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Abstract

Facial expressions are the most interpretable visual signals used to perceive emotions in human
social communication. Each emotion corresponds to distinct facial expressions. For instance,
happiness is often conveyed through a smile, while surprise is expressed by the wide opening
of the eyes and mouth. With advancements in technology, emotion recognition extends not
only to humans but also to computers through the development of systems that can recognize
emotions from signals like facial expressions.

Consequently, in literature, facial expressions are often accompanied by their corresponding
emotion labels for analysis. However, the current state of the art in emotion research primarily
focuses on basic emotions, namely anger, disgust, fear, happiness, sadness, and surprise. It is
important to acknowledge that human emotions are complex and not solely limited to these
basic emotions. Human emotions can be a mixture of multiple basic emotions. For example,
graduating from a school can evoke a combination of happiness and sadness, often referred to as
’bittersweet’ emotion. This illustrates that human emotions can be diverse and heterogeneous.
However, the existing literature on computer vision has limited knowledge of such mixed emo-
tions that are composed of multiple basic emotions. Besides, deep learning models are data
demanding to generalize well and work efficiently.

Therefore, in the current study, we aim to estimate the emotions of mixed facial expression
images using the Analysis-by-Synthesis (AbS) approach. By following the research objectives,
we expect two research milestones: synthesized mixed facial expression images and mixed
emotion labels. To accomplish the first milestone, we propose a generative model called Emotion
Generative Adversarial Networks (EmoGANs) to synthesize mixed facial expression images
that represent mixed emotions. The EmoGANs models operate by modeling the data from the
existing prior distribution, also known as the latent space, and perform mapping of samples
from the latent space onto the image space for image generation. Every sample from the latent
space can be mapped onto the image space by the trained generator and create a new image. As
a result, it provides a rich environment for image formation. Besides, mixed facial expressions
and subject identity information can be controlled by the model parameters, which are not
available in the existing research in the mixed emotion literature.

In the current study, we propose four generation models named EmoGANs, EmoGANs1,
EmoGANs2, and EmoGANs3, based on the stability of their adversarial training, generated
image quality, and spatial resolution. The generated images by all EmoGANs models are
evaluated from various perspectives, including image quality, data diversity in image generation,
involvement of mixed facial expressions, ability to control the image generation process, and
disentanglement property.

For the second milestone, we approach the estimation of mixed emotions as a multi-label
formulation. Each generated image contains two emotion labels out of the six basic classes,
such as happiness and sadness in the example case. The estimation model is compared with
the other state of art models. The result reported that our model obtained higher recognition
performance than the compared models. Besides, we apply the model to estimate the emotions
from the basic facial expression images as well. According to the result, the model also obtained
high recognition performance on basic emotions. Moreover, we tested the model on unseen real
images and it can select good features on unseen data.

Keywords: Mixed Emotions, Analysis-by-Synthesis, EmoGANs, Facial Expressions Anal-
ysis, Mixed Emotions Estimation.
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Chapter 1

Introduction

1.1 Introduction

Emotions are intangible psychological states and play an important role in social interaction.
Although emotions are intangible, humans are built upon practicing reading social cues from
their surroundings. As a result, they can perceive emotions from each other by reading social
cues or non-verbal signals. With advanced technology in computer vision and machine learning,
emotions can now be perceived not only by human beings but also by machines or computers.
Therefore, it is possible to build an automatic system that can observe and interpret emotions
based on social cues or signals, thus delivering emotion perception in machines.

The importance of social signals in emotion recognition has been researched in the literature.
These signals can come in different forms or data modalities such as voice tone, choice of
spoken words, facial expressions, body language, and others. Mehrabian’s study [1] analyzed
the contributions of three communication signals used in social interaction for recognizing
emotions. It was reported that 55% of the signals come from facial expressions, 38% from
speech, and 7% from the choice of spoken words. This report indicates that facial expressions
majorly contribute to human emotion perception and suggests that faces are the first engaged
area in human-to-human communication. Therefore, human beings are aware of and used to
recognizing signals from faces, specifically facial expressions. Facial expressions are thus useful
social signals for building emotion recognition systems.

Facial expressions can have multiple meanings and can be used in different contexts. For
example, although a smiling face typically exhibits happiness in emotion recognition, it can also
be a sign of courtesy or politeness. It is also important to note that facial expressions can be
formed without the presence of emotion or can be presented as the opposite expressions against
the emotions. For example, a smiling face can be used to cope with or cover up the emotion
of sadness, which is often employed in social communication. To clarify the standpoint of this
dissertation, the meaning of facial expressions used in the study refers to visible signals evolved
from emotions, which are used to study and recognize emotions.

State-of-the-art research on facial expression recognition for emotion estimation focuses on
Ekman’s six basic emotions: anger, disgust, fear, happiness, sadness, and surprise. However,
there are situations where the definition of basic emotions cannot cover certain experiences. For
example, when we encounter unexpected joyful news, events, or outcomes, we may feel not only
happiness but also surprise (see Figure 1.1). These types of emotions are called mixed emotions.
Little is known about mixed emotions in emotion research. While emotion recognition through
facial expressions has been extensively studied from both psychology and affective computing
perspectives in the past decades, most recognition systems have failed to estimate or recognize

1



mixed emotions. In this current study, we aim to develop a system that can estimate and target
mixed emotions from generated facial expression images, rather than simple emotions. This
will be explained in detail in the later section of this chapter.

(a) Ben Affleck (American Actor) during Oscar
award

(b) Risako Kawai (Olympic Gold Medalist) during
Rio Olympic

Figure 1.1: Example of mixed emotions. Photo credit:(a)CW News, (b)Mainichi News

1.2 Overview of Emotions, Facial Expressions and Their

Relationship

Emotions play a significant role in social communication. When human beings communicate
with each other, not only understanding the conversational contents but also recognizing the
other party’s emotions is essential. Understanding human emotions helps better communi-
cation since emotions influence the method of communication. On some occasions, emotion
underneath the conversation is more important than what is being said. Naturally, human
beings are raised and grown up in a social environment, they can sense and be aware of their
own emotions as well as the emotions of other human beings by using social signals such as
facial expressions, vocal tones, body language, speech, and many others.

Numerous psychologists have debated and discussed what human emotions are for cen-
turies. Greek psychologist Aristotle defined that to have emotions, we have to experience pain,
pleasure, or both. American Psychological Association (APA) describes emotions as a com-
plex reaction pattern, including experiential, behavioral, and psychological elements. In the
Cannon-Bard Theory of emotions, emotions are mental states and significant since emotions
have been considered a physical response. In 1981, Kleinginna [2] listed the emotion definitions
from various perspectives. Emotion definitions vary depending on the people and their stand-
points. In this dissertation, emotions are the state of feeling or intangible psychological states
towards an object, substance, event, or experience. To experience an emotion, a particular
stimulus had to happen to trigger the emotions.

With advanced technology, emotion recognition is not limited to human beings but also in
machines and robots from nonverbal signals. According to Figure 1.2, Hamilton’s work ex-
plained the occurrences of nonverbal signals when emotion is triggered [3]. When a stimulus
such as an event or experience happens, it stimulates a particular emotion. If the emotion
is strong enough, it changes the hormone level inside the brain. These changes impact the
Autonomous Nervous System, a part of the peripheral nervous system. The system connects
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Figure 1.2: The four components of emotions by Hamilton David R. [3]

the brain and the internal organs through the blood vessels. As its name suggests, it involun-
tarily regulates the physiological process. Therefore, when the emotion happens, it is spread
throughout the whole body by the autonomous nervous system. As a result, nonverbal signals
such as changes in blood pressure, heartbeat, and facial expressions as responses to emotions
have occurred.

Some debate that the occurrence of facial expressions is conscious to cover the true intention
or used as a social response. For example, when we encounter our friends or colleagues, we
greet them with a light smile, which is an intentional facial expression unrelated to emotions.
However, Matsumoto et al. [4] showed that naturally blind athletes produced the same facial
expressions as others in the context of winning or losing the games, although they did not know
what the facial expression resembled. Matsumoto’s work supported that facial expressions
spontaneously happened as a response to emotions.

Table 1.1: Translation from facial expressions with groups of Action Units(AU) to emotions in
Facial Action Coding Systems (FACS) [5]

Emotions Group of Action
Units (AU)

FACS Name

Anger 4 + 7 + 11 + 24 Brow Lowerer; Lip Tightener; Nasolabial Deepener; Lip Pressor;
Disgust 9 + 10 + 24 Nose Wrinkler; Upper Lip Raiser; Lip Pressor;
Fear 1 + 2 + 5 + 20

+ 25
Inner Brow Raiser; Outer Brow Raiser; Upper Lip Raiser; Lip
Stretcher; Lips Part;

Happiness 6 + 12 + 25 Cheek Raiser; Lip Corner Puller; Lips Part;
Sadness 1 + 4 + 6 + 11

+ 15 + 17
Inner Brow Raiser; Brow Lowerer; Cheek Raiser; Nasolabial
Deepener; Lip Corner Depressor; Chin Raiser;

Surprise 1 + 2 + 5 + 26 Inner Brow Raiser; Outer Brow Raiser; Upper Lip Raiser; Jaw
Drop;

In addition, psychologist Ekman established the Facial Action Coding System (FACS) [5],
which includes the movement of facial muscles due to the appearance of facial expressions in
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correspondence with emotions. They are listed in Table B.1. The connection between emotions
and activated action units is tabulated in Table 1.1. From the literature, it can be observed
that facial expressions are useful signals and have a well-established relationship in defining
human emotions.

1.3 Overview of Emotion Representations

Emotion representations can be mainly divided into two categories; discrete model and dimen-
sional model. They are illustrated in Figure. 1.3 by Siritanawan’s work [6].

Figure 1.3: Emotion representation by Prarinya Siritanawan [6]

The dimension model defines the emotion representations based on the dimension parame-
ters. For example, the famous work by Russell [7] described emotions based on the valence and
arousal elements on the Cartesian coordinates. In Russell’s model, happiness is located at a
high level of both arousal and valence, whereas sadness is spotted at a low level of both arousal
and valence. According to the circumplex model, happiness and sadness represent the two polar
emotions and cannot co-exist. Extended from Russell’s circumplex model, Mehrabian added
dominance as a third dimension representing the level of control to describe emotions. Russell
and Mehrabian dimensional models are shown in Figure. 1.4. Many researchers have discussed
the number of dimension parameters. The four-dimensional model (Pleasure, Tension, Impulse,
Confidence) [8] and five-dimensional model (Intensity, Pleasure, Control, Certainty, Tension)
[8] can also be seen in the literature.

In the discrete model, the emotion representations are categorized into discrete emotion
classes depending on their standpoint of emotion definitions. Psychologist Ekman categorized
emotion representations into six classes: anger, disgust, fear, happiness, sadness, and surprise.
Ekman stated that those emotions are primary or basic and cannot be decomposed to form
another. Jack et al. [9] proposed that basic emotions are anger, fear, happiness, and sadness.
In Plutchik’s work [10], they described eight basic emotions: anger, fear, sadness, disgust,
surprise, anticipation, trust, and joy.

Although basic emotions cannot be broken down to be another emotion, they can be mixed
to be new, as in Figure. 1.3. The mixed emotions mean the emotions co-existed at the
same time. Numerous psychologists debated this statement of mixed emotions. According to
Russell’s circumplex model, happiness and sadness cannot happen together since they are on
two opposite sides of the valence dimension. Some psychologists stated that since happiness and
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(a) Circumplex Model with Two Dimensions (Va-
lence and Arousal) by Russell [7]

(b) Pleasure, Arousal, Dominance (PAD) Model
by Mehrabian [11]

Figure 1.4: Examples of dimensional emotion models

sadness describe two extreme meanings of pleasure and displeasure, mixing these two emotions
resulted in the neural emotion, as a synonymous scenario in mixing acid and base results in
a neutral solution. Larsen et al. [12] discussed the mixture of happiness and sadness in their
work by considering the bittersweet events that induced both emotions. Their work concluded
that the mixture of those two emotions could happen simultaneously and opened the future
direction of other mixed emotions beyond happiness and sadness.

Figure 1.5: Example of complex emotions in 2D facial expressions feature space. Two dimen-
sions (d1 and d2) are used for illustration purpose.

As previously stated, facial expressions can be utilized as signals to measure basic emotions.
In the context of mixed emotions, Can facial expressions be represented to realize the mixed
emotions? The series of works by Du et al. [13, 14] addressed this question. Their work showed
the facial expressions of mixed emotions comprised of the underlying facial expressions for each
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emotion in the mixture. Figure.1.5 illustrated the meaning of the mixed emotions targeted in
this dissertation. Suppose that there exists a feature space that can represent the distinct facial
expressions for each emotion. The mixed representations of two different emotions are non-
linearly transformed in the feature space to represent the mixed emotions in this dissertation.
Fifteen possible combinations of Ekman’s six basic emotions will be addressed.

1.4 Research Problems and Motivation

At present, the recognition of human emotions is mostly restricted to simple and basic emotions.
There are three motives behind it. The most significant advantage of Ekman’s basic emotions is
being simple and categorically different. Since each facial expression is distinctly different, the
emotion representations can be easily classified into emotion classes. The second advantage is
that facial expressions of basic emotions are universal. It was proved in the work [15] by studying
the facial expressions of two cultures: Japanese and American. Since basic facial expressions are
universal, every language has specific emotional words to describe basic emotions. It indicates
that everyone can easily understand basic emotions in their own language.

As discussed earlier in this chapter, human emotions are complex. Although basic emotions
are commonly applicable in realizing human emotions most of the time, it is not deniable that
non-basic emotions can also happen in a particular situation (See Figure.1.1). In Du’s work [14],
the particular situations that triggered the mixture of basic emotions (compound emotions) are
listed. For example, happily sadness mixed emotion occurs when we encounter events that
bring pleasure and displeasure information to us. In other words, it is described as the new
mixed emotion named bittersweet in [12, 14].

In previous work on mixed emotions by Du et al. [13, 14], the consistency among subordinate
facial expressions for each basic emotion was analyzed. The facial expressions used in the
mixed emotion literature are shown in Figure 1.6. It can be observed that there is a gap
between voluntary and involuntary facial expressions. The involuntary facial expressions are
blatant and intense, which differ from what we experience in real-life situations. Although
the current state-of-the-art recognition system (PyFeat [16] used in the example Figure 1.6)
correctly recognizes the expressed emotions in the Compound Facial Expressions of Emotions
Database [13], it fails to recognize the emotions in actual events, for example, Figure 1.6(c),
where although surprise emotion can be perceived, it is recognized as happiness. Additionally,
the previous work defines mixed facial expressions as the linear combination of Action Units
(AUs). However, mixed facial expressions might not be a linear process. This also highlights
the challenging factor of the current state-of-the-art recognition system for mixed emotions.

1.5 Research Purpose and Its Significance

This research aims to create complex facial expression images in order to estimate mixed emo-
tions using synthesized images. The analysis-by-synthesis (AbS) approach, initially proposed
by Morris et al. [17] for speech recognition, is adopted to achieve the research objectives. The
AbS approach is designed based on the cognitive processes of human beings. Humans can both
speak (action) and listen (perception), as well as see (perception) and recognize what they see
(action) in general.

Why is the AbS approach better than the traditional way for image formation?
To address this question, suppose a generation model exists that maps samples from the prior
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(a) Non-spontaneous facial expression (b) Emotions in Figure.(a)

(c) Spontaneous facial expression (d) Emotions in Figure.(c)

(e) Spontaneous facial expression (f) Emotions in Figure.(e)

Figure 1.6: Difference between spontaneous and non-spontaneous facial expression for mixed
emotion (”Happily Surprise”). (a) is the facial expressions presented in Compound Facial
Expressions of Emotions Database [13]. (c) show the spontaneous facial expressions of actor
Ben Affleck during his Oscar award, as captured by CW News. (e) shows the spontaneous
facial expressions of Gold Medalist Risako Kawai during Rio Olympic, as captured by Mainichi
News. (b), (d) and (f) show the confidence probability of emotions recognized in the respective
figures using PyFeat: Python Facial Expressions Analysis Toolbox [16].

distribution onto image space, as shown in Figure 1.7. For instance, if we have a blue sample
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in the latent space, it can be mapped onto image space by the model G. Now, if we modify the
values of this sample and it becomes the gray sample in the latent space, the model G will map
the new sample to a different image. This process introduces numerous variations in the image
space, creating a rich environment for image formation that is not possible with the traditional
approach. Therefore, the AbS approach is adopted in this dissertation. .

Figure 1.7: An example diagram to show how a generative model G map from a sample from
the latent Space Z onto image space X

By realizing the research objective, the following milestones are expected.

1. Generate the complex facial expressions images for mixed emotions.

2. Estimate mixed emotions in feature space using generated images.

Compared to literature in mixed emotions research, the characteristics or significance of the
current research can be defined as follows.

1. Strength and type of facial expressions in the image can be controlled by the parameters
of the generation model.

2. Although the current research focuses on a mixture of two emotions at the moment, it is
flexible and can easily be adapted to mix more than two facial expressions.

3. Mixed representations among emotions are done by non-linear transformation.

4. Generation provides a rich environment for image formation.

1.6 Dissertation Organization

This dissertation is organized as follows:

• Chapter 1 introduces the psychological background of emotions, facial expressions, and
their connection. It also includes the definition of the mixture of emotions for this current
research. In addition, it includes the research’s motivation, purpose, and goal.

• Chapter 2 introduces the previous work on image generation methodology and models,
not only limited to the traditional approach but also including deep learning concepts.

8



• Chapter 3 introduces the essential processes for preparing the training data used in the
experiments.

• Chapter 4 contains the overview of the proposed methodology used to achieve the re-
search objectives. It discusses proposed generative models and their evolution.

• Chapter 5 evaluates the generated images by the proposed generative models from the
perspective of image quality, data diversity, and feature disentangle property.

• Chapter 6 discusses the emotion estimation models based on basic facial expressions
images and generated mixed facial expressions images, including the analysis of facial
expressions based on their discriminant properties.

• Chapter 7 concludes the research by pointing out the research findings during experi-
ments.
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Chapter 2

Literature Review

2.1 Image Formation for Facial Expressions

This section reviews the methods to create facial expression images and divides them into two
parts. Conventional Methods and Generative Adversarial Networks.

2.1.1 Conventional Methods

Influenced by the trendy beliefs of physiognomy in 1862, French neurologist Duchenne [18]
observed the mechanism of human facial expressions to determine how facial muscles produce
facial expressions. In his work, facial expressions are triggered by muscle contraction due to the
stimulation of an electric probe. The induced facial expressions are documented with a recently
invented camera. His work became the first documented work on human facial expressions
illustrated with photographs. His experiments are revolutionary in facial expression study. He
is credited for a physiological distinction between a forced smile and a genuine smile (also known
as a Duchenne smile).

Although Duchenne’s work became groundbreaking in facial expression research, induced
facial expressions are non-spontaneous and appearance-based facial expressions, meaning they
are unrelated to human emotions. Therefore, the study [19] used well-crafted romance nar-
ratives to stimulate ’jealousy’. During experiments, the participants were asked to circle the
emotions introduced by the stories. Their responses were documented for the study of emotions.

Instead of the written stories, triggers to induce emotions might be varied. The study [20]
used black and white photos depicting Ekman’s emotions as the baseline. Different photographs
of a single emotion, such as the top half of the photo illustrating sadness expressions and
the bottom half depicting anger expressions, were combined using Macintosh software. The
transformed photos are used as stimuli to study a mixture of emotions.

The common technique to collect facial expressions images is photography, in which facial
expressions expressed by the participants are documented by a camera. The way to activate
facial expressions can be diverse. One comes in written stories, and another can be photos
that visualize the distinct facial expressions for each emotion. After the study between fa-
cial expressions and facial muscles by Ekman [5], their relationship is often used to train the
participants to act facial expressions. The study [13, 14, 21] used the FACS [5] to train the
participants before staging the facial expressions. Their responses were then photographed for
further study. Most of the standard facial expressions datasets are collected using photogra-
phy such as the Extended Cohn Kanade facial expressions dataset[22], Japanese Female Facial
Expressions dataset[23], Multimedia Understanding Group facial expression dataset[24], and
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many others.
Another technique to collect facial expressions images is image crawling with the respective

keywords through the search engine. Compared to photography, it is a challenging approach
as various factors such as lightning, head pose, and occlusion, are uncontrolled. Besides, the
labels of these collected images are expensive as it needs human labelers to encode them. The
conventional dataset such as Facial Expressions Recognition 2013 (FER 2013) [25] was created
by searching the images with given a set of 184 emotion-related keywords in the Google search
engine.

The last technique to create facial expressions images is 3D modeling for facial expressions.
In the Facial Expression Research Group 3D Database (FERG-3D-DB) [26], the proposed
system takes the 2D facial expression images of a human and learns the relationship between
2D images and character expressions to predict the 3D rig parameters of the character. The
conventional methods for facial expression images are challenging as they are labor-intensive
and require manual labeling. The quality of facial expressions also depends on the participants’
performance to stage the facial expressions of emotions. Therefore, the automatic generation
of facial expressions images to represent the mixture of emotions is desired. The next section
discusses the deep generative models, especially generative adversarial networks (GANs) for
image generation.

2.1.2 Generative Adversarial Networks and Its Variants

In this section, image generation by Generative Adversarial Networks (GANs) and their varia-
tion is discussed based on their individual characteristics and challenging factors.

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et.al [27] as
another generative modeling approach based on the game theory, where two different players
compete against each other to gain their own profits. GANs include two different neural net-
works for the competition, named discriminator D and generator G. The idea of GANs is to
learn a function that transforms the existing distribution into unknown or real distribution.
Therefore, the generator takes the sample z from known prior distribution such as Gaussian
distribution as its input and directly generates the imitated samples from the unknown dis-
tribution with learning parameters θg. Its opposite network, discriminator D behaves as a
judging network and produces the confidence probability of being the input samples from the
real distribution rather than from the generator model. Learning by GANs model is formulated
as a function such as v(θg,θd), in which D obtains the positive payoff whereas G receives the
negative payoff. During learning, they both compete to obtain their maximum profits. Their
objective function can be defined as follows.

LGANs =min
G

max
D

Ex∼PX
logD(x) +Ez∼PZ

log(1 −D(G(z))) (2.1)

where x defines as the sample drawn from the real data distribution PX . z refers to a sample
from the existing prior distribution such as N(0,1).

The advantage of GANs is that the learning process to estimate the real distribution does
not require the inference function to approximate the gradients. However, training GANs are
difficult and unstable in practice as simultaneously optimizing the respective cost function from
two networks does not guarantee to have an equilibrium [28]. The way to train the GANs model
remains the ongoing research problem in the literature.

In practice, GANs model does not take the supervised labels of the training data and
creates customized labels to annotate the data samples from real and generated distributions.
Therefore, practical GANs training can be denoted as an unsupervised learning approach.
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The preposition behind unsupervised learning is to learn the structure existing in the training
samples to infer the unknown labels [29]. As D predicts the probability of being the input
sample following the training distribution, the study [29] revised the above objective function
of GANs as follows.

LGANs =min
G

max
D

Ex∼PX
log p(y = 1∣x,D) +Ez∼PZ

log(1 − p(y = 1∣G(z),D)) (2.2)

where the discriminator D is assumed to perform the binary classification problem with the
sigmoid activation such as p(y = 1∣x,D) = 1

1+e−D(x) .
Compared to unsupervised learning, supervised learning assists the learning process by max-

imizing the mutual information between input and their corresponding labels and generalizing
on unseen data. Therefore, in the semi-supervised learning of GANs [29, 30], the discriminator
D is enforced to be a classifier for categorical recognition. As the generator G requires the
discriminator to capture the distribution of the given input, D is made to perform i+ 1 classes
where the additional class refers to the classification of real and generated samples. The final
activation of D is changed to softmax. The loss function of this approach can be seen as follows.

LSGANs =min
G

max
D

Ex∼PX
log p(y = k∣x,D) +Ez∼PZ

log(1 − p(y = k∣G(z),D)) (2.3)

where p is the probability of being one of the categorical classes such as p(y = k∣x,D) =
eDk(x)

∑ci+1

k=1
eDk(x)

. k is the number of classes. x is the input samples from real data distribution

PX and z is the latent sample from PZ .

2.1.2.1 Variants of Generative Adversarial Networks

After the invention of GANs by Goodfellow et.al. [27], various types of GANs models have
been developed to overcome the challenges encountered in GANs’ training and the common
problems. They can be divided into two types in summary: architectural optimization and loss
function optimization, which are discussed subsequently.

Architectural Optimization This section will discuss the important architectural revolu-
tionaries in GANs.

Deep Convolution Generative Adversarial Networks (DCGANs) The previous
vanilla GANs model is comprised of densely connected layers for both sub-models, challenging
in scaling up for computer vision applications. Therefore, Deep Convolution Generative Ad-
versarial Networks (DCGANs) is proposed by Radford et.al [31], in which densely connected
layers are replaced by convolution layers to keep the spatial relationship among pixels in filter-
ing and training stability. With convolution, nonlinear activation such as rectified linear unit
(ReLU) is used for the hidden layer and tanh function for the layer in G, whereas Leaky ReLU
is used in D. Besides, a batch normalization layer is added to increase the diversity among gen-
erated samples [32]. Visualizing the convolution filters provides insights into what the models
see and comprehension of GANs learning. The authors also observed the generated space by
linear interpolation and arithmetic operation. Although DCGANs is the major evolution from
vanilla GANs, training stability, high-resolution image generation, and latent space observation
remains the open research problem in GANs.
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Conditional Generative Adversarial Networks (cGANs) It was proposed by Mirza
et.al [33] to control the generation process by providing the extra information as a condi-
tion. The additional information can be class labels and/or different forms of data modality.
Conditioning the generation process has proven to avoid the common mode collapse problem.
However, it requires the labeled dataset in the case where labels are given as the condition
during training.

Auxiliary Classifier GANs (ACGANs) It is an extension from cGANs and proposed
by Odena et.al[34]. Although it is extended from cGANs, it does not take the labels as the
condition. Instead, the discriminator is modified to perform as an auxiliary decoder to predict
the probability of the image classes. As it is a variant of GANs, the decoder still requires
to perform the original task to classify the distribution of the given samples. Therefore, the
objective function of ACGANs consists of two parts as follows.

LS = E[log p(S = real∣x)] +E[log p(S = fake∣G(c,z))] (2.4)

where LS is the loss function for the log-likelihood of the correct distribution of the given
samples. x is the real sample drawn from the training distribution. z is the latent sample from
the prior distribution. c is the label of image classes. G(c,z) is the generated sample of the
given prior latent and respective class, in other words, a fake sample.

LC = E[log p(C = c∣x)] +E[log p(C = c∣G(c,z))] (2.5)

where LC is the loss function for the log-likelihood of the correct label.

LD =max(LC + LS), LG =max(LC − LS), (2.6)

where LD and LG are the loss function for the discriminator D and generator G, respectively.
The modified function has proved to stabilize the GANs training and scale up to 128×128

images[34]. It has also proved that high-resolution generated images improve the distinctness
among images.

Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets (InfoGANs) Chen et.al [35] proposed the InfoGANs to disentangle
feature representation by maximizing the mutual information between unlabelled observation
and latent codes. As the GANs take the latent samples as input for the generator without any
restrictions, the semantics of the generated data is tangled in the latent space. Therefore, similar
to cGANs, supplementary information such as latent code is given for the semantics structure of
the generated data. Unlike to cGANs, the latent codes are learned in an unsupervised manner
by regularizing the GANs’ objective with mutual information between data and latent codes
as follows.

LInfoGANs =min
G

max
D

Ex∼PX
logD(x) +Ez∼PZ

log(1 −D(G(z))) − λI(c;G(z,c)) (2.7)

where LInfoGANs is loss function for InfoGANs. x is the real sample from the distribution PX .
z is the latent sample from the distribution PZ . I is the mutual information between latent
codes c and the generated samples by the generator G. λ is a hyperparameter to be learned.

In practical training, the above objective is hard to achieve as it requires the posterior
distribution P (c∣x). Therefore, it is revised with an auxiliary distribution to approximate the
posterior distribution. The revised function can be seen as follows.
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LInfoGANs =min
G

max
D

Ex∼PX
logD(x) +Ez∼PZ

log(1 −D(G(z))) − λLI(G,Q) (2.8)

where Q is the auxiliary distribution and is represented as a neural network in practice.

Progressive Growing of GANs (ProGANs) High-resolution images are demanded
since they support the discriminability among generated samples, meaning that the higher-
resolution images are easier to be distinguished. However, GANs training is well-known for
its instability. To tackle this problem, Karras et.al [36] proposed the ProGANs with the new
training approach in a progressive manner. The main idea of ProGANs training is that most of
the training is done in low-resolution image space and stabilized before adding the new layers
to construct the new resolution images. As the benefits of executing progressive training, it
saves training time and stability, which is one of the most common problems in GANs training.
Besides, ProGANs can generate high-quality images and achieve an inception score of 8.8 in
the CIFAR-10 dataset.

A Style-Based Generator Architecture for Generative Adversarial Networks
(StyleGANs) Since latent are sampled from the continuous prior distribution without re-
striction, the semantics feature representations of the generated sample are entangled in the
latent space. To handle this entanglement, Karras et.al [37] proposed StyleGANs to learn
different styles of data. In StyleGANs, the latent are mapped onto intermediate latent space
and changed into style via affine transformation. Then, the style or semantics representation
is used in the convolution layer through the adaptive instance normalization layer. Therefore,
the generator can control image generation by drawing the samples of each style through the
mapping network. StyleGANs achieved the Frechet Inception Score (FID) of 5.06 in Celeb-HQ
[36] and 4.40 in FFHQ [37] datasets.

Loss Function Optimization As opposed to the architecture modification of GANs, many
research focuses on GANs’ objective function to tackle the training instability problem. The
source of training instability comes from the Jensen Shannon divergence, which measures the
similarity among distributions, in which the discriminator D is often better than the generator
G. Therefore, other research formulated the GANs objective with another measurement and a
few of them will be reviewed in this section.

Wasserstein Generative Adversarial Networks (WGANs) Arjovsky et.al [38] pro-
posed the new objective function of GANs based on Wasserstein distance or Earth mover
distance as follows.

W(Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ ∣∣x − y∣∣ (2.9)

where Wasserstein distance between real distribution Pr and generated distribution Pg is defined
over the minimum cost function γ for moving the mass at point x to y.

Unlike GANs’ objective, the Wasserstein function gives the distance value to measure the
two distributions Pr and Pg. Therefore, changes need to be done in the discriminator to execute
the new objective. The final activation is changed from sigmoid to linear to provide the real
value instead of the confidence probability score of the input samples. Besides, weights are fixed
in the range of -0.01 and 0.01 to ensure the parameters lie in the compact space. The original
study also showed that Wasserstein distance-based function is better in other measurements
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including Jensen Shannon divergence when both distributions lie in low dimensional manifolds
and provides the continuous gradients useful for optimization. Due to its benefits, WGANs are
one of the most adopted GANs variations in the literature.

Improved Training of Wasserstein GANs (WGANs-GP) The Wasserstein objec-
tive enforces the Lipschitz constraint on the discriminator or critic by clipping the weights into
a certain range such as [-0.01, 0.01]. Although weight clipping is easy to implement in prac-
tice, it is not a good way to enforce the constraints and causes either vanishing or exploding
gradients problems. Therefore, Gulrajani et.al [39] proposed the regularization term to enforce
the constraints on the Wasserstein objective in replace of weight clipping. The new function is
defined as follows.

LWGANs-GP = Ez∼PZ
D(G(z)) −Ex∼PX

D(x) + λ(∣∣ ▽x̂D(x̂)∣∣ − 1)
2 (2.10)

where D is the discriminator or critic and G is the generator. The first two terms refer to the
Wasserstein distance which takes real samples x and fake samples z synthesized by G. λ is the
gradient penalty coefficient and x̂ is the sample form the distribution Px̂ by uniformly sampling
along the straight line between PX and PZ .

This modification no longer needs batch normalization in both sub-models, which is used to
stabilize the adversarial training, as it independently penalizes the norm of the gradients of D
regarding each input. Besides, it also improves image quality and supports faster convergence
over the WGANs objective [39].

Least Squares Generative Adversarial Networks (LSGANs) The discriminator
of the vanilla GANs used the sigmoid activation for classifying the distribution of the given
samples, often leading to the vanishing gradient problem in updating the generator with the
fake samples that are far from the real samples. In LSGANs [40], it was conceptualized in the
two-dimensional space where the discriminator acts like a decision boundary for separating the
real and fake images, whereas the generator samples the fake images in that space. However,
when the fake samples are drawn far from the real samples but still on the correct side of
the boundary, the choice of cross-entropy sigmoid loss in the discriminator provides very little
gradient information for those fake samples, leading to a vanishing gradient problem. To tackle
this problem, Mao et.al [40] replace the cross entropy sigmoid loss with least squares loss to
penalize the fake samples located far from the real distribution. The objective functions for
each sub-model are defined as follows.

LD =min
D
(
1

2
Ex∼PX

[(D(x) − b)2] +
1

2
Ez∼PZ

[(D(G(z)) − a)2]) (2.11)

where LD defines as a minimized loss for the discriminator D. a and b are the labels of real and
fake samples.

LG =min
G

1

2
Ez∼PZ

[(D(G(z)) − c)2] (2.12)

where LG is the minimized loss for the generator G. c is the label to indicate that G wants D
to believe that fake samples as real.

We can observe that both loss functions are penalized by the squared function to encourage
the generator to synthesize the fake samples closer to the decision boundary, producing higher
gradients and preventing the vanishing gradient problem.
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2.2 Facial Expressions Recognition

This section includes the literature on emotion recognition through facial expressions. It can be
broken down into two parts which are conventional methods and deep learning-based methods.
The overview of a typical facial expressions recognition model can be seen in Figure.2.1.

Figure 2.1: Overview of facial expressions recognition models in literature

2.2.1 Conventional Methods

In the last decade, various feature extraction methods were proposed and had been discussed
in the facial expression recognition literature. A handful of baseline extraction methods used
for facial expressions recognition will be discussed in this section.

As shown in Figure 2.1, conventional methods for emotion recognition typically involve two
major steps: feature extraction and classification. However, it is important to note that pre-
processing is also essential as conventional feature extraction methods are highly sensitive to
noisy data.

One standard pre-processing step is locating the face in the image and extracting the facial
region. Extensive research on face detection has been conducted, resulting in the proposal of
thousands of different methods in the literature so far. Among them, the Viola-Jones face
detection algorithm [41] is a common practice and worth to be mentioned. It was proposed by
Viola and Jones [41] to efficiently detect faces in real time. The algorithm breaks down the image
into several patches using a moving window approach and identifies special features defined by
Haar-like functions within each patch. The window is moved across the entire image to check
different features in different positions, as an image can include multiple faces, leading to high-
dimensional feature sets. To efficiently detect faces, the Adaboost method is employed to select
important features from the complete set and reduce the feature dimensions. Subsequently, a
cascade of face classifiers is trained on these features. At each stage of the cascade, if a simple
feature is not detected in a particular window, it implies that faces do not exist in that window,
allowing for the quick elimination of irrelevant windows. This enables the algorithm to detect
the regions of interest rapidly.

However, Viola and Jones’s algorithm was designed to detect frontal faces and provides
the best results on those faces. Therefore, if the images contain side faces or facing upwards
or downwards, the other methods based on neural networks can be employed [42, 43, 44].
After face extraction, other pre-processing steps such as unifying the resolution, adjusting face
orientation, enhancing pixel intensity, and improving contrast can be done to enhance the
recognition performance in the later stage.
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The next step involves the extraction of the positive features concerned with facial expres-
sions in a given image. This step requires domain-level knowledge and expertise to analyze the
underlying patterns within the extracted features. Therefore, the features obtained through
this approach are commonly referred to as handcrafted features. Extraction methods vary on
the type of facial expression features that are geometric or shape-based and appearance-based
features. Geometric features refer to information related to shape and facial landmarks that are
used to define facial structure. Distinct facial landmarks to define the facial structure of a par-
ticular person involve eyebrows, nose, mouth, eyes, chin, and cheek. However, geometric-based
feature extraction methods often disregard facial texture or complexion. Many approaches
use Active Shape Model (ASM)[45], Active Appearance Model (AAM)[46], Constraint Lo-
cal Model (CLM)[47] and their variations to track and extract the geometric representations.
The appearance-based methods include Local Binary Pattern (LBP)[48], Scale Invariant Fea-
ture Transform (SIFT)[49], Histogram of Gradient (HoG) [50, 51], Gabor filter or wavelets
[52, 53, 54]. Hybrid features can be created to take advantage of the respective types of fea-
tures [55].

Before the final classification, dimensionality reduction is an optional step to select the
important or significant features. Principal Component Analysis (PCA)[56] is one of the several
dimension reduction methods. In the final step, those handcrafted features are employed to
train the classifier to recognize the emotion labels. Commonly used classification methods
in facial expressions recognition systems include Support Vector Machine (SVM)[57], Linear
Discriminative Analysis (LDA)[48], Random Forest (RF)[58], Adaboost [59], Decision Trees[60],
and Naive Bayes[61].

2.2.2 Deep Learning Methods

As stated in the previous section, conventional methods are vulnerable to noisy data and rely
on domain expertise. However, real data comes with high variance, and conventional methods
are not sufficient to handle this type of data. Additionally, facial expression recognition systems
based on conventional methods are not end-to-end systems, meaning the entire process from
feature extraction to classification is not seamless, and manual intervention is necessary to
enhance recognition performance. To address these issues, deep learning-based approaches have
been proposed. With the advances in technology in computing devices and resources, countless
deep learning-based networks had been developed so far. Therefore, this section discusses the
fundamental networks used in the facial expressions recognition system.

Convolution Neural Networks (CNNs) were proposed by LeCun et al. [62] in 1998. The
properties of convolution filters used in CNNs, such as sparse interaction, translation equiva-
lence, and parameter sharing, contribute to the success of image recognition tasks. A typical
CNNs includes down-sampling operations such as pooling or stride convolution, as well as a
fully connected layer at the end for classification, which results in a seamless recognition system.
The initial part of the CNN is responsible for the feature extraction process, and subsequent
layers, such as the pooling layer, perform dimensionality reduction. Finally, fully connected
neurons perform non-linear transformations on the feature maps filtered by the convolution
operations. Architectural variations of CNN applied in facial expressions recognition can be
seen in [63, 64, 65].

Deep Belief Networks (DBNs) were proposed by Hinton et al.[66] to address issues such as
getting stuck at the local minimum due to the slow learning rate in deep networks during back-
propagation. DBNs are unsupervised graphical models designed to capture complex patterns
in training data. They consist of a series of Restricted Boltzmann Machines (RBMs), which
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are stochastic generative neural networks that learn the input distribution. The output of one
RBM is fed as input to another RBM in the series. Unlike RBMs, there is no communication
among nodes within layers. The greedy learning algorithm is used to pre-train the DBN. In
contrast to Convolution Neural Networks (CNNs), which extract basic features such as edges,
shapes, and facial parts at early layers and more task-specific features at later layers, each layer
in a DBN learns representations of the entire input. DBNs can be employed in applications of
image recognition tasks such as facial expressions recognition [67, 68, 69].

Deep Auto Encoder (DAE) is an unsupervised generative model which involves symmetrical
networks, named encoder and decoder. The objective of DAE is to encode the data in a compact
space to reduce the dimensions and learns the significant representation from the input. The
learning is regulated through the reconstruction error by the decoder which re-ensembles the
latent from the low-dimensional space into the input sample. DAE overcomes the shortage
of label data and is able to learn patterns in input in an unsupervised way with the use
of a decoder network. Therefore, it can be applicable to many applications such as noise
reduction, dimensionality reduction, and recognition tasks such as facial expressions[70, 71].
It is also important to note that another generative model, Generative Adversarial Networks
(GANs) broadly discussed in the previous section, can be used together with DAE [72] that
uses the representations learned by the discriminator as a baseline for reconstruction. Once the
training had been finished, the pre-trained discriminator can be fine-tuned to classify the facial
expressions.

Data can be not only static images but also image sequences or sequential data. Recurrent
Neural Networks (RNNs) are specifically designed to handle temporal data by leveraging their
internal memory to retain information or patterns from previous time steps, enabling them
to make predictions for future steps. Within RNNs, nodes possess feedback loops that enable
them to consider not only the current input but also information from recent previous inputs.
Except for their internal memory, it is similar to the feedforward networks and can be trained
through back-propagation through time (BPTT)[73]. RNNs are well-suited for tasks involving
time series data, such as natural language processing for sentiment analysis, as well as computer
vision tasks like real-time facial expression recognition or video analysis.

During the training of RNNs, they typically encounter exploding gradients or vanishing
gradients. To address this problem, Long Short Term Memory (LSTM)[74] is extended from
RNNs including their expanded internal memory. Cell state is regulated through the use of
three gates such as an input gate to allow or modify the state by the input signal, an output
gate to enable or restrict the cell state to influence the other neurons, and a forget gate to
modulate the recurrent connection or erase the previous state. Due to their design, LSTM had
been widely employed in handling sequential data including video facial recognition tasks.
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Chapter 3

Data Preparation

This chapter explains the type of dataset and essential pre-processing step required to train
the proposed methodology in the next chapter.

3.1 Dataset

In this research, three benchmark datasets are used to test the proposed model during the exper-
iment. They are Extended Cohn Kanade Facial Expressions Dataset (CK+)[22], Japanese Fe-
male Facial Expression Dataset (JAFFE)[23] and the Multimedia Understanding Group (MUG)
Facial Expression Dataset[24].

Figure 3.1: Number of peak images in each basic emotion in CK+, JAFFE and MUG dataset

The CK+ dataset includes 123 subjects who are 81% from Euro-American, 13% from Afro-
American, and 6% from others. Ages span from 18 to 50 years and 69% are female. Each
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sequence started with a neural face and ended with a peak expression. The peak frame is
coded with FACS[5] for action units (AUs) which can later be used for emotion recognition
such as anger, contempt, disgust, fear, happiness, sadness, and surprise.

The JAFFE dataset contains 10 subjects who are Japanese females to simplify the exper-
iments. Occlusion such as facial hairs is excluded to show expressive facial area while being
photographed under uniform illumination. Emotion labels are graded by 92 external Japanese
female undergraduates for the degree of facial expressions of each basic emotion such as anger,
disgust, fear, happiness, sadness, and surprise on a Likert scale.

(a) Anger (b) Disgust (c) Fear (d) Happy (e) Sadness (f) Surprise

Figure 3.2: Examples of six basic emotions from the CK+ (upper row), JAFFE (middle), and
MUG (lower row)

The MUG dataset includes videos of 86 subjects who are in the age range of 20 to 35 years
and belong to the Caucasian race. Out of all subjects, 59% are male. Data from 52 subjects
are permitted to be used by external users. All frame sequences are captured under uniform
light conditions and no occlusion is included. The subjects are instructed on how to exhibit
facial expressions for the six basic emotions, as per the FACS manual guide [5]. The order of
sequences is neutral, onset, apex, offset, and back to neutral again. The number of images that
contributed to each six basic emotions is shown in Figures. 3.1. Sample images for each dataset
are illustrated in Figure.3.2.

3.2 Pre-processing

The initial step in face-related tasks is face extraction to remove extraneous information from
the input data, which is not useful for recognition tasks. Processing of raw input images is
necessary because they include additional details like background and time steps that are not
useful in the task. This research uses the pre-processing stages, which are depicted in Figure.3.3.

Pre-processing includes locating the face region in the input image (face detection), out-
lining the detected face (face localization), and retrieving the localized area (face extraction).
There are various face detection algorithms, including classical and deep learning-based ap-
proaches. Classical algorithms utilize various feature representations, including the Histogram
of Gradients (HoG) feature descriptor[75], rectangular Haar-like features[41], Active Shape
Models (ASM)[45], and Active Appearance Models (AAM)[46], along with classification meth-
ods such as linear Support Vector Machine (SVM) and cascade classifiers. However, classical
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Figure 3.3: Overview of face processing stages

algorithms are sensitive to face orientation, lighting conditions, and occlusion. To address these
challenges, deep learning-based algorithms like Multi-Task Cascaded Convolutional Neural Net-
works (MTCNN)[76], and Single Shot Multibox Detectors (SSD)[77] have been developed.

(a) (b) (c) (d)

Figure 3.4: Three types of Haar’s kernel functions defined in Viola and Jones’ algorithm[41],
(a) and (b) are 2 rectangles Haar’s features for vertical and horizontal edges, (c) is 3 rectangles
feature for lines, and (d) is 4 rectangles features for complex structure.

Although deep learning-based face detection algorithms have advantages over the classi-
cal approach, the images used in this research are simple frontal face images associated with
emotional labels. Therefore, the classical approach, named Viola and Jones’ face detection
algorithm[41] is sufficient enough to detect faces in the images. It defines features using Haar’s
basic functions[78] as the window that transverses across the image. They are 2 rectangles for
edges, 3 rectangles for lines, and 4 rectangles for any structure where there are changes in pixel
intensities as in Figure.3.4.

Given an image patch I, the Haar values for the edge can be calculated as follows.

∆edge = ∑
u
∑
v

Ib(u, v) −∑
u
∑
v

Iw(u, v) (3.1)

where b refers to the black and w refers to the white region in the detecting window. u and v is
the coordinate of image path I. ∆edge is the difference of the summed values of pixel intensities
between the black and white region in the given image patch.

For line features,

∆line = ∑
u
∑
v

Ib(u, v) −
⎛

⎝
∑
u
∑
v

Iw1(u, v) +∑
u
∑
v

Iw2(u, v)
⎞

⎠
(3.2)

where w1 and w2 are the two white rectangles, whereas b is the black rectangle in the detecting
windows. ∆line indicates the presence of changes along the line by detecting a darker region in
the image path surrounded by lighter regions from both sides.
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For any structural changes across a diagonal, Haar values can be computed as follows.

∆complex =
⎛

⎝
∑
u
∑
v

Ib1(u, v) +∑
u
∑
v

Ib2(u, v)
⎞

⎠
−
⎛

⎝
∑
u
∑
v

Iw1(u, v) +∑
u
∑
v

Iw2(u, v)
⎞

⎠
(3.3)

where ∆complex indicates the presence of changes in intensity values across the diagonal.
The Viola and Jones algorithm[41] utilizes the integral image to speed up the feature extrac-

tion process. The integral image is a cumulative sum of pixel values above, left, and including
the values at the current point (x,y), as defined in Equation.3.4.

I
′

(u, v) = ∑
u′≤u,v′≤y

I(u
′

, v
′

) (3.4)

where I
′

refers to the integral image and I is the original image.
This allows us to retrieve Haar features for any rectangular window with fewer operations.

However, the resulting feature set is over 180,000 and is infeasible to use directly. To address
this issue, the AdaBoost technique is used to select important features from the feature set.
It employs a weak classifier for each feature and selects features that produce a lower error to
form the final set of important features. This reduces the feature set to over 6,000 important
features.

The classifier is then trained in a cascade fashion, with 38 stages in a detecting window for
face detection. If a simple feature is not detected in the early stage of a particular window, it
is discarded. Otherwise, it moves to the next stage. This cascade classifier significantly reduces
processing time for finding a face, as most windows are discarded in the earlier stages, allowing
for fast computation of face detection. The Viola and Jones algorithm is supported by many
open-source tools. In this research, we used OpenCV[79] for the implementation. The output
of face processing is shown in Figure.3.5.

(a) Input image (b) localization (c) extraction

Figure 3.5: Face processing results, (a) is an input image, (b) is a result of face localization
which bounded the detected face region returned by Viola and Jones’ algorithm[41], (c) is the
result of face extraction for the bounded area.

3.3 Peak Frame Selection

Sometimes data comes in a sequence to express facial expressions, for example, the CK+ and
MUG datasets. In this research, we focus on working with still images. Therefore, we need to
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Figure 3.6: Overview of peak frame selection framework. A represents recognition model
parameterized by learned weights ϕ to extract the facial expression features. x represents the
image from the training set X. p(y) represents the confidence probability of being label y.

pick the frame that has the most expressive facial expressions. In the CK+ dataset, all sequences
start with a neutral expression and end with the peak expression for each emotion. However,
not every dataset follows the same temporal pattern. In the MUG dataset, all sequences start
with a neutral state, followed by onset, apex, offset, and neutral temporal patterns. Therefore,
selecting the peak frame is necessary.

The peak frame can be defined as the image that has features drastically dissimilar to the
ones in the neutral state. Previous research on peak frame selection has had initial requirements,
such as the presence of a neutral frame. Therefore, the peak frame can be identified by finding
the frame with the maximum difference among feature values. One study [80] computed the
dissimilarity matrix for all frames based on chi-squared distances. The distance values were
calculated among Local Phase Quantization (LPQ) features, and the frame with the maximum
distance score was selected as the peak frame. Similarly, another study [81] used three different
features (constrained local model, binary local pattern, and optical strain) on the region of
interest and searched for the peak frame using binary search.

The conventional approach requires a neutral frame for reference. However, this condition
cannot always be satisfied when dealing with real data. Moreover, feature extraction with tra-
ditional methods can be challenging. Therefore, we propose a deep learning-based methodology
for peak frame selection [82]. We hypothesize that the probability of a particular emotion class
being represented in the peak frame is higher than the score in the neutral frame since the peak
frame includes the most expressive facial expressions. The selection process can be categorized
into two stages: training a facial expression recognition model (transfer learning) and clustering
the extracted facial expression features for the peak frame selection. It is depicted in Figure.3.6.
Each stage is discussed in sequential order.

Training a facial expression recognition model Transfer learning is the training tech-
nique to transfer the knowledge that has been learned in the past in solving the new task [28].
Knowledge gained from previous training is adjusted based on the new domain and the final
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layers of the model are tuned for the new task. For example, if the model learns the repre-
sentations of visual categories such as faces as in the previous task, it can share the low-level
features such as edges, shapes, texture, and changes in lightning for the next task with a few
training examples. This technique can significantly reduce the training time and computational
resources required for training a model from scratch, and can often lead to better performance
on the new task, especially when the new dataset is small or similar to the original dataset
used from previous training.

Due to the benefits of transfer learning, the model that was previously trained on face
domain is adapted to train on facial expressions recognition. According to the past research on
transfer learning from previous face recognition setting [83, 84, 85, 86], the deep neural network,
named VGG16 [87] that was trained with large face dataset to identify the identities provides
relatively good performance on the facial expressions recognition task. VGG16 face model
comprises five major convolution blocks before the pooling layer and three dense layers at the
end. To determine the suitable layer in tuning the model for facial expressions recognition, the
first 9 feature maps of final convolution layers from each block are visualized as a convolution
output for interpretation in Figure 3.7.

As per the illustration results, each convolution filter focuses on the different features of a
given input image. For example, at the early stage, convolution filters capture the details of
the image. Some filters highlight on different facial parts of the image such as eyes, mouths,
cheeks, forehead, or face shape while others focus on the image background. As moving into
deeper layers, they capture the general features to make the final classification of the target
task. Based on feature maps from the final block, filters emphasize more on facial areas such as
the eyes, forehead, chin, bridge of the nose, nose, and temple area in the face. Similar to face
recognition tasks, facial expression recognition also requires to detect the different prominent
facial parts as changes are made in those parts. Therefore, the last three dense layers after the
final convolution blocks are considered as candidate layers to tune the model.

Two new dense layers are added after each candidate layer of the pre-trained model. A
thousand images are randomly selected from the MUG dataset for each emotion for training.
Given the training set X, the new weights are updated through the Adam optimizer over 64
training batches. The softmax activation in Equation 3.5 is applied in the last layer to ensure
that the output sums up to 1, following the probability distribution.

P (y∣v) =
ev
(j)

∑
6
c=1 e

vc
(3.5)

where e is the standard exponential function applied at each attribute j of input vector v. c is
the index for emotion classes. y is the output class.

Their performance is measured in terms of accuracy in Equation 3.6 where the value of
accuracy a is computed over frequency ω of correct prediction per class ci and total number of
samples X used in the evaluation.

aci =
ωci

∣Xci ∣
(3.6)

Table 3.1 shows the performance of the model tuned after each potential layer. Their average
accuracy for each tuned model is calculated as in Equation. 3.7.

â =
1

6
.

6

∑
i=1
aci (3.7)
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(a) Input image (b) Convolution block 1

(c) Convolution block 2 (d) Convolution block 3

(e) Convolution block 4 (f) Convolution block 5

Figure 3.7: Visualization of first 9 feature maps from final convolution layers of each block in
VGG face model

The tuned model after FC7 gives the best performance among the three candidates, and
therefore, it is selected for further processing.
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Table 3.1: Accuracy of tuned VGG face model after last three dense layers (FC6, FC7, FC8)
for facial expressions recognition task

Accuracy aci
i class ci FC6 FC7 FC8

1 anger 76% 95% 26%
2 disgust 64% 82% 15%
3 fear 75% 62% 0%
4 happiness 79% 91% 28%
5 sadness 71% 82% 28%
6 surprise 79% 64% 29%
Average accuracy (â) 74% 79% 21%

Clustering Clustering is an unsupervised learning algorithm to group samples that have
similar features or characteristics together in the same groups. The goal of clustering is to
identify the underlying pattern presented in the features. Our objective is to categorize the
image sequences into two distinct groups - peak-like and neutral-like clusters, depending on the
level of facial expressions exhibited in the images. Therefore, with clustering, we can gather the
instances that have similar facial expressions intensity levels. Suppose that facial expressions
features extracted by the tuned model are

f
(j)
i = [f

(1)
i , f

(2)
i , f

(3)
i , ..., f

(j)
i , ], j ∈ R128 (3.8)

where i is the index for the number of feature instances, and j is the index for the number of
feature attributes returned by the tuned model A, which is parameterized by ϕ.

Kmeans++ clustering [88] is performed on those sets of facial expressions features. The
number of clusters, k is set to 2 as the features are clustered into two groups that are peak-like
and neutral-like clusters. Then, the first center, c1 is uniformly selected from instances as
follows.

c1 ∈R {f
(j)
1 , f

(j)
2 , f

(j)
3 , ..., f

(j)
i } (3.9)

where R represents randomization. The next center c2 is initialized based on the distance
between the data instances f

(j)
i and the first center c1 with the probability of f

(j)
i being propor-

tional to d2. It is formulated as follows:

c2 =max
i

¿
Á
ÁÀ

128

∑
j=1
(f
(j)
i − c

(j)
1 )

2 (3.10)

After the initialization of the centers for each cluster, the distance between instances and
each center is computed. Each instance is assigned into the cluster with minimum distance
values as follows.

min
i

⎛

⎝
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ÁÀ

128

∑
j=1
(f
(j)
i − c

(j)
1 )

2,
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⎠
(3.11)

Afterwards, the algorithm re-calculates new centers for every cluster by taking into account
the instances that are contained within each respective cluster. It is formulated as follows.
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ck =
1

∣ck∣

n

∑
i=1

f
(j)
i (3.12)

where i is the index for instances and n is the total number of instances contained in the
cluster ck, indicating f

(j)
i ∈ ck. Equations 3.10 and 3.12 is executed until cluster centers remain

unchanged.
Next, the data instance closest to each center is chosen as key frame as in Equation. 3.13,

which gives two key frames to represent their own group.

f
(j)
i,c =min

i

¿
Á
ÁÀ

128

∑
j=1
(f
(j)
i − c

(j))2, c ∈ {c1,c2} (3.13)

where f
(j)
i,c refers the nearest sample to center c in its respective group.

(a) Results on the image sequences captured during the first take for subject ID 001.

(b) Results on the image sequences captured during the second take for subject ID 001.

Figure 3.8: Visualization the clustering results, c1 refers to first cluster and c1 refers to second
cluster. The rectangular box represents the key frame of the corresponding cluster.

The clustering results and their corresponding key frames are shown in Figure 3.8. As
depicted in Figure 3.8a, the first cluster c1 contains neural-like expressions, while the second
cluster c2 contains peak-like expressions. However, Figure 3.8b presents these interpretation in
the opposite manner. Our hypothesis is that the key frame that corresponds to the peak group
can be identified by comparing the total feature values between the peak key frame and the
neutral key frame, with the expectation that the former would have a higher total value.

Figure 3.9 displays the total response values of the features for two image sequences. Based
on the figure, total values are low at the beginning and end of sequences. High values are
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(a) Results on the image sequences captured during the first take for subject ID 001.

(b) Results on the image sequences captured during the second take for subject ID 001.

Figure 3.9: Visualization the total feature response values with two key frames from each
cluster. 8 refers to peak key frame. refers to neutral frame.

secured in the middle as the sequences from the MUG dataset follows the temporal pattern
such as neutral, onset, apex, offset, neutral in that order. Therefore, as a next step, total
features response values are computed in Equation.3.14 which returns two summation values
for peak-like and neutral-like clusters.

sck =
128

∑
j=1
f (j) (3.14)

where j represents an index of attribute of the 128-dimension features. s is the summation
result for its corresponding cluster ck.

Next, the total values are compared and the key frame with higher values are defined as
peak-like cluster that gathers the frames with higher features intensity. It is formulated as
follows.
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c =max
c
(sc1 , sc2) (3.15)

where c refers to the peak-like cluster. The key frame belong to this class is chosen as peak
frame and used in further processing.

3.4 Image Pair Selection

In our experiments, we focused on selecting peak images with expressive facial expressions for
each emotion. Since the last frame of the CK+ sequences is labeled as the peak frame, we only
selected the last image for further processing. For the MUG dataset, we used the proposed
framework from the previous section to select the peak image. All of the examples from the
JAFFE dataset were employed because they were all peak frames. However, apart from CK+,
the other datasets contained six basic facial expression images from the same subject. Therefore,
we paired different facial expression images from CK+ based on the similarity score of the facial
features.

Figure 3.10: Overview of facial feature extraction by pre-trained model B parameterized by
trained weights σ[89]. X is the set of training images. j is the feature attribute where j ≤ 128.

Since CK+ images contain both color and grayscale images, all the images are converted
into grayscale to maintain consistency. Before the selection, a set of candidate images for a par-
ticular image is chosen based on gender, such as male-to-male or female-to-female. Afterwards,
the selection process involves two stages: feature extraction (Figure.3.10) and similarity mea-
surement (Figure.3.11). In this research, we use the pre-trained model reported by Geitgey[89]
for the feature extraction process, as it achieved high accuracy (up to 99%) on challenging
faces datasets such as the Labeled Faces in the Wild. The implementation is supported by
open-source tools, named Dlib [90].

Given an image x from the candidate set X, the pre-trained model B with trained parameter
σ [89] encodes the faces into 128-dimensional feature space, where similar faces are located closer
to each other. It is depicted in Figure.3.10. All facial image from CK+ are encoded in this
way. After encoding the faces, degree of similarity among features are computed as follows.

sk,l =
ejk,c1 .e

j
l,c2

∣∣ejk,c1 ∣∣.∣∣e
j
l,c2
∣∣

(3.16)

where e is the encoded features in j dimensions where j ≤ 128. ci represents the emotion class
where c1 ≠ c2. k and l are the image indices from the classes c1 and c2 respectively. s is the
similarity score with the range of -1(dissimilarity) and +1(similarity).
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Figure 3.11: Overview of measuring the similarity among facial features. Pre-trained model B
parameterized by σ takes training sample x and returns 128-dimensional facial features where
j ≤ 128. ci represents the emotion class where c1 ≠ c2.

For a particular image xk in class c1, all instances from a different class c2 are taken into
consideration. The image with the minimum score from c2 is reported as a match for that
image in c1. This can be formulated as follows:

l = argmin
l
{sk,l∣∀s ∈ S, l ≤M} (3.17)

where s is the similarity score from the scores set S in the class c2 for a particular image xk

from c1. M is the total number of image instances in c2. Detail processing steps are explained
in Algorithm.1.

3.5 Morphing

Given two images xk,c1 and xl,c2 (x ∈ X), morphing creates the intermediate image I between
xk,c1 and xk,c2 by warping the pixels of the same local region from each respective input.

I(u, v) = (1 − α)xk,c1(u, v) + αxl,c2(u, v); (3.18)

where I is the morphed image between xk,c1 and xl,c2 . α is the control parameter for pixels infor-
mation to be morphed at the location (u, v). k and l are the image indices in the corresponding
classes c1 and c2.

Detailed steps for image morphing are described in Algorithm 2. First, distinct facial
features such as eyes, and nose are located by a pre-trained landmark detector (Dlib[90]) that
returns coordinates of 68 facial landmarks. Additional points at four corners and their middle
are added to the list, making a total of 76 landmarks as shown in Figure.3.12. Those points
are used as vertices to find the Delaunay triangles.

Delaunay triangulation divides the image plane into several small triangles and rejects the
skinny triangle during division. This property helps the morphing process not to process the
region that is not very perceptible. Triangles from each corresponding image are transformed
and warped. Warped images are used for morphing.

The morphing process is controlled by a parameter α, which ranges from 0 to 1, inclusive.
It controls the amount of information from each input to be morphed. For example, when α is
0, much pixels information at position (u and v) from xc1 is applied in the morphing process
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Algorithm 1: Algorithm to select the compatible different facial expressions images
with the most similar facial features
Input: Candidate images x ∈ X for classes c1 and c2. Pre-trained model B(x;σ) to
encode faces into features into feature space.
Output: Indices of compatible image pair for morphing
S1 ← ϕ;
k ← 0;
while k < N do

/* N is the number of images in c 1 class */

e
(j)
k,c1
← B(xk,c1) /* j ∈ R128 */

S1 ← S1 ∪ e
(j)
k,c1

end
S2 ← ϕ;
l ← 0;
while l <M do

/* M is the number of images in c 2 class */

e
(j)
l,c2
← B(xl,c2)

S2 ← S2 ∪ e
(j)
l,c2

end
for k ← 0 to N by 1 do

S ← ϕ;
for l ← 0 to M by 1 do

sk,l =
e
(j)
k,c1

.e
(j)
l,c2

∣∣e(j)
k,c1
∣∣.∣∣e(j)

l,c2
∣∣

/* Cosine similarity metric */

S ← S ∪ sk,l
end
l = argmin

l
{sk,l∣∀s ∈ S, l ≤M};

end
return k, l

Figure 3.12: Detected landmarks by Davis [90] with additional points

and the result looks exactly like xc1 . When α is 1, the result has the same appearance as xc2 .
In this research, α is set as the value of 0.5.
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Algorithm 2: Algorithm for image morphing

Input: Two images xk,c1 and xl,c2 from the training set X, facial feature detector
B(.;σ) provided by dlib open source library [90]. E (.) is the function to find the
delaunay triangulation that returns a list of triangles to morph. W (.) is a warping
function for affine transformation.
Output: Morphed image I
ek,c1(u, v) ← C(Ik,c1)
el,c2(u, v) ← C(xl,c2);

/* e is the detected landmark features by B. u,v is pixel coordinates.

*/

e(u, v) ← (1 − α)ek(u, v) + αel(u, v)
T1 ← D(ek(u, v))
T2 ← D(el(u, v))
T ← D(e(u, v))
/* T1, T2, T are the list of delaunay triangles. */

for m← 0 to ∣T1∣ by 1 do

T1,m = A.T
T
m /* A is affine transformation matrix */

x
′

k,c1,m
=W(T1,m)

end
for m← 0 to ∣T2∣ by 1 do

T 2,m = A.T
T
m

I
′

l,c2,m
=W(T2,m)

end

I(u,v) = (1 - α)x
′

k,c1
(u, v) + αx

′

l,c2
(u, v)

(a) Random selection
(CK+)

(b) Similarity based
selection (CK+)

(c) Identity-based
selection (JAFFE)

(d) Identity-based
selection (MUG)

Figure 3.13: Output of morphing

Figure.3.13 illustrates the output of the morphing process using different approaches for
image pair selection. Since the subjects in JAFFE and MUG have images for different emotions,
images from those datasets are paired based on their subjects’ identity. Images from CK+ are
paired based on their similarity scores, as described in the previous section. Compared to the
results of random pairing, the results of morphing seem better when using similarity-based
selection, especially when performed on opposite emotions such as happiness and sadness. The
morphed images are used as training data to train the proposed emotion generative adversarial
networks model in the next chapter.
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Chapter 4

Generating Complex Facial Expressions
Images for Mixed Emotions

The objective of this dissertation aims to estimate mixed emotions using synthesized images. To
accomplish this objective, we propose the methodology using the analysis-by-synthesis approach
described in Figure.4.1. This chapter discusses the proposed generation models to generate the
mixed facial expressions images and the next chapter includes the evaluation of those synthe-
sized mixed facial expressions images. Afterward, the facial expressions recognition models will
be discussed to estimate the mixed emotion labels.

Figure 4.1: Overview of the proposed model to estimate mixed emotion labels through analysis-
by-synthesis approach

In this chapter, we present four different proposed models and methodologies during the
study. It can be categorized into two main groups as in Figure.4.2: Unsupervised and Super-
vised. The first three models are designed to solve the training stability with different loss
functions and improve image quality. The last model is designed to control the image gen-
eration process. All models include their network configurations, loss functions used during
training, and their respective challenges. They are described in the following order.

• Emotion Generative Adversarial Networks (EmoGANs)[91]

• EmoGANs with Wasserstein distance-based objective function (EmoGANs1)[92]

• methodology for generating a mixture of facial expressions images for complex emotion
(EmoGANs2)[93]

• Conditional EmoGANs with identity preservation (EmoGANs3)
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Figure 4.2: Overview of proposed image generation models

4.1 Unsupervised Training

This section includes the respective network configurations and challenging factors covering
their advantages and disadvantages for the first three models: EmoGANs, EmoGANs1, and
EmoGANs2.

4.1.1 Emotion Generative Adversarial Networks (EmoGANs)

This section presents the proposed Emotion Generative Adversarial Networks (EmoGANs)[91].
The background architecture of EmoGANs is based on Deep Convolution Generative Adver-
sarial Networks (DCGANs) [31] that use the convolution layers unlike the vanilla GANs by
[27].

Vanilla GANs are composed of fully connected layers in two sub-models (Generator, G and
Discriminator, D). The challenging part of vanilla GANs is that G must not be over-updated
without updating D and weights updates should be harmonized because it uses a single loss
function (minimax loss) among models. Over-updating often leads to a mode collapse prob-
lem, in which G fails to cover the full dataset and focuses on generating the best outputs for
particular class instances without considering diversity. It is also referred to as the Helvetica
scenario in [27]. Besides, it used densely connected layers as its architecture, making it com-
putationally expensive for unstructured high-dimensional data such as images. DCGANs cover
these challenges by replacing dense layers with stride convolutions.
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4.1.1.1 Exploring the advantages of convolution layers over densely connected
layers

Suppose that x is the sample from training data distribution X, represented by 3x3 matrix as
follows.

x(j) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(1) x(2) x(3)

x(4) x(5) x(6)

x(7) x(8) x(9)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.1)

where j is an attribute contributed in the sample x from distribution X.

Figure 4.3: A simple example of a fully connected network with input and output layers, x(j)

is the input neuron and yj
′

is the output neuron. W is the weighted matrix. j and j
′

are the
feature indices for x and y respectively.

An example fully connected network (FNN) is constructed with two layers (input and out-
put) in Figure.4.3, which has 9 input neurons at input layer and 4 neurons at output layer.

The value of output neuron y(j
′) can be calculated as follows.

y(j
′) =W(jj′) . x(j) (4.2)

Based on the FNN example, the input sample is flattened and each input neuron is connected
to every single neuron at the output layer. Values of output neurons are computed through
weighted transformation by input neurons in Equation 4.2, indicating every neuron at the input
layer impact every output neuron regardless of their relation. When input data comes to FNN,
they are flattened without considering their spatial position. Flattening might not have an
impact on tabular data, but it affects image data because adjacent pixel values are meaningful
in the image. In the example, input data have 9 dimensions for illustration purposes. However,
image data are in high dimensions. Working with high-dimensional images is computationally
expensive in FNN because it includes every input in the calculation for a single output.
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For an example of a convolution neural network (CNN), suppose that the weighted kernel
is defined by 2x2 matrix as follows.

W = [
w(1) w(2)

w(3) w(4)
] (4.3)

The convolution can be formulated by using the weighted kernel as follows.

y(j
′) =W ∗ x(j) (4.4)

Figure 4.4: Matrix form of convolution operation in Convolution Neural Network with input
and output layers

Figure.4.4 illustrates the convolution process described in Equation.4.4, in which each output
is calculated based on the position of adjacent pixel values in a window sliding across the input
matrix. In addition, weighted kernel can be assigned any matrix which is smaller than the input
matrix. When the input is an image, the weighted matrix for FNN is exponentially growing,
whereas in CNN, the small matrix can still be used by sliding across the input for calculation
and output dimension can significantly reduced by pooling operations. To summarize, CNN is
suitable for high-dimensional image data over FNN.

Due to the benefits of CNN over FNN for image data, DCGANs replace the dense layer with
a strided convolution layer, that learns its own spatial downsampling in discriminator D and
upsampling in generator G. Asides from convolution operations, it uses batch normalization
that normalizes the input to have zero mean and unit variance to help the network training
and avoid the poor weight initialization problem during training. The benefit of how batch
normalization helps deep models during their training is discussed in [94].

In DCGANs, batch normalization is applied to all layers except D ’s input layer and G ’s
output layer. Adding batch normalization helps the deep generator for gradient flows and
prevents it from the mode collapse problem. Instead of max-out activation in vanilla GANs,
DCGANs employ bounded activation functions such as Rectified Linear Unit (ReLU) in G and
Leaky ReLU in D. Once DCGANs had been trained, the trained G and D can be reused as
the feature extractors for the supervised task. It is proven to have about 82% accuracy by
using trained models for classifying CIFAR 10 dataset in [31] and outperformed the Kmeans-
based method as a feature extractor. The proposed model, Emotion Generative Adversarial
Networks (EmoGANs)[91], derives benefit from adopting the structure of DCGANs and further
modifying it to align with the research objectives.

4.1.1.2 Network configurations of Emotion Generative Adversarial Networks

Like other GANs, EmoGANs[91] consist of two sub-models, generator G and discriminator D to
compete for a zero-sum game. Unlike the others, G takes three inputs, such as two images with
different facial expressions to represent distinct emotions and a random latent sampled from the
Gaussian distribution as in Figure. 4.5. The zero padding layer is employed onto two inputs to
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control the dimension reduction after applying convolution filters in the next layer and to have
a uniform dimension for feature fusion at the concatenation layer. Each convolution layer is
followed by a dropout layer to regulate the training and avoid overfitting. On the other hand,
the random latent is upsampled with transposed convolution followed by dropout operation.
Once features from all inputs had been extracted, they are combined at the concatenation layer
and upscaled by transposed convolutions until the desired output resolutions, that is 64 × 64.

Figure 4.5: Overview of EmoGANs’ generator

The configuration of D is a simple 2-layered convolution neural network as in Figure.4.6
as the datasets are simple and do not include sophisticated facial expressions images such as
lateral facial or occluded images. D takes two types of input images such as one comes from
real data distribution, PX and the other comes from generated data distribution Pg by G. The
objective of D is to predict the probability distributions of input samples by applying sigmoid
activation, yielding the value 1 to represent PX and 0 for Pg.

4.1.1.3 Network Training

The objective of Generative Adversarial Networks (GANs)[27] is to train two models in a way
that neither can decrease its own cost function without modifying the parameters of the other
model in competition as in Equation 4.5. Their weight updates can be done by any gradient-
based optimization algorithm. In vanilla GANs, it was achieved by momentum-based stochastic
gradient descent optimizer to accelerate the convergence and avoid local minima.

min
G

max
D

V(D, G) = Ex∼PX
[logD(x)] +Ez∼PZ

[1 − logD(G(z))] (4.5)

where x is the sample from training distribution PX and z is the latent sample from Gaussian
distribution PZ .

37



Figure 4.6: Overview of EmoGANs’ discriminator

Gradient descent is an optimization technique that leverages the first-order derivatives or
the slope of an objective function to discover the global minimum within the search space
by traversing along the negative direction of the slope. Due to its reliance on the function’s
gradient or slope, the search process may oscillate within the search space, occasionally resulting
in upward movements that can delay the realization of the global minimum. To overcome this
issue, a hyper-parameter called momentum γ can be introduced to accelerate the search. This
parameter controls the amount of past gradients during updates and its values range from 0.0
to 1.0.

v(t) = γ.v(t−1) + λ.J
′

(θ) (4.6)

where γ is the momentum to accelerate the search. λ is the learning rate. J
′

is the first order
derivative of the objective function parameterized by weights θ. v is the velocity.

θ(t+1) = θ(t) − v(t) (4.7)

where θ is the set of learning weights and v is the velocity to accelerate the gradient towards
convergence.

For instance, J(θ) represents an objective function parameterized by a set of parameters θ.
The update rules for parameter updates using momentum are outlined in Equations 4.6 and 4.7.
Equation 4.6 calculates the current position vt at time step t by combining the previous position
weighted by the momentum γ and the gradient multiplied by the learning rate or step size λ.
The current position is later used in the weights update step, as specified in Equation 4.7. Since
momentum accumulates past gradients over iterations, it can help to reduce search oscillation
and enable the search to make progress even in flat search spaces, where the gradient is zero.
One disadvantage of using momentum-based gradient descent is that as the search approaches
the global minimum, it tends to oscillate within and around the minimum due to its use of high
momentum.

Therefore, as an alternative, Adaptive Moment Estimations, known as Adam optimizer [95]
is used in DCGANs[31] for weight updates. Similar to the momentum gradient descent (MGD)
algorithm, Adam is also designed to accelerate the search process by adapting the learning
rate λ for each parameter. Steps for Adam optimizer are described by two functions named
InitializeParameters and UpdateParameters in Algorithm 3. The Adam optimizer involves
two-moment vectors that are the first and second moments of the gradient for an objective
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function, symbolically represented as m and v, which are initialized as zeros at the beginning
of the search.

During the search, m is updated with hyper-parameter β1 weighted by partial gradient g.
v is also updated based on the hyper parameter β2 multiplied by g2, which is the element-wise
square of g. Since both m and v employ zero-based initialization, both values are corrected by
dividing their respective hyper-parameters decayed over time. In the final stage, the weights
are updated based on the biased-corrected moment vectors. The advantages of Adam are com-
putational efficiency and effective performance with larger parameters. Moreover, in contrast
to MGD, it decelerates progress and prevents oscillation when approaching convergence at the
minimum. Therefore, it becomes a default optimizer in updating the weights of the deep neural
networks, which contain millions of parameters. Due to its benefits, this research utilizes the
Adam optimizer and updates the weights over mini-batch samples.

To align with the objectives of the research, the cost function of EmoGANs is updated as
in Equation 4.8.

min
G

max
D

V(D, G) = Ex∼PX
[logD(x)] +Ez∼PZ

[1 − logD(G(xc1 ,xc2 ,z))] (4.8)

where x is the sample from real data distribution PX . xc1 and xc2 are training samples from X1

and X2 for corresponding classes c1 and c2. z is the latent sample from Gaussian distribution
PZ .

As illustrated in Figure.4.5, G takes three inputs, in which two inputs (xc1 , xc2) are training
samples for emotion classes c1 and c2. The third input z is the sample from the prior distribu-
tion. For D, it takes the morphed images as training samples. During batch production, the
sample indices are randomly generated and recorded. Based on those indices, the morphed im-
ages (x) and their corresponding image pairs (xc1 , xc2) are selected and used to update weights
over those samples.

4.1.1.4 Discussion

The EmoGANs model is trained on 64 × 64 images, which are normalized before training. It
takes latent samples from a Gaussian distribution N(0,1). The models are updated through the
Adam Optimizer over batches of size 128. During hyperparameter tuning, the default learning
rate of the Adam optimizer is not suitable for the model and causes the mode collapse problem,
where a small subset of images is repeatedly produced by the generator and the generation
does not cover the variation of the entire dataset.

Since a larger learning rate updates a larger amount of weights, it makes the model adapt
to the problem faster and might overlook the optimal points. To remedy the problem, we
set a smaller learning rate of 5e-06 to make smaller updates for each update. However, this
smaller learning rate requires longer training time. Therefore, we train the model for 5000
training iterations. The same settings are applied for all datasets. In spite of being the same
setting, the quality of generated images is different. Based on our trial experiments during
model training, the model produces good images for CK+ after completing the set training
iteration, whereas the intermediate models, after some iteration, work better for JAFFE and
MUG compared to the end model. Those trained models are selected for image generation.

To assess the quality of the generated images, a handful of random latent and random
image pairs were generated to synthesize the images using the trained generator. The output
is shown in Figure 4.7. The trained generator mapped the input samples onto a 64×64 image
space. From the results, it is observed that the generated images are noisy, causing the facial
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Algorithm 3: EmoGANs’ mini-batch stochastic training with Adam optimizer

Input: e, b, n, zb, xb /* e is number of iterations. b is the mini-batch

size for each update. n is the number of mini-batch sizes. z is the

random latent drawn from Pg. x is training sample from PX. R is the

random function that takes start and end values and returns a list of

random numbers with size b. */

Function InitializeParameters() is
m(0) ← 0; /* m is first moment. */

v(0) ← 0; /* v is second moment. */

t← 0; /* t is time step. */

return m(0),v(0), t
end
Function UpdateParameters(θt, f, β1 = 0.9, β2 = 0.999) is

t← t + 1
g(t) ← f

′

(θ(t−1)) /* g is slope of f */

m(t) ← β1.m(t−1) + (1 − β1).g(t) /* β1,β2 are decay rates */

v(t) ← β2.v(t−1) + (1 − β2).g2(t) /* g 2 = g ⊙ g */

m̂(t) ← m(t)

1−βt
1

/* βt
1 is the β1 with power t */

v̂(t) ← v(t)

1−βt
2

/* βt
2 is the β2 with power t */

θ(t) ← θ(t−1) − λ. m̂(t)√
v̂(t)+ϵ

/* λ is the learning rate. */

return θ(t)

end
θd ← InitializeParameters(); /* initialize D ’s parameters */

θg ← InitializeParameters(); /* initialize G ’s parameters */

foreach iteration e do
foreach mini batch n do

L← R(0, ∣X∣), b) /* random numbers between 0 and b */

Z = {z1,z2, ...,zb} /* for latent */

X[L] = {x1,x2, ...,xb} /* for morphed images */

Xc1[L] = {xc1,1,xc1,2, ...,xc1,b} /* for emotion c1 */

Xc2[L] = {xc2,1,xc2,2, ...,xc2,b} /* for emotion c2 */

fd =
1
b ∑

b
l=1[logD(xl) + log(1 −D(G(xc1,l,xc2,l,zl)))]

UpdateParameters(θtd, fd) /* Update D ’s parameters */

end
Z = {z1,z2, ...,zb} /* for new batch of latent */

fg =
1
b ∑

b
l=1 log(1 −D(G(xc1,l,xc2,l,zl)))

UpdateParameters(θtg, fg) /* Update G ’s parameters */

end

expressions in the generated images cannot be clearly visible. However, it can be perceived
that the generated images resemble their corresponding dataset.

In comparison to other datasets, JAFFE includes only ten subjects and it is easy to de-
termine variations in image generation. Based on the results shown in Figure. 4.7 (middle
row), the image generation for JAFFE covers the entire range of data variations. Analyzing
the results for CK+ in Figure 4.7 (upper row), the results include mixed genders and diverse
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Figure 4.7: Example images generated by EmoGANs’ generator using EmoGANs’ objective
function. Each row represents the generated samples from CK+, JAFFE, and MUG in sequen-
tial order.

facial characteristics. Compared to CK+, MUG is more homogeneous, including the Caucasian
race. Although facial occlusion is significantly reduced, some male subjects in the MUG dataset
have facial hair, such as beards or mustaches, which cover the upper lips, philtrum (the area
between the upper lips and nostrils), and chin. Furthermore, the generated samples of MUG in
Figure.4.7 (last row) demonstrate a resemblance to the characteristics present in the dataset.

4.1.2 Wasserstein Distance Based Emotion Generative Adversarial
Networks (EmoGANs1)

This section proposed the EmoGANs model[92] with the Wasserstein distance cost function to
overcome the training instability. Before the proposed model, the problems in GANs training
will be discussed.

4.1.2.1 Problems in GANs Training

Difficult to achieve convergent training GANs training is built on finding the Nash
equilibrium in a non-cooperative game, where each model wants to optimize its profits. The
Nash equilibrium is hard to achieve in practice as concurrently updating their own cost function
by gradient descent optimization does not guarantee to reach the equilibrium where both models
obtain their optimal outcome[28]. Suppose that the objective function of a two-player game is
xy, where a player controls the variable x and the other manages the variable y. For the first
player, its respective cost function is xy, whereas, the other wants to minimize it that is −xy.
Therefore, the gradient for their respective cost becomes

∂(xy)

∂x
= y,

∂(−xy)

∂y
= −x (4.9)
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where the objective function for the first player is xy and the other is −xy.
During optimization by gradient decent with a small learning step η, their corresponding

updates become

x̂ = x − η.y, ŷ = y + η.x (4.10)

where x̂ and ŷ are the updated values. η is the learning step for going down toward the minimum
value.

Based on their gradient decent updates, x and y have different signs, causing oscillation and
instability rather than converging at the origin, where x = y = 0.

Training instability The real data distribution could exist in a low-dimensional manifold
embedded in the high-dimension space during manifold learning [96]. The generated data
distribution also lies in a low-dimensional manifold, where the random numbers from latent
space which has a small number of dimensions hardly fill up the pixels in image space. Therefore,
when both real data distribution and generated distribution lie in low-dimensional manifolds,
the supports of the distributions are disjoint [97]. When they have disjoint supports, the
discriminator is able to distinguish the real and generated samples from those distributions and
becomes perfect. Therefore, the discriminator could not provide meaningful gradients back to
the generator, leading the unreliable training.

Jensen Shannon (JS) divergence is not continuous In GANs’ training, the distance
between real data distribution and generated distribution is measured by Jensen Shannon (JS)
divergence. In some circumstances, the JS divergence is not continuous. Suppose that there
are two distributions P0 and Pθ having the corresponding value of 0 and θ in the 1st dimension
and follow the Gaussian distribution N(0,1) in the 2nd dimension as in Figure.4.8.

Assume that P0 is the real distribution that we wanted to approximate and Pθ is the prior
distribution. The parameters of Pθ are learned to approximate the real distribution P0, meaning
that θ will be moved closer to zero. During approximation, the vanilla GANs[27] use the JS
divergence to measure how close these two distributions are which is defined as follows.

JS(P0,Pθ) =
1

2
KL(P0,Pm) +

1

2
KL(Pθ,Pm) (4.11)

where Pm is the mixture of the two distributions (P0, Pθ) which is defined as 1
2(P0) +

1
2(Pθ).

KL represents the Kullback-Leibler (KL) divergence defined in the following equation.

KL(P0,Pθ) = ∫
x,y

log(
P0(x, y)

Pθ(x, y)
)P0(x, y)dy dx (4.12)

From the KL divergence equation, it is asymmetric. If Pθ(x, y) = 0 and P0(x, y) > 0 at any
point of (x, y), KL divergence becomes +∞. Similarly, the same value holds for KL(Pθ,P0).
Therefore, it becomes

KL(P0,Pθ) = KL(Pθ,P0) =

⎧⎪⎪
⎨
⎪⎪⎩

+∞ for θ ≠ 0

0 for θ = 0
(4.13)

where θ is the two-dimensional parameter space such as x and y.
To define the JS divergence between them, the mixture distribution Pm is

KL(P0,Pm) = ∫
x,y

log(
P0(x, y)

Pm(x, y)
)P0(x, y)dy dx = log2 where (x, y) ≠ 0 (4.14)
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Figure 4.8: An example case where Jensen Shannon (JS) divergence is not continuous. P0 is
the distribution such that (0,N(0,1)) and Pθ is the prior distribution such that (θ,N(0,1)).
θ is the parameter of the distribution.

Similar condition holds for KL(Pm,P0). Therefore, JS divergence of P0 and Pθ is

JS(P0,Pθ) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2 log2 +

1
2 log2 = log2 for θ ≠ 0

0 for θ = 0
(4.15)

From the above equation, we can observe that the JS divergence jumps to zero from the value
of log2 when θ becomes zero and can be concluded that it is not continuous.

4.1.2.2 Wasserstein Distance or Earth Mover Distance

Wasserstein distance defines the probability distribution by moving the transported mass at
each point with minimal effort during the transformation from the distribution Pr into Pg.
Effort can be defined as the product of transported mass m and distance γ from moving the
point from x to y. Each γ can be considered an optimal transportation plan defined as infimum
over (Pr,Pg). To execute the transportation plan γ, the mass m need to be moved from the
point x to y. Therefore, the amount of mass m leaving from the point x becomes ∫y γ(x, y)dy

and the amount of mass m entering the point y is ∫x γ(x, y)dx, which leads to the effort as
follows.
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W(Pr,Pg) = ∫
x
∫
y
γ(x, y)∣∣x − y∣∣dy dx = E(x,y)∼γ[∣∣x − y∣∣] (4.16)

where Pr and Pg are the real distribution and generated distribution, respectively. γ(x, y) de-
fines the transportation plan from point x to y whose ends up with the corresponding marginals
of Pr and Pg.

From the example where JS divergence is discontinuous (Figure.4.8), the Wasserstein dis-
tance between P0 and Pθ is just moving the mass from the point (θ, y) to the point (0,y) along
the straight line. Therefore, it can be defined as follows.

W(P0,Pθ) =

⎧⎪⎪
⎨
⎪⎪⎩

∣θ∣ for θ ≠ 0

0 for θ = 0
(4.17)

where θ represents the parameters x and y where x, y ∈ R2. From this equation, we can observe
that the Wasserstein distance is continuous and useful to calculate the meaningful gradients
during optimization[38].

4.1.2.3 Network Configurations of EmoGANs1

From the previous discussion, we can observe that the Wasserstein distance has advantages
over JS divergence in estimating probability distribution. Therefore, the EmoGANs model[91]
is modified based on this Wasserstein distance. The proposed models can be seen in Figures.4.9
and 4.10.

The overview configuration of the generator G can be viewed in Figures.4.9. Similar to
EmoGANs, it takes three inputs such as two images that represent different basic emotions and
a prior latent sample. Their respective facial expressions features are filtered through convolu-
tional kernels and passed through rectified linear unit activation, which are later concatenated
with latent samples to form the baseline features in generating the image with a mixture of
emotions. Its loss can be defined as follows.

LG = −Ez∼PZ
[D(G(xc1,xc2,z))] (4.18)

where xc1 and xc2 represent the images with different facial expressions for basic emotions. z
is the latent samples from the prior distribution PZ .

With respect to the configuration of the discriminator D, we can observe that the deeper
convolution layer extracts generic features which are more useful for the final classification than
those in earlier convolution in Figure.3.7. Therefore, more convolutional layers are added in
D compared to previous EmoGANs. Besides, linear activation is used in the final layer of D
instead of sigmoid as in previous EmoGANs as the task of D is calculating the Wasserstein
distance d between real data distribution and generated distribution. Its loss can be defined as
follows.

LD = Ex∼PX
[D(x)] −Ez∼PZ

[D(G(xc1,xc2,z))] (4.19)

where x is the morphed sample that is used as the training data. xc1 and xc2 represent the
images with different facial expressions for basic emotions. z is the latent samples from the
prior distribution PZ . LD provides the score for the distance between the training distribution
and the generated distribution.
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Figure 4.9: Overview of EmoGANs1’ generator

Figure 4.10: Overview of EmoGANs1’ discriminator

4.1.2.4 Network Training

In the study [38], Wasserstein Generative Adversarial Networks (WGANs) work well with Root
Mean Squared Propagation (RMSProp) gradient descent optimization proposed by Geoffrey
Hinton. Therefore, the proposed model is trained with RMSProp optimization, which chooses
the different learning rates for each parameter during the update by computing the average of
the partial gradient to dampen the gradient oscillations. For each parameter, the update rule
of RMSProp is defined as follows.

vt = βvt−1 + (1 − β)g
2
t (4.20)
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where vt is the decaying average of the square of the partial gradient for the current iteration.
vt−1 is also the same but it was from the previous iteration. g2t is the squared of the partial
gradient. β is a hyper-parameter.

Then, the custom step size is defined based on this average value as follows.

△θt =
λ

√
vt + ϵ

gt (4.21)

where λ is the initial learning rate and △θt is the current step size which is reduced by the
decayed average value. ϵ is the small constant to prevent the division error. gt is the partial
gradient for the current iteration t.

The weight update for the next iteration is as follows.

θt+1 = θt −△θt (4.22)

Similar to previous EmoGANs training, RMSprop is executed with a mini-batch stochastic
approach with size 64 for 100 iterations. The initial learning rate is set the value of 5e-05. The
values of the hyperparameter are set at the default value offered by the TensorFlow library[98].

4.1.2.5 Discussion

Similar to EmoGANs, the current model, EmoGANs1, also operates on a 64×64 image space,
and the training data is normalized before training. The model takes latent samples from a
Gaussian distribution with zero mean and unit variance. Following the suggestion in the study
by Arjovsky et. al [38], the model is optimized using RMSProp with updates performed over
mini-batches of size 64. Additionally, the weights of the discriminator are clipped to the range
of [-0.01, 0.01]. The learning rate is set to 5e-05 for both sub-models.

Unlike EmoGANs, the discriminator in EmoGANs1 executes more updates compared to the
generator, depending on the specified value of the parameter, which is set to 10 in our experi-
ment. These settings remain consistent across all datasets. Based on the experimental training
results, the model for CK+ is trained for 5000 training iterations since the final model produces
good images compared to the intermediate models. However, for the other two datasets, the
models are trained for the same number of iterations, but the intermediate results are superior
to the final ones. The selection of models for further processing is based on their visual quality
during training. To evaluate the quality of the generated images, we provide random latent
vectors from the prior distribution and random image pairs to the trained generator, projecting
them onto a 64x64 image space. The results are depicted in Figure 4.11.

It can be observed that EmoGANs1 convergences faster than EmoGANs due to being
trained with a higher learning rate. As discussed in the previous section, this suggests that
the Wasserstein-based objective allows for continuous and usable gradients for the weights up-
dates, at the point where vanilla GANs cannot support. Compared to the images generated by
EmoGANs, the images produced by EmoGANs1 are less noisy, especially with JAFFE dataset.
The synthesized images display facial resemblances to the corresponding dataset, indicating
that the generated distribution approaches closer to the ground truth distribution.

Based on the illustrated Figure 4.11, the image generation for JAFFE produces the best-
synthesized images compared to the other two datasets. This is attributed to JAFFE having a
lower diversity of facial characteristics and a simpler distribution due to the subjects sharing the
same gender and race. However, the facial expressions are less visible in the generated images,
especially for MUG and CK+ as they contain diverse and heterogenous facial characteristics
and their underlying distribution is more complex than JAFFE.
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Figure 4.11: Example images generated by EmoGANs1’ generator using Wasserstein objective
function. Each row represents the generated samples from CK+, JAFFE, and MUG in sequen-
tial order.

Furthermore, the resolution of the generated images is low, making it difficult to assess the
facial expressions in the synthesized images produced by both EmoGANs and EmoGANs1. The
trade-off between image resolution and training stability is the challenging factor of GANs and
their variants. In both EmoGANs models, the generator incorporates additional data, such as
image pairs, to construct the baseline features that represent a mixture of facial expressions.
During the trial experiments, we observed that the discriminator is capable of classifying the
given samples after a few training iterations, requiring a slower learning process by reducing
the learning rate and allowing sufficient time for the generator to update itself.

Compared to the discriminator, the generator in both of EmoGANs models has the dual
tasks of extracting the facial expression features and projection these features onto image space.
Consequently, training instability is undeniable during the training of EmoGANs. To address
this issue, the dual tasks of the generator are separated into different models. The updated
version of the EmoGANs model will be discussed in the next section.

4.1.3 Methodology for Generating Mixture of Facial Expressions
Images for Complex Emotions
(EmoGANs2)

This section proposes a new framework for generating complex facial expressions images to
represent the mixture of emotions[93]. The overview framework is depicted in Figure.4.12. It is
composed of three main parts: feature extraction, feature conversion, and image generation. In
this framework, Generator G ’s tasks are divided and performed separately (feature extraction
and image generation), whereas, in the previous models, they are performed within the same
model. The conversion process in the middle transforms the features into latent space. Each
part is explained in sequential order.
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Figure 4.12: Overview of EmoGANs2 framework

4.1.3.1 Feature Extraction

As we discussed in the previous section, convolution neural network (CNN) has advantages over
fully connected layers for processing high dimensional data such as images. In this research,
we use the simple CNN with three convolution layers that are trained to recognize the basic
emotions, and pre-trained CNN is employed as a feature extractor.

Convolution neural network (CNN) is first proposed by LeCun et.al[99]. It is a type of neural
network that uses linear operation, named convolution, in its network layers to process grid-
like data such as time-series data, and images. Convolution operation improves the machine
learning system by having the properties such as sparse interactions, parameter sharing, and
equivariant translations [28].

Properties of Convolution Neural Networks (CNN)

Sparse interactions Traditional neural networks, such as FNN, use matrix multiplica-
tion, as shown in Equation 4.2, to describe the interaction between neurons of input and output
layers. This implies that every neuron is involved in computing each output, making it com-
putationally expensive. In contrast, CNN has the property of sparse interactions, which can
be achieved by creating smaller kernels than the input size (See in Figure.4.13). When dealing
with high-dimensional data, such as images with thousands of pixels, a convolution kernel can
detect small and useful features such as edges by moving through the image. This typically
converts the thousand of raw pixels into fewer pixels by extracting the essential features, which
reduces memory usage and improves efficiency. In the example, nine-pixel values are reduced
to one new meaningful pixel.

Parameter sharing Parameter sharing means using the same set of parameters in more
than one place in a model, also known as tied weights. This is because the weights applied to
one input are tied or shared with other inputs. In FNN, once the weights are used in computing
the output, they are not revisited. However, in CNN, the same set of weights can be applied in
different places in the input. For example, the same values of a convolution kernel (highlighted
with a blue box in Figure.4.13) will be applied to all input pixels by moving from left to right
and top to bottom to get the feature maps of the whole input.

This property reduces the memory requirement to store the model’s parameters compared
to the traditional network. In the example, the input image is the 8x8 wide grayscale image
and the output is the 6x6 image after convolution. The transformation requires 6x6x3 or 108
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Figure 4.13: An example of sparse interactions or connectivity in convolution neural network.
The input image is resized into 8x8x1 and the edge filter is used as a convolution kernel for
illustration purposes.

floating-point operations. 3 refer to two addition and one multiplication to perform convolution.
In a traditional network, it requires 8x8x6x6 or 2304 operations for matrix multiplication.
Therefore, convolution improves network efficiency.

Translation equivariance Due to its sharing of the parameters across inputs, it induces
another property, named translation equivariance. Theoretically, a function f is equivalent to
a function g if it satisfies the following condition [28].

f(g(x)) = g(f(x)) (4.23)

where f and g are equivariant.
Suppose that a function f is a convolution function with edge kernel applied on an input

image and function g is the function to shift the 25 pixels to the right and 50 pixels down. We
can observe that performing convolution after translation yields the same result as performing
convolution before translation in Figure.4.14. It implies that if an input changes, the result also
changes. It is helpful to detect an object in an image regardless of its position in the image.

Convolution Neural Network Configurations A general convolution layer of a convolu-
tion neural network involves three stages: convolution stage, detector stage, and pooling stage
[28]. In the convolution stage, several linear operations that are convolution, are performed
on the input and pass through the non-linear activation function, generally rectified linear
activation (ReLU) in the detector stage. In the last stage, a pooling function is executed to
summarize the values of feature maps according to their neighborhood pixel values.

For example, the max pooling function introduced by the study [100] selects the maximum
value within the neighborhood window. This induces an additional property called translation
invariant, as it uses the summary of neighborhood pixels and resists small translation changes
in that neighborhood. Network configuration varies on the objectives of its usage.

In this research, the convolution neural network is constructed by applying three typical
convolution layers. The convolutional feature maps are reshaped to flatten out and fully con-
nected before recognizing six basic emotions: anger, disgust, fear, happiness, sadness, and
surprise. The complete configuration is illustrated in Figure.4.15. Since the input data are
simple frontal facial expressions, the current configuration of CNN is sufficient to achieve the
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Figure 4.14: An example of translation equivariance in convolution neural network.

Figure 4.15: Network configurations of Convolution Neural Network (CNN) for basic emotion
recognition

accuracy of about 80% in CK+, JAFFE, and 92% in MUG (Table.4.1). The training progress
of CNN can be seen in Figure.4.16. The trained model is evaluated for each emotion and major
samples from the test set are correctly classified in Figure.4.17.
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Table 4.1: Accuracy of Convolution Neural Network (CNN) in 10 fold cross validation set for
basic emotion recognition

Accuracy a

Fold No.
Datasets

CK+ JAFFE MUG

1 87.1% 94.7% 95.7%
2 80.6% 100.0% 91.4
3 83.9% 84.2% 94.6%
4 80.6% 100% 96.8%
5 90.3% 77.8% 96.7%
6 90.3% 83.3% 91.3%
7 80.6% 72.2% 90.2%
8 66.7% 88.9% 90.2%
9 66.7% 94.4% 90.2%
10 83.3% 72.2% 89.6%

Average accuracy (â) 81.0% 86.8% 92.6%

4.1.3.2 Image Generation

In the previously proposed models, constructing the features that represent the mixture of
emotions, and up-sampling them for image generation is built within the same model G. It
overloads G ’s task and makes the training unstable where D performs easy assessment on its
input distribution. Besides, it also encountered the mode collapse problem during training, in
which the generator cannot synthesize images that have many variations in them. To overcome
it, the previous models require a slower step size in their optimization, and make the training
slow, even for low-resolution 64x64 images. Therefore, the construction of baseline facial ex-
pression features for the mixture of emotions and mapping them onto image space are separated
in this new framework.

In this new framework, the generator model G aims to synthesize the high-resolution images
from given features, that are easier to assess the facial expressions in them. To achieve this goal,
the Progressive Growing of Generative Adversarial Networks (PGGANs) proposed by Karras
et.al[36], is adopted for image generation. Characteristics of PGGANs are going to be discussed
subsequently.

Progressive Growing of Generative Adversarial Networks (PGGANs) Progressive
Growing of Generative Adversarial Networks (PGGANs) [36] is designed to synthesize high-
resolution images up to 1024 pixels by progressively training the network. Vanilla GANs [27] has
a trade-off between image resolution and training stability, because the discriminator model D
can easily reject the generated images apart from the training images, especially when the
high resolutions require detailed features to be filled in the generated images and lead to
exaggerating the training gradients. Moreover, training for higher resolutions also requires
large memory usage. Therefore, PGGANs assemble their sub-models G and D progressively in
their configurations.

PGGANs started with 4x4 low-resolution images and set both sub-models G and D to
correspond to each other. After training the initial models with 800k training images, they
expand the networks by gradually adding new layers onto their initial networks. The way to
add the new layers for higher resolution in PGGANs is shown in Figure.4.18. It shows the
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(a) CK accuracy plot (b) CK loss plot

(c) JAFFE accuracy plot (d) JAFFE loss plot

(e) MUG accuracy plot (f) MUG loss plot

Figure 4.16: Plots for training a convolutional neural network (CNN) with Adam stochastic
gradient descent optimization for every 16 batches. The learning rate is set to 1e-3.

layer transition from 16x16 resolution to 32x32 images. The initial network is trained first to
establish stable weights in Figure. 4.18(a) with one convolution layer having a 1x1 convolution
kernel in each sub-model. Then, the new convolution layer is added by increasing the resolution
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(a) CK+ (b) JAFFE

(c) MUG

Figure 4.17: Performance of convolutional neural network (confusion matrix over a test set)

twice by the nearest neighbor filtering in G and halving the resolution by average pooling in D
in Figure. 4.18(b). Both the new and the existing layers are smoothed out linearly using the
parameter α, and then trained until they reach a stable state in Figure. 4.18(c). This gradual
training technique provides two key benefits: training stability and the ability to generate
high-resolution images.

Moreover, PGGANs also added counter measurements to handle the GANs’ mode collapse
problem, in which the generator G always generates a small subset of the output distribu-
tion believing this set can deceive the discriminator D. Theoretically, when the mode collapse
problem is about to happen, the gradients of D go towards the same direction for the similar
samples, resulting in directing all output towards a single point where D considers it as the real
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Figure 4.18: An example of adding new layers onto the initial models G and D in Progressive
Growing GANs [36]. (a) is the initial model for 4x4 resolution. (b) is the transition phase for
adding the new layers to the initial models. (c) is the finalized model for 32x32 resolution.

distribution [101]. Therefore, it cannot provide useful feedback to G, which keeps giving simi-
lar latent samples while believing that they can deceive D. The strategy to avoid this problem
is to show D more dissimilar examples. In PGGANs, mini-batch standard deviation is used,
in which the constant feature map computed from the mean and standard deviation of each
feature in each spatial location in feature maps is added to D, resulting in encouraging G to
produce dissimilar images with large variations in their pixel values.

Since both sub-models are competing against each other, GANs’ training is widely known
as unstable by escalating the magnitude of their gradients, which causes a longer time to
converge, often resulting in poor-quality images. The other research employs one-sided la-
bel smoothing[101] or variants of batch normalization techniques [94] such as virtual batch
normalization[101], weight normalization[102], and layer normalization[103] to deescalate the
magnitudes and support stable training. Unlike the above-mentioned techniques, PGGANs
normalize the weights at each layer by dividing them with a layer constant derived from He’s
initializer [104] during run time. This ensures keeping the weights at the same dynamic range
and having the same learning speed at each layer. Since it maintains the same range, it makes
independent of the scale of the weights and becomes efficient when weights are too big or too
small. Another normalization used in PGGANs is pixel-wise normalization, which normalizes
the values of each feature map to a unit length to avoid exploding gradients. It was applied
after each convolution layer in the generator.

Loss function In PGGANs, Wasserstein distanced-based adversarial loss with gradient penalty
(WGANs-GP)[39] is employed, where gradient norm is used to enforce the Lipschitz continuity.
The regularization term can be added as follows.
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LGP = λEx̂∼Px̂
[(∣∣∇x̂D(x̂)∣∣2 − 1)

2] (4.24)

where λ is the coefficient of gradient norm. x̂ is the sample from the distribution Px̂ obtained
by uniformly sampling from PX and PZ , which is described as in the following equation.

x̂ = ϵx + (1 − ϵ)G(z), ϵ ∼ U[0,1] (4.25)

where ϵ is a random number from the uniform distribution which ranges from 0 to 1, inclusive.
x is the sample from the real distribution PX . z is the latent sample. G(z) is the sample from
the generated distribution.

Besides it, PGGANs also adds another regularization to D ’s loss, named as drifting term,
to keep D ’s output to stay close to zero.

LDrift = ϵDriftEx∼PX
[D(x)2] (4.26)

where drifting constant ϵ is set to a small value of 0.001.
By combining them, the loss of D becomes

LD = (Ez∼PZ
[D(G(z))] −Ex∼PX

[D(x)])+LGP + LDrift (4.27)

where the first loss refers to the adversarial loss defined in WGANs.
For the generator loss, it can be defined as a single adversarial loss as follows.

LG = Ez∼PZ
−D(G(z)) (4.28)

4.1.3.3 Feature Conversion

The third component of the new framework for complex facial expressions images is the ordinary
least-squared linear regressions model which is responsible to transform the baseline features
into latent features, which are the input of the generator G. Linear regression is the supervised
learning algorithm to model the relationship between the response variable z and one or more
explanatory variables v.

Suppose that there are N instances of baseline features to represent mixtures of emotions
as explanatory variables. Each instance has its response variable. It can be defined as

{z,v}Nn=1, n ≤ N (4.29)

where vn is the explanatory variable which has j attribute for nth instance, which can be defined
as [v

(1)
n , v

(2)
n , ..., v

(j)
n ]

T. zn is the response variable which has k attribute for nth instance which

is represented as [z
(1)
n , z

(2)
n , ..., z

(k)
n ]

T.
The linear regression between z and v can be modeled for nth instance in the following

equation.

zkn = ψ
(1)v

(1)
n + ψ

(2)v
(2)
n + ... + ψ

(j)v
(j)
n + ε

k
n (4.30)

where j is the attribute of the feature vector to represent baseline facial expressions features
for the mixture of emotions. k is the attribute of latent vector z. ψ is the regression coefficient.
ε is the error for nth instance.

It can be represented in vector form as follows.

zn = v
T
n .ψ + εn (4.31)
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where z and ε represent 1 vectors for the nth instance. v is 1×j feature vectors and ψ is the
j × k coefficient matrix for the regression model.

The goal of the regression model is to find the values of coefficients that produce the mini-
mum error in the following equation.

ε = z − vT.ψ (4.32)

Therefore, the objective function of the model is to find the optimal coefficient in ψ by
minimizing the squared of the residual error as follows.

min
ψ

N

∑
n=1
(zn − v

T
n .ψ)

2 (4.33)

Evaluation of linear regression model Previously latent features are estimated based on
the baseline facial expressions for the mixture of complex emotions by the linear regression
model. To validate that the linear regression model can transform the features into latent
space, cosine similarity among features before and after conversion is measured. The flow of
the evaluation framework is depicted in Figure.4.19.

Figure 4.19: Evaluation framework to validate the converted features

First, the random latent sampled from the Gaussian distribution N(0,1) is given to the
generator G, which is trained with the facial expression datasets. The synthesized images are
taken by their respective recognition model for feature extraction. Those features are used
to model the regression model to estimate the latent samples. The same generator is used
to produce images using the estimated latent. Again, facial expression-related features are
extracted from those images. At last, the similarity (Equation. 3.16) score is computed on
those two features set to evaluate if the regression model can convert the features into latent
space.

The evaluation framework is executed on a test set randomly sampled from the Gaussian
distribution, containing 15k samples. The output of similarity measurement on test samples
distribution is shown in Figure.4.20, where we can observe that the majority of test samples
demonstrated the similarity in features space. For visual interpretation, the images synthesized
on initial latent and estimated latent by the regression model are also displayed in Figure.4.21.

4.1.3.4 Discussion

The generated images synthesized by the previous models, EmoGANs and EmoGANs1, are
noisy, and the facial expressions in the images are unclear. Additionally, model training is
also unstable, as the discriminator completes its updates in a few training epochs, resulting
in the inability to provide useful gradients to the generator for improving the generated dis-
tribution. Furthermore, the generator performed additional tasks, including facial expression
feature extraction, to assemble the baseline features for the mixture of facial expressions and
image generation.
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(a) CK+ (b) JAFFE

(c) MUG

Figure 4.20: Distribution of cosine similarity scores measured among features from images
synthesized by G on the initial latent sampled from N(0,1) and the latent estimated by the
regression model. The scores range from +1 (the most similarity) to -1 (the most dissimilarity).

Therefore, feature extraction and image generation have been separated into different mod-
els: a facial expressions recognition model and Progressive GANs. We trained a regression
model by minimizing the squared loss in Equation.4.33 to transform the facial expression fea-
tures into latent that can be used by the generator. Figure 4.12 is executed to synthesize the
mixture of facial expressions, and the results are shown in Figure 4.22.

Compared to the generated images produced by the previous EmoGAN models, the synthe-
sized images generated using the current methodology are not noisy. The facial expressions in
these images can be easily assessed by the naked eye. It is evident that the generated images
consist of a mixture of facial expressions. When comparing them to CK+, the facial expressions
in the generated images from JAFFE are more subtle. Analyzing the results from Figure 4.22
for CK+ and MUG, their facial expressions are blatant.

We also included results tested with the same inputs for EmoGANs and EmoGANs1 for all
datasets. An example result for the mixture of happiness and surprise is shown in Figure.4.23.
The results for other mixed emotions can be seen in the Appendix section B.1. It can be seen
that the EmoGANs2 does not maintain the facial attributes from the input as the identity
in generated images is changed. Both the previous models and the current model do not
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Figure 4.21: Samples of generated images by G on initial random latent and estimated latent
by the regression model. 1st, 3rd and 5th rows represent the images synthesized from the initial
latent vectors sampled from the Gaussian distribution N(0,1). 2nd, 4th, and 6th rows indicate
the images synthesized from the latent estimated by the regression model. The first two rows
are the result of CK+, the middle two rows are the result of JAFFE, and the rest are for MUG.

preserve the facial representation from the input pair. This means that even though the images
are paired based on identity in JAFFE, the identity in the generated images is altered. The
alteration occurs because the previous modules before image generation in Figure 4.12 transform
the combined features onto latent space. However, the organization of semantics for visual
attributes in the latent space remains unknown. Additionally, the combined features are derived
from facial expression features extracted by the expression model and do not include any
information related to subject identity. As a result, the generated images exhibit changes
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Figure 4.22: Example images generated by Progressie GANs’ generator using the latent trans-
formed from the average facial expressions features to represent the mixture of emotions. Each
row represents the generated samples from CK+ and JAFFE in sequential order.

in identity. In other words, the facial representation and facial expressions are entangled in
the latent space. Consequently, in the next section, we will propose a new methodology to
disentangle these features and exert control over the image generation process.

4.2 Supervised Training

4.2.1 Conditional Emotion Generative Adversarial Networks with
Identity Preservation (EmoGANs3)

In the previous EmoGANs models[91, 92, 93], the latent space of the generator G did not con-
sider the facial expression features and subject identity information separately, therefore, those
features are intertwined in the latent space. As a result, we could not control the output of
image generation by G. To control image generation result on the class of complex facial expres-
sion and subject identity in the synthesized images, we proposed the new framework illustrated
in Figure.4.24, where subject information and expression classes are separately encoded and
given to conditional generation model . Each component will be sequentially discussed.

4.2.1.1 Encoding the label information for a mixture of emotions

In the datasets, the label for each basic emotion is defined in a categorical representation such
as ’anger’, ’disgust’, ’fear’, ’happiness’, ’sadness’ and ’surprise’. Categorical data might have
the ordered information about which class comes first in the labels. However, in this research,
the ordered relationship among classes is trivial and categorical labels are required to encode
them in the numerical format before training the neural network.

A common approach to encode the categorical labels into numerical format is one hot
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(a) (b) (c)

Figure 4.23: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj).
In this figure, ci indicates the ’happiness’ emotion, and cj refers to the ’surprise’ class.
Column (c) is images synthesized by the generator of the EmoGANs2 with given input (Ici ,
Icj). Results from other classes can be found in the Appendix section B.1.

Figure 4.24: Overview of EmoGANs3 framework. y is the label vector for the class of mixture
of emotions, which is encoded in six-dimensional space. Each dimension chronologically refers
to the class of anger, disgust, fear, happiness, sadness, and surprise. ẑ is the encoded feature
vector for subject identity information.

encoding which transforms them into binary vectors. For example, categorical labels for emotion
classes have six different values. Therefore, they can be transformed into a vector in six-
dimensional space. For the mathematical expression, it can be defined as follows.

yi ∈ R6 (4.34)

where y is the standard basis in the Euclidean space, including six distinct vectors. yi denotes
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the value 1 in ith position and 0 in elsewhere. For the categorical value of ’anger’, it can be
encoded as y1 = [1,0,0,0,0,0].

As morphing images are used as the training data in this research, their labels are associated
with a couple of categorical data. Similar to one hot encoding in six-dimensional Euclidean
space, it can be encoded as follows.

yij ∈ R6, i ≠ j (4.35)

where the value of 1 is filled in ith and jth positions in Euclidean space to represent the emotion
classes ci and cj respectively. For example, if the training sample has the categorical labels of
’sadness’ and ’surprise’, they are encoded as yij = [0,0,0,0,1,1] to represent ci as ’sadness’ and
cj as ’surprise’ as in Figure.4.24.

4.2.1.2 Encoding the identity information into latent space

Given a trained generator, it can be formulated as the deterministic function G as follows.

G ∶ Z →X (4.36)

where Z is the d-dimensional latent space of the Gaussian distribution N(0,1). X is the image
space.

Each latent sample possesses semantic information such as gender, subject identity, and
facial expression. However, the arrangement of that information is unknown as there is no
inverse mapping from image space to latent space. Therefore, an external neural network is
served as an inference network to do the inverse mapping. Mathematically, it can be represented
as follows.

E ∶X → Z (4.37)

where E is the mapping function that maps the sample from image space X onto latent space
Z.

Network configurations of the inference network Figure.4.25 depicts the overview of the
inference network E. Once the generator model G of the conditioned Generative Adversarial
Networks (cGANs)[33] had been trained, the inference network is trained with the training
data containing the pair of random latent sampled from the Gaussian distribution N(0,1) and
generated images synthesized from those latent samples.

The network contains two convolution layers with nonlinear activation such as rectified linear
units. Batch normalization is used to deescalate the magnitude of the gradients. At last, linear
activation is employed to follow the latent distribution in the final fully connected layer. The
loss function of the inference network E is to minimize the mean absolute error between initial
random latent and latent predicted by the network in Equation.4.38. Network optimization is
done by Adam stochastic gradient descent[95] for the mini-batch size 64 with a learning rate
1e-05. After training, the trained network is employed to encode the face representations in
the implementation of the framework proposed in Figure.4.24.

LE = ∣∣z −E(Ig)∣∣ (4.38)

where z is the original latent sampled from the Gaussian distribution. Ig is the generated
images synthesized from z. E is the inference network that maps the sample from image space
onto latent space.
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Figure 4.25: Network configuration of encoder model to encode the facial representation into
latent space

4.2.1.3 Conditioned Generative Adversarial Networks

Conditioned Generative Adversarial Networks (cGANs) is proposed by Mirza et.al [33] to di-
rect the data generation process with supplementary condition aside from prior latent. The
additional condition can be class labels or different types of data, which are embodied with
the respective input of each sub-model and taken by multi-layer perceptron layer in the corre-
sponding network[33]. The loss function of cGANs can be defined as follows.

min
G

max
D

V(D, G) = Ex∼PX
[logD(x∣y)] +Ez∼PZ

[logD(G(z∣y)] (4.39)

where z is the latent sample from the Gaussian distribution with zero mean and unit variance
for 100 dimensions. x is the sample drawn from the data distribution. y is the auxiliary input
that is given as a condition of data generation.

Network configurations of cGANs In this research, cGANs are composed of convolution
layers as in Figure.4.26. The benefits of using a convolution layer over a multi-layer perceptron
or fully connected layer had been discussed in the previous section. Class labels are used as a
condition, encoded in the two-hot encoding vector format as shown in the figure, and embedded
in the fully connected layer of both sub-models. The corresponding input and encoded labels
are then concatenated and up-sampled or down-sampled using a non-linear activation function,
namely the leaky rectified linear unit.

Before training, the latent are initially sampled from the Gaussian distribution for 100
dimensions and labels for morphed images are encoded into a two hot vector in 6 dimensions.
Training images are resized into 128×128. Weight updates are done by Adam optimizer [95]
with mini-batch training for size 128. According to trial experiments, D learns faster than G.
As a result, the slower learning rate is set for D with the value of 1e-05. For G, the learning rate
is 1e-04. After training, only G is used to execute the new framework proposed in Figure.4.24
for image generation.
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Figure 4.26: Network configuration of Conditioned Generative Adversarial Networks (cGANs)

4.2.1.4 Evaluation Methods

The new framework proposed in Figure.4.24 is evaluated on three perspective:

1. the ability to synthesize images of facial expressions that depict a mixture of emotions

2. subject identity preservation

3. disentanglement between features of facial expressions and subject identity information

Evaluation on the ability to synthesize images of facial expressions that depict
a mixture of emotions In this research, we aim to synthesize the facial expressions that
represent the mixture of emotions. Facial expression can be associated and coded by individual
facial muscles, named Action Units (AUs), which is proposed by Psychologist Ekman[5]. For
example, a standard facial expression to express happiness is a smile, which pulls up the muscles
at the cheek and lips corner. In the Facial Action Coding System (FACs)[5], the associated
muscles are defined as AU06 (cheek raiser), AU12(lip corner puller), and AU25(lip part) for a
standard smile in expressing happiness. Similarly, the other basic emotions can be defined as
in Table.1.1.

In the research [14], the presence of a mixture of facial expressions is detected by observing
the activated AUs for each basic facial expression. Suppose that the set of AUs for happiness
is Sci , in which ci refers to the ’happiness’ class. Similarly, the set of AUs for surprise is Scj ,
in which cj refers to the ’surprise’ class. The set of AUs for the mixture of ’happiness’ and
’surprise’ can be defined as follows.

63



Sci ∪ Scj = {y ∶ y ∈ Sci or y ∈ Scj , i ≠ j} (4.40)

where y is the element of the action unit that belongs to the AUs set of each basic emotion ci
and cj.

For example, the AUs for happiness emotion are AU06, AU12, and AU25. The AUs for
surprise emotion are AU01, AU02, AU05, AU25, and AU26. Therefore the candidate AUs for
the mixture of happiness and surprise is the combination of these two sets such as AU01, AU02,
AU05, AU06, AU12, AU25, and AU26. The library with an MIT license, named Py-Feat[16] is
employed to detect the candidate AUs to evaluate the presence of a mixture of facial expressions
in the generated images. Py-Feat contains two pre-trained models for action unit detection that
used feature representation extracted by Histogram of Oriented Gradient (HOG) and employed
shallow classifiers such as linear Support Vector Machine (SVM) and ensemble learning. In this
research, we use the model with SVM to detect AUs.

Evaluation on identity preservation To objectively evaluate the identity preservation in
the generated images, we designed the framework illustrated in Figure.4.27. First, random
latent is a sample from the distribution N(0,1) and desired labels for the mixture of emotions.
In the figure, the example label y represents the mixture of ’sadness’ and ’surprise’ classes.

Both prior latent and encoded labels are taken by the pre-trained generator G to synthesize
the image, which is again taken by the pre-trained inference network E that does reverse
mapping in Equation 4.37 to encode the identity of the included subject onto latent space.
After encoding, the same generator is used to map the encoded latent into an image. The
pre-trained face model [87] is employed to extract the facial representation from a couple of
generated images. Similarity (Equation.3.16) among that representation is computed for the
objective score.

Figure 4.27: Evaluation framework to assess the property of subject identity preservation

Evaluation on feature disentanglement Feature disentanglement indicates that facial rep-
resentation and emotion class representation have separate influences on the image generation
process. Therefore, we illustrate the framework for evaluating the disentanglement property in
Figure 4.28. In the initial setting, two instances of a latent variable and their corresponding
labels are randomly sampled and mapped onto image space by the pre-trained generator G.
The labels are then exchanged, and the respective images are generated using the same G and
identical latent samples. Since the label representations are changed, we hypothesize that the
facial expressions in the generated images will be changed while keeping the same subjects.
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Figure 4.28: Evaluation framework to assess the property of disentanglement between facial
expressions and facial representations

4.2.1.5 Discussion

As stated in the previous section, the EmoGANs3 model is evaluated based on three viewpoints
such as the ability to construct the image representing the mixtures of facial expressions, identity
preservation in the generated images and features disentanglement.

Figure.4.29 illustrates the output of the example classes, such as ’happiness’ and ’surprise’,
for JAFFE and MUG datasets. The prototypical Action Units (AUs) are shown with the unit
of the number of images in which those AUs are activated, represented as a percentage. For
example, the standard AUs for happiness expressions are AU6, AU12, and AU25, while the
standard AUs for surprise are AU1, AU2, AU5, AU25, and AU26. The standard AUs for the
mixture of these two classes become the union combination of these two sets.

The ground truth images, as well as morphed images used during training, exhibit the least
activation or inactivation for AU6 and AU26. Approximately 60% of the ground truth images
have AU2, while over 90% of the images display other AUs (Refer to Figure.4.29(c)). When
compared to ground truth images, the generated images show activated prototypical AUs that
are similar in shape and quantity. These similarities can be observed in Figure.4.29(c and
d). During the creation of morphed images, the facial expressions of the given image pair are
equally blended. Therefore, the morphed images represent a mixture of facial expressions. The
resemblance of the generated images to these morphed images suggests that they also contain
a mixture of facial expressions corresponding to their respective emotions. This same interpre-
tation applies to other classes. Additional graphic illustrations for other mixtures of emotions
can be found in the Appendix section B.2, providing further support for our observations.

From these graphic results, we can also observe another characteristic: cultural differences in
expressing facial expressions for the same emotions. Three standard datasets, CK, JAFFE, and
MUG, are used to evaluate EmoGANs3, and they consist of subjects from different nationalities,
such as American, Japanese, and Caucasian. As observed in Figure 4.29, the activation of AUs
for the same expressions differs. For instance, a greater number of images from MUG and CK+
display AU2, which involves raising the outer eyebrows to express surprise, compared to JAFFE.
Raising the eyebrows is typically associated with expressing surprise. We can interpret that
Americans and Caucasians tend to exhibit more extravagant expressions, while the Japanese
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(a) Basic emotion for
the ’happiness’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’happiness’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’happiness’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure 4.29: Prototypical action units (AUs) for basic emotions (’happiness ’ and ’surprise ’
in this figure) and a mixture of emotions among them. The circumference axis refers to the
AUs number and number of images with prototypical AUs in %. The upper row indicates the
result for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG
dataset. Morphing images are used during training. Full results for the other mixed emotions
can be found in the Appendix section B.2.

prefer subtler expressions when conveying emotions.
To assess the identity preservation in the generated images, the evaluation framework in

Figure. 4.27 is executed. The intermediate outputs from the framework are depicted for
visual interpretation, along with their respective similarity scores. The scores range from +1,
indicating the highest similarity, to -1, representing the highest dissimilarity between the input
images. In the Figure, the left image of each pair is generated from the initial latent sample,
while the right image is synthesized using the latent vector predicted by the identity encoder.
From the Figure, it can be observed that the scores are very close to +1, indicating high
similarity and the visual facial structures are also similar. Observing the images generated from
encoded vectors, it can be noted that the hairlines are flattened and smoothed, particularly
when reconstructing curly hair (see Figure 4.30(f and l)). And some color intensity changes in
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(a) s=0.96 (b) s=0.83 (c) s=0.98

(d) s=0.79 (e) s=0.63 (f) s=0.96

(g) s=0.95 (h) s=0.76 (i) s=0.92

(j) s=0.89 (k) s=0.91 (l) s=0.81

(m) s=0.95 (n) s=0.94 (o) s=0.98

Figure 4.30: Example output of evaluation framework in Figure.4.27 for identity preservation.
s is the cosine similarity score between the facial representation of the image from the initial
latent (left) and reconstructed image from estimated latent ẑ (right) for each pair. The score
ranges from +1 (most similarity) to -1 (most dissimilarity).

CK+ results. Except this, we see high resemblances between those images.
To execute the evaluation framework from Figure 4.28, two pairs of random latent and label

vectors are generated and mapped onto image space by the pre-trained generator. Later, the
label vectors are exchanged, but their initial latent samples are kept for image generation. The
output from this process is illustrated in Figure 4.31. Since the latent vectors encode subject
identity information, using the same latent vectors results in the same subject in the image.
As the labels encode emotion classes, changing them results in different facial expressions.

In Figure.4.31, initial labels y1 and y2 from JAFFE (middle row) represent the mixture of
classes anger/fear and disgust/fear, respectively. For MUG, they represent disgust/sadness and
anger/happiness, respectively. From the Figure, it is evident that facial expressions are changed,
especially in MUG, as both mixture classes do not include the same emotion. In JAFFE, where

67



(a) G(z1,y1) (b) G(z2,y2) (c) G(z1,y2) (d) G(z2,y1)

Figure 4.31: Example output of evaluation framework in Figure.4.28 for feature disentangle-
ment. G is the pre-trained generator of DCGANs. z is the latent sample randomly drawn from
prior Gaussian distribution. y is the random label that is two-hot encoded. G(z,y) indicates
that the latent vector is mapped onto image space by the pre-trained generator. The upper
row is from JAFFE. The lower row is from MUG.

both labels include fear expressions, subtle changes in facial expressions are observed near the
eye regions and forehead. By observing the illustration result for both datasets, it can be seen
that the subject identity in the image does not change.

Compared to previous EmoGAN models[91, 92, 93], the current EmoGANs3 has the ad-
vantage that it does not require an image pair. Instead, it takes labels to encode the class
information of the image pair. This approach reduces the input dimensions significantly, as
labels only require 6 dimensions compared to two additional images with a size of 64x64 each.
Therefore, a significant reduction in input dimensions is achieved. Facial features and facial
expressions can be controlled separately since each is represented by different vectors. This
allows for much greater control in the image generation process. It is important to note that
this level of controllability is not available in other EmoGAN models.
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Chapter 5

Evaluation on Synthesis Images

In this chapter, we will discuss a handful of metrics to determine the goodness or quality of the
synthesized images by the trained generator.

5.1 Metrics for Generated Images Quality and Data Di-

versity

5.1.1 Inception score

The Inception score was first proposed by Salimans et al.[101] to automatically evaluate the
quality of generated images. The score was then compared with subjective evaluation to over-
come the necessity of subjective assessment of generated images. Their work suggested that
the Inception score is well correlated with the subjective score. As its name suggests, the calcu-
lation includes the Inception model [107], which was previously trained for image classification
tasks to classify the generated images.

The Inception score simultaneously measures two properties of the generated images: image
quality and diversity. For image quality, the score evaluates the generator based on whether
the generated images resemble objects that the pre-trained model can classify. For diversity,
the score evaluates the generator based on the variety of generated images it can produce. If
both properties hold true, the Inception score will be high. Since the Inception model [107]
is trained to classify 1,000 objects, the Inception score ranges from 1 to 1000. A higher score
indicates better performance.

Given the generated images x, the Inception Score metric computes the confidence probabil-
ity y of being a particular class label by using the recognition model. Images that are strongly
predicted as one label are considered high-quality images and have a low entropy value, indicat-
ing that their confidence probability scores are concentrated on a single value. Therefore, the
conditional probability p(y∣x) is used to measure the image quality of the generated images.

To measure diversity among the images, the metric utilizes the marginal probability, which
is the probability distribution of all generated images. Since we prefer a large diversity of data,
entropy values should be spread out, and a high entropy value is preferred. The relative entropy
between these two probabilities is measured by KL divergence. Therefore, the equation for the
Inception Score metric is as follows:

s = exp(ExKL(p(y∣x)∣∣p(y))) (5.1)

where s is the inception score.x is the set of generated images. y is the confidence probability
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score predicted by the recognition model. p(y∣x) is the conditional probability to measure the
generated image quality. p(y) is the marginal probability of all generated images to measure
image diversity.

Figure 5.1: Network configuration for multi classes mixed facial expressions recognition model

However, the Inception score only works for images that include objects known to the
model used in the calculation process, such as the Inception model. The Inception model is
primarily trained for object classification and is not intended for facial expression classification.
Therefore, we utilized a facial expression recognition model instead.

Table 5.1: Accuracy of multi classes mixed facial expressions recognition model in 10 fold cross
validation set

Accuracy a (± Standard Deviation)

Fold No.
Datasets

CK+ JAFFE MUG

1 84.5% 96.4% 98.4%
2 74.6% 97.9% 97.0
3 74.3% 99.3% 97.2%
4 67.1% 99.3% 99.0%
5 74.3% 99.3% 99.1%
6 70.0% 100.0% 97.2%
7 82.9% 98.6% 97.9%
8 75.7% 97.8% 97.3%
9 57.1% 97.8% 96.4%
10 67.1% 97.8% 97.6%

Average accuracy (â) 72.8% (±7.2) 98.4% (±1.0) 97.7% (±0.8)

The network configuration of the model is illustrated in Figure 5.1. It is a typical four-
layered convolutional neural network trained for classifying multiple mixed emotion classes.
The model is optimized by Adam Optimizer with a learning rate of 1e-03 and is updated
over every 32 batches for 50 iterations. The models are evaluated on 10-fold validated sets
and results are shown in Table.5.1. Based on the cross-validated results, the model achieves
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approximately 73% in CK and 98% in JAFFE and MUG. This facial expressions model is used
to calculate the Inception score. Similar to the inception model, the higher score for better
generation results. Since this recognition model is trained for 15 classes, the maximum score is
15 and the minimum is 1.

After training the recognition model, it is used to execute Equation.5.1 for label prediction.
The results are tabulated in Table.5.2. Based on the results, EmoGANs3 works best among all
EmoGANs models in general. For CK+, the score of EmoGANs3 is lower than EmoGANs and
EmoGANs1 but is higher than other state-of-art models. Compared to other GANs variants,
EmoGANs3 ranked fourth with the JAFFE dataset. A sample from each model such as GANs,
DCGANs, FastGANs, and EmoGANs3 is illustrated in Figure.5.2. Qualitatively EmoGANs
results are comparable with other models.

Table 5.2: Results for Inception Score metric

Models
Datasets

CK+ JAFFE MUG
GANs [27] 5.7 (± 0.4) 9.9 (± 0.4) 3.8 (± 0.1)
DCGANs [31] 8.7 (± 0.5) 10.1 (± 0.4) 8.4 (± 0.2)
StyleGANs [37] 8.7 (± 0.6) 5.0 (± 0.3) 11.4 (± 0.2)
WGANs [38] 5.9 (± 0.3) 3.9 (± 0.3) 7.6(±0.2 )
FastGANs [120] 6.0 (± 0.6) 9.2 (± 0.5) 6.0 (± 0.1)
EmoGANs [91] 8.9 (± 0.6) 4.4 (± 0.3) 8.2 (± 0.2)
EmoGANs1 [92] 10.1 (± 0.5) 8.4 (± 0.4) 4.1 (± 0.1)
EmoGANs2 [93] 9.7 (± 0.9) 8.8 (± 0.4) 8.8 (± 0.3)
EmoGANs3 8.8 (±0.6) 9.0 (± 0.2) 11.4 (± 0.1)

(a) GANs (b) DCGANs (c) FastGANs (d) EmoGANs3

Figure 5.2: An random sample from each generator of GANs, DCGANs, FastGANs, and
EmoGANs3 used in inception score metric for JAFFE dataset

5.1.2 Frechet Inception Distance (FID)

Heusel et al. [106] introduced the Frechet Inception Distance (FID) to evaluate the performance
of generators. Previously, the metric for inception score did not utilize training images for
computation, thus it was unable to measure the similarity between generated and training
images. Therefore, the objective of FID is to evaluate generator performance by comparing the
statistics of generated and training images.

Similar to the inception score metric, the FID metric also utilizes a pre-trained Inception
model as a feature extractor to capture the feature representations of input images. Sets
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of generated and training images are transformed into feature vectors using the pre-trained
Inception model. The features of these images are then summarized as multivariate Gaussian
distributions, and the distance between the two distributions is measured using either the
Frechet distance or the Wasserstein-2 distance. The equation of Frechet Inception Distance can
be summarized as follows.

d2 = ∣∣µ1 − µ2∣∣
2 +Tr(C1 +C2 −

√
2C1C2) (5.2)

where d is the FID score, µ1 and µ2 are the corresponding feature-wise mean of the training
and generated images. C1 and C2 are the covariance matrices of the respective feature vectors
of the training and generated images. Tr refers to the trace linear algebra operation.

Similar to the previous inception score, the same recognition model is used to get feature
vectors of the training and generated images. Equation.5.2 is executed. Since it is a distance-
based metric, the score ranges from zero to indicate the most similarity between training and
generated images. The maximum score differ based on the statistics of the two collection
images. Results are tabulated in Table.5.3.

Based on the result from Table.5.3, the EmoGANs3 model performed best in comparison
with other EmoGANs models except in CK+, consistent with outputs from the inception score
metric. With other GANs variants, it ranked second in both JAFFE and MUG datasets and
third in CK+. For visual assessment, the generated image from EmoGANs3 is comparable with
the one from the FastGANs generator in Figure.5.2 for JAFFE and in Figure.5.3 for CK+. A
visual sample from WGANs and EmoGANs3 for the MUG dataset is also shown in Figure.5.3.
It is evident that generated images from EMoGANs3 are visually better than the ones from
the WGANs model.

Table 5.3: Results for Frechet Inception Distance metric

Models
Datasets

CK+ JAFFE MUG
GANs [27] 254.2 242.0 559.4
DCGANs [31] 53.8 143.8 182.7
StyleGANs [37] 98.3 647.7 71.0
WGANs [38] 219.0 1102.1 98.1
FastGANs [120] 205.8 81.4 934.9
EmoGANs [91] 57.5 713.9 385.9
EmoGANs1 [92] 72.6 281.4 1140.3
EmoGANs2 [93] 25.0 309.8 467.4
EmoGANs3 56.4 107.8 136.6

5.1.3 Blind/Referenceless Image Spatial Quality Evaluator (BRISQE)

The Blind/Referenceless Image Spatial Quality Evaluator (BRISQE) was first proposed by
Mittal et al. [121] to measure image quality without a reference image. It derives feature vectors
using the input pixels without transforming them into another feature space, such as wavelet
transformation. BRISQE includes three main stages: extracting Natural Scene Statistics (NSS),
calculating feature vectors, and predicting scores using Support Vector Machine (SVM).

Generally, the distribution of normalized pixel intensities in high-quality images follows
a Gaussian distribution. Therefore, the metric normalizes the given images to measure the
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(a) DCGANs (CK+) (b) EmoGANs2 (CK+) (c) EmoGANs3(CK+)

(d) WGANs (MUG) (e) EmoGANs3(MUG)

Figure 5.3: An random sample from each generator of WGANs, and EmoGANs3 used in Frechet
Inception Distance metric for JAFFE dataset

distortion quantity based on how much the normalized pixels deviate from the ideal Gaus-
sian distribution. In the first stage, it normalizes the pixel intensities using Mean Subtracted
Contrast Normalization (MSCN). The normalization equation is as follows.

Î(u, v) =
I(u, v) − µ(u, v)

σ(u, v) + c
(5.3)

where u and v are the coordinates of the image pixels. µ is the local mean and σ is the local
variation. c is the division constant to avoid zero division error.

The local mean is the same as applying a Gaussian filter to the input image, which is given
as follows.

µ =W ∗ I (5.4)

where µ is the local mean, W is the Gaussian kernel function and I is the given image.
Local variation or deviation from the mean can be calculated as follows.

σ =
√
W ∗ (I − µ)2 (5.5)

where is the local variation.
Next, the metric finds four differently oriented images shifted from the normalized pixels

image as the image quality also depends on the relationships among neighborhood pixels. In
BRISQE, it uses four orientations as horizontal H, vertical V, left-diagonal D1, and right-
diagonal D2 which can be calculated as follows.

H(u, v) = Î(u, v)Î(u, v + 1) (5.6)

V (u, v) = Î(u, v)Î(u + 1, v) (5.7)
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D1(u, v) = Î(u, v)Î(u + 1, v + 1) (5.8)

D2(u, v) = Î(u, v)Î(u + 1, v − 1) (5.9)

The previous normalized image is fitted onto the Generalized Gaussian Distribution (GGD),
which returns shape and variance values. Oriented images are also fitted onto the Asymmetric
Generalized Gaussian Distribution (AGGD), which returns shape, mean, left variance, and right
variance values. In total, 18 values are returned for five images. The original image is then
downsampled by half and undergoes the same process, resulting in 36 feature vectors, which
are later used by the learning algorithm such as a support vector machine to predict the score
to assess the image quality. Lower scores indicate better quality. We used the implementation
supported by the Python library.

We included the output from morphing to assess its quality as well. Since the previous
two metrics (inception score and FID score) required the facial expression recognition model
which is trained on the morphing images, those metrics will favor the morphing images for
the score calculation. Unlike these two metrics, BRISQE calculates the feature vector from its
given images for score prediction. Therefore, morphing images are also assessed using BRISQE.
Results are shown in Table.5.4.

Based on the objective results, it was found that EmoGANs3 works best among other
EmoGANs models for all datasets. When it is compared with other GANs models, it ranked
first in the MUG and CK+ datasets and has better scores than morphed images. It ranks fifth
in the JAFFE dataset. Similar to results from the previous metrics, the quality of generated
images by EmoGANs is visually comparable as in Figure.5.4.

Table 5.4: Results for Blind/Refereenceless Image Spatial Quality Evaluator metric

Models
Datasets

CK+ JAFFE MUG
GANs [27] 30.7 20.8 35.4
DCGANs [31] 28.4 27.9 63.3
StyleGANs [37] 19.7 21.8 16.5
WGANs [38] 34.8 61.2 28.8
FastGANs [120] 72.1 75.3 38.4
Morphing 27.6 25.7 18.9
EmoGANs [91] 29.4 85.0 53.8
EmoGANs1 [92] 25.4 54.8 155.3
EmoGANs2 [93] 29.1 30.8 25.0
EmoGANs3 20.1 31.8 11.0
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(a) (b) (c) (d) (e)

Figure 5.4: An random sample from each generator of (a)GANs, (b)DCGANs, (c)Morphing,
(d)EmoGANs2 and (e)EmoGANs3 used in BRISQE metric for JAFFE dataset

5.2 Metric to evaluate mixed facial expressions in the

generated images

5.2.1 Cosine Distance Metric for Facial Expressions Features be-
tween generated images and morphed images

Previous metrics were mainly used for quality assessment and data diversity. Since our objective
is to synthesize mixed facial expression images, we apply the methodology shown in Figure 5.5
to measure the distance between the generated and training images in the facial expression
feature space. The previous multi-class facial expression model discussed in Section 5.1.1 is
used to extract features from a batch of training and generated images. Once transformed into
the same space, the distance among these features is measured using the cosine distance metric.
The cosine distance metric is preferred as it limits the score from 0 to +1. A lower distance
indicates that the features from the generated images are located close to the features from the
training images.

Figure 5.5: Methodology to measure the distance between generated and training images in
the feature space. Ig and Ix are the generated and training images. v refers to feature vectors
extracted by the facial expressions recognition model from Section.5.1.1. d refers to cosine
distance. c refers to the number of samples which has a close distance than the threshold value
0.5.

Unlike the general GANs variation, for example, GANs[27], DCGANs[31], WGANs [38],
FastGANs [120], generators from EmoGANs, EmoGANs1 and EmoGANs2 obtain two basic
facial expressions images. Therefore, generated images from those images have a reference
training image for those input images to measure the distance. For EmoGANs3, the classes of
generated images are controlled by the two-hot encoded label vectors. Therefore, an example
of a reference image from each mixed class is used for calculation. However, generators from

75



the general GANs variants produce images from a random latent sample. Therefore, they do
not have reference training images for a specific generated image. Therefore, cosine distance is
computed for the generated images from EmoGANs models.

Figure.5.4 gives the number of samples which has a closer distance from the training images.
This value is converted into percentages divided by the number of total samples of each dataset.
Results are shown in Table. 5.5. A higher percentage indicates that the majority of generated
images possess similar facial expressions as training images in the feature space.

Table 5.5: Results for measuring the cosine distance between facial expressions from generated
and training images.

Models
Datasets

CK+ JAFFE MUG
EmoGANs [91] 95.2% 67.5% 68.6%
EmoGANs1 [92] 95.6% 95.5% 34.4%
EmoGANs2 [93] 36.5% 42.5% 30.1%
EmoGANs3 28.6% 67.2% 32.5%

According to the results, the majority of generated images from EmoGANs and EmoGANs1
have similar facial expressions as morphed images in CK+ and JAFFE. However, it is difficult
to visually assess the generated images as the image quality is low and noisy. Although the
score of EmoGANs3 is lower than EmoGANs and EmoGANs1, it is higher than EmoGANs2
in MUG and JAFFE. Besides, it had been proved that action units of generated images by
EmoGANs3 is consistent with the ones from morphed images in Section.4.2.1.4. From the
visualization results, image quality is better than the previous two models in Figure.5.6.

5.3 Metric to evaluate feature disentanglement property

The previous sections have demonstrated that the EmoGANs3 model generated images with
superior quantitative scores compared to other EmoGANs models. The EmoGANs3 model
utilizes two distinct feature vectors, namely facial expressions and subject identity information,
to control the image generation process. In this section, we will evaluate the EmoGANs3
model based on the degree of disentanglement between facial expressions and subject identity
information. It is important to note that, unlike the EmoGANs3 model, the previous EmoGANs
models lack the capability to control and isolate these features. Consequently, we will initially
propose a methodology to separate these features and subsequently compare the results with
those obtained from the EmoGANs3 model, in line with the objectives of our research.

5.3.1 Methodology to manipulate latent space

As presented in the previous chapters, GANs can map the latent samples from the prior dis-
tribution onto the image space after training. However, it is still unknown how semantics
representations of the generated images are arranged in the latent space. Therefore, this chap-
ter observes the visual concepts of the generated images in the latent space by manipulation of
facial expression attributes to make changes in the image space.

Figure.5.7 illustrates the proposed methodology to manipulate the facial expressions at-
tributes in the latent space[105]. It includes four main parts: Image generation, Emotion
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(a) EmoGANs (b) EmoGANs1 (c) EmoGANs3

Figure 5.6: An random sample from each generator of EmoGANs, EmoGANs1, and EmoGANs3
used in measuring cosine distance in feature space. The upper row is for CK+, the middle is
for JAFFE and the lower is for MUG.

classification through facial expressions, Latent samples collection with respect to emotion la-
bels, and finally facial expression attributes manipulation in the latent space. Each component
included in the Figure is sequentially discussed.

Figure 5.7: Overview of facial expression manipulation in the latent space

5.3.1.1 Image Generation

Network Configurations Since the latent space used by GANs’ generator is explored, the
networks are constructed based on Deep Convolution GANs (DCGANs) [31]. Detailed network
configurations can be seen in Figure. 5.8. For the generator G, it up-samples a 100-dimensional
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latent sample which is uniformly drawn from the prior Gaussian distribution with Convolution
Transpose layers. Leaky rectified linear unit (Leaky ReLU) activation is used in G except the
final layer. The latent samples are mapped onto 80 × 80 image space. For the discriminator
D, five-layered of convolution filters are used for downsampling and feature extraction with
non-linear activation such as ReLU. In the end, sigmoid binary cross entropy loss is used to
predict the distributions of the given inputs.

Experiment settings Facial expressions images with basic emotion labels are employed to
train the models. The weights are updated through mini-batch size 128 for 1000 iterations.
The models are trained using Adam optimizer[95]. The learning rate is set to 1e-04 for both
sub-models G and D.

Figure 5.8: Network configurations of image generation model (Deep Convolution Generative
Adversarial Networks)

Evaluation Frechet Inception Distance (FID) metric proposed in [106] is used to evaluate the
quality of generated images by G of DCGANs. In the initial FID computation, the pre-trained
objects recognition model such as inception v3[107] without the final classification layer was
used to capture the specific features of the input images. The features are summarized as a
multivariate Gaussian by finding the means and covariance of the images, which is later used
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to compute the Frechet distance. A lower score indicates better image quality. FID metric can
be summarized as follows.

d2
FID = ∣∣µ1 − µ2∣∣

2 +Tr(C1 +C2–2(C1C2)
1
2 )) (5.10)

where d2
FID is the score of Frechet distance in squared unit. µ1 and µ2 refer to the feature-wise

mean of the real and generated images respectively. C1 and C2 are the covariance matrices for
real and generated images. Tr refers to the trace linear algebra operation.

In our experiment, the inception v3 model[107] was replaced by the pre-trained emotion
recognition model, as facial expressions-related features are desired. We obtained a score of
21.82 with the DCGANs model which is lower than the score of 96.09 achieved by vanilla GANs
[27].

5.3.1.2 Emotion Classification

Network Configurations In this study, we developed an emotion recognition model that
uses three convolutional layers to recognize seven basic emotions, including anger, disgust, fear,
neutral, happiness, sadness, and surprise. The convolutional feature maps were reshaped and
fully connected to recognize emotions. Softmax activation is used in the last dense layer for
multi-classifications. The complete architecture is shown in Figure 5.9. Prior to training, the
facial images in the input were detected and standardized.

Figure 5.9: Network configurations of emotion recognition model (Convolution Neural Net-
work(CNN))

Experiment settings The model is trained using Adam optimizer [95] with a learning rate
1e-03 for 50 iterations. Weights are updated for each mini-batch size of 128.

Evaluation The model is evaluated through 10 fold cross-validation where one subset is used
to test the model performance for each iteration. Due to the simplicity of the frontal facial
expressions used in the input data, the current configuration of the CNN model was effective
in achieving an accuracy of approximately 91% in the CK+ dataset.
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Figure 5.10: Confusion matrix of the emotion classification model for each emotion

Figure 5.10 shows the confusion matrix used to evaluate the model’s performance for each
class. We can observe that the model confuses sadness images with anger and neutral expres-
sions. This result is reasonable since the training data for the sadness class is the fewest among
the emotional classes, with only 28 images in the CK+ dataset.

5.3.1.3 Latent Sample Collection With Respect To Emotion Labels

To collect the latent samples with respect to emotion labels, previously trained generator G and
emotion classifier are employed. The complete system flow can be seen in Figure.5.11. First,
the random latent is drawn from the Gaussian distribution and mapped onto image space by G.
An emotion classifier was used to predict the labels for the generated images. If the predicted
labels and desired emotion label is matched, the initial latent is recorded with emotion labels.
Otherwise, the latent are re-sampled from the same distribution. Two thousand latent samples
are collected for each emotion class.

Figure 5.11: System flow to collect latent samples with respect to emotion labels. z is the
latent sampled from the prior distribution N(0,1). y is the desired emotion label. ŷ is the
label predicted by the emotion classifier. Sy is a set that includes latent samples with emotion
label y and initially an empty set ϕ.
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5.3.1.4 Facial Expression Manipulation

The concept behind manipulating facial expression attributes in the latent space is that if
generated images have different facial expressions, the underlying semantics or facial expression
attributes in the latent space must also differ. By locating the boundary that separates these
two expressions, the semantics of a specific latent sample can be altered by pushing it towards
the opposite side of the boundary. Figure.5.12 shows the manipulation process.

Figure 5.12: Diagram to manipulate the facial expressions attribute in the latent space. S1

belongs to the set containing the latent samples z with emotion label 1, for example, ’happiness ’
emotion. S2 refers to the set for emotion label 2, for example, ’sadness ’ emotion. â refers to the
decision boundary that separates the latent samples from two different classes. λ is the control
parameter for direction. n is the number of latent samples. In this experiment, two thousand
samples with respect to emotion labels are collected. d is the dimensions of the latent samples.
Only 2 dimensions are used for illustration purpose.

To manipulate the facial expressions, first the boundary line that classifies two different
emotion classes is found using binary Support Vector Machine (SVM) algorithm. SVM is
the supervised learning algorithm that finds the hyperplane with a maximum margin to the
closet points or support vectors in classification. Suppose, we have the feature points z in d
dimensional space such as z ∈ Rd, d ≤ 100. SVM defines the initial hyperplane as follows.

WT.z + b = 0 (5.11)

whereW denotes the weight vector of SVM. b is the intercept or bias of the hyperplane equation.
z is the 100 dimensional latent samples with corresponding emotion label.

Next, the hyperplane is required to best separate the points to reduce mis-classification and
fit by minimizing the distance function as follows.

dH(z) =
WT .z + b

∣∣W∣∣2
(5.12)

where H stands for hyperplane. d is the distance between a given point z and the hyperplane.
b is the bias term. ∣∣W∣∣2 is the Euclidean norm of the weight vector.

The objective of SVM is to find the hyperplane with the maximum margin from the closest
points. It can be written as

W∗
= argmax

W
(mindH(z)) (5.13)
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where W∗ is the optimal weights that gives the best hyperplane H for binary facial expressions
classification.

After training SVM, the facial expressions of a particular latent is altered by using the
boundary line of the desired emotion class as follows.

ẑ = λ(ŵ.z) (5.14)

where z is the initial latent with emotion label y. ŵ is the boundary norm which is defined as
W
∣W∣ . λ is the control parameter. ẑ is the modified latent with different emotion label.

5.3.1.5 Discussion

Theoretically, λ can be any real number. However, based on our trial experiments, we found
that values between -2.0 and 2.0 provide the best results for disentangling facial expressions
from subject identity features. Therefore, we set the default λ value within this range. As
shown in Figure 5.12, when the λ value moves in the same direction as the input expression,
i.e., λ > 0, the generated facial expressions are similar to the input expressions. Conversely,
when λ < 0, the expressions are opposite to the input expressions. At λ = 0, the expressions
are similar to those located near the boundary line. An example output of changing the facial
expressions from happiness class to sadness is illustrated in Figure.5.13. Complete experiment
results for other transformations can be seen in the Appendix section B.3.

Based on the experimental results, changing facial expression can also alter the other facial
attributes such as face shape. For an example, when facial expressions are changed to a surprise
expressions, it results in changing face shape vertically by widely opening the mouth and raising
eyebrows upwards (See the illustration results of the surprise class in the Appendix section B.3).
If similar facial expressions are altered, for example sadness and fear, the facial expression
attribute disentangles with other facial attributes while maintaining the same subject identity.

We compare the results obtained by the current study with other methodologies proposed in
[31, 108]. Figure.5.14 shows the result using the arithmetic operations on mean latent vectors
proposed in [31]. From the Figure, we can observe that the facial expressions attribute and
identity attribute are tangled in the latent space. Figure.5.15 illustrates the result using the
deep feature interpolation proposed in [108]. Since the model in this work is trained with facial
attributes instead of facial expressions, the attributes that make changes in facial expressions
are altered such as ’smiling’, ’frowning’, ’mouth slightly open’, and ’mouth wide open’. From the
result, we can perceive that image quality is degraded as a better result depends on accurate
face alignment. Unlike the compared work[108], the methodology in the current study[105]
semantically controls the facial expression attributes in the latent space by pushing the sample
towards the opposite side of the decision boundary supported by SVM. Besides, it does not
require careful face alignment.

Manipulating the facial expression attributes in the latent space can improve the perfor-
mance of emotion recognition by providing augmented data when the training data is insufficient
and unbalanced. As presented earlier in this section, the emotion recognition model misrecog-
nizes the samples from the sadness class the most, as the training samples for that class are the
fewest. Therefore, we augment the sadness samples using the proposed methodology, altering
facial expressions from the happiness class to sadness expressions. These augmented samples
are used to train the previous emotion recognition model. Figure 5.16 shows the performance
of the emotion recognition model after augmentation. Compared to the previous confusion
matrix in Figure 5.10, the performance in the sadness class has improved from 20% to 80%.
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Figure 5.13: An example output of facial expressions manipulation from happiness class to sad-
ness class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0
in this experiment. More experimental results for different classes can be found in Appendix
section B.3.

5.3.2 Cosine similarity metric for subject identity information be-
tween an input image and transformed image

Our hypothesis is that if the models or methodology have disentanglement properties between
facial expressions and subject identity information, the transformed images by those models
should maintain similar faces. Therefore, to objectively assess the facial similarity between
input and transformed images, the evaluation methodology is displayed in Figure 5.17. We
use the pre-trained VGG Face model [87] to extract facial features and measure the cosine
similarity metric among these features.

In the proposed methodology in Section 5.3.1, a single input image is transformed by mul-
tiplying it with the boundary norm and control parameter λ. Subsequently, we measure the
cosine similarity metric among the facial features of the given image and the transformed image
to analyze the extent to which these images include similar faces. We expect that the trans-
formed image at the decision boundary (λ = 0) will have mixed facial expressions while still
maintaining the subject identity, as the boundary line exists between two different classes.
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Figure 5.14: Output of manipulating facial expressions attribute in the latent space using
arithmetic property proposed in DCGANs by Radford et.al [31]. Columns (a) and (b) represent
the generated images synthesized from the mean latent of anger and neutral emotions. Column
(c) refers to generated images synthesized from the mean latent of the corresponding emotions
such as (i) disgust, (ii) fear, (iii) happiness, (iv) sadness and (v) surprise. Column (d) is the
output of arithmetic operation performed on those mean latent vectors.

For comparison, we also include the StyleGANs model as a state-of-the-art, as it has the
capability to mix the style between two images. StyleGANs are trained on the CK+ dataset,
which exhibits less variation in styles but different facial expressions. We anticipate that by
mixing style in the latent space, we can generate images with mixed facial expressions in the
image space. Consequently, we measure the facial similarity between the new images obtained
from mixing style in the latent space and the two input images. Since we have two input images,
we calculate the cosine similarity between each input image and the corresponding mixed image
separately, and then find the average similarity. The training process is implemented using the
TensorFlow library for the implementation support.

Figure.5.18 (upper row) displays the input image and the transformed image at the decision
boundary by the methodology[105], along with their corresponding facial similarity scores.
The quantitative results indicate that the input image and the transformed image have a
similar identity, as evidenced by a cosine similarity score closer to +1. This observation is also
supported by a visual assessment of the displayed images. We followed similar procedures for
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Figure 5.15: Output of editing facial attributes that results to change facial expressions in the
image such as (a) ’smiling ’, (b) ’frowning ’, (c) ’mouth slightly open’, (d) ’mouth wide open’
using deep feature interpolation proposed by Upchurch et.al [108].

(a) before (b) after

Figure 5.16: Confusion matrix of the emotion classification model for each emotion after adding
the samples created using the proposed methodology

the images in the test set. In 99% of the transformed images by the work[105], we observed
similar faces compared to their respective input images. Similarly, EmoGANs3 model also
maintain the facial information by the encoder model in the image generation by observing the
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Figure 5.17: Methodology to measure the similarity between an input image and output image
transformed in the latent space. I is an input image and Î is the manipulated or transformed
image. v represents the feature vectors containing the subject identity information extracted
by the VGG Face model [87]. s is a score given by the cosine similarity metric, which ranges
from -1 for the most dissimilarity to +1 for the most similarity.

(a) s = 0.90 (b) s = 0.92

(c) s = 0.86 (d) s = 0.92

Figure 5.18: Output of evaluation methodology to measure facial similarity between a given
input image (left) and transformed output image (right) in each pair. The output image at the
upper row is transformed by the proposed methodology [105] and the ones at the lower row
are generated from the predicted latent by the facial encoder of EmoGANs3. s is the cosine
similarity score calculated from facial embedding vectors. The value ranges from +1 for the
most similarity and -1 for the most dissimilarity.

high similarity scores in Figure.5.18 (lower row).
Figure 5.19 presents the results for StyleGANs, including the facial similarity scores and

illustrated images. In each row, the first two images represent randomly generated images
by StyleGANs, while the last image is the result of mixing the style between the first two.
According to the quantitative scores, the mixed image exhibits a certain degree of similarity,
although it is lower than the transformed image obtained using the methodology described in
Section 5.3.1. We computed the similarity metric for the test set as well. It was found that
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(a) s = 0.45

(b) s = 0.40

Figure 5.19: Output of evaluation methodology to measure facial similarity between input
images and transformed output image. Images from 1st and 2nd columns are random generated
images from StyleGANs[37]. Images at 3rd are the results of mixing style from input images. s
is the cosine similarity score calculated from facial embedding vectors. The value ranges from
+1 for the most similarity and -1 for the most dissimilarity.

45% of the mixed images have a similarity score greater than the threshold value of 0.5.

5.3.3 Facial expressions recognition on images transformed in the
latent space

In the previous section, we measured the extent to which subject information is retained in
the newly transformed images in the latent space. To further analyze the disentanglement
property between identity and facial expressions, it is necessary to assess the facial expressions
present in these transformed images. As mentioned earlier, we anticipate that the transformed
or mixed images will exhibit mixed facial expressions. Therefore, we will utilize the Py-Feat
facial expression recognition model [16] to recognize the facial expressions in the transformed
images.

The output of emotion recognition by Py-Feat [16] are depicted in Figures. 5.20, 5.21
and 5.22. Analyzing the confidence probability scores for each emotion, we observed that
the transformed images at the boundary line, obtained using the proposed methodology [105],
predominantly exhibit neutral expressions rather than mixed facial expressions. In contrast,
the mixed images generated by StyleGANs and EmoGANs3 displayed mixed facial expressions.

To sum up the evaluation on disentangle property provided by StyleGANs [37], the method-
ology [105], and EmoGANs3, the last two provides the best maintenance of facial identity in
generation process. However, the transformed image by [105] expresses the neutral expressions
rather than mixed facial expressions. In contrast, the generated images by EmoGANs3 shows
the mixed facial expressions based on the recognition results by Py-feat.
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(a) Transformed Image by methodology[105] (b) Recognized emotion in (a)

(c) Transformed Image by methodology[105] (d) Recognized emotion in (c)

Figure 5.20: Confidence probability score of synthesized images transformed in the latent space
recognized by PyFeat Library[16].

(a) Transformed Image by StyleGANs[37] (b) Recognized emotion in (a)

(c) Transformed Image by StyleGANs[37] (d) Recognized emotion in (c)

Figure 5.21: Confidence probability score of synthesized images transformed in the latent space
recognized by PyFeat Library[16].
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(a) Generated Image by EmoGANs3 (b) Recognized emotion in (a)

(c) Generated Image by EmoGANs3 (d) Recognized emotion in (c)

Figure 5.22: Confidence probability score of synthesized images transformed in the latent space
recognized by PyFeat Library[16].

5.4 Summary on synthesized images by all EmoGANs

models

We summarized the properties of proposed EmoGANs models [91, 92, 93].

• The first two models produce noisy images, while the second model has less noisy data
but it is still infeasible to be assessed by the naked eye. The last two models can generate
higher output resolution and facial expressions are clear in the generated image (See in
Figure.5.23).

• As discussed in the previous sections to quantitatively assess the image quality, inception
score, and FID score by EmoGANs3 model provides the best score in MUG and JAFFE.
Based on the BRISQE score, its score is best in CK+ compared with other EmoGANs
models. From those results, we can conclude that including the facial identity information
in the image generation process can improve the image quality as only EmoGANs3 con-
siders keeping facial information. Besides, the image generation process can be controlled
by label vectors and encoded facial representation.

• As discussed in the previous chapter, generators of the first two models perform both
feature extraction from image pair and image generation and require longer training time
for convergence. However, the discriminator convergences after a few training epochs,
resulting the unstable training. In EmoGANs2, these two tasks are separated by the
different models and are able to construct high-resolution images.

• All properties are summarized in Table.5.6.
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(a) EmoGANs
(64×64)

(b) EmoGANs1
(64×64)

(c) EmoGANs2
(64×64)

(d) EmoGANs3
(128×128)

Figure 5.23: Example of generated images by each EmoGANs for CK+ (upper row), JAFFE
(middle row), MUG(lower row).

Table 5.6: Summary of EmoGANs models proposed in this dissertation

Property EmoGANs[91] EmoGANs1[92] EmoGANs2[93] EmoGANs3
Image quality Noisy Noisy Clean Clean
Output resolution 64×64 64×64 128×128 128×128
Training Stability No No Yes Yes
Control on generation No No No Yes
Non-linear transformation Yes Yes Yes Yes
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Chapter 6

Emotion Estimation

6.1 Estimation of Basic Emotions through Basic Facial

Expressions Features

The basic framework for an automatic emotion recognition model includes two main parts:
feature extraction and classification. The goodness of the features extracted by conventional
feature extraction methods, such as the Gabor filter and local binary pattern, relies on metic-
ulous data processing. Following feature extraction, several classification methods, such as
support vector machines, k-nearest neighbors, and decision trees, are employed to categorize
the features into different groups. The performance of the classifiers also depends on the good-
ness of the extracted features or the degree of their discriminative power. However, conventional
feature extraction methods are sensitive to noise and various factors, such as lighting condi-
tions, head pose, and occlusion. In addition, the study [109] reports that manual detection of
facial attributes or landmarks registration is required during the extraction process. Further-
more, since feature extraction and classification are independent phases, it can be challenging
to improve the recognition performance.

While the challenges of the conventional framework can be addressed by using deep learning-
based models, it should be noted that their generalization power is often dependent on the
quantity of available training data. Unfortunately, such data is not always readily available.
The new training technique, named transfer learning had widely discussed to tackle this problem
in [85, 110, 111]. As discussed in the previous chapter, transfer learning is a technique in which
previously acquired knowledge is applied to new tasks. This involves adjusting previously
learned knowledge to suit the new domain and often fine-tuning the final layers of the model
for the new task. By sharing low-level features learned from the previous task, transfer learning
can reduce the amount of training data required for the new task, thus reducing training time
and computational resources. It often leads to improved performance, especially when the new
dataset is small or similar to the original dataset. Since we used benchmark facial expressions
datasets that have a limited number of images, transfer learning is well-suited to our problem.

Figure.6.1 summarize the training strategies employed in fine-tuning the pre-trained models
for transfer learning in the emotion recognition task[112]. Additionally, it includes an analysis of
training a completely new model with appropriate layers, as well as training pre-trained models
with deep structural layers that have millions of parameters starting from random weights. Since
we prefer the models to have attention solely on the face region, faces are detected, extracted,
and masked before the fine-tuning process. The output after the pre-processing phase is shown
in Figure.6.2. In the next section, we discuss the choice of pre-trained models, their unique
structures, and training configurations.
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Figure 6.1: Overview of emotion recognition model with transfer learning using various Training
Strategies for performance comparison

6.1.1 Extraction of Facial Expression Features

Transfer learning technique has been employed in many studies, as reported in [84, 113, 114].
The choice of pre-trained deep models also differs and varies. The current study selects the
common networks often used for emotion recognition tasks in the transfer learning literature.
They are

1. VGG16 Face [87]: It is the deep convolutional network consisting of five convolution
blocks, each containing convolution and pooling layers, proposed by the Visual Geometry
Group (VGG) of Oxford University in 2015. The model was trained on 2.6 million face
images to recognize 2,622 identities.
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Figure 6.2: An example output of data pre-processing phase

2. ResNet 50[115]: ResNet 50 is a type of deep convolutional neural network with 175
layers that employs skip connections to overcome the vanishing gradient problem that
can obstruct back-propagation and learning. The model was trained on a dataset of 1.28
million images from 1000 classes.

3. MobileNet[116]: MobileNet is also a convolutional network with a lightweight architec-
ture suitable for mobile devices, incorporating inverted residuals to connect the input and
output of residual blocks. The model was trained on the ImageNet dataset.

4. Inception V3[107]: It composes of 48 convolution layers and has a small convolution
before a large convolution for dimension reduction. It was also trained with ImageNet
data.

5. Inception ResNet V2[117]: It combines the structure of inception and residual networks
to prevent the degrading problem. It was trained with the ImageNet dataset.

6. EfficientNet B0[118]: It is also a family of convolution networks and efficiently expands
the structure using the compound scaling method. It was trained with the ImageNet
dataset.

6.1.1.1 Networks Training With Different Strategies

Compared to facial expressions classification, the face recognition domain had advanced and a
variety of large-scale face datasets is available. The structure of pre-trained models of the face
domain is either a type of widely spread or deeper layers with millions of parameters. Therefore,
in transfer learning, mostly the final classification layer of pre-trained models is often fine-tuned
to the new tasks using weights from the previous tasks. When such deep models are trained
with a small dataset without the previously learned weights, they might not generalize well on
the unseen data and lead to memorizing the training data. Therefore, in this current study, we
consider three training strategies. They are

1. Training from early layers with random weights : The structures of the pre-trained models
are loaded and trained for emotion recognition with the randomly assigned weights as
the initial weights. The weights from the previous face recognition are not loaded and
discarded.

2. Training from early layers with pre-trained weights from face recognition task: The initial
weights of pre-trained models are loaded from the previous learning. The models are
re-trained through the earlier layers.
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3. Training only the last classification layer for emotion recognition: It is the common tactic
used in fine-tuning the pre-trained model. Only the final layer is trained to recognize the
new recognition task.

Training Configurations During training, early stopping of the learning process and data
augmentation are used to prevent the deep models from over-fitting, where the models cannot
generalize well on unseen data. Complete configurations can be seen in Table. 6.1.

• Early Stopping: ’Yes’ indicates ’early stopping’ is used in the training process to prevent
the model from over-fitting. ’No’ means the opposite.

• Data Augmentation: ’Yes’ indicates training data are augmented by flipping from left to
right and vice versa. ’No’ means the opposite.

Table 6.1: Training configurations for transfer learning and new training for emotion recognition

Transfer Learning
Setting
Number

Early
Stopping

Data Aug-
mentation

Training only the last classification layer
(or) Training from the earliest layers with
pre-trained weights

1-1 Yes No
Training only the last classification layer

1-2 No Yes
1-3 Yes No

Training from the earliest layer
1-4 No Yes

New Training
Setting
Number

Early
Stopping

Data Aug-
mentation

Training from the earliest layers with ini-
tial random weights

2-1 Yes No Yes
2-2 No Yes Yes

Recognition Performance The accuracy metric, defined in Equation 3.6, is used to evaluate
the recognition performance. All models are trained using the Adam optimizer with a learning
rate of 1e-03. Except for early stopping, all models are trained for 500 iterations. The models
are assessed through five cross-validation sets. Tables 6.2 and 6.3 summarize the results for
transfer learning and new training, respectively.

Analyzing the cross-validated results for transfer learning in Table 6.2, we observe that
training only the last classification layer yields comparable recognition performance and oper-
ates efficiently on the small dataset. In comparison to the entire model, the last layer contains
fewer weights, resulting in saved training time.

For the new training results in Table 6.3, the CNN model with three convolution layers
achieves the highest performance among the others. This is because the weights from the CNN
are relatively small, and the structure of the other models is only loaded and trained from
initial random weights.

The models are evaluated on different test segmentations and run for 5 trials. The results
are presented in Table 6.4. From the table, we can observe that the 75-25 data partition
provides the comparative results compared to the other partitions. Among the four settings
in transfer learning, setting 4 achieves the highest accuracy score of approximately 93% using
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the EfficientNet model. The ResNet V2 model also yields similar results across 5 trials under
the 75-25 data split. Therefore, these two models, EfficientNet and ResNet V2, from setting
1-4 are selected for further analysis in the transfer learning technique. Based on the cross-
validated results for new training, the 3B-CNN model achieves the highest score. Additionally,
EfficientNet performs well with augmented data when given sufficient training. Consequently,
these two models, 3B-CNN and EfficientNet, from setting 2-2, are selected for further study as
a result of the new training.

Table 6.2: Average accuracy of each model evaluated over 5-fold cross-validation sets for transfer
learning. Accuracy is shown in percentage (±standard deviation). Maximum score is highlighted
in bold font.

Models
Settings Number (Transfer Learning)

Setting 1-1 Setting 1-2 Setting 1-3 Setting 1-4
VGG16 Face 82.4 ± 5.7 90.6± 2.5 23.2±2.8 22.6± 4.7
ResNet 50 82.7± 2.1 85.0±3.4 31.3±18.7 85.3± 5.1
MobileNet 87.3±2.7 79.8± 2.8 58.1±17.9 67.1± 15.9
Inception ResNet V2 87.9 ± 2.5 86.3± 2.1 32.3±28.8 81.2± 12.3
Inception V3 84.4±2.6 82.4± 4.0 22.8± 6.3 61.6± 14.5
EfficientNet B0 86.0± 3.6 89.9± 2.7 76.0± 13.5 92.8±6.0

Table 6.3: Average accuracy of each model evaluated over 5-fold cross-validation sets for new
training. Accuracy is shown in percentage (± standard deviation). Maximum score is high-
lighted in bold font.

Models
Settings Number (New Training)

Setting 2-1 Setting 2-2
3B-CNN 74.0 ± 6.6 78.5 ± 4.1
VGG16 Face 26.4± 5.1 22.5± 5.0
ResNet 50 30.0± 8.8 39.1 ± 5.1
MobileNet 17.6± 5.1 46.0± 12.8
Inception ResNet V2 31.2± 17.1 77.1 ± 10.2
Inception V3 20.6 ± 8.7 72.3 ± 5.3
EfficientNet B0 33.6±20.3 73.0± 12.9
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Table 6.4: Average accuracy of each model tested across different data segmentation for 5 trials
in each settings. Accuracy is shown in percentage (± standard deviation). Maximum score is
highlighted in bold font.

Models
Train Test Split (train set, test set)

95%, 5% 90%, 10% 75%, 25% 50%, 50% 25%, 75%
Setting 1-1

VGG16 Face 90.0 ± 5.0 83.9 ± 2.9 87.0 ± 3.7 80.7 ± 3.0 75.3 ± 3.8
ResNet 50 97.5 ± 5.0 85.8 ± 3.9 87.8 ± 1.9 78.1 ± 3.1 76.5 ± 1.0
MobileNet 88.8 ± 2.5 74.8 ± 3.8 79.0 ± 1.7 78.6 ± 1.2 73.2 ± 2.4
Inception
ResNet V2

97.5 ± 3.1 94.2 ± 4.3 91.4 ± 2.3 84.6 ± 0.7 79.2 ± 2.3

Inception V3 83.8 ± 3.1 77.4 ± 4.6 84.4 ± 0.8 77.7 ± 2.6 71.5 ± 2.7
EfficientNet
B0

95.0 ± 2.5 83.9 ± 4.1 88.1 ± 2.1 82.0 ± 2.2 73.6 ± 4.5

Setting 1-2
VGG16 Face 92.5 ± 6.1 88.4 ± 3.3 88.3 ± 1.2 83.6 ± 5.3 76.0 ± 4.2
ResNet 50 98.8 ± 2.5 84.5 ± 3.2 84.4 ± 3.0 77.0 ± 2.7 73.2 ± 2.1
MobileNet 86.3 ± 2.5 74.2 ± 5.8 80.8 ± 3.8 76.1 ± 2.7 73.0 ± 1.1
Inception
ResNet V2

96.6 ± 5.0 90.3 ± 5.4 88.1± 2.9 83.8 ± 2.6 80.6 ± 2.0

Inception V3 81.3 ± 0.0 79.4 ± 6.0 81.6 ± 5.6 78.6 ± 2.6 71.5 ± 2.1
EfficientNet
B0

95.0 ± 2.5 87.7 ± 2.4 92.5 ± 1.9 84.8 ± 1.1 77.9 ± 1.2

Setting 1-3
VGG16 Face 37.5 ± 31.4 38.7 ± 23.7 34.6 ± 22.3 24.8 ± 1.0 25.0 ± 5.6
ResNet 50 30.0 ± 17.0 24.5 ± 12.7 39.0 ± 21.5 32.7 ± 19.2 29.9 ± 21.7
MobileNet 31.3 ± 31.1 44.5 ± 11.8 45.2 ± 18.4 43.4 ± 15.0 43.5 ± 18.5
Inception
ResNet V2

65.0 ± 28.9 35.5 ± 15.5 39.7 ± 27.5 39.6 ± 24.8 47.1 ±17.3

Inception V3 18.8 ± 11.2 23.2 ± 9.4 40.3 ± 15.5 29.4 ± 17.3 35.4 ± 9.5
EfficientNet
B0

83.8 ± 19.2 81.3 ± 11.2 86.0 ± 5.5 84.0 ± 2.9 70.4 ± 8.5

Setting 1-4
VGG16 Face 6.3 ± 0.0 19.4 ± 0.0 23.4 ± 0.0 25.3 ± 0.0 25.5 ± 0.0
ResNet 50 82.5 ± 32.0 91.0 ± 2.4 91.2 ± 3.0 71.4 ± 14.8 73.1 ± 6.2)
MobileNet 63.8 ± 20.7 66.5 ± 18.8 79.0 ± 14.9 54.9 ± 27.1 42.3 ± 19.4
Inception
ResNet V2

78.8 ± 17.5 66.5 ± 20.4 77.7 ± 18.1 73.9 ± 9.9 71.4 ± 5.1

Inception V3 80.0 ± 4.7 36.1 ± 15.3 75.6 ± 11.2 49.4 ± 5.6 53.7 ± 16.9
EfficientNet
B0

91.3 ± 8.5 90.3 ± 4.1 90.1 ± 7.5 85.6 ± 7.7 85.0 ± 4.5

Setting 2-1
3B-CNN 77.5 ± 5.0 77.4 ± 6.5 77.9 ± 7.9 69.7± 3.3 55.8± 4.5
VGG16 Face 6.3± 0.0 19.4± 0.0 23.4±0.0 25.3± 0.0 25.5± 0.0
ResNet 50 31.3±20.5 30.3± 9.7 42.3 ± 3.2 32.9± 9.2 21.7± 6.0

Continued on next page
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Table 6.4 – continued from previous page

Models
Train Test Split (train set, test set)

95%, 5% 90%, 10% 75%, 25% 50%, 50% 25%, 75%
MobileNet 18.8±0.0 15.5± 1.3 19.7 ± 3.4 14.7 ±2.1 16.1 ± 1.0
Inception
ResNet V2

26.3±14.5 26.5± 5.5 24.4± 6.4 19.4± 4.4 18.2±0.0

Inception V3 12.5± 7.9 19.4 ± 6.5 17.1± 5.2 19.4± 5.2 20.7 ± 4.2
EfficientNet
B0

21.3 ± 12.2 22.6±9.8 25.2±9.8 15.7± 2.5 19.7± 3.1

Setting 2-2
3B-CNN 78.8 ± 8.5 74.2 ± 4.1 71.4± 3.2 69.7± 2.0 63.5± 3.8
VGG16 Face 6.3± 0.0 19.4± 0.0 23.4± 0.0 25.3± 0.0 25.5± 0.0
ResNet 50 31.3± 22.0 47.1± 7.5 50.7± 15.6 55.8± 10.0 42.9± 5.2
MobileNet 33.8± 11.6 38.7± 8.7 33.3± 9.3 24.8± 9.3 23.4± 0.0

Inception
ResNet V2

65.0± 35.9 72.3± 13.0 74.6± 7.1 60.0± 15.5 45.6± 14.3

Inception V3 47.5± 17.0 63.2± 20.2 68.1± 21.2 49.4± 17.9 34.9± 15.3
EfficientNet
B0

86.3± 7.3 82.6± 7.5 83.6± 3.6 73.5± 8.2 58.4± 4.1

6.1.2 Analysis of Facial Expression Features

The previous section selects the best models to work on emotion recognition. These selected
models are used as functions to extract features related to facial expressions in a multi-
dimensional feature space. Among these features, some information for the emotion class
might be redundant, and analyzing the hidden patterns can be tedious in high-dimensional
features. Not all attributes in the features are useful for output emotion class. For example, if
a particular attribute of features has little variance or no variance (i.e., constant), this attribute
does not have impact on output variable. Therefore, feature attributes with maximum variance
is desired.

Principal Component Analysis (PCA) is employed for feature analysis. PCA discovers
the features that have maximum variance across among emotion classes as much as feasible
using eigenvectors, eigenvalues and covariance. Suppose that vjn is the nth feature sample with
attribute j where n ≤ N and j ≤ M . N is the total number of feature samples and M is the
dimension of the feature space. It can be represented in matrix form as follows.

V =
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1 v
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⎥
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⎥
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(6.1)

where V is the feature matrix with size M ×N .
Then, covariance is constructed to measures how much each attribute is spread out from

the center mass or mean with respect to each other. The covariance matrix can be defined as
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follows.

C =
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⎢
⎢
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⎥
⎥
⎥
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(6.2)

where C is the symmetrical diagonal covariance matrix with size M ×M . Diagonal is the
variance of each attribute.

Covariance among two attributes can be calculated as follows. Suppose that two attributes
are defined as x and y. The covariance between x and y becomes

cov(x, y) =
∑(xn − x̄)(yn − ȳ)

N − 1
(6.3)

where x̄ and ȳ are the center masses or means over all samples for the corresponding dimensions
x and y. N is the total number of feature samples. n is the sample index which is n ≤ N .

The square covariance matrix is decomposed into eigenvectors and eigenvalues to create
the principal component space, where eigenvectors serve as the axes of the new space and
eigenvalues carry the amount of variance that the eigenvectors have. The eigen decomposition
can be written as follows.
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(6.4)

where U is the eigenvector that is [u(1)u(2) . . . u(j)]T and λ is the eigenvalue.
It can be solved as follows.

(C − λI)U = 0 (6.5)

where I is the identity matrix. C is the covariance matrix. U is the eigenvectors with corre-
sponding eigenvalues λ.

After obtaining eigenvectors and eigenvalues, PCA creates the projection space where eigen-
vectors become the axes with maximum variances, and their corresponding eigenvalues maxi-
mize the variance. In PCA, the principal components represent the directions of the axes. The
first principal component carries the highest amount of variance. The subsequent components
are orthogonal to the previous ones and account for the subsequent maximum variances. The
number of components equals to the number of the feature dimensions, and they are ordered
according to the maximum variance. Consequently, the lower components carry less variance,
and the dimensions related to those components can be removed as they have little impact on
the output class.

6.1.3 Discussion

In the previous section, the candidate models are chosen depending on their recognition per-
formance in terms of accuracy over the validated set and test set. The candidate models are
EfficientNet B0 and ResNet 50 from setting 1-2 for transfer learning and 3B-CNN and Efficient-
Net B0 from setting 2-2 for new training. Suppose that those models are mapping functions M
which projects the input x from high-dimensional image space onto features space with fewer
dimensions for emotion recognition that is v = M(x). The expressions features v is analyzed
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(a) ResNet 50 (Setting 1-4) (b) EfficientNet B0 (Setting 1-4)

(c) 3B-CNN (Setting 2-2) (d) EfficientNet B0 (Setting 2-2)

Figure 6.3: Visualization of projected feature points in the principal component space with the
first two components (pca1, pca2). (A), (F), (D), (H), (S), (U) represent ’anger’,
’fear’, ’happiness’, ’sadness’, and ’surprise’, respectively.

using PCA to determine the goodness of the features. We hypothesized that if facial expres-
sions features possess strong discrimination across classes, they should be located far from each
other to make the easier classification.

The extracted features are analyzed using PCA and projected onto two-dimensional space.
Figure.6.3 visualize the features sample of the principal component space for all classes. Fea-
tures extracted by the models from new training exist close to each other across different classes,
indicating they do not have strong discrimination in the facial expressions feature space made
by the models. In contrast, feature samples extracted by the models from transfer learning are
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located close to each other among intra-classes.

(a) ResNet 50 (Setting 1-4) (b) EfficientNet B0 (Setting 1-4)

Figure 6.4: Performance of emotion recognition models with transfer learning technique (con-
fusion matrix over a test set)

Based on the result from ResNet 50, features representing the surprise class have strong
discriminative power among inter-classes as they are solely located far from others. In two-
dimensional space, features representing disgust and anger are overlapped in the space, indicat-
ing that the model often misclassifies the anger samples with disgust and vice versa. Similarly,
fear features are also close to the border of surprise and happiness classes. Therefore, they
can be misclassified into those classes by the model. A similar interpretation goes to sadness
features. We can observe that the analysis result matches with the model performance in
Figure.6.4a.

Analyzing the results of the EfficientNet B0 model from transfer learning in the principal
component space, it is evident that the features extracted by this model possess stronger dis-
criminative power in comparison to those obtained by ResNet 50 under the same setting for
surprise, happiness, and disgust. Due to their positioning in the projection space, there is a
possibility of misrecognition between anger features and both disgust and sadness and vice
versa. The interpretation matches with the model performance across classes for the test set
in Figure.6.4b.

Since the features extracted from the EfficientNet B0 demonstrate stronger discrimination
against other classes, further investigation is needed to understand what the model captures
from the input and determine which facial expressions are crucial for classification. We adopt
the method proposed by the study [119] to visualize the feature maps filtered by the model.
Results are shown in Figure.6.5. From the result, we can observe that the model focuses on
the jaw, chin, and philtrum (the area between the nostrils and the upper lip ) for happy facial
expressions. It focuses on the jaw and eyes for surprise and the perioral region (central part of
the lower third of the face) for disgust. It emphasizes on glabella (skin area between eyebrows
and above the nose) and the mouth for sadness. From those highlighted illustrations, we can
perceive that the model observes the important and useful facial region for emotion recognition.
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(a) anger (b) disgust (c) fear

(d) happiness (e) sadness (f) surprise

Figure 6.5: Visualization of activated facial components while recognition the emotion by
EfficientNet B0 model from setting 1-4. Upper row in each class represents average activation
over all samples of the respective class. Lower row represents the output of a particular sample
with activated faical components.
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6.2 Estimation of Mixed Emotions through Synthesized

Images by EmoGANs3

Based on the discussion on evaluation results in the previous chapter, EmoGANs3 can synthe-
size qualitative images compared to other EmoGANs models. An example-generated image is
given in Figure 6.6(a). From the discussion of basic emotion estimation in the previous section,
we concluded that Efficientnet B0 provides the most discriminative features related to facial
expressions. Therefore, we apply this model to estimate the emotions in the example-generated
image. According to the result in Figure 6.6(b), the model returns ’anger’ as the most probable
emotion class for the example image. We also apply the Py-Feat Python library to recognize
the emotion in the example image, which returns ’happiness’ as the most detected emotion
for the image. However, the original labels used to synthesize the images are ’happiness’ and
’sadness’. Based on this result, we can conclude that a specialized facial expression recognition
system is required to estimate the generated mixed facial expression images.

(a) An example generated image

(b) Efficient Net B0 (c) Py-feat

Figure 6.6: (a) An example image synthesized by the proposed EmoGANs3 model for the MUG
dataset. The given mixed labels for example are ’happiness’ and ’sadness’ such as [0,0,0,1,1,0]
in vector form. (b) and (c) are confidence probability scores predicted by Efficientnet B0 [112]
and Py-feat[16].
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6.2.1 Network configurations of multi-labels facial expressions recog-
nition model

The multi-label formulation is suitable to estimate the mixed emotions estimation system, as
each generated image contains two emotion labels out of six basic classes such as ’happiness’ and
’sadness’ in the example case. The network configuration for multi-emotion label estimation is
given in Figure.6.7. Convolutional layers are applied to extract the facial expression’s specific
features and the max pooling layer is used to reduce spatial dimension size after convolution
operation. Since the model is expected to output multiple one’s values, the sigmoid activation
is applied instead of softmax activation to obtain the multiple emotion labels.

Figure 6.7: Network configurations to estimate multi-emotions labels of generated images
(multi-labels CNN model)

Since the model produces multiple emotion labels, accuracy is not a good metric to evaluate
multiple-label classification. For example, when the true label for a particular generated image
is ’happiness’ and ’sadness’ as in the example image, the vector form of the true label becomes
[0, 0, 0, 1, 1, 0], where each dimension represents each basic emotion such as anger, disgust, fear,
happiness, sadness, and surprise, respectively. Suppose that the model predicts ’happiness’ and
’anger’ as its emotions, resulting in [1, 0, 0, 1, 0, 0]. From these two vectors, we can see that the
model can predict ’happiness’ correctly but misrecognizes ’sadness’ as ’anger’. If the accuracy
metric is used in the evaluation, it will not consider one of the correct classes and strictly reject
the entire prediction.

Therefore, f-beta (fβ) metric is used to evaluate the model that uses the mean of precision
and recall weighted by parameter β. Precision evaluates the model based on the degree of
goodness for predicting the positive class, while recall measures the model’s ability to identify
the positive classes. Since it is a multiple-label classification problem, a specific emotion class
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from the true label is defined as the positive class, while the rest are defined as negative classes
using a one-versus-the-rest (OVS) approach. The fβ score ranges from 1 for the optimal value
and 0 for the minimum. The equation for the f-beta (fβ) metric can be defined as follows.

fβ = (1 + β
2)

precision.recall

(β2.precision + recall)
(6.6)

where fβ is the f-beta metric or f-measure which uses weighted parameter β.

6.2.2 Recognition Performance

The model shown in Figure 6.7 is trained to estimate the multiple labels of generated images
produced by the EmoGANs3 model using mini-batch stochastic gradient descent with a size of
128. Before training, the images are normalized to the range [0, 1]. A total of 15,000 generated
images are randomly produced by EmoGANs3 and then split into training and test sets using
a 70-30 ratio.

We compared the performance of our multi-label emotion estimation model with two base-
line models. Previously, the EfficientNet B0 model was the best to estimate the basic emotions
based on the accuracy metric. The model was trained with the generated images by EmoGANs3
and evaluated its performance over the test set. Additionally, we applied the same network
configuration but used the generated images from StyleGANs. The model is again evaluated
over the same test set.

Table 6.5: Evaluation for multiple labels estimation model over test set. fβ is the f-beta metric
and EMR is the exact match ratio that calculates the ratio of the predicted labels as identical
as true labels

Models
Metrics

fβ EMR
CK+ JAFFE MUG CK+ JAFFE MUG

EfficientNet B0[112] 0.45 0.60 0.51 6.2% 5.0% 5.9%
Multi-labels CNN model (StyleGANs) 0.42 0.54 0.53 14.2% 25.6% 26.0%
Multi-labels CNN model (EmoGANs3) 0.99 0.99 0.80 100% 99% 68.7%

The performance of all models is measured by two metrics: Exact Match Ratio (EMR) and
fβ. The EMR is the metric where the predicted emotion labels are the same as the true labels
used in the image generation process. The output of the Exact Match Ratio (EMR) is similarly
interpreted as a true positive rate. Evaluation results are tabulated in Table.6.5. Based on the
results, the multi-label model works well with generated images by EmoGANs3 in CK+ and
JAFFE compared to MUG. Approximately 68% of the predicted multiple labels are the same
as the true labels of generated images in MUG. This is because the characteristics of MUG
are different from the other two. Moreover, the multi-label CNN model achieves higher scores
compared to the model that had the same network configurations but was trained based on
generated images by StyleGANs.

Previously, the example-generated images were incorrectly recognized by a fine-tuned Effi-
cient Net B0 model that was trained on basic images and Py-feat in Figure.6.6. The emotion
of the example image will be estimated by the multi-label CNN model in Figure.6.7. Figure.6.8
shows the estimation results. From the result, we can see that the model can estimate the
correct label, which is used to generate the image by EmoGANs3. We also test the model on a
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(a) Generated image (MUG) (b) Confidence probability score

Figure 6.8: Estimation of mixed emotions of an example generated image by multi-labels CNN
model in MUG.

(a) Gold Medalist Risako Kawai during
Rio Olympic (b) Confidence probability score

Figure 6.9: Estimation of mixed emotions of a real image by multi-labels CNN model.

given real sample and the result is shown in Figure.6.9. This photo was captured at the winning
moment during the Olympic games. Therefore, the subject in the photo has happy emotions,
Since Olympic game results are unpredictable, the subject also has surprise emotions as well.
Those emotions can be predicted by the multi-label CNN model.

One can argue that the multi-label mixed emotions estimation model works well because it
was directly trained based on the generated images. We also evaluate the model based on the
basic facial expressions images as well. Confusion matrices for each basic class by multi-labels
estimation model and Efficient Net B0 model[112] is shown in Figure.6.10. Both models are
trained on the same data which are basic facial expressions images. Based on the confusion
matrix, the multi-label CNN model performed better than the Efficient Net B0 in JAFFE.
Their performances are similar in the other two datasets.
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(a) Mixed emotions estimation model (CK+) (b) Efficient Net B0 (CK+)

(c) Mixed emotions estimation model (JAFFE) (d) Efficient Net B0 (JAFFE)

(e) Mixed emotions estimation model (MUG) (f) Efficient Net B0 (MUG)

Figure 6.10: Confusion matrices evaluated over basic facial expressions images by multi-
label CNN model and Efficient Net B0 [112].
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To summarize the results from Table 6.5 and the confusion matrices, it can be concluded
that the EfficientNet B0 model, which we identified as the best model for extracting discrim-
inable facial expression features, is not suitable for estimating mixed facial expressions in images
generated by EmoGANs3. However, in terms of generated images representing mixed facial ex-
pressions, it can be observed that images generated by EmoGANs3 supported the model in
achieving better recognition performance. Additionally, the multi-label CNN model demon-
strates comparable performance in recognizing basic facial expressions in all datasets.

We now further analyze the mixed facial expression features learned by the multi-label
CNN model using Linear Discriminant Analysis (LDA), which summarizes the statistics of the
given features for the best separation based on their labels. From the multi-label CNN model,
128-dimensional feature vectors are obtained before the final classification (Figure 6.7). These
features are then learned by LDA to find the best linear combinations of the given variables to
achieve maximum separation among inter-classes and minimum separation among intra-classes.
It can also be used to reduce the feature dimensions. Therefore, 128-dimensional features by
multi-labels CNN model are projected by LDA into three components which are plotted in
Figure.6.11. Front and back sides of 3D plots are provided to see all mixed emotions classes for
each dataset. Name of the each mixed emotion represented in the plot is coded in Table.6.6.

Table 6.6: Name code for mixed emotions classes

No. Mixed Emotion Classes Name Code

1 Anger, Fear AF
2 Anger, Disgust AD
3 Anger, Happiness AH
4 Anger, Sadness AS
5 Anger, Surprise AU
6 Disgust, Fear DF
7 Disgust, Happiness DH
8 Disgust, Sadness DS
9 Disgust, Surprise DU
10 Fear, Happiness FH
11 Fear, Sadness FS
12 Fear, Surprise FU
13 Happiness, Sadness HS
14 Happiness, Surprise HU
15 Sadness, Surprise SU

From the visualization results in Figure 6.11, it is evident that samples belonging to the same
classes have a close distance in the projected space. Although a maximum distance between
samples among inter-classes is preferred, samples belonging to different classes are relatively
close in the feature space. This is because the six basic emotions are intertwined with each other
within each mixed emotion class. For example, in the plot for CK+, the mixed emotion classes
associated with anger, such as AF, AD, AH, AS, and AU, are close to each other as they all
contain the common class of anger. The same interpretation can be applied to the other plots.
Therefore, from this visualization results, we can conclude that the mixed emotions estimation
model provides relatively discriminable features useful to recognize mixed emotions.
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(a) LDA of CK+ (front side) (b) LDA of CK+ (back side)

(c) LDA of JAFFE (front side) (d) LDA of JAFFE (back side)

(e) LDA of MUG (front side) (f) LDA of MUG (back side)

Figure 6.11: 3D plot of Linear Discirminant Analysis (LDA) for features related to mixed
facial expressions extracted by multi-labels CNN model. Each dimension represents each LDA
component. Each color represents each mixed emotions class, which can be referred in Table.6.6.
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Chapter 7

Conclusion and Future Work

7.1 Chapters Summary

With advanced technology, emotion recognition is no longer limited to human interaction but
is also performed by computers using social signals, especially facial expressions, as faces are
the first engaged area in face-to-face communication. However, state-of-the-art research on
emotion recognition typically focuses on six basic emotions, but human emotions are more
sophisticated than those emotions. In Chapter 1, possible life events are shown as an example of
mixed emotions. Currently, the literature on mixed emotions describes mixed facial expressions
as a linear combination of action units. However, it might not be a linear transformation
and highlights the gap between spontaneous and non-spontaneous mixed facial expressions
images. This motivates us to consider non-linear transformations for the formation of mixed
facial expressions. Chapter 1 describes our definition of complex facial expressions for mixed
emotions and introduces the overview of the approach used in this dissertation by emphasizing
its significance.

Chapter 2 divides the literature into two parts. The first part reviews the literature on
generation models, typically focusing on Generative Adversarial Networks and their variant
models that are commonly used in the image generation process. The second part includes
reviews of the literature on automatic emotion recognition through facial expressions. Chapter
3 describes the data preparation process used in this dissertation to train the proposed models.
Since the current research focuses on working with images, the chapter introduces the process
of selecting the peak frame from image sequences as the pre-processing step. Additionally,
morphed images were used as training data, as morphing can create a mixture of images.
However, it should be noted that morphing is a linear transformation process and cannot
perform interpolation outside of the given pixels.

The beginning of Chapter 4 briefly introduces the proposed model for mixed emotions
estimation using an analysis-by-synthesis approach. Consequently, it discusses the proposed
Emotion Generative Adversarial Networks (EmoGANs) and its evolution. As a summary, it
can be divided into two categories: Unsupervised and Supervised. During the adversarial
training, the GANs model does not use the original label from the data, making GANs training
known as unsupervised training.

In the first part, we introduce the first proposed model named Emotion Generation Adver-
sarial Networks (EmoGANs). We discuss their network configurations, training settings, and
output while pointing out the challenges associated with this model. However, due to its unsta-
ble training and noisy output, a second model named EmoGANs1 is introduced. EmoGANs1
utilizes a Wasserstein distance-based objective function, resulting in less noisy images compared
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to the first model. Nevertheless, it still faces training instability due to its generator design.
Therefore, the model is further restructured into two different models, EmoGANs2, by sepa-
rating the feature extraction and image generation processes. To control the image generation
process, we employ the label vector and inference network to deduce the facial representation
in EmoGANs3.

In Chapter 5, the generated images are evaluated based on the perspective of image quality,
image diversity, and feature disentanglement property and compared with state-of-art GAN
variants. The generation model, such as GANs, utilizes samples from a prior existing distribu-
tion to estimate real samples from the training distribution. However, the knowledge of how
visual attributes of the generated images are in the latent space is unknown. Therefore, Chapter
5 also explores the latent space used by the DCGANs model and introduces a methodology to
edit the facial expression attributes in the latent space. Additionally, the chapter demonstrates
how facial expression manipulation benefits the emotion recognition model.

Based on the evaluation results of generated images by the proposed EmoGANs models,
we concluded that EmoGANs3 provides the best performance and the generated images by
EmoGANs3 are used for further analysis. Chapter 6 includes two sections. The first section
investigates the best model among the commonly used models for facial expression recognition,
which provides the most discriminative features useful for basic emotion estimation. The second
section discusses the multiple emotions estimation model used to estimate the mixed emotion
labels and analyzes them in the feature space.

7.2 Conclusion

In this research, we aim to estimate mixed emotions using synthesized images through the
Analysis-by-Synthesis (AbS) approach. The research milestones include obtaining mixed facial
expression images and estimating the corresponding emotion labels.

Based on the experimental results obtained from the proposed EmoGANs models in Chap-
ters 4 and 5, we can conclude that the first milestone has been accomplished. Among the four
models introduced in this research, the final model (EmoGANs3) provides the highest-quality
images. The evaluation of these images was conducted considering the spatial resolution, im-
age quality, and data diversity using three different metrics: Inception Score, Frechet Inception
Score, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQE). The scores of these
metrics for the generated images by EmoGANs3 were found to be the highest when tested on
three different datasets, namely CK+, JAFFE, and MUG. Since only the EmoGANs3 model
considers identity information, we can conclude that maintaining facial embedding helps the
model in producing high-quality images.

During the adversarial training for EmoGANs models, morphed images are used to support
the training process. Morphing involves blending the same local regions from two given images,
thereby producing an intermediate image that represents the mixed facial expressions of the
image pair. However, morphing is limited to performing linear interpolation and cannot go
beyond the given pixel values, which means it cannot generate a new subject identity.

In contrast, EmoGANs employ non-linear activation in their network configurations. The
projection mapping from the latent space onto the image space is a non-linear transformation.
This enables each sample from the latent space to be transformed into a new image, thereby
increasing the data diversity and introducing large variance. According to the inception score
metric, EmoGANs3 achieves a score of 11.4 on the MUG dataset, outperforming state-of-the-art
models, including other EmoGANs models.

As the name suggests, the inception score metric employs the inception model to measure
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the scores and limits the generated images to be recognized by the inception model. Therefore,
we utilized the multi-class facial expressions recognition model to calculate the score. Since
that recognition model is trained using morphed images, it might favor the morphed images.
Therefore, both morphed images and generated images by all EmoGAN models are evaluated
based on BRISQE, which derives the feature vector only from the input without involving
another model. The BRISQE score of generated images by the EmoGANs3 model is superior
to that of the morphed images.

As for the second milestone of this research, the first section (Chapter 6) discusses several
recognition models commonly used in the literature to recognize basic facial expression images.
Based on the results, we concluded that EfficientNet B0 has the best network configurations,
supporting the most discriminant features for estimating basic emotions.

However, estimating mixed emotions from generated images using EfficientNet B0 is not
appropriate. Instead, multi-label classification is more suitable for estimating multiple emotion
labels from the generated images. Therefore, the second section of Chapter 6 focuses on the
multiple-label CNN model used to estimate mixed emotion labels, which is evaluated based on
fβ and the exact match ratio (EMR).

According to the scores supported by these metrics, the multi-label CNN model outperforms
the previously claimed best model, EfficientNet B0. Since both models have different training
data (the multi-label CNN model is trained using generated images by EmoGANs3, whereas
EfficientNet B0 is trained on basic images), we evaluated the multi-label model on those basic
emotion images. Analyzing the results, the multi-label CNN model shows comparable perfor-
mance in all datasets. Besides, we tested the model on the real sample for spontaneous mixed
facial expressions. Its results showed that the multi-label CNN model can effectively estimate
the mixed emotions.

To gain insights into the features extracted by the multi-label CNN model, we employed
linear discriminant analysis (LDA) to reduce the feature dimensions and identify the optimal
linear combinations of input variables. This approach aims to maximize the distance between
different classes (inter-class) while minimizing the distance within the same class (intra-class).

Based on the visualization results of LDA features on 3D plots, we can conclude that the
mixed facial expressions are relatively closer to other classes, as they share the six basic emotions
among the mixed classes. This suggests that there is some overlap and similarity between the
mixed facial expressions.

7.3 Future Work

For the short term, we consider the following work.

• Mixed emotions between ’happiness’ and ’sadness’ can be defined by the single word
’bittersweet’. Defining the vocabulary for each mixed emotion will be taken into consid-
eration.

In the long term, we expect the following work.

• The current research introduces 15 mixed emotions, which represent possible non-repetitive
combinations of Ekman’s six basic emotions. At the moment, the degree of each under-
lying emotion in mixed emotions is not considered for the sake of simplicity. However, it
will be addressed in future studies.

• The current research simplifies the scope of mixed emotions by focusing on images instead
of image sequences and using standard datasets that have a minimal occlusion in faces and
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maximally expressed facial expressions. However, these conditions do not occur frequently
in real life. Therefore, for long-term studies, we will consider more robust models and
recognition systems that can be applicable to real-world conditions.
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namic facial expression recognition using boosted component-based spatiotemporal fea-
tures and multi-classifier fusion, Advanced Concepts for Intelligent Vision Systems: 12th
International Conference, ACIVS 2010, Sydney, Australia, December 13-16, 2010, Pro-
ceedings, Part II 12, pp.312–322 (2010)

[56] Sirovich, Lawrence and Kirby, Michael. Low-dimensional procedure for the characterization
of human faces, Josa a, vol.4, no.3, pp.519–524 (1987)

117



[57] Cortes, Corinna and Vapnik, Vladimir. Support-vector networks, Machine learning, vol.20,
no.3, pp.273–297 (1995)

[58] Ho, Tin Kam. Random decision forests, Proceedings of 3rd international conference on
document analysis and recognition, vol.1, pp.278–282(1995)

[59] Schapire, Robert E. Explaining adaboost, Empirical inference, pp.37–52, Springer (2013)

[60] Wu, Xindong and Kumar, Vipin and Quinlan, J Ross and Ghosh, Joydeep and Yang,
Qiang and Motoda, Hiroshi and McLachlan, Geoffrey J and Ng, Angus and Liu, Bing and
Philip, S Yu and others. Top 10 algorithms in data mining, Knowledge and information
systems, vol.14, no.1, pp.1–37 (2008)

[61] Khan, Sajid Ali and Hussain, Ayyaz and Usman, Muhammad. Reliable facial expression
recognition for multi-scale images using weber local binary image based cosine transform
features, Multimedia Tools and Applications, vol.77, pp.1133–1165 (2018)
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Appendix A

Notation

Table A.1: Notation of symbols, variables and functions with their descriptions used in the
dissertation.

Notation Descriptions
k number of cluster in K-means clustering
i index of an feature instance, observation or sample
ci ith emotion class where i ≤ 6
y class label which has scalar value
y class label vector
ŷ predicted label
u, v coordinates of image pixels
p confidence probability
p(y) confidence probability score of being label y
j attributes of a particular feature or feature dimension
d distance score
a accuracy score
â average accuracy
sc summation the attribute values of cluster center
s cosine similarity score
t time step
µ mean
ω frequency of correct prediction
α blending parameter in morphing
γ momentum
e embedded facial representation
△ difference
f facial expressions features
T list of delaunay triangles
C covariance matrix
V feature matrix
U eigenvectors
c cluster center
I image
Ici image belong to ith emotion class

Continued on next page
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Table A.1 – continued from previous page
Notation Descriptions
z latent sample
x input or training sample
W weighted matrix
m the first moment of the gradient descent during Adam optimization
v velocity vector or second moment of the gradient descent used in Adam opti-

mization
θ learning weights
β1, β2 hyper-parameters of Adam optimizer
ε error during optimization by regression model
S set of Action Units (AUs)
X training set
E expectation or average
PX the input or real data distribution
PZ the latent distribution or Gaussian distribution
Pg the generated distribution
x̂ the sample from the distribution Px̂ uniformly sampling along the line between

PX and PZ

N(0,1) Gaussian distribution with zero mean and unit variance
ψ regression coefficient
G the generator
D the discriminator
L objective function or loss function
W Wasserstein distance function
A(x,ϕ) fine-tuned VGG16 face model that takes x as input and parameterized by the

weights ϕ
e standard exponential function
R randomization or random function
B facial feature detector provided by Dlib open source library
W (.) warping function after affine transformation
W Wasserstein distance function
E (.) function to find delaunay triangles
V (D,G) objective value function of G and D in Generative Adversarial Networks (GANs)
J
′

first order derivative of an objective function
g2 element-wise multiplication of partial gradient g
E(I) inference network to encode facial representation from input image I
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Appendix B

Additional Information

Table B.1: Relationship between Action Units (AUs) and Facial Muscle in Facial Action Coding
Systems (FACS) [5]

AU
Number

FACS Name Muscular Basis

1 Inner Brow Raiser Frontalis (Pars Medialis)
2 Outer Brow Raiser Frontalis (Pars Lateralis)
4 Brow Lowerer Depressor Glabellae; Depressor Supercilii; Corrugator

Supercilii
5 Upper Lip Raiser Levator Palpebrae Superioris; Superior Tarsal Muscle
6 Cheek Raiser Orbicularis Oculi (Pars Orbitalis)
7 Lip Tightener Orbicularis Oculi (Pars Palpebralis)
8 Lips Toward Each

Other
Orbicularis Oris

9 Nose Wrinkler Levator Labii Superioris Alaeque Nasi
10 Upper Lip Raiser Levator Labii superioris; Caput Infraorbitalis
11 Nasolabial Deepener Zygomaticus Minor
12 Lip Corner Puller Zygomaticus Major
13 Sharp Lip Puller Levator Anguli Oris (also known as Caninus)
14 Dimpler Buccinator
15 Lip Corner Depressor Depressor Anguli Oris (also known as Triangularis)
16 Lower Lip Depressor Depressor Labii Inferioris
17 Chin Raiser Mentalis
18 Lip Pucker Incisivii Labii Superioris; Incisivii Labii Inferioris
20 Lip Stretcher Risorius
21 Neck Tightener Platysma
22 Lip Funneler Orbicularis Oris
23 Lip Tightener Orbicularis Oris
24 Lip Pressor Orbicularis Oris
25 Lips Part Depressor Labii Inferioris; or Relaxation of Mentalis; or

Orbicularis Oris
26 Jaw Drop Masseter; Relaxed Temporalis; Internal Pterygoid
27 Mouth Stretch Pterygoids; Digastric
28 Lip Suck Orbicularis Oris
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B.1 Image Generation by EmoGANs, EmoGANs1 and

EmoGANs2 From Given Inputs For Each Mixture

of Emotions

(a) (b) (c) (d) (e)

Figure B.1: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj).
In this figure, ci indicates the ’anger’ emotion, and cj refers to the ’disgust’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj). Results from other classes can be found in the
Appendix section.
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(a) (b) (c) (d) (e)

Figure B.2: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj).
In this figure, ci indicates the ’anger’ emotion, and cj refers to the ’fear’ class. Columns (c)
and (d) are images synthesized by the generator of the corresponding models EmoGANs and
EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.3: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’anger’ emotion, and cj refers to the ’happiness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.4: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj).
In this figure, ci indicates the ’anger’ emotion, and cj refers to the ’sadness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).

129



(a) (b) (c) (d) (e)

Figure B.5: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’anger’ emotion, and cj refers to the ’surprise’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.6: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’disgust’ emotion, and cj refers to the ’fear’ class. Columns (c)
and (d) are images synthesized by the generator of the corresponding models EmoGANs and
EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.7: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’disgust’ emotion, and cj refers to the ’happiness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.8: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’disgust’ emotion, and cj refers to the ’sadness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.9: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’disgust’ emotion, and cj refers to the ’surprise’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.10: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’fear’ emotion, and cj refers to the ’happiness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.11: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’fear’ emotion, and cj refers to the ’sadness’ class. Columns (c)
and (d) are images synthesized by the generator of the corresponding models EmoGANs and
EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.12: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’fear’ emotion, and cj refers to the ’surprise’ class. Columns (c)
and (d) are images synthesized by the generator of the corresponding models EmoGANs and
EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.13: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’happiness’ emotion, and cj refers to the ’sadness’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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(a) (b) (c) (d) (e)

Figure B.14: Synthesized images by the trained generator of the respective proposed models.
Columns (a) and (b) refer to the image pair the generator takes such as Ici and Icj (ci ≠ cj). In
this figure, ci indicates the ’sadness’ emotion, and cj refers to the ’surprise’ class. Columns
(c) and (d) are images synthesized by the generator of the corresponding models EmoGANs
and EmoGANs1 with given input (Ici , Icj).
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B.2 Full Evaluation Results of Conditional Emotion Gen-

erative Adversarial Networks (EmoGANs3) For Each

Mixture of Emotions Class

(a) Basic emotion for
the ’anger ’ class

(b) Basic emotion for
the ’disgust ’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’anger ’ class

(f) Basic emotion for
the ’disgust ’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’anger ’ class

(j) Basic emotion for
the ’disgust ’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.15: Prototypical action units (AUs) for basic emotions (’anger ’ and ’disgust ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’anger ’ class

(b) Basic emotion for
the ’fear ’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’anger ’ class

(f) Basic emotion for
the ’fear ’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’anger ’ class

(j) Basic emotion for
the ’fear ’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.16: Prototypical action units (AUs) for basic emotions (’anger ’ and ’fear ’ in this
figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’anger ’ class

(b) Basic emotion for
the ’happiness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’anger ’ class

(f) Basic emotion for
the ’happiness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’anger ’ class

(j) Basic emotion for
the ’happiness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.17: Prototypical action units (AUs) for basic emotions (’anger ’ and ’happiness ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’anger ’ class

(b) Basic emotion for
the ’sadness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’anger ’ class

(f) Basic emotion for
the ’sadness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’anger ’ class

(j) Basic emotion for
the ’sadness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.18: Prototypical action units (AUs) for basic emotions (’anger ’ and ’sadness ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’anger ’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’anger ’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’anger ’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.19: Prototypical action units (AUs) for basic emotions (’anger ’ and ’surprise ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’disgust ’ class

(b) Basic emotion for
the ’fear ’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’disgust ’ class

(f) Basic emotion for
the ’fear ’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’disgust ’ class

(j) Basic emotion for
the ’fear ’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.20: Prototypical action units (AUs) for basic emotions (’disgust ’ and ’fear ’ in this
figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’disgust ’ class

(b) Basic emotion for
the ’happiness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’disgust ’ class

(f) Basic emotion for
the ’happiness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’disgust ’ class

(j) Basic emotion for
the ’happiness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.21: Prototypical action units (AUs) for basic emotions (’disgust ’ and ’happiness ’
in this figure) and a mixture of emotions among them. The circumference axis refers to the
AUs number and number of images with prototypical AUs in %. The upper row indicates the
result for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG
dataset. Morphing images are used during training.
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(a) Basic emotion for
the ’disgust ’ class

(b) Basic emotion for
the ’sadness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’disgust ’ class

(f) Basic emotion for
the ’sadness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’disgust ’ class

(j) Basic emotion for
the ’sadness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.22: Prototypical action units (AUs) for basic emotions (’disgust ’ and ’sadness ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’disgust ’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’disgust ’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’disgust ’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.23: Prototypical action units (AUs) for basic emotions (’disgust ’ and ’surprise ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’fear ’ class

(b) Basic emotion for
the ’happiness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’fear ’ class

(f) Basic emotion for
the ’happiness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’fear ’ class

(j) Basic emotion for
the ’happiness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.24: Prototypical action units (AUs) for basic emotions (’fear ’ and ’happiness ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’fear ’ class

(b) Basic emotion for
the ’sadness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’fear ’ class

(f) Basic emotion for
the ’sadness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’fear ’ class

(j) Basic emotion for
the ’sadness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.25: Prototypical action units (AUs) for basic emotions (’fear ’ and ’sadness ’ in this
figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’fear ’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’fear ’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’fear ’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.26: Prototypical action units (AUs) for basic emotions (’fear ’ and ’surprise ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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(a) Basic emotion for
the ’happiness’ class

(b) Basic emotion for
the ’sadness’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’happiness’ class

(f) Basic emotion for
the ’sadness’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’happiness’ class

(j) Basic emotion for
the ’sadness’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.27: Prototypical action units (AUs) for basic emotions (’happiness ’ and ’sadness ’
in this figure) and a mixture of emotions among them. The circumference axis refers to the
AUs number and number of images with prototypical AUs in %. The upper row indicates the
result for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG
dataset. Morphing images are used during training.
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(a) Basic emotion for
the ’happiness’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’happiness’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’happiness’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.28: Prototypical action units (AUs) for basic emotions (’happiness ’ and ’surprise ’
in this figure) and a mixture of emotions among them. The circumference axis refers to the
AUs number and number of images with prototypical AUs in %. The upper row indicates the
result for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG
dataset. Morphing images are used during training.
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(a) Basic emotion for
the ’sadness’ class

(b) Basic emotion for
the ’surprise’ class

(c) Mixed emotion
(training images)

(d) Mixed emotion
(generated images)

(e) Basic emotion for
the ’sadness’ class

(f) Basic emotion for
the ’surprise’ class

(g) Mixed emotion
(training images)

(h) Mixed emotion
(generated images)

(i) Basic emotion for
the ’sadness’ class

(j) Basic emotion for
the ’surprise’ class

(k) Mixed emotion
(training images)

(l) Mixed emotion
(generated images)

Figure B.29: Prototypical action units (AUs) for basic emotions (’sadness ’ and ’surprise ’ in
this figure) and a mixture of emotions among them. The circumference axis refers to the AUs
number and number of images with prototypical AUs in %. The upper row indicates the result
for the CK dataset. The middle row is for JAFFE and the lower row is for the MUG dataset.
Morphing images are used during training.
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B.3 Complete Experimental Results for Manipulation of

Facial Expressions Attributes in Latent Space

Figure B.30: An example output of facial expressions manipulation from ’anger ’ class to
’disgust ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.31: An example output of facial expressions manipulation from ’anger ’ class to
’fear ’ class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0 in
this experiment.
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Figure B.32: An example output of facial expressions manipulation from ’anger ’ class to
’happiness ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.33: An example output of facial expressions manipulation from ’anger ’ class to
’sadness ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.34: An example output of facial expressions manipulation from ’anger ’ class to
’surprise ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.35: An example output of facial expressions manipulation from ’disgust ’ class to
’fear ’ class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0 in
this experiment.
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Figure B.36: An example output of facial expressions manipulation from ’disgust ’ class to
’happiness ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.37: An example output of facial expressions manipulation from ’disgust ’ class to
’sadness ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.38: An example output of facial expressions manipulation from ’disgust ’ class to
’surprise ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.39: An example output of facial expressions manipulation from ’fear ’ class to ’happi-
ness ’ class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0 in
this experiment.
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Figure B.40: An example output of facial expressions manipulation from ’fear ’ class to ’sad-
ness ’ class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0 in
this experiment.
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Figure B.41: An example output of facial expressions manipulation from ’fear ’ class to ’sur-
prise ’ class. The initial and modified latent are mapped onto image space by trained DCGANs’
generator G for illustration purpose. λ can be any real number and is set from -2.0 to 2.0 in
this experiment.
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Figure B.42: An example output of facial expressions manipulation from ’happiness ’ class
to ’sadness ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.43: An example output of facial expressions manipulation from ’happiness ’ class
to ’surprise ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.
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Figure B.44: An example output of facial expressions manipulation from ’sadness ’ class to
’surprise ’ class. The initial and modified latent are mapped onto image space by trained
DCGANs’ generator G for illustration purpose. λ can be any real number and is set from -2.0
to 2.0 in this experiment.

169


