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Abstract

Sentiment Analysis (SA) is a task of identifying opinions expressed in a piece
of text, especially in order to determine whether the writer’s attitude toward
a particular topic or product is positive, negative, or neutral. Although SA
is performed on various types of texts such as a document and a sentence,
recently, people have paid more attention to aspect-level sentiment analysis.
Aspect Category Sentiment Analysis (ACSA), which is one of the main sub-
tasks of Aspect-based Sentiment Analysis, intends to detect the polarity of
the conveying emotions on the aspect within the input text. It is helpful to
understand the writer’s opinions in detail especially when a review sentence
contains multiple aspects with different polarity.

The typical approaches solve ACSA as a text classification task. They
concentrate on improving the quality of the representation of contextual in-
formation by using better language models and extracting selectively aspect-
related information with attention mechanism. However, some previous stud-
ies point out that fine-tuning language models for text classification is not
effective since the majority of language models are pre-trained on text gen-
eration tasks. Therefore, a method called “BART generation” is proposed
to solve ACSA as the text generation task, which is based on the outstand-
ing language model called Bidirectional and Auto-Regressive Transformers
(BART). This model accepts review sentences as input and generates tar-
get sentences that clearly express the polarity toward a given aspect. The
target sentence is yielded by filling an aspect category and sentiment word
into a predefined template. It outperformed the other classification models
for ACSA. However, BART generation faces difficulty in capturing relations
between opinion words and aspect words as well as extracting aspect-related
information in sentences containing multiple aspects.

To solve these problems, the goal of this study is to propose a method that
leverages Abstract Meaning Representation (AMR) for capturing relations
between opinion words and aspect words as well as enhancing the aspect-
related information extraction within the BART generation method. AMR
is the semantic representation that expresses the meaning of a sentence as
a rooted, directed, and labeled graph. AMR can provide a better way to
model word relations that are difficult to extract within a sentence. Besides,
since AMR assigns the same graph for multiple sentences with the same
meaning, it can help to alleviate data sparsity in ACSA. To encode the AMR
graph, Graph Attention Networks (GAT) is used to obtain the embedding of



nodes, which is updated by applying the attention mechanism. A new Cross-
Attention module for AMR is added in each decoder layer to incorporate the
semantic information in the AMR graph into our text decoding phase. In
this study, the pre-trained AMRBART is used as the AMR parser to obtain
the AMR graph for the given review sentence. To calculate the attention to
the AMR, the nodes in the AMR graph and the words in the sentence should
be aligned. This alignment is determined by the pre-trained AMR aligner
LEAMR.

Furthermore, two new regularizers are introduced to improve the alloca-
tion of Cross-Attention weights over the AMR graph. The first one is the
identical regularizer, which compels the Cross-Attention weights of AMR
nodes and the Cross-Attention weights of their aligned words in the review
sentence to be equal as much as possible. The second is the entropy regular-
izer, which enables the model to only pay attention to a few AMR-related
nodes. With the new regularizers, we expect to help the model correctly
extract aspect-related information from the AMR graph

Since our model follows BART generation, it is based on the Transformer
framework with a stack of encoder-decoder layers whose parameters are ini-
tialized by the pre-trained language model BART. However, the parame-
ters of the newly introduced GAT module and AMR Cross-Attention layers
should be initialized randomly. In practice, we find it challenging to fine-
tune our model consisting of the modules initialized by the different ways.
Therefore, we propose to pre-train the whole model again using in-domain
texts. The pre-training is done by text-denoising task that is used for the
pre-training of BART. That is, our model is pre-trained to reconstruct a com-
plete review sentence from a corrupted sentence that is created by applying
token masking, text infilling, and text deletion.

We evaluate the performance of our model on three datasets: Rest14,
Rest14-hard, and MAMS. Rest14 is a dataset of restaurant reviews, where
the most of reviews have only one aspect. Rest14-hard is a modified version
of the Rest14 dataset that only includes sentences with multiple aspects
in the test set. The training and development sets are the same as the
original Rest14 dataset. Since the test set of Rest14-hard is small, we also
adopt MAMS where all sentences in the training, development, and test sets
contain multiple aspects. For each dataset, the proposed model is trained and
evaluated five times with different random initialization of the parameters. In
terms of evaluation metric, we utilize mean accuracy together with standard
deviation which is denoted as “mean±(std)”.

Our model achieves 91.2 ± (0.258), 78.1 ± (0.258), and 84.6 ± (0.453),
which outperforms the state-of-the-art method (BART generation) by 0.7,
0.7, 1.5 percentage points on Rest14, Rest14-hard, and MAMS, respectively.

2



These results prove the effectiveness of incorporating the semantic infor-
mation from AMR into the text generation model. In addition, the large
improvement in MAMS proves that our regularizers can help the model to
extract useful aspect-related information more appropriately even when there
are multiple aspects in a sentence.

The ablation study is conducted to fully investigate the effect of each
module within our model. We remove the identical regularizer, the entropy
regularizer, both regularizers or pre-training procedure, then train the mod-
els. Compared to the full model, the accuracy scores of all ablated models
are degraded. It means that each component plays an important role in
the overall performance of our model. Additionally, we visualize the atten-
tion scores of AMR Cross-Attention layers in our full model and the model
without both regularizers for a few sentences. It shows that our regularizers
successfully increase the attention weights over important nodes. Further-
more, we conduct error analysis. The results indicate that our model faces
obstacles in extracting aspect-related information for coarse-grained aspects
like “miscellaneous”.

Despite the promising results, our model still has some problems. The
main challenge is to alleviate the gap between the pre-trained language model
and the new components that are added to incorporate semantic information
from AMR. Although the pre-training using in-domain texts is applied to
tackle this problem, it seems insufficient. Further studies should concentrate
on overcoming this limitation to achieve stable performance. In addition, the
potential of our approach to incorporate semantic information given by AMR
into the deep learning model should be further investigated. That is, we will
evaluate the performance of our model in other subtasks of sentiment analysis
such as Aspect Category Detection or Aspect-based Sentiment Analysis.
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Chapter 1

Introduction

This chapter introduces the background and goal of this research. We first
introduce the background of our research in Section 1.1. Then, Section 1.2
establishes the motivations and goals of our study. Finally, Section 1.3 pro-
vides the general outline of this thesis.

1.1 Background

With the popularity of the Internet, people express their opinions or emotions
every day through social media like Facebook, Twitter, and Instagram, or
write their reviews about products or services on e-commerce websites such
as Amazon, Rakuten, etc. Sentiment analysis (SA), which is the task of ex-
tracting opinions and sentiments (positive, negative, neutral) from a text, can
assist decision-making on those platforms. SA is applied to different levels
of the text which are a document, sentence, and aspect. Document-level and
sentence-level sentiment analysis concentrate on detecting the general senti-
ment over a whole paragraph or a sentence. Since each sentence can contain
different aspects with totally opposite sentiments, aspect-based sentiment
analysis (ABSA) is necessary to detect the sentiments at the fine-grained
level.

ABSA includes many subtasks such as Aspect Category Detection (ACD)
and Aspect Category Sentiment Analysis (ACSA). ACD aims to identify
the aspect category of a sentence or document while ACSA classifies the
sentiment polarity of those categories. In Figure 1.1, with a review sentence
“The staff are rude but food is great”, we predict two aspect categories service
and food in ACD while we classify the polarity of service and food as negative
and positive respectively in ACSA.

In ACSA, modeling the relations between aspect and opinion words is es-
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The staff are rude but food is great

<service: negative> <food: positive>

<service, food>ACD

ACSA

Figure 1.1: An example of ACD and ACSA.

sential to classify the right sentiment for each given aspect. However, models
can find it hard to learn those relations from a plain text. Therefore, using
Abstract Meaning Representation (AMR) [5], which is semantic representa-
tion language by a directed graph, can be a promising approach to take the
relations between words into account. For example, Figure 1.2 shows the
direct relation of node rude-01 to node staff which corresponds to the rela-
tion of opinion word rude and aspect word staff. This direct relation helps
the model easily predict the sentiment polarity negative of aspect category
service.

The staff are rude but food is great

<service: negative> <food: positive>

rude-01

contrast-01

great

foodstaff

ARG1 ARG2

ARG1 domain

Figure 1.2: An example of ACSA. The word in the review sentence
corresponds to the node in the same color in AMR.

1.2 Goal

This research aims to incorporate the relations of target and opinion words
via AMR into the text generation model [33] for ACSA. Besides, since AMR
attempts to represent sentences with the same meaning by the same struc-
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ture, it can help to reduce data sparsity. This study also concentrates on
extracting the correct information for each aspect category based on design-
ing two novel regularizers on AMR cross-attention layers. We notice that
AMR nodes and words in the review sentence having common semantics
should receive the same attention from our model. Therefore, we minimize
the difference between the attention weights of two Cross-Attentions layers
over aligned AMR nodes and words. Furthermore, for each decoded token,
our model should only pay attention to its associated AMR nodes, which
is obtained by minimizing the entropy of attention weights of AMR cross-
attention layers. The contribution of our study can be summarized as follows:

• We propose a model that integrates an AMR graph encoder into an
autoregressive pre-trained language model for capturing relations be-
tween aspect and opinion words and applying this semantic information
for ACSA.

• We introduce two novel regularizers to improve the cross-attention
mechanism over the AMR graph with AMR alignments and informa-
tion entropy.

• We investigate the effectiveness of our proposed method on three public
benchmark datasets and surpass state-of-the-art models.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 discusses related work about ACSA, text generation ap-
proach for ACSA, and AMR.

• Chapter 3 gives details about our proposed methods such as model
structure, regularizers, and pre-training procedure.

• Chapter 4 reports several experiments to evaluate our proposed method.
It first explains details about the utilized datasets and hyperparameters
settings. Then, it presents the obtained results and ablation study.

• Chapter 5 concludes this research and describes future work.
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Chapter 2

Related Work

This chapter introduces the related work of this study. Section 2.1 discusses
different approaches to ACSA. As we will explain later, our model is based on
Bidirectional and Auto-Regressive Transformers (BART) model. Therefore,
we introduce Transformer that is the basic component of BART in Section
2.2, and review BART model in Section 2.3. Section 2.4 provides details
of the text generation model for ACSA. Section 2.5 introduces AMR and
its applications to multiple tasks in Natural Language Processing (NLP).
Finally, Section 2.6 clarifies the characteristics of our method.

2.1 Aspect Category Sentiment Analysis

The conventional approaches perform ACSA as a classification task. Figure
2.2 shows a general framework of this approach. The classification model en-
codes an input by two embeddings. The contextual embeddings represent the
context of the target aspect or the sentence itself, while the aspect category
embeddings represent the information of the aspect. These two embeddings
are fed into the attention layer to extract the aspect-related information. Fi-
nally, the aspect category embeddings and the new extracted information are
passed to the classification layer that determines the polarity of the target
aspect.

Ruder et al. represent relations between various sentences within a review
using a hierarchical bidirectional LSTM model [40]. Wang et al. combine
LSTM structure with the attention mechanism to extract related contextual
information for given aspects [52]. Xue and Li explore CNN structure to
compute granular features of different words before selectively outputting
suitable features for each given aspect [56].

Several studies leverage aspect embedding to select and extract related
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information as well as predict correct sentiment polarity for the given aspect
[30, 54, 60]. Liang et al. design an aspect gate in Gated Recurrent Unit

Context Aspect Category

Sentiment Polarity

Classifaction Layer

Attention Layer

Figure 2.1: General framework of text classification approach for ACSA.

(GRU) for updating token embeddings with aspect-specific representation at
each time step [30]. Xing et al. apply the same idea to LSTM-based model
by creating three new aspect gates that control how much the aspect vector
is fed into the input gate, forget gate, and output gate respectively [54]. Zhu
et al. combine the LSTM model with the sentiment memory network which
is based on the attention mechanism to extract the contextual information
for an aspect category [60].

Li et al. accumulate sentiments of aspect-related words to calculate the
polarity of the given aspect category [29]. To obtain better contextual rep-
resentations, pre-trained language models like Bidirectional Encoder Repre-
sentations from Transformers (BERT) [12] are utilized [45, 24]. Sun et al.
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obtain the deep representations of sentences and aspects with BERT by sim-
ply concatenating the review sentence and aspect category as “[CLS] sentence
[SEP] aspect [SEP]”. Then, the obtained representations are fed to capsule
networks for predicting sentiment polarity [45]. Jiang et al. perform ACSA
by fine-tuning pre-trained BERT on sentence pair classification between the
review sentence and an auxiliary sentence formed by filling the aspect and
its category into a predefined question template or simply concatenating the
aspect and corresponding category using symbol “-” as the separator. Liu et
al. combine data augmentation using prompt-based text generation, syntac-
tic information, and knowledge graph to enhance the performance of ACSA
[31]. Shan et al. capture sequential contextual information and syntactic
information of specific aspect category for ACSA [42].

To avoid error propagation, several studies explore joint models that per-
form ACSA and ACD simultaneously. Schmitt et al. propose two models
with LSTM and CNN for outputting both aspect category and sentiment
polarity together [41]. Wang et al. propose the aspect-level sentiment cap-
sules model (AS-Capsules), which combines the capsule module and RNN
structure, to exploit the correlation between aspect and sentiment [53]. Hu
et al. apply orthogonal and sparseness constraints on attention weights [22].
Li et al. propose a joint model with a shared sentiment prediction layer to
learn similar sentiment expressions of different aspect categories [28].

2.2 Transformer

Transformer [48] is a deep learning architecture that has been applied to var-
ious tasks of NLP as well as other research fields such as Computer Vision,
and has achieved outstanding results. Figure 2.2 illustrates the architecture
of Transformer model. The model is based on the encoder-decoder structure
with N stacks of identical encoder layer and N stacks of identical decoder
layer. Each decoder contains two main components: the multi-head self-
attention module and the positional-wise fully connected feed-forward net-
work. Both components are wrapped by a residual connection [21] followed
by layer normalization [2]. The decoder shares the same components with
the encoder except for adding another multi-head attention over the output
of the encoder stack named Cross-Attention. In addition, the self-attention
sub-layer in the decoder stack can only attend to prior positions. Simi-
larly to other sequence transduction models, Transformer contains learned
embeddings to transform the input tokens and output tokens to vectors of
dimension dmodel. Then, those vectors are injected with positional informa-
tion from positional encoding which is availabel in both encoder and decoder
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Figure 2.2: Architecture of Transformer [48].

sides.
In this architecture, the attention scores are calculated by the mechanism

called “Scaled Dot-product Attention” as shown in left in Figure 2.3. Its
inputs are queries and keys represented by vectors whose size is dk, and
values represented by vectors whose size is dv. The scores are dot products
of values and their weights which are computed by applying the softmax
function on the output of dot products of the query with all keys scaled on√
dk. To speed up computation, sets of queries, keys, and values are packed

into matrices Q, K, and V , respectively. The attention function is calculated
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Scale Dot-Product Attention

Matmul

Scale

Mask (opt).

Softmax

Matmul

Q K V

Scale Dot-Product Attention
Scale Dot-Product Attention

Concat

h

Linear

Scaled Dot-Product Attention Multi-head Attention

LinearLinearLinear
LinearLinearLinear

LinearLinearLinear

V K Q

Figure 2.3: Scaled dot-product attention and Multi-head attention
mechanism [48].

with those matrices as input. It outputs a single matrix as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Multi-head Attention is the method to compute attention by using mul-
tiple Scale Dot-product Attention modules. This method is believed to let
the model obtain the information from different representation subspaces at
different positions while a single head cannot. Firstly, three input matrices
K,V, and Q are linearly projected on multiple subspaces of dk, dk, and dv
dimensions, respectively. On each subspace, we apply the attention function
in parallel before concatenating to the final values as shown in right in Figure
2.3. The score of multi-head attention is computed as follows.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.2)

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.3)

The matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel are the parameters to be trained.
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Besides the multi-head attention module, each layer of both encoder and
decoder consists of an identical feed forward network. This is composed of
two linear transformations with a ReLU activation function as follows.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.4)

To incorporate positional information to the model, the Transformer contains
“positional encodings” which are added to the input embeddings at the bot-
toms of the encoder and decoder stacks. The positional encodings share the
same dimension dmodel with the input and output embeddings. This module
is implemented with sine and cosine functions as follows:

PE(pos, 2i) = sin(pos/100002i/dmodel) (2.5)

PE(pos, 2i + 1) = cos(pos/100002i/dmodel) (2.6)

In these equations, pos is the position and i is the dimension of the vector of
the position encoding.

2.3 BART

Bidirectional Encoder Autoregressive Decoder

A B E_ _ <s> B DA C

A C EB D

Figure 2.4: Architecture of BART and its pre-training [27].

Bidirectional and Auto-Regressive Transformers (BART) [27] is a a sequence-
to-sequence model following the encoder-decoder framework. Both encoder
and decoder are based on Transformer. As shown in Figure 2.4, the en- coder
is the bidirectional Transformer, while the decoder is the left-to-right autore-
gressive Transformer. The framework of BART is different from other lan-
guage models like BERT [12] which consists of the Transformer encoder only
and Generative Pre-training (GPT) [39] which consists of the Transformer
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decoder only. BART has shown its superiority in many sequence-to-sequence
tasks such as machine translation, text summarization, and so on.

Figure 2.4 also shows how BART is pre-trained, that is, it is pre-trained
as a text-denoising autoencoder that transforms a corrupted document into
the original one. In other words, BART is pre-trained by giving a corrupted
document as input and forcing the model to output the original sentence.
The parameters of BART are estimated by optimizing the reconstruction
loss between the decoder’s output and the original document. BART applies
five types of document corruption:

• Token masking: Random tokens are replaced by [MASK], which is
the same as the pre-training of BERT [12]. In the example in Figure
2.5, the token B and D in the original sentences “A B C . D E .” are
replaced with the mask “ ”.

• Token deletion: Random tokens are deleted from the input. The
model could be trained to be aware of missing tokens’ positions. In the
example in Figure 2.5, the token B and D are deleted.

• Text infilling: In contrast to token masking, this method replaces
each token span with a single [MASK] token. The number of text
spans is randomly sampled, or more specifically, the span lengths are
drawn from the Poisson distribution with λ = 3. 0-length spans mean
the insertion of [MASK] tokens. This method can help the model learn
the prediction of multiple tokens for one text span. In the example in
Figure 2.5, the token B and C are replaced with a single mask. Another
mask token is inserted between D and E by replacing a 0-length span.

• Sentence permutation: Sentences are randomly shuffled inside the
document. In the example in Figure 2.5, the sentence “A B C .” and
“C E .” are swapped.

• Document rotation: The document is rotated upon a randomly cho-
sen token. This task enables the model to learn the start of the doc-
ument. In the example in Figure 2.5, the document is rotated at the
position of the token “C”.

After the pre-training, BART model is fine-tuned for a downstream task.
That is, the parameters of the pre-trained model are updated using a dataset
of a certain task. BART can be applicable for many downstream tasks: se-
quence classification, token classification, sequence generation, and machine
translation. For sequence classification, the same input is fed into the en-
coder and decoder, and the final hidden state of the final decoder token is fed

10



A B C . D E .A . C . E .

D E . A B C .A _ C . _ E . C . D E . A B

A _ . D _ E .

Token Masking

Token Deletion Text Infilling

Document RotationSentence Permutation

Figure 2.5: Transformations for noising the input [27].

into a new multi-class linear classifier. For token classification, they pass the
entire document to the encoder and decoder, and use the final hidden state of
the decoder as a representation for each word in the document. For sequence
generation task, they can directly fine-tune BART as its decoder is autore-
gressive. For machine translation from any language to English, they replace
the encoder’s embedding with the newly initialized embedding. Then, they
train the whole model to convert the foreign words into an input that BART
can denoise to English. The results of previous studies have suggested that
BART achieved competitive results on most of the tasks, especially in the
text generation tasks. It might be because the framework of BART and its
pre-training method are appropriate for text generation.

2.4 Text Generation for ACSA

Encoder Decoder

The

sentiment polarity of service is negative

staff are rude but food is great sentiment polarity of service is<s> The

The

Figure 2.6: BART generation model [33].
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Unlike the studies introduced in Section 2.1 that define ACSA as a classifi-
cation task, Liu et al. propose a method to solve ACSA as the text generation
task [33]. Their ACSA model is based on the prompt-based method and pre-
trained autoregressive seq2seq language model BART [27]. This method is
called “BART generation”.

This section gives an overview of the BART generation method. The
BART generation model aims to cast sentiment classification to text genera-
tion task. In Figure 2.6, the model is illustrated with the seq2seq framework
whose input and output are the review sentence and the target sentence
indicating the polarity of the aspect, respectively. It utilizes the parame-
ters of the pre-trained BART model for initialization. The review sentence
and the target sentence are denoted by X = {x1, x2, ..., x|X|} = x1:|X| (xi is
the i-th token) and Y = {y1, y2, ..., y|Y |} = y1:|Y | (yi is also the i-th token),
respectively.

A target sentence is generated by completing the blank spaces of a prede-
fined template with an aspect category and a sentiment word. We denote the
set of aspect categories by A = {a1, a2, ..., a|A|} and the set of polarity types
by S = {s1, s2, ..., s|S|}. The template is defined manually like “The senti-
ment polarity of [ASPECT CATEGORY] is [POLARITY TYPE]”. For each
review sentence X whose corresponding aspect category is ap and sentiment
polarity is st, we fill the slots in the template and get the target sentence
“The sentiment polarity of ⟨ap⟩ is ⟨st⟩” (E.g., “The sentiment polarity of food
is positive”).

For the training, given a pair of sentences (X,Y), the model is fed with
an input sentence X through the encoder to get vector presentation henc of
X as in Equation (2.7). In the decoder, the hidden vector at a time step j
is calculated using henc and the hidden vectors of the previous time steps, as
in Equation (2.8).

henc = Encoder(x1:|X|) (2.7)

hdec
j = Decoder(henc, hdec

1:j−1) (2.8)

The conditional probability of the output token yj is:

P (yj|y1:j−1, x1:|X|) = softmax(Whdec
j + b), (2.9)

where W ∈ Rdh×|V| and b ∈ R|V|, |V| represents the vocabulary size. The
loss function of this model is the following Cross Entropy:

Lce = −
|Y |∑
j=1

logP (yj|y1:j−1, x1:|X|). (2.10)
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For inference, we calculate the probabilities of all possible target sentences
with different sentiment polarity classes using the trained model and choose
the one with the highest probability. For an input sentence X, aspect cat-
egory ap and sentiment polarity st, the probability of a target sentence
Yap,st = {y1, y2, ..., ym} is calculated as follows:

f(Yap,st) =
m∑
j=1

logP (yj|y1:j−1,X) (2.11)

For example, Figure 2.7 shows the three target sentences where the aspect
“service” and one of the sentiment words (positive, negative, or neutral) are
filled. Since the score of the second sentence is the highest, the polarity of
the input review is guessed as negative.

The sentiment polarity of service is positive

The sentiment polarity of service is negative

The sentiment polarity of service is neutral

Score: 0.2

Score: 0.3

Score: 0.5

Figure 2.7: Inference step of BART generation model.

2.5 Abstract Meaning Representation

AMR [5] is the semantic formalism that represents the meaning of a sentence
as a rooted, directed, and labeled graph. AMR aims at making abstract
representation that is different from syntactic representation so that seman-
tically similar sentences can be assigned to the same graph. For example, the
following sentences could be represented by the same graph in Figure 2.8a.

• The boy desires the girl to believe him.

• The boy desires to be believed by the girl.

• The boy has a desire to be believed by the girl.

• The boy’s desire is for the girl to believe him.

• The boy is desirous of the girl believing him.

13



want-01

boybelieve-01

girl

ARG0ARG1

ARG0

ARG1

(a) AMR as graph format.

(b) AMR as PENMAN format.

(c) AMR as logical format.

Figure 2.8: Different representation formats for AMR [5].

Besides the conventional graph format, AMR can also be converted to
PENMAN format [7] as in Figure 2.8b or logical triples as in Figure 2.8c.

AMR graph consists of nodes that are labeled with concepts in PropBank
framesets [26, 36] or special keywords, and edges that are labeled with re-
lations. AMR covers roughly 100 relations divided into five general types:
frame arguments, general semantic relations, relations for quantities, rela-
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tions for date-entities, and relations for lists. There have been three public
AMR corpora: LDC2014T121, LDC2017T102, and LDC2020T023. The third
one is the latest, which contains 59,255 pairs of sentence and corresponding
AMR. To automatically evaluate the performance of AMR parsers, Cai and
Knight introduce a metric called smatch [11]. This metric measures the
overlap of parsed AMR and ground truth by considering each AMR as a
conjunction of logical triples.

AMR parsing has been paid attention recently. Several methods have
already been studied. They can be divided into three types: the graph-
based method which identifies graph concepts first and then predicts relations
among them [58, 10], the transition-based method which constructs the graph
following the left-to-right direction of the input sentence and AMR align-
ments [14, 59], and seq2seq-based method which linearizes an AMR graph to
fit with the seq2seq framework like Transformer [51, 8, 57]. Besides, following
BART [27], another method is proposed to combine text-to-text and graph-
to-graph conversion for pre-training an AMR-based model on text-denoising
tasks [4].

AMR alignment is also an essential topic for fully utilizing AMR. This
task concentrates on mapping nodes in AMR to corresponding words that
are semantically similar. The conventional approaches focus on rule-based
strategies [16, 15, 34, 46], and statistical strategies which utilize Expectation
Maximization (EM)[38]. In addition, pre-trained word embeddings for to-
kens and nodes are utilized in low-resource settings [1]. Wang and Xue [50]
leverage graph distance as a locality constraint on predicted alignments to
align tokens and nodes. LEAMR [9] is a method that combines both pre-
defined rules and EM to cover four types of aligned structures: subgraphs,
relations, reentrancies, and duplicate subgraphs.

With the development of AMR parsers, AMR-to-text generation models,
and large parallel datasets of the sentences and AMR graphs, AMR has been
applied successfully to many downstream text generation tasks. For exam-
ple, it has been integrated into a machine translation model as additional
information for the source side [44, 35, 55]. In text summarization, several
researchers transform AMR representations of sentences into an AMR graph
of a summary and generate a text summary from the extracted subgraph
[32, 13, 20, 23].

1https://catalog.ldc.upenn.edu/LDC2014T12
2https://catalog.ldc.upenn.edu/LDC2017T10
3https://catalog.ldc.upenn.edu/LDC2020T02

15



2.6 Characteristics of this study

This study follows the idea of the BART generation model [33] which casts
ACSA from classification task to text generation task. BART generation,
which is an efficient approach as the latest language models are pre-trained on
text generation tasks, achieves state-of-the-art performance in ACSA. How-
ever, it undergoes difficulty in capturing relations of opinion words and target
words within sentences that include multiple aspects. Therefore, we propose
using AMR for modeling those relations. Furthermore, we also explore how
semantic information from AMR contributes to improve the performance of
ACSA. In addition, we introduce two regularizers for selectively extracting
aspect-related information.
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Chapter 3

Proposed Model

This chapter provides details about our proposed model. Section 3.1 formal-
izes the task definition. Section 3.2 describes the structure of our proposed
model. Section 3.3 introduces the proposed regularizers. Section 3.4 ex-
plains the loss function of the whole model. Finally, Section 3.5 explains the
pre-training procedure in our approach.

3.1 Task Definition

ACSA aims to predict the polarity of a given aspect category within an input
sentence. Since our proposed method follows BART generation [33], we set
up ACSA as a text generation task, which is explained in Section 2.4. More
specifically, the input and output of our model are the review sentence and
the target sentence that explicitly expresses the sentiment toward a given
aspect category, respectively. In addition, we utilize a template shown in
Figure 3.1, which is different from one used in the BART generation [33].
The [SENTIMENT WORD] is filled by one of {excellent, awful, fine} which
corresponds to {positive, negative, neutral}, respectively. We believe that
this template offers a more natural target sentence than the original one “The
sentiment polarity of [ASPECT CATEGORY] is [POLARITY TYPE]” to
the language model.

Quality of [ASPECT_CATEGORY] is [SENTIMENT_WORD].

Figure 3.1: Template to generate target sentence for ACSA.
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3.2 Model Structure

Figure 3.2 shows the overall structure of our model which follows the text
generation method [33]. The model is based on the encoder-decoder frame-
work of Transformer [48], which is explained in Section 2.2. The parameters
of the model are initialized by pre-trained language model BART [27], which
is explained in 2.3. The model contains N encoder layers to encode the source
sentence and N decoder layers to decode the target sentence, respectively. To
encode semantic information from an AMR graph, we utilize an AMR En-
coder module. In addition, we add a new AMR Cross-Attention layer and a
subsequent layer normalization [2] into each decoder layer to incorporate the
semantic information from AMR for generating the target sentence. In the
following subsections, the details of the modules are described.

Add&Norm

Feed Forward

Add&Norm

Self Attention

Encoder

x N

Add&Norm

Cross Attention

Add&Norm

Self Attention

Decoder

AMR Cross Attention

Add&Norm

Feed Forward

Add&Norm

α

Linear

The     salad     is    delicious

Embedding

<s>  Quality   of    food    is 

Embedding

Quality  of   food   is  excellent 

z0/delicious

z1/salad

domain

AMR
Encoder

x N

Figure 3.2: Our proposed model.
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3.2.1 AMR Encoder

For a given input sequence X = {x1, x2, ...x|X|}, we construct a correspond-
ing AMR graph G = (V,E) by the pre-trained AMR parser [4], where
V = {v1, v2, ..., v|V |} is the set of nodes and E ∈ R|V |×|V | is the adjacency
matrix presenting the relations between the nodes. Although AMR is a di-
rected graph, we treat the AMR graph as an undirected graph, which means
eij = eji = 1 if the two nodes vi and vj are connected, otherwise 0. This
modification aims at transferring the information in both directions between
nodes of an opinion word and an aspect word, when the embedding of the
nodes are trained.

The AMR encoder adopts Graph Attention Networks (GAT) [49]. Given
a graph G = (V,E) and node vi ∈ V, we can obtain h′

i, the hidden state of
node vi, as follows:

h′
i = σ

( ∑
j∈Ni

αijWhj

)
(3.1)

αij =
exp

(
σ
(
aT [Whi∥Whj]

))∑
k∈Ni

exp
(
σ
(
aT [Whi∥Whk]

)) , (3.2)

where aT and W are trainable parameters, σ is the LeakyRELU function, ∥
denotes the concatenation of two vectors, Ni is the set of neighbor nodes of
vi in G, and hi is the initial representation of vi. Note that a node (word)
consists of several subwords in general. Using the embedding of the AMR
parser [4], hi is defined as the average of the subword vectors.

In addition, applying the multi-head attention mechanism from the Trans-
former architecture [48], the formula to update the representation of node vi
is changed from Equation (3.1) to:

h′
i =

K∥∥∥∥
k=1

σ
( ∑
j∈Ni

αk
ijW

khj

)
, (3.3)

where K is the number of attention heads, αk
ij are the attention coefficients

of the k-th head, Wk is the weight matrix at the k-th head, and ∥ stands for
the concatenation of multiple vectors.

3.2.2 Decoder

After obtaining the graph information, we feed it into each decoder layer by
adding a new Cross-Attention module for AMR referred to as “AMR Cross-
Attention” in Figure 3.2. We write h′ for the representations of the AMR
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nodes obtained from GAT, x is the vector representation of the input sentence
and yl is the output of l-th decoder layer. The output of the (l+1)-th decoder
layer, yl+1, is obtained as follows:

ẏl = LN(yl + SelfAttn(yl)) (3.4)

ÿl = LN(ẏl + CrossAttn(ẏl, x)) (3.5)
...
y l = LN(ÿl + CrossAttn(ÿl, h′)) (3.6)

yl+1 = LN(
...
y l + FFN(

...
y l)), (3.7)

where LN is the layer normalization function, SelfAttn is the self-attention
module, CrossAttn is the cross-attention module, and FFN is the feed-
forward neural network. Note that the first cross-attention module in Equa-
tion (3.5) encodes the attention to the encoder, while the second one in
Equation (3.6) encodes the attention to the AMR graph.

Training a deep model like Transformer is really hard and even harder
with one more cross-attention module. To overcome this difficulty, we em-
ploy ReZero [3] as the AMR Cross-Attention module instead of the normal
residual module. This method is implemented as follows:

ỹl = ÿl + αF(ÿl), (3.8)

where F denotes non-trivial functions and α is a trainable parameter that
helps moderate the updating of the AMR Cross-Attention.

3.3 AMR Cross-Attention Regularizer

To incorporate the semantic information from the AMR graph more effec-
tively, we propose two regularizers over the attention scores of the AMR
Cross-Attention module.

3.3.1 Identical Regularizer

Intuitively, a word in a sentence and its aligned node in the AMR graph
should receive the same attention as they are supposed to represent similar
semantic information. This motivates us to introduce an extra regularizer
(or loss function) that evaluates how a word and its corresponding node have
equal attention. Figure 3.3 illustrates an example of ideal Cross-Attention
and AMR Cross-Attention for the generation of the word “excellent”, whose
attention weights for pairs of aligned nodes and word are almost equal.
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Decoder
Linear

<s>  Quality   of    food    is 

Embedding

Quality  of   food   is  excellent 

x N
z1/salad z0/delicious

The salad is delicious

AMR Cross Attention

Cross Attention

Figure 3.3: An example of ideal Cross-Attention and AMR Cross-Attention
derived by identical regularizer.

Two transformation matrices for the Cross-Attention matrix over each of
the source (input) sentences and the AMR graphs are defined by alignsrc ∈
R|X|×|P | and alignamr ∈ R|V |×|P |, respectively, where |P | is the number of
pairs of aligned words and nodes. A cell alignsrc[i, k] shows whether the i-th
subword belongs to a word within the k-th pair of aligned word and node.
A cell alignamr[j, k] shows whether the j-th AMR node belongs to the k-th
pair of aligned word and node. The precise definition of the value for each
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cell is presented as follows:

alignsrc[i, k] =


1

|Ti| if subword xi belongs to

the word in k-th aligned pair

0 otherwise

(3.9)

alignamr[j, k] =


1 if node vj and node in k-th

aligned pair are the same

0 otherwise

(3.10)

Here, Ti denotes a set of subwords in the aligned word. With these matrices
and two given Cross-Attention matrices Asrc ∈ R|Y |×|X|, Ai amr ∈ R|Y |×|V |

over the review sentence and the AMR graph, respectively, the identical
regularizer is formulated as follows:

Lir =
L∑
i=1

1

L
∥Ai

src · alignsrc − Ai
i amr · alignamr∥F , (3.11)

where ∥∥
F

denotes the Frobenius norm and L is the number of the decoder
layers. The matrix Asrc is obtained from an oracle fine-tuned text generation
model. Also, the matrix Ai amr is obtained by fetching the same input with
the regular Cross-Attention layer over the source sentence, which is indicated
by the yellow line in Figure 3.2.

3.3.2 Entropy Regularizer

We expect that our model concentrates on a few important nodes. This
means that the Cross-Attention distribution of the tokens over the AMR
nodes is supposed to be skewed. Therefore, we try to minimize the informa-
tion entropy [43] of the attention scores of the tokens over the AMR nodes.
Figure 3.4 shows the ideal effect of the entropy regularizer. The cross bars
and the orange bars show the attention distribution before and after being ap-
plied entropy regularizer. The attention weight over the node “z0/delicious”
of AMR Cross-Attention is increased since it may be the most important
node to generate the word “excellent”, indicating that the polarity of the
aspect food is positive.

22



Decoder
Linear

<s>  Quality   of    food    is 

Embedding

Quality  of   food   is  excellent 
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z1/salad z0/delicious

AMR Cross Attention

Figure 3.4: An example of ideal effect of the entropy regularizer on the
AMR Cross-Attention distribution.

We first calculate the mean of the Cross-Attention score of the token i at
the node j over H attention heads as follows:

ãij =
1

H

H∑
h=1

aijh (3.12)

Then, the entropy of the l-th decoder layer is calculated over |V | nodes and
|Y | output tokens:

H l = − 1

|Y |

|Y |∑
i

|V |∑
j

ãij log ãij (3.13)

The entropy regularizer is defined as the mean entropy of the L decoder
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layers:

Ler =
1

L

L∑
l=1

H l (3.14)

3.4 Loss Function

For training the proposed model, the loss function is the sum of the normal
cross entropy loss and the aforementioned two regularizers:

L = Lce + λ1Lir + λ2Ler, (3.15)

where λ1 is the scaling factors of the identical regularizer and λ2 is that of
the entropy regularizer.

3.5 Pre-training Procedure

It is hard to fine-tune our model, which consists of randomly initialized mod-
ules like the AMR graph encoder and the AMR Cross-Attention layers to-
gether with the pre-trained BART. Bataa and We showed the positive effect
of additional pre-training of a language model with in-domain data before
fine-tuning for downstream tasks [6], while Gheini et al. proved the effective-
ness of fine-tuning Cross-Attention layers [18]. Following their ideas, after
initializing the whole model with pre-trained BART model, we train it again
with text-denoising tasks using in-domain texts, i.e., review sentences. Sim-
ilar to the pre-training of BART, we artificially make a noisy sentence and
train the model so that it generates the original sentence when the noisy
sentence is given as the input. In this study, we add noise into the input
sentences using the following three methods:

• Token Masking: Random tokens are sampled and replaced by [MASK]
token.

• Text Infilling: Random text spans are replaced by [MASK] using a
Poisson distribution.

• Text Deletion: Random text spans are deleted. Unlike Word Deletion
used for pre-training of BART where a randomly chosen single token
is deleted, the whole of text spans is deleted in this method.

Algorithm 1 shows the pseudocode of the text corruption algorithm that adds
noise by the above three methods.
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Algorithm 1 Text corruption algorithm

Input: review sentence X = {x1, x2, ...xn}
Output: corrupted review sentence X’ = {x′

1, x
′
2, ...x

′
m}

ptoken ← 0.15 - probability of replacing one token by [MASK]
pword ← 0.3 - probability of replacing text spans by [MASK]
λPossion ← 3 - value for λ parameter in Possion distribution

1: p← gen random[0, 1]
2: if p < 1

3
then

3: X’← mask tokens(X, ptoken)
4: else if p < 2

3
then

5: X’← mask text spans(X, pword, λPossion) - Sampling text spans with
span lengths drawn from a Poisson distribution and masking them.

6: else
7: X’← mask text spans(X, pword, λPossion)
8: X’← delete mask tokens(X’)
9: end if

The entropy regularizer is also taken into account in this pre-training
step. That is, the loss function of the pre-training is defined as:

L = Lce + λ3Ler, (3.16)

where λ3 is the scaling factor for the entropy regularizer.
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Chapter 4

Evaluation

This chapter gives details about our experiments to evaluate our proposed
method. Section 4.1 describes the datasets used in the experiments. Sec-
tion 4.2 provides information about our settings of the models. Section 4.3
presents a list of baselines which are compared with our model. Section 4.4
demonstrates the main results of the experiments. Section 4.5 investigates
the performance of our model with different settings. Finally, Section 4.6
provides a qualitative analysis of our obtained results.

4.1 Datasets

The following three datasets are used for performing ACSA in our experi-
ments.

• Rest14: This dataset consists of reviews in the restaurant domain,
which is included in the Semeval-2014 task [37]. It consists of review
sentences about restaurants. For each sentence, aspect categories and
their polarity labels (“positive”, “neutral”, “negative”, or “conflict”)
are annotated. In this experiment, samples labeled with “conflict” are
removed, so the remaining samples have the labels “positive”, “nega-
tive” or “neutral”. In addition, we follow the splitting of the develop-
ment set suggested by Tay et al. [47] for the sake of fair comparison.

• Rest14-hard: Xue and Li construct this dataset for better evaluating
a model on sentences with multiple aspects [56]. Since its size is small,
it is only used as the test data. The training set and development set
are the same as those of Rest14.

• MAMS-ACSA: For the same purpose as the Rest14-hard, Jiang et al.
propose a larger dataset for ACSA in which each sentence contains at
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least two different aspects [24]. This dataset also focuses on restaurant
reviews which are excerpted from Citysearch New York dataset [17].

The number of samples for each polarity class in those datasets is shown in
Table 4.1.

Table 4.1: Statistics of datasets.

Dataset #Pos #Neg #Neu

Rest14
Train 1855 733 430
Dev 324 106 70
Test 657 222 94

Rest14-hard Test 21 20 12

MAMS-ACSA
Train 1929 2084 3077
Dev 241 259 388
Test 245 363 393

Table 4.2 shows examples of review sentences in Rest14, Rest14-hard,
and MAMS, which includes each review sentence and its given aspect cate-
gories together with corresponding polarity. P, N, and O represent positive,
negative, and neutral respectively.

As described in Section 3.5, our text generation model is pre-trained
using in-domain data. In this experiment, we only use review sentences in
the training set of each dataset as training data for the pre-training.
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Table 4.2: Examples of review sentences in three datasets.

Dataset Sentence
Aspect

Category
Label

Rest14 The bread is top notch as well. {food} (P)
The design is very intimate and
romantic.

{ambience} (P)

The staff is arrogant, the prices
are way high for Brooklyn.

{service, price} (N, N)

We’d walked by it dozens of times
and finally settled on a Monday night.

{miscellaneous} (O)

Anyway, the owner was fake. {service} (N)

Rest14-hard
Although the restaurant itself is nice,
I prefer not to go for the food.

{ambience, food} (P, N)

A mix of students and area residents
crowd into this narrow, barely there
space for its quick, tasty treats at
dirt-cheap prices.

{ambience, food,
price} (N, P, P)

I was on jury duty, rode my bike up
Centre Street on my lunch break
and came across this great little place
with awesome chicken tacos and
Hibiscus lemonade.

{food, ambiance,
miscellaneous} (P, P, O)

Give it a try, menu is typical French
but varied.

{food, miscellaneous} (O, P)

How can they survive serving mediocre
food at exorbitant prices?!

{food, price} {O, N}

MAMS
Thanks to waiter I learned so much
about wine too.

{staff, food} (P, O)

Nothing on the menu jumped out at
me, but when we tasted the chicken
and the pork tenderloin.

{menu, food} (N, O)

Small dishes, a bit pricier than you’d
pay in Miami or LA, but the atmosphere
is on the sexy side (however pared down)
and its cozy.

{food, miscellaneous} (N, O)

Service was a tad spotty, but the food
was VERY good and the noise never
detracted from the dining experience.

{service, food,
miscellaneous} (N, P, N)

We let the very kind hostess know we
were there and had some drinks at the bar.

{staff, food} (P, O)
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4.2 Implementation Details

4.2.1 AMR Processing

For AMR parsing and embeddings extraction, we use the pre-trained model
of AMRBART1[4] which is inspired by text denoising task of BART [27]
to build a graph pre-trained model. This model follows Transformer [48]
with encoder-decoder framework. Two pre-trained AMRBART models with
different settings, base and large, are available. We utilize the checkpoints of
pre-trained AMRBART with both settings as follows.

• checkpoint of AMRBART-base2: is used to extract the weights
of the embedding layer for initial representations of nodes, i.e., hi in
Equation (3.1) and (3.2) in Subsection 3.2.1 since our model is based
on BART-base model.

• checkpoint of AMRBART-large3: is used for AMR parsing since
it achieves better performance than AMRBART-base on LDC2017T10
which is the training dataset for both models.

Figure 4.1 illustrates an example of the input and output of AMRBART.
Our input in JSON format consists of two parts: one for the source sentence
and one for the target sentence. Since we only use the pre-trained model for
AMR parsing, we only fill an input review sentence into the source side with
our review sentence. On the other hand, the AMR output is obtained in
two formats: (1) text sequence where the nested structure is represented by
parentheses or (2) PENMAN format. For simplicity, we only use the PEN-
MAN format as our main format. Then, we utilize the package Penman4[19],
which is designed for reading and writing AMR graphs in PENMAN format,
to calculate the adjacency matrix of the graph. The information of adjacency
matrix and subtoken id for each node based on AMRTBART tokenizer in
the graph is saved as a Numpy5 file.

1https://github.com/goodbai-nlp/AMRBART
2https://huggingface.co/xfbai/AMRBART-base-finetuned-AMR2.0-AMRParsing
3https://huggingface.co/xfbai/AMRBART-large-finetuned-AMR2.

0-AMRParsing-v2
4https://github.com/goodmami/penman
5https://numpy.org
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{"src": "The atmosphere was wonderful, however the service and food
were not.", "tgt": ""}

(a) Input format in JSON.

<s> ( <pointer:0> contrast-01 :ARG1 ( <pointer:1> wonderful-03
:ARG1 ( <pointer:2> atmosphere ) ) :ARG2 ( <pointer:3> wonderful-03
:polarity - :ARG1 ( <pointer:4> and :op1 ( <pointer:5> service ) :op2 (

<pointer:6> food ) ) ) ) </AMR>

(b) AMR output in text sequence.

# ::id 22
# ::annotator bart-amr
# ::date 2022-05-15 15:12:40.638438
# ::snt The atmosphere was wonderful, however the service and food
were not.
(z0 / contrast-01
    :ARG1 (z1 / wonderful-03
              :ARG1 (z2 / atmosphere))
    :ARG2 (z3 / wonderful-03
              :polarity -
              :ARG1 (z4 / and
                        :op1 (z5 / service)
                        :op2 (z6 / food))))

(c) AMR output in PENMAN format.

Figure 4.1: Example of input and output of AMRBART [4].

In addition, LEAMR6[9] is adapted to align the words in the input sen-
tence and the nodes in the AMR graph. The LEAMR model accepts the
AMR in PENMAN format as an input and provides the alignments in JSON
format as an output. Figure 4.2 shows an example of the output of LEAMR
which contains AMR graph information of nodes and edges at the top and
alignments between nodes and words at the bottom. For example, the words
“wonderful” and “however” are corresponded to the nodes “wonderful-03”

6https://github.com/ablodge/leamr

30



and “contrast-01”, respectively.

# ::id 22
# ::tok The atmosphere was wonderful, however the service and food were not.
# ::annotator bart-amr
# ::date 2022-05-15 15:12:40.638438
# ::snt The atmosphere was wonderful, however the service and food were not.
# ::node    1    contrast-01
# ::node    1.1    wonderful-03
# ::node    1.1.1    atmosphere
# ::node    1.2    wonderful-03
# ::node    1.2.2    and
# ::node    1.2.2.1    service
# ::node    1.2.2.2    food
# ::node    1.2.1    -
# ::root    1    contrast-01
# ::edge    wonderful-03    polarity    -    1.2    1.2.1
# ::edge    contrast-01    ARG1    wonderful-03    1    1.1
# ::edge    wonderful-03    ARG1    atmosphere    1.1    1.1.1
# ::edge    contrast-01    ARG2    wonderful-03    1    1.2
# ::edge    wonderful-03    ARG1    and    1.2    1.2.2
# ::edge    and    op1    service    1.2.2    1.2.2.1
# ::edge    and    op2    food    1.2.2    1.2.2.2

<AMR_Alignment: subgraph>: tokens [1] nodes ['1.1.1'] edges [] (subgraph : atmosphere => atmosphere)
<AMR_Alignment: subgraph>: tokens [2] nodes [] edges [] (subgraph : was => )
<AMR_Alignment: subgraph>: tokens [3] nodes ['1.1'] edges [] (subgraph : wonderful, => wonderful-03)
<AMR_Alignment: subgraph>: tokens [4] nodes ['1'] edges [] (subgraph : however => contrast-01)
<AMR_Alignment: subgraph>: tokens [5] nodes [] edges [] (subgraph : the => )
<AMR_Alignment: subgraph>: tokens [6] nodes ['1.2.2.1'] edges [] (subgraph : service => service)
<AMR_Alignment: subgraph>: tokens [7] nodes ['1.2.2'] edges [] (subgraph : and => and)
<AMR_Alignment: subgraph>: tokens [8] nodes ['1.2.2.2'] edges [] (subgraph : food => food)
<AMR_Alignment: subgraph>: tokens [9] nodes [] edges [] (subgraph : were => )
<AMR_Alignment: subgraph>: tokens [10] nodes ['1.2', '1.2.1'] edges [('1.2', ':polarity', '1.2.1')] (subgraph : not.
=> wonderful-03, -, ('wonderful-03', ':polarity', '-'))

Figure 4.2: Example of output of LEAMR [9] output.

4.2.2 Model Settings

In the pre-training step, we initialize the parameters of BART using the
checkpoint of BART base7. Unlike the parameters of BART, those of the
AMR graph encoder and the AMR Cross-Attention modules are newly ini-
tialized with a uniform distribution. After pre-training, the last checkpoint
is used for fine-tuning the ACSA model. The Adam optimizer [25] is used
for optimizing the model. The original parameters of BART’s encoder and
decoder are trained with a learning rate of 2e-5 while the learning rate is set
to 3e-5 for the parameters in the AMR graph encoder and the AMR Cross-
Attention modules. We set the number of the attention heads of the AMR

7https://huggingface.co/facebook/bart-base
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encoder to 6, the number of AMR Cross-Attention heads to 6, the batch
size to 16, and the dropout value to 0.1. The initial value for the ReZero
weight α is 1. The regularization coefficients λ1 and λ2 are set to (0.075,
0.1), (0.075, 0.1), and (0.025, 0.0075) for Rest14, Rest14-hard, and MAMS
datasets respectively, while λ3 is always set to 5e-3. All hyperparameters
are tuned based on the accuracy of the development set. As for the opti-
mization of coefficients λi , they are changed as λ1 ∈ {0.1, 0.075, 0.05, 0.025},
λ2 ∈ {0.25, 0.1, 0.075, 0.05}, and λ3 ∈ {0.01, 0.0075, 0.005, 0.0025}.

4.3 Baselines

We compare our method with multiple baselines:

• GCAE [56]: employs CNN model with the gating mechanism to selec-
tively output the sentiment polarity related to a given aspect.

• AS-Capsules [53]: exploits the correlation between aspects and cor-
responding sentiments through a capsule-based model.

• CapsNet [24]: is the capsule network-based model to learn the rela-
tions between the aspects and the contexts.

• CapsNet-BERT [24]: is the CapsNet model based on the pre-trained
BERT.

• BERT-pair-QA-B [45]: performs ACSA as the sentence pair classifi-
cation task by fine-tuning of the pre-trained BERT.

• AC-MIMLLN [29]: predicts the polarity of a given aspect by com-
bining the sentiments of the words indicating the aspect.

• AC-MIMLLN-BERT [29]: is the AC-MIMLLN model based on the
pre-trained BERT.

• BART generation [33]: performs ACSA by a text generation model
with the pre-trained BART. It is almost equivalent to our model with-
out AMR.

• BART generation with pre-training: is the BART generation
model combined with our pre-training method except for applying en-
tropy regularization.
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Table 4.3: Accuracy (%) of ACSA models. † refers to citation from [24].

Model Rest14 Rest14-hard MAMS
GCAE [56] 81.3(±0.883) 54.7(±4.92) 72.1†
AS-Capsules [53] 82.2(±0.414) 60.8(±2.77) 75.1(±0.473)
CapsNet [24] 81.2(±0.631) 54.0(±0.924) 74.0†
AC-MIMLLN [29] 81.6(±0.715) 65.3(±2.26) 76.4(±0.704)
BERT-pair-QA-B [45] 87.5(±1.18) 69.4(±4.37) 79.1(±0.973)
CapsNet-BERT [24] 86.6(±0.943) 51.3(±1.41) 79.5†
AC-MIMLLN-BERT [29] 89.3(±0.720) 74.7(±3.29) 81.2(±0.606)
BART generation [33] 90.5(±0.315) 77.4(±2.16) 83.1(±0.478)
BART generation with pre-training 90.6(±0.517) 75.5(±3.77) 83.6(±0.847)
Our model 91.2(±0.258) 78.1(±2.53) 84.6(±0.453)

4.4 Experimental Results

The results of the experiments are presented in Table 4.3. The models were
trained and evaluated five times with different initializations of the parame-
ters. The table shows the average and standard deviation of the accuracy of
five trials using the format “mean (±std)”. First, our model outperforms all
baselines on the three datasets, which indicates the necessity of incorporat-
ing semantic information into the text generation model for ACSA. Second,
compared with the models that learn relations between the aspect and the
context like CapsNet, AC-MIMLLN, BERT-pair-QA-B and BART genera-
tion, the dominance of our model proves that exploiting the AMR graph to
learn relations between words is a better way to capture contextual informa-
tion. The fact that our model also outperforms BART generation with the
pre-training further supports that the improvement on our model is not only
from the in-domain data but also from the AMR. Third, the competitive
results over the Rest14-hard and MAMS datasets show the effectiveness of
the identical and entropy regularizers in enabling the model to concentrate
on the correct aspect-related nodes, which is essential for the identification
of the polarity over multiple aspects.

4.5 Ablation Study

To further investigate the effects of the different modules in our model, we
conducted ablation studies. The results are presented in Table 4.4. First, it
is found that the removal of the identical regularizer downgrades the perfor-
mance, which indicates the importance of precisely capturing the semantic
information. Second, we also notice that the models without the entropy
regularizer perform poorly with a reduction of 0.8, 1.1, and 0.4 percentage
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Table 4.4: Ablation study.

Model Rest14 Rest14-hard MAMS
Our model 91.2(±0.258) 78.1(±2.53) 84.6(±0.453)
w/o identical regularizer 91.0(±0.424) 77.4(±1.89) 84.0(±0.320)
w/o entropy regularizer 90.4(±0.162) 77.0(±1.68) 84.2(±1.10)
w/o entropy and identical regularizer 90.3(±0.426) 74.3(±1.69) 83.8(±0.638)
w/o pre-training 89.8(±0.217) 70.6 (±1.03) 83.1(±0.618)

points in the accuracy on Rest14, Rest14-hard, and MAMS, respectively.
This shows that the entropy regularizer is essential to prevent models from
attending to unnecessary AMR nodes. In addition, removing both regular-
izers degrades the performance more than removing each of the regularizers,
which confirms the essential roles of these regularizers in performing ACSA.
Third, removing the pre-training procedure hurts the performance badly,
which leads to decreases by 1.4, 7.5, and 1.5 percentage points on the three
datasets respectively. This indicates the big gap between the newly initialized
modules and the pre-trained model and the necessity of the pre-training step
for overcoming this problem. The ablation studies show that each compo-
nent positively affects the entire model. The contribution of the pre-training
step is the greatest, while those of the identical and entropy regularizers are
comparable to each other.

4.6 Analysis

4.6.1 Case Study

To further examine how the semantic information of AMR and two regular-
izers work well in ACSA, a few examples are shown as a case study. Table
4.5 compares our model with the state-of-the-art method “BART genera-
tion”. The symbols P, N, and O represent the positive, negative, and neutral
classes respectively. The first example, “I never had an orange donut before
so I gave it a shot”, has no explicit sentiment expression. With the help of
semantic information and two regularizers, our model can correctly predict
the true label while BART generation cannot. The second and third exam-
ples contain multiple aspects, which can affect each other’s predictions. In
the second example, the BART generation model may capture the positive
sentiment toward the aspect word “atmosphere” for anticipating the senti-
ment of the different aspect “service’, which leads to outputting the wrong
label. Another incorrect prediction by this baseline is shown in the third
example, where the polarities of “food” and “staff ” are mistakenly swapped.
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In contrast, our model pays attention to only the aspect-related AMR nodes,
resulting in the correct predictions in both examples. However, our model
also faces difficulty in some cases. In the last example, it wrongly predicts the
sentiment polarity for “miscellaneous” because it is really hard to capture
aspect-related AMR nodes for a coarse-grained aspect class like “miscella-
neous”.

Table 4.5: Case studies of our model compared with state-of-the-art method.

Sentence
Aspect

Category
BART

generation
Our

model
Label

I never had an orange donut

before so I gave it a shot
{food} (P) (O) (O)

The atmosphere was wonderful,

however the service and food

were not.

{ambiance,

service,

food}
(P, P, N) (P, N, N) (P, N, N)

There are several specials that

change daily, which the servers

recite from memory.

{food, staff} (O, P) (P, O) (P, O)

The place was busy and had a

bohemian feel.

{place,
miscellaneous} (P, P) (N, P) (N, O)

4.6.2 Attention Visualization

To study the effectiveness of the two regularizers in guiding the AMR Cross-
Attention collocation, we illustrate the Cross-Attention matrix produced by
our full model and the model without two regularizers in Figure 4.3. The
review sentence is “The food was good overall, but unremarkable given the
price.” For the aspect category “food”, both models correctly predict the
sentiment polarity “positive”. However, for the aspect category “price”, the
model without regularizers incorrectly predicts the label “neutral” while our
full model successfully predicts the correct label “negative”. From Figure
4.3, we can see that the model without two regularizers has dense attention
matrices that introduce noise to the prediction of the polarity. In contrast,
the attention matrices of our full model are sparse. For example, as for the
food category, the words “food” and “excellent” in the target sentence pay
much attention or more attention than the model without the regularizers
to the nodes “food” and “good-02” in the AMR graph. Similarly, as for the
price category, “price” in the target sentence pays a great deal of attention
to the node “price-01” in the AMR graph, while “awful” pays less attention
to “remarkable-02” than the model without the regularizers. Those cases
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indicate that our attention regularizers help attention layers work well even
when a review sentence contains multiple aspects.
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(a) Food category, model without regularizers.
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(b) Food category, full model.
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(c) Price category, model without regularizers.
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(d) Price category, full model.

Figure 4.3: Attention scores of target sentences over AMR graph in models
with and without regularizes.
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Chapter 5

Conclusions

5.1 Summary

The primary goal of this thesis was to model the relations between aspect and
opinion words and to incorporate the semantic information into the text gen-
eration model for Aspect Category Sentiment Analysis (ACSA). To complete
this goal, we proposed an efficient method that leveraged Abstract Meaning
Representation (AMR) to capture the aforementioned relations and provide
high-level semantic information to the text-generation-based ACSA model.
The proposed model encoded AMR through the Graph Attention Network
(GAT) before integrating it into the pre-trained BART model by the new
AMR Cross-Attention layers. In addition, we also introduced two new reg-
ularizers that enabled the model to extract aspect-related information from
AMR within sentences containing multiple aspects. The identical regular-
izer enhanced the AMR Cross-Attention by minimizing the gap between the
Cross-Attention weights of the AMR nodes in the AMR Cross-Attention
layers and those of their corresponding words in the source sentence Cross-
Attention layers. The entropy regularizer enabled the model to focus only on
aspect-related AMR nodes by minimizing the information entropy of AMR
Cross-Attention scores. The experimental results on three datasets Rest14,
Rest14-hard, and MAMS showed that our model outperformed other state-
of-the-art methods indicating the effectiveness of our method.

5.2 Future Work

Although our model achieved competitive results in ACSA, there have been
some remaining problems that we have not solved yet. Firstly, we still do not
consider the edge information in AMR, which can also represent the mean-
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ing of sentences. Secondly, training the model consisting of new modules and
the pre-trained language model is unstable. This problem is expected to be
solved by building a pre-trained language model with semantic information
from AMR. To adopt the seq2seq framework of the language model, we can
linearize the AMR graph and concatenate it with a plain text. Convention-
ally, we can apply token masking on opinion words and target words as well
as aligned AMR nodes in order to learn contextual information together with
aspect-related information. Finally, since AMR is a promising framework for
obtaining the semantic representation of a sentence, the use of AMR could
be carefully exploited for other subtasks of sentiment analysis such as Aspect
Category Detection or Aspect-based Sentiment Analysis.
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