement.

Score-P [23], part of the SILC and PRIMA projects, is a collaborative
effort involving several institutions. It provides performance analysis for
other tools in the project, supports code instrumentation and sample-
based post-analysis, and includes high versions of parallel runtimes and
heterogeneous computing support. Score-P prioritizes portability, scalability,
and controllable measurement overhead on HPC systems, encapsulating
measurement data in the CUBE4 [24] format for visualization tools like
Vampir.

PAPI [25], a milestone-level supporting technology in the performance
analysis domain, offers generic interfaces for accessing hardware-provided
precise counters on major processor platforms, providing necessary infor-
mation for cross-platform tuning. PAPI is widely used as a hardware
counter data source by performance analysis tools, providing portability
across different operating systems and architectures. It offers highly cus-
tomizable programmable low-level interfaces and highly automated simple
measurement high-level structures, enabling users to control event detection
range. Additionally, PAPI includes a predefined set of events, allowing
unified tool counting of comparable events on different platforms using this
standardized event set. It provides user callbacks based on counter overflow
and hardware-based SVR4 compatibility analysis, offering infrastructure for
any performance data source independent of the operating system. PAPI
serves as a genuinely portable performance analysis infrastructure for any
architecture equipped with hardware performance counters.

In the field of High-Performance Computing (HPC), in addition to the
tools previously mentioned, there are numerous other powerful performance
analysis support stacks and unique design approaches, such as Periscope [26],
Jumpshot [27], Paradyn [28], and others. These performance engineering
tools provide a theoretical foundation and inspiration for the methods
discussed in this paper. However, due to space constraints, they cannot
be exhaustively listed here. Their presence enriches the tool ecosystem in
the HPC performance analysis domain, offering scientists and developers
a broader range of options and resources to optimize and enhance the
performance of parallel computing applications.
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1.2.2 Limitations

[29] distinguishes three types of performance analysis methods:

1. Measurement: Measuring the performance of the target application
on the actual system provides the most straightforward and intuitive
performance data. Due to its convenience and generality, measurement
is the most commonly used performance analysis method in HPC
systems. Depending on the specific implementation, measurement
techniques can be categorized into manual or automatic code in-
strumentation and interrupt sampling techniques based on hardware
timers. However, since measurement tools run alongside the target
application on the host machine, they inevitably introduce an impact
on the execution process of the target system and application, known as
the observer effect. Some hardware features, such as PMU, can reduce
intrusiveness and runtime overhead during measurement. Nevertheless,
when using software and system features for measurement, careful con-
sideration is required to set the observation scope and sampling interval
to avoid affecting the performance analysis results. As this method
necessitates running the target application on the actual system, it
may become unavailable if the required running conditions cannot be
met.

2. Simulation: This method employs a simplified model of the target
system implemented in software to simulate the behavior of the real
system. In a simulation environment, the behavior of the target
application can be observed at a microscopic time scale, allowing
verification of various system implementations’ impact on the target
application before the actual system is implemented. In the simulation
context, the observer effect present in the measurement method can
be avoided, making it a widely used approach in traditional simple
systems.

3. Analytical: This method applies numerical analysis to the mathemat-
ical model of the system to identify potential performance bottlenecks
of the target application during the development phase. It also pro-
vides a global view of the target system and performance patterns.
Analytical methods are generally faster than simulation methods, but
to discover implicit performance patterns from extensive data, they
require numerous assumptions and experimental verification to identify
the causes of bottlenecks, thus necessitating a certain level of expertise.

The HPC performance tools mentioned earlier, such as Scalasca and
TAU, provide measurement methods based on automatic code instru-
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mentation. This approach offers high generality and does not depend
on specific architectures or supercomputer designs. However, such
methods rely on specific language runtimes and custom compilers, and
their support for different language standards heavily relies on the
specific tool’s implementation. Therefore, for high-performance com-
puting applications implemented in Fortran, it is challenging to ensure
the availability of this method. When using Scalasca’s MPI compiler
and runtime to compile various scientific computing applications, we
encountered language incompatibility issues. Additionally, research on
HPCToolKit has pointed out that code instrumentation may impact
the execution flow of the target application and system, affecting the
accuracy of measurement results and the robustness of the method
itself.
Among the most commonly used simulators in the HPC community
is SimGrid. This method allows for performance simulation of the
target machine, system, and application on any machine, providing
relatively accurate performance evaluation results at a very fast speed.
However, simulation methods require setting different parameters for
different systems, and the simulator code itself requires extensive
development and maintenance, adding complexity to the performance
analysis process.
Commonly used performance analysis methods like Top-Down combine
numerical analysis with measurement. By leveraging performance
data sources such as PMUs and combining them with performance
hierarchical modeling specific to the target system architecture, these
methods can quickly identify potential performance bottlenecks in a
particular architecture and gradually analyze their causes. However,
numerical analysis methods require separate modeling for each system,
and this process is challenging to apply to similar systems with only
minor variations, making them almost non-portable.

1.3 Contributions of This Thesis

In this paper, we propose a novel performance engineering methodology
tailored for HPC systems. The core idea of this new approach is to utilize
black-box analysis to provide independent analysis capabilities from the
source code while leveraging observable features provided by the operating
system to offer flexible, highly customizable, and portable performance
experimentation support.

The contributions of this paper are summarized as follows:
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1. Comprehensive review of state-of-the-art supercomputer designs: The
paper presents a thorough analysis of the performance contributions of
various components in HPC systems, ranging from architectural choices
to software-hardware stacks and code design of scientific computing
applications.

2. Introduction of conventional software engineering approaches for software-
hardware co-design and performance analysis tool designs tailored
for HPC system workloads: The existing design implementations,
application scenarios, operational overheads, and limitations of these
approaches are discussed.

3. Introduction of a methodology employing generic tools to analyze ap-
plication performance bottlenecks: Performance engineers can quickly
identify performance issues using tools like Linux Perf without requiring
an in-depth understanding of the target code.

4. Proposal of methods for modeling CPU-Memory system communi-
cation performance: Standard benchmarks are used to determine if
system configurations lead to I/O bottlenecks in the target application.

5. Development of a cross-platform, cross-application, and cross-processor
architecture generic performance analysis tool using Linux’s native
observability component, eBPF: The goal is to provide a unified,
scalable, and Write Once, Run Everywhere (WORE) performance
analysis component.

6. Implementation of the proposed methodology using eBPF to support
mainstream analysis methods in the HPC community, including code
instrumentation based on USTC and real-time performance sampling
based on hardware counter interrupts: The approach supports both
online real-time analysis and post-analysis.

7. Utilization of eBPF’s powerful dynamic probe technology to ensure
highly controllable runtime overhead during performance event sam-
pling: eBPF can utilize JIT to accelerate the runtime speed of per-
formance analysis logic, enabling broader observation capabilities with
lower overhead compared to other performance sampling techniques.
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8. Integration of performance data sampled by eBPF with performance
visualization tools like Vampir and TAU using performance log conver-
sion tools.

9. Demonstration of the capabilities and potential of the proposed
methodology using Quantum Espresso: The paper analyzes the trade-
offs between costs and performance of this approach.

Overall, our novel performance engineering methodology addresses the
challenges of performance analysis in HPC systems by providing a powerful,
flexible, and portable approach that leverages black-box analysis and observ-
able features of the operating system to optimize application performance.
The paper contributes to advancing performance engineering techniques in
the HPC community and opens new possibilities for efficient performance
analysis and optimization.

1.4 Organization and Synopsis

Following the introduction chapter, the subsequent chapters of this thesis are
organized as follows:

• Chapter 2: Before proposing the novel performance analysis method-
ology, a comprehensive grasp of the elements contributing to ”perfor-
mance” in high-performance computing systems is of paramount im-
portance. This chapter delves into the study of architecture evolution,
design methods, system components, and specific implementations of
HPC systems. Furthermore, it encompasses cutting-edge technologies
employed in HPC. Chapters 1 and 2 jointly form the literature review,
providing an exposition of the design and performance methodologies
of state-of-the-art high-performance computing systems.

• Chapter 3: Understanding the adaptability of parallel computing
programs on the target computing architecture is crucial as the main
source of HPC system performance. This chapter provides a detailed
exposition of our proposed performance analysis method, covering
topics such as software-level hot path analysis, computational kernel
extraction, and dependency chain identification. Our software per-
formance modeling approach will utilize a combination of white-box
and black-box performance sampling methods, aimed at providing

11



architecture and operating system-independent generic performance
analysis methods for exploring and identifying potential application
performance bottlenecks. Additionally, this chapter will conservatively
estimate the implementation cost, runtime overhead, and portability of
the method and compare it with other conventional methods.

Furthermore, scientific computing applications exhibit a clear compute-
I/O loop, where I/O performance significantly impacts their scalability.
Therefore, specialized performance analysis modules are required for
the I/O system and subsystems. This chapter introduces hardware-
level computational kernel benchmarks, I/O benchmarks, and MPI
memory bandwidth modeling to theoretically model the CPU-Memory
subsystem, thereby understanding the performance gap between CPU
and I/O bandwidth. Additionally, we will explore a novel I/O per-
formance analysis method based on eBPF. This method utilizes Linux
kernel probes and instrumented I/O libraries to provide performance
event analysis capabilities for both the operating system-level and high-
level parallel I/O library-level.

• Chapter 4: This chapter presents the initial validation of the proposed
methodology, employing conventional tools and eBPF implementation.
It engages in a comprehensive discussion of the costs and limitations
associated with implementing the methodology using conventional
methods and observability techniques.

• Chapter 5: The thesis culminates with a concise summary of the
findings and outlines future research directions. Acknowledging the
protracted and rigorous development process involved in performance
analysis methodology and tools, along with the necessity for validation
on industrial-grade HPC systems, the study will continue in collabora-
tion with JAIST and BSC to explore the capabilities and potential of
the proposed performance method.
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Figure 1.1: Correlations between CPU transistors and HPC performance.
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Figure 1.2: Operating systems on Top500 HPC systems, system share.

Figure 1.3: Operating system family on Top500 HPC systems, system share.
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Chapter 2

Performance on HPC System

The concept of supercomputers or high-performance computing (HPC) sys-
tems has evolved significantly over time. In the past, ”supercomputers”
referred to systems that surpassed the performance of standard home com-
puters. However, in today’s context, the term ”HPC system” describes com-
puter clusters specifically designed to handle large-scale scientific computing
problems that are beyond the capabilities of general-purpose computers.
These systems distribute tasks across multiple high-performance nodes,
employ domain decomposition, and utilize unique hardware and software
designs to minimize the impact of distributed memory and sparse storage.
As a result, HPC systems excel in certain application workloads, surpassing
mere aggregation of computing power techniques such as grid or distributed
computing. Nevertheless, traditional HPC applications often require a co-
design approach [30], where software and hardware are carefully tailored to
achieve optimal performance on the target HPC system. Moreover, strategies
aimed at improving overall performance in HPC systems by upgrading CPU
performance and increasing the number of computing hardware must consider
factors such as energy efficiency and thermal design. This leads to challenges
in scalability and extensibility compared to distributed computing methods,
which can easily boost overall performance by adding more computing nodes.
Notably, the Folding@home project, supported by BOINC, achieved a peak
performance of 2.5 exaFLOPS in 2020, making it the first project to possess
an Exascale-scale computing network.

Unlike conventional computers, HPC systems require a delicate balance
between performance and power consumption, often necessitating joint hard-
ware and software design for specific application workloads. Understanding
the architectural design principles of HPC systems is crucial for compre-
hending the performance impact of each component. Therefore, this chapter
first reviews representative HPC system architectural designs and analyzes
the historical evolution of HPC systems from an engineering perspective,
considering aspects such as architecture, hardware specifications, and co-
design methods of software and hardware. Subsequently, the discussion
delves into observability techniques and performance engineering methods
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developed for various components of HPC’s software and hardware stack.
Commonly used methodologies and tool implementations are summarized,
and the usage scenarios, scalability, and portability of existing methods are
explored, independently of specific computing architectures and workloads.
Additionally, the potential integration of emerging technologies in the design
of future supercomputers is investigated, analyzing progress in vector pro-
cessors, parallel I/O, scheduling algorithms, and queuing simulators. This
exploration aims to provide insights for the development of more adaptive,
efficient, and robust performance analysis methods.

2.1 Evolution of Supercomputers : A Story

The evolution of HPC system architecture is closely tied to changes in
CPU microarchitecture design. Initially, HPC systems used single powerful
vector processors for SIMD arithmetic. Subsequently, with the acceptance of
SMP, they transitioned to NUMA architectures and high-speed interconnect
networks supporting large-scale parallel computing clusters. This paradigm
shift transformed supercomputers from single-processor systems to computer
clusters based on symmetric multiprocessing (SMP) with UMA architecture.
Complex computational tasks that cannot be handled by a single computing
node are now decomposed into several sub-tasks and scheduled and dis-
tributed across multiple computing nodes using batch processing systems.
As scientific computing tasks become exponentially more complex and the
demand for processing more data in shorter time increases, the design of
high-performance computing systems also continuously evolves.

The concept of large-scale parallel computing, which is prevalent in
modern HPC clusters, originated from the ILLIAC IV supercomputer cluster
in 1975. This system was the first to use multiple CPUs and a large number
of floating-point units (FPUs) for collaborative computation. However,
limitations in symmetric multiprocessing (SMP) technology and the high
cost of multi-CPU computing restricted its application.

In 1976, the CRAY-1 was introduced, offering a single-processor per-
formance of 133 MFLOPS and becoming one of the most successful com-
mercial supercomputers in history. Although reservations initially existed
regarding SMP-based supercomputer systems, a significant shift occurred
with the introduction of the CRAY-X-MP by Cray in 1982. This machine,
utilizing four processors to achieve a peak performance of 800 MFLOPS,
was considered the fastest supercomputer from 1983 to 1985, driving the
transition from single-vector processor designs to large-scale parallel clusters
based on shared-memory models.
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Equally important was the LINKS-1 assembled at Osaka University
in 1982. It utilized 257 Zilog Z8001 control processors and 257 iAPX
86/20 floating-point processors, ranking among the most powerful computer
clusters worldwide until 1984.

In the 1990s, the maturity of high-speed interconnect technology led
to the emergence of HPC clusters equipped with thousands of proces-
sors, shared-memory systems, custom operating system kernels, and fast
interconnects between nodes. Until around 2005, HPC clusters commonly
adopted CPU architectures based on single cores, with each CPU-memory
unit (CMU) typically equipped with two processor slots. As the benefits
of Dennard scaling diminished, CPU vendors shifted towards multi-core
and hyper-threading technologies to continue improving the performance of
individual CPUs. By 2023, all supercomputing systems listed on the HPC
TOP500 adopted multi-core processors.

Although processors based on existing technologies face various physical
limitations in maintaining performance parameters such as clock frequency
and instructions per cycle (IPC), the progress of supercomputers has not
stalled. From 2000 to 2016, there was a clear correlation between peak HPC
computing capability and the number of transistors on CPUs. However, after
2016, these two factors began to decouple, and the impact of the number
of CPU transistors on peak HPC performance gradually weakened. Factors
such as thermal design, parallel I/O, and scientific computing software design
have become critical determinants of HPC system peak performance.

In the face of these challenges, chip manufacturers have innovatively
explored alternative paths to ensure continuous performance improvements
for users. However, this diversity of technologies also introduced additional
constraints in system design, increasing the cost of achieving efficient cluster
computing. Moreover, due to the unique instruction set architecture (ISA),
compilers, and runtimes of HPC systems, as well as the necessity for
co-designing scientific computing code, the design of scientific computing
applications has become increasingly complex. Nonetheless, we believe that
evaluating HPC system performance should not be limited to summarizing
the theoretical capabilities of its computing hardware alone. Instead, soft-
ware performance engineering should be incorporated into the considerations
of HPC system design, taking into account the computational loads of appli-
cations running on the system. This viewpoint was recognized in the design
of the BlueGene/L supercomputer system by IBM and Lawrence Livermore
National Laboratory (LLNL) in 2001, as well as in the development of the
world’s first pre-exascale supercomputer Fugaku by RIKEN in 2020. The
effectiveness of this approach was further affirmed by the 2021 development
of a pre-exascale supercomputing cluster by AMD and ORNL, making it the
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world’s first exascale-level supercomputer.

2.2 Architecture

High-Performance Computing (HPC) system architecture involves the or-
ganization, functionalities, and Instruction Set Architecture (ISA) of its
components, as well as their interactions with workloads. Factors such as
programming methods, parallel programming paradigms, and memory access
patterns determined by the architecture play a crucial role in the disparity
between the potential peak performance and the actual performance of HPC
systems.

Traditionally, the components of HPC systems were relatively homoge-
neous, but there have been changes in recent years. With an increasing
demand for specific computing tasks, the use of domain-specific accelerators
(such as Field-Programmable Gate Arrays - FPGAs) in general HPC systems
has decreased. Instead, there is a growing preference for architectures that
support Single Instruction Multiple Data (SIMD) operations, such as tensor-
based processors, General-Purpose Graphics Processing Units (GPGPUs),
and variable-length vector extensions. These architectures enable heteroge-
neous computing, utilizing offload techniques to dynamically allocate tasks
with varying levels of vectorization to CPUs and heterogeneous computing
hardware, allowing multiple processors with different microarchitectures and
implementations to simultaneously execute different tasks.

With the rapid advancement of Large Language Models (LLMs), tra-
ditional dual-GPU AI servers or small-scale distributed computing using
frameworks like Horovod [31] or DeepSpeed [32] are becoming insufficient to
meet the massive computational and memory requirements of these models.
Furthermore, servers running distributed training runtimes often lack high-
speed interconnects, leading to inefficient inter-node I/O and burst I/O.
Therefore, I/O-intensive tasks that require significant memory usage or mem-
ory swapping, such as training large neural network models like ChatGPT,
may present future challenges for traditional distributed systems. Compared
to distributed computing, HPC systems offer more efficient parallel I/O
abstractions, a unified memory model among nodes, and a wide range of
heterogeneous computing resources, making them well-suited for resource-
intensive tasks. However, facing the increasing diversity and complexity of
I/O loads, designing efficient I/O systems to cope with the demands of data
explosion poses significant challenges for HPC system architecture design.
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2.2.1 CPU Architecture

As the core of any general computing architecture, the CPU is primarily
responsible for executing the assigned workloads. The most direct approach
to creating high-performance supercomputer clusters is to have processors
with higher frequencies. Following this trend, HPC systems use enterprise-
grade CPUs specially designed for large-scale parallel performance, such as
Intel Xeon, AMD EYPC, and other product lines, achieving performance,
IPC, cross-node scalability, PCIe channel count, and support for specialized
high-speed interconnect networks that ordinary CPUs find challenging to
match.

In the 1990s, chip manufacturers adopted Dennard scaling technology,
which involved reducing the size of transistors to achieve shorter switching
times, resulting in up to 40% increase in single-core performance with each
new generation of processors. This increase in IPC allowed software to run
faster.

However, the linear relationship between CPU dynamic power and
frequency led to a significant increase in CPU power consumption with
increasing frequency. As transistors needed to be continuously scaled down
for higher frequencies, the leakage current effect of transistors became more
pronounced. This effect raised the junction temperature of transistors, poten-
tially causing thermal issues. Eventually, as computing platforms approached
the power limits, frequency scaling ended its decades-long exponential growth
in 2006, remaining at the threshold of 5 GHz.

Since then, chip manufacturers have explored integrating more functional
units, register sets, caches, and other resources onto processors to continue
improving single-core performance. In response to the need for increased
performance, chip manufacturers also turned to designing multi-core proces-
sors. Today, almost all consumer computers, smartphones, and even smart
devices are equipped with processors based on multi-core architectures. In
data centers, supercomputing centers, and other high-performance comput-
ing applications, a single CPU-Memory system can contain multiple CPU
sockets, each with hundreds of cores.

The performance gain from using a multi-core architecture can only be
seen as a palliative measure after the end of Dennard scaling. Due to the limi-
tations of current processes, the power density of today’s processors increases
with each generation, making it impossible to supply all components on the
processors with the rated voltage to maintain safe thermal design power. This
phenomenon results in the presence of undervolted computational units in
the processor, potentially preventing the entire CPU from achieving its rated
performance. Given these constraints, Hennessy and Patterson estimate the
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performance growth rate of single-core processors under existing processes to
be approximately 3% per year [33]. Compared to the 50% annual growth rate
during the Dennard scaling era, the performance compensation provided by
multi-core, multi-threading, and other technologies falls short. Therefore,
exploring new semiconductor manufacturing processes or discovering the
potential of heterogeneous computing to compensate for CPU performance
shortcomings is essential for elevating HPC system performance to new levels.

2.2.2 I/O Architecture

To alleviate the complexity of the I/O system for software developers and
hardware systems, while also mitigating the difficulty in software and hard-
ware system maintenance, the I/O system is typically abstracted into several
levels. Applications utilize the high-level abstraction interfaces provided by
the I/O system to issue requests to large-scale storage infrastructure and
file systems. These requests constitute an I/O request path through various
components of the I/O system, a pathway referred to as the I/O stack.

Traditionally, applications directly use file abstractions provided by the
operating system, such as generating I/O requests via the POSIX standard
interface and conveying these requests to the underlying file system. How-
ever, the direct employment of POSIX in scientific computing results in inef-
ficient access due to constraints such as consistency semantics requirements.
Conventional local file systems also fall short in meeting the demand for
large-scale storage devices and parallel access.

In response, scientific computing applications often utilize advanced I/O
libraries such as MPI-IO [34] rather than the POSIX standard interface to
initiate I/O requests to parallel file systems. These systems, used in high-
performance computing (HPC) requiring large-scale parallelism and multiple
tasks reading and writing from shared data simultaneously, are referred to as
parallel I/O. Distinguished from the I/O stack for desktop computers, parallel
I/O boasts higher storage capacity support, weak consistency semantics for
parallel file access, advanced parallel I/O abstraction interfaces, and support
for underlying parallel file systems.

One simple approach to implementing parallel I/O is allocating a separate
file to each task, such as the checkpoint of neural network training or the
progress archive used by VASP for interrupted restarts. In these instances,
the data belonging to each task is easily distinguishable. As the data is not
stored across nodes, it is regarded as parallel task local I/O.

A more intuitive approach is for part or all tasks within multiple tasks to
hold a local offset pointer to a shared file and execute write or read operations
on the same shared file. Two possible scenarios arise in this approach. In the
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first, each task accesses different partitions of the same file, such as HDF5-
based categorized data. Here, there are no access conflicts between tasks
and no need to handle consistency issues; only the file abstraction allowing
partitioned access provided by the advanced I/O library is necessary. In the
second scenario, different tasks may concurrently access the same position in
the file. Here, the parallel I/O system needs to provide support at different
software levels.

The third method, collective I/O, is a two-phase I/O method. By
aggregating I/O requests from different tasks and serving these aggregated
requests, this method reduces the I/O burden of large span discontinuous
sections of multiple processes accessing the same file. Compared with the
second method, collective I/O also redistributes the cost of inter-process
communication to a lesser degree, hence significantly improving I/O perfor-
mance.

Given the large volume, parallel access, and heterogeneity characterizing
the I/O load of scientific computing applications [6] [4], the I/O system must
enhance its bandwidth and Input/Output Operations Per Second (IOPS) to
accommodate these traits of application load. Bandwidth refers to the data
transfer rate achievable on a given transmission medium or path per unit of
time, while IOPS is the number of I/O operations that can be performed in
one second. Thus, the bandwidth of the parallel I/O system is the maximum
stable read and write speed that the system can provide under full load, with
the number of reads and writes being IOPs/R and IOPs/W, respectively.

However, a single computing node in current HPC architectures usually
lacks high I/O capability. The I/O system often needs to be partitioned
according to the application load and I/O access patterns, with the I/O
efficiency of the task itself enhanced by accessing the I/O function area
through a large number of nodes [35]. This partitioning can be achieved
through special settings in different parts of the I/O stack.

Given the need for different computing systems to efficiently access
parallel file systems without redesigning the I/O stack, parallel I/O sys-
tems generally possess robust reconfigurability and scalability. Scientific
application developers merely need to use the file abstraction provided by
the advanced I/O library without considering the specific implementation
of the I/O system. The I/O stack can be divided into three layers: the
computing system side, the I/O system side, and the I/O subsystem side.
The computing system encompasses computing nodes, collective I/O dedi-
cated I/O nodes, and cross-node interconnection network systems. The I/O
system includes parallel file systems and storage infrastructure, defining the
file abstraction interface used by the workloads running on the computing
system. The I/O subsystem includes middleware used during the execution of
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I/O requests, such as the peripheral network system of the computing system
or the local non-parallel file system used for login nodes. I/O optimization
for application load usually only occurs at the I/O layer.

2.2.3 Memory Architecture

HPC systems typically employ a shared memory multiprocessor architecture,
where all processors can directly access the system’s shared memory address
space through high-speed interconnects between the processors and memory
[3]. In this architecture, any processor can access or modify data created or
used by other processors. Based on the locality of process and thread control
instances, memory access in HPC systems can be categorized into two forms.

The first form is a shared memory system, where a single operating
system runs on top of multi-core hardware, and the memory hardware is
directly connected to all processing units and main memory, sharing the
address space with all physical cores in the system. Each processing unit
can access the entire shared memory address space. Processors employ
inter-process communication (IPC) and memory operations through the
shared memory model, while programmers ensure memory access compliance
using programming models and interfaces provided by the operating system.
However, the behavior of different processor cores accessing the same memory
space in the shared memory model necessitates that the memory interconnect
network provide cache coherence semantics to avoid memory access conflicts.

Cache coherence semantics ensure that modifications to data in one cache
are reflected in the copy of the global data held in all potential copies of
caches. It encompasses two fundamental requirements:

• Write propagation: Any modification to cached data must be
broadcast to equivalent caches.

• Transaction serialization: All processors must observe reads and
writes to a single memory location in the same order.

The earliest cache coherence protocol, the Modified Exclusive Shared
Invalid (MESI) protocol, also known as snooping cache, was introduced in
1983. This approach utilizes cache controllers to monitor data accesses on the
bus and employs three reserve bits on cache lines to record cache states. Each
cache line can be in one of the following states: Modified (the local processor
has updated the cached data), Exclusive, Shared, or Invalid. When a data
block is first loaded into the cache, it is marked as Exclusive. In the event of
a cache read miss, the read request is broadcasted on the bus and intercepted
by the cache controller. If the address is cached and the cache line is in the
Modified state, it is set to Exclusive and sent to the requester. In the case of
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a cache write miss, the cache snooping element can intercept the request and
invalidate any copies held by other processor cores. If the cache is dirty and
shared and there are requests for that memory copy on the bus, the dirty
snooping element provides data to the requester. The cache system ignores
the request when the marked address is invalid. The new cache is marked
as dirty, valid, and non-shared, and it takes responsibility for that address.
This method updates or invalidates the cache by detecting processor write
requests to memory and checking if the same memory block is cached, thus
avoiding consistency issues.

The approach to building parallel programs for large-scale parallel ma-
chines is known as the parallel programming paradigm. Based on the shared
memory model, the simplest form of parallel programming paradigm is to
clone multiple sub-threads within the same resource pool or address space
using a single thread, with communication between threads achieved through
shared variables. In this model, Inter-Process Communication (IPC) is
implicit, and the memory model provides efficient utilization of data locality
and instruction locality, meaning that program developers do not need to
concern themselves with the layout of data in memory space. While this
programming model simplifies the development of scientific applications,
hardware can only perceive memory-to-processor communication at runtime
as there are no annotations in the code indicating memory access patterns.
This poses significant challenges to the parallel runtime [36].

Based on the relative time at which multiple processors in the shared
memory model access shared memory blocks, HPC memory architectures
can be categorized into two types: Uniform Memory Access (UMA) and
Non-Uniform Memory Access (NUMA).

In a UMA architecture based on Symmetric Multiprocessor (SMP),
each memory block can be accessed at the same time. Under the SMP
architecture, all processor cores are typically controlled by a single operating
system kernel, and the bus multiplexing of memory units is provided by a bus
controller or crossbar switch and other interconnect networks. Theoretically,
the time for memory access requests is independent of the processor issuing
the request or the memory chip containing the shared memory block. How-
ever, contention between multiple processors for a single memory block leads
to delays in subsequent access requests to the same memory block. This
means that for a large amount of memory, the bandwidth bottleneck of a
single memory storage unit will affect the overall memory performance of the
system, thereby impacting system scalability. Nonetheless, all processors still
have equal access opportunities. SMP became the mainstream architecture
for HPC system design in the 1980s, replacing single-processor architectures
that used a single powerful vector processor. Pioneering HPC systems using
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SMP included Sequent Balance 8000 and CRAY X-MP. Nowadays, SMP
is used in most data center servers, HPC clusters, and home computers
utilizing multi-core architecture chips. In particular, in HPC systems, SMP
is often used as the memory architecture for individual CPU-Memory units
to simplify the programming model on each node.

NUMA architecture emerged in the 1990s as an extension of SMP
architecture. Unlike UMA, NUMA does not view memory as a single
shared address space but comprises multiple CPU-Memory units forming an
extended memory space. This architecture connects independent memory
systems controlled by multiple operating system kernels using high-speed
interconnect networks, forming a transparent unified memory unit for pro-
grams. In NUMA, memory access time depends on the spatial distribution
of memory hardware relative to processors. NUMA does not guarantee equal
access time for processors to all memory blocks like SMP does. However, it
can leverage the reference locality in memory by providing each processor
with an independent local cache to address the bottleneck issue of UMA
and avoid performance losses when multiple processors are waiting for the
same memory block. Therefore, NUMA improves the scalability of HPC
systems by allowing more processor cores to be placed within the same
shared memory system. However, due to the unevenness of memory access
time, programmers need to pay attention to data locality to maximize cache
utilization and exploit the advantages of the computing system. Cache-
coherent NUMA (ccNUMA) is commonly used as a tightly-coupled shared
memory solution across nodes in modern HPC systems, utilizing cache
controllers to handle inter-processor communication and ensuring consistency
among multiple memory copies of shared data.

The second type of memory architecture in HPC systems is the dis-
tributed memory system, and a computer employing this architecture is
referred to as a Distributed Memory Machine (DMM). In this architecture,
each CPU-Memory unit can only access its local memory. If a node requires
data that does not exist in its local memory, it needs to communicate
through a high-speed interconnect network that connects all nodes. The
distributed memory machine decouples the network and nodes in system
design by utilizing an improved interconnect network, making cross-node
communication transparent to the host processors and executing local and
remote memory communication in the background.

Due to the loosely coupled nature of CPU-Memory units in distributed
memory machines, the complexity of system design and assembly is lower.
However, a key challenge in distributed memory programming is data layout
in memory. Programmers must decompose the computational data for a
specified scientific problem into processing units with exclusive memory
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addresses. They must also explicitly specify communication between pro-
cessors, ensuring that the requester and provider understand the data types,
message formats, lengths, and other parameters of shared data. Another
programming challenge in DMM is minimizing the number of cross-node
data requests. Depending on the problem being solved, data can be statically
distributed across memory systems, avoiding cross-node data transfers during
runtime. Data can also be moved across nodes, with on-demand migration
or pre-push to requesting nodes. With statically distributed computation,
only edge-based data changes need to be reported to other nodes, resulting in
less complexity in cross-node I/O. However, it is more difficult to implement.
If dynamic data distribution is used, data distribution needs to be designed
based on the topology of the HPC system to minimize memory latency.

2.2.4 Interconnection Architecture

In large-scale parallel computing systems with a distributed memory model,
interconnect networks play a crucial role in enabling data sharing and com-
munication across nodes. These networks can be broadly categorized into two
types: direct interconnect and indirect interconnect. In direct interconnects,
nodes have direct physical connections, enabling data transmission between
neighboring nodes. On the other hand, indirect interconnects rely on multiple
intermediate switching elements (SE) to relay data between shared memory
blocks. Crossbar switches, buses, and multi-stage interconnect networks
(MINs) are examples of indirect networks.

Direct interconnect networks, also known as point-to-point networks,
exhibit a symmetric nature, meaning that their discovered topology is
isomorphic from any node. This symmetry simplifies their design and
implementation as they do not require relay nodes. Moreover, direct networks
facilitate modular construction, expansion, and integration into computing
clusters. Their scalability is not significantly impacted, resulting in strong
scalability and the ability to construct large networks while maintaining
structural flatness. The inherent symmetry of direct networks also makes
designing efficient routing and switching algorithms more straightforward
compared to indirect networks. Furthermore, the programming model for
direct networks is simpler, enabling programmers to better utilize localities
in network traffic and reduce complexity arising from data distribution.

Another critical aspect in designing interconnect networks is selecting
the appropriate network topology, which refers to the arrangement of nodes
and connection media. The chosen topology directly influences routing and
switching strategies, as well as traffic control methods. For scientific com-
puting applications that heavily rely on exchanging and synchronizing data
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through the interconnect network, the network topology can significantly
impact data locality, leading to changes in network latency and throughput,
thereby affecting overall network bandwidth. Thus, an efficient network
topology is crucial for maximizing the performance of an HPC system.

Various network topologies can be employed in HPC applications, includ-
ing single-router (crossbar switch topology), ring topology, mesh topology,
torus topology, dragonfly topology [37], HyperX topology [38], among others.
Notably, the Torus Fusion(Tofu) and Dragonfly topologies are commonly
used in systems such as Fugaku and Frontier, respectively. Additionally,
some topologies, like the Fat-Tree topology, can be configured with specific
parameters to achieve unified link bandwidth and provide Fat-Tree network
capabilities. However, modern HPC systems tend to deviate from standard
Fat-Tree networks due to the pyramid-shaped architecture, which imposes
increasingly higher network performance requirements as we move up the
hierarchy.

Modern HPC network architectures often bypass higher levels of the tree
to achieve lower network latency and a more flattened network structure while
still maintaining a relatively consistent bandwidth distribution among nodes.
These considerations are critical for designing efficient and high-performance
interconnect networks in today’s HPC environments.

2.3 Observability in Hardware

2.3.1 Performance Monitor Units

Performance Monitoring Units (PMUs) are a set of control registers and
hardware counters reserved by the CPU for measuring and recording micro-
architectural-level statistical data, providing performance infrastructure. Us-
ing hardware event sources provided by PMUs requires programming the
control registers to capture specific events and count them. By further
configuring the control registers, features such as generating interrupts when
counters hit, collecting data only for user-mode processes or kernel-mode
processes can be set. Although CPU vendors like Arm, Intel, and AMD
have implemented some form of PMU features and provided corresponding
support on their platforms, the types and quantities of measurable events
in CPUs based on different micro-architectures and instruction set architec-
tures, including the number of PMUs themselves, vary. The most common
CPU measurement metrics include IPC (Instructions Per Cycle), cache hit
rates at different levels, branch prediction success rate, etc.

Since PMUs belong to the hardware’s low-level features, to access these
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hardware counters more easily, PMUs need to be programmed through
software infrastructure to set the performance data to be monitored and
control the start and stop of data collection. Additionally, PMU support
software needs to read and aggregate values from the hardware counters
to obtain performance sampling data. Several tools and system interfaces
support collecting statistics from PMUs, including PAPI and eBPF men-
tioned in Chapter 1, as well as the Linux Perf tool. These tools use system
calls to directly access the hardware counters of PMUs, and through the
context switch during the system call process, the hardware counters can
be easily saved and restored, enabling thread-level performance monitoring.
This section mainly introduces the methods for obtaining PMU performance
counter data using the Linux Perf interface.

The Perf tool can collect performance records for each thread, each
process, and the entire CPU. Linux Perf provides various supports for PMUs,
including raw counting, event-based sampling, fixed-rate sampling, and
instruction-based sampling (only for AMD64). Taking event-based sampling
as an example, the Perf events function maintains a 64-bit virtual counter.
When this event counter overflows, it indicates that the specified event has
occurred a certain number of times, reaching the pre-defined threshold. The
kernel then records information about the program’s running state. This
collection of information is referred to as a sample, and it includes the user-
specified sampling event and an instruction pointer indicating the position
where the timer interrupt was generated. Users can specify more events
than actual counters, and in this case, the kernel will use time multiplexing
(usually with a switching frequency of 100 or 1000 Hz) to give each event a
chance to be sampled by the PMU. Table 2.1 and Figure 2.1 list the supported
sampling events and their output results on Intel Xeon Platinum 8352Y
with Perf. Since the target machine is a virtual machine, PMUs cannot
be virtualized, and some events are shown as unsupported. However, HPC
systems typically do not use virtualized environments, so this issue does not
exist.

Nevertheless, event-based counter interrupt sampling is not accurate on
modern processor architectures because the stored instruction pointer in the
sample actually points to the interrupt handler of the program, not the
position where the counter overflow occurred (i.e., the end of the sampling
period). This does not pose an issue when the program is in a paused state,
but in cases with jump instructions, the distance between these two points
can be as large as several tens of instructions. Therefore, interpreting such
reports requires combining the program’s running conditions and experience.
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Event Description
msr/pperf/ Kernel PMU event
msr/smi/ Kernel PMU event
msr/tsc/ Kernel PMU event
ref-cycles OR cpu/ref-cycles/ Kernel PMU event
rNNN Raw hardware event descriptor
cpu/t1=v1[,t2=v2,t3 ...]/modifier Raw hardware event descriptor
L1-dcache-load-misses Hardware cache event
L1-dcache-loads Hardware cache event
L1-dcache-stores Hardware cache event
L1-icache-load-misses Hardware cache event
branch-load-misses Hardware cache event
branch-loads Hardware cache event
dTLB-load-misses Hardware cache event
dTLB-loads Hardware cache event
dTLB-store-misses Hardware cache event
dTLB-stores Hardware cache event
iTLB-load-misses Hardware cache event
mem:¡addr¿[/len][:access] Hardware breakpoint

Table 2.1: List of Events and Descriptions

2.3.2 Top-Down Analysis

The Top-Down approach [39] is a performance optimization method aimed at
accurately and rapidly identifying performance bottlenecks. It guides users to
focus on the most critical performance issues during the optimization phase
and helps them identify and understand the causes of performance problems
through a hierarchical and progressive approach. The Top-Down approach is
designed to be cost-effective, accurate, and low runtime overhead within the
entire application development process and resource constraints. It has been
well-controlled and widely recognized in the industry, with industrial-grade
implementations such as Intel VTune.

The Top-Down method first classifies CPU execution time at a high
level. In this step, the analysis tool marks areas that are worth further
investigation. Then, users can apply the Top-Down decomposition on the
interested hotspot functions until specific performance problems are identi-
fied or at least a subset of potential investigation questions is determined.
This method categorizes performance issues originating from the CPU into
four fundamental categories: Retiring, Bad Speculation, Frontend Bound,
and Backend Bound. Based on these classifications, users can delve into
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Figure 2.1: Output of Perf.

these specific issues while disregarding problems unrelated to the hotspots.

2.3.2.1 Retiring

Retiring is a crucial metric in the Top-Down approach, reflecting the
percentage of successfully executed and retired instructions. In modern
processors, out-of-order execution is adopted, allowing instructions to be
dynamically scheduled for execution based on data dependencies and exe-
cutability, rather than following the program order sequentially. This design
enhances instruction-level parallelism, fully utilizing processor resources, and
improving program execution efficiency.

Ideally, all issued instructions would successfully retire, indicating that
the processor fully utilizes its performance potential, achieving the maximum
IPC (Instructions Per Cycle). For example, in a four-wide processor, if four
instructions execute per cycle, achieving 100% Retiring means an IPC of 4.

However, Retiring is not the only performance factor to consider. Some
instructions, like Floating Point Assists, can lead to performance degrada-
tion. Therefore, when measuring Retiring, it may be necessary to exclude
such instructions that adversely affect performance to obtain more accurate
performance analysis results.

Furthermore, Retiring also helps determine potential for optimization.
For instance, if the Retiring value is high but the performance has not
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reached the desired level, code vectorization can be considered to enhance
performance. Vectorization allows multiple operations to be completed
simultaneously, increasing IPC and overall performance.

2.3.2.2 Bad Speculation

Bad Speculation is another key metric in the Top-Down approach, measuring
performance losses caused by incorrect predictions. Modern processors
employ branch predictors to anticipate the execution path of branch instruc-
tions in advance to enhance instruction-level parallelism. However, branch
predictors are not always 100% accurate, leading to Bad Speculation. Bad
Speculation can be understood in two parts:

1. Instructions not retired due to prediction errors: When the
branch predictor inaccurately predicts the execution path of a branch,
subsequent instructions are mistakenly dispatched to the processor’s
execution units, but these instructions will not ultimately retire suc-
cessfully. These mispredicted instructions are canceled during actual
execution, resulting in performance loss. This part of Bad Specula-
tion reflects the accuracy of branch prediction and its impact on the
execution of branch instructions.

2. Performance loss due to recovery from prediction errors: When
the branch predictor inaccurately predicts the execution path of a
branch, subsequent instructions have already been dispatched to the
processor’s execution units. However, due to the branch prediction
error, recovery operations are required. These recovery operations
typically involve clearing the erroneously predicted instructions from
the execution units and re-executing the correct instructions. These
recovery operations consume processor resources and lead to perfor-
mance degradation. This part of Bad Speculation reflects the impact
of branch prediction errors on performance.

The ratio of Bad Speculation can reflect the accuracy of the branch pre-
dictor. A higher ratio of Bad Speculation suggests that the branch predictor
needs improvement. Additionally, the presence of Bad Speculation can affect
the accuracy of other metrics. Therefore, when analyzing other metrics,
addressing Bad Speculation should be given priority. For example, if the
main performance bottleneck is caused by Bad Speculation, the observation
results of other metrics might be overshadowed by Bad Speculation.

In the Top-Down approach, Bad Speculation is further divided into two
subcategories: Branch Misspredict and Machine Clears.

1. Branch Misspredict: This subcategory reflects performance losses
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caused by branch prediction errors. When the branch predictor inaccu-
rately predicts the execution path of a branch, subsequent instructions
are affected, leading to performance degradation.

2. Machine Clears: This subcategory reflects performance losses caused
by other errors, such as those resulting from erroneous data predictions.
This categorization helps pinpoint the issues more accurately and
enables more effective performance optimization.

2.3.2.3 Frontend Bound

Frontend Bound is used to reflect performance bottlenecks in the processor’s
frontend. The frontend is the first stage of instruction execution in the pro-
cessor, including operations such as branch prediction, instruction fetching,
decoding, and transformation into micro-operations. In modern processors,
the frontend is a critical component that affects the overall performance of
the processor.

Frontend Bound mainly focuses on whether the frontend can supply
enough bandwidth to meet the needs of the backend. When the frontend
cannot provide a sufficient number of micro-operations to the backend in a
timely manner, it may result in idle execution units in the backend, leading
to performance loss. For example, if the branch predictor cannot accurately
predict the execution path of branch instructions, causing delays in fetching
and decoding subsequent instructions, the backend execution units may not
have enough instructions to execute, resulting in stalls.

Frontend Bound’s performance impact is also related to the program’s
branch density. In branch-intensive programs, the frontend may become a
performance bottleneck, as the processor needs to frequently predict and han-
dle branch instructions. In such cases, optimizing the frontend’s performance
can improve overall performance by fully utilizing the processor’s execution
resources and enhancing instruction-level parallelism.

In the Top-Down approach, Frontend Bound is further divided into two
subcategories: Frontend Latency Bound and Frontend Bandwidth Bound.

1. Frontend Latency Bound: This subcategory reflects performance
bottlenecks caused by frontend delays. For example, if the prediction
latency of branch instructions is high, causing delays in fetching and
decoding subsequent instructions, these delayed instructions may not
be delivered to the backend execution units in time, resulting in
performance loss.

2. Frontend Bandwidth Bound: This subcategory reflects perfor-
mance bottlenecks caused by frontend bandwidth limitations. For
example, if the frontend’s bandwidth cannot satisfy the demands of the
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backend execution units, the backend execution units may experience
stalls, resulting in performance loss.

When conducting performance optimization, measures can be taken to
improve the frontend’s performance with respect to Frontend Bound. For
example, improving the accuracy of the branch predictor, optimizing the
instruction cache, and enhancing frontend bandwidth can be considered.
By optimizing Frontend Bound, the processor’s execution resources can be
fully utilized, enhancing instruction-level parallelism, and improving overall
program performance.

2.3.2.4 Backend Bound

Backend Bound is used to reflect performance bottlenecks in the processor’s
backend. The backend is the subsequent stage of instruction execution in
the processor, including instruction execution and retirement. In modern
processors, the backend typically consists of multiple execution units that
can execute multiple micro-operations in parallel.

Backend Bound primarily focuses on whether backend resources are
sufficient to meet the demands of instruction execution. When backend
resources are insufficient to execute current instructions, it may lead to delays
or blockages in instruction execution, resulting in performance loss. For
example, if the backend execution units cannot satisfy all instructions that
need to be executed, some instructions may wait in the backend, leading to
idle backend resources.

Backend Bound is further divided into two subcategories: Memory Bound
and Core Bound.

1. Memory Bound: This subcategory reflects performance bottlenecks
caused by limitations in the memory subsystem. The memory sub-
system includes various levels of cache and main memory. When the
processor needs to frequently fetch data from memory, it may lead to
waits for data in the backend execution units, resulting in performance
loss. For example, if the execution of an application is mainly limited
by memory access latency, it may be classified as Memory Bound.

2. Core Bound: This subcategory reflects performance bottlenecks
caused by limitations in the core resources. Core resources include
execution units, multipliers, dividers, etc. When the processor needs
to perform complex computational operations, it may lead to busy
backend execution units or partially idle execution units, resulting
in performance loss. For example, if the execution of an application
is mainly limited by complex computational operations, it may be

32



classified as Core Bound.

By analyzing Backend Bound, it is possible to understand the utilization
of backend resources and identify the location of performance bottlenecks.
For different Backend Bound situations, different optimization measures can
be taken. For example, for Memory Bound, optimizing memory access
patterns to reduce memory latency may be attempted. For Core Bound,
optimizing computational operations to improve the utilization of execution
units may be considered. By optimizing Backend Bound, the efficiency
of backend resources can be improved, thus enhancing overall program
performance.

2.3.3 I/O Tracing Techniques

In conventional software performance engineering, the analysis of the I/O
system can be categorized into the following three types based on the
sampling hierarchy of performance events:

1. Analysis based on monitoring tools: By utilizing monitoring tools such
as iostat, real-time metrics such as I/O bandwidth, IOPS, and response
time can be obtained, enabling the evaluation of an application’s I/O
performance.

2. Analysis based on tracing tools: Tracing tools like strace and DTrace
are employed to capture the file access behavior of applications, allow-
ing for the analysis of I/O patterns and performance bottlenecks.

3. Analysis based on file system: Gathering statistical information about
the file system, such as file sizes, the number of files, and space
utilization, provides insights into the file system’s performance and
structure, facilitating I/O optimization.

However, the I/O analysis tools used in conventional software engi-
neering are inadequate in supporting I/O infrastructures for large-scale
parallel computing. Therefore, specialized parallel I/O analysis tools, such
as Darshan [40], have been designed specifically for large-scale scientific
computing applications to support advanced I/O libraries, parallel I/O file
formats, and parallel file systems. Darshan can capture an application’s
file access behavior and record key characteristics such as access patterns,
access sizes, and the timing of I/O operations. Compared to traditional
profiling methods, parallel I/O analysis tools accurately capture memory
access patterns of large-scale scientific computing applications, ensuring a
comprehensive understanding of parallel I/O behavior under the influence
of advanced libraries or file systems, thus revealing performance bottlenecks
and optimization opportunities.
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2.4 Identify Software Activities

2.4.1 Source Code Inter-positioning

Code instrumentation is a common method used to understand the behavior
of target functions or code segments at runtime. Depending on the perfor-
mance analysis requirements, users inject probe code into the entry points of
target functions or attach it to the memory addresses of target code segments.
This allows pre-defined sampling functions to be executed when the target
code starts, enabling the observation of behaviors such as the number of calls
and execution times of the target function. Based on whether source code
modifications are required, code instrumentation can be classified into the
following two types:

1. Static instrumentation: Static instrumentation involves users wrapping
the target function with special functions within the observation scope
of the source code. In the context of performance engineering integrated
into CI/CD pipelines, programmers often use static instrumentation
combined with conditional compilation to minimize the runtime over-
head introduced by probe code. This approach also allows for precise
event collection and reduces difficulties in analysis caused by data
explosion.

2. Dynamic instrumentation: In contrast to static instrumentation, dy-
namic instrumentation achieves runtime function interception by at-
taching sampling code to the memory addresses of target functions.
Dynamic instrumentation is essentially a black-box method, as per-
formance engineers do not require access to the source code, but
they need to have at least the ability to debug the memory address
distribution of the database or target functions. However, the lack
of portability in dynamic instrumentation arises from changes in the
memory addresses of the observed target functions during application
upgrades or refactoring.

Probe technology is implemented by various tools, and although they
are based on different underlying mechanisms, they generally offer similar
observation capabilities. Some common implementation methods are:

• LLVM Pass: LLVM Pass is a widely used code instrumentation
technique that allows the insertion of machine-independent, portable
target code while traversing LLVM Intermediate Representation (IR).
Probe technology is one application of LLVM Pass and is relatively
straightforward for detecting branch instructions and loop bodies.
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• SystemTap/DTrace/eBPF: Operating system kernels typically pro-
vide some degree of observability technology. DTrace, as a pioneer in
this area, is a general-purpose debugging platform tightly integrated
with the operating system kernel. The observability technology of
DTrace and eBPF is essentially kernel virtual machines that enable
kernel probe placement at the entry or exit of a kernel function, the
entry or exit of a user-space process, or even at any program statement
or machine instruction using restricted D language or C language
bindings (BCC). While such observability technology is widely used
in Linux SRE or cloud-native scenarios, there is still no systematic
research for the HPC domain.

• Scalasca/Tau, etc.: The code instrumentation technology used in
HPC workloads is essentially a form of probe technology. HPC perfor-
mance analysis tools such as Scalasca and Tau achieve dynamic linking
of event sampling libraries at runtime through specialized compilers
and MPI runtimes, allowing them to collect and aggregate the runtime
behavior of the program.

2.4.2 Profiling with Stack Tracing

Stack Tracing is the most commonly used method for CPU profiling and
is also a prevalent approach for understanding software runtime behavior.
Essentially, it is a sampling technique based on interrupt timers. Within a
fixed time window, a CPU profiler registers a timed execution hook (e.g.,
SIGPROF signal) with the target program. During this hook, the current
stack information is obtained by inspecting the stack address of the target
application. At the end of the time window, all collected samples are
aggregated to determine the number of times each function was sampled. By
calculating the ratio of this value to the total number of samples, the relative
proportion of each function is obtained. Through this process, we can easily
identify functions with higher runtime proportions, known as hot functions.
Moreover, due to the nature of function calls, we can effortlessly identify the
longest function call chain in terms of runtime proportion. By analyzing this
chain of dependencies, we can identify the hot execution path of the target
program, thus helping users locate and identify CPU bottlenecks.

There are several common methods to implement Stack Tracing:

1. Language runtimes: Most high-level languages based on garbage col-
lection (GC) or complex runtimes, such as Java, C#, Python, etc.,
have native Stack Tracing functionality. When an application crashes,
it prints the stack trace to the console, which helps locate problematic
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sections in the source code. This feature can also be utilized by profilers
to design analysis tools that identify runtime hotspots in applications
implemented in specific languages.

2. Profiling tools like Linux Perf: Tools like Perf can attach to a target
application using hardware timer interrupts or software interrupts.
They utilize system calls to record stack information from either kernel-
mode programs or user-mode programs during interrupt occurrences
and then aggregate and display the data at the end of the sampling
process.

3. Kernel-level observability tools like eBPF: Kernel-level observability
tools have the ability to perform event sampling at the kernel level.
Their implementation is similar to Linux Perf, but they reside in the
kernel space, allowing some performance overhead caused by context
switches to be reduced. Additionally, eBPF-based stack tracing may
have difficulty supporting high-level language runtimes; therefore, it is
generally used for analyzing programs with minimal runtimes, such as
those implemented in C language.
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Chapter 3

eBPF-based Performance Method

This section introduces the architecture, methodology, and evaluation meth-
ods employed in the design of performance tools. It also includes discussions
on key features, performance sampling modes, and performance pattern
recognition methods. Additionally, the feasibility of using XGBoost for
automated performance pattern recognition is proposed.

For the measurement, aggregation, and comparison of parallel application
performance, we rely on multiple runs of eBPF probe code to monitor the
execution state of working processes. eBPF, an extension of BPF (Berkeley
Packet Filter), is a general-purpose kernel virtual machine. Compared to
other data sampling techniques, eBPF provides highly efficient observability
with minimal runtime overhead and excellent non-invasiveness. It enables
low-cost online dynamic performance monitoring and tracing of various kernel
activities, such as memory allocation and file I/O operations. Specifically,
our work is divided into three parts:

1. Data Collection: As mentioned earlier, we leverage eBPF’s low-
overhead observability to monitor performance events. In this paper,
we use C to write eBPF programs in both kernel and user space to im-
plement code instrumentation based on USDT (User Statically Defined
Tracing), supporting white-box measurement methods. Additionally,
we utilize Linux kernel probes to support kernel sampling technologies
like ptrace and SystemTap, providing black-box measurement methods
based on hardware timer interrupts for post-analysis. Apart from the
event visibility provided by eBPF, we use kernel extraction and kernel
benchmarking to understand the computational nature and theoretical
resource requirements of the workloads. We also employ LLVM’s
dependency chain analysis to identify coding issues that might cause
scalability bottlenecks on specific architectures.

2. Data Preprocessing: Due to variations in measurement units, signif-
icant deviations between feature vectors may adversely affect subse-
quent data analysis and the training results of neural network models.
Therefore, in this step, we use standardization methods to clean the
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dataset.

3. Modeling and Evaluation : Using the preprocessed eBPF sampling
data along with the results from kernel benchmarking and dependency
chain analysis, we model the architectural adaptability of workloads.
We also attempt to use an XGBoost model to explore the potential of
unsupervised online performance analysis.

3.1 Framework Architecture

3.1.1 Code Instrumentation

Code instrumentation serves as the fundamental module in the front-end
of performance sampling, providing essential source code and runtime-level
performance data for performance analysis tools. The design and imple-
mentation of this module not only influence the user-friendliness of code
instrumentation but also determine the level of intrusiveness and overhead
during the sampling process. While code instrumentation unavoidably
involves some intrusion into the source code and control flow, it exhibits
less intrusiveness and higher controllability compared to other techniques
like debuggers with breakpoints or binary code analysis.

Developers of performance tools must optimize the instrumentation pro-
cess to minimize overhead. Currently, for languages such as C/C++ and For-
tran, code instrumentation can be achieved through compile-time dynamic
linking of shared libraries, employing either automatic or manual instrumen-
tation. Automatic instrumentation is suitable for black-box analysis, where
understanding of the source code is limited, and modifications to the code
are unnecessary. However, the generated data reports may lack specificity,
making it challenging to pinpoint relevant information. Moreover, automated
instrumentation often introduces a considerable amount of injected code for
performance sampling, resulting in substantial runtime overhead.

In contrast, manual instrumentation is preferable when specific code
segments within the application require inspection, irrespective of the code
content. To ensure a performance engineering method that is language-
and compiler-independent, this paper chooses to implement portability and
WORA (Write Once, Run Anywhere) characteristics through manual instru-
mentation. Manual instrumentation is based on the User Statically Defined
Tracing (USDT) feature provided by eBPF. USDT enables the insertion of
static trace points into the application, allowing developers to insert probes
for debugging and performance sampling at critical points in the program.
These probes can be dynamically activated at runtime by tools like DTrace,

38



SystemTap, or eBPF without interfering with the normal operation of the
program, thereby obtaining internal states and performance metrics of the
program.

Moreover, the universality of eBPF bytecode ensures that the same eBPF
code and target program source code can achieve unified performance analysis
functionality on supported Linux kernel versions without any modification
to the program code. This feature enhances the overall portability and ease
of use of the proposed performance engineering methodology, making it a
flexible and widely applicable approach for performance analysis in HPC
systems.

3.1.1.1 User Statically Defined Trace(USDT)

Static tracepoints, also known as User Statically Defined Tracing (USDT)
probes in user space, represent a valuable user-level observability capability
offered by eBPF. By incorporating tracing macros into specific functions
of interest within the application, kernel trace code can be attached to
examine code execution states and data. To utilize USDT, developers need
to explicitly define it in the source code and enable it during compilation
using flags such as ”–enable-dtrace.”

USDT code instrumentation supports predefined tracepoints provided
by tools like BCC-tools, where the code already contains defined USDT
probes, and users simply need to identify their presence in the distribution
version of the application. Alternatively, custom tracepoints can be manually
added using APIs provided by kernel tools like SystemTap or development
packages like libstapsdt. This method offers various advantages, including
tracepoint ABI stability, dynamic runtime safety, and fast reconfigurability.
Consequently, it proves highly beneficial for swift analysis and resolution of
performance issues without necessitating a restart of the target program.
Moreover, static tracepoints are particularly advantageous for applications
written in high-level languages like Python or Java, as the development
toolset supporting USDT provides specific support for language runtimes
and advanced features.

However, the explicit definition of static tracepoints in the source code
introduces certain limitations. Modifying these tracepoints entails rebuild-
ing the application, which poses challenges for maintainers concerning the
stability and maintenance of existing tracepoints’ ABI. Additionally, con-
ventional eBPF bytecode operates in the kernel, leading to a kernel-user
space context switch each time eBPF samples a user process. Although
this context switch is relatively small compared to general debuggers and is
often considered negligible, it can have implications for performance-sensitive
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scientific computing applications. Nevertheless, the impact of this switch can
be minimized through specialized eBPF implementations like uBPF, a user-
space BPF virtual machine, or JIT compilation, effectively mitigating any
adverse effects on performance.

3.1.1.2 Dynamic Probes(uprobes)

Dynamic probes are a form of fully runtime dynamic user-space probes
implemented based on the ”uprobes” Linux kernel tracing module. Unlike
static probes, dynamic probes do not require explicit definitions in the
source code and have the capability to directly access the memory of a
running application temporarily, without necessitating any special source
code modifications. To attach an uprobe to a memory address corresponding
to the target function within the running process, tools like objdump or
/proc/maps can be used to manually calculate the offset. However, this
process can be cumbersome and lacks portability. Fortunately, many Linux
distributions offer debugging symbol databases, and using BCC (BPF’s C
language binding) can automatically resolve symbol names, simplifying the
attachment of dynamic probes to target memory addresses.

In comparison to static probes, dynamic probes provide a more decoupled
approach from the source code, resembling a black-box analysis. This
attribute allows for effective real-time debugging of running instances and
online performance analysis. However, the lack of stability in the Application
Binary Interface (ABI) of dynamic probes across different application ver-
sions is a noteworthy limitation. Changes in the application’s source code can
render dynamic probes ineffective, as they may no longer match the target
application’s address space. Despite this limitation, dynamic probes remain
highly valuable for performance analysis, especially in low-level languages
such as C, C++, or Rust.

It is important to recognize that dynamic probes may encounter chal-
lenges when analyzing programs written in high-level languages. The
memory-level operation of dynamic probes may restrict their access to
language runtime implementations, thus limiting their effectiveness in such
scenarios. Nevertheless, for performance analysis in low-level languages,
dynamic probes prove to be a powerful and versatile tool.

3.1.1.3 Overhead Analysis

One crucial non-technical metric of performance analysis tools is the runtime
overhead, which denotes the impact of sampling behavior or the instrumen-
tation process on the program’s control flow and execution time. Table 3.1
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compared the tracing overheads on some common system calls and events.
Both USDT and dynamic probes are activated only when the target function
is encountered, resulting in minimal intrusion at the beginning and end of
program execution. As a consequence, eBPF programs are initialized in both
user and kernel space.

Event Typical Frequency Tracing Overhead
Thread sleeps 1 per second < 0.1%
Process execution 10 per second < 0.1%
File opens 10–50 per second < 0.1%
Profiling at 100 Hz 100 per second < 0.1%
New TCP sessions 10–500 per second < 0.1%
Disk I/O 10–1000 per second < 0.1%
VFS calls 1000–10,000 /s ∼ 1%
Syscalls 1000–50,000 /s > 5%
Network packets 1000–100,000 /s > 5%
Memory allocations 10,000–1,000,000 /s > 30%
Locking events 50,000–5,000,000 /s > 30%
Function calls Up to 100,000,000 /s > 300%
CPU instructions Up to 1,000,000,000+ /s > 300%
CPU cycles Up to 3,000,000,000+ /s > 300%

Table 3.1: Tracing overheads on typical events, data from [1].

The invasiveness during function hit depends primarily on factors such as
the monitored function’s call frequency, runtime, the number of processor
units utilized during the process, and the specific measurement method
employed. Furthermore, the user-space overhead of eBPF-based performance
analysis is predominantly observed in the context switches that occur when
data is transferred from the kernel to user space. Therefore, it is imperative
to evaluate this aspect. To estimate the magnitude of this overhead, a simple
benchmark test code can be employed to assess the observer effect introduced
by eBPF operations during repeated calls to the sampling function. The
Python code for this benchmark test is presented in Code 3.1.1.3.
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Code 3.1.1.3 User-State eBPF Overhead Measurement

1
2
3 #include <uapi / l i nux / ptrace . h>
4
5 BPF HASH( s ta r t t ime , u32 , u64 ) ;
6 BPF HISTOGRAM( ex e c t ime h i s t ) ;
7
8 int t r a c e f un c en t r y ( struct p t r e g s ∗ ctx ) {
9 u32 pid = bp f g e t c u r r e n t p i d t g i d ( ) ;
10 u64 timestamp = bp f k t ime ge t n s ( ) ;
11
12 s t a r t t ime . update(&pid , &timestamp ) ;
13 return 0 ;
14 }
15
16 int t r a c e f un c r e t u r n ( struct p t r e g s ∗ ctx ) {
17 u32 pid = bp f g e t c u r r e n t p i d t g i d ( ) ;
18 u64 ∗ timestamp = s t a r t t ime . lookup(&pid ) ;
19
20 i f ( timestamp ) {
21 u64 de l t a = bp f k t ime ge t n s ( ) − ∗ timestamp ;
22 e x e c t ime h i s t . increment ( bp f l o g 2 l ( d e l t a ) ) ;
23 s t a r t t ime . d e l e t e (&pid ) ;
24 }
25
26 return 0 ;
27 }
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The time taken for N function calls to execute, both with and without
eBPF instrumentation, was meticulously recorded. The algorithm underwent
execution with 1000, 2000, 3000, 4000, and 5000 function calls, allowing for
the subsequent calculation of average, median, and variance values. The
obtained results are thoughtfully depicted in Figure 3.1(a) and Figure 3.1(b).

Figure 3.1(a) presents a noteworthy observation, highlighting the varying
mean runtimes of the function when subjected to eBPF instrumentation,
across different call and measurement counts. To complement these findings,
Figure 1b exhibits the corresponding variances for each execution. Please
note that the specific runtime overhead depends on the particular computing
architecture, but the proportion between the runtime overhead and the total
runtime of the program should remain consistent.

For a comprehensive analysis, Table 3.2 provides a concise presentation
of the experimental outcomes, offering a direct comparison between the
execution times with and without eBPF instrumentation. It is evident from
the table that the impact, or overhead, remains consistent as the interaction
count increases.

Number of Runs Time Difference (seconds) Time Ratio
500 1.751e-05 1.006
1000 9.998e-06 1.003
1500 -3.762e-06 0.998
2000 3.162e-05 1.011
2500 2.549e-05 1.009
3000 -1.734e-05 0.994
3500 1.384e-05 1.005
4000 2.474e-05 1.009
4500 -5.993e-06 0.998
5000 4.190e-05 1.015
5500 -2.024e-06 0.999
6000 2.471e-05 1.009
6500 1.821e-05 1.006
7000 3.709e-05 1.013
7500 2.476e-05 1.009
8000 2.504e-05 1.009
Average 1.805e-05 1.005
Median 9.998e-06 1.008

Table 3.2: Comparison of eBPF Performance Overhead
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3.1.2 Event Tracing Probes

The observation of operating system kernel-level events poses a significant
challenge for most commonly used HPC performance analysis tools. Scientific
computing software often involves cross-language linking (C/Fortran) and
tracing of non-code components. While operating system-level monitoring
can incur additional runtime overhead, which may be sensitive for HPC
workloads, static tracing of kernel-provided functionalities, such as system
calls, socket operations, resource management, and process scheduling, is
crucial for effective performance modeling.

In this section, we first provide a brief introduction to the eBPF-based
system call method, followed by a detailed discussion on the use of kernel
probes for tracing system calls.

The primary functions of an operating system are to abstract the under-
lying system complexity from users and efficiently manage system resources.
This abstraction is accomplished through services and a layered abstract
API interface, with kernel methods exposed to programmers as system
calls. While some HPC systems still rely on proprietary operating systems,
they typically adhere to UNIX semantics, offering concepts such as process
management, file descriptors, memory, IPC, and sockets.

Conventional kernel tracing involves wrapping the kernel source code
through static instrumentation to generate essential low-level behavior logs
for performance engineering and power management. However, this method
introduces considerable overhead for frequently called functions like system
calls, leading to an overall degradation in system performance. To address
this issue, programmers have adopted dynamic instrumentation since the
1990s, which enables runtime monitoring of specific areas of interest in the
operating system. This approach, known as observability technology, does
not alter the target software execution flow and eliminates the need for
modifying the target code. As a result, observability technology boasts lower
runtime overhead and can be directly applied to production environments.

DTrace [41], developed by Oracle for the Solaris project in 2005 and
later integrated into macOS (2007), FreeBSD (2008), and Windows (2019)
platforms, attempted to merge into the Linux mainline tree but did not suc-
ceed. While DTrace did not directly provide its dynamic probe capabilities to
Linux, its design concepts played a pivotal role in inspiring and influencing
the extension of BPF to evolve into eBPF. Both eBPF and DTrace share
fundamental concepts, such as probes, predicates, and actions, empowering
users to capture kernel-level or user-level events and execute custom code
within the kernel. DTrace has made substantial contributions to general
software engineering aspects, performance overhead reduction, and security
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enhancements, offering safety mechanisms to ensure bytecode execution in
a protected execution environment, such as a sandbox. Both dynamic
instrumentation technologies have gained widespread usage and certification
in industrial settings.

Bpftrace serves as an eBPF front-end inspired by DTrace and SystemTap,
designed with a high-level language syntax. Utilizing LLVM as a backend,
bpftrace translates programs into BPF bytecode and seamlessly interacts
with the Linux BPF system using BCC. It supports existing kernel tracing
techniques, such as kprobes, uprobes, and USDT. Bpftrace significantly
simplifies the use of eBPF and enables complex performance analysis tasks
to be accomplished with a single line of code.We have listed some one-liners
in Code 3.1.2 to demonstrate its ability.
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Code 3.1.2 bpftrace One-liners, data from bpftrace project on Github.

1 # Fi l e s opened by proces s
2 bp f t r a c e −e ’ t r a c epo in t : s y s c a l l s : s y s en t e r open { p r i n t f (”%s %s \

n” , comm, s t r ( args−>f i l ename ) ) ; } ’
3
4 # Sy s c a l l count by program
5 bp f t r a c e −e ’ t r a c epo in t : r aw s y s c a l l s : s y s e n t e r { @[comm] = count

( ) ; } ’
6
7 # Read by t e s by proces s :
8 bp f t r a c e −e ’ t r a c epo in t : s y s c a l l s : s y s e x i t r e a d / args−>r e t / { @[

comm] = sum( args−>r e t ) ; } ’
9
10 # Read s i z e d i s t r i b u t i o n by proces s :
11 bp f t r a c e −e ’ t r a c epo in t : s y s c a l l s : s y s e x i t r e a d { @[comm] = h i s t (

args−>r e t ) ; } ’
12
13 # Show per−second s y s c a l l r a t e s :
14 bp f t r a c e −e ’ t r a c epo in t : r aw s y s c a l l s : s y s e n t e r { @ = count ( ) ; }

i n t e r v a l : s : 1 { pr in t (@) ; c l e a r (@) ; } ’
15
16 # Trace d i s k s i z e by proces s
17 bp f t r a c e −e ’ t r a c epo in t : b lock : b l o c k r q i s s u e { p r i n t f (”%d %s %d\

n” , pid , comm, args−>bytes ) ; } ’
18
19 # Count page f a u l t s by proces s
20 bp f t r a c e −e ’ so f tware : f a u l t s : 1 { @[comm] = count ( ) ; } ’
21
22 # Count LLC cache misses by proces s name and PID ( uses PMCs) :
23 bp f t r a c e −e ’ hardware : cache−misses :1000000 { @[comm, pid ] =

count ( ) ; } ’
24
25 # Pro f i l e user− l e v e l s t a c k s at 99 Hertz , f o r PID 189:
26 bp f t r a c e −e ’ p r o f i l e : hz : 99 /pid == 189/ { @[ ustack ] = count ( ) ; }

’
27
28 # Fi l e s opened , f o r p roce s s e s in the roo t cgroup−v2
29 bp f t r a c e −e ’ t r a c epo in t : s y s c a l l s : s y s en t e r opena t / cgroup ==

cgroupid (”/ sys / f s / cgroup/ un i f i e d /mycg”) / { p r i n t f (”%s \n” , s t r
( args−>f i l ename ) ) ; } ’
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With the advantages of eBPF-based observability technology, exemplified
by tools like BPFtrace, represents a significant advancement in HPC perfor-
mance analysis. By enabling dynamic tracing of operating system kernel-
level events with low runtime overhead and offering a user-friendly interface,
eBPF empowers performance analysts to delve deeper into the intricacies of
HPC systems. The combination of dynamic probes and high-level language
syntax makes eBPF-based tools like BPFtrace highly effective for real-time
debugging, performance analysis, and optimization in scientific computing
applications. With its versatility and compatibility across different kernel
versions, eBPF-based observability technology holds great promise for further
advancements in HPC performance analysis and engineering.

3.1.3 Profiling & Kernel Extraction

Profiling serves as a subset of sampling techniques based on interrupt timers
and plays a crucial role in understanding application behavior. It aids
programmers and performance engineers in identifying hotspots in the source
code by analyzing the execution flow and hotspot areas of the workload.
Profile Guided Optimization (PGO) is a dynamic debugging technique that
utilizes runtime profiling data to optimize code. In scientific computing
applications, where the execution flow remains relatively fixed, especially
during program initialization, Profiling can directly pinpoint hot functions
and execution paths through stack tracing and runtime timing. This infor-
mation allows for the extraction of theoretical resource requirements for the
computational workload using kernel extraction techniques. In this section,
we elaborate on the stack tracing analysis method used in our study. We
discuss both basic techniques for stack tracing in general software engineering
and those specific to dealing with large-scale parallel application spaces, some
of which have already been implemented in existing tools. As stack tracing
can be computationally expensive, especially for high-cost scenarios such as
HPC applications, Profiling is generally not utilized as the primary source of
performance information when the source code structure is known. Moreover,
due to the complexity of stack tracing, we aim to keep kernel operations to
a minimum, focusing on discussing general methods of implementing stack
tracing using eBPF. We then explore how stack tracing enables us to identify
and analyze application behavior.

Basic stack tracing involves capturing the relationship between the caller
and the called functions currently executing in a process. By representing
function call paths as a tree or directed graph structure, we gain insights
into the program’s runtime behavior. For instance, we can often identify
functions responsible for runtime initialization and resource recovery at the
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program’s beginning and end, while the functions between them constitute
the program’s core business logic. However, general singleton stack tracing
may not be suitable for large applications due to a large number of processes
leading to different entry points and resulting in numerous stack traces, which
can be overwhelming.

To address the limitations of singleton stack tracing, concepts like 2D-
Trace have been proposed in projects like TotalView and Prism. This
approach consolidates individual stacks of each application process into a
call graph prefix tree, effectively mapping stack tracing to the application
processes. This strategy reduces stack redundancy and streamlines the
information users need to focus on. However, stack tracing methods alone
may not fully address performance issues related to function runtime, such
as application runtime state, hotspot analysis, and lock status. Therefore,
by recording the runtime of functions at specific sampling intervals, we can
analyze the process’s behavior over time. However, it is essential to carefully
select the sampling cycle length, control the precision and granularity of stack
tracing, and ensure that the behavior of the target function can be adequately
sampled while minimizing runtime overhead. It should be noted that stack
tracing is highly reliant on the timer’s accuracy and sampling interval;
excessively large or small intervals can lead to severe runtime performance
issues or overlook critical performance problems.

In this paper, our focus is on identifying the program’s execution flow
and hot functions through profiling. As such, we will employ the singleton
stack tracing method to analyze the behavior of large-scale parallel programs
on the host. Two main implementations of eBPF-based stack tracing will be
explored, namely manually mapping stack addresses and using the automatic
stack tracing feature provided by BCC, as depicted in Code 3.1.3 and Code
3.1.4.
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Code 3.1.3 Manual stack address mapping, code from Brendan Gregg.

1 #define MAXDEPTH 10
2 struct key t {
3 u64 ip ;
4 u64 r e t [MAXDEPTH] ;
5 } ;
6 BPF HASH( counts , struct key t ) ;
7
8 stat ic u64 get f rame ( u64 ∗bp) {
9 i f (∗bp) {
10 // The f o l l ow i n g s t a c k walker i s x86 64 s p e c i f i c
11 u64 r e t = 0 ;
12 i f ( bp f probe read (&ret , s izeof ( r e t ) , (void ∗) (∗bp+8) ) )
13 return 0 ;
14 i f ( bp f probe read (bp , s izeof (∗bp) , (void ∗) ∗bp) )
15 ∗bp = 0 ;
16 i f ( r e t < START KERNEL map)
17 return 0 ;
18 return r e t ;
19 }
20 return 0 ;
21 }
22
23 int t r a c e count ( struct p t r e g s ∗ ctx ) {
24 FILTER
25 struct key t key = {} ;
26 u64 zero = 0 , ∗val , bp = 0 ;
27 int depth = 0 ;
28
29 key . ip = ctx−>ip ;
30 bp = ctx−>bp ;
31
32 // unro l l e d loop , 10 (MAXDEPTH) frames deep :
33 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
34 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
35 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
36 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
37 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
38 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
39 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
40 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
41 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
42 i f ( ! ( key . r e t [ depth++] = get f rame(&bp) ) ) goto out ;
43 out :
44 va l = counts . l o o k up o r i n i t (&key , &zero ) ;
45 (∗ va l )++;
46 return 0 ;
47 }
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Code 3.1.4 Auto BCC stack tracing, through BPF STACK TRACE function.

1 // BPF Code
2 #include <uapi / l i nux / ptrace . h>
3 #include <l i nux / sched . h>
4
5 struct key t {
6 // no pid ( thread ID) so t ha t we do not n e e d l e s s l y s p l i t

t h i s key
7 u32 tg id ;
8 int k e r n e l s t a c k i d ;
9 int u s e r s t a c k i d ;
10 char name [TASKCOMMLEN] ;
11 } ;
12
13 BPF HASH( counts , struct key t ) ;
14 BPF STACK TRACE( s t a ck t r a c e s , 1024) ;
15
16 // Count Function Statement
17 int t r a c e count (void ∗ ctx ) {
18 FILTER
19 struct key t key = {} ;
20 key . t g id = GET TGID;
21 STORECOMM
22 %s
23 counts . atomic increment ( key ) ;
24 return 0 ;
25 }

Through profiling, valuable stack backtrace information can be obtained,
as depicted in Figure 3.2 and Figure 3.3. This data includes the names of the
most frequently called functions or functions with the longest running time,
presented in a top-down manner. In scientific computing applications, com-
mon math libraries like MKL, FFTW [42], and ScaLAPACK [43] are often
utilized, allowing us to readily identify the types of workloads predominantly
used through function names. We refer to the core part of this workload
as the ”kernel,” representing a code segment that significantly influences
the entire lifecycle of the program. The computation kernel of a scientific
computing application can be described as a set of basic blocks connected by
some form of loop structure. Identifying the kernel is vital as it facilitates
understanding the computational nature and resource requirements from the
perspective of computational resources. For instance, when applying the
Habakkuk method to extract and analyze the kernel from the computation
code of an FFT library, we can obtain data similar to Figure 3.4, Figure 3.5
and Figure 3.6. By aggregating the computing performance achievable on
the critical path, we can estimate the theoretical performance peak of the
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target application in a single-core scenario. This valuable insight enables us
to assess the application’s computational capabilities and resource utilization
efficiency, providing a solid foundation for further performance optimization
efforts.

3.1.4 Parallel Performance Modeling

3.1.4.1 Dependency Chain

Dependency chains represent a critical constraint that influences the through-
put of multi-level pipelined processors, a characteristic inherent in the nature
of pipelining. In the context of a pipelined processor, the execution can occur
out-of-order, while the fetch and retirement stages must adhere to a specific
order. Consequently, instructions forming a dependency chain, even if their
results are ready for writing back to memory, must await the retirement of
preceding instructions.

Parallel runtime systems, such as COMP Superscalar (COMPSs) [44],
offer valuable data flow and dependency chain analysis capabilities, empow-
ering programmers to comprehend the high-level behavior of their applica-
tions on the target system. However, the delay attributed to dependency
chains is highly dependent on the specific microarchitecture implementation,
necessitating a combined analysis that considers the instruction latency on
a particular processor.

Furthermore, various microarchitecture implementations incorporate branch
prediction mechanisms, enabling the machine to speculate on the taken con-
trol flow path ahead of time. These speculations can lead to the speculative
execution of branch commands, even when the instruction still occupies CPU
ports.

To prioritize portability, we leverage the uops.info Code Analyzer (UiCA)
[45] framework and exploit the dependency chain analysis functionality
offered by LLVM. We have shown its capability in Figure 3.7 and Figure 3.8.
This approach ensures that our performance analysis methodology is versatile
and can be applied across different systems and architectures. The combi-
nation of UiCA and LLVM’s capabilities allows us to achieve comprehensive
performance insights while maintaining compatibility with various computing
environments.

3.1.4.2 Kernel & I/O Benchmark

Given the homogeneity of scientific computing workloads, benchmarking
computational kernels is beneficial for theoretical performance modeling of
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unknown workloads. It also helps identify whether the target architecture
can meet the computational resource and I/O bandwidth requirements for
specific types of computations. The total execution time of a computational
task can be roughly represented as shown in (3.1). Here, NB represents
network bandwidth, BW represents memory bandwidth per CPU core, IOB
represents I/O bandwidth, and f represents CPU frequency. MPI, IO,
and SERIAL represent the execution times of MPI parallel execution, I/O
requests, and serial code in the workload, respectively. All these parts are
clearly dependent on input parameters.

T (f,BW,NB) =MPI(BW,NB)

+ IO(BW,NB, IOB)

+ SERIAL(f,BW,NB)

(3.1)

We can further represent (3.1) using two approaches:

T (f,BW,NB)

Tref

= αMPI

(
NBref

NB

)
+ αCPU

(
fref
f

)
+ αBW

(
BWref

BW (f)

)
+ . . .

(3.2)

T (f,BW,NB) = σTkernel(f,BW,NB, IOB)

+ Tother with Tkernel(f,BW,NB)

≈ Tc(f) + Tmem(BW ) + TMPI(NB) + TI/O

(3.3)

(3.2) allows rapid modeling of the target application; however, it may lack
strong representational ability and requires recalculations when application
code changes. On the other hand, (3.3) exhibits greater representational
power, particularly in predicting the total execution time of the target.
However, (3.3) requires finer-grained functional partitioning of the source
code.

Generally, the computational kernels of scientific computing applications
consist of the following parts:

1. Serial LAPACK or ScaLAPACK: LAPACK or its extension ver-
sion ScaLAPACK for distributed memory MIMD parallel computers
provides routines for solving linear systems of equations, linear least
squares problems, eigenvalue problems, and singular value decomposi-
tion in both serial and parallel modes. It also includes a set of routines
for matrix factorizations. LAPACK relies on underlying BLAS to
provide efficient and portable building blocks for its routines, utilizing
modern cache-based architectures and scalar processors to achieve
instruction-level parallelism.
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2. BLAS Kernel (BLIS [46], MKL, etc.): BLAS defines a set of low-
level routines and architecture-oriented optimisations for performing
common linear algebra operations, such as scalar arithmetic, vector op-
erations and general matrix multiplication(GEMM). BLAS often uses
uniform function names and return values to allow for straightforward
implementation of special optimization versions for different platforms.
BLAS-based LINPACK does not require modification of its code.

3. FFT Kernel (FFTW3, etc.): FFT is one of the most common
computational kernels apart from linear algebra operations. Libraries
like FFTW provide multiple FFT algorithms and evaluate and select
the best trade-off between speed and accuracy based on the problem
type and size.

The parallel runtimes that need performance modeling include:

1. OpenMP: OpenMP [47] is a parallel programming paradigm for SMP-
UMA architectures, offering a cross-platform shared-memory multi-
threading API. It provides C/C++ and Fortran language bindings
and can run on various operating systems such as Linux, Windows,
and MacOS. OpenMP provides a high-level abstraction of parallel
algorithms, allowing programmers to indicate their intent through
pragmas in the source code. The compiler automatically parallelizes the
program based on these annotations, entering synchronization, mutual
exclusion, and communication at critical regions.

2. OpenMPI: OpenMPI [48] is a standardized, portable message-passing
standard for NUMA architectures, designed to support virtual topol-
ogy, communication, and synchronization between parallel processes
running on distributed memory systems, without relying on specific
language syntax.

In this study, the BLIS Benchmark, benchFFT, Intel MPI Benchmark,
pmbw, and STREAM 1.0 are used to perform benchmark tests for Math
Kernel, FFT Kernel, OpenMPI communication, OpenMP-based multi-core
memory access, and CPU-Memory coupling, respectively, in order to obtain
the required bandwidth values for Equation 3.1.

3.2 Define the Metrics

In performance engineering, the indicators used to assess performance
changes introduced by code or architectural modifications are referred to
as metrics. The definition and calculation methods of these metrics are the
essence of the performance engineering methodology. In this section, we will
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introduce the POP Parallel Metrics and I/O Metrics that we have utilized.

3.2.1 Single Core Metrics

The most direct way to evaluate application performance is by recording its
execution time, known as CPU time. CPU time refers to the time taken by a
given program from the start of execution to its completion. It encompasses
the time allocated by the CPU hardware to the target program and includes
time introduced by the operating system for resource management, such
as interrupt handling and scheduling. However, it does not include time
spent waiting for I/O operations or time when execution is paused due to
scheduling. CPU time can be expressed as the product of the total number
of clock cycles required to execute all instructions of the program and the
clock cycle time, or it can be calculated by dividing the total number of clock
cycles by the clock frequency, as shown in Equation 3.4.

TimeCPU = Clock Cyclestotal × Clock Cycle T ime

or Clock Cyclestotal × Clock Rate
(3.4)

CPU time can also be obtained by multiplying the total number of
instructions a given program needs to execute with the average clock cycles
per instruction (CPI) and dividing it by the clock frequency, as shown in
Equations 3.5 and 3.6, respectively.

TimeCPU =
Countinstruction × CPI

Clock Rate
(3.5)

CPI =
Countclock cycles

Countinstructions
(3.6)

3.2.2 Parallel Metrics

Efficiencyparallel =
sum(comp)

n× runtime
=

average(comp)

runtime
(3.7)

Parallel efficiency is defined as the ratio of the total execution time spent
on the computational part of parallel code to the overall execution time. It
is obtained by summing up the runtime of the parallel portion of the code
and dividing it by the total runtime.

EfficiencyLoadBalance =
average(comp)

max(comp)
(3.8)
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EfficiencyCommunication =
max(comp)

runtime
(3.9)

Equations 3.8 and 3.9 define load balance efficiency and communication
efficiency, respectively, to determine whether the target task is evenly dis-
tributed among computational resources and to identify the proportion of
parallel communication in the total execution time. These two metrics can
indicate performance issues such as oversubscription, load imbalance, and
abnormal lock states. The multiplication of these two metrics is equivalent
to Equation 3.7, i.e., parallel efficiency.

Scalingstrong =
sum(compref )

sum(comp)
(3.10)

Scalingweak =
average(compref )

average(comp)
(3.11)

Equations 3.10 and 3.11 are the most important metrics for evaluat-
ing parallel computing efficiency, which reflect whether the scalability of
hardware can be translated into linear performance growth in the target
application. The scaling of a computational architecture can be defined by
three components: instruction scaling, IPC (Instructions Per Cycle) scaling,
and frequency scaling. Instruction scaling represents whether the number
of instructions can achieve uniform scaling. IPC scaling assesses whether
software can achieve the same speed gain as hardware performance increases.
Frequency scaling reflects the trend of target system performance with CPU
frequency growth. The three metrics can be multiplied together to form the
unified expression of computation scaling, as shown in Equation 3.12.

Scalingcomputation = Scalinginstruction × ScalingIPC × ScalingFrequency

(3.12)
By combining EfficiencyParallel and ScalingComputation, we obtain the

global efficiency of the target software-hardware system, as shown in Equa-
tion 3.13.

Efficiencyglobal = Scalingcomputation × EfficiencyParallel (3.13)

For the commonly used hybrid parallel architecture of OpenMP + Open-
MPI in HPC systems, parallel efficiency can also be defined by Equation
3.14.
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Efficiencyparallel = EfficiencyMPI × EfficiencyOpenMP (3.14)

Here, MPI parallel efficiency and OpenMP parallel efficiency are defined
as shown in Equations 3.15 and 3.16, respectively.

EfficiencyMPI =
average(out MPI)

runtime
(3.15)

EfficiencyOpenMP =
Hybrid Parallel Efficiency

MPI Efficiency
(3.16)
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(a) Time consumed from sampling a region one time in seconds, demonstrated in average
values.

(b) Box plot showing the statistics of the sampling time of a single region.

Figure 3.1: Measuring variance of the time to single instrumentation, i.e.,
attach eBPF process onto the target application while varying the number
of measurements.
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Figure 3.2: Profiling through Intel VTune Profiler, shown in bottom-up.

Figure 3.3: Profiling through Intel VTune Profiler, shown in top-down.
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Figure 3.4: FFT kernel performance abstract generated by habakkuk.
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Figure 3.5: FFT estimated core scheduling and theoretic performance.
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Figure 3.6: Dependency plot on one of the fft components, generated by
habakkuk.

Figure 3.7: Dependency chain analyzed by UiCA, first part.

Figure 3.8: Dependency chain analyzed by UiCA, second part.
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Chapter 4

Evaluate the Implementation

In this chapter, we summarized the outcomes of our performance experi-
ments. This included the type of computation and input/output loads, the
effect of parallel parameters on the speed of calculation, and any potential
memory limitations. Furthermore, we compared different probing techniques
to reduce the uncertainty caused by overhead.

4.1 Define the Experiment

4.1.1 Target System

The top-down and computational load analysis experiments were carried out
on a high-performance computing cluster featuring the AMD EPYC Zen 2
processor. Each node in the cluster is equipped with two sockets, forming
a NUMA (Non-Uniform Memory Access) domain comprising eight nodes.
Each socket contains 64 physical cores, with SMP enabling two threads per
physical core. This configuration results in a total of 128 threads per socket.

For the GPU experiments, we utilized a separate computing cluster
equipped with Intel Xeon Ice Lake processors and Nvidia A100 40G graphics
cards. Each node in this cluster houses two CPU sockets and two graphics
cards. The Intel Xeon Ice Lake processors provide powerful computa-
tional capabilities, while the Nvidia A100 40G graphics cards offer high-
performance parallel processing capabilities.

Detailed specifications of the CPU and GPU architectures used in the
experiments are provided in Table 4.1 for the AMD EPYC Zen 2 processor
and Table 4.2 for the Intel Xeon Ice Lake processor and Nvidia A100 40G
graphics cards. These specifications offer valuable insights into the hardware
configurations employed in our performance analysis experiments.

In this study, we conducted performance tests using Quantum Espresso
version 6.7, which was compiled with the Intel OneAPI compiler suite.
The hardware used for the experiments encompassed diverse systems to
ensure a comprehensive analysis. The support libraries employed in our
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CPU Arch processor clock(MHz) # sockets cores/socket
X86 64 AMD EPYC 7H12 3312 2 64
X86 64 Intel Xeon Gold 5320 2797 2 26

Table 4.1: CPU Used in This Study

Architecture GPU clock(MHz) memory memory bandwidth
Ampere NVIDIA A100 765 40G 1555 GB/s
Ampere NVIDIA A40 1305 48G 695.8 GB/s

Table 4.2: GPU Used in This Study

test environment included Intel MPI version 2021.1.1, CUDA version 11.3,
Intel MKL version 2021.1.1, Intel TBB version 2021.1.1, and Intel Compiler-
rt version 2021.1.1. The remaining support libraries were maintained in line
with the official default configuration of Quantum Espresso.

To assess the performance impact of AOCL on AMD CPUs, we utilized a
specific configuration. For this purpose, we employed the QE6.7 version
hosted by Spack, which was compiled using FFTW version 3.3.10 and
OpenBLAS version 0.3.21 as support libraries. We incorporated AOCC
version 3.0.0 and flang corresponding to it via make and cmake. Throughout
the installation process, we adhered to the default Spack configuration,
ensuring consistent and standardized settings.

It is important to note that the CPU and GPU versions were distinguished
primarily by the inclusion or exclusion of the NVHPC SDK and CUDA
support. This approach allowed us to effectively gauge the performance
disparities and draw meaningful comparisons between the two versions across
different hardware configurations.

4.1.2 Workload Properties

In this study, the AUSURF112 configuration under the UEABS benchmark
was chosen as the subject of investigation.

The AUSURF112 structure comprises a total of 112 atoms. Ab-initio
calculations of the electronic structure were performed using the density
functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation pseudopotential and the generalized gradient approximation PBE
functional. A plane wave basis was utilized with a cut-off energy set to 200
Ry. The Marzari-Vanderbilt smearing method with a degauss value of 0.05
was used for the occupation method. The diagonalization method chosen for
the calculations was Davidson, and 2 k-points were employed.
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The complexity of ab-initio electronic structure calculations lies in the
convergence of wave functions within each time step during DFT calculations.
The Quantum Espresso (QE) software adopts the plane wave self-consistent
field method (PWscf) to describe electronic states using the self-consistent
Kohn-Sham equation. Additionally, QE employs the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm for structure optimization. The self-
consistent field (SCF) calculations involve iterative evaluations of the elec-
tronic density to determine convergence by assessing the difference between
input and output densities within a predefined threshold. Each iteration
is referred to as a time step. The core load of SCF calculation involves
diagonalization of the Hamiltonian and FFT (Fast Fourier Transform) cal-
culations for converting charge density and potential energy between real
and reciprocal domains. Both tasks pose challenges for high-performance
computing systems. QE provides multiple parallel levels to handle various
computing tasks, where k-points can be evenly distributed among different
Pool levels, with each Pool processing a fraction of the k-points. However,
different parallel levels exhibit varying scalability and memory distribution
strategies, necessitating dynamic adjustment of parallel parameters based on
the computing environment and structure for optimal performance. Addi-
tionally, the convergence iteration process of wave functions is influenced by
factors such as initial trial wave function, floating-point and sparse matrix
operations, dense node intra/inter-node communication, and the specific
density functional used.

The key computational kernels in QE have been highly parallelized,
although significant variations in parallelism exist among different parallel
levels. The Image, Pool, and PW levels demonstrate linear to close-to-linear
CPU scaling. However, the Task level, responsible for FFT calculations of
electronic states, and the Linear Algebra (LA) level, dealing with subspace
Hamiltonians and constraint matrices, exhibit suboptimal CPU scaling. This
phenomenon can be attributed to Amdahl’s law and Gustafson’s law, where
non-parallelized code within the kernel becomes a bottleneck for parallel
scalability.

4.2 Before the Experiment

Before conducting performance experiments, it is essential to set initial
I/O parameters and parallel parameters at different levels of parallelism
reasonably. Previous research has indicated that achieving ideal parallelism
involves setting the parameter ”nimage” to its maximum possible value and
multiplying the number of OpenMP threads by the MPI rank to obtain
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the total number of CPU logical cores. Consequently, when increasing
the number of OpenMPI ranks, the number of OpenMP threads per rank
decreases proportionally to maintain this constraint. Based on the hardware
configuration of KAGAYAKI, we have determined a series of initial parallel
parameters, which are detailed in Table 4.3.

nodes ranks threads Placement
1 64 1 default, round robin
1 32 2 default, round robin
1 16 4 default, round robin
2 128 1 default, round robin
2 64 2 default, round robin
2 32 4 default, round robin
4 256 1 default, round robin
4 128 2 default, round robin
4 64 4 default, round robin
8 512 1 default, round robin
8 256 2 default, round robin
8 128 4 default, round robin

Table 4.3: Process Placement and Affinity Settings

To analyze process placement, we utilize various tools, including NU-
MACTL, taskset, vmtouch, and sysbench. OpenMPI’s Process Placement
consists of three components: mapping, ranking, and binding. Mapping
involves determining the relationship between computational loads and com-
putational resources, such as mapping a computational instance to a CPU
socket, a NUMA domain, or a node. Ranking involves ranking computation
loads according to specific computation resources, allowing instances with
intensive communication to be distributed near adjacent computational
resources. Binding refers to the binding relationship between computational
loads and computational resources during actual computation. Incorrect
process placement can lead to performance issues such as oversubscription
and overload, resulting in an imbalance in computational load distribution
and resource utilization. OpenMPI supports process binding at different
levels, such as core, socket, and NUMA. In this study, we use the term
”default” to refer to OpenMPI’s default behavior for process placement.
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4.3 Evaluation Procedures

4.3.1 Runtime Profiling

Our investigation revealed that the overhead of SCF calculations across nodes
is significantly higher compared to that across sockets. To achieve near-
ideal scalability with same-node scaling, we bound OpenMPI to physical
CPU cores and disabled OpenMP. The linear acceleration ratio achieved
through MPI binding to adjacent cores may benefit from shared caches or
NUMA domains. Figure 4.1 and 4.2 present specific experimental data
when increasing only the number of MPI ranks and using a combination
of OpenMP threads and OpenMPI ranks, respectively.

We observed that binding OpenMP threads to CPU sockets and mixing
them with OpenMPI ranks leads to higher acceleration ratios compared to
using OpenMPI alone. Even without setting affinity, increasing OpenMP
threads on the same node achieves a 1.2x acceleration ratio. This indicates
that combining OpenMP and OpenMPI better utilizes the peak performance
of all processor cores. However, it is essential to consider the problem size
when selecting the number of computing hardware, as excessive computing
resources can lead to increased computation time, particularly when crossing
nodes. In such cases, I/O and communication overheads across nodes can
become the primary bottleneck, offsetting the acceleration effect brought by
parallelism. Consequently, choosing the right number of computing hardware
is crucial to achieving efficient computing performance.

Scope CPU TIME (sec) (I) CPU TIME (sec) (E)
run pwscf 3.30e+04 (97.9%) 1.60e-02 (0.0%)
electrons 2.86e+04 (84.8%) 2.52e-02 (0.0%)

electrons scf 2.86e+04 (84.8%) 2.66e-01 (0.0%)
c bands 2.59e+04 (76.7%) 1.46e-02 (0.0%)

diag bands 2.58e+04 (76.6%) 1.59e-02 (0.0%)
pcegterg 2.55e+04 (75.8%) 1.03e+01 (0.0%)
h psi 9.03e+03 (26.8%) 5.57e-02 (0.0%)
h psi 9.03e+03 (26.8%) 5.03e+01 (0.1%)

Table 4.4: Hotspot Processes in PWSCF

Our runtime tracing results revealed that the hot functions in the SCF
calculation mainly come from the GEMM function in MKL and the commu-
nication function in Intel MPI. Further details of the hotspots can be found
in Tables 4.4 and 4.5.
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Figure 4.1: Time per SCF step / MPI ranks, with each MPI rank bound to
a single physical core.

The ”Scope” in the table represents the function call stack obtained
by sampling the target program using eBPF, sorted in descending order
based on the percentage of CPU time it occupies in the total execution
time. ”CPU Time (I)” and ”CPU Time (E)” respectively indicate the total
execution time of each function during the sampling period and the single
execution time of the function. The total runtime of a function is obtained by
multiplying the average single execution time by the number of executions
during the sampling period. From the data, it can be observed that the
Z-General Matrix Multiplication (ZGEMM) is the computational kernel of
this workload, and ”electrons” represent the main process of this workload.
Additionally, there are other computation flows involving LAPACK and FFT
kernels, such as ”diag bands” and ”h psi,” but these computation flows do
not become bottlenecks of this workload. In other words, according to
Amdahl’s Law, optimizing these flows would not significantly improve the
overall performance. Apart from the CPU computation part, we also notice
from the profiling that a substantial portion of execution time is occupied
by MPI collective operations and Infiniband communication, indicating the
significance of optimizing the OpenMPI communication process.
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Figure 4.2: Time per SCF step / OpenMP thread, with physical cores fixed
to 256, and OpenMPI rank = 256 / OpenMP thread.

4.3.2 Kernel Benchmark

We conducted a performance comparison of linear algebra operations using
BLIS 0.9.0, MKL 2022.2.0, OpenBLAS zenp-r0.3.21.a, and Eigen 3.4.0 on
the Zen2 architecture. As the most commonly used operation type in SCF
calculations is ZGEMM, we evaluated the single-core, 64-core, and 128-core
performance of ZGEMM operations across different linear algebra libraries
on the Zen2 architecture. Detailed measurement data can be found in Graph
4.3, 4.4, and 4.5.

The results demonstrate that in the single-core scenario, OpenBLAS and
BLIS exhibit approximately 1.25x performance improvement compared to
MKL on the Zen2 architecture. In the 64-core scenario, MKL performs
exceptionally well for extremely small tasks; however, as the task size
increases, MKL encounters scalability issues, leading to peak performance
at m = n = k = 2000, approximately 25 GFLOPS/core. On the other hand,
BLIS performs admirably in the 64-core scenario, showcasing both excellent
performance and scalability. For m = n = k > 3000, BLIS’s performance
surpasses MKL by about 1.25x.

In the 128-core scenario, all linear algebra libraries face scalability chal-
lenges to varying degrees during ZGEMM operations, and the overhead
caused by cross-socket communication may be a contributing factor. It

69



Scope CPU TIME (sec) (I) CPU TIME (sec) (E)
zgemm 1.58e+04 (46.8%) 7.87e-01 (0.0%)
zgemm 1.58e+04 (46.8%) 2.39e-01 (0.0%)

avx2 xzgemm 1.57e+04 (46.7%) 8.19e-01 (0.0%)
avx2 z generic fullacopybcopy 1.57e+04 (46.7%) 1.32e+01 (0.0%)

avx2 zgemm ker0 1.48e+04 (43.8%) 1.40e+00 (0.0%)
avx2 zgemm kernel 0 1.32e+04 (39.3%) 1.32e+04 (39.3%)
MPIDI coll select 1.12e+04 (33.3%) 1.20e+00 (0.0%)
MPIDI coll invoke 1.12e+04 (33.3%) 1.29e+00 (0.0%)

MPIDI OFI progress 9..97e+03 (29.6%) 2.33e+02 (0.7%)

Table 4.5: Hotspot Functions in PWSCF

is essential to note that since m = n = k < 1500 rarely occurs in QE
calculations, we conclude that BLIS is the most suitable choice for QE.

Figure 4.3: ZGEMM Benchmark on Single Core.

In addition to conducting benchmark tests on linear algebra computa-
tional kernels, we also performed benchmark tests on FFT operations using
benchFFT. Experiment data is demonstrated in Figure 4.6.
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Figure 4.4: ZGEMM Benchmark on 64 Cores.

4.4 I/O and Memory Benchmark

Understanding the memory architecture of the target system is crucial for
computing performance and scalability. To assess both single-threaded and
multi-threaded memory bandwidth of the target machine, we employed
the pmbw memory benchmarking framework. This tool offers performance
testing capabilities for 64-bit and 128-bit standard loops and unrolled loops,
along with a multi-threading interface. We selected representative memory
bandwidth results, specifically, the access speed test outcomes. Benchmark
results are listed in Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11
and Figure 4.12.

IO performance is another crucial factor that impacts computing perfor-
mance. To evaluate the performance of input/output operations, we utilized
the Intel MPI Benchmark and conducted STREAM analysis to assess the
I/O performance and communication performance within the context of
OpenMPI and OpenMP. MPI experiment data is listed in Table 4.6, Table 4.7
and Table 4.8. Multi-core and OpenMP scaling are listed in Figure 4.13 and
Figure 4.14.
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Figure 4.5: ZGEMM Benchmark on 128 Cores.

Figure 4.6: FFT Benchmark on hybrid FFT libraries.
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Figure 4.7: Multithreading memory latency, on Scan Write 128 bit pointers
on unrolled loop.
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Figure 4.8: Speedup of memory bandwidth, on Scan Write 128 bit pointers
on unrolled loop.
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Figure 4.9: Multithreading memory bandwidth, on Scan Write 128 bit
pointers on unrolled loop.

75



Figure 4.10: Single thread memory bandwidth, on hybrid cases.
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Figure 4.11: Single thread memory bandwidth, on 64bit read cases.
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Figure 4.12: Single thread memory latency, on hybrid cases.
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#bytes #repetitions t min[usec] t max[usec] t avg[usec] Mbytes/sec
0 1000 2.97 3.24 3.13 0.00
1 1000 2.67 2.86 2.77 0.70
2 1000 2.66 2.88 2.77 1.39
4 1000 2.68 2.88 2.77 2.77
8 1000 2.66 2.94 2.79 5.44
16 1000 2.62 2.91 2.79 10.98
32 1000 2.65 2.95 2.78 21.67
64 1000 3.40 3.79 3.58 33.75
128 1000 2.96 3.31 3.12 77.42
256 1000 3.33 3.65 3.47 140.25
512 1000 3.99 4.19 4.09 244.36
1024 1000 5.99 6.23 6.10 328.99
2048 1000 11.29 11.47 11.39 357.14
4096 1000 22.02 22.12 22.08 370.30
8192 1000 42.97 43.48 43.32 376.78
16384 1000 85.51 86.42 86.17 379.16
32768 1000 170.99 172.62 172.19 379.65
65536 640 276.07 350.46 331.48 373.99
131072 320 681.35 688.02 686.36 381.01
262144 160 1362.07 1372.33 1369.50 382.04
524288 80 2692.39 2739.75 2725.52 382.73
1048576 40 5327.38 5473.76 5433.15 383.13
2097152 20 10704.04 10941.79 10872.46 383.33
4194304 10 21521.24 21878.73 21770.60 383.41

Table 4.6: MPI Benchmarking on Sendrecv
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#bytes #repetitions t min[usec] t max[usec] t avg[usec] Mbytes/sec
0 1000 4.40 4.59 4.52 0.00
1 1000 4.56 4.74 4.68 0.84
2 1000 4.16 4.36 4.29 1.84
4 1000 3.95 4.11 4.06 3.89
8 1000 3.96 4.14 4.08 7.73
16 1000 4.02 4.22 4.14 15.18
32 1000 3.92 4.11 4.04 31.14
64 1000 4.30 4.50 4.43 56.85
128 1000 4.38 4.60 4.52 111.34
256 1000 4.95 5.13 5.04 199.44
512 1000 7.25 7.40 7.34 276.85
1024 1000 11.98 12.13 12.08 337.71
2048 1000 22.25 22.53 22.43 363.54
4096 1000 43.67 44.13 44.00 371.28
8192 1000 85.60 86.91 86.48 377.02
16384 1000 171.79 172.88 172.51 379.09
32768 1000 367.88 370.07 369.29 354.18
65536 640 613.15 714.49 689.12 366.89
131072 320 1517.03 1527.82 1524.76 343.16
262144 160 2960.96 3003.43 2992.04 349.13
524288 80 5664.69 5738.52 5718.17 365.45
1048576 40 11032.76 11178.56 11147.51 375.21
2097152 20 21946.83 22123.74 22070.19 379.17
4194304 10 43701.33 44116.94 43963.14 380.29

Table 4.7: MPI Benchmarking on Exchange
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#bytes #repetitions t min[usec] t max[usec] t avg[usec]
0 1000 0.04 0.05 0.04
4 1000 26.17 33.15 30.02
8 1000 25.60 33.55 30.03
16 1000 25.23 33.63 30.08
32 1000 26.18 34.01 30.77
64 1000 27.92 35.31 32.10
128 1000 27.79 35.12 31.74
256 1000 31.94 41.17 36.76
512 1000 38.00 47.37 42.44
1024 1000 57.05 70.38 63.88
2048 1000 98.09 123.16 109.51
4096 1000 172.10 242.95 207.84
8192 1000 333.30 473.40 412.05
16384 1000 662.14 940.50 820.85
32768 1000 1332.34 1881.41 1655.16
65536 640 2815.87 3816.69 3448.29
131072 320 6010.13 8011.72 7167.84
262144 160 11918.42 16189.37 14446.38
524288 80 23560.10 32227.11 28848.99
1048576 40 46580.94 64124.03 57433.16
2097152 20 95764.18 124618.57 114364.00
4194304 10 186929.60 242391.55 223517.80

Table 4.8: MPI Benchmarking on Allreduce

81



Figure 4.13: STREAM scaling benchmark on multi-core.
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Figure 4.14: STREAM scaling benchmark on OpenMP.
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Chapter 5

Conclusion & Future Work

Designing efficient performance analysis subsystems has become an increas-
ingly challenging task within the modern HPC community. As we approach
the exascale era, relying solely on CPU power is no longer sufficient, leading
to more complex designs in HPC system software and hardware stacks, and
a greater emphasis on software performance engineering. However, the lack
of a unified performance analysis framework in the HPC community results
in tools tailored to specific system designs, limiting their portability and
flexibility. Moreover, traditional HPC performance methods heavily rely
on specific languages and runtimes, necessitating unique configurations for
different architectures.

The growing trend of HPC systems adopting Linux kernel support and
utilizing Linux native functionality for observability presents a new avenue
for HPC performance engineering. By leveraging eBPF’s USDT and uprobes,
fine-grained cross-platform sampling of performance data becomes feasible,
with subsequent analysis using visualization tools like Vampir and TAU.
Although eBPF is not yet extensively used in HPC system performance
engineering, it is believed to bring about a paradigm shift and shape the
future of large-scale parallel software analysis architecture.

5.1 Conclusions

In this thesis, we conduct a comprehensive analysis of the performance
requirements of HPC systems with varying emphases and designs. We
investigate existing industrial-grade HPC performance tool implementations
to understand the challenges they pose for the development of scientific
computing applications. We also identify inefficiencies, fragmentation, and
limitations in some existing methods. This thesis examines several challenges
in modern HPC system performance methods, with a specific focus on
emerging observability methods, parallel runtime, and bottleneck identifi-
cation. Moreover, we propose new technologies that can guide the future
implementation of HPC performance methods.
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The first major contribution of this thesis is a systematic review of the
architecture and software-hardware design of HPC systems in recent years.
By gaining a comprehensive understanding of the performance components
in high-performance computing systems, we can better grasp the co-design
ideas between HPC systems and scientific computing applications. Our ap-
proach involves mapping the workload characteristics of scientific computing
applications to compute systems, heterogeneous computing systems, and I/O
subsystems, thus observing the combined effects of performance events at
different levels and avoiding biases that may arise from solely focusing on
source code or parallel runtime. This methodology provides a higher level
of performance feature integration and reduces the risk of falling into local
traps.

Additionally, building on traditional performance engineering method-
ologies, we explore the potential of implementing a unified and portable
performance analysis tool as the second contribution of this thesis. We
contend that current HPC performance methods have not achieved true
portability, resulting in a proliferation of performance analysis tools with
redundant features and limited insights for unknown HPC systems that lack
specific adaptations. Through the demonstration of eBPF’s cross-platform
portability and non-intrusive dynamic instrumentation, we highlight the
significant advantages of this performance frontend, particularly in terms
of reduced runtime overhead.

5.2 Future Work

In the following sections, we will provide a detailed introduction to some
potential future work that can further explore HPC performance methods
based on eBPF, including utilizing kernel-level observable technologies such
as kprobes and uprobes. These future research areas are:

5.2.1 Workload-Aware Runtime

Designing a workload-aware runtime system that leverages eBPF-based
performance instrumentation can significantly enhance the adaptability and
efficiency of HPC applications. By dynamically adjusting performance
monitoring and profiling based on the specific characteristics of the workload,
such a runtime system can reduce overhead and provide more accurate
performance insights. This involves developing intelligent algorithms and
heuristics to detect workload patterns, identify relevant performance metrics,
and automatically configure the eBPF-based instrumentation accordingly.
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5.2.2 Generative Heuristic Micro-benchmark

Creating a generative heuristic micro-benchmark suite that can automatically
generate representative synthetic workloads is another area of potential
research. These synthetic workloads can be used to stress test HPC systems
and performance analysis tools under various conditions. By using eBPF
to profile these synthetic workloads, researchers and developers can gain
valuable insights into system behavior and identify potential performance
bottlenecks.

5.2.3 Reproducible Performance Settings Database

Building a comprehensive and reproducible performance settings database
is crucial for the HPC community. This database can store a wide range
of performance configurations, including eBPF instrumentation settings,
runtime parameters, and system characteristics. Researchers and practi-
tioners can then use this database to share and compare performance results
across different HPC systems and applications, promoting transparency and
reproducibility in performance analysis.

These future research areas can extend the capabilities of eBPF-based
HPC performance methods and address some of the challenges faced in
designing efficient and scalable performance analysis tools. By exploring
these avenues, the HPC community can advance towards a more unified and
standardized approach to performance analysis, benefiting a wide range of
applications and architectures.
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[23] A. Knüpfer, C. Rössel, D. A. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
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