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Abstract

Recent text-to-image models can generate high-quality, diverse result images
only based on text prompts. However, it is difficult to correctly interpret in-
structions specifying the layout of compositional scene images using only text.
When describing individual objects, text often requires lengthy sentences to
convey constraints effectively. However, even lengthy text descriptions for
complex scene images still fail to enable the diffusion models to compre-
hend the intricate spatial relationships and relative scales among objects. In
addition, there is the issue of object loss in the conventional text-to-image
diffusion models.

In this thesis, we propose a sketch-based method to control the position
of corresponding objects in image generation and solve the issue of object
disappearance in state-of-the-art diffusion models. The pre-trained text-to-
image latent diffusion model was utilized by the proposed method as the
image generator without additional fine-tuning or training. We manipulate
the cross-attention layers used by the model to connect textual and visual
information via the input sketch and guide the image reconstruction with
the given desired layout. Specifically, we partition the model into two stages.
In the feature extraction stage, the sketches are segmented into individual
objects using the image segmentation approach, and the obtained bounding
boxes and labels are then used as position-guided inputs to the attention
layers of the diffusion models. In the image generation stage, the proposed
model utilizes Latent Diffusion Model (LDM) as the generator to generate
corresponding images. In the early stages of the diffusion process, the object’s
position is influenced by the sketch’s object position guidance in generating
the attention maps.

We conduct experiments quantitatively and qualitatively to evaluate the
proposed model’s effectiveness. In qualitative experiments, we show the po-
sition control of the proposed method. Compared with LDM, the proposed
model can control the precise positions of objects in the generated image and
effectively solve the issue of object loss. We also explore that the positions of
objects in the generated image are determined early in the diffusion process.
In addition, We further demonstrate its versatility by changing the position
relationships and relative scales in sketches. We demonstrated that after al-
tering the spatial relationships and relative scales among sketch objects, the
generated objects in the image could change accordingly, even if it contra-
dicts the content of the text. In quantitative experiments, we compared the
proposed model with LDM and Generative Adversarial Networks (GANs).



We show excellent image quality (21.04 FID value) than GANs (143.1 for
pix2pix, 141.5 for SketchyGAN, 87.6 for SketchyCOCO).
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Chapter 1

Introduction

Image generation is currently in a stage of rapid development with new
methods constantly emerging. Researchers aim to improve generated im-
ages’ quality, diversity, and controllability, and explore broader application
areas[10, 11, 12], such as face generation[13, 14], image restoration[15], and
image style transfer[16]. In the early stages of image generation, the meth-
ods relied on handcrafted feature extraction and statistical models. For in-
stance, the textures of input images were modeled and used to synthesize
new images with similar textures[17]. The development of deep learning-
based approaches, particularly Variational Autoencoders (VAE), autoregres-
sive models, and Generative Adversarial Networks (GAN), has advanced and
improved image generation approaches. VAEs stood among the pioneering
deep learning-based generative models. VAEs combine the encoder-decoder
architecture with probabilistic graphical models to learn latent representa-
tions for generating images. VAEs can produce relatively realistic images but
suffer from issues like blurry images and latent variable collapse[18, 19, 20].
Autoregressive models are sequence generation models where each element in
the generated sequence depends on the previously generated elements. The
latest autoregressive Transformer model, CogView, has been introduced as
a solution for the task of generating images from text[21]. CogView demon-
strates excellent performance in text-image ranking, style transfer, and super-
resolution. One drawback of CogView is the sluggish generation process,
which is typical for auto-regressive models due to their token-by-token image
generation approach. GANs marked a milestone in the field of image gen-
eration. GANs consist of a generator and a discriminator, which engage in
an adversarial training process to make the generator generate images that
progressively resemble real data distribution[22, 23]. In addition, conditional
generative models allow additional conditions to be specified during image
generation to increase the control and flexibility of the generation process,
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such as providing sketches or text descriptions to control the features of gen-
erated images[24, 25].

The diffusion model is undoubtedly one of the most revolutionary tech-
nologies that have surfaced in the past few years. In computer vision and
computer graphics, new text-to-image generation methods have demonstrated
remarkable image quality. Such as Stable Diffusion (SD)[1], DALL-E[26], and
GLIDE[27], that are shown in Figure 1.1 and Table 1.1. In particular, we re-
port both SD and SD-2.1, as SD-2.1 enhances negative prompts and portrait
accuracy, making the images more refined and allowing non-standard reso-
lutions. Inspired by non-equilibrium thermodynamics, Sohl-Dickstein et al.
defined a Markov diffusion step chain, which introduces random noise to the
data samples gradually and learns the inverse diffusion process to reconstruct
the desired image samples from the noise subsequently[28]. Denoising Diffu-
sion Probabilistic Models (DDPM) improves the quality of generated images
further by introducing denoising priors on diffusion models[29]. However,
generating samples from DDPM by following the reverse diffusion process
is prohibitively slow. Denoising Diffusion Implicit Models (DDIM) intro-
duce invertible mapping to enhance both the quality and efficiency of image
generation[30]. In addition, Latent Diffusion Model operates the diffusion
process in the latent space instead of the pixel space, leading to lower time
costs and faster inference process[1]. Presently, diffusion models have sur-
faced as the latest cutting-edge category of deep generative models. These
models have disrupted the long-standing dominance of GANs in the demand-
ing field of image synthesis and have demonstrated promise across various
domains, such as computer vision[31], multi-modal modeling[32], and natu-
ral language processing[33]. In addition, diffusion models have the capacity
to greatly amplify the productivity of professional artists and have attracted
widespread interest from the general public in practical applications such as
art design and creation.

Scene image generation is a challenging task in the field of image gen-
eration. Scene images typically involve the combination of multiple objects
and elements, such as humans, animals, and backgrounds, with contextual
relationships between them. In scene image generation, the model needs to
capture various elements and details in the scene while maintaining the real-
ism of the generated image[7]. Additionally, the model must understand and
preserve semantic connections between objects during the generation pro-
cess, ensuring overall coherence and consistency in the generated images. To
address these challenges, researchers have proposed innovative methods, such
as attention mechanisms[34], multimodal information fusion[35], and graph
neural networks[36], to enhance the performance and quality of scene image
generation models.
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Text prompt DALLE-mini
Stable

Diffusion
Ours

A bike to the 
right of a fire 

hydrant

GLIDE CogView

An airplane 
above a car

A dog below
a traffic light

A cow to the 
left of a sheep

Stable
Diffusion-2.1

Figure 1.1: The generated results of typical text-to-image generative models.
Most of the text-to-image models can not comprehend the corresponding po-
sition relationships in the text prompt. However, we finish position guidance
for the objects of generated images by the cross-attention maps.

Model FID(↓)
GLIDE[27] 12.24

CogView[21] 27.10
DALLE[26] 17.89

Stable Diffusion[1] 12.63

Table 1.1: The FID values of well-known text-to-image generative models
evaluated on the MS-COCO dataset.[9].
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A girl is 
standing on 

a road

A girl is standing 
on a road, a 
rainy day

A beautiful girl is 
standing on a 

road, a rainy day, 
anime

A beautiful girl is 
standing on a road, 

wears dress, 
crying, a rainy day, 

anime

A beautiful
girl ······ anime,
to the left of a 

white dog

A beautiful
girl ······ a white 
dog, looking at 

cars

Complex

A beautiful
girl ······ looking 
at cars, holding 

an umbrella

A beautiful
girl ······ holding 

an umbrella, 
under a traffic 

light

Figure 1.2: The generated results of Stable Diffusion V2.1[1]. As the textual
prompts become increasingly complex, Stable Diffusion struggles to com-
prehend the depicted scene images well and encounters the issue of object
omission (the red part is newly added text prompts).
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Despite the successes, the powerful pre-trained diffusion models still lack
a high level of control that can guide the spatial properties of the scene im-
ages. Specifications in text-based image generators of diffusion models are
textual. Converting text accurately into visual content is a complex task.
Models need to precisely understand the semantics and context of the text,
and map it to appropriate image feature representations. While the text
is relatively easy to obtain and possesses a vast library of high-level con-
cepts, the text is not an excellent way to express fine-grained visual details
in images. As shown in Figure 1.2, scene images typically have multiple
objects, backgrounds, and environmental elements, exhibiting high complex-
ity and rich semantic information. For complex scenes, lengthy and intricate
text descriptions are often required, involving complex semantic relationships
and multiple objects[37]. Generating models struggle to maintain consistency
and coherence when faced with long textual descriptions, resulting in issues
of blurry or inaccurate generated results and object loss.

In fact, in Stable Diffusion[1], current state-of-the-art image generators
struggle to effectively comprehend straightforward layout instructions spec-
ified in text form. As an illustration, when given the text prompt ”a cow is
grazing on the left of the dog,” there is indeterminately about whether the
resulting positional arrangement of the objects will align with the intended
layout. As shown in Figure 1.3, the position between objects is changed from
“left” in the text to “up” in the image. In the case where text is difficult
to fully control the positional guidance, the typical text-to-image generative
model lacks the control method in the generation process. This is mainly
because diffusion models lack explicit positional guidance during the image
generation process. Diffusion models belong to the category of probabilistic
generative models, where the core idea is to iteratively generate real images
from noisy images. At each step, the model focuses on updating the image’s
pixel values without considering the pixels’ positional information.

As mentioned above, the current diffusion models face the following is-
sues: 1) the text prompts are difficult to describe the semantic information,
especially in scene images; 2) text-to-image generation models lack posi-
tion control of generated results; 3) diffusion models may lose the objects
that depicted in text prompts. To solve these issues, we employed multi-
modal and two-stage image conditioning methods. Research on multi-modal
image generation involves integrating information from multiple perceptual
modalities into image generation tasks. These perceptual modalities can be
various forms of data, including images, text, and sketches, providing com-
plementary information to help generate richer and more realistic images[38].
Multi-modal methods are widely applied in conditional image generation to
enhance the image quality and effectiveness of image synthesis[39]. Sketches,
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A cow is grazing 
on the left of 

the dog.

Text Image

······
······

Diffusion Model

Text-to-image generative model

Figure 1.3: A typical text-to-image diffusion model[1] (existing models have
poor control over details).

Sketch

Text

A plane is above 
an elephant.

Diffusion 
Model

Instance 
Segmentation

Guidance

Generated Image

Feature Extraction

Image Generation

𝑨𝒊𝒓𝒑𝒍𝒂𝒏𝒆

𝒆𝒍𝒆𝒑𝒉𝒂𝒏𝒕

Figure 1.4: Based on the diffusion model, the proposed method is guided by
the sketch’s segmentation. The proposed method does not necessitate any
further training of the pre-trained text-to-image diffusion model.
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as an intuitive way of human-computer interaction, express the composi-
tion of scenes and relationships between objects. Compared to other inputs,
sketches more directly capture users’ ideas. Sketches can supplement in-
formation that is difficult to describe in text and provide precise location
guidance for diffusion models. In addition, the two-stage model decomposes
complex image generation tasks into two relatively simple stages, making
the model easier to adjust and optimize. In the first stage, it can learn an
effective representation of the conditional information, which better guides
the generation of images in the second stage[40, 25].

In this thesis, we propose the sketch-based scene image generation method
with two-stage latent diffusion model. As shown in Figure 1.4, we try to in-
tervene in the image generation process by adding sketches as new control
conditions and altering the attention layers in the diffusion process. In the
first stage, we utilize instance segmentation to extract object locations and
labels from sketches and encode them as position guidance of the generation
process. In the second stage, the pre-trained LDM generates images accord-
ing to the input text prompts, where the objects’ positions will follow the
position guidance of the sketches. Our proposed method gets reliable layout
control without the need for additional training, while still maintaining the
quality of the generated images. The advantage of our method is that it pro-
vides the ability to precisely control the location of output images via input
sketches, making the generated results more in line with requirements.

We list our main contributions as follows:

• We propose a sketch-based scene image generation model, which inter-
venes with the spatial properties in attention layers of diffusion models
to control the generated objects’ positions.

• The proposed model can effectively improve the object loss issue that
occurs in the diffusion models.

• We conduct both quantitative and qualitative evaluations to assess the
effectiveness of our approach in achieving image position control..
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Chapter 2

Related Works

2.1 Diffusion Model

In image generation, diffusion models outperform GANs and VAEs. It is
effective and easy to implement, producing images of excellent quality. First
introduced by Sohl-Dickstein et al.[28] and later advanced by Song et al.[41]
and Ho et al.[29]. In recent times, numerous text-image models of significant
scale have surfaced, such as Imagen[42] and DALLE-2[43], demonstrating
unprecedented semantic generation.

Diffusion models attempt to transform a simple distribution of random
noise into data samples through a series of transformations. It mainly consists
of two processes: forward diffusion process and reverse denoising process
(inference process). In forward diffusion process, a random image is sampled
from the data distribution, and Gaussian random noise is gradually added
to the image through a fixed process until it becomes pure noise. In reverse
denoising, starting from pure noise, the process gradually restores it to a
real image. As shown in Figure2.1, diffusion models[44] iteratively blurs and
adds noise to the image, then gradually restores the details of the image to
generate the final image samples. Specifically, diffusion models simulate the
diffusion process by introducing a time step. The generation process starts
with a random noisy image, and the image is updated based on the current
image state and the known noise at every time step. The diffusion model
gradually restores the image to its original state through multiple iterations
and gradually reduces the noise intensity.

Diffusion models can well preserve the texture and details of the image,
and the generated results have good visual effects. These models were also
able to produce increasingly diverse images and were shown to be immune to
mode collapse. However, diffusion models also have some limitations. First,
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Diffusion  Process

𝑥0 𝑥200 𝑥400 𝑥��� 𝑥�

UNet

Update inputNoise Prediction
timestep 𝑡 − 1

Timestep

Estimate the 
image 𝑥���

Figure 2.1: The diffusion process in diffusion models. Diffusion models re-
cover data from Gaussian noise by progressively removing prediction noise
at each time step using a series of Markov chains. xt is the image in the
timestep t, T is the total timestep.
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the training process of the diffusion models is relatively complex, requiring
multiple diffusion steps and sampling iterations, resulting in a long training
time. Second, the generation speed is slow and images cannot be generated
in real-time. In addition, parameter selection has a great influence on the
generated results. Careful adjustment and selection of appropriate parameter
settings are required.

2.2 Conditional Image Generation

Conditional Image generation is an image generation technique that controls
the generation process by introducing conditional information to generate
images that match given conditions. These conditions can be textual cap-
tions, semantic labels, auxiliary images, sketches, etc. Conditional image
generation can be used in a variety of tasks, including image editing[45],
image generation[43], image transformation[46], etc.

Compared with traditional unconditional generation methods, conditional
image generation introduces additional input conditions, enabling the gener-
ator to generate images with specific properties based on conditional infor-
mation. In previous studies, conditional image generation based on GANs is
a common method, which combines the generative ability of GANs and con-
ditional information to generate images with specific properties. A proposed
method[47] addresses the challenge of conditional image-to-image transla-
tion, where the objective is to convert an image from the source domain
to the target domain, taking into account a given image in the target do-
main as a condition. They address this issue using unpaired data, employing
GANs and dual learning techniques. Lifelong GAN[48] delves into the life-
long learning challenge for generative models, allowing a trained network to
adapt to new conditional generation tasks without erasing knowledge of pre-
vious tasks, all while relying solely on access to the training data for the
current task. In Lifelong GAN, knowledge distillation is utilized to transfer
accumulated knowledge from previous networks to the new network, allowing
for image-conditioned generation tasks in a lifelong learning context.

Different from the mature conditional image generation of GANs, the
conditional image generation of diffusion models is still under exploration.
ControlNet[49] puts forward a neural network structure designed to control
pre-trained diffusion models, facilitating the integration of supplementary
input conditions. Two copies of a large diffusion model are duplicated by
ControlNet with pre-trained weights. The capabilities learned from a vast
number of images are preserved in the locked copy, whereas the trainable copy
undergoes fine-tuning on task-specific datasets to acquire conditional control.
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Another approach encodes conditional information into latent embeddings,
which are then mapped to intermediate layers of U-Net via cross-attention
layers. In this way, GLIGEN[50] implements bounding boxes, reference im-
ages, and keypoints as conditional information to control image generation
based on the latent diffusion model. This new method endows new grounding
controllability over existing text-to-image diffusion models.

The advantage of conditional image generation is that it provides greater
control and customizability, enabling users to generate images with specific
properties as desired. However, conditional image generation also faces some
challenges, such as the accuracy and completeness of conditional information,
the diversity, and scale of training data, etc.

2.3 Sketch-Based Image Generation

As an intuitive way, sketches are widely used in various studies. Generat-
ing lifelike images from freehand sketches poses challenges in the fields of
computer graphics and computer vision.

Prior methods either require precise edge maps or depend on retrieving
existing images. SketchyGAN[6] introduced a new GAN technique capable
of generating lifelike images from 50 classes, encompassing airplanes, horses,
and couches. This method did not retrieval the images at test time and
directly copy input edges. Contextual GAN[51] use sketches as weak con-
straint, where sketches play a crucial role in providing the image context
necessary for completing or generating the output image. This model facil-
itates straightforward and efficient learning of the joint distribution within
the same image-sketch space, thereby avoiding the complexities involved in
cross-domain learning. EdgeGAN[7] presented the first framework to gener-
ate realistic images from freehand scene sketches. This method also provided
a large-scale freehand sketch dataset called SketchyCOCO to facilitate the
research of object-level image generation from freehand sketches.

Recently, sketch-guided image generation based on diffusion models has
also been increasingly developed. A compact per-pixel MLP network, called
LGP[52], has been introduced to convert latent features of noisy images into
spatial maps. With this method, the user gains intuitive control for the input
sketches and semantic control for the output images. However, the quality of
the results in this model may decreases on intricate scenes containing a blend
of unclear and uncertain meanings. In DiffFaceSketch[14], a Multi-Auto-
Encoder (AE) is employed to encode diverse sketches capturing different
facial regions, converting them from pixel space to a latent space. This
approach allows the model to compress the sketch input’s dimensions while
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retaining the geometry-related details of local facial features.
The advantage of the sketch-based image generation method is that it

intuitively guides the image generation process. Sketches as input provide
precise control over the desired image structure and features. However, there
are still some issues, including the accuracy and diversity of the sketches,
and how to maintain the details and authenticity of the generated images.

2.4 Two-Stage Image Generation

Two-stage models decompose a complex task into two independent stages to
solve. These staged approaches are commonly employed to address intricate
tasks, making the tasks easier to implement, and improving task efficiency
and performance.

In the fields of computer graphics and computer vision, two-stage models
have achieved remarkable results in many tasks. DualSlide[53] introduced a
two-stage interface system based on sketches, encompassing global and local
stages, to offer slides design by image retrieval and user guidance. During
the global stage, a heat map canvas was presented to illustrate the distribu-
tion of all slide layouts within a dataset. In the local stage, comprehensive
references and guidance can be given to aid in the design of slide content.
Through a two-stage design strategy, DualMotion[54] facilitates the combi-
nation of global motions of lower limbs and local motions of upper limbs from
a database. In the global design stage, users have the flexibility to initiate
motion design by sketching a preliminary trajectory of body or lower limb
movement. Subsequently, in the local design stage, users further refine the
upper limb motions by sketching multiple relative motion trajectories.

In image generation, two-stage models are widely applied to conditional
image generation for generating high-quality and diverse images. A two-
stage drawing assistance system proposed by DualFace[13] provides users
with global and local guidance. The global guidance assists users to draw
contour lines for faces, while the local guidance aids in drawing facial part
details. AniFaceDrawing[55] adopted a latent space exploration method of
StyleGAN[22] with a two-stage training method to generate high-quality
anime portraits. In the initial stage, an image encoder of StyleGAN is uti-
lized and trained by AniFaceDrawing as a teacher encoder. In the subsequent
stage, it emulated the drawing process without the need for any supplemen-
tary data. StackGAN[25] is a two-stage image generation model that can
generate realistic images from text descriptions. The first stage produces a
rough image layout, and the second stage refines and adds details to produce
a realistic image.
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Figure 2.2: The framework of CLIP[2]. (a) CLIP co-trains an image encoder
and a text encoder simultaneously to correctly associate a batch of (image,
text) training examples and (b) the zero-shot prediction. Where EI is the
image encoder, ET is the text encoder, In is the image tokens, and Tn is text
tokens.

Two-stage models have achieved significant success in various computer
vision and computer graphics tasks. In this thesis, we aim to apply the two-
stage method to address the issue of position control in the image generation
process of the diffusion model. We decompose the generation process into
two stages. Position guidance is provided to the model from sketches in
the first stage, and a pre-trained text-to-image diffusion model is utilized to
generate images in the second stage.

2.5 Contrastive Language-Image Pre-training

Contrastive Language-Image Pre-training (CLIP) is a powerful vision-language
pre-training model proposed by OpenAI[2]. On a dataset of large scale image-
text pairs gathered from the internet, CLIP achieves state-of-the-art visual
concepts. Following pre-training, the model leverages natural language to
refer to learned image representations, facilitating zero-shot migrated to fol-
lowing tasks. The primary goal of CLIP is to achieve joint representation
learning of images and texts within a unified framework, enabling the model
to comprehend the relationship between vision and language.

As shown in Figure 2.2, the main structure of CLIP consists of a text en-
coder and an image encoder, which compute embeddings for text and images
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respectively. The text encoder employs the Transformer[34], while the image
encoder uses two models, ResNet[56] and Vision Transformer (ViT)[57]. The
encoded image and text vectors are mapped to a joint multimodal space,
producing new vectors that can be directly compared (image vector Ie and
text vector Te, e is a natural number). Subsequently, the similarity between
the text vector and the image vector is then calculated to predict whether
they form a pair.

The unique feature of the CLIP lies in its ability to automatically learn
the correlation between vision and language without the need for image-
text pairing or alignment. It achieves this through unsupervised learning,
enabling CLIP to handle data from different languages and domains, making
it highly versatile for multilingual and multimodal tasks.

CLIP has received extensive recognition and demonstrated impressive
performance in diverse tasks related to computer vision (CV) and natural
language processing (NLP). It excels in tasks such as image retrieval[58] and
image generation[1].

2.6 DeepLab-V2

DeepLab-V2 was proposed by Chen et al initially. for the task of seman-
tic image segmentation using deep learning[59]. Sketchyscene customized
DeepLab-v2 for segmenting scene sketches[60]. DeepLab-V2 won first awards
in the PASCAL VOC 2012 Semantic Segmentation Challenge, demonstrating
its excellent performance.

DeepLab-V2 is a Fully Convolutional Network (FCN) based model that
transforms a classification model into a segmentation model by substituting
the final fully connected layers with fully convolutional layers. DeepLab-
v2 encompasses three crucial components: atrous spatial pyramid pooling
(ASPP), atrous convolution, and the application of fully-connected Condi-
tional Random Field (CRF) for post-processing. Traditional convolutional
kernels have closely arranged sampling within their receptive fields, while
the atrous convolution technique introduces holes (or dilations) within the
kernels, making the sampling sparser and thus enlarging the receptive fields.
This allows the model to obtain more extensive contextual information and
comprehend the semantic content of the image. The main idea of ASPP is to
perform multi-scale information extraction using different dilation rates. It
is analogous to feature extraction at different receptive fields, and the owned
features are then fused to obtain a more comprehensive contextual under-
standing. In the post-processing stage of segmentation results, DeepLab-V2
utilizes a CRF layer to smooth the predicted results. The CRF layer in-
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troduces conditional dependencies between class labels, reducing small seg-
mentation errors and making the segmentation results more coherent and
refined.
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Chapter 3

Conditional Generation with
Latent Diffusion Model

In this section, we first introduce the preliminaries of the diffusion model
in Section 3.1. We then introduce the method of the latent diffusion model
(LDM) in Section 3.2 and the attention mechanism in Section 3.3. In Section
3.4, we discuss the effect of the attention maps in the latent diffusion model.
In Section 3.5, we introduce the backbone of LDM. Our framework and
implementation details will be discussed in Chapter 4.

3.1 Diffusion Model

Compared with GANs, the diffusion model excels in the field of image gen-
eration, achieving superior results. For example, Dhariwal et al. showed
that diffusion models get FID values on ImageNet 128 × 128 (2.97 value),
ImageNet 256 × 256 (4.59 value), and on ImageNet 512 × 512 (7.72 value).
The results match BigGAN-deep, the latest high-resolution, high-quality im-
age generation GAN[10], even with a minimal number of 25 forward process
per sample, and diffusion models preserve a more comprehensive coverage
of the distribution[61]. However, the diffusion model requires repeated it-
erative calculations with increased training and reasoning costs. They also
reported that estimated takes 150 − 1000 days to train on NVIDIA Tesla
V100. Thus, we aim to utilize the pre-trained diffusion model to generate
position-controlled scene images without fine-tuning or retraining.

The working principle of the diffusion model is to learn the informa-
tion decay caused by noise and then use the learned patterns to generate
images[29]. As shown in Figure 3.1, diffusion models contain both forward
diffusion process and reverse denoising (inference) processes. The forward
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Figure 3.1: In the forward process, noise is introduced into the data samples
gradually. In the reverse process, the noise sample is gradually denoised to
generate images.

process follows the concept of a Markov chain and turns the input image
into Gaussian noise. Given a data sample x0, the Gaussian noise is progres-
sively Increased to the data sample during T steps in the forward process,
producing the noisy samples xt, where the timestep t = {1, . . . , T}. As t
increases, the distinguishable features of x0 gradually diminish. Eventually
when T → ∞, xT is equivalent to a Gaussian distribution with isotropic
covariance. In addition, the inference process can be understood as a se-
quence of denoising autoencoders with same weights ϵθ (xt, t) (ϵθ is typically
implemented as U-Net[5]), which are trained to forecast denoised images of
their corresponding inputs xt. The corresponding objective function can be
written as follows:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t)∥22

]
(3.1)

where t is uniformly sampled from {1, . . . , T}, ϵ is the sample noise from
normal distribution, Ex,ϵ∼N (0,1),t means the evidence lower bound (ELBO)
associated with the diffusion model[1].

3.2 Latent Diffusion Model

The Latent Diffusion Model (LDM) [1] proposed a method of performing
the diffusion process on the latent space, which can greatly reduce the com-
putational complexity with high-quality image results. As shown in Fig-
ure 3.2, LDM can generate detailed images, and it also performs well on
high-resolution image generation tasks (such as landscape image generation
and megapixel images). In addition, LDM also can conduct unconditional
image generation, inpainting, and super-resolution tasks.
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Figure 3.2: Landscape images generated by LDM (version: XL). The images
in the first row were generated with 768 × 768 resolution. The generated
images also can generalize to larger resolutions (in the second row: 1024×384;
in the third row: 1024 × 1024 (left), 2048 × 2048 (right)).
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.

The difference between LDM and the traditional diffusion model[29] is
that LDM does not directly operate on the images but operate in the la-
tent space. LDM calls this method perceptual compression. The percep-
tual compression model is based on previous work[62] and composed of an
autoencoder that underwent training through a patch-based adversarial ob-
jective and a blend of a perceptual loss. LDM reduces the dimensionality
of the data by projecting it into a low-dimensional, efficient latent space, in
that high-frequency, imperceptible details are abstracted away. Perceptual
compression is typically employed to reduce computational complexity, save
storage space, and improve the efficiency of model training and inference.

The framework of LDM is illustrated in Figure 3.3[1]. LDM trained an
AutoEncoder, including an encoder E and a decoder D. After the image x is
compressed by the encoder E to latent representation z, the diffusion process
is performed on the latent representation space. LDM has a similar diffusion
process to the standard DM. Finally, LDM infers the data sample z from the
noise zT and D restores the data z to the original pixel space and gets the
result images x̃.

Specifically, given an image x ∈ RH×W×3 with height H, wigth W in RGB
space , LDM first utilizes an encoder E to encode the image x into a latent
representation space:

z = E(x) (3.2)

where z ∈ Rh×w×c with height h and width w, the constant c represents the
number of channels. The encoder E downsamples the image by a factor f =
H/h = W/w (LDM discussed the impact of different c and f on the model
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Figure 3.4: The framework of cross-attention mechanism. Where X1 and X2

are different inputs (such as text and sketch), Z is the output, WQ, WK , and
WV are learnable projection matrice in LDM. The cross-attention mechanism
calculates the attention score according to K and Q, and applies V to the
attention score to obtain the final output.

in the appendix). Then D recover the image from the latent representation
space:

x̃ = D(z) = D(E(x)) (3.3)

Since a pre-trained perceptual compression model is introduced in LDM,
which includes E and D, the model can obtain the noise sample zt in latent
space by encoder E during training (corresponds to the xt in pixel space)
and conduct the forward diffusion process in the latent representation space.
Thus, the Equation 3.1 can be written as follows:

LLDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t)∥22

]
(3.4)

3.3 Attention Mechanism

The attention mechanism is a key component in computer vision tasks,
such as image recognition and object detection. It allows models (such as
Transformer[34], BERT[63] and GPT[64]) to focus on specific regions or fea-
tures of an input image that are considered important for the task. Self-
attention and cross-attention are two variations of the attention mechanism
commonly used in deep learning models. Especially, self-attention is used to
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calculate the relationship between elements in the input mode, and cross-
attention is designed to calculate the relationship between elements in mul-
timodal input. The main difference between them is the source of queries
(Q), keys (K), and values (V ) used to calculate the attention score.

We focus on cross-attention because cross-attention allows multimodal
inputs (such as text, sound, and image). As shown in Figure 3.4, the cross-
attention asymmetrically combines two embedding modes of the same di-
mension, while one mode is used for calculating Q, and the other mode is
used for calculating K and V .

LDM can be used to explore conditional image generation, which is mainly
obtained by expanding the conditional denoising autoencoder ϵθ (zt, t, y). y
is the conditional information that controls the process of image generation.

Specifically, LDM implements ϵθ (zt, t, y) by adding a cross-attention mech-
anism to the U-Net backbone network. In order to easily introduce various
types of conditioning y (such as text, layout, sketch, etc.), LDM introduces
a domain-specific encoder τθ, which is used to map y to an intermediate
representation τθ(y) ∈ RM×dτ , where M is index dimensionality (such as
M = 50176 for 224× 224 ImageNet images[65]) and dτ is channel dimension
of τθ.

Finally, LDM integrates the conditional information into the middle layer
of U-Net through cross-attention layers mapping. The implementation of the
cross-attention layer is as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V (3.5)

, with Q = W
(i)
Q · φi (zt) , K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y) of dimension d .

where φi (zt) ∈ RN×diϵ is an intermediate representation of U-Net, N is the
latent’s index dimension. WQ, WK , and WV are learnable projection matrice
in LDM.

In this case, the Equation3.4 can be deduced as:

LLDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, τθ(y))∥22

]
(3.6)

3.4 Attention Maps

LDM proposed the cross-attention method to achieve multi-modal training
to realize the conditional image generation task. The CLIP encoder encodes
provided text as an embedding sequence during a generation process, which is
subsequently processed into keys and values K, V . LDM uses latent seeds to
control the diversity of generated samples. The generator creates the initial
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Figure 3.5: The text tokens compose of a start token [SOT], text content,
and many padding tokens [EOT], and the attention maps contain the object
locations corresponding to the text tokens[3].

latent noise according to the latent seed, and the noise is encoded as visual
tokens and calculated for Q. The attention maps M can be calculated as
follows,

M = softmax

(
QKT

√
d

)
(3.7)

The attention map M controls the spatial distribution of values V , which
contains rich semantic information.

Chen et al.[3] explored the cross-attention maps and gave insights. As
shown in Figure 3.5, all of the text tokens compose of a start token ([SOT])
and many padding tokens ([EOT]). The padding tokens ensure that the input
prompts with different lengths are mapped into the tensor to get the text
tokens with the same length. Upon analyzing the [SOT] and [EOT] in detail,
it was discovered that the cross-attention maps of these tokens also possess
meaningful semantic and spatial information. The key discovery is that cross-
attention maps have a predominant influence on determining the objects’
position of the generated images.

Hertz et al.[4] also reached a similar conclusion - The spatial arrangement
and shapes of objects in the generated image are contingent on the cross-
attention maps. As shown in Figure 3.6, the pixels exhibit a stronger affinity
towards the words that describe them. For example, the pixels of the bear ex-
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Figure 3.6: The attention maps could place a higher focus on the homologous
objects, and the objects’ positions have been determined by the attention
maps early in the diffusion process[4].

hibit correlation with the word “bear”. In addition, the cross-attention maps
of adjectives affect the image representation ability of corresponding nouns.
Interestingly, The image’s structure is established during the initial stages
of the diffusion process. Most importantly, the degree to which attention is
injected into the diffusion process affects the quality of the generated results.
The greater the number of diffusion steps in which cross-attention injection
is applied, the stronger the consistency between images and the conditional
information. However, applying the injection throughout all diffusion steps
does not necessarily achieve the optimal result.

3.5 U-Net

U-Net is a deep learning model used for semantic segmentation tasks[5].
Its key feature is the adoption of an encoder-decoder architecture, which
efficiently performs semantic segmentation on images while requiring fewer
training samples.

As shown in Figure 3.7, the encoder of U-Net consists of a series of con-
volutional layers and pooling layers, progressively reducing the input image
size and extracting high-level feature representations. The decoder comprises
a series of transposed convolutional layers, aimed at gradually restoring the
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Figure 3.7: The architecture of U-Net (an illustration for the lowest resolution
of 32x32 pixels.)[5].

original image size and generating segmentation results. The decoder utilizes
transposed convolutions for upsampling and incorporates skip connections,
connecting features from the encoder to the decoder. This skip connection
design enables the transfer of information between the encoder and decoder,
aiding in preserving more contextual information and improving segmenta-
tion accuracy.

U-Net in LDM adds a time embedding module and spatial transformer
(cross-attention) modules to the basic encoder-decoder U-net. As shown in
Figure 3.8 Time embedding is the process of mapping time information to
a continuous vector space, allowing the model to learn and utilize temporal
relationships. LDM requires multiple iterations to iteratively predict noise,
using time embedding to encode time information into the network, enabling
U-Net to predict more appropriate noise at each iteration. LDM utilizes a
cross-attention module to control the fusion and interaction between textual
and image information. Specifically, the cross-attention module guides U-Net
to align certain regions of the noise matrix with specific information from the
text.
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Chapter 4

Sketch-Guided Image
Generation

We discuss the detailed composition of our proposed two-stage scene im-
age generation model with position control in this chapter. We first give
an overview of our proposed model in Section 4.1. We then introduce the
SketchyCOCO dataset in Section 4.2. We also introduce the two stages in our
proposed model. In the feature extraction stage, we utilize instance segmen-
tation to extract object locations and labels from sketches and encode them
as position guidance of the generation process (introduced in Section 4.3). In
the image generation stage, the pre-trained LDM generates images accord-
ing to the input text prompts, where the objects’ positions will follow the
position guidance of the sketches (introduced in Section 4.4). We continue
to deduce the cross-attention formula from Section 3.3 and introduce the
variations of the formula in our method.

4.1 Framework Overview

Different types of conditions have been considered in the latent diffusion
model, such as the example image, layout, and key points. Sketches can
contain information about the layout and composition of an image. It can
indicate the relative position and scale of major elements, as well as the
relationship between them. Layout and composition determine how the indi-
vidual elements in an image are arranged, affecting the overall look of the re-
sulting image. Additionally, sketches can provide information about objects’
scale and proportional relationships in an image. It can indicate objects’
scale, aspect ratios, and relative proportions between them. This is impor-
tant to ensure that the resulting images are properly scaled and realistic. In
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Figure 4.1: The framework of our model. The model first extracted the
sketch’s features and introduced them into the attention layers with caption
tokens to generate the images.

cases where detailed generation is difficult to easily control with text prompts
alone, we would like to directly intervene in the attention mechanism with
user-specified input sketches to generate corresponding position-controlled
images.

Our goal is to generate high-quality scene images with the position guid-
ance of human-drawn scene sketches. Our method set text prompt and sketch
as inputs, where the text prompt provides the global description and the
sketch provides the conditional control. Our proposed two-stage framework
uses a text-to-image diffusion model that has been pre-trained to generate
controllable images without additional training or fine-tuning. In this two-
stage model, the feature extraction stage constrains a set of constraints (po-
sition, label, etc.) extracted from the sketch and feeds them into attention
layers to influence the position and shape generation in the early stage of
the diffusion process. The image generation stage leverages the generative
capabilities of the latent diffusion model to generate images following the
position guidance from the feature extraction stage.

As shown in Figure 4.1, we use both a sketch and a text prompt as in-
puts. The text prompt is encoded into text embeddings by the encoder of
CLIP, called caption tokens in LDM, providing global semantic information
for LDM. The sketch serves as a conditional input and undergoes instance
segmentation. We employ the pre-trained DeepLab-V2 model to obtain cor-
responding labels and bounding boxes. The labels are encoded into tempo-
rary text tokens by the encoder of CLIP and combined with the upper left
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gories of objects and 3 categories of background freehand sketches.
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and lower right coordinates of the bounding boxes to form the final grounding
tokens. Finally, the grounding tokens are passed through an MLP network
and inputted into the attention layers of the LDM to provide the position
guidance for image generation.

4.2 SketchyCOCO Dataset

Many sketch datasets have been proposed, providing a crucial foundation for
the research and development of sketch-related algorithms. The QuickDraw[66]
dataset is a comprises of 50 million vector sketch images of 345 classes. It
contains a large number of freehand sketches covering a wide range of ob-
ject categories and concepts. However, since the sketches are drawn by users
within 20 seconds, some of the sketches in the dataset have lower quality
issues, such as being incomplete, blurry, or distorted in shape. Additionally,
the QuickDraw dataset does not include scene sketches.

SketchyScene[60] presented the first large-scale dataset of scene sketches,
with encompasses of over 29,000 scene sketches, (all objects in the scene
sketches come with grounding semantic and instance masks.) more than
7,000 pairs of scene templates and their corresponding photos, and over
11,000 object-level sketches. The sketches in SketchyScene are generated
or synthesized by users based on reference images, and all the sketches have
fine details and high quality. However, the majority of individuals are not
professionally trained artists, making it challenging for them to draw intricate
scene sketches, particularly when objects are in various shapes and poses.

In this case, we focus on the SketchyCOCO[7] dataset, a large-scale
dataset of hand-drawn scene sketches based on MS COCO Stuff dataset[67],
proposed to study sketch-based image understanding, retrieval, and genera-
tion tasks.

As shown in Figure 4.2, SketchyCOCO collects 20198 triplets of fore-
ground examples <sketches, images, edge maps> in 14 categories (airplane,
cat, giraffe, zebra, dog, elephant, fire hydrant, horse, bicycle, car, traffic light,
cow, motorcycle, sheep), 27683 pairs of background examples <sketches,
images> in 3 categories (cloud, grass, tree), 14081 pairs of intermediate
products <foreground image or background sketch, scene image>, 14081
pairs of scene sketch-image examples, and the grounding segmentation for
14081 paired scene sketches. The introduction of the SketchyCOCO dataset
provides a significant resource and benchmark for sketch-based research. It
enables researchers to explore the connection between freehand sketches and
images. The dataset’s diversity and richness make it a crucial research asset
in computer vision.
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Figure 4.3: The visualized results of feature extraction stage. We divide the
sketches into labels and bounding boxes and capture the coordinates of the
top-left and bottom-right corners of the bounding boxes.

4.3 Feature Extraction Stage

In the feature extraction stage, we focus on extracting position information
from the sketch for position control in the conditional generation. Inspired by
SketchyScene[60], We employ the segmentation model based on DeepLab-v2
as the segmenter S to complete the instance segmentation, which is cus-
tomized for segmenting scene sketches. Therefore, for the input sketch xs, it
can be expressed as S(xs).

As shown in Figure 4.3, after segmentation, the corresponding bounding
boxes and labels of the objects can be obtained. The labels l represent the
corresponding names, such as “cow”, “tree”, and “airplane”. The bounding
boxes b represent the coordinates[x1, y1, x2, y2], where (x1, y1) represents the
top-left coordinate and (x2, y2) represents the bottom-right coordinate. The
segmentation can be expressed as

(l, b) = S(xs) (4.1)

The labels will be encoded by the CLIP text encoder as the text tokens.
The text tokens will be combined with coordinates as grounding tokens and
inputted to LDM for conditional control. Thus, We define our model as a
composition of the caption and grounding sketch:

I = (c, e) (4.2)
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e = S(xs) (4.3)

where I is the generated image, c is the text caption and e is the grounded
tokens. e also can be expressed as e = (l, b).

4.4 Image Generation Stage

In the image generation stage, the pre-trained LDM generates images ac-
cording to the input text prompts with position guidance from the feature
extraction stage. As mentioned above in Section 3.3, the initial stages of
the diffusion process already establish the shape and position of the image.
Therefore, during the image generation stage, we use position guidance to
influence the position generation of objects on the attention maps in the ini-
tial stages of the forward diffusion process. Subsequently, we employ LDM
to generate images only based on text prompts.

4.4.1 Cross-Attention Layer

We first introduce the cross-attention and deduce the cross-attention formula
in our model. Cross-attention is a commonly used attention mechanism
for the processing of multimodal inputs. The application of cross-attention
can help the model to build correlations between different inputs, so as to
understand the semantic relationship between them.

During the diffusion process, the cross-attention mechanism is employed
to direct the image generation process, enabling the model to understand and
process images at different scales and levels. The cross-attention mechanism
combines the concepts of attention mechanism and cross-layer connections.
Its role is to establish efficient information transfer and interaction between
different layers of the model.

As shown in Equation 3.7, LDM integrates the conditional information
into the middle layer of U-Net through cross-attention layers mapping. In
the original latent diffusion model, Q comes from visual tokens generated
from latent seeds, and both K and V come from caption tokens in the text.

In our model, we kept K and V unchanged and still included the fea-
ture information in the caption. Inspired by the GLIGEN[50], We fuse the
obtained grounding tokens and visual tokens as Q to query in the attention
layers. Thus the Q can be expressed as

Q = v + β × tanh(γ) × e (4.4)

where v is the visual tokens from the latent seeds, β is a gated parameter
that will be introduced in Section 4.4.2 and γ is a learnable scalar.
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4.4.2 Gated Parameter β

For a diffusion process with T time steps, we can set a fixed time step αT to
divide the diffusion process, where α is a constant. When time step t ≤ αT ,
this indicates that the diffusion process is at an early time, at which point we
condition the control via set β = 1. At this time, the Q of attention layers
will be composed of grounding tokens e and original visual tokens v:

Q = v + tanh(γ) × e (4.5)

Therefore, we control the generation of positions early in the diffusion pro-
cess.

When t ≥ αT , the model set β = 0. At this situation, we use the original
generation ability of LDM for image generation. Thus, the Q of attention
layers will be the original visual tokens v:

Q = v (4.6)

Note that the model in this situation has nothing to do with the additional
input conditions, and the model maintains the original generation ability.

In summary, since the degree to which attention is injected into the diffu-
sion process affects the quality of the generated results, we divided the image
generation stage into two steps by β:{

β = 1, t ≤ αT Position guidance

β = 0, t>αT Standard inference
(4.7)

We think α should be a variable parameter. Since different values of α
will affect the ability to generate, we explored the impact of different α on
generation in the section 5.2. Users can choose the appropriate value of α
according to their design intentions.
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Chapter 5

Experiment and Results

We conduct qualitative and quantitative experiments to verify the image
quality and sketch input consistency of our model’s generated scene images.
In Section 5.1 we introduce the implementation details of our experiment.
We present the results of our qualitative evaluations (Section 5.2) and quan-
titative experiments (Section 5.3).

5.1 Implementation Details

Both stages of our model are implemented on the Ubuntu system, i7-13700KF
CPU, and a single NVIDIA RTX4090 GPU. In the conducted experiments,
we use the pre-trained LDM-V1.4[1] (that trained on the LAION-5B dataset[68])
as the proposed image generator. The LAION-5B dataset is a large-scale
graphic and text dataset that consists of 5.85 billion CLIP-filtered pairs of
image and text, including 2.3 billion image-English text pairs, 2.2 billion im-
ages, and the remaining 1 billion pairs are not limited to specific languages,
such as image names. The hyperparameters are shown in Table 5.1. All of
our sketch scene images from the SketchyCOCO dataset[7], which include 14
categories of objects and 3 categories of background freehand sketches.

In quantitative comparison with LDM, we use the 300 randomly sampled
sketches in the SketchyCOCO dataset to generate 300 images for evalua-
tion. We provided the corresponding text prompts manually. In quantitative
comparison with GANs (pix2pix[8], SketchyGAN[6], and SketchyCOCO[7]),
we utilize the 200 randomly sampled sketches with a single object in the
SketchyCOCO dataset for evaluation. The average generation time cost for
the images is 25.3 seconds.
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Hyperparamter
z-shape 32×32 × 3

T 1000
f 8

Noise Schedule linear
Channels 320

Depth 2
Conditioning CA

α 0.4
γ 0.6

Table 5.1: The hyperparameters used in the proposed model. z-shape is
the dimension of latent space, diffusion steps T and factor f are introduced
in Section 3.2, α and β are introduced in Section 4.4.

5.2 Qualitative Evaluation

To illustrate the difference between our model and the state-of-the-art main-
stream text-to-image model, we use Latent Diffusion Model[1] as a reference
to illustrate.

As shown in Figure 5.1, the state-of-the-art mainstream text-to-image
method obtains global information and generates an image from the text,
but it cannot further control the position information of the generated image.
We also compare with other text-to-image models, as shown in Figure 1.1.
Our model uses the scene sketch as additional supplementary information
to control the position generation of the scene image. It is verified that our
image has achieved a relatively good effect in terms of position control, and
all desired objects can appear in the corresponding position.

Different values of α will affect how much conditional information is in-
jected into the attention layers, and then affect the position information and
generation ability of image generation. We tried to explore the influences
by different α value settings in our model. As shown in Figure 5.2, When
no additional conditional information is injected, the proposed model only
generates images according to the text prompt information and according to
the original generation ability. The position is only controlled in the early
stage of the diffusion process, and the image can also be generated according
to the bounding boxes and labels of the sketches. Objects in the gener-
ated images can already appear in the correct position. In the third row,
we consider completely anomalous images. The original pre-trained model
misunderstands semantic information and loses objects. After injecting the
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Text

Sketch

Two zebras
graze on grass.

Ours

LDM

+

Input

Figure 5.1: The difference of generated results between our model and
LDM[1]. Our proposed method achieves the position guidance of an im-
age generated by a pre-trained text-to-image diffusion model, such as Stable
Diffusion [31].

position information of the sketch, the images are still generated according to
the corresponding position, even though the proportion relationship between
the “giraffe” and the “airplane” is completely abnormal.

As mentioned above, after noticing the phenomenon of object loss in
the original LDM model, we conducted further exploratory experiments to
verify that our model can help to improve the object loss issue. As shown
in Figure 5.3, When there are multiple objects in the semantics, the pre-
trained text-to-image LDM model will have situations of semantic loss and
disordered positions. After adding our sketch as an auxiliary, the generated
image can contain the correct number of objects and have the corresponding
position information.

Due to the inclusion of two different inputs in our model (text and
sketches), the text provides global semantic descriptions while sketches offer
detailed control over specific objects. To explore the relative influence of
these two inputs on image generation. As illustrated in Figure 5.4, under
the given text prompt, we deliberately alter the positions of objects in the
sketches to contradict the positional information described in the text. For
example, we give the location description in the text prompt as “left” in the
first row, but in the second, third, and fourth columns, we change the rel-
ative position in the sketches to “right”, “top”, and “bottom” respectively.
The generated images consistently depict objects positioned according to our
sketches, even if it contradicts the text.

We also conduct an experiment to verify the scale control of the condi-
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Text Sketch 𝛼 � 0

An elephant 
grazes on 

grass.

An airplane
and a giraffe

A zebra is on 
the left of 
another 
zebra.

𝛼 � 0.2 𝛼 � 0.5 𝛼 � 1

Figure 5.2: The generated images with different α values. In the first and
second rows, we consider the condition with a single object and two objects.
In the third row, we verified situations that are unreasonable in reality.

Text Sketch LDM Our model

A bicycle is 
on the left of 

the car.

A plane is 
above an 
elephant.

A fire hydrant
is on the grass 
to the left of a 

dog.

Figure 5.3: Our model can effectively improve the object loss issue that
occurs in the original LDM model.
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Sketch

Results

Prompt: A bicycle is on the left of the car.

Prompt: A plane is above an elephant.

Sketch

Results

Figure 5.4: We verified that the generated image will follow the positional
relationship of our sketch even if it contradicts the input text.

Prompt: A motorcycle is to the left of a dog.

Prompt: A horse is to the left of a car.

source sketch horse(enlarge),car(shrink) horse(shrink),car(enlarge)

source sketch motorcycle(enlarge),dog(shrink) motorcycle(shrink),dog(enlarge)

source sketch

Prompt: An airplane is above a bicycle.

airplane(enlarge),bicycle(shrink) airplane(shrink),bicycle(enlarge)

Figure 5.5: Our model can control the scale of objects in the generated image
by controlling the objects’ scale of the sketch.
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FID(↓) YOLO score( mAP / AP50 / AP75 )(↑)
LDM 21.42 0.5 / 2.4 / 0.4

Our model 27.34 21.6 / 42.0 / 21.7

Table 5.2: Comparison between the pre-trained LDM[1] and our model.

Model FID(↓)
pix2pix 143.1

SketchyGAN 141.5
SketchyCOCO 87.6

Our model 21.04

Table 5.3: We compare the proposed method with image generation methods
(pix2pix[8], SketchyGAN[6], and SketchyCOCO[7]) in image quality.

tional sketches. As shown in Figure 5.5, we change the scale of the objects in
the sketches with the text prompt constant, the corresponding objects in the
generated image will change accordingly, even if the generated image does
not conform to realistic logic at all.

In summary, we demonstrated the model’s ability to generate images with
specific positions, leveraging sketches as guidance. This model helps address
the issue of object misplacement in the original diffusion models. Through
the object loss and scale change experiments, we have found that sketches
exhibit stronger control in the attention layers compared to the original text
prompts. However, it is important to note that sketches that are against
common sense can lead to unnatural generated images (such as in the third
example of Figure 5.2, the giraffe is bigger than the airplane weirdly).

5.3 Quantitative Comparsions

We compare our model with the state-of-the-art methods on the sketch-to-
image task (pix2pix[8], SketchyGAN[6], and SketchyCOCO[7]). We also con-
duct a comparison study between our model with the LDM to demonstrate
the usefulness of our model for position control. Since prior text-to-image
methods do not support taking sketches as input, it is not fair to compare
with them on this metric. Thus, we only report metrics for the LDM as a
reference.

We employ Fréchet Inception Distance[69] (FID) as a metric to assess the
quality of the generated images. FID quantifies the similarity between ground
truth and generated samples. A lower FID value indicates that the feature
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Sketch OursSketchyGAN SketchyCOCO pix2pix

Figure 5.6: The single-object images generated by SketchyGAN[6],
SketchyCOCO[7], pix2pix[8] and our proposed model. Our proposed model
generates images with better quality and higher resolution than GANs.

distributions of generated samples are closer to real samples, implying better
quality of the generative model. Conversely, a higher FID value suggests a
larger discrepancy between the feature distributions of generated and real
samples, indicating the lower quality of the generative model. To evaluate
grounding accuracy (the correspondence between the input bounding box and
generated entity), we use the YOLO score[70]. The YOLO score is used to
indicate the confidence level of whether the target object is contained in the
bounding box. It can be viewed as a score that measures the probability or
confidence that a target exists. Therefore, the YOLO score can be regarded
as an index to comprehensively evaluate the object detection results, which
is used to measure the reliability of the bounding box and the localization
accuracy of the object.

As shown in Table 5.2, our model (27.34 FID value) performs less favor-
ably in terms of FID score compared to LDM (21.42 FID value). This is
largely due to the influence of the sketches’ positional control on the model’s
generation capability, particularly with sketches that exhibit unconventional
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relative proportions. However, our model has achieved success in terms of
YOLO scores (21.6, 42.0, 21.7 scores in average precision is better than 0.5,
2.4, and 0.4 scores of LDM), indicating that our model can generate corre-
sponding objects at the desired positions.

We conduct the comparison experiment between our proposed and several
image generation methods (pix2pix[8], SketchyGAN[6], and SketchyCOCO[7])
in FID value. Since the sketchyGAN and pix2pix are not models for scene
images, we just utilize the single object sketches in this situation (As shown
in Figure 5.6). As shown in Table 5.3, our proposed model gets the best
result (21.04 FID value) in image quality than previous work, due to the
strong generative ability of the diffusion model.
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Chapter 6

Conclusion and Limitations

6.1 Conclusion

In this thesis, we investigated the sketch-based position control by the pre-
trained latent diffusion model without fine-tuning or training. Our proposed
model has two stages, the feature extraction stage and the image generation
stage. In the feature extraction stage, the sketches are segmented by the
pre-trained segmentation model to obtain the labels and bounding boxes.
The labels and bounding boxes will be encoded as grounding tokens, which
are injected into cross-attention layers to guide the position for image gen-
eration. In the image generation stage, the model use pre-trained LDM to
generate images. The constant α divides the diffusion process into two steps.
We explored that different α will affect the generative ability of LDM and
positional control of generated images.

Our method can obtain the generated image, whose objects’ positions
are consistent with the sketches’, and effectively solve the object loss issue
of the original LDM. We also explored the control conditioning priority of
the attention layers will be greater than the original text prompt. Sketches
as conditional input can precisely control the relative position between ob-
jects, even if this position does not match the text description. In addition,
sketches have a significant effect on controlling the scale of the object. We
change the position and scale of the objects of sketches in the experiment,
the corresponding position and scale of the objects in generated images will
change accordingly, even if the content described by sketches is completely
contrary to text prompts. By controlling the position and relative scale of
the sketches, we can precisely control the position and scale of the generated
objects, which is difficult to achieve in the original text prompts.

Moreover, we attempted to explore the ability to generate freehand sketches
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(a) (b)

Figure 6.1: Free-hand sketch generation results that do not belong to the
SketchyCOCO dataset with text prompts (a): “a car and a motorcycle” and
(b): “an airplane and a cat”.

beyond the SketchyCOCO dataset. As shown in Figure 6.1,(a) demonstrates
a successful case where the model accurately predicted the objects in the
sketch and guided the generation of the image’s position. However, (b) illus-
trates a failure case where due to limitations in drawing ability, the intended
“cat” was misidentified as a “sheep”, resulting in conflicting conditional in-
puts and text prompts. Despite the image generated based on conditional in-
put, the output appears unnatural. Overall, free-hand sketches reflect human
creativity and artistry, allowing the proposed models to be widely applicable
to each user. However, due to differences in drawing skills and experience,
the quality of free-hand sketches varies, posing challenges in tasks such as
sketch segmentation and recognition.

We also conduct quantitative comparisons with LDM and GANs. The
results show that our proposed model achieves position control and gets
better image quality than GANs.

6.2 Limitations and Future Work

Our model still has many limitations. First, as shown in Figure 6.2, sketches
contain not only position information but also shape and details. Sketch lines
can represent an object’s boundaries and shapes. Major features can be pre-
sented by shading cues or some simple color markers to convey information
about lighting, shading, and color. As shown in the first row of Figure 6.3,
our current model is only limited to using the sketch to control position in-
formation and does not make full use of all the advantages of sketches. The
“elephant” in (a) faces left in the sketch but faces right in the generated
image. Similarly, the “horses” in (b) are facing opposite directions, and the
“horse” in the image is even incomplete. In (c), the “cloud” and “airplane”
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Position 
(Bounding box)

Shape 
(Outline)

Features and DetailsSketch

Figure 6.2: Sketch provides the structure and composition of the target im-
age, encompassing outlines, shapes, and detailed information.

are not match the shape in the sketch, even though the positions are correct.
In addition to bounding boxes and labels, we can extract edge lines and
masks that express detailed shape contours of sketches. Based on the de-
tailed contour lines, we can represent them in attention maps. For example,
previous work[3] represented pixels within the contour as constant C > 0 and
pixels outside the contour as 0, thus visualizing the contour on the attention
map.

Previous work guides a diffusion model with a spatial map to enable
pixel-level controlled generation of individual sketch objects[52]. However,
The method encounters difficulties when confronted with complex and clut-
tered sketches because it treats all strokes uniformly, without giving priority
to their saliency or semantics. Combining the pixel-by-pixel sketch-to-image
method with our model and thus extending it to scene sketches is another
direction for our future work. We plan to perform object segmentation in
scene sketches and generate individual sketch objects at the pixel level. Sub-
sequently, we will apply the object-to-image fuser module from PasteGAN[71]
to merge the generated objects into a single image.

Moreover, the proposed model utilizes the sketch as additional conditional
information, the semantics and intentions of sketches may not be unambigu-
ous and limited by the user’s drawing level. As shown in (d) of Figure 6.3,
the left animal is a “dog” according to the text prompt, but the rough sketch
was identified as “horse”.

In addition, using other conditional control information is also a common
operation in image generation. How to compare our model with other existing
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limitation

(a) (b) (c)

(d)

Figure 6.3: Some failure cases of the proposed model. (a), (b), and (c)
indicate that the proposed model only performs object position guidance,
but it cannot achieve shape or pixel-level control. (d) shows the failure
segmentation case.

models and combine it with a more multi-modal input conditional control
model is also one of the more novel works in the future.
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