
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
量子動的代数：オーソモジュラー束から量子プログラムの代

数へ

Author(s) 高木, 翼

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18773

Rights

Description Supervisor: 緒方 和博, 先端科学技術研究科, 博士



Doctoral Dissertation

Quantum Dynamic Algebra:
From Orthomodular Lattice to
Algebra of Quantum Programs

Tsubasa Takagi

Supervisor: Kazuhiro Ogata

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2023



Abstract

Quantum Logic is the logic of quantum mechanics, originated by von Neumann and
Birkhoff in 1936. Half a century later, computation based on quantum mechanics,
namely quantum computation, was invented and has developed dramatically up to
the present day. Therefore, it is expected to incorporate the viewpoint of quantum
computation to reformulate Quantum Logic into a modern logic.

In this dissertation, we study algebraic structures. The algebraic structure
of Quantum Logic is known as orthomodular lattices, which are abstractions of
the sets of all closed subspaces of Hilbert spaces. Orthomodular lattices are chal-
lenging to deal with because the distributive law does not hold. Besides that,
orthomodularity is not determined by any first-order properties of the accessibil-
ity relation of Kripke frames for Quantum Logic. These features are not found in
other well-known algebraic structures of logics, such as Boolean lattices (Classical
Logic), Heyting lattices (Intuitionistic Logic), or Modal algebras (Modal Logic).

Interestingly, orthomodular lattices, with these hard-to-handle properties, can
be made easier to deal with by adding the notion of quantum programs. This
is another motivation for extending orthomodular lattices to algebra of quantum
programs. Incorporating a quantum computation perspective into orthomodular
lattices is not only beneficial for its reformulating as modern algebras, but also
from a technical point of view.

We name the algebra of quantum programs Quantum Dynamic Algebra (QDA).
QDA is constructed by combing the algebra of quantum mechanics (orthomodular
lattices), Regular Program Algebra, and Modal Algebra. The quantum programs
that QDA can express are limited to regular programs. However, regular programs
are expressive enough to describe various programs, such as conditional programs,
guarded commands, while programs, and until programs. The interpretation of
tests in QDA differs from that in Dynamic Algebra (the algebra of classical pro-
grams): tests are interpreted as the execution of projective measurement in quan-
tum mechanics. Because the execution of projective measurement may change the
current state, there is no corresponding notion in Dynamic Algebra.

QDA provides the algebraic foundation for quantum program verification. We
show that the inference rules in Hoare Logic are valid in QDA if the usual conjunc-

i



tion is replaced by the Sasaki conjunction. The validity of the Hoare-like inference
rules means that the inference rules in Hoare Logic also work in the quantum
setting as long as the appropriate logical connective(s) are chosen. Behind this
is the fact that the more fundamental law called the law of residuation holds if
the usual conjunction is replaced by the Sasaki conjunction in Quantum Logic.
The law of residuation is significant because the law corresponds to one of the
most significant theorems called the deduction theorem in logics, such as Classical
Logic, Intuitionistic Logic, Modal Logic. More generally, algebras that satisfy the
law of residuation give algebraic semantics for various substructural logics. There
has been no discussion of this kind of relevance to the field of logic (not only Hoare
Logic) in existing studies.

Another achievement of this study is to show the Stone-type representation
theorem for QDA at the cost of simplifying QDA to star-free (iteration-free) QDA.
It is traditionally known that the iteration operator is challenging to deal with. For
example, the Stone-type representation theorem has been proved only for star-free
(Classical) Dynamic Algebra. The difficulty arises because the iterative operator
allows the existence of non-standard Kripke models. Even for star-free QDAs,
the proof of the Stone-type representation theorem is not straightforward. (Star-
free) QDA is made up of a complex combination of multiple algebras, namely an
orthomodular lattice, a regular program algebra, and a modal algebra. It is not
apparent to prove the Stone-type representation theorem consistent with all these
algebras.

Proving Stone-type representation theorems is significant because it reveals the
relation between algebraic semantics and Kripke semantics. The most well-known
Stone-type representation theorem is Stone’s representation theorem for Boolean
lattices. The theorem is extended to Jónsson–Tarski theorem, also known as the
Stone-type representation theorem for modal algebras. However, although the
algebraic structure of DQL is an extension of the modal algebra, its Stone-type
representation theorem has not been known so far.

In summary, we formulate QDA for reformulating the algebraic structure of
quantum mechanics into a modern algebra from the perspective of quantum com-
putation. We also show the Stone-type representation theorem for its star-free
fragment, which ensures the theoretical adequacy of QDA. Furthermore, it is ex-
pected to apply QDA to quantum program verification because Hoare-like inference
rules are valid in QDA.

KeyWords: Orthomodular Lattice, Dynamic Algebra, Sasaki Conjunction, Quan-
tum Program Verification, Stone-type Representation Theorem

ii



Acknowledgments

First and foremost, I am extremely grateful to my supervisor, Professor Kazuhiro
Ogata, for his invaluable guidance from the perspective of computer science to
improve my work. Moreover, he gave me many opportunities to present my studies.
He financially supported me in making my paper open-access. Besides that, he
encouraged me to present my papers at international conferences.

Also, I would like to express my sincere gratitude to the people who helped
me to conduct my research. Dr. Canh Minh Do collaborated with me by im-
plementing my ideas. Mr. Minoru Koga made many suggestions for improving
this dissertation. Dr. Tomoaki Kawano and Mr. Yosuke Watanabe gave me feed-
back on my research on numerous occasions in Tokyo Institute of Technology and
Nagoya University, respectively.

Furthermore, I am deeply indebted to many researchers in JAIST, especially
Professor Emeritus Satoshi Tojo and Hiroakira Ono, who gave me a lot of advice
during my master’s program. I have been greatly assisted by them in maturing as
a scholar. I also thank the dissertation committee members, Professor Kazuhiro
Ogata, Kunihiko Hiraishi, Nao Hirokawa, Takashi Tomita, Satoshi Tojo, and Ryo
Kashima, for their helpful comments on a draft of this dissertation.

I welcome this opportunity to thank those who were not directly involved in
my research. Mr. Takumi Ueda, Xinyu Wang, and Yudai Kubono spent much
time with me, teaching each other to learn basic notions in mathematical logic.
They also gave me so much help in my school life. I got friends I will never forget.

This work was supported by Grant-in-Aid for JSPS Research Fellow Grant
Number 22J23575. I could not have accomplished this work without this research
grant.

Nomi, Japan
Tsubasa Takagi

iii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Organisation of the Dissertation . . . . . . . . . . . . . . . . . . . . 7

2 Basic Notions 8
2.1 Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Closure System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Dedekind–MacNeille Completion . . . . . . . . . . . . . . . . . . . 19
2.5 Various Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Stone-type Representation Theorems 30
3.1 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Representation Theorem for Boolean lattices . . . . . . . . . . . . . 37
3.4 Representation Theorem for Ortholattices . . . . . . . . . . . . . . 39
3.5 Representation Theorem for Modal Algebras . . . . . . . . . . . . . 47

4 Quantum Dynamic Algebra 49
4.1 Quantum Dynamic Algebra . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Inference Rules for Quantum Programs . . . . . . . . . . . . . . . . 53
4.3 Quantum Dynamic Frame . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Complex Algebra of QDF . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Running Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



5 The Stone-type Representation Theorem for Star-free QDA 69
5.1 Star-free Quantum Dynamic Algebra . . . . . . . . . . . . . . . . . 69
5.2 Star-free Quantum Dynamic Frame . . . . . . . . . . . . . . . . . . 71
5.3 Complex Algebra of Star-free QDF . . . . . . . . . . . . . . . . . . 72
5.4 Canonical Frame of Star-free QDA . . . . . . . . . . . . . . . . . . 74
5.5 Representation Theorem . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Examples from Quantum Computation . . . . . . . . . . . . . . . . 83

6 Conclusions and Future Work 88
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 96

List of Publications 97

Index 98

v



Chapter 1

Introduction

1.1 Background

Quantum computing has the potential to transform various computing applications
by offering the ability to solve problems that are currently infeasible for classical
computing, such as Shore’s fast algorithm for integer factoring and Grover’s algo-
rithm for unstructured search. However, quantum computing is counter-intuitive
and distinct from classical computing, which makes it challenging to design and
implement quantum protocols, algorithms, and programs accurately. Therefore,
it is crucial to ensure their correctness through verification. While existing log-
ics/algebras can be used to verify that classical systems enjoy some desired prop-
erties, they cannot be directly applied to quantum systems due to the distinct
principles used in quantum computing. Therefore, new formal verification tech-
niques are necessary for quantum systems.

The purpose of this study is to extend orthomodular lattices known as the
algebraic structure of Quantum Logic into a modern algebraic structure by recon-
sidering it from the viewpoint of quantum computation. First of all, we explain
the background of the logics relevant to this study.

Quantum Logic

Quantum Logic is the logic of quantum mechanics, originated by von Neumann
and Birkhoff in 1936 [10]. Although the mathematical structure of quantum me-
chanics was clarified by von Neumann in his book “Mathematische Grundlagen der
Quantenmechanik” in 1932, the axioms of quantum mechanics were not experi-
mentally testable in comparison with the axioms of classical mechanics (Newton’s
law of motion). Therefore, von Neumann tried to reconstruct quantum mechanics
by constructing a logic from only experimentally testable propositions (observable

1



propositions). Von Neumann discovered that Quantum Logic has a lattice struc-
ture by collaborating with Birkhoff, a researcher who had made great achievements
in lattice theory: Quantum Logic is a lattice consisting of closed subspaces of a
Hilbert space. [33] is the standard textbook in this field.

Dynamic Logic

Dynamic Logic is a logic of programs originated by Pratt in 1976 [32]. Dynamic
Logic describes the execution of regular programs, namely, programs described by
regular expressions and tests, using modal operators. Dynamic Logic is a kind of
modal logics with different modal operators for each regular program. It is also
an extension of Hoare Logic in that it can deal with more complex programs than
those dealt with by Hoare Logic. In particular, because the weakest preconditions
can be described using the modal operators of Dynamic Logic, the inference rules
of Hoare Logic can be verified from a more fundamental level in Dynamic Logic.
[20] is the standard textbook in this field.

Dynamic Quantum Logic

Dynamic Quantum Logic (DQL) [4] is a logic of quantum programs originated
by Baltag and Smets in [2]. As Dynamic Logic is utilized for classical program
verification, DQL is utilized for quantum program verification. Specifically, some
quantum protocols (written as quantum programs), such as Quantum Teleporta-
tion [3], Quantum Secret Sharing [3], the quantum search algorithm [1], Quantum
Leader Election Protocol [1, 9], and the BB84 quantum key distribution protocol
[9] have been verified using DQL. [5] provides a comprehensive overview of this
field.

DQL is a variant of (Propositional) Dynamic Logic. The key idea of DQL
is that tests used in guard clauses called tests are not interpreted as formulas in
Classical Logic. It reflects the feature of tests in quantum programs: quantum tests
represent projective measurement and are interpreted as formulas in Quantum
Logic. Different from classical tests, quantum tests may change a current state
after executing them. More interestingly, [2] found that the weakest precondition
[p?]q of such a quantum test p? with respect to a postcondition q is identical to
the implication p⇝ q in Quantum Logic called the Sasaki hook [21]. Thus, we see
that quantum tests are implications in Quantum Logic. This fact makes a strong
connection between quantum programs and Quantum Logic.

2



1.2 Motivation

The previous studies of DQL lacked two things. One is the iteration (Kleene star)
operator of quantum programs, and the other is a representation theorem.

The reason why the previous studies of DQL lacked the iteration operator is
that it was not necessary to use the iteration operator to construct a prototype
of DQL in the earlier stage. Baltag and Smets, the initiators of DQL, stated
that “Notice that we did not include iteration (Kleene star) among our program
constructs: this is only because we do not need it for any of the applications in
this paper” in [3]. It does not mean that it is not worth adding the iteration
operator to DQL. Using the iteration operator is necessary to deal with quantum
while loops. For example, quantum while loops are used in the quantum walk
algorithms for repeatedly choosing quantum programs corresponding to “Left” or
“Right.” Moreover, it is significant to discuss the iteration operator of quantum
programs for connecting DQL to a considerable amount of previous research on
finite quantum automata.

Representation theorems give an alternative characterization of a mathemati-
cal structure. Among the many representation theorems, this dissertation focuses
on Stone-type representation theorems. The most well-known Stone-type repre-
sentation theorem is Stone’s representation theorem for Boolean lattices. The
theorem states that every Boolean lattice is embeddable into its canonical exten-
sion. Because the canonical extension of a Boolean lattice is an algebra of sets,
the theorem also states that every Boolean lattice is “represented” by an algebra
of sets. The theorem is extended to Jónsson–Tarski theorem [24], which is also
known as the Stone-type representation theorem for modal algebras. However,
although the algebraic structure of DQL is an extension of the modal algebra, its
Stone-type representation theorem has not been known so far. To prove the Stone-
type representation theorem is significant because it reveals the relation between
algebraic semantics and Kripke semantics of DQL.

1.3 Method

To tackle the two problems in the previous section, we choose an algebraic for-
mulation of DQL. One of the advantages of the algebraic approach is that infi-
nite conjunction/disjunction can be easily dealt with as infimum/supremum (or
meet/join). On the other hand, almost all logics cannot deal with it (one exception
is Infinitary Logic, but it is less well-known and studied). The iteration operator
is straightforwardly defined using infinite conjunction (infimum). Besides that,
the algebraic approach brings new developments by reviewing logic from the al-
gebraic perspective. For example, Stone-type representation theorems for various

3



logics were obtained from the algebraic perspective, and these logics were related
to topology. Furthermore, the algebraic approach allows us to avoid discussions
about inference rules specific to each logic and concentrate on the study of seman-
tics. The usual Hilbert-style proof system for DQL is tough to deal with in that
it is challenging to automate proofs in the proof system.

1.4 Results

We define an algebra of regular quantum programs with the iteration operator. We
name it Quantum Dynamic Algebra (QDA). QDA is constructed by combining the
algebra of quantum mechanics (orthomodular lattices), Regular Program Algebra,
and Modal Algebra.

Furthermore, to make QDA a more practical tool for the purpose of formal
verification, we discuss the relation to Hoare Logic. We clarify that the inference
rules in Hoare Logic are sound if the usual conjunction ∧ is replaced by the Sasaki
conjunction ⋒. Besides that, apply the Hoare-like inference rules to verify the
partial correctness of simple quantum programs.

Note that this study focuses on an abstraction of the concrete quantum struc-
ture. For example, we discuss orthomodular lattices, which are abstractions of
Hilbert lattices (the lattice that consists of all closed subspaces of a Hilbert space)
in that orthomodular lattices have some essentially significant properties of Hilbert
lattices. This is because the concrete quantum structure is much more difficult to
deal with than its abstraction. This strategy has usually been adopted in studies
of Quantum Logic. What an abstraction satisfies is also satisfied in its concrete
example, thus it is meaningful to focus on the abstraction.

Finally, we prove the Stone-type representation theorem for QDA at the cost
of simplifying QDA to star-free (iteration-free) QDA. It is traditionally known
that the iteration operator is difficult to deal with. For example, the Stone-type
representation theorem has been proved only for star-free (Classical) Dynamic Al-
gebra [26]. The difficulty arises because the iterative operator allows the existence
of non-standard Kripke models [15]. Even for star-free QDAs, the proof of the
Stone-type representation theorem is not straightforward. QDA is made up of
a complex combination of multiple algebras, namely an orthomodular lattice, a
regular program algebra, and a modal algebra. It is not obvious to prove the
Stone-type representation theorem consistent with all these algebras.

The most significant implication of this study is a new development from or-
thomodular lattice to algebra of quantum programs. That is, QDA bridges the
gap between the algebraic structure of Quantum Logic and quantum computa-
tion. QDA is expected to be used to verify the weakest preconditions for specific
quantum computation algorithms, quantum communication protocols, or quantum

4



cryptography protocols.

1.5 Related Work

Some different approaches share similar ideas. Here we compare these approaches
to QDA.

Quantum Hoare Logic (QHL) by [37] was designed to be a quantum counter-
part of Hoare Logic. Among the various variants of QHL, Applied Quantum Hoare
Logic (AQHL) by [40] is particularly relevant to QDA. AQHL is a restriction of
QHL in that preconditions and postconditions are projections. Similarly, precon-
ditions and postconditions represented by QDA are also intended to be projections
(more precisely, closed subspaces that correspond one-to-one to closed subspaces).

Compared to (A)QHL, QDA can express more fundamental components of
quantum programs: if-then programs and while-do programs are atomic programs
in (A)QHL. However, these programs are further divided into more basic programs
in QDA. For example, the if · · ·fi statement that represents a non-deterministic
measurement cannot be divided anymore in (A)QHL. On the other hand, QDA can
express its non-deterministic feature explicitly using the non-deterministic choice
operator ∪. Also, QDA can express (projective) measurements by tests. However,
the test operators are not included in the syntax of (A)QHL. Tests can be converted
into implications in Classical/Quantum Dynamic Logic/Algebra. Thus, tests can
be replaced by simpler expressions under certain conditions. This is the reason for
focusing on tests.

Non-idempotent Kleene Algebra with Tests (NKAT) was employed for quan-
tum compiler optimization by [31]. Both QDA and NKAT can express regular
expressions and tests (namely, regular programs), unlike (A)QHL. Also, both can
be used for verifying the partial correctness of regular programs.

Compared to NKAT, QDA can convert □(p?, q) with a test p? to simpler form,
the implication p⇝ q in Quantum Logic called the Sasaki hook [21]. Recall that
the implication p → q in Classical Logic is equivalent to ¬p ∨ q. Similarly, p⇝ q
is equivalent to ¬p ∨ (p ∧ q) (but note that the meaning of logical connectives in
Classical Logic and Quantum Logic are different). The static formula ¬p∨(p∧q) is
simpler than the dynamic (or modal) formula □(p?, q) because state transitions are
needed to evaluate □(p?, q) from the perspective of semantics due to its dynamic
operator p?. This advantage of QDA is inherited from DQL. Besides that, the
difference between (classical) Dynamic Algebra and (idempotent) Kleene Algebra
with Tests (KAT) is also the difference between QDA and NKAT.

5



1.6 Contributions

In the previous section, we pointed out that QDA can analyze the most fundamen-
tal components of quantum programs defined by the syntax of QHL furthermore.
Owing to this feature of QDA, quantum analogs of the inference rules in Hoare
Logic can be verified from a more fundamental starting point. That is, these in-
ference rules are verified based on quantum counterparts of the law of residuation
and the loop invariance rule. Focusing on the law of residuation is meaningful
from the perspective of logic because the law corresponds to one of the most sig-
nificant theorems called the deduction theorem in logics, such as Classical Logic,
Intuitionistic Logic, Modal Logic. More generally, algebras that satisfy the law
of residuation give algebraic semantics for various substructural logics (see [29]).
There has been no discussion of this kind of relevance to the field of logic (not only
Hoare Logic) in existing studies.

Note that the Hoare-like inference rules (Theorem 4.2.4) differ from that of
(A)QHL in that the Sasaki conjunction ⋒ is used. The Hoare-like inference rules
in this dissertation are more similar to the original inference rules in Hoare Logic
because the usual conjunction ∧ is just replaced by ⋒. The validity of the Hoare-
like inference rules in this dissertation means that the inference rules in Hoare Logic
also work in the quantum setting as long as the appropriate logical connective(s)
are chosen.

Another contribution of this study is to establish a new method to prove a
Stone-type representation theorem. It is known that orthomodularity is not ele-
mentary [14], which means that orthomodularity is not determined by any first-
order properties of the accessibility relation of Kripke frames for Quantum Logic.
Due to this fact, it is challenging to show Stone-type representation theorems for
orthomodular lattices. Because QDA is an orthomodular lattice, we need some
new ideas to overcome this difficulty. For this, we use the Kripke frames for QDA
with two kinds of accessibility relations. One accessibility relation is an abstraction
of the orthogonality relation, and the other accessibility relations are abstractions
of the graphs of unitary operators (quantum gates).

From a more general standpoint, we also contribute to formulating a new quan-
tum counterpart of the existing algebra of programs (namely, Dynamic Algebra)
with its potential for application. Because the verification of quantum programs
is in its early stage, there is still no established theory. Therefore, it is significant
to accumulate candidate theories for quantum program verification by proposing
various possibilities. Such accumulation will assist in developing a new appropriate
theory by combining these candidates.

6



1.7 Organisation of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we review some
basic notions related to the subsequent parts of this dissertation. In Chapter 3, we
review some Stone-type representation theorems, namely the Stone-type represen-
tation theorems for Boolean lattices (Theorem 3.3.3), for ortholattices (Theorem
3.4.16), and for modal algebras (Theorem 3.5.6). In Chapter 4, we formulate QDA,
and show that the inference rules of Hoare Logic are satisfied in QDA if the usual
conjunction ∧ is replaced by the Sasaki conjunction ⋒ (Theorem 4.2.4). Moreover,
we formulate a transition system called a Quantum Dynamic Frame (QDF) and
how to construct a QDA from a given QDF (Theorem 4.4.5). We use the con-
structed QDA called the complex algebra of a QDF for verifying the correctness
of two simple quantum programs as running examples. In Chapter 5, we show
how to construct a star-free QDA from a given star-free QDF (Theorem 5.3.4) and
how to construct a star-free QDF from a given star-free QDA (Theorem 5.4.4).
We apply these construction methods to prove our main theorem, the Stone-type
representation theorem for star-free QDAs (Theorem 5.5.3). Finally, in Chapter 6,
we summarize and discuss the significant results drawn in this dissertation. Also,
we suggest some future work.

7



Chapter 2

Basic Notions

This chapter contains:

2.1 Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Closure System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Dedekind–MacNeille Completion . . . . . . . . . . . . . . . . . . . 19
2.5 Various Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . 27

In this chapter, we review some basic notions related to the subsequent parts
of this dissertation.

2.1 Order

Definition 2.1.1. Let L be a non-empty set. A relation ≤ on L is said to be

• reflexive if p ≤ p for any p ∈ L.

• transitive if p ≤ q and q ≤ r jointly imply p ≤ r for any p, q, r ∈ L.

• antisymmetric if p ≤ q and q ≤ p jointly imply p = q for any p, q ∈ L.

• strongly connected if p ≤ q or q ≤ p for any p, q ∈ L.

A relation ≤ on L is called

• a preorder (also called a quasi-order) if ≤ is reflexive and transitive.

• a partial order if ≤ is an antisymmetric preorder.

8



• a total order (also called a linear order) if ≤ is a strongly connected
partial order.

A non-empty set L with a preorder ≤ on L, denoted (L,≤), is called a preordered
set. Similarly, a partially ordered set (also called a poset) and totally or-
dered set are defined. A chain in L is a non-empty totally ordered subset of L.
We write p < q to mean the condition that p ≤ q and p ̸= q.

Example 2.1.2.

(1) The set R of real numbers is a totally ordered set with its usual order ≤.

(2) The powerset ℘(S) of a set S is a partially ordered set with the inclusion
relation ⊆. However, ℘(S) is not a totally ordered set with ⊆ if S has
two or more elements because a singleton (a set with exactly one element) is
incomparable to another singleton. That is, neither {p} ⊆ {q} nor {q} ⊆ {p}
if p ̸= q.

(3) Denote a finite set by S and the number of elements in P ⊆ S by |P |. Then
℘(S) is a preordered set with ⪯ such that P ⪯ Q is defined by |P | ≤ |Q|,
where ≤ stands for the usual order on natural numbers. The set ℘(S) is
not a partially ordered set with ⪯ because {p} ≤ {q} and {q} ≤ {p} but
{p} ≠ {q} for any distinct elements p and q.

(4) A set may be ordered by different orders. The set N of natural numbers
without 0 is a totally ordered set with the usual order ≤ and is a partially
ordered set with the relation | of divisibility (n|m if and only if n divides m).
The relation | is not a total order because 3 is incomparable to 5 by |, for
example.

Remark 2.1.3. In some cases, L is allowed to be empty in the definition of ordered
sets. Because ∅ is the only subset of ∅× ∅, a relation on ∅ must be ∅ itself. In this
sense, ∅ is the only total order on ∅.

The following theorem gives a general procedure for constructing the partially
ordered set L/∼ with ≤∼ from a preordered set L with ≤.

Theorem 2.1.4. Let (L,≤) be a preordered set and ∼ be a relation on L such
that p ∼ q is defined by the condition that p ≤ q and q ≤ p. Then ∼ is an
equivalence relation. Furthermore, the quotient set L/∼ is a partially ordered set
with ⪯ such that [p] ⪯ [q] defined by p ≤ q, where [p] denotes the equivalence class
of p.

Proof. Straightforward.

9



Definition 2.1.5. Let L be a partially ordered set with ≤ and Γ be a subset of
L. An element p ∈ L is called

• the least element (also called the minimum) of L, denoted ⋏, if p ≤ q for
any q ∈ L.

• the greatest element (also called the maximum) of L, denoted ⋎, if q ≤ p
for any q ∈ L.

• a minimal element of L if q ≤ p implies q = p for any q ∈ L.

• a maximal element of L if p ≤ q implies p = q for any q ∈ L.

Example 2.1.6.

(1) The totally ordered set R with the usual order ≤ has neither the least element
nor the greatest element.

(2) The partially ordered set ℘(S) with the inclusion relation ⊆ has the least
element ∅ and the greatest element ℘(S).

Remark 2.1.7. Do not confuse the least elements (greatest elements) with min-
imal elements (maximal elements). Although the least elements and greatest ele-
ments are unique when they exist, minimal elements and maximal elements may
not. The least elements (greatest elements) are global notions, but minimal ele-
ments (maximal elements) are local notions.

Definition 2.1.8. Let L be a partially ordered set with ≤ and Γ be a subset of
L. An element p ∈ L is called

• a lower bound of Γ if p ≤ q for any q ∈ Γ.

• the infimum (also called meet) of Γ, denoted
∧

Γ, if p is the greatest lower
bound of Γ:

(1) p is a lower bound of Γ, and

(2) q ≤ p for any lower bound q of Γ.

• an upper bound of Γ if q ≤ p for any q ∈ Γ.

• the supremum (also called join) of Γ, denoted
∨

Γ, if p is the least upper
bound of Γ:

(1) p is a upper bound of Γ, and

(2) p ≤ q for any upper bound q of Γ.

10



Example 2.1.9.

(1) Consider the totally ordered set R with the usual order ≤. The property
known as the least upper bound property of R is as follows: every non-
empty set of R that has an upper bound have the supremum. For example,
{x ∈ R : x2 < 2} has the supremum

√
2 ∈ R. As is seen from this example,

the supremum (infimum) of Γ may not exist in Γ.

(2) For each Γ ⊆ ℘(S), define
⋂

Γ and
⋃

Γ by⋂
Γ =

⋂
P∈Γ

P = {p : p ∈ P for any P ∈ Γ},⋃
Γ =

⋃
P∈Γ

P = {p : p ∈ P for some P ∈ Γ}.

In the partially ordered set ℘(S) with the inclusion relation ⊆, the infimum
of Γ is

⋂
Γ, and the supremum of Γ is

⋃
Γ. For the proof, see Theorem

2.1.10.

(3) Let L be a partially ordered set with ⋏ and ⋎. Then because any p ∈ L is
a lower (upper) bound of ∅, we have

∧
∅ = ⋎ (dually,

∨
∅ = ⋏).

Theorem 2.1.10. For each Γ ∈ ℘(S),
∧

Γ =
⋂

Γ and
∨

Γ =
⋃

Γ in the partially
ordered set ℘(S) with the inclusion relation ⊆.

Proof. We only prove the case of
∧

. For any P ∈ Γ, we have
⋂

Γ ⊆ P . Thus,⋂
Γ is a lower bound of Γ. It remains to show that if Q ⊆ P for any P ∈ Γ, then

Q ⊆
⋂

Γ. Take any element p in Q. Then p ∈ P for any P ∈ Γ, and thus p ∈
⋂
P .

Therefore, Q ⊆
⋂

Γ.

Lemma 2.1.11 (Zorn’s Lemma). Let L be a partially ordered set with ≤. If any
chain in L has an upper bound in L, then L has a maximal element with respect
to ≤.

Proof. Because some knowledge (not relevant to the main topic of this paper) is
required to prove Zorn’s lemma, it is omitted here.

2.2 Lattice

Definition 2.2.1. A lattice (L,≤) is a partially ordered set that
∧
{p, q} and∨

{p, q} exist in L for any p, q ∈ L. Hereafter, we write p ∧ q and p ∨ q instead of∧
{p, q} and

∨
{p, q}, respectively. A lattice (L,≤) is said to be

• finite if L is a finite set.

11



• bounded if ⋏ and ⋎ exist (in L).

• complete if
∧

Γ and
∨

Γ exist (in L) for each Γ ⊆ L.

A bounded lattice (L,≤) is said to be trivial if ⋏ = ⋎.

Hereinafter, we only consider non-trivial lattices. If trivial lattices are allowed,
SL in Definition 3.4.12 can be the empty set, and then Theorem 3.4.13 does not
hold. For example, [35, p.8] supposes non-triviality in the definition of bounded
lattices. Excluding trivial lattices does not affect the essence of the discussion that
follows.

Example 2.2.2.

(1) The set R of real numbers with the usual order ≤ forms a lattice (R,≤).
However, (R,≤) is neither bounded nor complete because

∨
R does not exist

in R. Whereas R has the least upper bound property (recall Example 2.1.9
(1)).

(2) The closed interval

[−2, 2] = {x ∈ R : −2 ≤ x ≤ 2}

with the usual order ≤ forms a lattice ([−2, 2],≤). In fact, ([−2, 2],≤) is
bounded and complete (distinguish from bounded completeness). In general,
([a, b],≤) is a bounded and complete lattice, provided that a ≤ b.

(3) Let Q be rational numbers. The set

[[−2, 2]] = {x ∈ Q : −2 ≤ x ≤ 2}

with the usual order ≤ forms a lattice ([[−2, 2]],≤) and is bounded. However,
([[−2, 2]],≤) is not complete because

∨
{x ∈ Q : x2 < 2} does not exist in

[[−2, 2]].

(4) There are no examples that are not bounded but complete. Every complete
lattice (L,≤) is bounded because

∨
∅ =

∧
L = ⋏ and

∧
∅ =

∨
L = ⋎ exist.

(5) The powerset ℘(S) of a set S with the inclusion relation ⊆ forms a lattice
(℘(S),⊆) and is called a powerset lattice. In fact, (℘(S),⊆) is complete
because

∧
Γ =

⋂
Γ ∈ ℘(S) and

∨
Γ =

⋃
Γ ∈ ℘(S) for each Γ ⊆ ℘(S) (see

Theorem 2.1.10).

Hereafter, we use the following three useful lemmas without mentioning these
lemmas explicitly. Keep in mind these statements.

12



Lemma 2.2.3. The following conditions are equivalent:

(1) p ≤ q1 and p ≤ q2;

(2) p ≤ q1 ∧ q2.

Dually, the following conditions are also equivalent:

(1) q1 ≤ p and q2 ≤ p;

(2) q1 ∨ q2 ≤ p.

Proof. Assume that p ≤ q1 and p ≤ q2. Then p is a lower bound of {q1, q2}. Recall
that q1 ∧ q2 is the greatest lower bound of {q1, q2}. Thus, p ≤ q1 ∧ q2. Conversely,
assume p ≤ q1 ∧ q2. Then because q1 ∧ q2 ≤ q1 and q1 ∧ q2 ≤ q2, we have p ≤ q1
and p ≤ q2. The dual case follows in the same way.

Lemma 2.2.4 is generalized to the following equivalence: p ≤ q for any q ∈ Γ if
and only if p ≤

∧
Γ, provided that

∧
Γ exists in L. Dually, q ≤ p for any q ∈ Γ if

and only if
∨

Γ ≤ p, provided that
∨

Γ exists in L.

Lemma 2.2.4. The following conditions are equivalent:

(1) p ≤ q;

(2) p ∧ q = p;

(3) p ∨ q = q.

Proof. For (1) ⇒ (2), assume p ≤ q. Clearly, p∧ q ≤ p. Because p ≤ q and p ≤ p,
it follows from Lemma 2.2.3 that p ≤ p∧q. For (2) ⇒ (1), assume p∧q = p. Then
p = p ∧ q ≤ q. Similarly, (1) is equivalent to (3).

Lemma 2.2.5. Every lattice satisfies the following conditions:

(1) (p ∧ q) ∧ r = p ∧ (q ∧ r) and (p ∨ q) ∨ r = p ∨ (q ∨ r) (the associative laws);

(2) p ∧ q = q ∧ p and p ∨ q = q ∨ p (the commutative laws);

(3) p ∧ p = p and p ∨ p = p (the idempotent laws);

(4) p ∧ (p ∨ q) = p and p ∨ (p ∧ q) = p (the absorption laws).

Proof. (2) and (3) are immediate.

13



(1) We only prove the associative law for ∧. It suffices to show that x = (p∧q)∧r
is the infimum of {p, q∧ r}. Because x is the infimum of {p∧ q, r}, we obtain
x ≤ p∧ q and x ≤ r. Thus, x ≤ p, x ≤ q, and x ≤ r. Hence, x ≤ p∧ (q ∧ r).
That is, x is a lower bound of {p, q∧ r}. For any lower bound y of {p, q∧ r},
y ≤ p and y ≤ q ∧ r. Thus, y ≤ p, y ≤ q, and y ≤ r. Hence, y ≤ (p ∧ q) ∧ r.
That is, y is a lower bound of {p ∧ q, r}. Recall that x is the infimum of
{p ∧ q, r}. Therefore, y ≤ x. Consequently, x is the infimum of {p, q ∧ r}.

(4) We only prove one of the absorption laws. For, we show that p is the infimum
of {p, p∨ q}. Because p ≤ p and p ≤ p∨ q, it follows that p is a lower bound
of {p, p ∨ q}. For any lower bound x of {p, p ∨ q}, x ≤ p. Thus, p is the
infimum of {p, p ∨ q}.

Theorem 2.2.6. Let L be a non-empty set and ⊼, ⊻ : L × L → L be functions
satisfying the associative law, commutative law, idempotent law, and absorption
law. The relation ⪯ on L defined by ⪯ = {(p, q) : p ⊼ q = p} is a partial order.
Furthermore, (L,⪯) is a lattice with the infimum p ⊼ q and supremum p ⊻ q of
{p, q} with respect to ⪯.

Proof. By the idempotent law, p⊼p = p. Thus, ⪯ is reflexive. Suppose that p ⪯ q
and q ⪯ r. Then p ⊼ q = p and q ⊼ r = q. By the associative law,

p ⊼ r = (p ⊼ q) ⊼ r = p ⊼ (q ⊼ r) = p ⊼ q = p,

and we have p ⪯ r. Thus, ⪯ is transitive. Finally, suppose that p ⪯ q and q ⪯ p.
Then p ⊼ q = p and q ⊼ p = q. By the commutative law, p = p ⊼ q = q ⊼ p = q.
Thus, ⪯ is antisymmetric. Consequently, ⪯ is a partial order. Now we show that
p ⊼ q is the infimum of {p, q}. Observe that

(p ⊼ q) ⊼ p = (q ⊼ p) ⊼ p (By the commutative law)

= q ⊼ (p ⊼ p) (By the associative law)

= q ⊼ p (By the idempotent law)

= p ⊼ q. (By the commutative law)

Hence, p ⊼ q ≤ p. Similarly, p ⊼ q ≤ q. It means that p ⊼ q is a lower bound of
{p, q}. For any r satisfying r ⪯ p and r ⪯ q, we obtain r ⊼ p = r and r ⊼ q = r.
Thus,

r = r ⊼ q = (r ⊼ p) ⊼ q = r ⊼ (p ⊼ q)

by the associative law. It means that r ⪯ p ⊼ q. Therefore, p ⊼ q is the greatest
lower bound of {p, q}. It remains to show that p ⊻ q is the supremum of {p, q}. It

14



is shown in the same way as explained above. Note that p ⪯ q implies p ⊻ q = q
because

q = q ⊻ (q ⊼ p) (By the absorption law)

= q ⊻ (p ⊼ q) (By the commutative law)

= q ⊻ p. (By p ⪯ q)

Theorem 2.2.7 (Infinite Associative Laws). Let (L,≤) be a complete lattice.
Then the infinite associative laws

p ∧
∧

Γ =
∧

{p ∧ q : q ∈ Γ}, p ∨
∨

Γ =
∨

{p ∨ q : q ∈ Γ}

hold for any p ∈ L and Γ ⊆ L.

Proof. We only show one of the infinite associative laws. Because
∧

Γ ≤ q for any
q ∈ Γ, we have p ∧

∧
Γ ≤ p ∧ q for any q ∈ Γ. It means that p ∧

∧
Γ is a lower

bound for {p∧ q : q ∈ Γ}. Now we show that p∧
∧

Γ is the greatest lower bound:
r ≤ p ∧

∧
Γ for any lower bound r for {p ∧ q : q ∈ Γ}. Because r is a lower bound

for {p∧ q : q ∈ Γ}, we obtain r ≤ p∧ q ≤ q for any q ∈ Γ. Thus, r ≤
∧

Γ. Also, we
obtain r ≤ p ∧ q ≤ p. Combining them, we conclude r ≤ p ∧

∧
Γ, as desired.

2.3 Closure System

In this section, we explain how to construct a complete lattice. The first theorem
is a characterization of complete lattices.

Theorem 2.3.1. For any lattice (L,≤), the following conditions are equivalent:

(1) (L,≤) is complete;

(2) There exists the greatest element ⋎ of L and
∧

Γ exists in L for any non-
empty set Γ ⊆ L.

Proof. (1) ⇒ (2) immediately follows from the definition of complete lattices.
Conversely, assume (2). If Γ ̸= ∅, then

∧
Γ exists. If Γ = ∅, then

∧
Γ = ⋎ ∈ L

because ⋎ exists. Consequently,
∧

Γ exists for each Γ ⊆ L. It remains to show
that

∨
Γ exists for each Γ ⊆ L. Let Γu be the set of all upper bounds of Γ. Then

⋎ ∈ Γu, and thus Γu ̸= ∅. Hence,
∧

Γu exists by (2). It suffices to show that∧
Γu is the least upper bound of Γ (if so,

∨
Γ =

∧
Γu exists). By the definition of

upper bounds, for any p ∈ Γ and q ∈ Γu, p ≤ q. Hence, p ≤
∧

Γu (note:
∨

Γ ≤ q
is not derivable because

∨
Γ may not exist). Thus,

∧
Γu is an upper bound of Γ.

Moreover,
∧

Γu ≤ q for any q ∈ Γu by the definition of infimums. Consequently,∧
Γu =

∨
Γ.

15



Let LS be a subset of ℘(S). Although any powerset lattice (℘(S),⊆) is a
complete lattice, (LS,⊆) may not complete (it may not even be a lattice). By
applying Theorem 2.3.1, the condition for making (LS,⊆) be a complete lattice is
obtained.

Definition 2.3.2. A closure system (also called a topped intersection struc-
ture) on S is a subset LS of ℘(S) such that

(1)
⋂

Γ ∈ LS for each non-empty set Γ ⊆ LS,

(2) S ∈ LS.

The elements of a closure system are called closures.

Theorem 2.3.3. Let LS be a closure system on S. Then (LS,⊆) is a complete
lattice by

∧
Γ =

⋂
Γ and∨

Γ =
⋂

{P ∈ LS :
⋃

Γ ⊆ P}.

Proof. It follows from Theorem 2.3.1 that (LS,⊆) is a complete lattice by
∧

Γ =⋂
Γ. In the proof of Theorem 2.3.1, we obtained

∨
Γ =

∧
Γu. Thus,∨

Γ =
∧

Γu =
⋂

{P ∈ LS : Q ⊆ P for any Q ∈ Γ}

=
⋂

{P ∈ LS :
⋃

Γ ⊆ P}.

According to Theorem 2.3.3, it suffices to find a closure system to construct
a complete lattice. In fact, closure systems are obtained from closure operators
defined below.

Definition 2.3.4. A closure operator on a set S is a function C : ℘(S) → ℘(S)
such that for any P,Q ∈ ℘(S),

(1) C is extensive: P ⊆ C(P ),

(2) C is monotonic: P ⊆ Q implies C(P ) ⊆ C(Q),

(3) C is idempotent: C(P ) = C(C(P )).

Example 2.3.5.

16



(1) Let L be a partially ordered set with ≤. Then the downward closure d(p)
of p ∈ L is defined by d(p) = {q : q ≤ p}. More generally, the downward
closure d̂(Γ) of Γ ⊆ L is defined by

⋃
{d(p) : p ∈ Γ}. In fact,

d̂(Γ) = {q : q ≤ p for some p ∈ Γ}.

The function d̂ : ℘(L) → ℘(L) that assigns d̂(Γ) to each Γ ∈ ℘(L) is a
closure operator on L.

(2) Let Γl (Γu) be the set of all lower (upper) bounds of Γ. Then the function
ful : ℘(L) → ℘(L) that assigns ful(Γ) = (Γu)l to each Γ ∈ ℘(L) is a closure
operator on L.

(3) Let R be a relation on a non-empty set S. The functions □R : ℘(S) → ℘(S)
and ♢R : ℘(S) → ℘(S) (called a necessity operator and possibility
operator, respectively) are defined by

□R(P ) = {s ∈ S : sRt implies t ∈ P for any t ∈ S},
♢R(P ) = {s ∈ S : sRt and t ∈ P for some t ∈ S}.

The necessity operator and possibility operator are first defined as the oper-
ators in modal logic.

(a) The function composition □R♢R−1 is a closure operator, where R−1

denotes the converse relation of R. As a corollary, □R♢R is also a
closure operator if R is symmetric.

(b) Substitute a partial order ≤ for R. Then observe that ♢≤(P ) = d̂(P )
for each P ∈ ℘(S). It follows from Example 2.3.5 (1) that ♢≤ is a
closure operator.

Theorem 2.3.6. Let C be a closure operator on S. Then,

LC
S = {P ∈ ℘(S) : C(P ) = P}

is a closure system on S. Furthermore, (LC
S ,⊆) is a complete lattice by

∧
Γ =

⋂
Γ

and ∨
Γ = C(

⋃
Γ).

Proof. We first confirm that LC
S is a closure system.

(1) Let Γ be a non-empty subset of LC
S . Then C(P ) = P and

⋂
Γ ⊆ P for any

P ∈ Γ. Hence, by the monotonicity of C, we have

C(
⋂

Γ) ⊆ C(P ) = P

17



for any P ∈ Γ. Thus, C(
⋂

Γ) ⊆
⋂

Γ. On the other hand,
⋂

Γ ⊆ C(
⋂

Γ) by
the extensivity of C. Consequently, C(

⋂
Γ) =

⋂
Γ, which is equivalent to⋂

Γ ∈ LC
S .

(2) Because C is a function from ℘(S) to ℘(S), we obtain C(P ) ∈ ℘(S) for any
P ∈ ℘(S). In particular, C(S) ∈ ℘(S). Equivalently, C(S) ⊆ S. On the
other hand, S ⊆ C(S) by the extensivity of C. Consequently, C(S) = S,
which is equivalent to S ∈ LC

S .

Therefore, it follows from Theorem 2.3.3 that (LC
S ,⊆) is a complete lattice. Finally,

we prove that
∨

Γ = C(
⋃

Γ). By Theorem 2.3.3, it suffices to show that

C(
⋃

Γ) =
⋂

{P ∈ LC
S :
⋃

Γ ⊆ P}.

Let Γ′ be the set {P ∈ LC
S :
⋃

Γ ⊆ P}. For any P ∈ Γ′,

C(
⋃

Γ) ⊆ C(P ) = P

by the monotonicity of C. It means that C(
⋃

Γ) is a lower bound of Γ′. Our goal
is to show that C(

⋃
Γ) is the greatest lower bound of Γ′. For this purpose, it is

enough to see C(
⋃

Γ) ∈ Γ′ because we saw that C(
⋃

Γ) is a lower bound of Γ′. By
the idempotence and extensivity of C, we have C(

⋃
Γ) ∈ LC

S and
⋃

Γ ⊆ C(
⋃

Γ).
Therefore, C(

⋃
Γ) ∈ Γ′.

Example 2.3.7. By applying Theorem 2.3.6 to the closure operators in Example
2.3.5, we have the following complete lattices.

(1) ({P ∈ ℘(S) : d̂(P ) = P},⊆) is a complete lattice.

(2) ({P ∈ ℘(S) : □R♢R−1P = P},⊆) is a complete lattice.

Theorem 2.3.6 states that a closure system is obtained from a closure operator.
Conversely, a closure operator is obtained from a closure system.

Theorem 2.3.8. Let LS be a closure system on S. Then a function CLS
: ℘(S) →

℘(S) defined by

CLS
(P ) =

⋂
{Q ∈ LS : P ⊆ Q}

is a closure operator on S. That is, CLS
(P ) is the smallest set containing P among

all elements of LS.

Proof. We show each of the conditions of closure operators.

(1) Take any p ∈ P . Then p ∈ Q for each Q ⊇ P . Thus, p ∈ CLS
(P ). It means

that CLS
is extensive.

18



(2) Assume p ∈ CLS
(P ). Then p ∈ Q for each Q ⊇ P . Thus, p ∈ Q. Because

p ∈ Q′ for each Q ⊇ Q′, we obtain p ∈ CLS
(Q). Hence, CLS

(P ) ⊆ CLS
(Q)

for each Q ⊇ P . Consequently, CLS
is monotonic.

(3) Observe that

CLS
(CLS

(P )) =
⋂

{Q ∈ LS : CLS
(P ) ⊆ Q}

=
⋂

{Q ∈ LS :
⋂

{Q′ ∈ LS : P ⊆ Q′} ⊆ Q}.

Thus, for the idempotence of CLS
, it suffices to show

{Q ∈ LS : P ⊆ Q} = {Q ∈ LS :
⋂

{Q′ ∈ LS : P ⊆ Q′} ⊆ Q}.

Assume that Q is an element of the left-hand side of the above equation.
That is, P ⊆ Q and Q ∈ LS. Then Q ∈ {Q′ ∈ LS : P ⊆ Q′}. Hence,⋂
{Q′ ∈ LS : P ⊆ Q′} ⊆ Q. In other words, Q is an element of the right-

hand side of the above equation. The converse follows from the extensivity
of CLS

that has already been proved in (1). That is,

{Q ∈ LS : P ⊆ Q} ⊇ {Q ∈ LS : CLS
(P ) ⊆ Q}

= {Q ∈ LS :
⋂

{Q′ ∈ LS : P ⊆ Q′} ⊆ Q}

because P ⊆ CLS
(P ).

2.4 Dedekind–MacNeille Completion

Definition 2.4.1. Let L1 be a partially ordered set with ≤1 and L2 be a partially
ordered set with ≤2. A function f : L1 → L2 is called

• an order homomorphism (also called order preserving) if p ≤1 q implies
f(p) ≤2 f(q) for any p, q ∈ L1.

• an order embedding if p ≤1 q is equivalent to f(p) ≤2 f(q) for any p, q ∈
L1.

• an order isomorphism if f is a surjective order embedding.

A partially ordered set L1 with ≤1 is said to be isomorphic to a partially ordered
set L2 with ≤2 if there exists an order isomorphism from L1 to L2.

19



Remark 2.4.2. Evidently, every order embedding is injective.

Definition 2.4.3. Let (L1,≤1) and (L2,≤2) be lattices. A function f : L1 → L2

is called

• a lattice homomorphism if the following conditions are satisfied:

(1) f(p ∧1 q) = f(p) ∧2 f(q),

(2) f(p ∨1 q) = f(p) ∨2 f(q),

for any p, q ∈ L1, where ∧i and ∨i stand for an infimum and a supremum in
Li, respectively.

• a (lattice) embedding if f is an injective lattice homomorphism.

• a lattice isomorphism if f is a bijective homomorphism.

A lattice (L1,≤1) is said to be isomorphic to a lattice (L2,≤2) if there exists a
lattice isomorphism from L1 to L2.

Hereafter, we omit subscripts in ≤i, ∧i, and ∨i, which should be clear from the
context.

Theorem 2.4.4. Let (L1,≤) and (L2,≤) be lattices. A function f : L1 → L2 is
an order isomorphism if and only if f is a lattice isomorphism.

Proof. (⇒) We only show the condition for ∧. The goal is to show that f(p∧ q) is
the greatest lower bound of {f(p), f(q)}. Clearly, p∧ q ≤ p. Because f is an order
embedding, we have f(p ∧ q) ≤ f(p). Similarly, f(p ∧ q) ≤ f(q). Hence, f(p ∧ q)
is a lower bound of {f(p), f(q)}. Next, let r be a lower bound of {f(p), f(q)}.
That is, r ≤ f(p) and r ≤ f(q). Recall that f is surjective. Thus, there exists
r′ such that r = f(r′). Hence, f(r′) ≤ f(p) and f(r′) ≤ f(q). Because f is an
order embedding, we have r′ ≤ p and r′ ≤ q, which implies r′ ≤ p ∧ q. That is,
r = f(r′) ≤ f(p ∧ q), as desired.

(⇐) If p ≤ q, then

f(p) = f(p ∧ q) = f(p) ∧ f(q).

Thus, f(p) ≤ f(q). Conversely, assume f(p) ≤ f(q). Then,

f(p) = f(p) ∧ f(q) = f(p ∧ q).

Because f is injective, we have p = p ∧ q. Equivalently, p ≤ q.

20



Corollary 2.4.5. Every lattice homomorphism is an order homomorphism, but
the converse does not hold. Similarly, every lattice embedding is an order embed-
ding, but the converse does not hold.

Proof. The first half part of each statement immediately follows from Theorem
2.4.4. The second half part of each statement is shown by a counterexample (left
as an exercise for the reader).

Theorem 2.4.6. For any complete lattice (L,≤), there exists a closure system
LS such that (L,≤) is isomorphic to (LS,⊆).

Proof. Let (L,≤) be a complete lattice and d : L→ ℘(L) be a function that assigns
d(p) = {q : q ≤ p} to each p ∈ L. Then d : L → ℘(L) is an order embedding.
Thus, d̃ : L → d(L) is an order isomorphism, where d(L) = {d(p) : p ∈ L}. By
Theorem 2.4.4, d̃ is a lattice isomorphism. It remains to show that (d(L),⊆) is a
closure system.

(1) Let Γ be a non-empty subset of d(L). Then every Γ is of the form {d(p) :
p ∈ ∆} for some non-empty set ∆ ⊆ L. Thus,⋂

Γ =
⋂

{d(p) : p ∈ ∆ ⊆ L} ∈ d(L).

(2) Because
∨
L ∈ L, we obtain L = d(

∨
L) ∈ d(L).

Definition 2.4.7. A complete lattice (L2,≤) is called a completion of a partially
ordered set (L1,≤) via f : L1 → L2 if f is an order embedding.

Example 2.4.8. A completion can be found if a closure operator C is given. That
is, (LC

S ,⊆) is a completion of a lattice (L,≤) via f : L→ LC
S (recall Theorem 2.3.6).

More concretely, we enumerate completions of (L,≤) below.

(1) Let d̂ be the closure operator d̂ : ℘(L) → ℘(L) defined in Example 2.3.5.

Then (Ld̂
S,⊆) is a completion of a partially ordered set (L,≤) via the function

d : L → Ld̂
S that assigns d(p) = {q : q ≤ p} to each p ∈ L. In other words,

d is an order embedding. Note that d : L → Ld̂
S is well-defined because

d(p) ∈ Ld̂
S (equivalently, d̂(d(p)) = d(p)).

(2) (Lful

S ,⊆) is a completion of a partially ordered set (L,≤) via the function

d : L → Lful

S that assigns d(p) = {q : q ≤ p} to each p ∈ L. Note that d :

L→ Lful

S is well-defined because d(p) ∈ Lful

S (equivalently, ful(d(p)) = d(p)).

This completion (Lful

S ,⊆) is called the Dedekind–MacNeille completion
of (L,≤).

21



The Dedekind–MacNeille completion is smaller than the completion in Example

2.4.8 (1). That is, Lful

S ⊆ Ld̂
S. Take any Γ ∈ Lful

S . Then ful(Γ) = Γ. Our goal is to

show Γ ∈ Ld̂
S, or equivalently d̂(Γ) = Γ. Because d̂ is extensive, it suffices to show

d̂(Γ) ⊆ Γ. Take any q ∈ d̂(Γ). Then there exists p ∈ Γ satisfying q ≤ p. Because
p ∈ Γ = ful(Γ) = (Γu)l, we obtain p ≤ r for each r ∈ Γu. Thus, q ≤ r for each
r ∈ Γu by q ≤ p. Hence, q ∈ (Γu)l = Γ, which completes the proof.

Here we give an alternative expression of the Dedekind–MacNeille completion
using cuts.

Definition 2.4.9. A cut in a partially ordered set (L,≤) is a pair (Γ,∆) of
Γ,∆ ⊆ L such that Γu = ∆ and Γ = ∆l.

Example 2.4.10. ({p : p ≤ q}, {p : q ≤ p}) is a cut. That is, {p : p ≤ q} ∪ {p :
q ≤ p} is “cut” by the point q.

Theorem 2.4.11. (Γ,Γu) is a cut if and only if (Γu)l = Γ.

Proof. Straightforward.

Corollary 2.4.12. (LDM,⊆) is isomorphic to the Dedekind–MacNeille completion

(Lful

S ,⊆) of (L,≤), where

LDM = {Γ : (Γ,Γu) is a cut in (L,≤)}.

Proof. It immediately follows from Theorem 2.4.11.

Lemma 2.4.13. (1) If
∨

Γ exists, then (Γu)l = d(
∨

Γ).

(2) Γ ⊆ ∆ implies (Γu)l ⊆ (∆u)l.

Proof.

(1) Let u(p) be the upward closure of p ∈ L defined by u(p) = {q : p ≤ q}. If
Γu = u(

∨
Γ) and Γl = d(

∧
Γ), then

(Γu)l = d(
∧

u(
∨

Γ)) = d(
∨

Γ).

Thus, it remains to show Γu = u(
∨

Γ). The other equation Γl = d(
∧

Γ) is
proved similarly. Recall that p ∈ Γu if and only if, q ≤ p for any q ∈ Γ.
Thus, it is also equivalent to

∨
Γ ≤ p. That is, p ∈ u(

∨
Γ), as desired.

(2) If Γ ⊆ ∆, then
∨

Γ ≤
∨

∆. Thus, d(
∨

Γ) ⊆ d(
∨

∆). It follows from Lemma
2.4.13 (1) that (Γu)l ⊆ (∆u)l.

22



Theorem 2.4.14. The function d : L→ Lful

S defined in Example 2.4.8 (2) satisfies
d(
∧

Γ) =
∧
{d(p) : p ∈ Γ} if

∧
Γ exists in L, for any Γ ⊆ L. Similarly, d(

∨
Γ) =∨

{d(p) : p ∈ Γ} if
∨

Γ exists in L.

Proof. We first prove that d : L → Lful

S preserves infimums. Because ful is a

closure operator, it follows from Theorem 2.3.6 that (Lful

S ,⊆) is a complete lattice
by
∧

Γ =
⋂

Γ. Thus,∧
{d(p) : p ∈ Γ} =

⋂
{d(p) : p ∈ Γ} = {q ∈ d(p) : p ∈ Γ}

= {q : q ≤ p for any p ∈ Γ} = {q : q ≤
∧

Γ}

= d(
∧

Γ).

Next, we show that d : L → Lful

S preserves supremums. The goal is to show that
d(
∨

Γ) is the least upper bound of {d(p) : p ∈ Γ}. Observe that p ≤
∨

Γ for
any p ∈ Γ. Thus, d(p) ⊆ d(

∨
Γ), which implies that d(

∨
Γ) is an upper bound of

{d(p) : p ∈ Γ}. Let P be an upper bound of {d(p) : p ∈ Γ}. Then p ∈ d(p) ⊆ P
for any p ∈ Γ. Hence, Γ ⊆ P . Because ful is a closure operator, it is monotonic.
It follows from Lemma 2.4.13 that

d(
∨

Γ) = ful(Γ) ⊆ ful(P ) = P,

as desired.

2.5 Various Lattices

Definition 2.5.1. An ortholattice is a triple

L = (L,≤,¬)

that consists of a bounded lattice (L,≤) and function ¬ : L → L (called ortho-
complementation) such that

(1) p ∧ ¬p = ⋏, p ∨ ¬p = ⋎,

(2) ¬¬p = p,

(3) p ≤ q implies ¬q ≤ ¬p.

An orthomodular lattice is an ortholattice satisfying the orthomodular law

(4) p ∧ (¬p ∨ (p ∧ q)) ≤ q.

23



An ortholattice (L,≤,¬) is said to be complete if (L,≤) is a complete lattice.

Example 2.5.2 (Hilbert Lattice). Let H be a Hilbert space and S(H) be the set
of all closed subspaces of H. Then (S(H),⊆, ⊥) is a complete orthomodular lattice
[33, Proposition 4.5] and is called a Hilbert lattice. Here, for each V ∈ S(H),
V ⊥ is defined as the orthogonal complement

{w ∈ H : w ⊥ v for any v ∈ V }

of V , where ⊥ denotes the orthogonality relation on H. An orthogonal complement
of a closed subspace is always a closed subspace. A Hilbert lattice is complete
because

∧
Γ =

⋂
Γ and∨

Γ =
⋂

{V ∈ S(H) :
⋃

Γ ⊆ V }

exist for each Γ ⊆ S(H).

Theorem 2.5.3 (De Morgan’s Laws). The condition (3) in Definition 2.5.1 can
be replaced by De Morgan’s laws:

¬(p ∧ q) = ¬p ∨ ¬q, ¬(p ∨ q) = ¬p ∧ ¬q.

Proof. We only show one of De Morgan’s laws (the other one is proved similarly).
Because p ∧ q ≤ p, we obtain ¬p ≤ ¬(p ∧ q). Similarly, ¬q ≤ ¬(p ∧ q). Thus,
¬p∨¬q ≤ ¬(p∧q). It remains to show the other inequality. Because ¬p ≤ ¬p∨¬q,
we have

¬(¬p ∨ ¬q) ≤ ¬¬p = p.

Similarly, ¬(¬p ∨ ¬q) ≤ q. Hence, ¬(¬p ∨ ¬q) ≤ p ∧ q. Therefore,

¬(p ∧ q) ≤ ¬¬(¬p ∨ ¬q) = ¬p ∨ ¬q.

Conversely, we show the condition (3) in Definition 2.5.1 using De Morgan’s laws.
Assume p ≤ q. Then q = p ∨ q. Thus,

¬q = ¬(p ∨ q) = ¬p ∧ ¬q

by one of De Morgan’s laws. Consequently, ¬q ≤ ¬p.

De Morgan’s laws are extended to that for infinite (even uncountable) sets.

Theorem 2.5.4 (Infinite De Morgan’s Laws). Let (L,≤,¬) be a complete ortho-
lattice. Then the infinite De Morgan’s laws hold:

¬
∧

Γ =
∨

{¬p : p ∈ Γ} and ¬
∨

Γ =
∧

{¬p : p ∈ Γ}

for each Γ ⊆ L.

24



Proof. The proof is similar to that of Theorem 2.5.3 (of the first part).

Remark 2.5.5. The distributive laws do not hold in ortholattices and orthomod-
ular lattices in general. However, partial distributive laws hold (in any lattices).
That is, the inequalities

p ∨ (q ∧ r) ≤ (p ∨ q) ∧ (p ∨ r) and (p ∧ q) ∨ (p ∧ r) ≤ p ∧ (q ∨ r)

hold in any lattices [13, Lemma 4.1].

Definition 2.5.6. A Boolean lattice (also called a Boolean algebra) is an
ortholattice with the distributive law

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r).

Example 2.5.7.

(1) Let ℘(S) be the powerset of a set S. Then (℘(S),⊆, )̄ is a complete Boolean
lattice called the powerset Boolean lattice of S, where ¯ denotes the set
complementation in S.

(2) The two-element Boolean lattice is the tuple ({⋏,⋎},≤,¬) such that

⋏ ≤ ⋏, ⋏ ≤ ⋎, ⋎ ≤ ⋎,

and
¬⋏ = ⋎, ¬⋎ = ⋏.

(3) Let LS be a subset of ℘(S). Then (LS,⊆, )̄ is a complete Boolean lattice
called an algebra of sets if LS is closed under ∩, ∪, and .̄ For example, the
finite–cofinite field (Lfin

S ∪ Lcofin
S ,⊆, )̄ on S is a complete Boolean lattice,

where Lfin
S (Lcofin

S ) stands for the set of all finite (cofinite) subsets of S. Here,
P ⊆ S is said to be cofinite if its complement P is finite. Observe that
P ∩Q,P ∪Q,P ∈ Lfin

S ∪ Lcofin
S if P,Q ∈ Lfin

S ∪ Lcofin
S .

(4) The lattice depicted in the following Hasse diagram is a Boolean lattice,
where p→ q and p↔ q are abbreviations for ¬p∨ q and (p∧ q)∨ (¬p∧¬q),
respectively. This lattice is called the four-dimensional hypercube and

25



is denoted by 24.

⋎

p ∨ q q → p p→ q¬p ∨ ¬q

p q p↔ q p↔ ¬q ¬q ¬p

p ∧ q p ∧ ¬q ¬p ∧ q¬p ∧ ¬q

⋏

The following theorem states that the distributive law in Definition 2.5.6 can
be replaced by its dual form

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).

Theorem 2.5.8. Let (L,≤) be a lattice. Then the following conditions are equiv-
alent:

(1) p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) for any p, q, r ∈ L;

(2) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) for any p, q, r ∈ L.

Proof. We only show the implication from (1) to (2) (the converse direction follows
in the same way):

p ∨ (q ∧ r) = (p ∨ (p ∧ q)) ∨ (q ∧ r) (By the absorption law)

= p ∨ ((p ∧ q) ∨ (q ∧ r)) (By the associative law)

= p ∨ ((q ∧ p) ∨ (q ∧ r)) (By the commutative law)

= p ∨ (q ∧ (p ∨ r)) (By (1))

= (p ∧ (p ∨ r)) ∨ (q ∧ (p ∨ r)) (By the absorption law)

= ((p ∨ r) ∧ p) ∨ ((p ∨ r) ∧ q) (By the commutative law)

= (p ∨ r) ∧ (p ∨ q) (By (1))

= (p ∨ q) ∧ (p ∨ r). (By the commutative law)

Theorem 2.5.9 (Infinite Distributive Laws). Let (L,≤,¬) be a complete Boolean
lattice. Then the infinite distributive laws

p ∧
∨

Γ =
∨

{p ∧ q : q ∈ Γ}

26



and
p ∨

∧
Γ =

∧
{p ∧ q : q ∈ Γ}

hold for any Γ ⊆ L.

Proof. We only show the first equation. The goal is to show that p ∧
∨

Γ is the
least upper bound of {p ∧ q : q ∈ Γ}. Because q ≤

∨
Γ for any q ∈ Γ, we obtain

p∧ q ≤ p∧
∨

Γ for any q ∈ Γ. Thus, p∧
∨

Γ is an upper bound of {p∧ q : q ∈ Γ}.
Next, let r be an upper bound of {p∧q : q ∈ Γ}. Because p∧q ≤ r and ¬p∧q ≤ ¬p
for any q ∈ Γ,

q = (p ∨ ¬p) ∧ q = (p ∧ q) ∨ (¬p ∧ q) ≤ r ∨ ¬p

for any q ∈ Γ. Hence,
∨

Γ ≤ r ∨ ¬p, which implies

p ∧
∨

Γ ≤ p ∧ (r ∨ ¬p) = (p ∧ r) ∨ (p ∧ ¬p) = p ∧ r ≤ r,

as desired.

Definition 2.5.10. A modal algebra is a tuple

(L,≤,¬,□)

that consists of a Boolean lattice (L,≤,¬) and a function □ : L → L satisfying
the following conditions:

(1) □⋎ = ⋎;

(2) □(p ∧ q) = □p ∧□q.

Theorem 2.5.11. □ is monotonic: p ≤ q implies □p ≤ □q.

Proof. If p ≤ q, then p = p ∧ q. Thus,

□p = □(p ∧ q) = □p ∧□q ≤ □q

by Definition 2.5.10 (2).

2.6 Quantum Computation

Here we briefly review quantum computation and fix our notation. We assume the
readers have basic knowledge of linear algebra.

Generally speaking, quantum systems are formulated as complex Hilbert spaces.
However, for quantum computation, it is enough to consider specific Hilbert spaces

27



called qubit systems. An n-qubit system is the complex 2n-space C2n , where C
stands for the complex plane. Pure states in the n-qubit system C2n are unit
vectors in C2n . The orthogonal basis called computational basis in the one-qubit
system C2 is a set {|0⟩ , |1⟩} that consists of the column vectors |0⟩ = (1, 0)T and
|1⟩ = (0, 1)T , where T denotes the transpose operator. The linear combinations
|+⟩ = (|0⟩ + |1⟩)/

√
2 and |−⟩ = (|0⟩ − |1⟩)/

√
2 of |0⟩ and |1⟩ are also pure states.

In general, |ψ⟩ = c0 |0⟩ + c1 |1⟩ represents a pure state in the one-qubit system C2

provided that |c0|2+ |c1|2 = 1. This notation of vectors is called bra-ket notation
(also called Dirac notation). |ψ⟩ is called a ket vector. The bra vector ⟨ψ|
is defined as a row vector whose elements are complex conjugates of the elements
of the corresponding ket vector |ψ⟩. In the two-qubit system C4, there are pure
states that cannot be represented in the form |ψ1⟩ ⊗ |ψ2⟩ and are called entan-
gled states, where ⊗ denotes the tensor product (more precisely, the Kronecker
product). For example, the EPR state (Einstein-Podolsky-Rosen state)

|EPR⟩ =
|00⟩ + |11⟩√

2

is an entangled state, where |00⟩ = |0⟩ ⊗ |0⟩ and |11⟩ = |1⟩ ⊗ |1⟩. Entangled
states also exist in the three-qubit system C8. For example, the GHZ state
(Greenberger–Horne–Zeilinger state)

|GHZ⟩ =
|000⟩ + |111⟩√

2

and the W state

|W⟩ =
|001⟩ + |010⟩ + |100⟩√

3

are entangled states, where |ijk⟩ = |i⟩ ⊗ |j⟩ ⊗ |k⟩. These states |GHZ⟩ and |W⟩
cannot be represented in the form |ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩.

Quantum computation is represented by unitary operators (also called quan-
tum gates). There are various quantum gates. For example, the Hadamard
gate H and Pauli gates X, Y , and Z are typical quantum gates on the one-
qubit system C2 and are defined as follows:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two typical quantum gates on the two-qubit system C4 are the controlled-X gate
(also called the controlled NOT gate) CX and the swap gate SWAP are defined by

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X,

28



SWAP = CX(I ⊗ |0⟩⟨0| +X ⊗ |1⟩⟨1|)CX,

where I denotes the identity matrix of size 2 × 2. Measurement is a completely
different process from applying quantum gates. Here we roughly explain spe-
cific projective measurements. For the general definition of projective measure-
ment, see [27]. Observe that P0 = |0⟩⟨0| and P1 = |1⟩⟨1| are projections, re-
spectively. After executing the measurement {P0, P1}, a current state |ψ⟩ =
c0 |0⟩ + c1 |1⟩ is transitioned into P0 |ψ⟩ /|c0| = c0 |0⟩ /|c0| with probability |c0|2
and into P1 |ψ⟩ /|c1| = c1 |1⟩ /|c1| with probability |c1|2. There is no other possi-
bility because |c0|2 + |c1|2 = 1.

29



Chapter 3

Stone-type Representation
Theorems

This chapter contains:

3.1 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Representation Theorem for Boolean lattices . . . . . . . . . . . . . 37
3.4 Representation Theorem for Ortholattices . . . . . . . . . . . . . . 39
3.5 Representation Theorem for Modal Algebras . . . . . . . . . . . . . 47

In this chapter, we review some Stone-type representation theorems, namely
the Stone-type representation theorems for Boolean lattices (Theorem 3.3.3), for
ortholattices (Theorem 3.4.16), and for modal algebras (Theorem 3.5.6). The
Stone-type representation theorems for Boolean lattices is known as Stone’s rep-
resentation theorem, that for ortholattices is known as Goldblatt’s representation
theorem [17], that for modal algebras is known as Jónsson–Tarski theorem [24].

Because one of the main results of this dissertation is to prove the Stone-type
representation theorem for QDAs, the proofs of the existing Stone-type represen-
tation theorems are detailed for comparison in this chapter.

3.1 Atom

Definition 3.1.1. Let (L,≤) be a lattice with ⋏. An element a ∈ L is called an
atom in (L,≤) with ⋏ if

(1) a ̸= ⋏ and

30



(2) p < a implies p = ⋏.

A lattice (L,≤) with ⋏ is said to be

• atomic if, for any p ∈ L satisfying p ̸= ⋏, there exists an atom a in (L,≤)
such that a ≤ p.

• atomistic if, for any p ∈ L,

p =
∨

{a ∈ A : a ≤ p},

where A denotes the set of all atoms in (L,≤).

Furthermore, an ortholattice (L,≤,¬) is said to be atomic (atomistic) if (L,≤)
is.

Example 3.1.2. Every finite lattice is atomic. Boolean powerset lattices are
atomic. Atoms in Boolean powerset lattices are singletons.

Example 3.1.3. Every Hilbert lattice (S(H),⊆, ⊥) is atomic. This is because,
for any closed subspace V with the dimension 1 or more, V includes at least one
one-dimensional subspace.

Theorem 3.1.4. Let (L,≤,¬) be a Boolean lattice. Then (L,≤,¬) is atomic if
and only if (L,≤,¬) is atomistic.

Proof. (⇒) Let A be the set of all atoms in (L,≤), and θ̃ : L→ ℘(A) be a function
defined by

θ̃(p) = {a ∈ A : a ≤ p}.
Then it suffices to show that p =

∨
θ̃(p). It immediately follows that

∨
θ̃(p) ≤ p.

Thus, we only show the other inequality. Put p′ =
∨
θ̃(p). Our goal is to prove

p ≤ p′, which is equivalent to p′ = p′ ∨ p. Because

p′ ∨ (¬p′ ∧ p) = (p′ ∨ ¬p′) ∧ (p′ ∨ p) = p′ ∨ p,

it suffices to show that ¬p′ ∧ p = ⋏. Suppose for the sake of contradiction that
¬p′ ∧ p ̸= ⋏. Then because (L,≤,¬) is atomic, there exists an atom a such that
a ≤ ¬p′ ∧ p ≤ p. Hence, a ∈ θ̃(p), which implies a ≤

∨
θ̃(p) = p′. Equivalently,

a ∧ p′ = a. Thus, because a ∧ p′ ≤ (¬p′ ∧ p) ∧ p′ by a ≤ ¬p′ ∧ p, we see that

a = a ∧ p′ ≤ (¬p′ ∧ p) ∧ p′ = ⋏.

However, it contradicts the assumption that a is an atom.
(⇐) It suffices to show that θ̃(p) ̸= ∅ if p ̸= ⋏. Suppose that θ̃(p) is the empty

set. Then it follows from the atomisticity that

⋏ ̸= p =
∨

θ̃(p) =
∨

∅ = ⋏,

a contradiction.

31



Theorem 3.1.5. If (L,≤,¬) is an atomistic Boolean lattice, then θ̃ is bijective.

Proof. For the surjectivity of θ̃, it suffices to show that for any A′ ∈ ℘(A), there
exists p ∈ L such that A′ = θ̃(p). Here we prove that p =

∨
A′ is a witness for

A′ = θ̃(p). Proof of A′ ⊆ θ̃(
∨
A′) is straightforward: a ∈ A′ implies a ≤

∨
A′,

which means a ∈ θ̃(
∨
A′). Thus, it remains to prove θ̃(

∨
A′) ⊆ A′. Suppose for

the sake of contradiction that there exists a ∈ A such that a ∈ θ̃(
∨
A′) but a /∈ A′.

Because a ∈ θ̃(
∨
A′), we obtain a ≤

∨
A′. Hence, it follows from Theorem 2.5.9

that
a = a ∧

∨
A′ =

∨
q∈A′

(a ∧ q).

By the assumption a /∈ A′, every q ∈ A′ satisfies q ̸= a. Therefore, a ∧ q < q, and
thus a∧ q = ⋏ because a is an atom. However, it follows from the above equation
that

a =
∨
q∈A′

(a ∧ q) =
∨
q∈A′

⋏ = ⋏,

which contradicts the assumption that a is an atom.

3.2 Filter

Definition 3.2.1. A filter of a lattice (L,≤) is a set F ⊆ L such that

(1) F ̸= ∅,

(2) F is upward closed: p ∈ F and p ≤ q jointly imply q ∈ F ,

(3) F is closed under ∧: if p, q ∈ F , then p ∧ q ∈ F .

A filter F is said to be proper if F is a proper subset of L.

Example 3.2.2.

(1) The smallest filter containing p ∈ L is the upward closure p↑ = {q : p ≤ q}
of p and is called the principal filter generated by p. More generally,

⟨Γ⟩ = {q ∈ L :
∧

Γfin ≤ q for some finite set Γfin ⊆ Γ}.

is the smallest filter containing a non-empty set Γ ⊆ L. For the proof, see
Theorem 3.2.3. In particular, the smallest filter containing a non-empty finite
set {p1, . . . , pn} is identical to the principal filter generated by

∧
{p1, . . . , pn}.

Hence, every filter of a finite lattice is principal.

In addition, the smallest filter ∅ ↑ containing ∅ exists, provided that (L,≤)
is a lattice with ⋎. That is, if (L,≤) has ⋎, then ∅ ↑ = {⋎}. In fact, {⋎} is
the smallest filter among all filters of (L,≤).

32



(2) Let S be an infinite set and Lcofin
S be the set of all cofinite subsets of S. Then

Lcofin
S is a filter of (℘(S),⊆, )̄ and is called the Fréchet filter on S. The set

S must be infinite so that Lcofin
S is a proper filter; otherwise, ∅ ∈ Lcofin

S , and
thus Lcofin

S is not proper. In finite–cofinite fields on an infinite set S, every
non-principal filter is the Fréchet filter on S.

Theorem 3.2.3. The smallest filter containing a non-empty set Γ ⊆ L is ⟨Γ⟩.

Proof. It follows from the reflexivity of ≤ that
∧
{p} = p ≤ p for any p ∈ Γ. Thus,

p ∈ ⟨Γ⟩, which implies Γ ⊆ ⟨Γ⟩. Furthermore, ⟨Γ⟩ is a filter, as is shown below.

(1) Because Γ is non-empty, p ∈ Γ for some p ∈ L. Hence, ⟨Γ⟩ ≠ ∅.

(2) Assume p ∈ ⟨Γ⟩. Equivalently,
∧

Γfin ≤ p for some finite set Γfin ⊆ Γ. If
p ≤ q, then

∧
Γfin ≤ q by the transitivity of ≤. Thus, q ∈ ⟨Γ⟩. Consequently,

⟨Γ⟩ is upward closed.

(3) Assume p, q ∈ ⟨Γ⟩. Then there exist finite sets Γfin
1 ,Γ

fin
2 ⊆ Γ such that∧

Γfin
1 ≤ p and

∧
Γfin
2 ≤ q. Thus,∧
(Γfin

1 ∪ Γfin
2 ) =

∧
Γfin
1 ∧

∧
Γfin
2 ≤ p ∧ q,

which implies p ∧ q ∈ ⟨Γ⟩. Consequently, ⟨Γ⟩ is closed under ∧.

It follows immediately that ⟨Γ⟩ is the smallest.

Theorem 3.2.4. The condition (2) in Definition 3.2.1 can be replaced by

(2′) p ∧ q ∈ F implies p, q ∈ F .

Proof. Assume p ∧ q ∈ F . Because p ∧ q ≤ p and p ∧ q ≤ q, we have p, q ∈ F .
Conversely, we show the condition (2) in Definition 3.2.1 by using (2′). Assume
p ∈ F and p ≤ q. Then p ∧ q = p ∈ F . Thus, it follows from (2′) that q ∈ F .

Theorem 3.2.5. Let (L,≤) be a lattice with ⋏. Then a filter F of (L,≤) is
proper if and only if ⋏ /∈ F .

Proof. If F is not proper, then F = L. Thus, ⋏ ∈ F . Conversely, if ⋏ ∈ F , then
⋏ ≤ p for any p ∈ F by the upward closedness of F . It means that F = L.

The next property is a significant property that deserves attention.

Definition 3.2.6. Let (L,≤) be a lattice. A subset Γ of L is said to have the
finite meet property if there is no finite subset Γfin of Γ such that

∧
Γfin = ⋏.

33



Notice that the finite meet property is well-defined because
∧

Γfin exists for
each finite set Γfin by the definition of lattices (but

∧
Γ may not exist if Γ is an

infinite set).

Theorem 3.2.7. If Γ satisfies the finite meet property, then ⟨Γ⟩ is a proper filter.

Proof. By Theorem 3.2.5, it suffices to show that ⋏ /∈ ⟨Γ⟩. If ⋏ ∈ ⟨Γ⟩, then∧
Γfin = ⋏ for some finite set Γfin ⊆ Γ by Theorem 3.2.3. However, such Γfin must

not exist by the finite meet property.

Definition 3.2.8. A proper filter F of a lattice (L,≤) is called an ultrafilter
(also called a maximal filter) if F is maximal: for any proper filter F ′, F ⊆ F ′

implies F = F ′.

Remark 3.2.9. To define ultrafilters, the condition that ultrafilters must be
proper filters is necessary. If an ultrafilter F were defined as the maximal filter,
the only ultrafilter would be L because F ⊆ L for any filter F .

Example 3.2.10.

(1) The principal filter a↑ generated by an atom in (L,≤) is an ultrafilter of
(L,≤). In fact, every principal ultrafilter is of the form a↑. For the proof,
see Theorem 3.2.11. In finite lattices, every ultrafilter is principal.

(2) Are there any non-principal ultrafilters? The answer is yes. Let S be an
infinite set and F be an ultrafilter of (℘(S),⊆). In fact, if F is a Fréchet
filter of S, then F is a non-principal ultrafilter. Contrapositively, if F is a
principal ultrafilter of (℘(S),⊆), then F is not a Fréchet filter. For, recall
that atoms in (℘(S),⊆) are singletons {p}. Thus, any principal ultrafilter of
(℘(S),⊆) is of the form {p}↑ by Theorem 3.2.11. However, {p} ∈ {p}↑, but
{p} is not cofinite, which implies that any principal ultrafilter of (℘(S),⊆)
is not a Fréchet filter.

(3) Note that a Fréchet filter may not be an ultrafilter. For example, consider
the Fréchet filter Lcofin

N on natural numbers N. Then the set of all even
numbers and its complement (the set of all odd numbers) are not elements
of Lcofin

N . However, it contradicts one of the characterizations of ultrafilters
(see Theorem 3.2.13).

Theorem 3.2.11. F is a principal ultrafilter of (L,≤) if and only if F = a↑ for
some atom a in (L,≤).

Proof. (⇒) Because F is a principal filter, F = p↑ for some p ∈ L. If p were not
an atom, then there would be q ∈ L such that ⋏ < q < p. By this inequality,

34



p↑ must be a proper subset of q↑. However, it leads to a contradiction because
F = p↑ is an ultrafilter.

(⇐) We show that F = a↑ is maximal. Suppose for the sake of contradiction
that there exists a proper filter F ′ properly contains F . Then q /∈ F but q ∈ F ′ for
some q ∈ L. Because q /∈ F , we obtain a ≰ q. Hence, a ∧ q ̸= a. Because q ∈ F ′,
it follows from the definition of filters that a ∧ q ∈ F ′. Thus, a ∧ q must not be ⋏
(recall Theorem 3.2.5). Therefore, ⋏ < a ∧ q < a, which leads to a contradiction
with the assumption that a is an atom.

Definition 3.2.12. A proper filter F of a lattice (L,≤) is called a prime filter
if p ∨ q ∈ F implies either p ∈ F or q ∈ F .

Theorem 3.2.13. Let (L,≤,¬) be a Boolean lattice. For any proper filter F of
(L,≤), the following conditions are equivalent:

(1) F is an ultrafilter;

(2) F is a prime filter;

(3) For each p ∈ L, either p ∈ F or ¬p ∈ F .

Proof. For (1) ⇒ (2), assume that F is an ultrafilter. Now we show that p∨ q ∈ F
and p /∈ F jointly imply q ∈ F . Let F ′ be the set {r : p ∨ r ∈ F}. In fact, F ′ is a
proper filter.

(i) By the assumption p ∨ q ∈ F , we have q ∈ F ′. Thus, F ′ ̸= ∅.

(ii) If r1 ∈ F and r1 ≤ r2, then p ∨ r1 ∈ F and p ∨ r1 ≤ p ∨ r2. Thus, p ∨ r2 ∈ F
because F is a filter. Hence, r2 ∈ F ′. It means that F ′ is upward closed.

(iii) If r1, r2 ∈ F ′, then p ∨ r1, p ∨ r2 ∈ F . Because F is a filter,

(p ∨ r1) ∧ (p ∨ r2) ∈ F.

By the distributive law, p ∨ (r1 ∧ r2) ∈ F . Therefore, r1 ∧ r2 ∈ F . Conse-
quently, F ′ is closed under ∧.

(iv) By the assumption p /∈ F , we obtain p∨⋏ = p /∈ F . It implies that ⋏ /∈ F ′.
Hence, F ′ ̸= L.

Because F is an ultrafilter and F ′ is a proper filter, F ⊆ F ′ implies F = F ′. It
follows from the assumption p ∨ q ∈ F that q ∈ F ′ = F , as desired. That is, it
remains to show F ⊆ F ′. It is proved as follows: if r ∈ F , then p ∨ r ∈ F by
r ≤ p ∨ r, and thus r ∈ F ′.

35



For (2) ⇒ (3), assume F is a prime filter. Then because p ∨ ¬p = ⋎ ∈ F ,
either p ∈ F or ¬p ∈ F .

For (3) ⇒ (1), it suffices to show that F ⊆ F ′ and F ̸= F ′ jointly imply a
contradiction for some proper filter F ′. By the assumptions, there exists p ∈ L
such that p ∈ F ′ but p /∈ F . Because p /∈ F , it follows from (3) that ¬p ∈ F ⊆ F ′.
Therefore, ⋏ = p ∧ ¬p ∈ F ′, but it leads to a contradiction with the assumption
that F ′ is proper.

Every proper filter can be extended to an ultrafilter.

Theorem 3.2.14 (Ultrafilter Theorem). For any proper filter F of (L,≤), there

exists an ultrafilter F̂ satisfying F ⊆ F̂ .

Proof. Let L′ be the set

{F ′ ⊆ L : F ⊆ F ′ and F ′ is a proper filter of (L,≤)}.

Then (L′,⊆) is a partially ordered set. By Zorn’s lemma (Lemma 2.1.11), it suffices
to show that there exists an upper bound of any non-empty totally ordered set

{F ′
1, F

′
2, F

′
3, . . . } ⊆ L′

in L′ (observe that a maximal element of L′ with respect to ⊆ is a maximal proper

filter containing F ). In fact, F̂ =
⋃

i≥0 F
′
i is a witness for the statement. F̂ is an

upper bound because F ′
i ⊆ F̂ . Thus, it remains to show that F̂ ∈ L′: F ⊆ F̂ and

F̂ is a proper filter. Because F ⊆ F ′
i ⊆ F̂ , we obtain F ⊆ F̂ . Furthermore, it is to

be proved that F̂ is a proper filter.

(i) Because each Fi is a filter, Fi ̸= ∅. Hence, F̂ ̸= ∅;

(ii) Assume p ∈ F̂ . Then there exists F ′
i such that p ∈ F ′

i . Because F ′
i is a filter,

p ≤ q implies q ∈ F ′
i ⊆ F̂ . Consequently, F̂ is upward closed.

(iii) Assume p, q ∈ F̂ . Then there exist F ′
i and F ′

j such that p ∈ F ′
i and q ∈ F ′

j .
Because F ′

i and F ′
j are totally ordered by ⊆, we assume that F ′

i ⊆ F ′
j without

loss of generality. Then p, q ∈ F ′
j , and thus p ∧ q ∈ F ′

j ⊆ F̂ . Consequently,

F̂ is closed under ∧.

(iv) Because each F ′
i is proper, ⋏ /∈ F ′

i . Hence, ⋏ /∈ F̂ (equivalently, F̂ ̸= L).

Corollary 3.2.15. If Γ satisfies the finite meet property, then there exists an
ultrafilter F̂ satisfying ⟨Γ⟩ ⊆ F̂ .

Proof. It follows from Theorem 3.2.7 and 3.2.14.

36



3.3 Representation Theorem for Boolean lattices

We have already defined lattice homomorphisms in Definition 2.4.3. This definition
can be extended to that for ortholattices (Boolean lattices).

Definition 3.3.1. Let (L1,≤1,¬1) and (L2,≤2,¬2) be ortholattices (Boolean lat-
tices). A function f : L1 → L2 is called

• a homomorphism between ortholattices (Boolean lattices) if the following
conditions are satisfied:

(1) f is a lattice homomorphism,

(2) f(¬1p) = ¬2f(p).

• an embedding between ortholattices (Boolean lattices) if f is an injective
homomorphism between ortholattices (Boolean lattices).

• an isomorphism if f is a bijective homomorphism between ortholattices
(Boolean lattices).

An ortholattice (Boolean lattice) (L1,≤1) is said to be isomorphic to an ortho-
lattice (Boolean lattice) (L2,≤2) if there exists an isomorphism from L1 to L2.

Similar to the case of lattice homomorphism, we omit subscripts in ≤i, ∧i, and
∨i, which should be clear from the context.

Definition 3.3.2. Let U be the set of all ultrafilters of a lattice (L,≤). The Stone
embedding for Boolean lattices (L,≤,¬) is the function θ : L → ℘(U) defined
by

θ(p) = {F ∈ U : p ∈ F}.
The canonical extension of a Boolean lattice (L,≤,¬) is a tuple

(℘(U),⊆, )̄.

Theorem 3.3.3 (Stone’s Representation Theorem). Every Boolean lattice is em-
beddable into its canonical extension via the Stone embedding for Boolean lattices.

Proof. We show that the Stone embedding θ : L → ℘(U) for Boolean lattices
is an embedding of a Boolean lattice L = (L,≤,¬) into the canonical extension
(℘(U),⊆, )̄ of L.

• Proof of θ(p ∧ q) = θ(p) ∧ θ(q).

F ∈ θ(p ∧ q) ⇔ p ∧ q ∈ F ⇔ p ∈ F and q ∈ F

⇔ F ∈ θ(p) and F ∈ θ(q) ⇔ F ∈ θ(p) ∩ θ(q).

37



• Proof of θ(p ∨ q) = θ(p) ∪ θ(q). Recall that F is a prime filter (Theorem
3.2.13).

(⇒)

F ∈ θ(p ∨ q) ⇔ p ∨ q ∈ F ⇒ p ∈ F or q ∈ F

⇔ F ∈ θ(p) or F ∈ θ(q) ⇔ F ∈ θ(p) ∪ θ(q).

(⇐) follows from the fact p ≤ p ∨ q.

• Proof of θ(¬p) = θ(p). Because either p ∈ F or ¬p ∈ F (Theorem 3.2.13),

F ∈ θ(¬p) ⇔ ¬p ∈ F ⇔ p /∈ F ⇔ F /∈ θ(p).

To show that θ is injective, suppose p ̸= q. Then p ≰ q or q ≰ p by the
contraposition of the antisymmetry of ≤. Without loss of generality, we assume
p ≰ q. Then p ∧ ¬q ̸= ⋏. For, suppose that p ∧ ¬q = ⋏. Then p ∧ ¬q ≤ p ∧ q.
Hence, (p ∧ ¬q) ∨ (p ∧ q) = p ∧ q, and thus

p = p ∧ (¬q ∨ q) = (p ∧ ¬q) ∨ (p ∧ q) = p ∧ q.

It is equivalent to p ≤ q, which completes the proof of the implication from p ≰ q to
p∧¬q ̸= ⋏. Therefore, we see that {p,¬q} has the finite meet property. It follows

from Corollary 3.2.15 that there exists an ultrafilter F̂ satisfying ⟨{p,¬q}⟩ ⊆ F̂ .

It implies p,¬q ∈ F̂ . Equivalently, F̂ ∈ θ(p) and F̂ ∈ θ(¬q) = θ(q). That is,

F̂ ∈ θ(p) but F̂ /∈ θ(q). Consequently, θ(p) ̸= θ(q), as desired.

Corollary 3.3.4. Every Boolean lattice is isomorphic to an algebra of sets via the
Stone embedding for Boolean lattices.

Proof. Because θ is injective, every Boolean lattice (L,≤,¬) is isomorphic to
(θ(L),⊆, )̄, where θ(L) denotes the image of L under θ. In addition, because
θ is a homomorphism, θ(L) is closed under ∩, ∪, and .̄ Clearly, θ(L) ⊆ ℘(U).
Thus, (θ(L),⊆, )̄ is a filed of sets.

Theorem 3.3.5. Let Ũ be the set of all principal ultrafilters in an atomic complete
Boolean lattice (L,≤,¬). Then (L,≤,¬) is isomorphic to (℘(Ũ),⊆, )̄ via the

function θ̃ : L→ ℘(Ũ) defined by

θ̃(p) = {F ∈ Ũ : p ∈ F}.

Proof. Let A be the set of all atoms in (L,≤,¬). Then,

θ̃(p) = {a↑ : p ∈ ⟨a⟩ and a ∈ A} (By Theorem 3.2.11)

38



= {a↑ : a ≤ p and a ∈ A}.

For the injectivity of θ̃, suppose p ̸= q. If either p = ⋏ or q = ⋏, we can suppose
p = ⋏ without loss of generality. Then θ̃(p) = ∅, but θ̃(q) ̸= ∅ by atomicity. Thus,
θ̃(p) ̸= θ̃(q), which completes the proof. For this reason, we only consider the case
that p ̸= ⋏ and q ̸= ⋏. Recall that atomicity and atomisticity are equivalent for
Boolean lattices (Theorem 3.1.4). It follows from atomisticity and the assumption
p ̸= q that ∨

{a ∈ A : a ≤ p} = p ̸= q =
∨

{a ∈ A : a ≤ q}.

Observe that
∨

Γ ̸=
∨

∆ implies Γ ̸= ∆. Hence,

{a ∈ A : a ≤ p} ≠ {a ∈ A : a ≤ q},

which implies that a ≤ p but a ≰ q for some a ∈ A. Therefore, a↑ ∈ θ̃(p) but

a↑ /∈ θ̃(q). Consequently, θ̃(p) ̸= θ̃(q).

For the surjectivity of θ̃, it suffices to show that for any M ∈ ℘(Ũ), there exists
p ∈ L such that M = θ̃(p). Because M is a set of principal ultrafilters, it follows
from Theorem 3.2.11 that

M = {a↑ : a ∈ A′}

for some A′ ⊆ A. Thus, our goal is to show that A′ = {a ∈ A : a ≤ p}. Let
p =

∨
A′. Then a′ ≤ p for any a′ ∈ A′. Therefore, A′ ⊆ {a ∈ A : a ≤ p}. For

the other inclusion, suppose by way of contradiction that a◦ ∈ {a ∈ A : a ≤ p} for
some a◦ /∈ A′. Then a◦ ≤ p, which implies

a◦ = a◦ ∧ p = a◦ ∧
∨

A′ =
∨

{a◦ ∧ a′ : a′ ∈ A′}

by Theorem 2.5.9. Because a◦ /∈ A′, we have a◦ ̸= a′ for any a′ ∈ A′. It implies
that a◦ ∧ a′ < a′. Because a′ is an atom, a◦ ∧ a′ = ⋏. It follows from the above
equation that a◦ = ⋏. This is a contradiction with a◦ ∈ A.

3.4 Representation Theorem for Ortholattices

By regarding the orthogonality relation as a relation on a Hilbert space, we obtain
a state transition system called an orthoframe [16]. Henceforth, we shall write s ̸Rt
for the condition that not sRt (namely, (s, t) /∈ R).

Definition 3.4.1. An orthoframe F = (S,R) is a pair of a non-empty set S of
states and relation R on S that is irreflexive (s ̸Rs for any s ∈ S) and symmetric
(sRt implies tRs for any s, t ∈ S).

39



Example 3.4.2 (Hilbert Frame). Let H be a Hilbert space, Pure(H) be the set
of all pure states (unit vectors) in H, and ⊥ be the orthogonality relation on H.
Then (Pure(H),⊥) is an orthoframe, and is called a Hilbert frame. Note that
(H,⊥) is not an orthoframe because ⊥ is not irreflexive. A counter-example is
that 0 ⊥ 0, where 0 denotes the zero vector (origin of H).

Usually, closed subspaces and the orthogonal complements of them are defined
for Hilbert spaces. These notions are adapted for an orthoframe as follows. Recall
that V ⊆ H is a closed subspace if and only if (V ⊥)⊥ = V .

Definition 3.4.3. Let F = (S,R) be an orthoframe, and P be a (possibly empty)
subset of S.

• The orthogonal complement ¬RP of P is defined by

¬RP = {s ∈ S : sRt for any t ∈ P}.

• P is said to be orthoclosed in F if ¬R¬RP = P .

Remark 3.4.4. ∅⊥ is not defined because ∅ is not a vector space. On the other
hand, ¬R∅ is defined and is equal to S by the definition of ¬R. In addition,
¬RS = ∅. If there would be s ∈ S satisfying sRt for any t ∈ S, then sRs. However,
R is irreflexive by the definition of R, a contradiction. Therefore, ¬RS = ∅.

In the sequel, we shall denote by LF the set of all orthoclosed sets in F . That
is,

LF = {P ⊆ S : ¬R¬RP = P}.
The relation between ortholattices and orthoframes defined so far is intriguing.

On the one hand, an ortholattice called a complex algebra is obtained from an
orthoframe. On the other hand, an orthoframe called a canonical frame is ob-
tained from an ortholattice. In fact, every complex algebra of an orthoframe is an
ortholattice (Theorem 3.4.9), and every canonical frame of an ortholattice is an
orthoframe (Theorem 3.4.13).

Definition 3.4.5. The complex algebra of an orthoframe F = (S,R) is the
triple

C(F) = (LF ,⊆,¬R),

where ¬R : LF → LF is a function that returns the orthogonal complement of an
input.

Remark 3.4.6. C(F) is well-defined in the sense that ¬RP ∈ LF for each P ∈ LF :
because P ∈ LF ,

¬RP = ¬R(¬R¬RP ) = (¬R¬R)¬RP.

40



The name “complex algebra” is derived from [11, Definition 5.21]. The same
notion is also called “dual” (of an original frame) in [12], for example. However,
because the word “dual” is also frequently used in different senses, we prefer to
call it complex algebra to avoid ambiguity.

Hereafter, we shall denote by
⊎

Γ the smallest orthoclosed set containing
⋃

Γ.
Symbolically, ⊎

Γ =
⋂

{P ∈ LF :
⋃

Γ ⊆ P}.

In particular, we shall write P ⊎Q for
⊎
{P,Q}.

Theorem 3.4.7. Every complex algebra C(F) of an orthoframe F = (S,R) is a
complete lattice by

∧
Γ =

⋂
Γ and

∨
Γ =

⊎
Γ.

Proof. Theorem 2.3.3 states that a closure system ordered by inclusion is a com-
plete lattice. Thus, it suffices to show that LF is a closure system on S. For this,
see Lemma 3.4.8.

Lemma 3.4.8. LF is a closure system on S. That is,

(1)
⋂

Γ ∈ LF for any non-empty set Γ ⊆ LF ,

(2) S ∈ LF .

Proof. We show each of the conditions of closure systems.

(1) We only prove the case that the number of elements in Γ is 2. The general
case is obtained by a similar argument.

Suppose that ¬R¬RP = P and ¬R¬RQ = Q. Then it suffices to show that

¬R¬R(P ∩Q) = P ∩Q.

For the ⊆-part, suppose by contradiction that s ∈ ¬R¬R(P ∩ Q) but s /∈
P ∩ Q. Then either s /∈ P or s /∈ Q. Without loss of generality, we assume
s /∈ P , and thus s /∈ ¬R¬RP . In other words, s ̸Rt for some t ∈ ¬RP . Fix
t ∈ ¬RP such that s ̸Rt. Then sRt and tRu for any u ∈ P . By strengthening
the condition of u, we can state that s ̸Rt and tRu for any u ∈ P ∩ Q. It is
equivalent to saying that s ̸Rt and t ∈ ¬R(P ∩Q). However, the assumption
s ∈ ¬R¬R(P ∩Q) means that sRu for any u ∈ ¬R(P ∩Q), which leads to a
contradiction.

The ⊇-part is proved as follows:

s ∈ P ∩Q⇔ s ∈ ¬R¬RP ∩ ¬R¬RQ

⇔ ∀t ∈ S (t ∈ ¬RP ⇒ sRt) and ∀t ∈ S (t ∈ ¬RQ⇒ sRt)

41



⇔ ∀t ∈ S ((t ∈ ¬RP ⇒ sRt) and (t ∈ ¬RQ⇒ sRt))

⇔ ∀t ∈ S ((t ∈ ¬RP or t ∈ ¬RQ) ⇒ sRt)

⇔ ∀t ∈ S ((∀u ∈ S (u ∈ P ⇒ tRu) or ∀u ∈ S (u ∈ Q⇒ tRu)) ⇒ sRt)

⇒ ∀t ∈ S ((∀u ∈ S (u ∈ P ⇒ tRu, or u ∈ Q⇒ tRu)) ⇒ sRt)

⇔ ∀t ∈ S ((∀u ∈ S, u ∈ P and u ∈ Q⇒ tRu) ⇒ sRt)

⇔ ∀t ∈ S ((∀u ∈ P ∩Q, tRu) ⇒ sRt)

⇔ s ∈ ¬R¬R(P ∩Q).

(2) By Remark 3.4.4,
¬R¬RS = ¬R∅ = S.

Theorem 3.4.9. Every complex algebra C(F) of an orthoframe F = (S,R) is a
complete ortholattice.

Proof. By Theorem 3.4.7, C(F) is a complete lattice. Thus, we only show that
C(F) is an ortholattice. We first prove the conditions (2) and (3) in the definition
of ortholattices (Definition 2.5.1).

(2) Proof of ¬R¬RP = P . It immediately follows from P ∈ LF .

(3) Proof of the condition that P ⊆ Q implies ¬RQ ⊆ ¬RP . Suppose that
P ⊆ Q and s ∈ ¬RQ. Then t ∈ P implies t ∈ Q, and t ∈ Q implies sRt.
Thus, t ∈ P implies sRt, which is equivalent to s ∈ ¬RP . Consequently,
P ⊆ Q implies ¬RQ ⊆ ¬RP .

Now we show that the remaining conditions P ∩ ¬RP = ∅ and P ⊎ ¬RP = S.
Suppose for the sake of contradiction that s ∈ P ∩ ¬RP for some s ∈ S. Then
s ∈ P and s ∈ ¬RP , and thus sRs. However, it contradicts the condition that R
is irreflexive. Hence, P ∩ ¬RP = ∅. Therefore, it follows from the above (2) and
De Morgan’s laws that

P ⊎ ¬RP = ¬R(¬RP ∩ ¬R¬RP ) = ¬R(¬RP ∩ P ) = ¬R∅ = S.

Note that De Morgan’s laws are derivable from the above (2) and (3) using the
same idea as in [33, Proposition 3.4].

Lemma 3.4.10 ([36, Proposition 2]). Let (L,≤, ⊥) be a complete atomistic or-
tholattice, and let A(L) be the set of all atoms in (L,≤, ⊥). Then the complex
algebra (LF ,⊆,¬⊥) of the orthoframe FL = (A(L),⊥), where the relation ⊥ is
the same as in (L,≤, ⊥), is isomorphic to the original ortholattice (L,≤, ⊥).

42



Proof. We claim that the following mapping

ω(p) = {a ∈ A(L) : a ≤ p} (p ∈ L)

is an isomorphism of ortholattices between (L,≤, ⊥) and (LF ,⊆,¬⊥). First, we
show that ω preserves the orthocomplementation: ¬⊥ω(p) = ω(p⊥) for any p ∈ L.
Let p ∈ L. Because L is a complete atomistic ortholattice, we have

p =
∨

a∈ω(p)

a, p⊥ =
∧

a∈ω(p)

a⊥.

Note that the orthogonality relation in the orthoframe (A(L),⊥) is the same as in
(L,≤, ⊥).

¬⊥ω(p) = {b ∈ A(L) : b ⊥ a for any a ∈ ω(p)}
=
{
b ∈ A(L) : b ≤ a⊥ for any a ∈ ω(p)

}
=

b ∈ A(L) : b ≤
∧

a∈ω(p)

a⊥


=
{
b ∈ A(L) : b ≤ p⊥

}
= ω(p⊥).

Hence, we have
¬⊥¬⊥ω(p) = ω((p⊥)⊥) = ω(p).

This implies that ω(p) is orthoclosed in FL, that is ω(p) ∈ LF . Therefore, ω is a
mapping from L to LFL

.
Next, we show that ω preserves infima and suprema.

• ω(p ∧ q) = ω(p) ∩ ω(q): Let a ∈ ω(p ∧ q). Then we have a ≤ p ∧ q ≤ p, q.
Hence,

a ∈ ω(p) and a ∈ ω(q).

Therefore, we obtain a ∈ ω(p)∩ω(q). On the other hand, let a ∈ ω(p)∩ω(q).
Then because a ≤ p, q, we have a ≤ p ∧ q; hence, a ∈ ω(p ∧ q).

• ω(p ∨ q) = ω(p) ⊎ ω(q): By De Morgan’s laws, we obtain

ω(p ∨ q) = ω((p⊥ ∧ q⊥)⊥) = ¬⊥ω
(
p⊥ ∧ q⊥

)
= ¬⊥

(
ω(p⊥) ∩ ω(q⊥)

)
= ¬⊥ (¬⊥ω(p) ∩ ¬⊥ω(q))

= ω(p) ⊎ ω(q).

43



Finally, we show that ω is bijective. Let ω(p) = ω(q) for some p, q ∈ L. Because
L is atomistic, we have

p =
∨

a∈ω(p)

a =
∨

a∈ω(q)

a = q.

Therefore, ω is injective. To show that ω is surjective, take an arbitrary A ∈ LF .
Put

p :=
∨
a∈A

a.

Here, we took the supremum in (L,≤, ⊥) (Note that A ⊆ A(L) ⊆ L). We show
that this p is a witness of the surjectivity of ω: ω(p) = A. Let b ∈ A. Then
because b ≤

∨
a∈A a = p, we have b ∈ ω(p). Conversely, let b ∈ ω(p). Then we

have b ≤ p, and by the (infinite) De Morgan’s law,

p =

(∧
a∈A

a⊥

)⊥

.

Hence, b ≤ p is equivalent to the condition

b ≤

(∧
a∈A

a⊥

)⊥

.

In the following, we show that assuming that b ̸∈ A leads to a contradiction. Now,
because A is orthoclosed in FL, that is, ¬⊥¬⊥A = A, we have

A = ¬⊥¬⊥A = ¬⊥(¬⊥A)

= {d ∈ A(L) : d ⊥ c for any c ∈ ¬⊥A} .

By the assumption b ̸∈ A, there exists c ∈ ¬⊥A such that b ̸⊥ c. Note that the
condition b ̸⊥ c is equivalent to the condition

b ̸≤ c⊥.

On the other hand, observe that

c ∈ ¬⊥A⇔ c ⊥ a for all a ∈ A

⇔ c ≤ a⊥ for all a ∈ A

⇔ c ≤
∧
a∈A

a⊥

⇔

(∧
a∈A

a⊥

)⊥

≤ c⊥.

44



By b ≤ p, we have

b ≤

(∧
a∈A

a⊥

)⊥

≤ c⊥.

This contradicts the condition that b ̸≤ c⊥. Therefore, we have b ∈ A. Conse-
quently, we obtain ω(p) = A; ω is surjective.

Corollary 3.4.11. Every Hilbert lattice (S(H),⊆, ⊥) is isomorphic to the complex
algebra (LFH ,⊆,¬⊥) of the Hilbert frame FH = (Σ(H),⊥).

Definition 3.4.12. The canonical frame of an ortholattice L = (L,≤,¬) is the
pair

C(L) = (SL, RL)

of the set SL of all proper filters of (L,≤) and the relation RL on SL defined by

RL = {(F,G) : p ∈ F and ¬p ∈ G for some p ∈ L}.

Theorem 3.4.13. Every canonical frame C(L) of an ortholattice L = (L,≤,¬) is
an orthoframe.

Proof. SL is non-empty because {⋎} is a proper filter.
RL is irreflexive. Suppose for the sake of contradiction that FRLF for some

F ∈ SL. To lead a contradiction, we show that F is not proper. Equivalently, we
show that ⋏ ∈ F (recall Theorem 3.2.5). By the assumption FRLF , there exists
p ∈ L such that p,¬p ∈ F , and thus p ∧ ¬p ∈ F by the definition of filters. It is
equivalent to ⋏ ∈ F by the definition of ortholattices.

RL is symmetric. FRLG implies that p ∈ F and ¬p ∈ G for some p ∈ L. Put
q = ¬p. Then ¬q = ¬¬p = p ∈ F and q = ¬p ∈ G. Thus, GRLF .

The Stone-type representation theorem for ortholattices was first shown by
[17]. It states that an ortholattice is embeddable into the canonical extension of
the ortholattice.

Definition 3.4.14. The Stone embedding for ortholattices L = (L,≤,¬) is the
function θ : L→ LC(L) defined by

θ(p) = {F ∈ SL : p ∈ F}.

The canonical extension of an ortholattice L = (L,≤,¬) is the complex algebra
C(C(L)) of the canonical frame C(L) of L.

45



Remark 3.4.15. θ is well-defined in the sense that θ(p) ∈ LC(L) for each p ∈ L.
For, it suffices to show ¬RLθ(p) = θ(¬p) because it implies

¬RL¬RLθ(p) = θ(¬¬p) = θ(p).

For the ⊆-part of ¬RLθ(p) = θ(¬p), suppose F ∈ ¬RLθ(p). Then FRLG for
G = {q : p ≤ q} satisfying p ̸= ⋏ because G ∈ θ(p). Thus, there exists r ∈ L such
that r ∈ F and ¬r ∈ G. Hence, p ≤ ¬r by ¬r ∈ G. It implies that r ≤ ¬p. Recall
r ∈ F . By the definition of filters, ¬p ∈ F . Consequently, F ∈ θ(¬p).

For the ⊇-part of ¬RLθ(p) = θ(¬p), suppose F ∈ θ(¬p) (equivalently, ¬p ∈ F ).
It suffices to show that G ∈ θ(p) (equivalently, p ∈ G) implies FRLG for any
G ∈ LC(L). It follows from ¬p ∈ F and p ∈ G that GRLF , and thus FRLG, as
desired.

Theorem 3.4.16 (Stone-type Representation Theorem for Ortholattices). Every
ortholattice is embeddable into its canonical extension via the Stone embedding
for ortholattices.

Proof. We show that the Stone embedding θ : L → LC(L) for ortholattices is an
embedding of an ortholattice L into C(C(L)).

(1) Proof of θ(p ∧ q) = θ(p) ∩ θ(q).

F ∈ θ(p ∧ q) ⇔ p ∧ q ∈ F ⇔ p ∈ F and q ∈ F

⇔ F ∈ θ(p) and F ∈ θ(q) ⇔ F ∈ θ(p) ∩ θ(q).

(2) Proof of θ(p ∨ q) = θ(p) ⊎ θ(q). Because θ(p ∧ q) = θ(p) ∩ θ(q) and θ(¬p) =
¬RLθ(p) (for the proof, see below),

θ(p ∨ q) = θ(¬(¬p ∧ ¬q)) = ¬RL(¬RLθ(p) ∩ ¬RLθ(q)) = θ(p) ∪ θ(q).

(3) Proof of θ(¬p) = ¬RLθ(p). See Remark 3.4.15.

To show that θ is injective, suppose p ̸= q. Then p ≰ q or q ≰ p by the
contraposition of the antisymmetry of ≤. Without loss of generality, we assume
p ≰ q. Then p ̸= ⋏; otherwise, p ≤ q. Thus, it follows from Theorem 3.2.5 that
the principal filter p↑ is proper, and we have q /∈ p↑ by the assumption p ≰ q.
However, p ∈ p↑ by the reflexivity of ≤. Therefore, p↑ ∈ θ(p) but p↑ /∈ θ(q), which
implies θ(p) ̸= θ(q), as desired.

46



3.5 Representation Theorem for Modal Algebras

Orthoframes are state transition systems corresponding to ortholattices. Similarly,
frames are state transition systems corresponding to modal algebras.

Definition 3.5.1. A (Kripke) frame is a pair (S,R) of a non-empty set S of
states and relation R on S.

Observe that orthoframes are irreflexive and symmetric frames. Thus, frames
are a more general notion than orthoframes.

Definition 3.5.2. The complex algebra of a frame F = (S,R) is the tuple

C(F) = (℘(S),⊆, ,̄□R),

where (℘(S),⊆, )̄ is a powerset Boolean lattice, and □R is a function on ℘(S)
such that

□RP = {s ∈ S : sRt implies t ∈ P for any t ∈ S}.

Definition 3.5.3. The canonical frame of a modal algebra L = (L,≤,¬,□) is
the pair

C(L) = (SL, RL)

of the set SL of all ultrafilters of (L,≤) and the relation RL on SL defined by

RL = {(F,G) : □p ∈ F implies p ∈ G}.

We have already defined homomorphisms for ortholattices/Boolean lattices in
Definition 3.3.1. Here we define homomorphisms for modal algebras.

Definition 3.5.4. Let (L1,≤1,¬1,□1) and (L2,≤2,¬2,□2) be modal algebras. A
function f : L1 → L2 is called

• a homomorphism between modal algebras if the following conditions are
satisfied:

(1) f is a homomorphism between Boolean lattices,

(2) f(□1p) = □2f(p).

• an embedding between modal algebras if f is an injective homomorphism
between modal algebras.

• an isomorphism between modal algebras if f is a bijective homomorphism
between modal algebras.

47



A modal algebra (L1,≤1,¬1,□1) is said to be isomorphic to a modal algebra
(L2,≤2,¬2,□2) if there exists an isomorphism from L1 to L2.

Definition 3.5.5. The Stone embedding for modal algebras L = (L,≤,¬,□)
is the function θ : L→ ℘(SL) defined by

θ(p) = {F ∈ SL : p ∈ F}.

The canonical extension of a modal algebra L = (L,≤,¬,□) is the complex
algebra C(C(L)) of the canonical frame C(L) of L.

Theorem 3.5.6 (Stone-type Representation Theorem for Modal Algebras). Every
modal algebra is embeddable into its canonical extension via the Stone embedding
for modal algebras.

Proof. We show that the Stone embedding θ : L → ℘(SL) for modal algebras is
an embedding of a modal algebra L into the canonical extension C(C(L)) of L.

Most part of the proof is reduced to the proof of Stone’s representation theorem.
It remains to show

θ(□p) = □RLθ(p).

For the ⊆-part, suppose F ∈ θ(□p) (equivalently, □p ∈ F ). If FRLG, then
p ∈ G (recall that is, G ∈ θ(p)) by the definition of RL. Hence, F ∈ □RLθ(p).

For the ⊇-part, suppose F ∈ □RLθ(p). Let Γ be the set {q ∈ L : □q ∈ F},
which is non-empty because ⋎ ∈ Γ by □⋎ = ⋎ ∈ F . Thus, there exists the
smallest filter G containing Γ, which in fact is

{q ∈ L :
∧

{p1, . . . , pn} ≤ q for some p1, . . . , pn ∈ Γ}

by Theorem 3.2.3. Now we show FRLG, that is, □q ∈ F implies q ∈ G for any
q ∈ L. If □q ∈ F , then q ∈ Γ, which implies q ∈ G. Consequently, FRLG. Hence,
G ∈ θ(p) by the assumption F ∈ □RLθ(p), and is equivalent to p ∈ G. It implies
that there exist p1, . . . , pn ∈ Γ such that

∧
{p1, . . . , pn} ≤ p. Thus, by Definition

2.5.10 (2) and the monotonicity of □ (Theorem 2.5.11),∧
{□p1, . . . ,□pn} = □(

∧
{p1, . . . , pn}) ≤ □p.

Because p1, . . . , pn ∈ Γ, we have □pi ∈ F . It follows from the definition of filters
that □p ∈ F . Therefore, F ∈ θ(□p), as desired.

48



Chapter 4

Quantum Dynamic Algebra

This chapter contains:

4.1 Quantum Dynamic Algebra . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Inference Rules for Quantum Programs . . . . . . . . . . . . . . . . 53
4.3 Quantum Dynamic Frame . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Complex Algebra of QDF . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Running Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

In this chapter, we formulate QDA, and show that the inference rules of Hoare
Logic are satisfied in QDA if the usual conjunction ∧ is replaced by the Sasaki
conjunction ⋒ (Theorem 4.2.4). Moreover, we formulate a transition system called
a Quantum Dynamic Frame (QDF), and how to construct a QDA from a given
QDF (Theorem 4.4.5). We use the constructed QDA called the complex algebra of
a QDF for verifying the correctness of two simple quantum programs as running
examples.

4.1 Quantum Dynamic Algebra

In this section, we formulate Quantum Dynamic Algebra (QDA). QDA specify
all properties (namely, axioms) that DQL is supposed to satisfy. The advantage
of using algebra rather than logic is that algebra can naturally express infinitary
conjunction and disjunction as the infimum and the supremum of infinite sets,
respectively. Infinitary conjunction is used to characterize □(a∗, p) in Definition
4.1.2.

49



Definition 4.1.1. Let L be a non-empty set. A regular program algebra
(RPA) is a tuple

P [L] = (Prog[L], ;,∪, ∗, ?)

that consists of a non-empty set Prog[L] depending on L and functions

; : Prog[L] × Prog[L] → Prog[L], ∪ : Prog[L] × Prog[L] → Prog[L],
∗ : Prog[L] → Prog[L], ? : L→ Prog[L].

Let skip and abort be specific symbols (called program constants), and Π0

be a set of symbols (called atomic programs). The RPA generated by Π =
{skip, abort} ∪ Π0 is defined as the smallest RPA

P [Π, L] = (Prog[Π, L], ;,∪, ∗, ?)

satisfying Π ⊆ Prog[Π, L], where Prog[Π, L] stands for a non-empty set depending
on Π and L.

For the meaning of regular programs, see Table 4.1. Regular programs are
formed from program constants skip, abort, atomic programs, and elements of
a non-empty set by using the program constructs ; (sequential composition), ∪
(non-deterministic choice), ∗ (iteration), and ? (test). These notations are used
in Propositional Dynamic Logic (PDL). The most typical atomic programs are
substitutions. The notion of variables is needed to define substitutions as is done
in First-order Dynamic Logic. However, substitutions and variables are outside
the scope of PDL. The reason why we do not deal with substitutions and variables
in this paper is that our purpose is just to simplify the discussion. A drawback of
First-order Dynamic Logic is that it is not decidable.

Table 4.1: Meaning of Regular Programs

Program Name Meaning

skip Skip Do nothing.

abort Abort Forcing to halt.

a ; b Composition Execute a, and then execute b.

a ∪ b Non-deterministic
Choice

Execute either a or b
non-deterministically.

a∗ Iteration Repeat a some finite number of times.

p? Test Confirm that p is whether true or false.

Regular programs are expressive enough to describe various programs, such as
conditional programs, guarded commands, while programs, and until programs.

50



• Conditional Program: the regular program

if p then a else b fi = (p? ; a) ∪ (¬p? ; b)

means that “if p is true, then execute a, otherwise execute b.”

• Guarded Command: the regular program

p1 → a1 | · · · | pn → an = (p1? ; a1) ∪ · · · ∪ (pn? ; an)

is the guarded command used in Dijkstra’s Guarded Command Language.
The guarded command is adopted in Promela, which is used by the SPIN
model checker.

• While Program: the regular program

while p do a od = (p? ; a)∗ ; ¬p?

means that “repeat a while p is true.”

• Until Program: the regular program

repeat a until p = a ; (¬p? ; a)∗ ; p?

means that “repeat a until p is true.”

As Hoare Logic does, it is worth paying attention to a precondition and post-
condition of programs to verify them. A regular program a ∈ Prog[Π, L] is said
to be partially correct with respect to a precondition p ∈ L and postcondition
q ∈ L (denoted {p} a {q}, and is called a Hoare triple) if, whenever a is executed
in a state satisfying p, and it halts in states s, then q is satisfied in any such states
s. The correctness is called partial because it does not guarantee that the program
halts.

We introduce a function □ : Prog[Π, L]×L→ L to express partial correctness:
□(a, p) represents the weakest precondition ensuring p will hold after executing
a. Then {p} a {q} is expressed as p ≤ □(a, q). That is, □(a, q) is the weakest
precondition among preconditions that make the program a partially correct with
respect to the postcondition q. This function □ is subject to some conditions
described in Definition 4.1.2.

Definition 4.1.2. A quantum dynamic algebra (QDA) is a tuple

LQD = (L,≤,¬,□)

that consists of a complete orthomodular lattice (L,≤,¬) and a function (scalar
multiplication) □ : Prog[Π, L]×L→ L satisfying the following conditions: for any
π ∈ Π0, a, b ∈ Prog[Π, L], and p, q ∈ L,

51



(1) ¬□(π, p) = □(π,¬p);

(2) □(skip, p) = p;

(3) □(abort, p) = ⋎;

(4) □(a,⋎) = ⋎;

(5) □(a, p ∧ q) = □(a, p) ∧□(a, q);

(6) □(a; b, p) = □(a,□(b, p));

(7) □(a ∪ b, p) = □(a, p) ∧□(b, p);

(8) □(a∗, p) =
∧
{□(ai, p) : i ≥ 0}, where ai is defined recursively by a0 = skip

and ai+1 = ai ; a;

(9) □(p?, q) = ¬p ∨ (p ∧ q).

Note that DQL is not the only algebra that interprets tests as elements of a
weak Boolean lattice. For example, tests in Constructive Dynamic Logic (CDL)
[28] are interpreted as elements of a Heyting lattice, which is the algebraic seman-
tics of Intuitionistic Logic. Orthomodular lattices lack the distributive law but
satisfy the law of double negation. On the other hand, Heyting lattices lack the
law of double negation but satisfy the distributive law.

Here we note the meaning of the above conditions from (1) to (9).

(1) Negation ¬ preserves the dynamic operator □.

(2) p will hold after executing skip (do nothing) if and only if p holds now.

(3) p will hold after executing abort (forcing to halt) if and only if ⋎ holds now.

(4) ⋎ will hold after executing a if and only if ⋎ holds now.

(5) p∧q will hold after executing a if and only if p and q will hold after executing
a.

(6) p will hold after executing a ; b if and only if p will hold after executing a
and b consecutively in this order.

(7) p will hold after executing a∪b if and only if p will hold regardless of whether
a or b is executed.

(8) p will hold after executing a∗ if and only if p will hold no matter how many
times a is repeatedly executed. □(a∗, p) exists owing to the completeness of
(L,≤,¬). The condition (8) of Definition 4.1.2 is called ∗-continuity.

52



(9) q will hold after executing p? if and only if ¬p∨(p∧q). Here, ¬p∨(p∧q) is the
equivalent form of the implication (that is, p implies q) in Quantum Logic
just as ¬p∨q is that in Classical Logic. In particular, ¬p∨(p∧q) is called the
Sasaki hook if the underlying lattice is a Hilbert lattice (see Example 4.1.4).
It means that quantum tests are regarded as the implications in Quantum
Logic. This identification is similar to that in (Classical) Dynamic Algebra:
classical tests are regarded as the implication in Classical Logic.

Unlike (classical) Dynamic Algebra, the condition regarding atomic programs is
added, and tests are evaluated in a complete orthomodular lattice (not a complete
Boolean lattice). As we noted above, tests in QDA are the implications in Quantum
Logic. Thus, these tests should be called quantum tests.

Example 4.1.3 (Powerset Dynamic Algebra). A powerset Boolean lattice (℘(S),⊆
, ¯,□) with a function □ satisfying the conditions of Definition 4.1.2 is a QDA,
and is called a powerset dynamic algebra.

Example 4.1.4 (Hilbert Dynamic Algebra). A Hilbert lattice (S(H),⊆, ⊥,□)
with a function □ satisfying the conditions of Definition 4.1.2 is a QDA and is
called a Hilbert dynamic algebra. In fact, □(V ?,W ) is the inverse image

P−1
V (W ) := {v ∈ H : PV (v) ∈ W}

of W under the self-adjoint projection PV : H → H onto V [19].

Another significant example of QDA is a complex algebra. We define the
algebra and prove that every complex algebra is a QDA in Theorem 4.4.5.

4.2 Inference Rules for Quantum Programs

The law of residuation

p ∧ q ≤ r ⇐⇒ q ≤ p→ r

holds in Boolean lattices, where p → r denotes the (material) implication ¬p ∨ r
in Classical Logic. This law amounts to the algebraic deduction theorem: r is
derivable from the assumptions p and q if and only if p → r is derivable from the
assumption q. However, the Sasaki hook p ⇝ r := ¬p ∨ (p ∧ r) does not satisfy
the counterpart

p ∧ q ≤ r ⇐⇒ q ≤ p⇝ r

in orthomodular lattices. In fact, the law of residuation implies the distributive
law [19]. Contrapositively, non-distributive lattices (such as orthomodular lattices)
cannot satisfy the law of residuation.

53



On the other hand, orthomodular lattices satisfy the law of residuation by
changing the definition of conjunction. New conjunction ⋒ defined by

p ⋒ q := p ∧ (¬p ∨ q)

is called the Sasaki conjunction, named after the Sasaki projection

ϕp(q) = p ∧ (¬p ∨ q)

in [34]. The Sasaki projection ϕp is a projection onto p in Hilbert lattices. The
Sasaki conjunction is equal to the usual conjunction in Boolean lattices because
of the distributive law:

p ⋒ q = p ∧ (¬p ∨ q) = (p ∧ ¬p) ∨ (p ∧ q) = p ∧ q.

As the next theorem states, the law of residuation is satisfied if ∧ is replaced
by ⋒.

Theorem 4.2.1. p ⋒ q ≤ r if and only if q ≤ p⇝ r.

Proof. (⇒) Assume p ⋒ q ≤ r. Then,

¬p ∨ (p ∧ (p ⋒ q)) ≤ ¬p ∨ (p ∧ r) = p⇝ r.

Thus, it suffices to show that

q ≤ ¬p ∨ (p ∧ (p ⋒ q)).

It is proved as follows:

p ∧ (¬p ∨ (p ∧ ¬q)) ≤ ¬q (By the orthomodular law)

⇔ ¬¬q ≤ ¬(p ∧ (¬p ∨ (p ∧ ¬q))) (By Definition 2.5.1 (2) and (3))

⇔ q ≤ ¬p ∨ (p ∧ (¬p ∨ q)) (By Definition 2.5.1 (2) and Theorem 2.5.3)

⇔ q ≤ ¬p ∨ (p ∧ (p ∧ (¬p ∨ q)))
⇔ q ≤ ¬p ∨ (p ∧ (p ⋒ q)).

(⇐) Assume q ≤ p⇝ r. Then,

p ∧ (¬p ∨ q) ≤ p ∧ (¬p ∨ (p⇝ r)).

Thus,

p ⋒ q = p ∧ (¬p ∨ q) ≤ p ∧ (¬p ∨ (p⇝ r))

= p ∧ (¬p ∨ (¬p ∨ (p ∧ r)))
= p ∧ (¬p ∨ (p ∧ r))
= p ∧ r (By Theorem ??)

≤ r.

54



By replacing ∧ with ⋒, some rules in Hoare Logic hold owing to the law of
residuation. To show this, we prepare two lemmas, Lemma 4.2.2 and 4.2.3.

Lemma 4.2.2. □(a,−) is monotonic: p ≤ q implies □(a, p) ≤ □(a, q) for each
a ∈ Prog[Π, L].

Proof. Similar to Theorem 2.5.11.

Lemma 4.2.3. The loop invariance rule

{p} a {p}
{p} a∗ {p}

holds: p ≤ □(a, p) implies p ≤ □(a∗, p).

Proof. Assume p ≤ □(a, p). Then,

□(a, p) ≤ □(a,□(a, p)) = □(a2, p)

is obtained by Lemma 4.2.2. Thus, p ≤ □(a2, q). Repeating this discussion yields
p ≤ □(ai, q) for each natural number i ≥ 0 (the case of i = 0 follows from Definition
4.1.2 (2) and the reflexivity of ≤). Hence, p ≤ □(a∗, p) is obtained by Definition
4.1.2 (8).

Here we prove that the inference rules in Hoare Logic are sound if the usual
conjunction ∧ is replaced by the Sasaki conjunction ⋒. The proof is based on
quantum counterparts of the law of residuation (Theorem 4.2.1), the monotonicity
of □ (Lemma 4.2.2), and the loop invariance rule (Lemma 4.2.3).

Theorem 4.2.4. The following rules of Hoare Logic (where ∧ is replaced by ⋒)
are satisfied in QDA. More precisely, the following rules are sound with respect to
the algebraic semantics given by QDA.

(1) The skip rule (axiom):

{p} skip {p}

That is, p ≤ □(skip, p).

(2) The composition rule:

{p} a {q} {q} b {r}
{p} a ; b {r}

55



That is, p ≤ □(a, q) and q ≤ □(b, r) jointly imply that p ≤ □(a ; b, r).

(3) The conditional rule:

{p ⋒ q} a {r} {¬p ⋒ q} b {r}
{q} if p then a else b fi {r}

That is, p ⋒ q ≤ □(a, r) and ¬p ⋒ q ≤ □(b, r) jointly imply that q ≤ □((p? ;
a) ∪ (¬p? ; b), r).

(4) The while rule:

{p ⋒ q} a {q}
{q} while p do a od {¬p ⋒ q}

That is, p ⋒ q ≤ □(a, q) implies q ≤ □((p? ; a)∗ ; ¬p?,¬p ⋒ q).

(5) The weakening rule:

p ≤ p′ {p′} a {q′} q′ ≤ q

{p} a {q}

That is, if p ≤ p′, p′ ≤ □(a, q′), and q′ ≤ q, then p ≤ □(a, q).

Proof.

(1)

p ≤ p (By the reflexivity of ≤)

= □(skip, p). (By Definition 4.1.2 (2))

(2)

p ≤ □(a, q) and q ≤ □(b, r) ⇒ p ≤ □(a, q) and □(a, q) ≤ □(a,□(b, r))
(By Lemma 4.2.2)

⇒ p ≤ □(a,□(b, r)) (By the transitivity of ≤)

⇔ p ≤ □(a ; b, r). (By Definition 4.1.2 (6))

56



(3)

p ⋒ q ≤ □(a, r) ⇔ q ≤ p⇝ □(a, r) (By Theorem 4.2.1)

⇔ q ≤ ¬p ∨ (p ∧□(a, r))

⇔ q ≤ □(p?,□(a, r)) (By Definition 4.1.2 (9))

⇔ q ≤ □(p? ; a, r). (By Definition 4.1.2 (6))

Similarly,
¬p ⋒ q ≤ □(b, r) ⇔ q ≤ □(¬p? ; b, r)

is obtained. Thus,

p ⋒ q ≤ □(a, r) and ¬p ⋒ q ≤ □(b, r) ⇔ q ≤ □(p? ; a, r) ∧□(¬p? ; b, r)

⇔ q ≤ □((p? ; a) ∪ (¬p? ; b), r).
(By Definition 4.1.2 (7))

(4)

p ⋒ q ≤ □(a, q) ⇔ q ≤ p⇝ □(a, q) (By Theorem 4.2.1)

⇔ q ≤ ¬p ∨ (p ∧□(a, q))

⇔ q ≤ □(p?,□(a, q)) (By Definition 4.1.2 (9))

⇔ q ≤ □(p? ; a, q) (By Definition 4.1.2 (6))

⇒ q ≤ □((p? ; a)∗, q) (By Lemma 4.2.3)

Thus, the proof is completed if

□((p? ; a)∗, q) ≤ □((p? ; a)∗ ; ¬p?,¬p ⋒ q)

is proved. It is shown as follows:

q ≤ p ∨ q ⇔ q ≤ p ∨ (¬p ∧ (p ∨ q)) (By Theorem ??)

⇔ q ≤ ¬¬p ∨ (¬p ∧ (¬p ∧ (¬¬p ∨ q))) (By Definition 2.5.1 (2))

⇔ q ≤ ¬¬p ∨ (¬p ∧ (¬p ⋒ q))
⇔ q ≤ □(¬p?,¬p ⋒ q) (By Definition 4.1.2 (9))

⇒ □((p? ; a)∗, q) ≤ □((p? ; a)∗,□(¬p?,¬p ⋒ q))
(By Lemma 4.2.2)

⇔ □((p? ; a)∗, q) ≤ □((p? ; a)∗ ; ¬p?,¬p ⋒ q).
(By Definition 4.1.2 (6))

(5) p ≤ p′ and p′ ≤ □(a, q′) jointly imply p ≤ □(a, q′) by the transitivity of ≤.
On the other hand, q′ ≤ q implies □(a, q′) ≤ □(a, q) by Lemma 4.2.2. Thus,
p ≤ □(a, q) by the transitivity of ≤.

57



Owing to Theorem 4.2.4, it is expected to apply QDA to quantum program
verification. The validity of the Hoare-like inference rules means that the inference
rules in Hoare Logic also work in the quantum setting as long as the appropriate
logical connective(s) are chosen.

4.3 Quantum Dynamic Frame

So far, we have not mentioned the notion of states at all. However, it is helpful to
intuitively understand the properties of quantum programs by representing their
execution by relations.

A relation Ra on S is defined for each a ∈ Prog[Π, L]. That is, sRat is intended
that t is reachable from s by executing a. For this reason, we extend orthoframes
by adding relations for programs.

Definition 4.3.1. A quantum dynamic frame (QDF) is a triple

FQD = (F ,U ,R)

that consists of an orthoframe F = (S,R), family U = {uπ : π ∈ Π0} of functions
on S, and family R = {Ra : a ∈ Prog[Π, LF ]} of relations on S satisfying the
following conditions: for any π ∈ Π0, a, b ∈ Prog[Π, LF ], and P ∈ LF ,

(1) sRskipt if and only if s = t;

(2) Rabort = ∅;

(3) sRπt if and only if uπ(s) = t;

(4) sRa;bt if and only if sRau and uRbt for some u ∈ S;

(5) sRa∪bt if and only if s(Ra ∪Rb)t;

(6) sRa∗t if and only if s(
⋃

i≥0Rai)t;

(7) sRP?t if and only if t ∈ P ⋒Q for any Q ∈ LF satisfying s ∈ Q;

(8) uπ is bijective: for any t ∈ S, there exists exactly one s ∈ S such that
t = uπ(s);

(9) uπ preserves R: sRt if and only if uπ(s)Ruπ(t);

(10) RP? is self-adjoint: for any s, t, u ∈ S, if sRP?t and t̸Ru, then uRP?v and
s ̸Rv for some v ∈ S.

58



Example 4.3.2 (Hilbert Dynamic Frame). Let {Uπ : π ∈ Π0} be a family of uni-
tary operators (quantum gates) on H. Then for any Hilbert frame (H\{0},⊥), the
QDF (H\ {0},⊥,R), called a Hilbert dynamic frame, is uniquely constructed
from {uπ : π ∈ Π0}. It is not difficult to show that (H \ {0},⊥,R) is a QDF.

The self-adjointness of frames is also defined in [2, 8, 25] for different kinds of
frames. The self-adjointness of quantum transition frames is defined in [2], that
of quantum dynamic frames is defined in [8], and that of DO-frames is defined
in [25]. The self-adjointness of frames is an abstraction of the self-adjointness of
operators.

Example 4.3.3. Let FH be a Hilbert frame (Σ(H),⊥) (recall Example 3.4.2).
Then by Corollalry 3.4.11, the complex algebra (LFH ,⊆,¬⊥) of the Hilbert frame
(Σ(H),⊥) is isomorphic to the Hilbert lattice (S(H),⊆, ⊥) as ortholattices. Hence-
forth, we identify an element V ∈ LH with the corresponding closed subspace of
H. Put U = {Uπ : π ∈ Π0}, where each Uπ denotes a unitary operator (quantum
gate) on H. By the condition in Definition 4.3.1, R = {Ra : a ∈ Prog[Π, LFH ]}
is uniquely constructed from U . Here, we show that (Σ(H),⊥,U ,R) is a star-free
QDF. By the definition of unitary operators, Uπ is bijective and preserves ⊥ for
each π ∈ Π0. To show that RV ? is self-adjoint, first observe that

RV ? = {(s, t) : s ∈ W implies t ∈ V ∩ (V ⊥ ⊎W ) for each W ∈ LFH}
= {(s, t) : s ∈ W implies t ∈ PV [W ] for each W ∈ LFH} (see [34])

= {(s, t) : PV [s] = t},

where PV : H → H denotes the self-adjoint projection onto V , and PV [ ] denotes
the image under PV . For the self-adjointness of RV ?, it suffices to show that
PV [s] ̸⊥u implies s ̸⊥PV [u]. Recall that PV is said to be self-adjoint (as an operator
on H) if

⟨PV (x), y|PV (x), y⟩ = ⟨x, PV (y)|x, PV (y)⟩

for any x, y ∈ H, where ⟨·, ·|·, ·⟩ stands for the inner product on H. Note that for
any w, u ∈ Σ(H), w ̸⊥u if and only if ⟨w̄, ū|w̄, ū⟩ ≠ 0, where w̄ and ū stand for unit
vectors in one-dimensional subspaces w and u, respectively. This shows that the
self-adjointness of PV implies that of RV ?.

Remark 4.3.4. Although the definition of RP? in this paper is different from that
in [2, 8], the properties called the

• adequacy (s ∈ P implies sRP?s) of RP? and

• repeatability (sRP?t implies t ∈ P ) of RP?

59



are also satisfied. For the adequacy of RP?, assume s ∈ P and s ∈ Q. Then,

s ∈ ¬RP ∪Q ⊆ ¬RP ⊎Q

by s ∈ Q, and thus s ∈ P ∩ (¬RP ⊎ Q) by s ∈ P . That is, s ∈ P implies sRP?s.
For the repeatability of RP?, assume sRP?t. Because S ∈ LF (Theorem 3.4.8 (2)),
we have

t ∈ P ∩ (¬RP ⊎ S) = P.

4.4 Complex Algebra of QDF

Complex algebras are employed to verify systems. Suppose a state transition
system modeling the actual system to be verified is given. The property to be
verified can be confirmed by searching for states that can be transitioned from
the initial state in that system. This kind of verification is called reachability
analysis and is one of the prominent techniques for model checking. However,
some properties can be proved without actually searching for possible transition
states. For example, “if a property p holds in the current state, then p also holds
after executing skip” is always true regardless of an underlying state transition
system. Thus, extra calculations can be omitted in reachability analysis if the
properties that always hold (let us say “valid”) are known in advance. Algebras
provide the answer to what properties are valid. For example, □(skip, p) = p
corresponds to the above property. Not only the equations that appear in the
definition of algebras but also any equations obtained in the algebras correspond
to properties that are valid. In this way, algebraic computation is useful in the
reachability analysis of state transition systems, and complex algebras relate state
transition systems to algebras.

The notion of the complex algebras of an orthoframe (Definition 3.4.5) is now
extended to that of a QDF.

Definition 4.4.1. The complex algebra of a QDF FQD = (F ,U ,R) is a tuple

C(FQD) = (LF ,⊆,¬R,□R)

that consists of the set LF of all orthoclosed sets in F , set inclusion relation ⊆ on
LF , and functions ¬R : LF → LF and □R : Prog[Π, LF ] × LF → LF such that

(1) ¬RP = {s ∈ S : sRt for any t ∈ P} (recall Definition 3.4.3),

(2) □R(a, P ) = {s ∈ S : t ∈ P for any t ∈ S satisfying sRat}.

Remark 4.4.2. C(FQD) is well-defined in the sense that ¬RP ∈ LF and□R(a, P ) ∈
LF for each P ∈ LF . For the proof of ¬RP ∈ LF , see Remark 3.4.6. Before em-
barking on the proof of □R(a, P ) ∈ LF , we prepare the following lemma.

60



Lemma 4.4.3.

(1) ¬R□R(π, P ) = □R(π,¬RP ).

(2) □R(skip, P ) = P .

(3) □R(abort, P ) = S.

(4) □R(a, S) = S.

(5) □R(a, P ∩Q) = □R(a, P ) ∩□R(a,Q).

(6) □R(a ; b, P ) = □R(a,□R(b, P )).

(7) □R(a ∪ b, P ) = □R(a, P ) ∩□R(b, P ).

(8) □R(a∗, P ) =
⋂
{□R(ai, P ) : i ≥ 0}.

(9) □R(P?, Q) = ¬RP ⊎ (P ∩Q).

Proof.

(1) Proof of ¬R□R(π, P ) = □R(π,¬RP ). Observe that

□R(π, P ) = {s ∈ S : ∀t ∈ S (sRπt⇒ t ∈ P )}
= {s ∈ S : ∀t ∈ S (uπ(s) = t⇒ t ∈ P )}
= {s ∈ S : uπ(s) ∈ P}.

In other words, □R(π, P ) is the inverse image of P under uπ. Thus,

¬R□R(π, P ) = {s ∈ S : ∀u ∈ S (u ∈ □R(π, P ) ⇒ sRu)}
(By Definition 4.3.1 (9))

= {s ∈ S : ∀u ∈ S (uπ(u) ∈ P ⇒ uπ(s)Ruπ(u))}
(By Definition 4.3.1 (8))

= {s ∈ S : ∀t ∈ S (t ∈ P ⇒ uπ(s)Rt)}
= {s ∈ S : uπ(s) ∈ ¬RP} = □R(π,¬RP ).

(2) Proof of □R(skip, P ) = P . Immediate.

(3) Proof of □R(abort, P ) = S. Immediate.

(4) Proof of □R(a, S) = S. Immediate.

61



(5) Proof of □R(a, P ∩Q) = □R(a, P ) ∩□R(a,Q).

□R(a, P ∩Q) = {s ∈ S : ∀t ∈ S (sRat⇒ t ∈ P ∩Q)}
= {s ∈ S : ∀t ∈ S (sRat⇒ t ∈ P and t ∈ Q)}
= {s ∈ S : ∀t ∈ S ((sRat⇒ t ∈ P ) and (sRat⇒ t ∈ Q))}
= {s ∈ S : ∀t ∈ S (sRat⇒ t ∈ P ) and ∀t ∈ S (sRat⇒ t ∈ Q)}
= □R(a, P ) ∩□R(a,Q).

(6) Proof of □R(a ; b, P ) = □R(a,□R(b, P )).

□R(a ; b, P ) = {s ∈ S : ∀t ∈ S (∃u ∈ S (sRau and uRbt) ⇒ t ∈ P )}
= {s ∈ S : ∀t ∈ S (∀u ∈ S not (sRau and uRbt) or t ∈ P )}
= {s ∈ S : ∀t ∈ S, ∀u ∈ S (not (sRau and uRbt) or t ∈ P )}
= {s ∈ S : ∀u ∈ S, ∀t ∈ S (not (sRau and uRbt) or t ∈ P )}
= {s ∈ S : ∀u ∈ S, ∀t ∈ S (s ̸Rau or u̸Rbt or t ∈ P )}
= {s ∈ S : ∀u ∈ S (s ̸Rau or ∀t ∈ S (u ̸Rbt or t ∈ P ))}
= {s ∈ S : ∀u ∈ S (sRau⇒ ∀t ∈ S (uRbt⇒ t ∈ P ))}
= {s ∈ S : ∀u ∈ S (sRau⇒ u ∈ □R(b, P ))}
= □R(a,□R(b, P )).

(7) Proof of □R(a ∪ b, P ) = □R(a, P ) ∩□R(b, P ).

□R(a ∪ b, P ) = {s ∈ S : ∀t ∈ S (s(Ra ∪Rb)t⇒ t ∈ P )}
= {s ∈ S : ∀t ∈ S (sRat or sRbt⇒ t ∈ P )}
= {s ∈ S : ∀t ∈ S ((sRat⇒ t ∈ P ) and (sRbt⇒ t ∈ P ))}
= {s ∈ S : ∀t ∈ S (sRat⇒ t ∈ P ) and ∀t ∈ S (sRbt⇒ t ∈ P )}
= □R(a, P ) ∩□R(b, P ).

(8) Proof of □R(a∗, P ) =
⋂
{□R(ai, P ) : i ≥ 0}.

□R(a∗, P ) = {s ∈ S : ∀t ∈ S (s(
⋃

i≥0
Rai)t⇒ t ∈ P )}

=
⋂

{□R(ai, P ) : i ≥ 0}

is obtained in a similar way as in the case of a ∪ b.

(9) Proof of □R(P?, Q) = ¬RP ⊎ (P ∩Q).

For the ⊆-part, suppose s /∈ ¬R(P ∩ ¬R(P ∩ Q)). Then there exists t ∈ S
such that

62



(⋆) t ∈ P ∩ ¬R(P ∩Q)

but s ̸Rt. Thus, tRP?t by the adequacy of RP? (Remark 4.3.4). Because
tRP?t and t ̸Rs (the symmetry of ̸R follows from that of R), it follows from
the self-adjointness of RP? that sRP?u and t̸Ru for some u ∈ S.

t
RP? //

̸R
��

t

̸R
��∃u s

RP?oo

By (⋆), t ∈ ¬R(P ∩Q). That is, t̸Rv implies v /∈ P ∩Q for any v ∈ S. Hence,
u /∈ P ∩ Q by t̸Ru. It implies that u /∈ P or u /∈ Q, but the former must
be false by sRP?u. Therefore, u /∈ Q is obtained. It means that sRP?u and
u /∈ Q for some u ∈ S. Equivalently, s /∈ □R(P?, Q).

For the ⊇-part, suppose s /∈ □R(P?, Q). Then there exists t ∈ S such that
sRP?t but t /∈ Q. Thus, t /∈ ¬R¬RQ by Q ∈ LF . Hence, u ∈ ¬RQ but t̸Ru
for some u ∈ S. Because sRP?t and t̸Ru, it follows from the self-adjointness
of RP? that uRP?v and s ̸Rv for some v ∈ S.

s
RP? //

̸R
��

t

̸R
��∃v u

RP?oo

Therefore, v ∈ P ∩ (¬RP ⊎ ¬RQ) by uRP?v and u ∈ ¬RQ. Consequently, it
follows from s ̸Rv that

s /∈ ¬R(P ∩ (¬RP ⊎ ¬RQ)) = ¬RP ⊎ (¬R¬RP ∩ ¬R¬RQ) = ¬RP ⊎ (P ∩Q).

Theorem 4.4.4. LF is closed under □R: □R(a, P ) ∈ LF for each P ∈ LF .

Proof. We prove by structural induction on a ∈ Prog[Π, L].

(1) The base cases, namely a = skip, a = abort, or a = π ∈ Π0. If a =
skip, then □R(a, P ) = P ∈ LF by Lemma 4.4.3 (2). If a = abort, then
□R(a, P ) = S ∈ LF by Lemma 4.4.3 (3) and Lemma 3.4.8 (2). If a = π ∈ Π0,
then it follows from Lemma 4.4.3 (1) and Definition 2.5.1 (2) that

¬R¬R□R(π, P ) = ¬R□R(π,¬RP ) = □R(π, P ).

63



(2) For the case a = b ; c, □R(a ; b, P ) = □R(a,□R(b, P )) ∈ LF by Lemma 4.4.3
(6) and the induction hypothesis.

(3) For the case a = b∪ c, □R(a∪ b, P ) = □R(a, P )∩□R(b, P ) ∈ LF by Lemma
4.4.3 (7), Lemma 3.4.8 (1), and the induction hypothesis.

(4) For the case a = b∗, □R(b∗, P ) =
⋂
{□R(bi, P ) : i ≥ 0} ∈ LF by Lemma

4.4.3 (8), Lemma 3.4.8 (1), and the induction hypothesis.

(5) For the case a = P?, □R(P?, Q) = ¬RP ⊎ (P ∩Q) ∈ LF by Lemma 4.4.3 (9)
and the definition of ⊎.

Theorem 4.4.5. Every complex algebra C(FQD) of QDFs FQD = (F ,U ,R) is a
QDA.

Proof. We need to show that (LF ,⊆,¬R) is a complete orthomodular lattice, and
C(FQD) satisfies the conditions from (1) to (11) in Definition 5.1.2.

It follows from Theorem 3.4.9 that (LF ,⊆,¬R) is a complete ortholattice. It
follows from Lemma ?? that C(FQD) satisfies the conditions from (1) to (11) in
Definition 5.1.2.

It remains to show that (LF ,⊆,¬R) satisfies the orthomodular law

P ∩ (¬RP ⊎ (P ∩Q)) ⊆ Q.

The condition (11) in Definition 5.1.2 states that □R(P?, Q) = ¬RP ⊎ (P ∩
Q). Thus, it suffices to show P ∩ □R(P?, Q) ⊆ Q. Take an arbitrary s ∈ P .
Then because s ∈ P , it follows from the adequacy of RP? (Remark 4.3.4) that
sRP?s. Therefore, because s ∈ □R(P?, Q), we obtain s ∈ Q. Consequently,
P ∩□R(P?, Q) ⊆ Q.

4.5 Running Examples

Finally, we apply Theorem 4.4.5 to verification of the partial correctness of quan-
tum programs. The verification procedure is as follows.

Step 1 Prepare a quantum program (quantum protocol or quantum algorithm)
and a precondition and postcondition of the quantum program.

Step 2 Construct a QDF (quantum state transition system) from the quantum
gates used in the quantum program.

64



Step 3 Construct the complex algebra from the QDF by following Definition
4.4.1.

Step 4 Describe the weakest precondition of the quantum program as an element
of the complex algebra and rewrite it by following the rules from (1) to (9)
in Definition 4.1.2. (The theoretical background of this step is based on
Theorem 4.4.5.)

As an example, we verify the partial correctness of simple while-do/if-then-else
programs according to the above procedure.

While-do Program

For the discussion below, we introduce some notations. Let ⟨|ψ1⟩ , . . . , |ψn⟩⟩ be the
smallest closed subspace that contains a set {|ψ1⟩ , . . . , |ψn⟩} of ket vectors and
⟨|ψ1⟩ , . . . , |ψn⟩⟩0 be ⟨|ψ1⟩ , . . . , |ψn⟩⟩ without the origin (zero vector) 0. That is,

⟨|ψ1⟩ , . . . , |ψn⟩⟩0 = ⟨|ψ1⟩ , . . . , |ψn⟩⟩ \ {0}.

In addition, let H be the Hadamard gate and H be the atomic program corre-
sponding to H. The quantum program qwhile defined below is borrowed from
[39, Example 3.1].

Step 1. We verify the partial correctness of the quantum program

qwhile := while ⟨|1⟩⟩0 do H od

with respect to the precondition ⟨|−⟩⟩0 and postcondition ⟨|0⟩⟩0, where
|−⟩ := (|0⟩ − |1⟩)/

√
2. The program qwhile means that while ⟨|1⟩⟩0 holds

(while it is confirmed that the current state is in ⟨|1⟩⟩0), execute H.

Step 2. For the purpose of verification of the partial correctness of qwhile, it
suffices to fix S, R, and uH as follows:

S = C2 \ {0}, R = ⊥, uH = H,

where C2 denotes the complex 2-space, and ⊥ denotes the orthogonality
relation. Formally, this is not the full description of the QDF F . The other
components of F irrelevant to the following discussion are omitted.

Step 3. Then we can calculate the components LF , ⊆, ¬R, and □R of the complex
algebra C(FQD) by following Definition 4.4.1.

65



Step 4. Now we deduce the Hoare triple {⟨|−⟩⟩0} while ⟨|1⟩⟩0 do H od {⟨|0⟩⟩0}
by using the established rules in Theorem 4.2.4. Observe that {⟨|1⟩⟩0} H

{⟨|−⟩⟩0}. Because

⟨|1⟩⟩0 ⋒ ⟨|−⟩⟩0 = ⟨|1⟩⟩0 ∩ (¬R⟨|1⟩⟩0 ⊎ ⟨|−⟩⟩0) = ⟨|1⟩⟩0,

we have {⟨|1⟩⟩0 ⋒ ⟨|−⟩⟩0} H {⟨|−⟩⟩0}. Thus, by the while rule, we obtain
{⟨|−⟩⟩0} while ⟨|1⟩⟩0 do H od {¬R⟨|1⟩⟩0 ⋒ ⟨|−⟩⟩0}. Because

¬R⟨|1⟩⟩0 ⋒ ⟨|−⟩⟩0 = ¬R⟨|1⟩⟩0 ∩ (¬R¬R⟨|1⟩⟩0 ⊎ ⟨|−⟩⟩0) = ⟨|0⟩⟩0,

we have {⟨|−⟩⟩0} while ⟨|1⟩⟩0 do H od {⟨|0⟩⟩0}.

If-then-else Program

Consider the situation in that Alice wants to send a quantum state to Bob. How-
ever, because the state is fragile, she should not send the state itself. Instead,
she transmits sufficient classical information for Bob to regenerate the state. It
is achieved by quantum teleportation protocol [6]. This protocol is depicted in
Figure 4.1, where |ψ⟩ stands for any ket vector.

|ψ⟩ H

|0⟩ H

|0⟩ X Z |ψ⟩

Figure 4.1: Quantum Teleportation

We use the following abbreviations to verify quantum teleportation. Because
it is clear from the context, we use the same symbol 0 for the origins in different
Hilbert spaces C2 and C2 ⊗ C2 ⊗ C2.

|φ⟩ := |00⟩ ⊗ |ψ⟩ + |01⟩ ⊗X |ψ⟩ + |10⟩ ⊗ Z |ψ⟩ + |11⟩ ⊗XZ |ψ⟩ ,

P ′ := ⟨|00⟩ ⊗ |ψ⟩ , |01⟩ ⊗X |ψ⟩ , |10⟩ ⊗ Z |ψ⟩ , |11⟩ ⊗XZ |ψ⟩⟩0,

P ′′ := ⟨|00⟩ ⊗ |ψ⟩ , |01⟩ ⊗ |ψ⟩ , |10⟩ ⊗ Z |ψ⟩ , |11⟩ ⊗ Z |ψ⟩⟩0,

P (0, |0⟩) := ⟨|0⟩⟩0 ⊗ C2 ⊗ C2,

P (1, |0⟩) := C2 ⊗ ⟨|0⟩⟩0 ⊗ C2

66



Furthermore, let H[1], CNOT[1, 2], CNOT[0, 1], H[0] be the atomic programs that cor-
respond to the unitary operators I⊗H⊗I, I⊗CNOT , CNOT ⊗I, and H⊗I⊗I,
respectively, where I denotes the identity operator, and CNOT denotes the con-
trolled NOT gate.

We verify the partial correctness of the quantum program

teleport = H[1] ; CNOT[1, 2] ; CNOT[0, 1] ; H[0] ; qtmeasure,

qtmeasure = if p(1, |0⟩) then skip else X[2] fi

; if p(0, |0⟩) then skip else Z[2] fi.

with respect to the precondition ⟨|ψ⟩⊗ |00⟩⟩0 and postcondition C2⊗C2⊗⟨|ψ⟩⟩0.
That is, we verify the statement “|ψ⟩ is correctly teleported.” Recall that if p then
a else b fi is an abbreviation for (p? ; a) ∪ (¬p? ; b).

Because the procedure for verifying teleport is similar to that for verifying
qwhile in Section 4.5, we only show the crucial part. The Hoare triple {⟨|ψ⟩ ⊗
|00⟩⟩0} teleport {C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0} is derived by using the established rules in
Theorem 4.2.4.

{⟨|ψ⟩ ⊗ |00⟩⟩0} H[1] ; CNOT[1, 2] ; CNOT[0, 1] ; H[0] {⟨|φ⟩⟩0} (1)

⟨|φ⟩⟩0 ⊆ P ′ (2)

{⟨|ψ⟩ ⊗ |00⟩⟩0} H[1] ; CNOT[1, 2] ; CNOT[0, 1] ; H[0] {P ′} (3: weakning 1,2)

{P (1, |0⟩) ⋒ P ′} skip {P (1, |0⟩) ⋒ P ′} (4: skip)

P (1, |0⟩) ⋒ P ′ ⊆ P ′′ (5)

{P (1, |0⟩) ⋒ P ′} skip {P ′′} (6: weakning 4,5)

{⟨|01⟩ ⊗X |ψ⟩ , |11⟩ ⊗XZ |ψ⟩⟩0} X[2] {⟨|01⟩ ⊗ |ψ⟩ , |11⟩ ⊗ Z |ψ⟩⟩0} (7)

⟨|01⟩ ⊗ |ψ⟩ , |11⟩ ⊗ Z |ψ⟩⟩0 ⊆ P ′′ (8)

⟨|01⟩ ⊗X |ψ⟩ , |11⟩ ⊗XZ |ψ⟩⟩0 = ¬RP (1, |0⟩) ⋒ P ′ (9)

{¬RP (1, |0⟩) ⋒ P ′} X[2] {P ′′} (10: weakning 7,8,9)

{P ′} if P (1, |0⟩) then skip else X[2] fi {P ′′} (11: conditional 6,10)

{P (0, |0⟩) ⋒ P ′′} skip {P (0, |0⟩) ⋒ P ′′} (12: skip)

P (0, |0⟩) ⋒ P ′′ ⊆ C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩ (13)

{P (0, |0⟩) ⋒ P ′′} skip {C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0} (14: weakning 12,13)

{⟨|10⟩ ⊗ Z |ψ⟩ , |11⟩ ⊗ Z |ψ⟩⟩0} Z[2] {⟨|10⟩ ⊗ |ψ⟩ , |11⟩ ⊗ |ψ⟩⟩0} (15)

⟨|10⟩ ⊗ |ψ⟩ , |11⟩ ⊗ |ψ⟩⟩0 ⊆ C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0 (16)

⟨|10⟩ ⊗ Z |ψ⟩ , |11⟩ ⊗ Z |ψ⟩⟩0 = ¬RP (0, |0⟩) ⋒ P ′′ (17)

{¬RP (0, |0⟩) ⋒ P ′′} Z[2] {C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0} (18: weakning 15,16,17)

{P ′′} if P (0, |0⟩) then skip else Z[2] fi {C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0}
(19: conditional 14,18)

67



{P ′} if P (1, |0⟩) then skip else X[2] fi ; if P (0, |0⟩) then skip else Z[2] fi

{C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0} (20: composition 11,19)

{⟨|ψ⟩ ⊗ |00⟩⟩0} teleport {C2 ⊗ C2 ⊗ ⟨|ψ⟩⟩0} (21: composition 3,20)

68



Chapter 5

The Stone-type Representation
Theorem for Star-free QDA

This chapter contains:

5.1 Star-free Quantum Dynamic Algebra . . . . . . . . . . . . . . . . . 69
5.2 Star-free Quantum Dynamic Frame . . . . . . . . . . . . . . . . . . 71
5.3 Complex Algebra of Star-free QDF . . . . . . . . . . . . . . . . . . 72
5.4 Canonical Frame of Star-free QDA . . . . . . . . . . . . . . . . . . 74
5.5 Representation Theorem . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Examples from Quantum Computation . . . . . . . . . . . . . . . . 83

In this chapter, we focus on the star-free fragment: We show how to construct
a star-free QDA from a given star-free QDF (Theorem 5.3.4) and how to construct
a star-free QDF from a given star-free QDA (Theorem 5.4.4). We apply these
construction methods to prove our main theorem, the Stone-type representation
theorem for star-free QDAs (Theorem 5.5.3).

5.1 Star-free Quantum Dynamic Algebra

First of all, we define the star-free fragments of RPA and QDA, respectively. Note
that QDA is not just QDA without the iteration operator: a star-free QDA is a
QDA equipped with an auxiliary operator ■ for proving the Stone-type represen-
tation theorem.

Definition 5.1.1. Let L be a non-empty set. A star-free regular program
algebra (star-free RPA) is a tuple

P−[L] = (Prog−[L], ;,∪, ?)

69



that consists of a non-empty set Prog−[L] depending on L and functions

; : Prog−[L] × Prog−[L] → Prog−[L],

∪ : Prog−[L] × Prog−[L] → Prog−[L],

? : L→ Prog−[L].

Let skip and abort be specific symbols (called program constants), and Π0

be a set of symbols (called atomic programs). The star-free RPA generated by
Π = {skip, abort} ∪ Π0 is defined as the smallest star-free RPA

P−[Π, L] = (Prog−[Π, L], ;,∪, ?)

satisfying Π ⊆ Prog−[Π, L], where Prog[Π, L] stands for a non-empty set depending
on Π and L.

Star-free QDA is not just QDA without the iteration operator: a star-free QDA
is an algebra equipped with an auxiliary operator ■ for proving the Stone-type
representation theorem (Theorem 5.5.3).

Definition 5.1.2. A star-free quantum dynamic algebra (star-free QDA) is
a tuple

L−
QD = (L,≤,¬,□,■)

that consists of an orthomodular lattice (L,≤,¬) and functions (scalar multipli-
cation)

□ : Prog−[Π, L] × L→ L, ■ : Π0 × L→ L

satisfying the following conditions: for any π ∈ Π0, a, b ∈ Prog−[Π, L], and p, q ∈ L,

(1) ¬□(π, p) = □(π,¬p);

(2) ■(π,□(π, p)) = □(π,■(π, p)) = p;

(3) ■(π,⋎) = ⋎;

(4) ■(π, p ∧ q) = ■(π, p) ∧■(π, q);

(5) □(skip, p) = p;

(6) □(abort, p) = ⋎;

(7) □(a,⋎) = ⋎;

(8) □(a, p ∧ q) = □(a, p) ∧□(a, q);

(9) □(a ; b, p) = □(a,□(b, p));

70



(10) □(a ∪ b, p) = □(a, p) ∧□(b, p);

(11) □(p?, q) = ¬p ∨ (p ∧ q).

One concern is whether the addition of the conditions with respect to ■ for
convenience causes problems when applying star-free QDFs to quantum program
verification. In fact, these conditions are satisfied in star-free Hilbert Dynamic
Algebra (see below).

Example 5.1.3 (Star-free Hilbert Dynamic Algebra). A Hilbert lattice (S(H),⊆
, ⊥,□,■) with □ and ■ satisfying the conditions of Definition 5.1.2 is a star-free
QDA, and is called star-free Hilbert synamic algebra. In fact, □(V ?,W ) is
the inverse image

P−1
V (W ) = {v ∈ H : PV (v) ∈ W}

of W under the projection PV : H → H onto V [19]

5.2 Star-free Quantum Dynamic Frame

Star-free quantum dynamic frames are just star-free fragments of quantum dy-
namic frames. We restate the conditions for convenience.

Definition 5.2.1. A star-free quantum dynamic frame (star-free QDF) is a
tuple

F−
QD = (F ,U ,R)

that consists of an orthoframe F = (S,R), family U = {uπ : π ∈ Π0} of functions
on S, and family R = {Ra : a ∈ Prog−[Π, LF ]} of relations on S satisfying the
following conditions:

(1) sRskipt if and only if s = t;

(2) Rabort = ∅;

(3) sRπt if and only if uπ(s) = t;

(4) sRa;bt if and only if sRau and uRbt for some u ∈ S;

(5) sRa∪bt if and only if s(Ra ∪Rb)t;

(6) sRP?t if and only if t ∈ P ⋒Q for any Q ∈ LF satisfying s ∈ Q;

(7) uπ is bijective: for any t ∈ S, there exists exactly one s ∈ S such that
t = uπ(s);

71



(8) uπ preserves R: sRt if and only if uπ(s)Ruπ(t);

(9) RP? is self-adjoint: for any s, t, u ∈ S, if sRP?t and t̸Ru, then uRP?v and
s ̸Rv for some v ∈ S.

Example 5.2.2. Let FH be a Hilbert frame (Pure(H),⊥) (recall Example 3.4.2).
Then each V ∈ LFH is a closed subspace of H. Put U = {Uπ : π ∈ Π0}, where
each Uπ denotes a unitary operator (quantum gate) on H. By the condition in
Definition 5.2.1, R = {Ra : a ∈ Prog−[Π, LFH ]} is uniquely constructed from
U . Here, we show that (Pure(H),⊥,U ,R) is a star-free QDF. By the definition of
unitary operators, Uπ is bijective and preserves ⊥. To show that RV ? is self-adjoint,
first observe that

RV ? = {(s, t) : s ∈ W implies t ∈ V ∩ (V ⊥ ⊎W ) for each W ∈ LFH}
= {(s, t) : s ∈ W implies t ∈ PV (W ) for each W ∈ LFH} (see [34])

= {(s, t) : PV (s) = t},

where PV : H → H denotes the self-adjoint projection onto V . Thus, for the
self-adjointness of RV ?, it suffices to show that PV (s)̸⊥u implies s ̸⊥PV (u). Recall
that PV is said to be self-adjoint (as an operator on H) if

⟨PV (s), t|PV (s), t⟩ = ⟨s, PV (t)|s, PV (t)⟩ ,

where ⟨·, ·|·, ·⟩ stands for the inner product on H. Because s ̸⊥t if and only if
⟨s, t|s, t⟩ ≠ 0, the self-adjointness of PV implies that of RV ?.

5.3 Complex Algebra of Star-free QDF

There is a remarkable relation between star-free QDAs and star-free QDFs: a star-
free QDA is constructed from a star-free QDF, and vice versa. The star-free QDA
constructed from a star-free QDF is called the complex algebra (Definition 5.3.1),
and the star-free QDF constructed from a star-free QDA is called the canonical
frame (Definition 5.4.1). We show that every complex algebra of a star-free QDF
is a star-free QDA in Section 5.3 (Theorem 5.3.4), and also every canonical frame
of a star-free QDA is a star-free QDF in Section 5.4 (Theorem 5.4.4).

Definition 5.3.1. The complex algebra of a star-free QDF F−
QD = (F ,U ,R) is

a tuple
C(F−

QD) = (LF ,⊆,¬R,□R,■U),

where ¬R : LF → LF , □R : Prog−[Π, LF ] × LF → LF , and ■U : Π0 × LF → LF
are functions such that

72



(1) ¬RP = {s ∈ S : sRt for any t ∈ P} (recall Definition 3.4.3),

(2) □R(a, P ) = {s ∈ S : t ∈ P for any t ∈ S satisfying sRat},

(3) ■U(π, P ) = {uπ(s) : s ∈ P} (that is, ■U(π, P ) is the image of P under uπ).

Remark 5.3.2. C(F−
QD) is well-defined in the sense that ¬RP ∈ LF , □R(a, P ) ∈

LF , and ■U(π, P ) ∈ LF for each P ∈ LF . For the proof of ¬RP ∈ LF , see Remark
3.4.6. Before embarking on the proof of □R(a, P ) ∈ LF and ■U(π, P ) ∈ LF , we
prepare the next lemma.

Lemma 5.3.3.

(1) ¬R□R(π, P ) = □R(π,¬RP ).

(2) ■U(π,□R(π, P )) = □R(π,■U(π, P )) = P .

(3) ■U(π, S) = S.

(4) ■U(π, P ∩Q) = ■U(π, P ) ∩■U(π,Q).

(5) □R(skip, P ) = P .

(6) □R(abort, P ) = S.

(7) □R(a, S) = S.

(8) □R(a, P ∩Q) = □R(a, P ) ∩□R(a,Q).

(9) □R(a ; b, P ) = □R(a,□R(b, P )).

(10) □R(a ∪ b, P ) = □R(a, P ) ∩□R(b, P ).

(11) □R(P?, Q) = ¬RP ⊎ (P ∩Q).

Proof.

(1) Proof of □R(π,¬RP ) = ¬R□R(π, P ). See Lemma 4.4.3 (1).

(2) Proof of ■U(π,□R(π, P )) = □R(π,■U(π, P )) = P . It follows from the fact
that the image of the inverse image of a function f and the inverse image of
the image of f are identical if f is a bijection (in this case, f = uπ).

(3) Proof of ■U(π, S) = S. Immediate.

(4) Proof of ■U(π, P ∩ Q) = ■U(π, P ) ∩ ■U(π,Q). The proof follows from the
fact that every bijection preserves intersection.

73



(5) Proof of □R(skip, P ) = P . See Lemma 4.4.3 (2)

(6) Proof of □R(abort, P ) = S. See Lemma 4.4.3 (3).

(7) Proof of □R(a, S) = S. See Lemma 4.4.3 (4).

(8) Proof of □R(a, P ∩Q) = □R(a, P ) ∩□R(a,Q). See Lemma 4.4.3 (5).

(9) Proof of □R(a ; b, P ) = □R(a,□R(b, P )). See Lemma 4.4.3 (6).

(10) Proof of □R(a ∪ b, P ) = □R(a, P ) ∩□R(b, P ). See Lemma 4.4.3 (7).

(11) Proof of □R(P?, Q) = ¬RP ⊎ (P ∩Q). See Lemma 4.4.3 (9).

Theorem 5.3.4. Every complex algebra C(F−
QD) of star-free QDFs F−

QD = (F ,U ,R)
is a star-free QDA.

Proof. Similar to the proof of Theorem 4.4.5 (but use Lemma 5.3.3 instead of
Lemma 4.4.3).

5.4 Canonical Frame of Star-free QDA

The canonical frame of star-free QDAs is constructed by extending that of ortho-
lattices (Definition 3.4.12).

Definition 5.4.1. The canonical frame of a star-free QDA L−
QD is a tuple

C(L−
QD) = (SL−

QD , RL−
QD ,UL−

QD ,RL−
QD)

that consists of

• the set SL−
QD of all proper filters of (L,≤),

• a relation RL−
QD on SL−

QD ,

• family UL−
QD = {ûπ : π ∈ Π0} of functions on SL−

QD , and

• family RL−
QD = {RL−

QD
a : a ∈ Prog−[Π, L]} of relations on SL−

QD

satisfying the following conditions: for any π ∈ Π0, a, b ∈ Prog−[Π, L], and p ∈ L,

(1) RL−
QD = {(F,G) : p ∈ F and ¬p ∈ G for some p ∈ L};

74



(2) ûπ(F ) = {p : □(π, p) ∈ F} for each F ∈ SL−
QD ;

(3) R
L−
QD

skip = {(F, F ) : F ∈ SL−
QD};

(4) R
L−
QD

abort = ∅;

(5) R
L−
QD

π = {(F,G) : ûπ(F ) = G};

(6) R
L−
QD

a;b = {(F,G) : FR
L−
QD

a H and HR
L−
QD

b G for some H ∈ SL−
QD};

(7) R
L−
QD

a∪b = R
L−
QD

a ∪RL−
QD

b ;

(8) R
L−
QD

p? = {(F,G) : p ⋒ q ∈ G for any q ∈ L satisfying q ∈ F}.

Remark 5.4.2. Note that ûπ is well-defined in the sense that ûπ(F ) ∈ SL−
QD for

each F ∈ SL−
QD . For, we confirm that ûπ(F ) satisfies all the conditions of proper

filters.

• ûπ(F ) ̸= ∅: ⋎ ∈ ûπ(F ) because □(π,⋎) = ⋎ ∈ F .

• To show that ûπ(F ) is upward closed, assume that p ∈ ûπ(F ) and p ≤ q.
Because p = p ∧ q by the assumption p ≤ q,

p ∈ ûπ(F ) ⇔ □(π, p) ∈ F ⇔ □(π, p ∧ q) ∈ F ⇔ □(π, p) ∧□(π, q) ∈ F.

Recall that F ∈ SL−
QD and is upward closed. Thus, □(π, q) ∈ F by

□(π, p) ∧□(π, q) ≤ □(π, q).

• ûπ(F ) is closed under ∧:

p, q ∈ ûπ(F ) ⇔ □(π, p),□(π, q) ∈ F ⇒ □(π, p) ∧□(π, q) ∈ F

⇔ □(π, p ∧ q) ∈ F ⇔ p ∧ q ∈ ûπ(F )

• Finally, we show that ûπ(F ) is proper: ûπ(F ) ̸= L. Because F is proper, there
exists p ∈ L such that p /∈ F . Therefore, □(π,■(π, p)) /∈ F by Definition
5.1.2 (2). Hence, ■(π, p) /∈ ûπ(F ), which means that ûπ(F ) is proper.

In Remark 4.3.4, we proved that the adequacy and repeatability of RP? are
satisfied. The dual versions of them are also satisfied.

Theorem 5.4.3. R
L−
QD

p? satisfies dual adequacy and dual repeatability.

75



(1) The dual adequacy of R
L−
QD

p? : p ∈ F implies FR
L−
QD

p? F .

(2) The dual repeatability of R
L−
QD

p? : FR
L−
QD

p? G implies p ∈ G.

Proof.

(1) Assume that p ∈ F and q ∈ F . Then ¬p∨q ∈ F because F is upward closed.
Thus, p ∧ (¬p ∨ q) ∈ F because F is closed under ∧.

(2) Assume FR
L−
QD

p? G. Then p ∧ (¬p ∨ q) ∈ G for any q ∈ F . Because F is a
filter, ⋎ ∈ F . Thus,

p = p ∧ (¬p ∨⋎) ∈ G.

In the next theorem, we prove that every canonical frame of star-free QDAs is a
star-free QDF. ■ plays a role in this theorem. That is, the conditions with respect
to■ imposed on star-free QDAs are required to show that some conditions imposed

on star-free QDFs: ûπ is bijective, ûπ preserves RL−
QD , and R

L−
QD

θ(p)? is self-adjoint.

Theorem 5.4.4. Every canonical frame C(L−
QD) of star-free QDAs L−

QD = (L,≤
,¬,□,■) is a star-free QDF.

Proof. It follows from Theorem 3.4.13 that (SL−
QD , RL−

QD) is an orthoframe. The
conditions from (1) to (6) in Definition 4.3.1 are shown immediately. Thus, it
remains to show the conditions (7), (8), and (9) in Definition 4.3.1.

(7): ûπ is bijective. Suppose ûπ(F ) = ûπ(G) to show that ûπ is injective. Then
□(π, p) ∈ F if and only if □(π, p) ∈ G for each p ∈ L. Take an arbitrary q ∈ L.
Then by substituting ■(π, q) for p and by Definition 5.1.2 (2), q = □(π,■(π, q)) ∈
F if and only if q = □(π,■(π, q)) ∈ G. Equivalently, F = G. For the surjectivity

of ûπ, it suffices to show that for any F ∈ SL−
QD , there exists G ∈ SL−

QD such that
F = ûπ(G). If we choose {p : ■(π, p) ∈ F} as G, then F = ûπ(G). This is because

ûπ(G) = {p : □(π, p) ∈ {q : ■(π, q) ∈ F}} = {p : ■(π,□(π, p)) ∈ F}
= {p : p ∈ F} = F

by Definition 5.1.2 (2). It remains to show G = {p : ■(π, p) ∈ F} ∈ SL−
QD . It is

shown in the same way as the proof of uπ(F ) ∈ SL−
QD explained in Remark 5.4.2.

(8): ûπ preserves RL−
QD . Suppose FRL−

QDG (equivalently, there exists p ∈ L
satisfying p ∈ F and ¬p ∈ G). Then by Definition 5.1.2 (1) and (2),

□(π,■(π, p)) = p ∈ F,

76



□(π,¬■(π, p)) = ¬□(π,■(π, p)) = ¬p ∈ G.

Thus, q = ■(π, p) satisfies q ∈ ûπ(F ) and ¬q ∈ ûπ(G), which means that

(ûπ(F ))RL−
QD(ûπ(G)). Conversely, if (ûπ(F ))RL−

QD(ûπ(G)), then there exists p ∈ L
satisfying p ∈ ûπ(F ) and ¬p ∈ ûπ(G). Therefore, for some p ∈ L, □(π, p) ∈ F , and
also ¬□(π, p) = □(π,¬p) ∈ G by Definition 5.1.2 (1). Thus, q = □(π, p) satisfies

q ∈ F and ¬q ∈ G, which means that FRL−
QDG.

(9): R
L−
QD

p? is self-adjoint. Suppose that FR
L−
QD

p? G and G̸RL−
QDH. It suffices to

show that HR
L−
QD

p? I and F ̸RL−
QDI for some I ∈ SL−

QD .

F
R

L−
QD

p? //

̸RL−
QD

��

G

̸RL−
QD

��
∃I H

R
L−
QD

p?oo

It follows from the assumption FR
L−
QD

p? G that p ∈ G by the dual repeatability of

R
L−
QD

p? (Lemma 5.4.3 (2)). By the assumption G̸RL−
QDH, we obtain

(I) ¬p /∈ H.

We can assume p ̸= ⋏; otherwise, (I) implies that ⋎ = ¬p /∈ H, which contradicts
the condition that H is a filter. Now we show that

∆ = {p ∧ (¬p ∨ q) : q ∈ H}

has the finite meet property. Suppose for the sake of contradiction that there exists
a finite subset ∆fin of H such that

(II)
∧
{p ∧ (¬p ∨ q) : q ∈ ∆fin} = ⋏.

Observe that

p ∧ (¬p ∨ (p ∧
∨

{¬q : q ∈ ∆fin})) ≤
∨

{¬q : q ∈ ∆fin}

by the orthomodular law. Equivalently,

(III) ¬
∨
{¬q : q ∈ ∆fin} ≤ ¬(p ∧ (¬p ∨ (p ∧

∨
{¬q : q ∈ ∆fin})))

by the definition of ortholattices. Furthermore,∨
{p ∧ ¬q : q ∈ ∆fin} ≤ p ∧

∨
{¬q : q ∈ ∆fin}

by the part of the distributive law (Remark 2.5.5). Equivalently,

77



(IV) ¬(p ∧
∨
{¬q : q ∈ ∆fin}) ≤ ¬

∨
{p ∧ ¬q : q ∈ ∆fin}

by the definition of ortholattices. Thus,∧
∆fin = ¬

∨
{¬q : q ∈ ∆fin}

≤ ¬(p ∧ (¬p ∨ (p ∧
∨

{¬q : q ∈ ∆fin}))) (By (III))

= ¬p ∨ (p ∧ ¬(p ∧
∨

{¬q : q ∈ ∆fin}))

≤ ¬p ∨ (p ∧ ¬(
∨

{p ∧ ¬q : q ∈ ∆fin})) (By (IV))

= ¬p ∨
∧

{p ∧ (¬p ∨ q) : q ∈ ∆fin}

= ¬p (By (II))

Therefore,
∧

∆fin ≤ ¬p. Recall that H is a filter. By the definition of filters,∧
∆fin ∈ H, and it implies ¬p ∈ H. This leads to a contradiction to (I). Conse-

quently, ∆ has the finite meet property. It follows from Lemma 3.2.7 that ⟨∆⟩ is

a proper filter. In fact, ⟨∆⟩ is a witness of the self-adjointness of R
L−
QD

p? , which is

shown below. That is, it suffices to show that FR
L−
QD

p? G and G̸RL−
QDH jointly imply

that HR
L−
QD

p? ⟨∆⟩ and F ̸RL−
QD⟨∆⟩. It follows the definition of ∆ that HR

L−
QD

p? ⟨∆⟩.
Hence, it remains to show F ̸RL−

QD⟨∆⟩. Suppose for the sake of contradiction that

FRL−
QD⟨∆⟩. Because RL−

QD is symmetric, r ∈ ⟨∆⟩ and ¬r ∈ F for some r ∈ L.
Because r ∈ ⟨∆⟩, there exist q1, . . . , qn ∈ H such that∧

{p ∧ (¬p ∨ qi) : 1 ≤ i ≤ n} ≤ r.

Put
r′ =

∧
{¬p ∨ qi : 1 ≤ i ≤ n}.

Then p ∧ r′ ≤ r, which implies

¬r ≤ ¬(p ∧ r′) = ¬p ∨ ¬r′.

Because ¬r ∈ F and F is a filter, ¬p ∨ ¬r′ ∈ F . Recall the assumption that

FR
L−
QD

p? G. Hence,
p ∧ (¬p ∨ (¬p ∨ ¬r′)) ∈ G.

Therefore, we obtain

(V) p ∧ (¬p ∨ ¬r′) ∈ G.

78



Observe that

p ∧ (¬p ∨ ¬r′) = p ∧ (¬p ∨ ¬
∧

{¬p ∨ qi : 1 ≤ i ≤ n})

= p ∧ (¬p ∨ (
∨

{p ∧ ¬qi : 1 ≤ i ≤ n}))

≤ p ∧ (¬p ∨ (p ∧
∨

{¬qi : 1 ≤ i ≤ n}))

(By the part of the distributive law (Remark 2.5.5))

≤
∨

{¬qi : 1 ≤ i ≤ n} (By the orthomodular law)

= ¬
∧

{qi : 1 ≤ i ≤ n}.

Therefore,

p ∧ (¬p ∨ ¬r′) ≤ ¬
∧

{qi : 1 ≤ i ≤ n}.

Because G is a filter, ¬
∧
{qi : 1 ≤ i ≤ n} ∈ G by (V). On the ther hand,

because q1, . . . , qn ∈ H and H is a filter,
∧
{qi : 1 ≤ i ≤ n} ∈ H. This leads a

contradiction with the assumption G̸RL−
QDH. Consequently, F ̸RL−

QD⟨∆⟩ by proof
by contradiction.

5.5 Representation Theorem

Eventually, we prove our main theorem, the Stone-type representation theorem for
star-free QDAs.

Definition 5.5.1. Let

(L1,≤1,¬1,□1,■1) and (L2,≤2,¬2,□2,■2)

be star-free QDAs. A function f : L1 → L2 is called

• a homomorphism between star-free QDAs if the following conditions are
satisfied:

(1) f is a homomorphism between ortholattices (L1,≤1,¬1) and (L2,≤2

,¬2) (see Definition 3.3.1),

(2) f(□1(a, p)) =

{
□2(a, θ(p)) (a ̸= q?),

□2(θ(q)?, θ(p)) (a = q?)
,

(3) f(■1(π, p)) = ■2(π, f(p)).

• an embedding between star-free QDAs if f is an injective homomorphism
between star-free QDAs.

79



• an isomorphism between star-free QDAs if f is a bijective homomorphism
between star-free QDAs.

A star-free QDA (L1,≤1,¬1,□1,■1) is said to be isomorphic to a star-free QDA
(L2,≤2,¬2,□2,■2) if there exists an isomorphism from L1 to L2.

Definition 5.5.2. The Stone embedding for star-free QDAs L−
QD is the function

θ : L→ LC(L−
QD) defined by

θ(p) = {F ∈ SL−
QD : p ∈ F}.

The canonical extension of a star-free QDA L−
QD is the complex algebra C(C(L−

DQ))

of the canonical frame C(L−
DQ) of L−

QD.

Now we prove the Stone-type representation theorem for star-free QDAs. This
theorem is proved using Theorem 5.3.4 and Theorem 5.4.4.

Theorem 5.5.3 (Stone-type Representation Theorem for Star-free QDAs). Every
star-free QDA is embeddable into its canonical extension.

Proof. We show that the Stone embedding θ : L → LC(L−
QD) for star-free QDAs is

an embedding of a star-free QDA L−
QD into C(C(L−

DQ)).
To show that θ is injective, suppose p ̸= q. Then either p ≰ q or q ≰ p by

the contraposition of the anti-symmetry of ≤. Assume that p ≰ q without loss of
generality. Then p ̸= ⋏; otherwise, p ≤ q for any q ∈ L. Because p ↑ = {r : p ≤ r}
is a proper principal filter if p ̸= ⋏, we obtain ↑ p ∈ θ(p). However, it follows from
p ≰ q that q /∈ p ↑ (that is, p ↑ /∈ θ(q)). Consequently, θ(p) ̸= θ(q).

The only remaining thing to show is that θ is a homomorphism.

(1) Proof of θ(p ∧ q) = θ(p) ∩ θ(q).

F ∈ θ(p ∧ q) ⇔ p ∧ q ∈ F ⇔ p ∈ F and q ∈ F

⇔ F ∈ θ(p) and F ∈ θ(q) ⇔ F ∈ θ(p) ∩ θ(q).

(2) Proof of θ(p ∨ q) = θ(p) ⊎ θ(q). Because θ(p ∧ q) = θ(p) ∩ θ(q) and θ(¬p) =
¬

R
L−
QD
θ(p) (for the proof, see below),

θ(p ∨ q) = θ(¬(¬p ∧ ¬q)) = ¬
R

L−
QD

(¬
R

L−
QD
θ(p) ∩ ¬

R
L−
QD
θ(q)) = θ(p) ⊎ θ(q).

(3) Proof of θ(¬p) = ¬
R

L−
QD
θ(p).

For the ⊆-part, suppose F ∈ θ(¬p) (equivalently, ¬p ∈ F ). It suffices to show

that G ∈ θ(p) (equivalently, p ∈ G) implies FRL−
QDG for any G ∈ LC(L−

QD).

80



It follows from ¬p ∈ F and p ∈ G that GRL−
QDF , and thus FRL−

QDG, as
desired.

For the ⊇-part, suppose F ∈ ¬
R

L−
QD
θ(p). Then FRL−

QDG for G = {q : p ≤ q}
satisfying p ̸= ⋏ because G ∈ θ(p). Thus, there exists r ∈ L such that r ∈ F
and ¬r ∈ G. Hence, p ≤ ¬r by ¬r ∈ G. It implies that r ≤ ¬p. Recall
r ∈ F . By the definition of filters, ¬p ∈ F . Consequently, F ∈ θ(¬p).

(4) We prove that

θ(□(a, p)) =

□RL−
QD

(a, θ(p)) (a ̸= q?),

□
RL−

QD
(θ(q), θ(p)) (a = q?)

by structural induction on a ∈ Prog−[Π, L].

(a) For the case a = skip, by Definition 5.1.2 (5) and Lemma 5.3.3 (5),

θ(□(skip, p)) = θ(p) = □
RL−

QD
(skip, θ(p)).

(b) For the case a = abort, by Definition 5.1.2 (6) and Lemma 5.3.3 (6),

θ(□(abort, p)) = θ(⋎) = SL−
QD = □

RL−
QD

(abort, θ(p)).

(c) For the case a = π ∈ Π0, observe that

FR
L−
QD

π G⇔ ûπ(F ) = G⇔ {p : □(π, p) ∈ F} = G

⇔ (□(π, p) ∈ F ⇔ p ∈ G).

For the ⊆-part, suppose F ∈ θ(□(π, p)) (equivalently, □(π, p) ∈ F ).

If FR
L−
QD

π G, then p ∈ G (that is, G ∈ θ(p)) by the above equivalence.
Hence, F ∈ □

RL−
QD

(π, θ(p)).

For the ⊇-part, suppose F ∈ □
RL−

QD
(π, θ(p)). Let X be the set {q ∈ L :

□(π, q) ∈ F}, which is non-empty because ⋎ ∈ X by □(π,⋎) = ⋎ ∈ F .
Thus, there exists the smallest filter G containing X, which in fact is

{q ∈ L :
∧

{p1, . . . , pn} ≤ q for some p1, . . . , pn ∈ X}.

by Theorem 3.2.3. Now we show FR
L−
QD

π G, that is, □(π, q) ∈ F if
and only if q ∈ G. If □(π, q) ∈ F , then q ∈ X, which implies q ∈
G. Conversely, suppose q ∈ G. Then

∧
{p1, . . . , pn} ≤ q for some

81



p1, . . . , pn ∈ X. It follows from the monotonicity of □(π,−) (the proof
is similar to that of Lemma 4.2.2) that

□(π,
∧

{p1, . . . , pn}) ≤ □(π, q).

Because □(π, pi) ∈ F by p1, . . . , pn ∈ X,

□(π,
∧

{p1, . . . , pn}) =
∧

{□(π, p1), . . . ,□(π, pn)} ∈ F,

and thus□(π, q) ∈ F by the definition of filters. Consequently, FR
L−
QD

π G.
Hence, G ∈ θ(p) by the assumption F ∈ □

RL−
QD

(π, θ(p)), and is equiv-

alent to p ∈ G. It implies that there exist p1, . . . , pn ∈ X such that∧
{p1, . . . , pn} ≤ p. Thus, by the monotonicity of □(π,−),∧

{□(π, p1), . . . ,□(π, pn)} ≤ □(π, p).

Because □(π, pi) ∈ F by p1, . . . , pn ∈ X, we have □(π, p) ∈ F . There-
fore, F ∈ θ(□(π, p)), as desired.

(d) For the case a = b ; c,

θ(□(b ; c, p)) = θ(□(b,□(c, p))) (By Definition 5.1.2 (9))

= □
RL−

QD
(b,□

RL−
QD

(c, θ(p)))

(By the induction hypothesis)

= □
RL−

QD
(b ; c, θ(p)). (By Lemma 5.3.3 (9))

(e) For the case a = b ∪ c,

θ(□(b ∪ c, p)) = θ(□(b, p) ∧□(c, p))) (By Definition 5.1.2 (10))

= □
RL−

QD
(b, θ(p)) ∩□

RL−
QD

(c, θ(p))

(By (1) in this proof (see above))

= □
RL−

QD
(b ∪ c, θ(p)). (By Lemma 5.3.3 (10))

(f) For the case a = q?,

θ(□(q?, p)) = θ(¬q ∨ (q ∧ p)) (By Definition 5.1.2 (11))

= ¬
R

L−
QD
θ(q) ⊎ (θ(q) ∩ θ(p))

(By (1), (2), and (3) in this proof (see above))

= □
RL−

QD
(θ(q)?, θ(p)). (By Lemma 5.3.3 (11))

82



(5) Finally, we prove that

θ(■(π, p)) = ■
UL−

QD
(π, θ(p)).

Take an arbitrary F ∈ θ(■(π, θ)). Then ■(π, p) ∈ F . Because ûπ is bijective,

there uniquely existsG ∈ SL−
QD such that ûπ(G) = F . Thus, ■(π, p) ∈ ûπ(G).

It follows from Definition 5.4.1 (2) that □(π,■(π, p)) ∈ G. Hence, it follows
from Definition 5.1.2 (2) that p ∈ G. Equivalently, G ∈ θ(p). Therefore,

F = ûπ(G) ∈ {ûπ(G) : G ∈ θ(p)} = ■
UL−

QD
(π, θ(p)).

Conversely, take an arbitrary F ∈ ■
UL−

QD
(π, θ(p)). Then F = ûπ(G) for

some G ∈ S−
QD satisfying G ∈ θ(p) (that is, p ∈ G). It follows from 5.1.2 (2)

that □(π,■(π, p)) = p ∈ G. Thus, it follows from Definition 5.4.1 (2) that
■(π, p) ∈ ûπ(G) = F .

5.6 Examples from Quantum Computation

Although star-free QDA lacks the iteration operator, it is expressive enough to
describe various quantum protocols in quantum computation. In this section, we
describe some of them by star-free QDA. Based on the expressions in this section,
we have developed a tool for assisting quantum program verification.

To describe the examples in this section, we fix

Π0 = {H(i), X(i), Y(i), Z(i), CX(i, j) : i, j ∈ N, i ̸= j},

where N stands for the set of all natural numbers (including 0).
Let I be the identity matrix of size 2 × 2. The family U = {uπ : π ∈ Π0} of

functions on C2n is defined as follows:

uH(i) = I⊗i ⊗H ⊗ I⊗n−i−1, uX(i) = I⊗i ⊗X ⊗ I⊗n−i−1,

uY(i) = I⊗i ⊗ Y ⊗ I⊗n−i−1, uZ(i) = I⊗i ⊗ Z ⊗ I⊗n−i−1,

uCX(i,j) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗X ⊗ I⊗n−j−1),

uSWAP(i,j) = uCX(i,j);CX(j,i);CX(i,j),

where

I⊗i =

i︷ ︸︸ ︷
I ⊗ · · · ⊗ I .

83



Because R = {Ra : a ∈ Prog[Π, LFC2n
]} is uniquely determined from u, the star-

free QDF FQD = (FC2n ,U ,R) is also uniquely determined.
Henceforth, we use the symbols P (i, |ψ⟩) and P (i, i+1, |Ψ⟩) for specific elements

in LC2n defined as follow:

P (i, |ψ⟩) =

i︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2⊗⟨|ψ⟩⟩ ⊗

n−i−1︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2,

P (i, i+ 1, |Ψ⟩) =

i︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2⊗⟨|Ψ⟩⟩ ⊗

n−i−2︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2,

where ⟨|ψ⟩⟩ (resp. ⟨|Ψ⟩⟩) stands for {c |ψ⟩ : c ∈ C} (resp. {c |Ψ⟩ : c ∈ C}).

Superdense Coding

Superdense Coding [7] allows us to transmit two classical bits using an entangled
state. It consists of encoding and decoding the information. The encoding process
of information 00, 01, 10, or 11 is described as follows:

encode00 = H(0) ; CX(0, 1), encode01 = H(0) ; CX(0, 1) ; X(0),

encode10 = H(0) ; CX(0, 1) ; Z(0), encode11 = H(0) ; CX(0, 1) ; X(0) ; Z(0).

The decoding process is described as decode = CX(0, 1) ; H(0).
The desired property for Superdense Coding is that “the encoded information

is correctly decoded.” In BDQL, this property is expressed as follows:

|0⟩ ⊗ |0⟩ ∈
∧

i,j∈{0,1}

□(encodeij ; decode, P (0, |i⟩) ∧ P (1, |j⟩)).

|0⟩ H Xb2 Zb1 H |b1⟩
|0⟩ |b2⟩

Encoding Decoding

Figure 5.1: Superdense Coding

Quantum Teleportation

Quantum Teleportation [6] is a protocol for teleporting an arbitrary pure state by
sending two bits of classical information. The program of Quantum Teleportation
is described as follows:

teleport = H(1) ; CX(1, 2) ; CX(0, 1) ; H(0)

84



; if P (1, |0⟩) then skip else X(2) fi

; if P (0, |0⟩) then skip else Z(2) fi.

The desired property of Quantum Teleportation is that “a pure state |ψ⟩ is
correctly teleported.” In BDQL, this property is expressed as follows:

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ∈ □(teleport, P (2, |ψ⟩)).

|ψ⟩ H

|0⟩ H

|0⟩ X Z |ψ⟩

Figure 5.2: Quantum Teleportation

Quantum Secret Sharing

Quantum Secret Sharing (Quantum Information Splitting) [22] is a protocol for
teleporting a pure state from a sender (Alice) to a receiver (Bob) with the help
of a third party (Charlie). By this protocol, a secret pure state is shared between
Alice and Bob, provided that Charlie permits it. The program of Quantum Secret
Sharing is described as follows:

share = H(1) ; CX(1, 2) ; CX(1, 3) ; CX(0, 1) ; H(0) ; H(2)

; if P (1, |0⟩) then skip else X(3)) fi

; if P (0, |0⟩) then skip else Z(3) fi

; if P (2, |0⟩) then skip else Z(3) fi.

The desired property of secret sharing is similar to that of Quantum Telepor-
tation. In BDQL, this property is expressed as follows:

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ∈ □(share, P (3, |ψ⟩)).

Entanglement Swapping

Entanglement Swapping [23] is a protocol for creating a new entangled state. Sup-
pose that Alice and Bob share two entangled qubits, and Bob and Charlie also

85



|ψ⟩ H

|0⟩ H

|0⟩ H

|0⟩ X Z Z |ψ⟩

Figure 5.3: Quantum Secret Sharing

share two different entangled qubits. After executing Entanglement Swapping, Al-
ice’s qubit and Charlie’s qubit become entangled. The program of Entanglement
Swapping is described as follows:

entangle = H(0) ; CX(0, 1) ; H(2) ; CX(2, 3) ; CX(1, 2) ; H(1)

; if P (2, |0⟩) then skip else X(3) fi

; if P (1, |0⟩) then skip else Z(3) fi

; SWAP(1, 3).

The last SWAP(1, 3) is executed to adjoin the remaining qubits.
The desired property of Entanglement Swapping is that “an entangled state

(in this case, |EPR⟩) is created.” In BDQL, this property is expressed as follows:

|0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ∈ □(entangle, P (0, 1, |EPR⟩)).

Note that SWAP(1, 3) is needed because P (i, i+ 1, |Ψ⟩) is only defined for the con-
secutive numbers i and i+1. That is, the expression P (0, 3, |EPR⟩) is not defined.

|0⟩ H

|EPR⟩
|0⟩ H

|0⟩ H

|0⟩ X Z

Figure 5.4: Entanglement Swapping

Quantum Gate Teleportation

Quantum Gate Teleportation [18] is a protocol for teleporting a quantum gate.
The program of quantum gate teleportation is described as follows:

gteleport = H(1) ; CX(1, 2) ; H(3) ; CX(3, 4) ; CX(3, 2) ; CX(0, 1) ; H(0) ; CX(4, 5) ; H(4)

86



; if P (0, |0⟩) then skip else Z(2) ; Z(3) fi

; if P (1, |0⟩) then skip else X(2) fi

; if P (5, |0⟩) then skip else X(2) ; X(3) fi

; if P (4, |0⟩) then skip else Z(3) fi.

The desired property of Quantum Gate Teleportation is that “a quantum gate
(in this case, CX) is correctly teleported.” In BDQL, this property is expressed as
follows:

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |ψ′⟩ ∈ □(gteleport, P (3, 4,CX(|ψ′⟩ ⊗ |ψ⟩))).

|ψ⟩ H

|0⟩ H

|0⟩ X Z Z
|ψ′′⟩

|0⟩ H X X Z

|0⟩ H

|ψ′⟩

Figure 5.5: Quantum Gate Teleportation (|ψ′′⟩ = CX(|ψ′⟩ ⊗ |ψ⟩))

87



Chapter 6

Conclusions and Future Work

In this section, we summarize the significant results drawn in this dissertation and
discuss them. Also, we suggest some future work.

6.1 Conclusions

We formulated the algebra of quantum programs called Quantum Dynamic Alge-
bra (QDA) for reformulating the algebraic structure of quantum mechanics into
modern algebra from the perspective of quantum computation.

In Theorem 4.2.1, we proved that the law of residuation (the algebraic deduc-
tion theorem) holds if the usual conjunction ∧ is replaced by the Sasaki conjunc-
tion ⋒, which is defined by p ⋒ q = p ∧ (¬p ∨ q). This result is significant because
algebras that satisfy the law of residuation give algebraic semantics for various
substructural logics (see [29]) in general.

In Theorem 4.2.4, we proved that the inference rules in Hoare Logic are sound
if the usual conjunction ∧ is replaced by the Sasaki conjunction ⋒. The proof
is based on quantum counterparts of the law of residuation (Theorem 4.2.1), the
monotonicity of □ (Lemma 4.2.2), and the loop invariance rule (Lemma 4.2.3).
Owing to Theorem 4.2.4, it is expected to apply QDA to quantum program verifi-
cation. The validity of the Hoare-like inference rules means that the inference rules
in Hoare Logic also work in the quantum setting as long as the appropriate logical
connective(s) are chosen. We verified two simple quantum programs in Section 4.5
as running examples.

In Theorem 4.4.5, we proved that every complex algebra of QDFs is a QDA.
Recall that a QDA is an orthomodular lattice. Orthomodular lattices are chal-
lenging to deal with because the distributive law does not hold. Besides that,
orthomodularity is not determined by any first-order properties of the accessi-
bility relation of Kripke frames for Quantum Logic [14]. These features are not

88



found in other well-known algebraic structures of logics, such as Boolean lattices
(Classical Logic), Heyting lattices (Intuitionistic Logic), or Modal algebras (Modal
Logic). Therefore, it is impossible to find a Kripke frame that satisfies its complex
algebra, which is an orthomodular lattice. To overcome this difficulty, we extended
the Kripke frames for Quantum Logic to QDFs. Unlike the usual Kripke frames,
QDFs are equipped with two kinds of accessibility relations. One accessibility
relation is an abstraction of the orthogonality relation, and the other accessibil-
ity relations are abstractions of the graphs of unitary operators (quantum gates).
For this reason, the orthomdular law follows, and thus every complex algebra of
QDFs is a QDA. This result implies that incorporating a quantum computation
perspective into orthomodular lattices is not only beneficial for its reformulating
as modern algebras but also from a technical point of view.

In Theorem 5.3.4, we proved that every complex algebra of star-free QDFs is a
star-free QDA. The proof is almost the same as Theorem 4.4.5. Recall that star-
free QDA is not just QDA without the iteration operator: a star-free QDA is a
QDA equipped with an auxiliary operator ■ for proving the Stone-type representa-
tion theorem. Correspondingly, we must newly prove the conditions with respect
to ■ imposed on the complex algebra of a star-free QDF: ■U(a,□R(a, P )) =
□R(a,■U(a, P )) = P , ■U(a, S) = S, and ■U(a, P ∩ Q) = ■U(a, P ) ∩ ■U(a,Q).
This is the difference between Theorem 5.3.4 and Theorem 4.4.5.

In Theorem 5.4.4, we proved that every canonical frame of star-free QDAs is a
star-free QDF. ■ plays a role in this theorem. That is, the conditions with respect
to ■ imposed on star-free QDA are required to show that some conditions imposed

on star-free QDF: ûπ is bijective, ûπ preserves RL−
QD , and R

L−
QD

θ(p)? is self-adjoint. One
concern is whether the addition of the conditions with respect to ■ for convenience
causes problems when applying star-free QDF to quantum program verification. In
fact, these conditions are satisfied in star-free Hilbert Dynamic Algebra (Example
5.1.3). Because the verification of the correctness of star-free quantum programs is
done in some specific star-free Hilbert dynamic algebras (see Section 5.6), star-free
QDA should satisfy the conditions with respect to ■. In fact, these conditions are
satisfied in star-free Hilbert Dynamic Algebra (see Example 5.1.3).

In Theorem 5.5.3, we proved the Stone-type representation theorem for star-
free QDAs, which states that every star-free QDA is embeddable into its canonical
extension. This theorem is proved using Theorem 5.3.4 and Theorem 5.4.4. Even
for star-free QDAs, the proof of the Stone-type representation theorem is not
straightforward. A (star-free) QDA is made up of a complex combination of mul-
tiple algebras, namely an orthomodular lattice, a regular program algebra, and a
modal algebra. It is not apparent to prove the Stone-type representation theorem
consistent with all these algebras. In Table 6.1, we summarize a comparison with
other known Stone-type representation theorems.

89



Table 6.1: Stone-type Representation Theorems

Algebra
Complex
Algebra

Canonical
Frame

Representation
Theorem

Boolean Lattice — — Theorem 3.3.3

Ortholattice Definition 3.4.5 Definition 3.4.12 Theorem 3.4.16 [17]

Modal Algebra Definition 3.5.2 Definition 3.5.3 Theorem 3.5.6 [24]

Star-free QDA Definition 5.3.1 Definition 5.4.1 Theorem 5.5.3

Theorem 5.5.3 states that the Stone-type representation theorem for star-free
QDAs holds. This theorem establishes half of the discrete duality [30] between
star-free QDFs and star-free QDAs. That is, a representation theorem for star-free
QDAs (as an example of [30, Theorem 2.2.3]) has been shown, but a representation
theorem for star-free QDFs (as an example of [30, Theorem 2.2.4]) has not yet been
shown. On the other hand, it is known that a categorical duality can be shown
for an extension of an orthomodular lattice called a Piron lattice [8]. Because our
star-free QDA is another extension of an orthomodular lattice, we expect that we
can prove some kind of duality for star-free QDAs as well by combing this paper’s
result and of [8].

6.2 Future Work

At least two future works remain to be addressed.

On the Iteration Operator

The first future work is about the iteration operator. How to deal with the iteration
operator is the major concern from the perspective of both theory and practice
(formal verification).

From the theoretical point of view, we should find a full-fledged (namely, with
the iteration operator) QDA that satisfies the Stone-type representation theorem.

To show the theorem, we may have to find an embedding that preserves infinite
meet and join due to the condition of the iteration operator written by infinite
meet (that is, □(a∗, p) =

∧
{□(ai, p) : i ≥ 0} in Definition 4.1.2). For Boolean

lattices, such an embedding has been found as a result of the Dedekind-MacNeille
completion technique. It is also known that the Dedekind-MacNeille completion
technique can be applied to ortholattices, but whether it is also applicable to
Quantum Dynamic Algebras is an open question.

90



From the practical point of view, we should develop a general technique to verify
the correctness of quantum programs with the iteration operator (which appears
in loop programs, for example). In this dissertation, we proved the validity of the
while rule for quantum programs (Theorem 4.2.4 (4)) and employed it to show the
simple quantum while program qwhile in Section 4.5. However, it is challenging
to find the loop invariance condition to apply the while automatically. The same
difficulty is also known in (classical) Hoare Logic.

To make matters worse, a state space derived from a Hilbert space is infinite
in general. For example, consider the quantum gate (unitary operator)

Uθ =

(
cos θ − sin θ
sin θ cos θ

)
.

This quantum gate represents rotation with the angle θ. If θ is an irrational mul-
tiple of π, then Uθ is aperiodic and generates infinite reachable states by executing
Uθ.

One remedy is to allow only periodic rotations as quantum gates, the Pauli
gates, for example. In [38], a quantum walk on a finite graph is introduced as an
example of quantum while programs. It is expected to verify a desirable property
of the quantum walk on a finite graph.

On Atomicity

The second future work is to study star-free QDA with atomicity. Recall that
Stone’s representation theorem states that every Boolean lattice is embeddable
into a powerset lattice (called canonical extension). If the Boolean lattices are
restricted to atomic and complete Boolean lattices, a stronger result is obtained:
every atomic complete Boolean lattice is isomorphic to a powerset lattice (Theorem
3.3.5). A similar result is expected to obtain for QDA.

In fact, an atomic algebra that is similar to star-free QDA has been formu-
lated. It is called a Piron lattice, which can be regarded as an algebra of quantum
programs constructed from only the test operator. As pointed out by [8], there is
a kind of dynamic frame (state transition system) with a test transition relation
that reflects all the properties of a Piron lattice in the sense of duality in category
theory. Such a dynamic frame is called a quantum dynamic frame in [8].

The apparent difference is that star-free QDFs are more like the dynamic frame
corresponding to Dynamic Algebra. That is, star-free QDFs have various relations
that represent programs constructed by the program constructs (including the test
operator). However, quantum dynamic frames have only one kind of relation that
represents tests.

The more significant difference is that star-free QDFs are more abstract than
quantum dynamic frames. This difference is reflected in the algebras that each

91



frame corresponds to: a star-free QDF corresponds to an orthomodular lattice
with some additional operators □ and ■ called a star-free QDA, and a quantum
dynamic frame corresponds to the specific orthomodular lattice called a Piron lat-
tice. In a Piron lattice, the relation a → b that represents non-orthogonality is
characterized by the condition a ̸≤ b⊥ (see [8, (31)]). Stated differently, orthogo-
nality is characterized by the condition a ≤ b⊥. On the other hand, the relation

FRL−
QDG that represents orthogonality in star-free QDAs is defined by the con-

dition that p ∈ F and ¬p ∈ G for some p ∈ L (see Definition 5.4.1). Although
these two conditions are seemingly different, it can be shown that they correspond
under the atomicity in fact.

Theorem 6.2.1. For any atomic ortholattice (L,≤,¬), FaR
L−
QDFb if and only if

a ≤ ¬b, where Fa and Fb are the principal filters generated by atoms a and b,
respectively.

Proof. (⇒) If FaR
L−
QDFb, then p ∈ Fa and ¬p ∈ Fb for some p ∈ L. Thus, a ≤ p

and b ≤ ¬p. It follows from the definition of ortholattices that p ≤ ¬b. Hence,
a ≤ ¬b by the transitivity of ≤.

(⇐) Suppose a ≤ ¬b. It suffices to show that a ≤ p and b ≤ ¬p for some p ∈ L.
It is satisfied by choosing a as p. Because a ≤ a holds by the reflexivity of ≤, we
only show b ≤ ¬a. It follows from the assumption a ≤ ¬b that b = ¬¬b ≤ ¬a, as
desired.

Because of this observation, it is expected to prove the extended Stone-type
representation theorem for atomic star-free QDAs.

92



Bibliography

[1] A. Baltag, J. Bergfeld, K. Kishida, J. Sack, S. Smets, and S. Zhong. PLQP
& company: decidable logics for quantum algorithms. International Journal
of Theoretical Physics, 53(10):3628–3647, 2014.

[2] A. Baltag and S. Smets. Complete axiomatizations for quantum actions.
International Journal of Theoretical Physics, 44(12):2267–2282, 2005.

[3] A. Baltag and S. Smets. LQP: the dynamic logic of quantum information.
Mathematical structures in computer science, 16(3):491–525, 2006.

[4] A. Baltag and S. Smets. Quantum logic as a dynamic logic. Synthese,
179(2):285–306, 2011.

[5] A. Baltag and S. Smets. Reasoning about quantum information: An overview
of quantum dynamic logic. Applied Sciences, 12(9), 2022.

[6] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Woot-
ters. Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–1899, 1993.

[7] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle
operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884,
1992.

[8] J. M. Bergfeld, K. Kishida, J. Sack, and S. Zhong. Duality for the logic of
quantum actions. Studia Logica, 103:781–805, 2015.

[9] J. M. Bergfeld and J. Sack. Deriving the correctness of quantum protocols in
the probabilistic logic for quantum programs. Soft Computing, 21(6):1421–
1441, 2017.

[10] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals
of mathematics, 57(4):823–843, 1936.

93



[11] P. Blackburn, M. De. Rijke, and Y. Venema. Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2001.

[12] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic
Guides. Clarendon Press, 1997.

[13] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge
university press, 2nd edition, 2002.

[14] R. Goldblatt. Orthomodularity is not elementary. The Journal of Symbolic
Logic, 49(2):401–404, 1984.

[15] R. Goldblatt. Logics of time and computation. CSLI Lecture Notes ; 7. Center
for the Study of Language and Information, second edition, 1987.

[16] R. I. Goldblatt. Semantic analysis of orthologic. Journal of Philosophical
Logic, 3:19–35, 1974.

[17] R. I. Goldblatt. The Stone space of an ortholattice. Bulletin of the London
Mathematical Society, 7:45–48, 1975.

[18] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Na-
ture, 402(6760):390–393, 1999.

[19] G. M. Hardegree. The conditional in quantum logic. In Logic and Probability
in Quantum Mechanics, pages 55–72. Springer, 1976.

[20] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[21] L. Herman, E. L. Marsden, and R. Piziak. Implication connectives in or-
thomodular lattices. Notre Dame Journal of Formal Logic, 16(3):305–328,
1975.

[22] M. Hillery, V. Bužek, and A. Berthiaume. Quantum secret sharing. Phys.
Rev. A, 59:1829–1834, 1999.

[23] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. “Event-ready-
detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett.,
71:4287–4290, 1993.

[24] B. Jónsson and A. Tarski. Boolean algebras with operators. part I. American
journal of mathematics, 73:891–939, 1951.

94



[25] T. Kawano. Advanced Kripke frame for quantum logic. In International
Workshop on Logic, Language, Information, and Computation, pages 237–
249, 2018.

[26] D. Kozen. A representation theorem for models of ∗-free PDL. In International
Colloquium on Automata, Languages, and Programming, pages 351–362, 1980.

[27] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2011.

[28] H. Nishimura. Semantical analysis of constructive PDL. Publications of the
Research Institute for Mathematical Sciences, 18(2):427–438, 1982.

[29] H. Ono. Substructural logics and residuated lattices—an introduction.
Springer, 2003.

[30] Ewa Or lowska, Anna Maria Radzikowska, and Ingrid Rewitzky. Dualities for
structures of applied logics, volume 56 of Studies in Logic: Mathematical Logic
and Foundations. College Publications, 2015.

[31] Y. Peng, M. Ying, and X. Wu. Algebraic reasoning of quantum programs via
non-idempotent Kleene algebra. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation, pages 657–670, 2022.

[32] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976), pages 109–121.
IEEE, 1976.

[33] M. Rédei. Quantum logic in algebraic approach, volume 91 of Fundamental
Theories of Physics. Springer, 1998.

[34] U. Sasaki. Orthocomplemented lattices satisfying the exchange axiom. Jour-
nal of Science Hiroshima Univertisty A, 17:293–302, 1954.

[35] V. S. Varadarajan. Geometry of Quantum Theory. Springer, 2nd edition,
1985.

[36] T. Vetterlein. Transitivity and homogeneity of orthosets and inner-product
spaces over subfield of R. Geometriae Dedicata, 206(36), 2022.

[37] M. Ying. Floyd–Hoare logic for quantum programs. ACM Transactions on
Programming Languages and Systems (TOPLAS), 33(6):1–49, 2012.

95



[38] M. Ying and Y. Feng. Quantum loop programs. Acta Informatica, 47(4):221–
250, 2010.

[39] N. Yu. Quantum temporal logic. arXiv preprint arXiv:1908.00158, 2019.

[40] L. Zhou, N. Yu, and M. Ying. An applied quantum Hoare logic. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 1149–1162, 2019.

96



List of Publications

Refereed Publications

1. Tsubasa Takagi, Canh Minh Do, Kazuhiro Ogata. Automated Quantum
Program Verification in Dynamic Quantum Logic. In Proceedings of DaĹı:
Dynamic Logic – New trends and applications (DaĹı 2023), Lecture Notes
in Computer Science (LNCS), forthcoming, 2023.

2. Tsubasa Takagi, Semantic Analysis of a Linear Temporal Extension of
Quantum Logic and Its Dynamic Aspect. ACM Transactions on Computa-
tional Logic, 24(3): 1–21, 2023.

3. Tsubasa Takagi, An algebra of quantum programs with the Kleene star op-
erator. In Proceedings of Formal Analysis and Verification of Post-Quantum
Cryptographic Protocols 2022 (FAVPQC 2022), CEUR Workshop Proceed-
ings, 3280: 2–15, 2022.

4. Tsubasa Takagi, Translation from Three-Valued Quantum Logic to Modal
Logic. International Journal of Theoretical Physics, 60(1): 366–377, Springer,
2021.

5. Tsubasa Takagi, Observable-Dependent Kripke Semantics for Quantum
Logic (in Japanese). Japanese Student Research Notes of Philosophy of Sci-
ence, 4: 1–8, 2021.

6. Tsubasa Takagi, Validity Checking by K4 Tableau and Filtration Method
(in Japanese). Journal of Science and Philosophy, 2(1): 4–23, 2019.

Non-refereed Publications

1. Tsubasa Takagi, Quantum Program Verification and Its Implementation
Based on Dynamic Quantum Logic (in Japanese). In the special interest
group technical reports of Information Processing Society of Japan (9th
Quantum Software Workshop at IPSJ), IPSJ SIG Technical Report, Vol.2023-
QS-9 No.6, 2023.

97



Index

adequacy, 59
dual, 76

algebra
Boolean, see Boolean lattice
Hilbert dynamic, 53
modal, 27
powerset dynamic, 53
quantum dynamic, 51
regular program, 50
star-free Hilbert dynamic, 71
star-free quantum dynamic, 70
star-free regular program, 69

algebra of sets, 25
antisymmetric, 8
atom, 30
atomic, 31
atomic program, 50
atomistic, 31

Boolean algebra, see Boolean lattice
Boolean lattice, 25
bounded lattice, 12
bra vector, 28
bra-ket notation, 28

canonical extension
of ortholattices, 45
of star-free QDAs, 80
of Boolean lattices, 37
of modal algebras, 48

canonical frame
of modal algebras, 47
of ortholattices, 45
of star-free QDAs, 74

chain, 9
closure operator, 16
closure system, 16
closures, 16
cofinite, 25
complete

for ortholattices, 24
complete lattice, 12
completion, 21
complex algebra

of frames, 47
of orthoframes, 40
of QDFs, 60
of star-free QDFs, 72

conditional program, 51
cut, 22

De Morgan’s laws, 24
Dedekind–MacNeille completion, 21
Dirac notation, see bra-ket notation
downward closure, 17
dual adequacy, 76
dual repeatability, 76

embedding
between Boolean lattices, 37
between modal algebras, 47
between ortholattices, 37
between star-free QDAs, 79
for lattices, 20
for partially ordered sets, 19

entangled state, 28
EPR state, 28
extensive, 16

98



filter, 32
Fréchet, 33
maximal, 34
prime, 35
principal, 32
proper, 32
ultra, 34

finite lattice, 11
finite meet property, 33
finite–cofinite field, 25
four-dimensional hypercube, 25
Fréchet filter, 33
frame, 47

Hilbert, 40
Hilbert dynamic, 59
ortho, 39
quantum dynamic, 58
star-free quantum dynamic, 71

GHZ state, 28
greatest element, 10
guarded command, 51

Hadamard gate, 28
Hilbert dynamic algebra, 53
Hilbert dynamic frame, 59
Hilbert frame, 40
Hilbert lattice, 24
Hoare triple, 51
homomorphism

between Boolean lattices, 37
between modal algebras, 47
between ortholattices, 37
between star-free QDAs, 79
for lattices, 20
for partially ordered sets, 19

idempotent, 16
infimum, 10
infinite associative laws, 15
infinite De Morgan’s laws, 24
infinite distributive laws, 26

isomorphic
for Boolean lattices, 37
for lattices, 20
for modal algebras, 48
for ortholattices, 37
for partially ordered sets, 19
for star-free QDAs, 80

isomorphism
between Boolean lattices, 37
between modal algebras, 47
between ortholattices, 37
between star-free QDAs, 80
for lattices, 20
for partially ordered sets, 19

join, see supremum

ket vector, 28

lattice, 11
Boolean, 25
bounded, 12
complete, 12
finite, 11
Hilbert, 24
ortho, 23
orthomodular, 23
powerset, 12
powerset Boolean, 25
trivial, 12
two-element Boolean, 25

lattice embedding, 20
lattice homomorphism, 20
lattice isomorphism, 20
law of residuation, 53
least element, 10
linear order, see total order
lower bound, 10

maximal element, 10
maximal filter, 34
maximum, see greatest element

99



meet, see infimum
minimal element, 10
minimum, see least element
modal algebra, 27
monotonic, 16

necessity operator, 17

order embedding, 19
order homomorphism, 19
order isomorphism, 19
order preserving, 19
orthoclosed, 40
orthocomplementation, 23
orthoframe, 39
orthogonal complement, 40
ortholattice, 23
orthomodular lattice, 23

partial order, 8
partially correct, 51
partially ordered set, 9
Pauli gates, 28
poset, see partially ordered set
possibility operator, 17
powerset Boolean lattice, 25
powerset dynamic algebra, 53
powerset lattice, 12
preorder, 8
preordered set, 9
prime filter, 35
principal filter, 32
program constant, 50
proper filter, 32
pure state, 28

quantum dynamic algebra, 51
quantum dynamic frame, 58
quantum gate, 28
quasi-order, see preorder

reflexive, 8

regular program algebra, 50
repeatability, 59

dual, 76

Sasaki hook, 53
star-free Hilbert dynamic algebra, 71
star-free quantum dynamic algebra, 70
star-free quantum dynamic frame, 71
star-free regular program algebra, 69
Stone embedding

for Boolean lattices, 37
for modal algebras, 48
for ortholattices, 45
for star-free QDAs, 80

strongly connected, 8
supremum, 10

topped intersection structure, see clo-
sure system

total order, 9
totally ordered set, 9
transitive, 8
trivial lattice, 12
two-element Boolean lattice, 25

ultrafilter, 34
until program, 51
upper bound, 10
upward closure, 22

W state, 28
while program, 51

Zorn’s Lemma, 11

100


