
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A Technique to Alleviate the State Space Explosion

for Eventual Model Checking, Its Support Tool and

Case Studies

Author(s) Moe Nandi, Aung

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18750

Rights

Description
Supervisor: 緒方 和博, 先端科学技術研究科, 修士(情報

科学）

Master’s Thesis

A Technique to Alleviate the State Space

Explosion for Eventual Model Checking, Its

Support Tool and Case Studies

Moe Nandi Aung

Supervisor Kazuhiro Ogata

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

(Information Science)

August, 2023

Abstract

In our research, we address the state space explosion in model checking,
which stands as one of the most significant hurdles in this field. To mitigate
this problem, we propose a divide & conquer approach to eventual model
checking (DCA2EMC).
As the name implies, our approach primarily focuses on handling eventual
properties, which are expressed in linear Temporal Logic (LTL) as ♦ϕ, where
ϕ represents a state proposition. Eventual properties informally say that
something will eventually happen. These can be used to express many impor-
tant software requirements of a system. For example, halting or termination
is one important software requirement and this can be formalized by utilizing
the eventual properties. Therefore, eventual properties capture many impor-
tant system requirements, making them a valuable area of focus.
Our divide & conquer approach involves dividing the original eventual model
checking problem into multiple smaller model checking problems, each of
which is tackled. We have proved a theorem that demonstrates the equiva-
lence of the multiple smaller model checking problems to the original eventual
model checking problem. We have also constructed an algorithm based on the
theorem in order to build a support tool capable of performing verification
of eventual properties in model checking. Additionally, we have developed a
tool that supports the proposed approach. Our support tool is developed in
Maude, a high-level language and high-performance system which supports
both equational and rewriting logic computation.
To demonstrate the effectiveness of our proposed approach, as well as the
efficiency of our tool, we have conducted some case studies and experiments.
Some limitations of our approach are also discussed in this thesis as well.
According to experimental results, our approach can be used to mitigate the
state space explosion to a certain scope. In summary, our approach provides
a promising solution for tackling the state space explosion in model checking
for eventual properties. Through theoretical analysis and evaluations, we
highlight the effectiveness of our proposed approach/tool.

Acknowledgements

I would like to express my deepest gratitude and appreciation to the following
individuals who have supported and guided me throughout my thesis journey:

First and foremost, I am grateful to my parents for their unwavering love,
encouragement, and support. Their constant belief in me has been a source
of strength and motivation.

I extend my heartfelt gratitude to my supervisor, Professor Kazuhiro
Ogata, for his guidance, expertise, and invaluable insights. His dedication to
teaching and research has been instrumental in shaping my academic growth
and research skills. I am truly lucky to have the opportunity to work under
his supervision.

I would like to express my sincere appreciation to committee members,
Professor Daisuke Ishii, Professor Kunihiko Hiraishi, and my second supervi-
sor Professor Toshiaki Aoki for their valuable feedback, constructive criticism,
and support throughout the thesis process. Their expertise and suggestions
have significantly enhanced the quality of my work.

I am grateful to Assistant Professor Canh Minh Do for his invaluable sup-
port and guidance throughout the entire research project and thesis writing
process. I am truly grateful to him for always being there to help and provide
explanations whenever I needed assistance with the courses I attended.

I would also like to express my gratitude to Professor Saw Sanda Aye,
the President of my undergraduate university, for providing me with the
opportunity to connect with JAIST and pursue my Master’s degree here.

I am also thankful to my friends and classmates who have provided sup-
port, encouragement, and a sense of camaraderie throughout my academic
journey. Their friendship has made this experience even more rewarding.

Lastly, I would like to acknowledge the contributions of all the individuals
who have played a part, directly or indirectly, in the completion of this thesis.
Their support, encouragement, and assistance have been instrumental in my
success.

I am truly grateful to everyone who has been a part of this journey and
has contributed to my personal and academic growth.

1

Contents

Acknowledgements 1

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Thesis Structure . 3

2 Related Works 4
2.1 SAT/SMT-based Bounded Model Checking and its Extensions 4
2.2 Non-exhaustive Model Checking 6

3 Preliminaries 8
3.1 Kripke Structure . 8
3.2 Linear Temporal Logic (LTL) 9
3.3 Maude . 11
3.4 Formal Specification and Model Checking 12
3.5 Meta-Programming . 13

4 A Divide & Conquer Approach to Eventual Model Checking 16
4.1 Outline of the Technique . 16

4.1.1 Formal Specification and Model Checking of Qlock . . 18
4.1.2 Utilizing Our Technique for Model Checking of Qlock . 21

4.2 A Divide & Conquer Approach to Eventual Model Checking . 24
4.3 Algorithm of DCA2EMC . 27
4.4 Summary . 29

5 A Support Tool for the Proposed Technique 30
5.1 How to Use the Support Tool 30
5.2 Tool Implementation in Maude 31
5.3 Case Studies and Experimental Results 35

5.3.1 Case Studies . 36
5.3.2 Experimental Results 38

2

5.4 Summary . 40

6 A Case Study: The Lim-Jeong-Park-Lee Autonomous Ve-
hicle Intersection Control Protocol 41
6.1 LJPL Protocol . 41
6.2 Formal Specification of LJPL Protocol 43
6.3 Model Checking of LJPL Protocol 48
6.4 Summary . 52

7 Conclusion and Future Work 53
7.1 Conclusion . 53
7.2 Future Work . 54

Copyright 55

References 59

Publications 60

List of Figures

4.1 A Divide & Conquer Approach to Eventual Model Checking . 17
4.2 The reachable state space of Qlock 20
4.3 Layer 1 . 22
4.4 Layer 2 . 22
4.5 Layer 3 . 22
4.6 Two-layer division of the reachable state space 24
4.7 An L+1-layer Divide & Conquer Approach to Eventual Model

Checking . 26

5.1 Some information managed by the tool 33

6.1 An intersection . 42
6.2 An initial state . 44

3

List of Tables

3.1 Descriptions of path notations 10
3.2 Descriptions of path-set notations 11
3.3 Descriptions of satisfaction relation |= notations(or symbols),

where b is a natural number 11

5.1 Model checking results with the limited amount of memory . . 39
5.2 Model checking results with the large mount of memory 39

6.1 Model Checking Results with the Limited Amount of Memory 51
6.2 Model Checking Results with the Large Amount of Memory . 51

Chapter 1

Introduction

Nowadays, software and hardware play a crucial role in many areas of our
daily life, such as education, finance, healthcare, communication, and more.
In these applications, it is important to prevent failures because they are not
allowed or acceptable. Therefore, the reliability of these is the first job to
do to protect our lives from serious injuries. Model checking, as a formal
verification technique, holds great promise due to its ability to automate the
verification process once concise formal models are constructed [1]. It has
found extensive application in various industries, particularly in the realm
of hardware verification. However, the state space explosion [2] problem
which refers to the exponential growth in the number of states that must
be considered during the verification process, rendering it computationally
demanding or even infeasible, still remains in it. Despite the development
of techniques such as partial order reduction [3], abstraction [4, 5, 6], order
binary decision diagrams (OBDD) [7], and compositional reasoning [8, 9]
to address this challenge, the state explosion problem persists and requires
further attention. This thesis aims to mitigate the state explosion problem
in model checking, with a specific focus on eventual properties. Eventual
properties informally say that certain events will eventually happen. These
properties play a crucial role in formalizing essential software requirements,
such as termination or halting conditions. To mitigate the state explosion in
the model checking of eventual properties, we have come up with a divide &
conquer approach to eventual model checking (DCA2EMC) [1], which divides
the original eventual model checking problem into multiple smaller model
checking problems and tackles each smaller one. To show the equivalence
of multiple smaller model checking problems to the original eventual model
checking problem, we have proved a theorem. Based on the theorem, we
have constructed the algorithm in order to build a support tool. We have
also developed a tool that supports the proposed approach in conducting

1

model checking experiments. We have conducted some case studies to show
the power of our approach. In this chapter, we introduce the motivation, our
main contribution, and describe our thesis structure.

1.1 Motivation

We have conducted a case study [10] to formally specify an autonomous
vehicle intersection control protocol known as the Lim-Jeong-Park-Lee au-
tonomous vehicle intersection control protocol (LJPL) [11]. The LJPL pro-
tocol governs the behavior of autonomous vehicles at intersections to ensure
safe and efficient traffic flow. To achieve rigorous verification, we used the
Maude language [12] as a formal specification language and the Maude LTL
model checker as a model checker to model-check the protocol with its desired
properties. One crucial property we examined was the starvation freedom
property, which guarantees that each vehicle desiring to pass through the
intersection will eventually be able to do so. This property can be formally
expressed as an eventual formula in Linear Temporal Logic (LTL). In the
model checking of the protocol, we aimed to determine whether it satisfies
the starvation freedom property.
When we conducted the model checking experiment with five vehicles taking
part in the protocol, we were able to complete it quickly using an ordinary
computer with 16 GB of memory. However, when we increased the number
of vehicles to 13, we could not finish the experiment in a limited amount of
time. We could not get the result and the state space explosion occurred.
This experience motivated us to propose an approach to mitigate the state
space explosion problem in our research.

1.2 Contributions

We focus on mitigating the state space explosion in model checking with
eventual properties that many systems should satisfy. The following are our
contributions:

• We propose an approach to mitigate the state space explosion in model
checking that is dedicated to eventual properties. The approach is
called a divide & conquer approach to eventual model checking
(DCA2EMC).

• We prove a theorem that shows the equivalence of the original eventual
model checking problem to the smaller model checking problems tackled

2

by our approach. An algorithm is constructed based on the theorem so
as to conduct model checking.

• We develop a tool in Maude to support our approach and conduct
some experiments showing that our approach can mitigate the state
space explosion to some extent.

1.3 Thesis Structure

We organize the structure of this thesis into seven chapters. We summarize
each chapter as follows:

• Chapter 1 introduces model checking and the notorious state space
explosion in model checking and our motivation. Moreover, our contri-
butions and the thesis structure are described.

• Chapter 2 investigates some SAT/SMT-based Bounded Model Check-
ing and its extensions used to mitigate the state space explosion prob-
lem in model checking. We also compare our technique with some other
techniques as well.

• Chapter 3 provides Kripke structure, Linear Temporal Logic (LTL),
and Maude.

• Chapter 4 proposes DCA2EMC so as to mitigate the state space explo-
sion in model checking. This chapter sketches out the approach with
an example (QLOCK) and proves a theorem that the original eventual
model checking problem is equivalent to the smaller model checking
problems tackled by our approach. This chapter also describes an algo-
rithm that is constructed from the theorem to conduct model checking
for eventual properties with the approach.

• Chapter 5 describes how to use and implement a support tool in Maude
for DCA2EMC. Some experiments are conducted to demonstrate that
the approach/tool can mitigate the state space explosion to some ex-
tent.

• Chapter 6 describes a case study in which the formal specification and
model checking of the Lim-Jeong-Park-Lee Autonomous Vehicle Inter-
section Control Protocol is conducted both with Maude LTL model
checker and our the support tool.

• Chapter 7 summarizes the main contributions of the thesis and dis-
cusses the limitations of our approach/tool and our future work.

3

Chapter 2

Related Works

© 2022 IEEE. Reprinted with permission, from M. N. Aung, Y.
Phyo, C.M. Do and K. Ogata, “A Tool for Model Checking Even-
tual Model Checking in a Stratified Way,” 2022 9th International
Conference on Dependable Systems and Their Applications (DSA),
10/2022.

In model checking, one of the most prominent challenges is the state space
explosion problem. Numerous researchers have proposed various techniques
to ease this problem. Among the techniques to ease the problem are partial
order reduction [3], abstraction [4, 5, 6], ordered binary decision diagrams
(OBDD) [7], and compositional reasoning [8, 9]. This chapter will describe
one effective technique called bounded model checking [13] as this technique
is related to our divide & conquer approach to eventual model checking and
non-exhaustive model checking algorithms offered by the SPIN [14]. We will
also compare these techniques with our approach.

2.1 SAT/SMT-based Bounded Model Check-

ing and its Extensions

One effective technique to ease the problem and is related to DCA2EMC
is bounded model checking (BMC) [13] based on solvers of satisfiability
(SAT) or satisfiability modulo theories (SMT), called SAT/SMT-based BMC.
SAT/SMT-based BMC converts a BMC problem into a SAT/SMT problem
and tackles the former problem by solving the latter one with a SAT/SMT
solver, where a BMC problem is to model check a property for a bounded
reachable state space up to a finite depth from each initial state. DCA2EMC
generates multiple sub-state spaces from the original reachable state space

4

from each initial state, where sub-state spaces obtained from intermediate
layers are bounded state spaces, although we add a self-transition for each
state placed at the bottom of the sub-state spaces. Therefore, DCA2EMC
can be considered an extension of SAT/SMT-based BMC, but we never use
any SAT/SMT solvers.

Another extension of SAT/SMT-based BMC is k-induction [15, 16]. k-
induction first carries out BMC for the bounded state space from each initial
state up to a finite depth k, which corresponds to the standard induction.
It then supposes that a property under verification is satisfied for each state
sequence from an arbitrary state s such that its depth is k or it consists of
k + 1 states, which corresponds to the induction hypothesis of the standard
induction. It finally checks if the property remains true in any successor
states of the state sequence, where the successor states are placed at depth
k + 1 from s, which corresponds to the induction case (or step) of the stan-
dard induction. Properties that can be handled by k-induction are invariant
properties. DCA2EMC does not use any inductions but splits the original
state space into multiple sub-state spaces that can be regarded as a specific
instance of induction. DCA2EMC exhaustively splits the reachable state
space from each initial state into multiple sub-state spaces.

Yet another extension of SAT-BMC is model checking with Craig inter-
polants [17]. The formula tackled by SAT-BMC with depth k is divided into
two sub-formulas A and B, where A expresses each initial state and one-
step transition from each initial state and B expresses the other one-step
transitions up to depth k and what is related to a property under model
checking. If A ∧ B is unsatisfiable, there exists an interpolant P such that
P ∧ B is unsatisfiable and each variable in P is included in A and B. Such
P is constructed by SAT-based BMC. A ∧ P over-approximates the set of
states that are reachable from each initial state up to one transition. A is
replaced with A ∧ P , and then it is checked that A ∧ B is unsatisfiable. If
so, A ∧ P , where P is the next interpolant obtained, over-approximates the
set of states that are reachable from each initial state up to two transitions.
This process is repeated at most k− 1 times until A∧B becomes satisfiable
or A∧P is equivalent to A. If A∧B becomes satisfiable meanwhile, it means
that a counterexample is found. If A ∧ P is equivalent to A, the property is
satisfied. Otherwise, k is increased and then the whole process is repeated.
Model checking with Craig interpolants is unbounded model checking in that
unboundedly many transitions are taken into account instead of boundedly
many transitions, and so is DCA2EMC.

5

2.2 Non-exhaustive Model Checking

In traditional exhaustive model checking, each reachable state of the system
is stored in memory. If each state requires S bytes of memory and there
are M bytes of memory available, then the model checker can store up to
M/S states. If the total number of reachable states R exceeds M/S, the
model checker will exhaust its available memory before exploring all reachable
states. SPIN [14] which is a powerful and widely-use model checker for the
formal verification of distributed systems offers techniques called bit state
hashing [18] and partial order reduction [19].

The bit state hashing technique allows SPIN to explore a much larger
portion of the state space with the same amount of memory. Instead of
storing the entire state in memory, bit state hashing stores just a hash of the
state, using two bits of memory for each state. The hash functions are used
to compute the bit address. SPIN utilizes a large bit-state array or bit vector
to prevent state duplication. Initially, all array values are set to zero which
indicates that no states have been visited yet. As SPIN explores the state
space of the system under verification, it encounters new states. For each
new state, SPIN calculates the bit address of the state using one or more
hash functions. The calculated hash addresses are used as indices in the bit-
state array. For each hash value, the corresponding bit in the bit-state array
is set to 1. This marks the state as visited. If multiple hash functions are
used, then multiple bits in the array will be set to 1 for each state. When
SPIN encounters a state, it checks if the state has been visited before by
computing the state’s hash address and checking the corresponding bit of
that state in the bit-state array. If all bits are 1, then the state has been
visited before; otherwise, it’s a new state. If a hash collision occurs (i.e.,
the calculated hash addresses for two different states have the same hash
address), SPIN simply ignores the collision and proceeds with the model
checking. The model checking process continues until all reachable states
have been explored, or until a property violation is found. At the end of the
process, if no violations have been found and all reachable states have been
explored, the system under verification is considered to satisfy the checked
properties. The effectiveness of bit-state hashing in SPIN depends on several
parameters: the size of the bit-state array, the number of hash functions
used, and the search strategy used to explore the state space. Adjusting these
parameters can impact the memory usage and accuracy of the verification
process. The primary benefit of bit-state hashing is its memory efficiency,
which enables SPIN to explore large state spaces that would not fit into
memory. Note that it is non-exhaustive model checking where many states
may be overlooked. We may adopt the idea of the bit-state hashing from

6

SPIN for DCA2EMC to handle large state spaces in order to quickly find a
counterexample if any at the cost of non-exhaustive model checking.

Partial order reduction [3] is a method to reduce the state spaces of the
concurrent systems to be examined. The main idea behind it is to identify
independent or commutative transitions, where the order of their occurrence
does not impact the overall behavior of the system. It is used to generate
the reduced model that includes all behaviors of the original system needed
to verify a specific property. SPIN uses the combination of this method and
on-the-fly model checking [19] to reduce the number of reachable states that
must be examined to complete verification. Assume S is the set of states,
T ⊆ S×S is the set of transitions over states and enabled(s)⊆ T is the set of
all transitions that can be taken from state s. ample(s) is a subset of enabled
transitions, ample(s) ⊆ enabled(s). The reduced model is constructed by
selecting the ample(s) at each state in the system. SPIN computes an
ample set of transitions that can be executed next. Instead of exploring all
enabled transitions, SPIN only explores the transitions in the ample set. This
significantly reduces the number of interleavings that need to be considered,
especially for mutual exclusion protocols. The reduction is based on the
observation that the validity of an LTL formula is often insensitive to the
order in which concurrent and independently executed events are interleaved
in the depth-first search [14]. The effectiveness of partial order reduction
depends on the level of concurrency and independence of transitions in the
system, as well as the type of properties being checked and the selection of the
ample sets. The benefits of partial order reductions include the minimization
of state spaces and the enhancement of efficiency in terms of time and memory
utilization because it does not need to explore the whole state space.

Our approach DCA2EMC offers a different strategy to tackle the state
explosion problem. DCAEMC splits the reachable state space into multi-
ple layers, generating multiple smaller sub-state spaces. It tackles smaller
sub-state spaces layer by layer sequentially to verify the eventual property.
Therefore, it can reduce the overall complexity, making the best use of the
memory, and making the verification process more efficient. All these tech-
niques aims to mitigate the state space explosion problem. DCA2EMC splits
the original problem into smaller problems to manage the use of the memory.
Partial order reduction in SPIN reduces the number of interleavings of in-
dependent transitions that are considered during model checking. Bit state
hashing in SPIN allows to explore the larger portion of the state spaces in
a non-exhaustive way. Therefore, it is worth trying although each technique
has its own strengths and weaknesses.

7

Chapter 3

Preliminaries

This chapter describes Kripke structures, Linear Temporal Logic, and Maude.
The support tool is implemented in Maude with its meta-programming fa-
cilities.

3.1 Kripke Structure

A Kripke structure K �< S, I, T, A, L > consists of the following: a set S
of states, a set I ⊆ S of initial states, a left-total binary relation T ⊆ S × S
overs states, a set of atomic propositions, and a labeling function whose types
is S → 2A. For a given state s ∈ S, L(s) is the set of atomic propositions
that hold in s. Each element (s, s′) ∈ T is called a (state) transition and may
be written s→K s′ or s→ s′.
We define some notations as:

πi � si, si+1, . . .

πi � s0, . . . , si−1, si, si, . . .

π(i) � si

π(i,j) �
{
si, si+1, . . . , sj, sj, . . . if i ≤ j

si, si, . . . otherwise

π(i,∞) � πi

where i and j are any natural numbers. Note that π(0,j) = πj. A path π of
K is called a computation of K if and only if π(0) ∈ I. We use P(K,s), where
s ∈ S, to denote the set of paths that start with s. We use P b

(K,s), where b is
a natural number, to denote the set of πb such that π is an element of P(K,s).
We use P∞

(K,s) to denote P(K,s).

8

3.2 Linear Temporal Logic (LTL)

Let p be an atomic proposition and then the syntax of an LTL formula ϕ is
defined as:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

We use F to denote the set of all LTL formulas. We inductively define
K, π |= ϕ for π ∈ P and ϕ ∈ F as:

• K, π |= �
• K, π |= p iff p ∈ L(π(0))

• K, π |= ¬ϕ1 iff K, π
|= ϕ1

• K, π |= ϕ1 ∨ ϕ2 iff K, π |= ϕ1 and/or K, π |= ϕ2

• K, π |=©ϕ1 iff K, π1 |= ϕ1

• K, π |= ϕ1 U ϕ2 iff there exists a natural number i such that K, πi |= ϕ2

and for all natural numbers j < i, K, πj |= ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ iff K, π |= ϕ for all
computations π ∈ C of K. © and U are called the next temporal connective
and the until temporal connective, respectively.

The other logical and temporal connectives are defined as:

⊥ � ¬�
ϕ1 ∧ ϕ2 � ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 � ¬ϕ1 ∨ ϕ2

♦ϕ � � U ϕ

�ϕ � ¬(♦¬ϕ)
♦ is the eventual (or eventually) temporal connective and � is the always
temporal connective. State propositions are classical propositions, which do
not contain temporal connectives at all, and then the first state π(0) can
judge if state propositions are satisfied by a path π. We call properties that
can be formalized as ♦ϕ eventual properties, where ϕ is a state proposition,
in this thesis.

State propositions are LTL formulas such that they do not have any
temporal connectives.

Proposition 1. Let K be any Kripke structure. If ϕ is any state proposi-
tion, then (K, π |= ϕ) ⇐⇒ (K, π′ |= ϕ) for any paths π and π′ of K such
that π(0) = π′(0).

9

Proof. The first state π(0) decides if K, π |= ϕ holds.
Eventual properties are those that are expressed in the form of ♦ϕ, where

ϕ is an LTL formula. In this thesis, furthermore, we give the constraint to
ϕ: ϕ is a state proposition.
Let K, s |= ϕ, where s ∈ S be K, π |= ϕ for all ϕ ∈ P(K,s). Note that
K, s |= ϕ for all s ∈ I is equivalent to K |= ϕ. Let K, s, b |= ϕ, where s ∈ S
and b is a natural number or ∞, be K, π |= ϕ for all π ∈ P b

(K,s). Note that

K, s,∞ |= ϕ is K, s |= ϕ.
Some logical connective are abused for K, π |= ϕ as follows:

• (K, π |= ϕ) ∧ (K ′, π′ |= ϕ′) � K, π |= ϕ andK ′, π′ |= ϕ′

• (K, π |= ϕ) ∨ (K ′, π′ |= ϕ′) � K, π |= ϕ and/orK ′, π′ |= ϕ′

• (K, π |= ϕ)⇒ (K ′, π′ |= ϕ′) � K, π |= ϕ, thenK ′, π′ |= ϕ′

• (K, π |= ϕ) ⇐⇒ (K ′, π′ |= ϕ′) � K, π |= ϕ if and only ifK ′, π′ |= ϕ′

In this thesis, we provide a comprehensive summary of the notations or
symbols utilized in three tables, namely Tables 1-3. Table 3.1 presents the
notations or symbols pertaining to paths, Table 3.2 outlines the notations
or symbols associated with sets of paths, and Table 3.3 encompasses the
notations or symbols relevant to satisfaction relations. The purpose of these
tables is to provide a clear and concise reference for understanding the various
notations and symbols employed throughout the thesis.

Table 3.1: Descriptions of path notations
Notation Description

π A path; an infinite sequence s0, s1, . . . , si, si+1, . . . of states such that si →K si+1 for
each i; if s0 is an initial state, it is called a computation

π(i) The ith state si in π
πi The postfix si, si+1, . . . obtained by deleting the first i states s0, s1, . . . , si−1 from π
πi s0, s1, . . . , si, si, . . . Constructed by first extracting the prefix s0, s1, . . . , si, the first

i+ 1 states from π
π∞ s0, s1, . . . , si, si+1, the same as π

π(i,j) If i ≤ j, then si, . . . , sj, sj, . . ., the same as (πi)(j−i); otherwise, si, si, . . ., the infinite
sequence in which only si occurs infinitely many times

π(i,∞) si, si+1, . . ., the same as πi

πi
j The same as π(i,j)

10

Table 3.2: Descriptions of path-set notations
Symbol Description

PK The set of all paths of K
P(K,s) The set of all paths π of K such that π(0), the 0th state of the path π, is s
P b
(K,s) The set of all paths πb such that π ∈ P(K,s)

P∞
(K, s) The same as P(K,s)

Table 3.3: Descriptions of satisfaction relation |= notations(or symbols),
where b is a natural number

Symbol Description
K, π |= ϕ An LTL formula ϕ holds for a path π of K
K |= ϕ An LTL formula ϕ holds for all computations of K
K, s |= ϕ An LTL formula ϕ holds for all paths in P(K,s)

K, s, b |= ϕ An LTL formula ϕ holds for all paths in P b
(K,s)

K, s,∞ |= ϕ The same as K, s |= ϕ

3.3 Maude

We use Maude [12] which is a powerful specification and programming lan-
guage that is based on rewriting logic. It serves as a direct successor to
OBJ3, an order-sorted algebraic specification language. In Maude, terms
play a fundamental role as the basic building blocks and represent the data
used in specifications and programs. Various entities such as states, compo-
nents of states, atomic propositions, and LTL formulas are expressed using
terms in Maude.
One of the key features of Maude is its ability to describe state transitions
through the use of rewrite rules. These rules define how states can be trans-
formed from one form to another, enabling the specification and modeling of
dynamic behavior. Furthermore, Maude supports modularity and extensibil-
ity through its module system. Specifications and programs can be organized
into modules, allowing for hierarchical structuring and reuse of components.
The module system enables the development of complex systems by provid-
ing mechanisms for composition, parameterization, and encapsulation.
In summary, Maude offers a rich and expressive environment for specifying
and verifying systems. Its foundation in rewriting logic, combined with its
module system and formal analysis capabilities, makes it well-suited for both
formal verification and prototyping of complex software systems.

11

3.4 Formal Specification and Model Check-

ing

Formal Specification
In the context of expressing states, a state is represented as a braced soup,
which is an associative-commutative (AC) collection of name-value pairs.
Observable components, denoted as oc1, oc2, oc3, are the individual name-
value pairs within a state. Thus, a state can be expressed as a braced soup
constructed using the juxtaposition operator: oc1 oc2 oc3. To specify state
transitions, we employ rewrite rules within the Maude programming/specifi-
cation language. Maude is based on rewriting logic and offers flexible means
for defining complex systems. It also includes model checking capabilities
such as an LTL model checker.
In Maude, rewrite rules can be presented as unconditional rewrite rules and
conditional rewrite rules, following the forms in Maude

rl [Label] : Term-1 ⇒ Term-2 [StatementAttributes].

crl [Label] : Term-1 ⇒ Term-2

if〈Condition-1 〉 ∧ . . . ∧ 〈Condition-k〉
[〈StatementAttributes〉].

respectively. In the first case, Term − 1 and Term − 2 are the same kind,
which may contain variables. Intuitively, a rule describes a local state tran-
sition in a system: anywhere in the distributed state where substitution
instance σ(Term− 1) of the lefthand side is found, a local transition of that
state fragment to the new local state σ(Term − 2) can take place. And if
many instances of the same or of several rules can be matched in different
nonoverlapping parts of the distributed state, then, all of them can fire con-
currently. In the second case, the condition can consist of a single statement
or can be a conjunction formed with the associative connective ∧. Conditions
can also contain rewrite expressions. Furthermore, equations, memberships,
and rewrites can be intermixed in any order. As for the functional modules,
some of the equations in conditions can be either matching equations or ab-
breviated Boolean equations.
In our protocol specification, rewrites rules are used to specify concurren-
t/distributed systems from which some protocols used in this thesis are spec-
ified. The specifications of the case study protocols will demonstrate the
practical application and utilization of these rewrite rules and conditional
rewrite rules. Through the use of these formal specification constructs, we
can effectively capture the desired behavior, state transitions, and constraints

12

of the protocol, ensuring its correctness and adherence to the specified re-
quirements.

Model Checking
In Maude, two levels of specification can be distinguished.

• a system specification level, provided by the rewrite theory specified by
that system module which defines the behavior of the system, and

• a property specification level, given by some property (or properties)
ϕ that we want to state and prove about our module.

After defining the system specification and a property specification for the
system, we can use Maude LTL model checker to model check the system.
In order to use Maude LTL model checker, Maude supports modelCheck
command to model check the system. It automates the model checking pro-
cess by encapsulating the analysis of the system, the property to be verified
(typically expressed in linear Temporal Logic LTL), and the exploration of
the state space. The command modelCheck(init, ϕ) checks whether the
system, starting from the initial state init that we defined, satisfies the LTL
formula ϕ, which can be ♦p as our research is focused on the eventual prop-
erty. In summary, the modelCheck command conducts model checking
experiments with predefined strategies and algorithms tailored for efficient
state space exploration and verification of LTL properties.

3.5 Meta-Programming

Maude supports not only equational logic but also rewriting logic compu-
tation. Rewriting logic is the logic of concurrent change, therefore a con-
current/distributed system can be specified in Maude. Moreover, rewriting
logic is a reflective logic that can be faithfully interpreted in itself, making
it possible to develop many advanced meta-programming and meta-language
applications. We borrow some descriptions on them from [12]. Informally,
a reflective logic is a logic in which important aspects of its metatheory can
be represented at the object level in a consistent way so that the object-
level representation correctly simulates the relevant metatheoretical aspect.
Rewriting logic is reflective in a precise mathematical way, namely, there is a
finitely presented rewrite theory U that is universal in the sense that we can
represent in U any finitely presented rewrite theory R (including U itself) as
a term R, any terms t, t′ in R as terms t, t′, and any pair (R, t) as a term
〈R, t〉. Because U is representable in itself, we can achieve a reflective tower

13

with an arbitrary number of levels of reflection:

R � t→ t′ ⇐⇒ U � 〈R, t〉 → 〈R, t′〉 ⇐⇒ U � 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉...
In this chain of equivalences, we say that the first rewriting computation

takes place at level 0, the second at level 1, and so on. In Maude, the key
functionality of the universal theory U has been efficiently implemented in
the functional module META–LEVEL. This module includes the modules
META–VIEW,
META–MODULE, META–STRATEGY, and META–TERM.
As an overview,

• in the module META–TERM, Maude terms are meta-represented as
elements of a data type Term of terms.

• in the module META–STRATEGY, the Maude strategy language is
meta-represented as terms in a data type Strategy of strategy expres-
sions.

• in the moduleMETA–MODULE, Maude modules are meta-represented
as terms in a data type Module of modules.

• in the module META–LEVEL,

– operations upModule, upTerm, downTerm and others allow
moving between reflection levels;

– the process of reducing a term to canonical form using Maude’s re-
duce command is meta-represented by a built-in functionmetaRe-
duce;

– the processes of rewriting a term in a system module using Maude’s
rewrite and frewrite commands are meta-represented by built-in
functions metaRewrite and metaFrewrite;

– the process of applying (without extension) a rule of a system
module at the top of a term is meta-represented by a built-in
function metaApply;

– the process of applying (with extension) a rule of a system module
at any position of a term is meta-represented by a built-in function
metaXapply;

– the process of matching (without extension) two terms at the top
is reified by a built-in function metaMatch;

– the process of matching (with extension) a pattern to any subterm
of a term is reified by a built-in function metaXmatch;

14

– the process of searching for a term satisfying some conditions start-
ing in an initial term is reified by built-in functions metaSearch
and metaSearchPath;

– the processes of rewriting a term using Maude’s srewrite and
dsrewrite commands are meta-represented by built-in functions
metaSrewrite and metaDsrewrite; and

– parsing and pretty-printing of a term in a module, as well as key
sort operations such as comparing sorts in the subsort ordering of
a signature, are also meta-represented by corresponding built-in
functions.

Meta-programing treats Maude’s specifications as terms and allows for ad-
vanced manipulation and analysis. A meta-program is a program that takes
the Maude specification as input and performs some useful computations,
such as adding or revising more specifications or analyzing the specifications
using the meta functions. One key application of meta-programming is in the
development of support tools. These tools leverage the reflective capabilities
of Maude to perform automated analysis, verification, or model checking on
specifications. By treating specifications and properties as data, the tools
can apply various analysis techniques and algorithms to verify desired prop-
erties. Our support tool takes a Maude specification and the desired property
as data in the form of terms. It utilizes the proposed technique to perform
model checking and determine whether the specification satisfies the desired
property. The meta-programming capabilities of Maude provide the flexibil-
ity and expressiveness to perform the analysis effectively and efficiently.

15

Chapter 4

A Divide & Conquer Approach
to Eventual Model Checking

© 2022 IEEE. Reprinted with permission, from M. N. Aung, Y.
Phyo, C.M. Do and K. Ogata, “A Tool for Model Checking Even-
tual Model Checking in a Stratified Way,” 2022 9th International
Conference on Dependable Systems and Their Applications (DSA),
10/2022.

This chapter presents the theoretical concept of our approach called “A
divide & conquer approach to eventual model checking” (DCA2EMC), fol-
lowed by the proof and a detailed explanation of the algorithm. To illustrate
our approach, we utilize a simple mutual exclusion protocol called Qlock.
The basic idea of the proposed technique is that an eventual model check-
ing problem is divided into multiple smaller model checking problems and
each smaller model checking problem is tackled so as to tackle the original
eventual model checking experiment. We will prove a theorem that tackling
each smaller model checking problem is equivalent to tackling the original
eventual model checking problem.

4.1 Outline of the Technique

The technique splits each infinite state sequence s10, ..., s
1
n1
, ..., si0, ..., s

i
ni
, ..., sm0 ,

... (generated from a Kripke structure K) into multiple m sub-sequences, for
each si0, ...s

i
ni

(for i = 1, ...,m− 1) of all the sub-sequence except for the final
one we add the final state sini

infinitely many times to the end, generating
the infinite sequence si0, ..., s

i
ni
, sini

, ... and conduct model checking experiment
with the eventual properties which can be expressed in LTL as ♦ϕ where ϕ

16

Figure 4.1: A Divide & Conquer Approach to Eventual Model Checking

is a state proposition for each infinite sequence in each layer. sini
is a state

located at the bottom of layer i or at the beginning of the next layer i. If
(K, si0, ..., s

i
ni
, sini

, ... � ♦ϕ), then the last state of the path sini
is collected as

a counterexample state (cx) at layer i. Note that the number of differ-
ent states in the original infinite state sequence (and also each sub-sequence
including the final one) is bounded if there is a bounded number of reachable
states. If the number of different states in each sub-sequence is much smaller
than the one in the original infinite sequence, it would be feasible to conduct
the model checking experiment for the infinite sequence generated from each
sub-sequence (including the final one) even though it is impossible to conduct
the model checking experiment for the original infinite state sequence due to
the state space explosion. Our technique makes it possible to use any ex-
isting Linear Temporal Logic(LTL) model checking algorithm and then any
existing LTL model checker. We will prove a theorem that the original even-
tual model checking problem for the original infinite sequence is equivalent
to the multiple model checking problems for the multiple infinite sequence.
We design an algorithm according to our theorem to build a support tool
for our technique. We conduct experiments using some case studies to show
the effectiveness of our technique. First, we use a simple mutual exclusion
protocol to outline our technique in this chapter.
A mutual exclusion protocol named ‘Qlock’, which serves as an abstract
version of Dijkstra’s binary semaphore is used to design our proposed tech-
nique. The primary goal of this protocol is to guarantee that a process can
successfully enter the critical section, perform essential tasks within it, exit

17

the critical section, and ultimately reach the final section. This guarantee is
expressed as an eventual property which can be expressed as ♦, emphasizing
the protocol’s ability to enable a process’s uninterrupted progression through
the specified sections.

Qlock for each process p can be described as :

“start-section”
ss : enq(q, p);
ws : while until top(q) = p;
“critical-section”
cs : deq(q);
“final-section”
fs : ...

q is an atomic queue of process IDs shared by all processes. enq, top, and
deq are the atomic operators of atomic queues. q is initially empty and each
process p is located at ss. When p would like to enter the cs, it adds its ID
into q and goes to ws. It waits at ws while the top of q is not p. Whenever
the top of q becomes p, p enters the cs. When it exits cs, it removes the ID
of p from q and goes to fs. We suppose that each process enters the cs at
most once. In this case study, the property of interest is the eventual arrival
of a process at the fs state. This property can be formalized as an eventual
property, denoting the guarantee that, given sufficient time, each process will
reach the fs state.

4.1.1 Formal Specification andModel Checking of Qlock

In the context of Qlock, when there are ‘n’ processes participating, each state
in SQlock can be formalized as follows:

(q : q) (loc[p1] : l1) . . . (loc[pn] : ln) (#ps : x)

The state consists of a tuple containing the values of different components:
The value q represents the atomic queue and is stored in the q observable
component. Initially, q is an empty queue denoted as ‘empq’. For each pro-
cess pi, the place is saved in the li label of the loc[pi] observable component.
Initially, li is set to ss. The number of processes that have not yet reached
the fs state is saved in the x of the #ps observable component. Initially, x is
set to n to represent the total number of processes.

Consider the scenario where two processes, denoted as p1 and p2, partic-
ipate in the Qlock mutual exclusion protocol.

18

{(q: empq) (loc[p1]: ss) (loc[p2]: ss) (#ps:2)}

IQlock has one state init. The transition between state TQlock can be
described in Maude as rewrite rules:

rl [start] : {(q: Q} (loc[I]: ss) OCs}

=> {(q: (Q | I)) (loc[I] : ws) OCs} .

rl [wait] : {(q: (I | Q)) (loc[I]: ws) OCs}

=> {(q: (I | Q)) (loc[I]: cs) OCs} .

rl [exit] : {(q: Q) (loc[I]: cs) (#ps: N) OCs}

=> {(q: deq(Q)) (loc[I]: fs)(#ps: dec(N) OCs} .

rl [fin] : {(#ps: 0) OCs} => {(#ps: 0) OCs} .

The rewrite rules in the Qlock protocol are named start, wait, exit,
and fin. Maude variables Q, I, N, and OCs represent queues of process IDs,
process IDs, natural numbers, and observable component soups, respectively.
The dec operation is used to decrement a non-zero natural number by one,
returning 0 if applied to 0. The constructor | represents non-empty queues
of process IDs. The rule start states that if the location of the process I is
in ss, then its ID is put into Q at the end and moves to ws. The rule wait

states that if the location of the process I is in ws and the ID of the top of
the queue is equal to the ID of the process I, then the process I enters the
cs. The rule exit states that if the location of the process I is in cs, then
the queue removes the ID of the process I and decrements the total number
of processes ps, and the location of the process I is moved to fs. The rule
fin says that if the natural number N stored in #ps is 0, a self-transition
occurs. The rule fin is used to make the transitions total.

Consider a state formalized as

{(q: p1 | p2) (loc[p1]: ws) (loc[p2]: ws) (#ps: 2)}.

The wait rule can be applied to modify the state to

{(q: p1 | p2) (loc[p1]: cs) (loc[p2]: ws) (#ps: 2)}.

Figure 4.2 illustrates the reachable state space formed by SQlock, IQlock,
and TQlock. In total, there are 16 reachable states.

Let’s consider an atomic proposition represented by inFs1. As a result,
PQlock is said to possess inFs1. We define LQlock in the following manner:

eq {(loc[p1]: fs) OCs} |= inFs1 = true .

eq {OCs} |= PROP = false [owise] .

19

Figure 4.2: The reachable state space of Qlock

OCs and PROP are the observable components of soups and atomic propo-
sitions. According to the definitions, LQlock(s) consists of inFs1 if a state s
has process p1 placed at fs. Otherwise, LQlock(s) is empty.

modelCheck(init, <> inFs1)

¡¿ is the Maude operator that expresses ♦. We can use the above command
to check whether a process can go to the critical section, do some important
tasks in the section, leave the section, and finally reach the final section.

During model checking, when we examine this property using a model
that involves two processes, no counterexample (cx) is found. As a result,
we can conclude that Qlock satisfies the given property. It quickly completes
to model check ♦inFs1 for Qlock when there are five processes, finding no
counterexample. It is, however, impossible to model check the same property
for Qlock where there are 9 processes because of the state space explosion

20

problem. In the next chapter, we will describe how we use our approach/tool
to handle this scenario.

4.1.2 Utilizing Our Technique for Model Checking of
Qlock

Although the model consisting of two processes can be analyzed using the
Maude LTL model checker, we use it to outline how DCA2EMC works in
detail. The reachable state space depicted in Figure 4.2 is divided into three
layers, represented by Figure 4.3, Figure 4.4, and Figure 4.5, respectively.
These figures correspond to the first, second, and third layers, respectively.
We create six sub-state spaces, each containing a maximum of seven states,
while the original reachable state space consists of 16 states. The main con-
cept behind DCA2EMC is to create sub-state spaces with a smaller number
of states compared to the original reachable state space.
According to our DCA2EMC approach, it is necessary to revise the formal
specification of Qlock. Each state should be changed as follows:

(q : q) (loc[p1] : l1) . . . (loc[pn] : ln) (#ps : x) depth : d)

We have added one observable component called depth to manage the
depth information. Therefore, the transition rules are changed as follows:

crl [start] : {(q: Q) (loc[I]: ss) (depth: D) OCs}

=> {(q: (Q | I)) (loc[I]: ws) (depth: (D + 1) OCs}

if D < Bound .

crl [wait] : {(q: (I | Q)) (loc[I]: ws) (depth: D) OCs}

=> {(q: (I | Q)) (loc[I]: cs) (depth: (D + 1) OCs}

if D < Bound .

crl [exit] : {(q: Q) (loc[I]: cs) (#ps: N) (depth: D) OCs}

=> {(q: deq(Q)) (loc[I]: fs) (#ps: dec(N))

(depth: (D + 1) OCs} if D < Bound .

crl [fin] : {(#ps: 0) (depth: N) OCs}

=> {(#ps: 0) (depth: (D + 1)) OCs} if D < Bound

crl [stutter] : {(depth: D) OCs}

=> {(depth: D) OCs} if D >= Bound .

Let D be a Maude variable, where the sort of D is natural numbers (N).
Let Bound be a Maude constant, where the sort of Bound is also natural
numbers (N). For the given example, the value of Bound is 2.

21

Figure 4.3: Layer 1

Figure 4.4: Layer 2

Figure 4.5: Layer 3

22

Let “init” denote the following state:

init = {(q: empq),(#ps: 2),(depth: 0),

(loc[p1]: ss), (loc[p2]: ss)}

We are required to collect all “cx” states placed at depth 2 that are reach-
able from “init”. To achieve this, we comply with Algorithm 1. According
to the algorithm, if a path does not satisfy ♦inFs1, then the last state (that
has the self-transition) of the path is considered a “cx” state. Otherwise, the
state does not need to be taken into account.
To identify “cx” states in layer 1, we can begin by reducing the command.

modelCheck(init, <> inFs1)

The Maude LTL model checker finds the following as a cx state:

{(q : (p1|p2))(#ps : 2)(depth : 2)(loc[p1] : ws)(loc[p2] : ws)}

To ensure that Qlock ignores the first cx state, we introduce the following
equation:

eq {(q: (p1 | p2)) (#ps: 2) (depth: 2)

(loc[p1]: ws) (loc[p2]: ws)} |= inFs1 = true .

We perform model checking experiments until no more cx states are discov-
ered. After conducting the model checking experiments, it is determined that
four cx states, were found at depth 2.

{(q : p1)(#ps : 2)(depth : 2)(loc[p1] : cs)(loc[p2] : ss)}

{(q : (p2|p1))(#ps : 2)(depth : 2)(loc[p1] : ws)(loc[p2] : ws)}

{(q : p2)(#ps : 2)(depth : 2)(loc[p1] : ss)(loc[p2] : cs)}

These four cx states become the initial states for layer 2, represented as
init3, init4, init5, and init6, respectively. The bound for layer 2 is set to
4. Similar to layer 1, we conduct model checking experiments for layer 2 by
checking ♦inFs1 for each state. To perform the model checking experiments,
the following commands are used:

modelCheck(init3, <> inFs1)

modelCheck(init4, <> inFs1)

modelCheck(init5, <> inFs1)

modelCheck(init6, <> inFs1)

23

The first two commands in the model checking experiments for layer 2 do
not find any cx state. However, the last two commands, each find one cx
state. There are four states placed at depth 4, reachable from each of the
four initial states (init3, init4, init5, init6). These states are denoted as init8,
init8’, init12, and init12’, respectively. However, it is specified that init8 and
init12 are the same as init8’ and init12’, respectively. Therefore, only two
different states are placed at depth 4.

{(q: p2) (#ps: 1) (depth: 4)(loc[p1]: fs) (loc[p2]: ws)}

{(q : p1)(#ps : 1)(depth : 4)(loc[p1] : ws)(loc[p2] : fs)}

Therefore, there is only one cx state placed at depth 4. As init12 and init12’
are the same, the cx state is represented by init12, where the depth infor-
mation is removed. We use this as an initial state for the final layer. After
model checking this experiment, there is no cx state. Therefore, we can con-
clude that Qlock satisfies the eventual property ♦inFs1 when two processes
are used. With this Qlock specification, our tool which will be described in
the next chapter automates the process of conducting model checking exper-
iments. It utilizes the specified eventual property and layer configuration to
analyze the Qlock system and verify its intended eventual property.

4.2 A Divide & Conquer Approach to Even-

tual Model Checking

We will first describe a two-layer divide-and-conquer approach to eventual
model checking. The basic idea is to split the original model checking prob-
lem for a Kripke structure K and a path π from the Kripke structure K into
two parts: πk and πk which can be visualized as Figure 4.6.and π w c ca be v sua ed as gu e 6

Figure 4.6: Two-layer division of the reachable state space

When there is one initial state, the first layer has one sub state space
and the second layer has N sub-stae spaces, where N is the number of states

24

located at a depth k. If each sub-state space has a much fewer number
of different states than the original state space, then the model checking
experiment for each sub-state space would be feasible even though the model
checking experiment for the original state space is not. We anticipate that
if (K, πk |= ♦ϕ) holds, then (K, π |= ♦ϕ) holds and if (K, πk � ♦ϕ) does not
hold, then (K, πk |= ♦ϕ) should hold to make (K, π |= ♦ϕ) hold. Therefore,
we will prove this.

Lemma 4.1. (Two-layer division of ♦). Let ϕ be any state proposition of
K. For any natural number k, (K, π |= ♦ϕ) ⇐⇒ ((K, πk |= ♦ϕ)∨ ((K, πk �

♦ϕ) ⇒ (K, πk |= ♦ϕ))). (We could use (K, πk |= ♦ϕ) ∨ (K, πk |= ♦ϕ)
instead of (K, πk |= ♦ϕ) ∨ ((K, πk � ♦ϕ) ⇒ (K, πk |= ♦ϕ)) because they are
equivalent).

Proof. (1) Case “only if” (⇒): There must be i such that K, πi |= ϕ.
If i ≤ k, K, πi

k |= ϕ because ϕ is a state proposition. Thus, K, πk |= ♦ϕ.
Otherwise, K, πk � ♦ϕ. However, i>k and k, πi |= ϕ. Hence, K, πk |= ♦ϕ.
(2)Case ”if(⇐): IfK, πk |= ♦ϕ, there must be i such that i<k andK, πi

k |= ϕ.
As ϕ is a state proposition, K, πi |= ϕ and then K, π |= ♦ϕ. If K, πk � ♦ϕ,
then there must be j such that j>k and K, πj |= ϕ. Thus, K, π |= ♦ϕ.

lemma 4.1 makes it possible to divide the original model checking prob-
lem K, π |= ♦ϕ into two layers model checking problems, K, πk |= ♦ϕ and
K, πk |= ♦ϕ. We only need to tackle K, πk |= ♦ϕ unless K, πk |= ♦ϕ holds.

Definition 4.1. (EventuallyL). Let L be any non-zero natural number, k
be any natural number and d be any function such that d(0) is 0, d(x) is a
natural number for x = 1, . . . , L and d(L+1) is ∞. di = d(0) + . . .+ d(i).di
is the depth of states located at the bottom at layer i for i = 0, 1, . . . , L;
d(L+1) = ∞ . Ki is the Kripke structure obtained from K by deleting all
transitions from each state at the depth d(i+1) and adding a self-transition to
each state at depth di for i = 1, . . . , L.

1. 0 ≤ k<L− 1
EventuallyL(Kk+1, π, ϕ, k)
� (Kk+1, π

(dk,d(k+1)) |= ♦ϕ) ∨ [(Kk+1, π
(dk,d(k+1)) � ♦ϕ)

⇒ EventuallyL(Kk+1, π, ϕ, k + 1)].
2. k = L− 1
EventuallyL(K, π, ϕ, k)
� (Kk+1, π

(dk,d(k+1)) |= ♦ϕ) ∨ [(Kk+1, π
(dk,d(k+1)) � ♦ϕ)

⇒ (K, π(d(k+1),d(k+2)) |= ♦ϕ)].

We are going to focus on the L + 1 layer division of the eventual model

25

checking problem. We will prove the equivalence of the original eventual
model checking problem to the multiple smaller eventual model checking
problems.

Figure 4.7: An L+1-layer Divide & Conquer Approach to Eventual Model
Checking

Theorem 4.1. (L+1 layer division of ♦). Let L be any non-zero natural
number. Let d(0) be 0, d(x) be any natural number for x = 1, . . . , L and
d(L+ 1) be ∞. Let ϕ be any state proposition of K. Then,

K, π |= ♦ϕ ⇐⇒ EventuallyL(K, π, ϕ, 0)

Proof. By induction on L.

• Base case (L = 1): It follows from Lemma1.

• Induction case(L = l + 1)):
We prove the following:

(K, π |= ♦ϕ) ⇐⇒ Eventuallyl+1(Kl+1, π, ϕ, 0)

Let dl+1 be d used in Eventuallyl+1(Kl+1, π, ϕ, 0) such that dl+1(0) =
0, dl+1(i) is an arbitrary natural number for i = 1, . . . , l + 1 and dl+1

and dl+1(l + 2) =∞. The induction hypothesis is as follows:

26

(K, π |= ♦ϕ) ⇐⇒ Eventuallyl(Kl, π, ϕ, 0)
Let dl be d used in Eventuallyl(Kl, π, ϕ, 0) such that dl(0) = 0, dl(i) is
an arbitrary natural number for i = 1, . . . , l and dl+1 = ∞. As dl+1(i)
is an arbitrary natural number for i = 1, . . . , l + 1, we suppose that
dl+1(1) = dl(1) and dl+1(i+1) = dl(i) for i = 1, . . . , l. As π is any path
of K, π can be replaced with πdl(1).
If so, we have the following as an instance of the induction hypothesis:
(K, πdl(1) |= ♦ϕ) ⇐⇒ Eventuallyl(Kl, π

dl(1), ϕ, 0)
From Definition 4.1, Eventuallyl(Kl, π

dl(1), ϕ, 0) is
Eventuallyl+1(Kl+1, π, ϕ, 1) because dl(0) = dl+1(0) = 0, dl(1) = dl+1(1)
and dl(i) = dl+1(i+ 1) for i = 1, . . . , l and dl(l + 1) = dl+1(l + 2) =∞.
Therefore, the induction hypothesis instance can be rephrased as fol-
lows:
(K, πdl+1(1) |= ♦ϕ ⇐⇒ Eventuallyl+1(Kl+1, π, ϕ, 1)
From Definition 4.1, Eventuallyl+1(Kl+1, π, ϕ, 0) is
(K, π(dl+1(0),dl+1(1)) |= ♦ϕ) ∨ [(K, π(dl+1(0),dl+1(1)) � ♦ϕ)] ⇐⇒
Eventuallyl+1(Kl+1, π, ϕ, 1) which is
(K, π(dl+1(0),dl+1(1)) |= ♦ϕ)∨ [(K, π(dl+1(0),dl+1(1)) � ♦ϕ)]⇒ (K, πdl+1(1) |=
♦ϕ)
because of the induction hypothesis instance.
From Lemma 4.1, this is equivalent to K, π |= ♦ϕ.

Theorem 4.1 makes it possible to divide the original model checking prob-
lem K, π |= ♦ϕ into L + 1 model checking problems: K, π(d(0),d(1)) |= ♦ϕ,
K, π(d(1),d(2)) |= ♦ϕ, . . ., K, π(d(i−1),d(i)) |= ♦ϕ, K, π(d(i),d(i+1)) |= ♦ϕ, . . .,
K, π(d(L),d(L+1)) |= ♦ϕ. We only need to tackle K, π(d(i),d(i+1)) |= ♦ϕ if all of
K, π(d(0),d(1)) |= ♦ϕ, ..., K, π(d(i−1),d(i)) |= ♦ϕ do not hold. We prove that an
eventual model checking problem for a Kripke structure K and a path π of K
is equivalent to L+ 1 eventual model problems for K and L+ 1 paths of K,
where L ≥ 1 and the L+1 paths are obtained by splitting π into L+1 parts.
The L + 1 parts are π(d(0),d(1))(= πd(0)), . . . , π

(d(l),d(l+1)), . . . , π(d(L),d(L+1))(=
πd(L)).

4.3 Algorithm of DCA2EMC

This section describes an algorithm that carries out the proposed technique.
The algorithm takes as inputs a Kripke structure K, a state proposition ϕ,
a non-zero natural number L, and a function d such that d(x) is a natural
number for x = 1, ..., L, where d(x) is the depth of layer x; and returns as an
output success if K |= ♦ϕ holds and failure otherwise.

27

Algorithm 1: Model checking eventual properties in a stratified
way.

input : K—a Kripke structure
ϕ—a state proposition
L—a non-zero natural number
d—a function such that d(x) is a natural number for
x = 1, . . . , L, where d(x) is the depth of layer x

output: Success (K |= ♦ϕ) or Failure (K
|= ♦ϕ)
1 ES ← I
2 forall l ∈ {1, . . . , L+ 1} do
3 if ES = ∅ then
4 return Success
5 ES ′ ← ∅
6 forall s ∈ ES do

7 forall π ∈ P
d(l)
(K,s) do

8 if K, π
|= ♦ϕ then
9 ES ′ ← ES ′ ∪ {π(d(l))}

10 ES ← ES ′

11 if ES = ∅ then
12 return Success
13 else
14 return Failure

An algorithm can be constructed based on Theorem 4.1, which is shown
as Algorithm 1. For each initial state s0 ∈ K, unfolding s0 by using T such
that each node except for s0 has exactly one incoming edge, an infinite tree
whose root is s0 is made. The infinite tree may have multiple copies of some
states. Such an infinite tree can be divided into L + 1 layers, as shown in
Figure 3, where L is a non-zero natural number. Although there does not
actually exist layer 0, it is convenient to just suppose that we have layer 0.
Therefore, let us suppose that there is virtually layer 0 and so is located at
the bottom of layer 0. Let nl be the number of states located at the bottom
of layer l = 0, 1, ..., L, and then there are nl sub-state spaces in layer l+1. In
this way, the reachable state space from s0 is divided into multiple smaller
sub-state spaces. As R is finite, the number of different states in each layer
and in each sub-state space is finite. Theorem 1 makes it possible to check
K |= ♦ϕ in a stratified way in that for each layer l ∈ {1, ..., L + 1} we can

check K, s, d(l) |= ♦ϕ for each s ∈ {π(d(l− 1))|π ∈ P
d(l−1)
(K,s0)

}, where d(0) is 0,
d(x) is a non-zero natural number for x = 1, ..., L, and d(L+ 1) is ∞.

28

ES and ES ′ are variables to which sets of states are set. Each iteration
of the outermost loop in Algorithm 1, which conducts the model checking
experiment in layer l = 1, ..., L + 1, ES is the set of states located at the
bottom of layer l = 0, 1, ...L, and ES ′ is the empty set before the model
checking experiments conducted in the l + 1st iteration. If K, π
|= ♦ϕ for

π ∈ P
d(l)
(K,s), then π(d(l)) is added to ES ′. ES ′ is set to ES at the end of

each iteration. If (K, s) ∈ ES is empty at the beginning of an iteration,
Success is returned, meaning that K |= ♦ϕ holds. After the outermost loop,
we check whether ES is empty. If so, Success is returned; otherwise, Failure
is returned.

Although Algorithm 1 does not construct a counterexample when failure
is returned, it could be constructed. For each l ∈ {0, 1, ..., L}, ESl is pre-
pared. As elements of ESl, pairs (s, s

′) are used, where s is a state in S or a
dummy state denoted δ-stt that is different from any state in S, s′ is a state
in S, and s′ is reachable from s if s ∈ S. The assignment at line 5 should be
revised as follows:
ESl ← ∅.
The assignment at line 9 should be revised as follows:
ESl ← ESl ∪ {(s, π(d(l)))}.
The assignment at line 10 should be revised as follows:
ES ← {s|(s, s′) ∈ ESl}.
ES0 is set to {(δ-stt, s)|s ∈ I}. We could then construct a counterexample
when failure is returned by searching through ESL, ..., ES1, and ES0.
In the next chapter, we will describe the implementation of our support tool
which can automate the whole model checking process following this algo-
rithm and can construct the counterexample if any.

4.4 Summary

In this section, we have described the theoretical concept of the technique
L+1 divide and conquer approach to eventual model checking in detail with
the proof. The proof have showed that the original eventual original checking
problem is equivalent to the multiple smaller model checking problems. We
have constructed the algorithm and explained every step of the algorithm.
We used the QLOCK protocol in which two processes are used to show how
our approach works in detail. We used three layers for this protocol and
the depth for the first layer and second layer was defined as 2. The final
layer does not need to define the bound value for our approach/tool. We left
to compare Maude LTL model checker and DCA2EMC in terms of memory
usage and performance in the next chapter.

29

Chapter 5

A Support Tool for the
Proposed Technique

© 2022 IEEE. Reprinted with permission, from M. N. Aung, Y.
Phyo, C.M. Do and K. Ogata, “A Tool for Model Checking Even-
tual Model Checking in a Stratified Way,” 2022 9th International
Conference on Dependable Systems and Their Applications (DSA),
10/2022.

This chapter presents a detailed step-by-step application of our support
tool and its implementation within the Maude environment. The effective-
ness of our support tool is demonstrated through several case studies, com-
paring its performance with that of the Maude LTL model checker.

5.1 How to Use the Support Tool

The process for employing our support tool in the system can be delineated
through the following steps:

1. Maude> in specs/qlock

...

This command signifies the initial loading of the Qlock specification
into the Maude environment.

2. Maude> in full-maude

...

Full Maude 3.1 Oct 12 2020

This command signifies the loading of the full Maude.

30

3. Maude> in solver

...

L+1 Layers Divide & Conquer Approach to Eventual

Model Checking Available Now

Done reading in file: "solver-loop.maude"

This command signifies the loading of our support tool solver.

4. Maude> (initialize[QLOCK-CHECK, init, e-prop, OComp,

Soup{OComp}]).
Initializer: success

origin-module: QLOCK-CHECK

revise-module: QLOCK-CHECK-REVISED

initial-state: init

formula: e-prop

ele-sort: OComp

soup-sort: Soup‘OComp‘

This command initializes the Qlock specification along with the initial
state, eventual property, observable component, and soup of observable
components. Notably, during the initialization process, the original
Qlock specification undergoes revision.

5. Maude> (check 2 2)

Analyzer:

current-depth: 4

depth-list: 2 2

#node-set: 1

#cx-states: 1

Checker: success

This command performs an experiment of eventual model checking,
employing a total of three layers. Specifically, each of the first two
layers has a depth of two. The support tool returns success for Qlock
with two processes. It concludes that Qlock with two processes satisfies
the eventual property concerned.

5.2 Tool Implementation in Maude

In our support tool, we utilize Full Maude as the underlying framework,
which incorporates a database called DB of modules that is managed by
Full Maude. Additionally, we employ an extended database known as DB-
EX to store and manage our data. DB-EX plays a crucial role in storing
various components, including formalized states (configurations), collected

31

data at each layer, initial and revised specifications, the initial state of the
system, the desired eventual property, a component called OComp, a specific
collection named SoupOComp, and essential data structures like the current
depth, layer configurations, results obtained during system execution, and a
node set denoted as NodeSet. With the aid of DB-EX, our tool gains the
capability to effectively handle and process the diverse information required
for its operations. NodeSet is one of the most important data structures
utilized by the tool. The result saved in DB-EX is nil, success, or in the
form as follows:

{ term: stt, trace: log, cx: cx }

stt is a state, the initial state of a sub-state space being tackled for model
checking, log is the log that starts with the real initial state and ends with
stt, and cx is a local cx discovered while tackling the sub-state space. When
conducting a model checking experiment for a sub-state space in middle
layers, nil is the result saved in DB-EX. The result is success iff all model
checking experiments are done for all sub-state spaces and no cx is discovered.
If a model checking experiment is conducted for a sub-state space in the final
layer whose initial state is s0 and a local counterexample cx is discovered,
then the result saved in DB-EX is the following:

{ term: s0, trace: log, cx: cx }

A global cx can be constructed from log and cx.
empty and _,_ are the constructors of NodeSet. empty is the empty

NodeSet. _,_ is given assoc, comm, and id: empty as its operator attributes.
A non-empty NodeSet is expressed as:

node1 , . . . , nodei , nodei+1 , . . . , noden

Each nodei is in the form as:

< cx−stts : lst >

cx−stts is a set of cx states placed at d and lst is a list of pairs of states
and natural numbers. NodeSet initially has one element. In the element,
cx−stts only has the initial state to which (depth: 0) is added and lst
is nil. When we generally think about a sub-state space (as depicted in
Fig. 5.1) that starts with sl+1

1 placed at depth d1 + . . . + dl and is in layer
l + 1 whose depth is dl+1, where sl+1

n1
, . . . , sl+1

nk
, sl+1

nk+1
, . . . , sl+1

nm
are all states

placed at depth d1 + . . . + dl + dl+1 reachable from sl+1
1 and among them

32

Figure 5.1: Some information managed by the tool

sl+1
nk+1

, . . . , sl+1
nm

are cx states, node is as:

< sl+1
nk+1

| . . .| sl+1
nm

: < sl+1
1 : dl+1 > < sl1 : dl > . . . < s11 : d1 > >

| is the constructor of non-empty sets and _ _ is the constructor of non-
empty lists. lst in the node is as < sl+1

1 : dl+1 > < sl1 : dl > . . . < s11 : d1 >,
where < si1 : di > is the pair of si1 and di, s

i
1 is a state placed at the top of

layer i and di is the depth of layer i for i = 1, . . . , l, l + 1. si+1
1 is reachable

from si1 for i = 1, . . . , l.
(check 2 2) is the command that carries out an eventual model checking

experiment where three layers are used and each depth of the first two layers
is two. A key function utilized by (check ...) is layer-check defined as:

eq layer-check(M,NS,N,Cs)

= $layer-check(M,NS,N,empty,empty-term-set,Cs).

M is the specification revised, NS is the node set that is dealt with as the
initial states of a layer (e.g. layer l), N is the depth of layer l (dl), and Cs

is the sort of our configuration (Config-Ex-Set). layer-check deals with
each layer (e.g. layer l) apart from the final layer and returns the node set
of the next layer (e.g. layer l + 1).
We define $layer-check as:

eq $layer-check(M,empty,N,NS,CACHE,Cs) = NS .

ceq $layer-check(M,(ND, NS1),N,NS2,CACHE,Cs)

= $layer-check(M,NS1,N, union(NS2,ns(NS&CACHE)),cache(NS&CACHE),Cs)

33

if NS&CACHE := layer-check-for-eventual(M,ND,N,empty,CACHE,Cs) .

The first three and sixth parameters are the same as the four ones of
layer-check, respectively. The fourth parameter manages the result (the
node set) and the fifth parameter manages a cache that is used to avoid dupli-
cate states when constructing nodes in the result at each layer. $layerCheck
returns a node set.
We define layer-check-for-eventual as:

eq layer-check-for-eventual(M,< empty-term-set : LL >,N,NS,CACHE,Cs)

= < NS : CACHE > .

ceq layer-check-for-eventual(M, < T | TS2 : LL >,N,NS,CACHE,Cs)

= layer-check-for-eventual(M,< TS2 : LL >,N,

union(NS,filter-valid-node(< (CxSTATES except CACHE) :

(< T : N > LL) >)),(CxSTATES | CACHE),Cs)

if CxSTATES := gen-cx-states(M,T,eventual-formula(Cs),eventual-prop

(Cs)) .

If all cx states have been tackled, the first equation is employed to return
the pair < NS : CACHE > of a node set NS and a cache CACHE. The second
one handles cx−stts in < cx−stts : lst > utilized as the second parameter of
layer-check-for-eventual. Function gen-cx-states gathers all cx states
(e.g. sl+1

nk+1
, . . . , sl+1

nm
as depicted in Fig. 5.1) reachable from state T (e.g. sl+1

1)
in the formal specification M.
We define gen-cx-states as:

ceq gen-cx-states(M,T,F,P)

= if (Cx :: Constant) then empty-term-set else get-cx-state(Cx) |

gen-cx-states(add-eqs(build-eqs(get-cx-state(Cx),P),M),T,F,P) fi

if Cx := get-counter-example(M,’modelCheck[T,F]) .

We use function get-counter-example to obtain a counterexample Cx by
carrying out the model checking experiment ’modelCheck[T,F]. If Cx is
a constant, there is no more cx state; otherwise, we obtain the last state
in the loop of the counterexample Cx as a cx state by calling function
get-cx-state, construct an equation to add to the formal specification M

to ignore Cx by calling functions build-eqs and add-eqs, respectively, and
continue calling function gen-cx-states to gather the next one. One of the
equations added to the formal specification M is as follows:

eq {(q: (p1 | p2)) (#ps: 2) (depth: 2) (loc[p1]: ws)

(loc[p2]: ws)} |= inFs1 = true .

34

We intend to insert the following rule to the formal specification of Qlock in
order to demonstrate what is shown by our tool when a cx is discovered:

rl [flaw] : {(#ps: 1) (q: (I | Q)) (loc[I]: cs) OCs}

=> {(#ps: 0) (q: (I | Q)) (loc[I]: cs) OCs}.

The following is shown:

Checker: failure

Cx: counterexample({{#ps: 2 q: empq(loc[p1]: ss)loc[p2]: ss},’start}

{{#ps: 2 q: p2(loc[p1]: ss)loc[p2]: ws},’wait}

{{#ps: 2 q: p2(loc[p1]: ss)loc[p2]: cs},’start}

{{#ps: 2 q:(p2 | p1)(loc[p1]:ws)loc[p2]: cs},’exit}

{{#ps: 1 q: p1 (loc[p1]: ws)loc[p2]: fs},’wait}

{{#ps: 1 q: p1(loc[p1]: cs)loc[p2]: fs},’flaw},

{{#ps: 0 q: p1(loc[p1]: cs)loc[p2]: fs},’fin})

Once we get to the following state:

{(#ps: 0) (q: p1) (loc[p1]: cs) (loc[p2]: fs)}

We will stay there forever because a self-transition can be taken infinitely
many times. The process p1 placed at cs cannot, therefore, go to fs.

5.3 Case Studies and Experimental Results

We conducted some experiments with two kinds of memory usage. The first
one is that we used a limited amount of memory by utilizing a Docker con-
tainer, which ran on a virtual machine operating Ubuntu 20.04.3 LTS. The
virtual machine was allocated 2 GB of memory and hosted on an iMac with a
4 GHz processor and 32 GB of memory. The second one is that we employed
a MacPro that carries a 2.5 GHz microprocessor with 28 cores and 768 GB
memory of RAM. Four mutual exclusion protocols were chosen as examples:
(1) Qlock, (2) Anderson, (3) MCS, and (4) TAS. Anderson is a mutual exclu-
sion protocol that utilizes an atomic array shared by all processes [20]. MCS,
invented by Mellor-Crummey & Scott, is a list-based queueing mutual ex-
clusion protocol, with variants commonly employed in Java virtual machines
[21]. TAS is a simple mutual exclusion protocol that utilizes the atomic
operator test&set. For all case studies, we assume that processes enter the
critical section at most once. The property ♦inFs1 was checked consistently
across all case studies.

35

5.3.1 Case Studies

Anderson
The pseudo-code of Anderson is the following:

“start-section”
ss : plc[i] := fetch−inc−mod(nxt,N);
ws : while until arr[plc[i]];

“critical-section”
cs : arr[plc[i]], arr[(plc[i] + 1)%N]

:= false, true;
“final-section”

fs : . . .

The number of processes taking part in Anderson is denoted N . nxt and arr
are global variables whose types are natural numbers and Boolean arrays
of size N . Each process has its local variable plc[i] whose type is natural
numbers. fetch−inc−mod is an atomic operation. nxt is incremented modulo
N and its old value is returned by fetch−inc−mod indivisibly. x1, x2 :=
e1, e2; is a concurrent assignment, where x1, x2 are variables and e1, e2 are
expressions. In each initial state, each process i is at ss, nxt is 0, arr[0] is
true, each arr[j] is false for j = 1, ..., N − 1, and each plc[i] is 0. Whenever
i would like to go to cs, it assigns plc[i] nxt and increments nxt modulo
N with fetch−inc−mod in an atomic way. It then goes to ws from ss. It
waits at ws while arr[plc[i]] is false. Whenever arr[plc[i]] becomes true, i
goes to cs. Whenever it would like to exit cs, it assigns arr[plc[i]] false and
arr[(plc[i] + 1)%N] true, going to fs from cs. We assume that processes go
to the critical section at most once.
TAS
TAS for each process p can be described as:

“start-section”
ss : . . .
ws : repeat while test&set(locked);

“critical-section”
cs : locked := false;

“final-section”
fs : . . .

TAS uses an atomic operator test&set and a global variable locked whose type
is Boolean. locked is initially assigned false and shared by multiple processes
participating in TAS. locked is assigned true and its old value is returned by
test&set indivisibly. Each process is initially at ss (start-section). Whenever

36

it would like to go to cs (critical-section), it first goes to ws (waiting-section)
from ss. It waits at ws while locked is true; precisely while test&set(locked)
returns true. When test&set(locked) returns false, the process goes to cs.
Whenever it would like to exit cs, it moves to fs (final-section) from cs.
When the process goes to cs from ws, it assigns locked true with test&set.
When it goes to fs from cs, it assigns locked false. We assume that processes
go to the critical section at most once.
MCS
MCS [22] for each process p can be described as:

“start-section”
ss : . . .
l1 : nxt[p] := nop;
l2 : prd[p] := fetch−store(glock, p);
l3 : if prd[p]
= nop {
l4 : lock[p] := true;
l5 : nxt[prd[p]] := p;
l6 : repeat while lock[p]; }

“critical-section”
cs : . . .
l7 : if nxt[p] = nop {
l8 : if comp−swap(glock, p, nop)
l9 : goto fs;
l10 : repeat while nxt[p] = nop; }
l11 : lock[nxt[p]] := false;

“final-section”
fs : . . .

glock is a global variable whose type is Bool and initially assigned nop that
means no process. nxt[p], prd[p], and lock[p] are local variables of each pro-
cess p whose types are process IDs (including nop), process IDs (including
nop), and Bool, respectively. Their initial values are nop, nop, and false.
Although they are local to p, they can be used by any other processes be-
cause a shared-memory machine is used. MCS uses the two atomic operators
fetch−store and comp−swap. fetch−store(glock, p) assigns glock p and re-
turns the old value of glock, while comp−swap(glock, p, nop) assigns glock
nop and returns true if glock equals p; it just returns false otherwise. When-
ever p would like to go to cs, it moves to l1 from ss. It carries out the two
assignments at l1 and l2. It then checks if prd[p]
= nop. If so, it goes to
l4 from l3; otherwise, it directly goes to cs from l3. It then carries out the
two assignments at l4 and l5. It waits at l6 while lock[p] is true. Whenever

37

lock[p] becomes false, it goes to cs from l6. Whenever it would like to exit
cs, it goes to l7 from cs. It checks if nxt[p] = nop. If so, it goes to l8;
otherwise, it goes to l11 from l7. It carries out comp−swap(glock, p, nop) at
l8. If comp−swap(glock, p, nop) returns true, it goes to l9 and then fs; oth-
erwise, it goes to l10 from l8. It waits at l10 while nxt[p] = nop. Whenever
next[p]
= nop, it goes to l11. It carries out the assignment at l11, going to
fs. We suppose that each process goes to cs at most once.

5.3.2 Experimental Results

We performed model checking experiments using the formula ♦inFs1 on var-
ious protocols, namely Qlock, Anderson, MCS, and TAS, with different num-
bers of processes. The experiments were conducted using both our support
tool, DCA2EMC, and Maude LTL model checker. The results are summa-
rized in Table 5.1 and Table 5.2.
In the table, the No of Processes column denotes the number of processes
involved in each protocol. The Layers column specifies the layer configu-
ration, where d1d2...dL indicates that L + 1 layers were used, with the ith
layer having a depth of di. Notably, the Maude LTL model checker does not
require to use the layers.

A Limited Amount of Memory
For example, the first record of the table 5.1 shows that when there are 8
processes taking part in Qlock, the model checking experiment took 1 minute
and 6 seconds if we use our tool with three layers in which the depth for the
first and second layers is 2. It took 15 seconds when we use the Maude
LTL Model Checker for which we do not require to use the layers. In some
cases, denoted by ‘N/A’ (Not-Available) in the table, the model checking ex-
periments could not be completed due to the state space explosion problem
within the limited amount of memory we employed. However, for Qlock, An-
derson, MCS, and TAS with 8, 8, 4, and 11 processes, respectively, both the
Maude LTL model checker and our tool successfully finished the experiments
within a reasonable time frame.

For Qlock, Anderson, MCS and TAS with 8, 8, 4, and 11 processes, the
Maude LTL model checker achieved the results in a short time, and our tool
also demonstrated efficient performance, except for the TAS case study.

For Qlock, Anderson, MCS, and TAS with 9, 9, 5, and 12 processes, re-
spectively, the Maude LTL model checker was not able to conduct the model
checking experiment due to state space explosion within the 2 GB memory
constraint. Conversely, our tool successfully completed the model checking

38

Table 5.1: Model checking results with the limited amount of memory
Protocol No of Processes Layers DCA2EMC Maude LTL Model Checker

Qlock 8 2 2 1m 6s 15s
Qlock 9 2 2 4m 52s N/A

Anderson 8 2 2 2m 9s 2m 52s
Anderson 9 2 2 20m 25s N/A

MCS 4 2 2 2 2 2 2 36s 1s
MCS 5 2 2 2 2 2 2 21m 39s N/A

TAS 11 3 3 56m 59s 30s
TAS 12 3 3 7h 0m 40s N/A

Table 5.2: Model checking results with the large mount of memory
Protocol No of Processes Layers DCA2EMC Maude LTL Model Checker

Qlock 10 2 2 3h 12m 12s 10d 11h 31m 8s

Anderson 9 2 2 27m 19s 1d 3h 18m 43s

MCS 6 4 4 4 4 2 1d 15h 32m 21s 5d 20h 52m 47s

TAS 13 3 3 3 2d 4h 19m 2h 28m 29s

experiments. Thus, our approach/tool can operate optimally within mem-
ory constraints, showing that our approach/tool can mitigate the state space
explosion to some extent.

A Large Amount of Memory
In these experiments, we used two optimization techniques proposed in [23]
with the sequential in order to find a good layer configuration and enhance
the running performance on generating counterexample states up to the final
layer for each case study. In the case of utilizing a large amount of memory,
the Maude LTL model checker could finish the model checking experiments
for Qlock, Anderson, MCS, and TAS with 10, 9, 6, and 13 processes. How-
ever, the time taken for these experiments was considerably longer when com-
pared to our support tool except for the TAS case study. Our approach/tool
splits the reachable state spaces from the initial state into multiple layers,
generating smaller sub-state spaces. Tackling the smaller sub-state space
has some advantages. Firstly, we do not need to manage a large amount of
memory. Additionally, due to dealing with the smaller size of state spaces,
the hash tables are also smaller and so state matching is less burdensome.
It is also good for the hardware cache. This is why our approach/tool has a
better running performance than the Maude LTL model checker.

For the TAS case study with 11, 12, and 13 processes, there may have
many states that are shared between many sub-state spaces at the final layer
of TAS because each process that is waiting at ws has an equivalent chance to

39

enter cs which means that TAS has many symmetries from the perspective
of individual processes. This makes the running performance of our tool
degrade for both cases of memory usage.

In conclusion, the results highlight the effectiveness of our developed tool,
DCA2EMC, in overcoming the state space explosion problem and achieving
efficient model checking in comparison to the Maude LTL model checker
for various protocols under different process configurations. Thus, our tool
alleviated the state space explosion problem to a certain extent.

5.4 Summary

In this chapter, we have described how we implemented the support tool for
the divide & conquer approach to eventual model checking in Maude using
the facilities of metaprogramming. Our tool is easy to use in which the
system specification, desired property, and layer configuration are required
to provide by users. The main weakness of our tool is that our tool cannot
handle the model checking experiments if the specifications have the long
lasso backward transition. This can make the sub-spaces in the final layer
as large as the original reachable state space. Therefore, we are required to
create system formal specifications in which the multiple smaller sub-state
spaces from the original reachable state must have a much smaller number
of states than the number of states in the original reachable state space in
order to make the best use of our approach/tool. The four mutual exclusion
protocols that we used in the case studies, do not have the long lasso loops
in the specification.

Through case studies, we compared the performance of the Maude LTL
model checker with our support tool. We found that when there are only a
few processes in the protocol, the Maude model checker can get the result
faster than our support tool in the utilization of limited memory. However, as
the number of processes increases, the Maude model checker could not finish
the experiments due to state space explosion and needed a large memory
to finish the model checking experiments. In contrast, our support tool
managed to get the result even in such cases as our approach/tool divides
the original reachable state spaces into multiple smaller sub-state spaces,
defines layer configuration and tackles the model checking experiments layer
by layer sequentially. This makes efficient use of memory. In conclusion,
our support tool is a promising solution, especially for scenarios with more
processes, where the Maude LTL model checker falls short due to state space
explosion.

40

Chapter 6

A Case Study: The
Lim-Jeong-Park-Lee
Autonomous Vehicle
Intersection Control Protocol

In this chapter, we will discuss the formal specification and model checking
process of the Lim-Jeong-Park-Lee autonomous vehicle intersection control
(LJPL) protocol [11] using both Maude LTL model checker and our support
tool. We aim to conduct experiments to demonstrate the effectiveness of our
support tool, especially in handling good instances of the autonomous vehicle
intersection protocol that is challenging for Maude LTL model checker.

6.1 LJPL Protocol

In the context of the depicted intersection shown in Figure 6.1, the road
network consists of two streets intersecting with each other. Vehicles are
assumed to follow a right-hand traffic system, where each street is divided
into two lanes. The lanes are labeled accordingly, as illustrated in 6.1.

During the crossing of the intersection, vehicles traveling on the right lane
of one street, such as lane0, are expected to proceed straight or make a right
turn. Conversely, vehicles in the left lane of one street, such as lane1, are
intended to make left turns. The area where the two streets overlap forms a
critical section, as highlighted in Figure 6.1. Within this critical section, it
is crucial to implement effective control mechanisms to ensure that vehicles
never collide with each other. The intersection has eight lanes labeled as
lane0 to lane7. The following relationships exist between the lanes:

41

Figure 6.1: An intersection

• For i = 0, 2, 4, 6:
The conflict lanes of lanei are lanej, where j = (i + 2) mod 8, (i + 5)
mod 8, (i+6) mod 8, and (i+7) mod 8. The concurrent lanes of lanei
are lanej, where j = (i+ 1) mod 8, (i+ 3) mod 8, and (i+ 4) mod 8.

• For i = 1, 3, 5, 7:
The conflict lanes of lanei are lanej, where j = (i + 1) mod 8, (i + 2)
mod 8, (i+3) mod 8, and (i+6) mod 8. The concurrent lanes of lanei
are lanej, where j = (i+ 4) mod 8, (i+ 5) mod 8, and (i+ 7) mod 8.

Each vehicle is assigned a status, such as running, approaching, stopped,
crossing, or crossed. When a vehicle is far enough from the intersection,
its status is running. As vehicles approach the intersection, their statuses
change to approaching. Their IDs are added to the specific lane’s queue,
and they maintain their lane and position in the queue without overtaking
other vehicles.

When a vehicle is enqueued and there are no stopped vehicles ahead of it
(including two cases: being at the front of the queue with no vehicles ahead
or being followed by a crossing vehicle), it becomes the lead vehicle and its
status changes to stopped. Otherwise, it becomes a non-lead vehicle and its
status also changes to stopped.

A lead vehicle checks if there are no vehicles crossing the intersection

42

on any conflict lanes and if the time assigned to the lead vehicle is earlier
than the times assigned to the lead vehicles on the conflict lanes. If both
conditions are met, the lead vehicle and all the stopped non-lead vehicles
following it are allowed to cross the intersection, and their statuses change
to crossing.

The LJPL protocol considers a group of vehicles as a train, allowing them
to pass through the intersection simultaneously. For instance, let’s consider
the vehicles on lane0 in Figure 6.1. Suppose the first vehicle is the lead
vehicle, the second vehicle is non-lead, and the third vehicle is also a lead
vehicle, with no more vehicles following. When the first vehicle is permitted
to cross the intersection, the second vehicle is also allowed, treating the series
of the first and second vehicles as a train. The algorithms and the detail of
the LJPL protocol are described in the paper [10].

6.2 Formal Specification of LJPL Protocol

The KLJPL Kripke structure incorporates four types of observable compo-
nents:

• (v[vid] : lid, vstat, t, lt) – Here, vid represents the vehicle ID (a natural
number), lid denotes the lane ID (a natural number) where the vehicle
vid is located, vstat signifies the status of the vehicle vid, t represents
the estimated time when the vehicle vid will reach the intersection, and
lt represents the estimated time when the lead vehicle will reach the
intersection, if any.

• (lane[lid] : q) – This component represents a specific lane with ID lid.
It consists of a queue q that contains vehicle IDs (natural numbers)
belonging to that lane.

• (clock : t, b) – The abstract notion of the current time is denoted by this
component. It includes t, a natural number representing the current
time, and b, a Boolean value indicating whether the time can incre-
ment. Whenever b is true, t is allowed to increase, and b becomes false
thereafter. When a vehicle retrieves the current time t, b is set to true
(without modifying t).

• (gstat : gstat) – This component represents the global status of the
intersection. gstat can take one of two values: fin or nFin. If gstat is
fin, it indicates that all relevant vehicles have crossed the intersection.

43

Figure 6.2: An initial state

In the KLJPL Kripke structure, these observable components are utilized
to formalize the system’s state, encompassing information about the vehicles,
lanes, current time, and the global intersection status.

Let’s consider an initial state where two vehicles are currently in motion
on lane0, one vehicle is actively running on lane1, and two vehicles are
currently in motion on lane5. Additionally, there are no vehicles currently
in motion on the other lanes. This initial state can be formally expressed as
follows:

{(gstat: nFin) (clock: 0,false)

(lane[0]: oo) (lane[1]: oo) (lane[2]: oo)

(lane[3]: oo) (lane[4]: oo) (lane[5]: oo)

(lane[6]: oo) (lane[7]: oo)

(v[oo]: 0,stopped,oo,oo) (v[oo]: 1,stopped,oo,oo)

(v[oo]: 2,stopped,oo,oo) (v[oo]: 3,stopped,oo,oo)

(v[oo]: 4,stopped,oo,oo) (v[oo]: 5,stopped,oo,oo)

(v[oo]: 6,stopped,oo,oo) (v[oo]: 7,stopped,oo,oo)

(v[0]: 0,running,oo,oo) (v[1]: 0,running,oo,oo)

(v[2]: 1,running,oo,oo) (v[3]: 5,running,oo,oo)

(v[4]: 5,running,oo,oo) }

In the initial state, each lane’s queue, denoted by (lane[0]:oo), (lane[1]:
oo), etc., contains only the symbol oo, which represents infinity (∞). This
indicates that there are no vehicles sufficiently close to the intersection on
those lanes. Additionally, there are eight observable components v[oo] rep-
resenting dummy vehicles. Among them, v[0], v[1], v[2], v[3], and v[4]

correspond to the five actual vehicles, with the first two on lane0, the third
on lane1, and the last two on lane5.

44

The global clock is denoted by (clock:0, false), with an initial value
of 0. The second value of the clock observable component, false, prevents
the abstract notion of the current time from incrementing. Lastly, the initial
value of the gstat observable component is nFin, indicating that not all
vehicles have crossed the intersection.
The 12 rewrite rule can be used to define the state transitions TLJPL.

rl [stutter] : {(gstat: fin) OCs} => {(gstat: fin) OCs} .

This rule, stutter, guarantees that the TLJPL protocol is total, allowing for
all possible states to be reached and ensuring that the system remains in a
consistent state when all vehicles have already crossed the intersection.

crl [fin] : {(gstat: nFin) OCs} => {(gstat: fin) OCs}

if fin?(OCs) .

This rule, fin, ensures that the global status accurately reflects the state
of the system, transitioning it to fin when fin?(OCs) returns true which
means that all vehicles have successfully crossed the intersection.

rl [tick] : {(gstat: nFin) (clock: T,true) OCs}

=> {(gstat: nFin) (clock: (T + 1),false) OCs} .

If the global status (gstat) is nFin, the clock (clock) has a value T (a
natural number) with the second value being true, and the observable com-
ponents (OCs) remain unchanged, then the rule allows for the transition to
a new state where the clock is updated to (T + 1) and the second value be-
comes false. This transition represents the increment of the abstract notion
of the current time in the system.
The following two rules are the transition rules that change a vehicle’s status
from running to approaching based on the presence or absence of other
vehicles close to the intersection on the same lane.

rl [approach1] : {(gstat: nFin) (clock: T,B) (lane[LI]: oo)

(v[VI]: LI,running,oo,oo) OCs}

=> {(gstat: nFin) (clock: T,true) (lane[LI]: VI)

(v[VI]: LI,approaching,T,oo) OCs} .

If the global status gstat is nFin, the clock (clock) has a value T and a
Boolean value B, the lane with ID LI has no vehicle close enough to the in-
tersection (represented by oo), and there exists a vehicle with ID VI running
on lane LI, then the rule allows for the transition to a new state where the
clock remains unchanged but the second value becomes true, the lane[LI]

observable component is updated to contain the ID VI, and the v[VI] ob-
servable component changes its status from running to approaching with
the time of arrival.

45

rl [approach2] : {(gstat: nFin) (clock: T,B) (lane[LI]:(VI’;VS))

(v[VI]: LI,running,oo,oo) OCS}

=> {(gstat: nFin) (clock: T,true)

(lane[LI]: (VI’; VS; VI))

(v[VI]: LI, approaching,T,oo) OCs} .

B is Maude variable of Boolean values, LI, VI & VI’ are Maude variables of
natural numbers, VS is Maude variable of queues of natural numbers∞, and
; is the constructor of queues, where an underscore is a place holder where
an argument is put. ; is associative, meaning that (q1; q2); q3 = q1; (q2; q3),
and a single element(a natural number or ∞) is treated as the singleton
queue that only consists of the element.
If the global status (gstat) is initially nFin, the clock (clock) has a value
T and a Boolean value B, the lane with ID LI has at least one vehicle close
enough to the intersection represented by the sequence of vehicle IDs (VI’;
VS), and there exists a vehicle with ID VI running on lane LI, then the rule
allows for the transition to a new state where the clock remains unchanged
but the second value becomes true, the lane[LI] observable component is
updated to include the ID VI in the sequence (VI’; VS; VI), and the v[VI]
observable component changes its status from running to approaching with
the time of arrival.

There are three transition rules that change a vehicle’s status from
approaching to stopped based on different conditions related to its position
in the queue and the status of the preceding vehicle on the same lane.

rl [check1] : {(gstat: nFin) (lane[LI]: (VI ; VS))

(v[VI]: LI,approaching,T,oo) 0Cs}

=> {(gstat: nFin) (lane[LI]: (VI ; VS))

(v[VI]: LI,stopped,T,T) OCs} .

If a vehicle is in the approaching state (approaching) and it is at the top
of the queue (the first vehicle), then the rule allows for a transition where
the vehicle’s status changes from approaching to stopped on the concerned
lane. In this case, the vehicle becomes the lead vehicle on the lane.

rl [check2] : {(gstat: nFin) (lane[LI]: (VS’; VI’; VI; VS))

(v[VI’]: LI, stopped,T, T’)

(v[VI]: LI, approaching,T’’, oo) OCs}

=> {(gstat: nFin) (lane[LI]: (VS’; VI’; VI; VS))

(v[VI’]: LI, stopped, T, T’)

(v[VI]: LI, stopped, T’’, T’) OCs}.

46

If a vehicle is in the approaching state (approaching) and there exists another
vehicle in front of it on the same lane, such that the preceding vehicle’s status
is stopped, then the rule allows for a transition where the vehicle’s status
changes from approaching to stopped on the concerned lane. In this case,
the vehicle becomes a non-lead vehicle on the lane.

rl[check3] : {(gstat: nFin) (lane[LI]: (VS’; VI’; VI; VS))

(v[VI’]: LI, crossing,T, T’)

(v[VI]: LI, approaching, T’’, oo) OCs}

=> {(gstat: nFin) (lane[LI]: (VS’; VI’; VI; VS))

(v[VI’]: LI, crossing, T, T’)

(v[VI]: LI, stopped, T’’, T’’) OCs}.

T’& T’’ are Maude variables of natural numbers and VS’ is a Maude variable
of queues. The reason why v[vid] observable components, where vid is a
vehicle ID, do not have any values that correspond to lead in informationx

is that it is possible to use queues, etc. to manage which vehicles are lead or
not.
If a vehicle is in the approaching state (approaching) and there exists another
vehicle in front of it on the same lane, such that the preceding vehicle’s status
is crossing, then the rule allows for a transition where the vehicle’s status
changes from approaching to stopped on the concerned lane. In this case,
the vehicle becomes the lead vehicle on the lane.
Two rules are employed to define transitions that convert the status of a lead
vehicle from stopped to crossing. One rule pertains to the scenario where
the lead vehicle is located on a lane with an even ID, while the other rule
applies to the case where the lead vehicle is on a lane with an odd ID.

crl [enter1] :

{(gstat : nFin)(lane[LI] : (VI; VS))(v[VI] : LI,stopped,T,T)OCs}

=> {(gstat : nFin)(lane[LI] : (VI; VS))

(v[VI] : LI,crossing,T,T)OCs’}

if isEven(LI) /\ LI1 := (LI + 2) rem 8 /\ (lane[LI1] :

(VI1; VS1)) (v[VI1] : LI1,VSt1,T11,T12) OCs1 := OCs /\

VSt1 = stopped /\ T < T12 /\ LI2 := (LI + 5) rem 8 /\

(lane[LI2] : (VI2; VS2))(v[VI2] : LI2,VSt2,T21,T22)

OCs2 := OCs /\ VSt2 = stopped /\ T < T22 /\ LI3 := (LI + 6)

rem 8 /\ (lane[LI3] : (VI3; VS3)) (v[VI3]: LI3,VSt3,T31,T32)

OCs3 := OCs /\ VSt3 = stopped /\ T < T32 /\ LI4 := (LI + 7)

rem 8 /\ (lane[LI4] : (VI4; VS4))(v[VI4] : LI4,VSt4,T41,T42)

OCs4 := OCs /\ VSt4 = stopped /\ T < T42 /\ OCs’ :=

letCross(VS, OCs) .

47

LIi for i = 1, ..., 4 is a Maude variable of natural numbers, VIi & Tj for
i = 1, ..., 4 & j = 11, 12, ..., 41, 42 are Maude variables of natural numbers &
∞, VSi for i = 1, ..., 4 is a Maude variable of queues, VSti for i = 1, ..., 4 is
a Maude variable of vehicle statuses, and OCsi & OCs’ for i = 1, ..., 4 are
Maude variables of observable component soups.

If a lead vehicle is in the stopped state (stopped) on a lane, and the ID of
the lane is even, then the rule allows for a transition where the lead vehicle’s
status changes from stopped to crossing. This transition occurs when there
are no vehicles on any conflict lanes crossing the intersection, and the time
given to the lead vehicle is earlier than the times given to the lead vehicles
on the conflict lanes. the second rule enter2 can be described the same.

Two rules are employed to define transitions that change a vehicle’s status
from crossing to crossed. The first rule applies when the vehicle is the only
one in the queue associated with the corresponding lane. The second rule
applies when the queue contains two or more vehicles for the corresponding
lane.

rl [leave1] : {(gstat: nFin)(lane[LI]: VI)

(v[VI]: LI, crossing,T,T’) OCs} => {(gstat: nFin)

(lane[LI]: oo)(v[VI]: LI,crossed,T,T’) OCs} .

rl [leave2] : {(gstat: nFin)(lane[LI]: (VI ; VI’; VS))

(v[VI]: LI,crossing,T,T’) OCs} => {(gstat: nFin)

(lane[LI]:(VI’; VS))(v[VI]: LI,crossed,T,T’) OCs} .

When a vehicle’s status changes from crossing to crossed, it is removed
from the queue that corresponds to the respective lane. In the TLJPL proto-
col, this deletion is explicitly handled in the transition rules, specifically in
the leave1 and leave2 rules mentioned earlier.

6.3 Model Checking of LJPL Protocol

Desired Properties for LJPL
We tried to model check the desired properties which have been shown in the
original LJPL protocol paper [11]. The LJPL protocol proposed takes into
account three desired properties the protocol should enjoy:

• Safety (version 2) No vehicles in conflict lanes are in the critical
section (CS) at the same time.

• Deadlock-freedom If a vehicle is trying to pass the intersection (CS),
then some vehicle, not necessarily the same one, finally passes the in-
tersection.

48

• Starvation-freedom If a vehicle is trying to pass the intersection (CS),
then the vehicle must finally pass the intersection in finite time.

The following command can be used to model check Safety (version 2)

property.

search [1] in IMUTEX : init =>* {(v[VI]: LI,crossing,T,T’)

(v[VI’]: LI’,crossing,T2,T2’) OCs}

such that areConflict(LI,LI’) .

This command tries to find a state from the initial state such that two vehi-
cles on the conflict lanes are crossing the intersection at the same time. After
conducting model checking experiment with this command, there is no coun-
terexample. It means that the protocol enjoys the safety (version 2) prop-
erty. The following command can be used to model check Deadlock-freedom
property.

search [1] in IMUTEX : init =>! {OCs} .

The search command tries to find a state from the initial state init such that
no transition can be conducted. We got the counterexample state after model
checking of this experiment. The following state is the counterexample state.
In this state, there are two vehicles named vehicle3 and vehicle4 are on
the lane5. The vehicle3 is the lead vehicle and its status is stopped. There
is another vehicle on the lane0 named vehicle1 which is a lead vehicle and
its state is stopped. The vehicle3 and vehicle1 have the arrival time of 0,
therefore, both vehicles could not be entered into the critical section.

(lane[0]: 0 ; 1) (lane[5]: 3 ; 4)(v[0]: 0,stopped,0,0)

(v[1]: 0,stopped,0,0)(v[3]: 5,stopped,0,0)(v[4]: 5,stopped,0,0)

Therefore, the counterexample shows that a global clock is not sufficient to
use because it can create a symmetry. The order of lane IDs could be used.
When there are multiple lead vehicles on conflict lanes such that their arrival
times are exactly the same, higher priorities are given to those on lanes whose
IDs are less. That is, a logical clock such that times are total order is used. In
the specification, the two rules enter1 and enter2 should be revised such that
T < T1i for i = 1, ..., 4 used in the conditions is replaced with (T < T1 i or(T
== T1i and LI < LI i)). After model checking with the revised version, the
protocol enjoys the Safety (version2) and Deadlock freedom property.
Although there are three desired properties to model check the protocol in
the paper [10], We will focus on the starvation-freedom property which can
be expressed as eventual property. The Starvation-freedom property is a

49

crucial focus of my main research, and it is expressed using the LTL (Linear
Temporal Logic) eventually connective ♦. To verify that the protocol satisfies
the Starvation-freedom property, two components, PLJPL and LLJPL, need
to be defined. PLJPL consists of the atomic proposition fin, representing
the completion of the vehicles’ passage. On the other hand, LLJPL is defined
with two equations:

eq {(gstat: fin) OCs} |= fin = true .

eq {OCs} |= PROP = false [owise].

These equations specify that for all states s ∈ SLJPL, LLJPL(s) = fin if and
only if s contains the atomic proposition (gstat: fin). By formulating
the Starvation-freedom property as

eq halt = <> fin .

where ♦ represents the LTL eventually connective, we can proceed to model
check the protocol’s satisfaction of this property by reducing the following
command in Maude.
modelCheck(init, halt).

Experimental Results
We conducted model checking experiments using the formula ♦fin on the
LJPL protocol involving multiple vehicles with our support tool and Maude
LTL model checker.
A Limited Amount of Memory
We used a Docker container, which runs on a virtual machine operating
Ubuntu 20.04.3 LTS. The virtual machine was allocated 2 GB of memory and
hosted on a Macbook Air with a M1 chip and 16 GB of memory. In the table
6.1, the DCA2EMC represents our support tool. The corresponding time
values in the table indicate the time taken required to complete the model
checking experiments. The Layers column represents the configuration we
employed for the model checking experiments. For instance, the entry 2

2 signifies that we utilized three layers, with each of the first two layers
having a depth of 2. According to experimental results, for LJPL protocol
with 4 and 5 vehicles, the Maude LTL model checker was able to finish
the model checking experiments in a short time. When there are four and
five vehicles taking part in the protocol, Maude LTL model checker is faster
than our tool DCA2EMC. This is because of the overheads introduced by
our approach as we divide the original state space into multiple sub-state
spaces. We revise the system specification of the protocol on the fly to

50

Table 6.1: Model Checking Results with the Limited Amount of Memory
No of vehicle Layers DCA2EMC Maude LTL Model Checker

4 2 2 30.69s 5.72s
5 2 2 8m 10.947s 2m 35.98s
6 2 2 2 3h 13m 28s N/A

Table 6.2: Model Checking Results with the Large Amount of Memory
No of vehicle Layers DCA2EMC Memory Usage Maude LTL Model Checker Memory Usage

4 2 2 8s 0.18 GB 1.5s 0.04 GB
5 2 2 1m 53s 0.26GB 1m 57s 0.48 GB
6 2 2 2 1h 59m 39s 0.61 GB 25h 33m 9s 4.61 GB

generate the counterexample states for ♦ϕ for each sub-state space in non-
final layers where ϕ is a state proposition. However, when there are six
vehicles taking part in the protocol in which no vehicle is on lane1, lane5,
and lane7, one vehicle is on each lane of lane0, lane2, lane3, and lane4, and
two vehicles are on lane6, the Maude LTL model checker ran out of memory
after 33 minutes and 32 seconds and could not complete the mode checking
experiments due to the state space explosion while our approach/tool could
finish the model checking experiment. In the case study of six vehicles taking
part in the protocol, we used the four layers and the bound for each of the
first three layers is 2 while the depth for the final layer is unbounded. Our
approach divides the original reachable state space from the initial state into
multiple layers and uses the Maude LTL model checker to tackle each layer
sequentially. Therefore, the computation complexity of the algorithm used
by Maude LTL model checker is the same. However, our approach efficiently
uses the memory so it can return the result while the Maude LTL model
checker could not. This result shows the effectiveness of our approach with
the small amount of memory.
A Large Amount of Memory
For a large amount of memory, we used a Macbook Air that carries an M1
chip and 16 GB of memory. We also compare the memory usage of our
approach and Maude LTL model checker. When there were four vehicles
taking part in the protocol, the memory usage of our approach was a bit
larger than the memory usage of the Maude LTL model checker. This is
because of another overhead of our approach as we divide the original sub-
state into multiple sub-state spaces and tackle each smaller one. Therefore,
we need to store some extra information such as states located at the final
depth together with the log list to trace back when a counterexample is
found. When there are six vehicles taking part in the protocol, Maude LTL
model checker can return the result but it is quite obvious that our approach
is faster than Maude LTL model checker. The reason is that dealing with

51

the small state spaces is much easier than dealing with the large state spaces
because we do not need to manage a large memory and a big size has table
and so the state storing, accessing, and matching is much faster. It also
makes the best use of the hardware cache.

Table 6.2 provides a comprehensive comparison of the model checking
results, showcasing the impact of employing our support tool, DCA2EMC,
compared to utilizing the Maude LTL model checker. Based on the experi-
mental results, the overhead introduced by our approach does not affect the
model checking running performance very much. It offers insights into the
efficiency and effectiveness of our approach in accelerating the model check-
ing process. We can say that our approach/tool can mitigate the state space
explosion to a certain scope.

6.4 Summary

In this chapter, we have described how the LJPL protocol is formally specified
in Maude. We then model checked the protocol, focusing on the eventual
property. We compared the results obtained from our support tool and the
Maude LTL model checker. We have shown the experimental results of using
our approach/tool and the Maude LTL model checker. We also found a case
study that our support can conduct the model checking experiments while
the Maude LTL model checker could not. We prepared the LJPL protocol
specification in which there are no long lasso backward transitions are not
included. This is the most important preparation to make the best use of
our support tool. As our approach splits the original reachable state space
from the initial state into multiple layers, finding a good layer configuration
is one of the important facts in our approach. Therefore, this will be one of
our future work.

52

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In our research, we have proposed a divide & conquer approach to eventual
model checking to address the state space explosion issue in model checking.
As indicated by the name, the technique is dedicated to eventual proper-
ties. DCA2EMC [1] is an extension of DCA2L2MC [24] and DA2CSMC
[25], so as to deal with the termination system requirements that can be
expressed as eventual properties. The main idea of our approach is to split
the original eventual model checking problem into multiple smaller even-
tual model checking problems and tackled each smaller one. Since it tackles
multiple smaller problems sequentially, we can make efficient use of mem-
ory resources. This is the main principle behind our technique. We proved
a theorem that demonstrates the equivalence between these smaller model
checking problems and the original problem. Based on the theorem, we
have designed the algorithm to use for conducting the model checking ex-
periments with the technique. However, manually conducting experiments
with DCA2EMC is time-consuming and error-prone when there are many
states placed at each layer and we cannot handle it well if the number of lay-
ers being checked is considerable. Therefore, it is indispensable to develop a
support tool to facilitate conducting experiments with DCA2EMC. This tool,
implemented using Maude, leverages its reflective programming capabilities
(meta-programming) to automatically revise the system specifications and
do some useful computations.

We use the Maude LTL model checker as the model checker in our sup-
port tool. When we conducted case studies, we prepare the specifications for
each protocol. As our tool can not handle the model checking experiments if
the specifications have the long lasso backward transitions in the final layer.

53

Therefore, we are required to prepare the specification in which the multiple
smaller sub-state spaces from the original reachable state must have a much
smaller number of states than the state in the original ones. We prepare the
eventual properties to model check by using the Maude LTL model checker.
Our support tool uses these specifications and eventual properties to con-
duct model checking experiments. As we use meta-programming facilities
in our support tool to update our specifications, the specifications are up-
dated for each sub-state space in each non-final layer on the fly to generate
all counterexample states which do not satisfy the eventual property in each
layer. This overhead should be considered for the running performance of
our support tool.

We conducted case studies using five protocols named Qlock, Anderson,
MCS, TAS, and LJPL by using a limited amount of memory and a large amount
of memory to demonstrate the effectiveness of our approach. According to
the experimental results, our approach/tool can ease the state space ex-
plosion to a certain scope while the Maude LTL model checker is not able
to complete the model checking experiments due to the state space explo-
sion. The model checking algorithm adopted by Maude LTL model checker
is the same as the one used by SPIN [14], which is one of the most popular
model checkers for model checking software systems. It has been reported
that Maude LTL model checker is comparable with SPIN with respect to
model checking running performance. This implies that whenever Maude
LTL model checker encounters the state space explosion problem, making
it impossible to conduct model checking experiments, SPIN does so as well,
and so do most existing model checkers. Thus, it is meaningful to compare
our tool with the Maude LTL model checker.

7.2 Future Work

One area we are currently working on is parallelizing our approach/tool. This
involves optimizing the tool to make the best use of parallel computing, where
multiple tasks can be performed simultaneously. Since our approach/tool
allows for independent model checking experiments on multiple sub-state
spaces, parallelization can significantly speed up the process. Our research
group has already made progress in parallelizing both the technique itself and
the support tool and the detail can be read in this paper [26]. Parallelization
has the potential to greatly enhance the performance and scalability of our
approach. It allows us to analyze larger and more complex systems in a
shorter amount of time by processing multiple sub-state spaces concurrently.
By incorporating parallel computing techniques into our support tool, we

54

aim to increase the running performance of our approach/tool.
There are two more directions that we may concern for our approach/-

tool. The first one is how to deal with long lasso loops in the specification.
The second one is how to find a unified technique to handle not only eventual
properties but also other properties such as leads-to properties and condi-
tional state properties which can be expressed freely in LTL. We will come
up with good strategies to handle these two concerns in our future work.

55

Copyright

Texts, figures, and tables from the chapters 2, 4, and 5
are borrowed from © 2022 IEEE. Reprinted with per-
mission, from M. N. Aung, Y. Phyo, C.M. Do and K.
Ogata, “A Tool for Model Checking Eventual Model
Checking in a Stratified Way,” 2022 9th International
Conference on Dependable Systems and Their Applica-
tions (DSA), 10/2022.

56

References

[1] Aung, M. N., Phyo, Y., Do, C. M. & Ogata, K. A divide and conquer
approach to eventual model checking. Mathematics 9, 368 (2021).

[2] Clarke, E. M., Klieber, W., Nováček, M. & Zuliani, P. Model checking
and the state explosion problem. In LASER Summer School on Software
Engineering, 1–30 (Springer, 2011).

[3] Clarke, E. M., Grumberg, O., Minea, M. & Peled, D. State space reduc-
tion using partial order techniques. International Journal on Software
Tools for Technology Transfer 2, 279–287 (1999).

[4] Clarke, E. M., Grumberg, O. & Long, D. E. Model checking and ab-
straction. ACM transactions on Programming Languages and Systems
(TOPLAS) 16, 1512–1542 (1994).

[5] Clarke, E., Grumberg, O., Jha, S., Lu, Y. & Veith, H. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of
the ACM (JACM) 50, 752–794 (2003).

[6] Meseguer, J., Palomino, M. & Mart́ı-Oliet, N. Equational abstractions.
In Automated Deduction–CADE-19: 19th International Conference on
Automated Deduction, Miami Beach, FL, USA, July 28–August 2, 2003.
Proceedings 19, 2–16 (Springer, 2003).

[7] Bryant, R. E. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys (CSUR) 24, 293–318
(1992).

[8] De Roever, W.-P. Concurrency verification: Introduction to composi-
tional and non-compositional methods, vol. 54 (Cambridge University
Press, 2001).

[9] Zhang, F. et al. Compositional reasoning for shared-variable concur-
rent programs. In Formal Methods: 22nd International Symposium, FM

57

2018, Held as Part of the Federated Logic Conference, FloC 2018, Ox-
ford, UK, July 15-17, 2018, Proceedings 22, 523–541 (Springer, 2018).

[10] Aung, M. N., Phyo, Y. & Ogata, K. Formal specification and model
checking of the lim-jeong-park-lee autonomous vehicle intersection con-
trol protocol (s). In SEKE, vol. 2019, 159–208 (2019).

[11] Lim, J., Jeong, Y. S., Park, D.-S. & Lee, H. An efficient distributed
mutual exclusion algorithm for intersection traffic control. The Journal
of Supercomputing 74, 1090–1107 (2018).

[12] Clavel, M. et al. All about maude-a high-performance logical framework:
how to specify, program, and verify systems in rewriting logic, vol. 4350
(Springer, 2007).

[13] Clarke, E., Biere, A., Raimi, R. & Zhu, Y. Bounded model checking
using satisfiability solving. Formal methods in system design 19, 7–34
(2001).

[14] Holzmann, G. J. The SPIN model checker: Primer and reference man-
ual, vol. 1003 (Addison-Wesley Reading, 2004).

[15] Sheeran, M., Singh, S. & St̊almarck, G. Checking safety properties
using induction and a sat-solver. In International conference on formal
methods in computer-aided design, 127–144 (Springer, 2000).

[16] De Moura, L., Rueß, H. & Sorea, M. Bounded model checking and
induction: From refutation to verification: (extended abstract, category
a). In International Conference on Computer Aided Verification, 14–26
(Springer, 2003).

[17] McMillan, K. L. Interpolation and sat-based model checking. In Com-
puter Aided Verification: 15th International Conference, CAV 2003,
Boulder, CO, USA, July 8-12, 2003. Proceedings 15, 1–13 (Springer,
2003).

[18] Holzmann, G. J. An improved protocol reachability analysis technique.
Software: Practice and Experience 18, 137–161 (1988).

[19] Peled, D. Combining partial order reductions with on-the-fly model-
checking. In Computer Aided Verification: 6th International Conference,
CAV’94 Stanford, California, USA, June 21–23, 1994 Proceedings 6,
377–390 (Springer, 1994).

58

[20] Anderson, T. E. The performance of spin lock alternatives for shared-
memory multiprocessors. IEEE Trans. Parallel Distributed Syst. 1, 6–16
(1990). URL https://doi.org/10.1109/71.80120.

[21] Mellor-Crummey, J. M. & Scott, M. L. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst.
9, 21–65 (1991). URL https://doi.org/10.1145/103727.103729.

[22] Bui, D. D. & Ogata, K. Better state pictures facilitating state machine
characteristic conjecture. In 26th DMSVIVA, 7–12 (KSI Research Inc.,
2020). URL https://doi.org/10.18293/DMSVIVA20-007.

[23] Do, C. M., Phyo, Y., Riesco, A. & Ogata, K. Optimization techniques
for model checking leads-to properties in a stratified way. ACM Trans-
actions on Software Engineering and Methodology (2023).

[24] Phyo, Y., Minh Do, C. & Ogata, K. A divide & conquer approach to
leads-to model checking. The Computer Journal 65, 1353–1364 (2022).

[25] Phyo, Y., Do, C. M. & Ogata, K. A divide & conquer approach to
conditional stable model checking. In ICTAC, vol. 12819 of Lecture
Notes in Computer Science, 105–111 (Springer, 2021).

[26] Phyo, Y., Aung, M. N., Do, C. M. & Ogata, K. A layered and parallelized
method of eventual model checking. Information 14, 384 (2023).

59

Publications

1. Moe Nandi Aung, Yati Phyo, Canh Do Minh, Kazuhiro Ogata. “A Di-
vide & Conquer Approach to Eventual Model Checking.“ Mathematics
2021, 9, 368. DOI: 10.3390/math9040368

2. Moe Nandi Aung, Yati Phyo, Kazuhiro Ogata. “Formal Specification
and Model Checking of the Lim-Jeong-Park-Lee Autonomous Vehicle
Intersection Control Protocol.” In 31st International Conference on
Software Engineering and Knowledge Engineering (31st SEKE), KSI
Research Inc., pp.159-164 (2019). DOI: 10.18293/SEKE2019-021

3. Moe Nandi Aung, Yati Phyo, Canh Minh Do, and Kazuhiro Ogata.
“A Tool for Model Checking Eventual Model Checking in a Stratified
Way.” In International Conference on Dependable Systems and Their
Applications (DSA 2022), IEEE, pp.270-279 (2022).
DOI: 10.1109/DSA56465.2022.00045

4. Yati Phyo, Moe Nandi Aung, Canh Minh Do, and Kazuhiro Ogata.
“A Layered and Parallelized Method of Eventual Model Checking.”
Information 2023, 14, 384 . DOI: 10.3390/info14070384

60

