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Abstract—Previous studies found that speech uttered by pro-
fessional announcers is more intelligible than that by non-
experts in noisy environments. On the basis of this finding, we
developed a voice-conversion (VC) system to mimic professional
announcers’ voices by modifying the speaker embedding of non-
expert speech. The results from our experiments to evaluate this
system indicated that intelligibility increased significantly with
this system. In this paper, to discuss what physical features
correlate to the intelligibility, the following two issues are investi-
gated by analyzing this system: (1) whether speech intelligibility
can be changed gradually even by shifting one PCA (principal
component analysis) component of the speaker embedding of the
above VC system and (2) what physical features are changed
when the PCA component is shifted, we retrained the VC system
with a larger amount of training data. Comparing the speech
intelligibility and candidate features that were changed with the
shift of one axis of PCA, we found that spectral tilt, spectral
plateau, and cepstral peak prominence are strongly correlated
with intelligibility.

Keywords: spectral tilt, spectral plateau, cepstral peak
prominence, PCA, STOI, voice conversion

I. INTRODUCTION

Speech intelligibility is important in providing general infor-
mation such as the arrival/departure time of trains and flights;
driving instructions, nearby gas stations, and parking lots. It
is especially important in announcing emergency situations
such as fires, earthquakes, and landslides; as well as guiding
people to safety. Making speech more intelligible is specifically
challenging in noisy and reverberant environments such as
airport/train stations, kitchens, and shower rooms. It is even
more difficult when listeners are elderly with or without
hearing impairments.

The easiest and most natural response to the challenges is
turning up the volume of playback devices; however, increas-
ing the volume is not equivalent to increasing the intelligibility
of speech. A person can involuntarily increase the intelligibility
of his/her speech in noisy places, known as the Lombard effect
[1]. But increasing the volume of playback devices does not
have such effect. Various approaches have been proposed to
increase speech intelligibility in noisy environments without
increasing the total power of speech. These include modifica-
tion of spectral properties [2]–[4], dynamic range compression

[5]–[7], modification of speech modulation spectrum [8], [9],
and time-scale modification [10], [11].

Several studies have found that voice-related professions,
e.g., professional announcers, voice actors, and singers, can
produce speech that is clearer and easier to hear than non-
professional people [12], [13]. Other studies have shown that
the speech by professional announcers can maintain intelli-
gibility better than that by non-experts in very noisy environ-
ments [14]. Inspired by this phenomenon, a previous study [15]
developed an end-to-end deep neural network (DNN) based
voice conversion (VC) system that mimicked the speaking style
of professional announcers to increase speech intelligibility of
non-expert people.

As reported in the previous study [15], by analyzing the
principal component analysis (PCA) of speaker embedding
in the proposed VC system, the first PCA component was
found to be related to gender difference and the second PCA
component of speaker embedding captured the difference be-
tween non-expert speakers and professional announcers. This
is advantageous as a non-expert voice can be converted to
have the voice style of a professional announcer only by
changing the second PCA component of a speaker embedding.
Since professional announcers’ voices are more intelligible
even in a noisy environment, it is expected that the second
PCA component can be used to increase the intelligibility
of non-expert voices. To clarify this point, the authors [15]
proposed replacing the second PCA component of a non-
expert speaker embeddings with the average value calculated
from the second principal component of all male professional
announcers. The obtained speaker embedding was then used
to synthesize converted stimuli.

Experimental results [15] from objective measurements and
subjective evaluation of the converted stimuli confirmed that
adapting to an announcer’s voice can increase the intelligibility
of a non-expert speaker’s voice. By modifying the second PCA
component of speaker embedding, we can manually control the
announcer speaking style, hence increase the intelligibility of
speech in a noisy environment without completely changing
speaker individuality. Statistical analysis also showed that
modifying the second PCA component yields the highest
performance. These results suggest that the second PCA com-
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Fig. 1. Speaker embeddings in PCA domain

ponent is related to the intelligibility of speech.
However, the DNN-based VC system is a black box; it

is unknown what happens that improves the intelligibility of
speech when the second PCA component is swapped. It is
also unclear whether speech intelligibility can be changed
gradually by shifting only the second PCA component. This
paper analyzes speaker embeddings in the system [15] that is
thought to be a black box in a DNN-based VC for improving
speech intelligibility and discusses physical cues for improving
intelligibility. More specifically, we retrain the above VC
system with a larger amount of training data and use it
to control the second PCA component. We then study the
subsequent effects on physical properties and intelligibility of
speech and present two discussion points:

• Whether speech intelligibility can be changed gradually
even by shifting one PCA component of the speaker
embedding.

• What physical features are changed when the PCA com-
ponent is shifted.

Possible candidates of physical correlates are spectral tilt and
plateau and cepstral peak prominence (CPP).

II. VOICE-CONVERSION SYSTEM

A. Training voice-conversion system

StarGANv2-VC [16] is one of the most effective VC sys-
tems. On the basis of this system, the authors [15] proposed a
method for converting the voice of a non-expert speaker to that
of a professional announcer to increase speech intelligibility.
Their goal was to increase the effectiveness of StarGANv2-VC
by adding automatic speech recognition to the discriminator

module. They also used a Parallel WaveGAN [17] vocoder to
generate converted speech utterances from the corresponding
converted mel-spectrograms.

We retrained the above VC system with a larger amount
of training data to discuss the properties of the PCA second
component of the speaker embedding related to expert versus
non-expert speakers. More specifically, the training data consist
of utterances from 20 professional announcers from the ATR
dataset A-set and 20 non-expert speakers from the ATR dataset
C-set [18]. All the utterances are pre-processed by resampling
to 24 kHz, removing leading and trailing silence; and they
are combined to 5-second chunks. There are total 29,956
utterances, in which 500 utterances are used for validation.
The 80-band log-mel spectrogram with band-limited frequency
range (0 to 8 kHz) is extracted using short-time Fourier
transform. The window length and frame shift are set to 1024
and 256, respectively.

We follow the training strategy described in the above
studies [15], [16] with the same objective functions and hyper-
parameters. We then used the style encoder of our retrained
system to generate the PCA of the speaker embeddings for
non-experts and professional announcers to verify that the
second PCA component is related to expert and non-expert
speakers.

Figure 1 shows the visualization of the first two PCA
components of the speaker embedding. It can be seen that the
first PCA component is related to gender with female and male
speakers distributed on the left and right. The second PCA
component is related to expert and non-expert speakers. The
clusters of female/male professional announcers are compact
and those of non-expert speakers are wide on the second PCA
component. This phenomenon suggests that the professional
announcers can control the configurations of their voice organs
and high intelligible speech is the result of such effort, resulting
that the variance of their voices are smaller than those of non-
expert speakers.

B. Shifting second PCA component

We referred to the second PCA component of a non-
expert speaker (M105 in the ATR dataset C-set) as the source
and average value of the second PCA component of ten
professional male announcers in the ATR dataset A-set as the
Center. The PCA components of M105 and the Center are
visualized in Fig. 1. Let d be the distance between the PCA
values (the second PCA component) of the source and Center.
We calculated three checkpoints, i.e., C1 = 0.25d,C2 = 0.5d
and C3 = 0.75d from the source, respectively. For example,
assuming that the second PCA components of the source and
Center were vectors: a and b; the checkpoints were calculated
as: C1 = 0.25d = (1−0.25)×a+0.25×b,C2 = 0.5d = (1−
0.5)×a+0.5×b, and C3 = 0.75d = (1−0.75)×a+0.75×b.

With our retrained voice-conversion system, we first cal-
culated the PCA components for a non-expert speaker and
all ten male professional announcers. We then calculated the
Center by taking the average of the second PCA components
corresponding to the professional announcers and calculated
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Fig. 2. eSTOI scores at four levels of noise (-9, -6, -3, 0 dB). On the
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the distance between the second PCA components of the non-
expert speaker and the Center as d. We then used d to calculate
the PCA values for checkpoints C1, C2, and C3 accordingly.
Finally, in turns, we replaced the second PCA component of
the non-expert speaker embedding with the PCA values of C1,
C2, C3, and Center and used our retrained voice-conversion
system to produce the converted speech stimuli.

III. SECOND PCA COMPONENT AND INTELLIGIBILITY IN
NOISE

The first discussion point is investigated in this section. We
conducted an experiment to gain insights about the correlation
between the second PCA component and speech intelligibility.
The consistency of the correlation was also examined in
various levels of noise.

We selected 520 Japanese words, each containing 1 to 4
morae, from the ATR dataset A-set and ATR dataset C-set as
the clean stimuli for conversion-target and source speakers. All
speech waveforms were pre-processed to a 16-kHz sampling
rate with a single channel. We followed the instructions in
[15] and used 16 kHz here instead of 24 kHz as described
in Section II. There were 6 types of speech stimuli in the
experiments: SN is the natural speech of a non-professional
speaker, collected from speaker M105 in the C-set; SA is the
natural speech of professional announcers, collected from 20
male and female speakers in the A-set; and S1, S2, S3, and SC

are converted speech produced by shifting the second PCA
components of speaker embedding of the source (M105) to
checkpoint C1, C2, C3, and Center, respectively.

To create the noisy stimuli, we masked the clean stimuli
with pink noise at four different signal-to-noise-ratio (SNR)
levels: -9, -6, -3, and 0 dB. We calculated the root-mean-square
of the speech signal only in the speech-presence region and
scaled the noise signal to match the desired SNR level. The
speech-presence region is derived from the text labels of the
ATR dataset. To avoid the effect of different onset and offset
timing between speech stimuli, the duration of each stimulus

was adjusted to contain the same 200 ms of leading noise
and 200 ms of trailing noise. Speech stimuli were gated with
two raised cosine onset and offset windows of 40 ms to avoid
overshoot distortion.

To objectively measure the intelligibility of speech in noise
and determine whether speech intelligibility is increased grad-
ually by shifting values along the second PCA component,
we calculate the extended Short Term Objective Intelligibility
(eSTOI) of the speech stimuli at 4 SNR levels: -9, -6, -3 and
0 dB at 5 checkpoints (Source, C1, C2, C3, and Center) using
pySTOI python package [19]. The clean speech by speaker
M105 were used as the reference signals at checkpoint 0 and
the clean-converted speech were used as the reference signals
at other checkpoints for eSTOI calculation.

Figure 2 shows the experimental results. The vertical lines
at each checkpoint correspond to the standard deviations of
eSTOI scores. It appears that intelligibility was increased
gradually when the second PCA component was shifted from
source to checkpoints C1, C2, C3, and Center. The eSTOI
scores were also consistent with various levels of noise. The
results provide an important insight in that the intelligibility
could be tuned adaptively to various levels of noise on the basis
of the voice of an arbitrary person by shifting the second PCA
component using our retrained system.

IV. INTELLIGIBILITY AND ITS PHYSICAL CORRELATES

A. Spectral tilt, spectral plateau, and intelligibility
Studies on laryngeal anomalies have found that breathiness

is a prominent feature used for determining various pathologi-
cal conditions [20]. Breathiness is a phenomenon caused by the
incomplete closure of vocal fold. As a result, breathy voices are
more difficult to hear (less intelligible) in noisy environments.
Compared with normally phonated signals, breathy glottal
signals have steeper downward spectral slopes, less energy in
the high-frequency region, and are less periodic [21]. Several
acoustical studies have reported correlations between spectral
tilt (downward spectral slope), spectral plateau (energy in the
high-frequency region); and breathiness ratings [22]. Based on
these knowledge, we hypothesize that a speech signal that has a
flatter spectral tilt and larger plateau energy could have higher
intelligibility and vice versa.

Figure 3 (a) shows an example of the spectral tilt we
calculated for this study. It is the frequency spectrum of the
vowel /a/ with the spectral tilt presented as the red line. We
used the label of the ATR dataset to extract a segment of vowel
/a/. We then calculated the Fourier spectrum of the segment.
Finally, we calculated the regression line of the spectrum
between 300 and 4,000 Hz. We used the slope of the regression
line as the spectral tilt. Figure 3 (b) shows an example of the
spectral plateau. On the same spectrum shown in Fig. 3 (a),
the spectral plateau is presented as the red line between 2,000
and 4,000 Hz. We subtracted the entire spectrum from its peak
magnitude. We then calculated the average magnitude of the
spectrum in the 2,000-4,000-Hz band. We used this average
magnitude to represent the spectral plateau and compared it
with the plateaux of other spectra.
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Fig. 3. Frequency spectrum and quefrency cepstrum of vowel /a/

B. Periodicity, CPP, and intelligibility

A breathy voice is less periodic compared with a normal
one and the quefrency domain is effective for analyzing signal
periodicity. A crude explanation of the quefrency domain is
that we treat the spectrum of a speech waveform as a signal
and apply Fourier transform to it; the result is the cepstrum
of the speech waveform in the quefrency domain. It can be
observed that a highly periodic speech spectrum should result
in clear harmonics in the quefrency domain; therefore, clearer
cepstral peaks.

Several analyses have found a strong relation between the
periodicity of a signal and its CPP [20], [23]. A CPP is the
distance between the most prominent peak and the level of the
cepstral background noise on the regression line immediately
below the peak. Experimental results [20]–[23] indicated that
the CPP of a breathy voice is significantly lower than that of a
normal voice. In other words, a higher CPP level is an indicator
of higher speech intelligibility. Figure 3 (c) shows an example
of the CPP in the quefrency domain. It is the cepstrum of the
vowel /a/ with its regression line and CPP shown as the red
line and red triangle, respectively. We use the regression line of
the cepstrum as the referenced background noise. The CPP is
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Fig. 5. Average spectral plateau and standard deviation of vowels /a/, /e/,
/i/, /o/, /u/. On the horizontal axis, 0 denotes the source and 1 is the Center.
0.25, 0.5 and 0.75 are the checkpoints, C1, C2, and C3, respectively.

calculated as the difference in magnitude of the highest peak
(the red triangle) and the red circle directly under it on the
regression line.

C. Second PCA component, physical correlates, and intelligi-
bility

Thus far, we have learned from the literature that a shallower
spectral tilt, larger amount of energy of the spectral plateau,
and higher CPP are associated with higher speech intelligi-
bility. The next step is examining the correlation between the
second PCA component and acoustical properties. We shifted
the second PCA component, as described in Section II-B, and
used our retrained voice conversion system to generate five
types of stimuli. We then used the ATR dataset label to extract
the vowel /a/, /e/, /i/, /o/, /u/ segments of five types of stimuli
(SN , S1, S2, S3, and SC). Finally, we used these segments to
calculate spectral tilt, spectral plateau, and CPP.

The results of this experiment are shown in Figs. 4, 5, and 6.
The vertical lines at each checkpoint correspond to the standard
deviations of the averaged spectral tilts, spectral plateaux, and
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CPPs. It is known that a breathy voice (low intelligibility) has
a steeper spectral slope (steeper tilt) and less energy in the
high-frequency region (small or no plateau). It can be seen in
Fig. 4 that the averaged slopes of the spectral tilts are reduced
gradually from about −0.05 dB/Hz at checkpoint 0 to above
−0.02 dB/Hz at the Center. Similarly, it appears in Fig. 5
that the average energy in the high-frequency regions (spectral
plateaux) are rised from about −47 dB at checkpoint 0 to
about −33 dB at the Center. Observing the experimental results
visualized in Figs. 4, 5, and 2, there is a relation between
the spectral tilt, spectral plateau, and intelligibility, i.e., the
improvement of these physical properties is consistent with
the improvement of speech intelligibility. More specifically, the
non-expert speaker has the steepest spectral tilt and smallest
spectral plateau, suggesting that the non-expert speaker has the
lowest speech intelligibility. In contrast, the Center appears to
have the shallowest spectral tilt and largest spectral plateau;
therefore, it has the highest intelligibility. Between the non-
expert speaker and Center, checkpoints C1, C2, and C3 have
a small fluctuation; however, the overall trend is that the
spectral tilts become shallower and spectral plateaux larger,
indicating that the intelligibility becomes higher when the
second PCA component is shifted from the non-expert speaker
to checkpoints C1, C2, C3, and finally the Center.

It has been reported that the spectrum of a breathy voice (low
intelligibility) is less periodic, and a less periodic spectrum
results in a less prominent cepstral peak. It can be seen in
Fig. 6 that the averaged cepstral peaks have become more
prominent, rising from about 25 dB at checkpoint 0 to above 28
dB at the Center. Observing the experimental results visualized
in Figs. 6 and 2, there is a relation between the CPP and
intelligibility, i.e., the improvement of the CPP is consistent
with the improvement of speech intelligibility. More specif-
ically, the non-expert speaker has the lowest CPP; in other
words, the speaker has the least speech intelligibility. The CPP
values of other checkpoints are all larger than that of the non-
expert. Although there is a small fluctuation, it appears that the

CPP values becomes larger, indicating that the intelligibility
becomes higher when the second PCA component is shifted
from the non-expert speaker toward the Center.

The experimental results visualized in Fig. 2 show that
speech intelligibility is increased gradually when the second
PCA component is shifted gradually. The shift also produces
enhancements of spectral tilt, spectral plateau, and CPP as
shown in Figs. 4, 5, and 6, respectively. These results provide
evidence that there is a correlation between the improvement
of intelligibility and enhancement of physical properties of
speech.

V. CONCLUSION

We presented two points of discussion for finding the
correlations between the second PCA component, physical
properties, and intelligibility of speech in order to learn why
speech intelligibility can be increased by mimicking profes-
sional anouncers’ voices using the end-to-end DNN-based VC
system [15]. The first point is whether speech intelligibility
can be changed gradually even by shifting one second PCA
component of the speaker embedding and the second point
is what physical features are changed when the second PCA
component is shifted. To do so, we retrained the VC system
[15] with a larger amount of training data. We then used our
retrained system to shift the second PCA component of a non-
expert speaker to those of checkpoints C1, C2, C3, and the
Center. We used the eSTOI to evaluate the intelligibility of
speech stimuli with four levels of noise (-9, -6, -3, and 0 dB)
at five checkpoints. Experimental results confirm for the first
point of discussion that speech intelligibility can be increased
gradually by shifting the second principal component toward
those of professional announcers.

We investigated why it is possible to increase speech intel-
ligibility by using the second PCA component of professional
announcers. We looked into the spectral tilt and spectral
plateau in the frequency domain, as well as the CPP in the
quefrency domain. The results confirm for the second point
of discussion that when the second PCA component is shifted
from a non-expert speaker through checkpoints C1, C2, C3,
and Center, all the acoustical properties related to intelligibility
appear to be enhanced proportionally.
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