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Abstract

Formal verification has been extensively used to analyze various kinds of systems, such as
verifying cryptographic protocols with security properties and mutual exclusion protocols with
mutex properties. It is known as a unique approach in guaranteeing the absence of bugs (undesir-
able properties) in such systems. This approach formally describes the system under verification
as a mathematical model using a dedicated language. The obtained result is called the formal
specification of the system. Once the desired properties are specified with respect to the spec-
ification, formal verification that the system satisfies the properties can be conducted. There
are two complementary approaches in formal verification: model checking and theorem proving.
The former can be automatically conducted but cannot be used for systems that have an infinite
number of states (infinite-state systems) in general due to the state explosion problem. The
latter can deal with infinite-state systems but it requires human creativity, especially in lemma
conjecture.

This thesis presents a formal verification approach with the employment of an algebraic
specification language, namely CafeOBJ, equipped with an interactive theorem proving system,
applied to verify the requirement properties of systems. We propose an approach and implement
a supporting tool, namely IPSG, that can automatically generate formal proofs, the so-called
proof scores, for formal verification of invariant properties. The algebraic specification language
CafeOBJ is equipped with a rich specification syntax and many useful features for formal spec-
ifications of even complex systems, such as concurrent systems and distributed systems. It can
be used as a powerful interactive theorem proving system, where humans can write a proof score
to verify a desired property. However, writing proof scores is time- and effort-consuming, espe-
cially with complicated systems or specifications, and proof scores manually written are subject
to human errors because they are user-defined, while CafeOBJ does not check their correctness.
That is the reason motivating us to automate the proof score writing process and implement the
tool. To demonstrate the efficiency and the practicability of the tool, experiments with various
systems/protocols are conducted, ranging from a classical key distribution protocol to authenti-
cation protocols, from a real-time system to mutual exclusion protocols, and from a distributed
protocol to real cryptographic protocols currently in use.

In recent years, advanced research in the field of quantum computing and quantum informa-
tion theory has brought a credible threat to cryptosystems currently in use. The most popular
public-key (or asymmetric) primitives used today will no longer be secure under sufficient strong
quantum computers because they can be efficiently broken by Shor’s algorithm. That motivates
cryptographers and security researchers to construct a new class of cryptographic protocols that
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are resistant to quantum attacks, called post-quantum cryptographic protocols (PQCPs), and
verify the security of those PQCPs. Therefore, it would be very useful and meaningful to ap-
ply formal verification techniques to PQCP security analysis. This thesis presents two security
verification case studies with: (1) the Hybrid Post-Quantum Transport Layer Security Protocol
(PQ TLS) and (2) the Hybrid Post-Quantum Secure Shell Transport Layer Protocol (PQ SSH).
PQ TLS has been proposed by Amazon Web Services (AWS) as a quantum-resistant version
of the TLS 1.2 protocol, which is one of the most crucial and extensively used cryptographic
protocols. PQ SSH has been proposed as a quantum-resistant version of the SSH Transport
Layer protocol, where AWS is also one of the authors. We formally verify that the two protocols
enjoy the desired security properties claimed in their design specifications, such as session key
secrecy and forward secrecy, by using IPSG to generate their proof scores. The formal ver-
ifications are achieved under a threat model with the presence of an active attacker who can
control the network, with respect to an unbounded number of protocol participants and protocol
executions. The attacker can break the security of classical key exchange algorithms presuming
by utilizing the power of large quantum computers. Moreover, the threat model also assumes
the compromises of all secret types, such as ephemeral secret keys and long-term private keys of
honest principals.

In the PQ SSH verification case study, in addition to the formal verification of three proper-
ties, we point out a counterexample showing that the protocol does not enjoy the authentication
property, although what we found does not affect the confidentiality of session keys shared
between honest participants. We then propose to slightly revise the protocol by adding the
identifiers of the client and the server into the exchange hash. After revising the CafeOBJ
formal specification accordingly, we can formally verify that the improved protocol enjoys the
authentication property as well as the three other properties.

Keywords: formal verification, theorem proving, proof scores, post-quantum cryptographic
protocols, proof score generation, algebraic language, CafeOBJ, Maude, IPSG.
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Chapter 1

Introduction

Formal verification has been extensively used to analyze various kinds of systems, such as verify-
ing cryptographic protocols with security properties and mutual exclusion protocols with mutex
properties. It is known as a unique approach in guaranteeing the absence of bugs (undesirable
properties) in such systems. Making software systems trustworthy is indeed a crucial issue;
otherwise, serious accidents could happen. We can name several serious accidents in history
caused by flaws in software systems. For instance, on August 14, 2003, wide parts of the United
States and Ontario province of Canada were blackouts because of a system failure of FirstEn-
ergy, the company providing electricity in those regions. This accident led to a series of other
interrupted services, such as telephone networks, water supply, and flight landing. Estimates of
the total costs of that blackout accident in the United States ranged between 4 billion and 10
billion US dollars [63]. Tracking the blackout bug, a race condition bug in the software system of
FirstEnergy was found as the original cause of the accident12. Another example is the ARIANE
5 space failure on June 4, 1996. The rocket veered off its flight path 37 seconds after launch and
broke up right after that, resulting in a loss of about 370 million US dollars. A technical board
was established to investigate the cause and concluded that the failure was due to inadequate
protection against integer overflow errors in the flight control software [92]:

This loss of information was due to specification and design errors in the software
of the inertial reference system. The extensive reviews and tests carried out during
the Ariane 5 Development Programme did not include adequate analysis and testing
of the inertial reference system or of the complete flight control system, which could
have detected the potential failure.

Program testing, although has long been used as one of the most successful approaches to
bug detection in systems, is not applicable in this case to prove systems contain no bugs. That

1https://web.archive.org/web/20110610163731/http://www.securityfocus.com/news/8412
2https://web.archive.org/web/20110610224942/http://www.securityfocus.com/news/8016
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statement was proclaimed by Dikjtra [54]:

Program testing can be used to show the presence of bugs, but never to show their
absence!

Formal verification, on the other hand, provides formal reasoning based on mathematics to
show that a system acts as its design, i.e., all the desired properties are satisfied and there are no
undesirable ones (bugs). The ability of formal verification in guaranteeing the absence of bugs
in software systems and the importance of making software systems trustworthy are the general
motivations of this study, which applies formal verification to enhance the reliability of software
systems. Formal verification describes the system under verification as a mathematical model
using a dedicated language. The obtained result is called the formal specification of the system.
Once the desired properties are specified with respect to the specification, formal verification that
the system satisfies the properties can be conducted. There are two complementary approaches
in formal verification: model checking and theorem proving. The former can be automatically
conducted but is inapplicable to systems that have an infinite number of states (infinite-state
systems) in general. The latter can deal with infinite-state systems but it generally requires
human creativity, especially in lemma conjecture.

The general objective of this study is a formal verification technique that can be used to verify
the required properties of a large class of systems with less human effort. To this end, we propose
an approach and implement a supporting tool that can automatically generate formal proofs for
the formal verification of invariant properties. The verification process employs an algebraic
specification language. The efficiency and practicability of the tool are demonstrated through
various systems/protocols, such as classical security protocols, mutual exclusion protocols, a
real-time system, and real cryptographic protocols currently in use. However, in the thesis, we
choose to report in detail the application of the tool in the verifications of a class of systems,
namely post-quantum cryptographic protocols, with their security properties. Post-quantum
cryptographic protocols refer to those replacements of classical cryptographic protocols as an
early precaution against future attacks from quantum computers. This has been motivated by
the fact that the public-key cryptosystems used today will be no longer secure under large-scale
quantum computers, which are promisingly becoming available in the near future. Two formal
verification case studies are presented in detail with (1) the Hybrid Post-Quantum Transport
Layer Security Protocol [36] and (2) the Hybrid Post-Quantum Secure Shell Transport Layer
Protocol [84].

2



1.1 Formal verification

Model checking and theorem proving are two complementary approaches in formal verification.
In the model checking approach, a model checker exhaustedly travels the whole state space to
check whether or not a desired property is satisfied [13]. The verification approach is automatic.
Moreover, in the case when the property does not hold, the model checker returns a counterex-
ample, pointing out a system state in which the property is violated, which is helpful to find the
corresponding bug. However, the exhaustive searching makes the approach in general cannot
be used when the number of states in the state space is very huge or even infinite. The issue
is known as the state space explosion problem [42]. Even though many techniques have been
proposed to mitigate the problem in the past few decades, such as abstraction [40, 39, 78] and
partial order reduction [41], the problem remains a challenge, restricting the scope of model
checking application.

On the other hand, theorem proving can deal with infinite-state systems. In the theorem
proving approach, the system under verification is modeled as a logical set of definitions. A
property then can be verified if the theorem prover can derive the theorem specifying the prop-
erty from those logical definitions. Theorem provers are classified into two types: automated
theorem provers (ATPs) and interactive theorem provers (ITPs), or also called proof assistants.
Mathematical theorems can be automatically proved by computer programs with ATPs, while
ITPs often require human-computer collaboration to derive formal proofs. Some well-known
ATPs are Vampire [89], SPASS [148], and E [132], while various ITPs can be listed, such as
Isabelle/HOL [108], Coq [23], PVS [130], and ACL2 [85]. The applications of ATPs are re-
stricted to only small classes of systems and theorems, in most cases, the involvement of human
interactions is necessary as stated in [77]:

Interactive proof is likely to be the only way to formalize most non-trivial theorems
in mathematics or computer system correctness.

Theorem proving is suitable for complex systems, such as concurrent and distributed systems,
where the nondeterministic behaviors make the number of states in the state space generated
very huge. However, in most non-trivial proofs, human creativity is required, especially in con-
jecturing some auxiliary lemmas to complete the proof of the main theorem. Another drawback
is that when the theorem prover cannot derive the proof, counterexamples are not automatically
produced as in model checking. In that case, either the property does not hold or the human
conducting the verification is not intelligent enough, for example, some more lemmas are needed.

Lamport has classified properties of an execution of a program, particularly concurrent and
distributed programs, into two types: safety properties and liveness properties [91]. A safety
property asserts that something bad does not happen during execution, while a liveness property

3
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Figure 1.1: Formal verification by writing proof scores

asserts that something good eventually happens. It has been proved that all properties can be
constructed using safety properties and liveness properties [7]. This thesis focuses on invariant
properties, the most important class of safety properties. It is typically necessary to use invariant
properties to prove safety properties or even liveness properties. An invariant property is a safety
property but only takes the current state into its definition [13].

CafeOBJ [52] is an advanced algebraic language for writing formal specifications for a wide
variety of systems and can be used as a powerful interactive theorem proving system. CafeOBJ
is equipped with a rich specification syntax and many useful features for formal specifications
of even complex systems, such as concurrent systems and distributed systems. Such features
include module expressions, modules instantiated parameters using views, and the flexible mix-
fix syntax, among others. It supports order-sorted equational logic with various equational
theory attributes such as associative, commutativity, identity, and idempotency. CafeOBJ can
be used as a powerful interactive theorem proving system, where humans are supposed to write a
formal proof, a so-called proof score [116, 109], for an invariant property under verification. That
proof score is executable, and the formal verification is done by executing it with CafeOBJ. The
approach is visualized in Figure 1.1. The usefulness of the approach essentially comes from the
power of the CafeOBJ language in specifying systems and its flexibility in writing proof scores.
Using the approach, various formal verification case studies have been conducted analyzing
many systems/protocols, such as the Mondex payment system [87], the iKP electronic payment
protocol [111, 112], the OMA license choice algorithm [146], the Transport Layer Security 1.0
protocol [110], and the electronic commerce protocols [115].

The flexibility of writing proof scores, however, comes at a cost, that is the approach is
subject to human errors. Proof scores consist of many user-defined open-close fragments (also
called proof fragments), where each of them has one reduction command, which generally gives a
term to be reduced to true or false. If each reduction command reduces to true as expected, which
is supposed to be checked by human users, the formal verification concerned is done. Therefore,
human users are responsible for the correctness of the proof. In particular, human users need to
make sure that the proof covers all base/induction cases, the proof uses proper case splittings,
and each open-close fragment uses proper premises of implications and/or lemmas. However,
because an open-close fragment is user-defined, human users can, for example, unintentionally
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add an extra equation, incorrectly write some equations, or overlook some open-close fragments.
That is the reason why proof scores are said to be prone to human errors. Moreover, the task of
writing proof scores is really time- and effort-consuming, especially with complicated systems or
specifications. During the verification, there are many trivial sub-cases that are tedious to write
the proof again and again.

This thesis proposes an approach to automation of the proof score writing process for for-
mal verifications of invariant properties. A supporting tool, called IPSG (Invariant Proof Score
Generator), is implemented, which can automatically generate the proof score of a given invari-
ant property. By using the tool, human users only need to focus on solving non-trivial sub-cases,
which normally require additional lemmas, but trivial sub-cases are already discharged by the
tool. To demonstrate the efficiency and the practicability of the tool, we conduct experiments
with various systems/protocols, ranging from a classical key distribution protocol to authenti-
cation protocols, from a real-time system to mutual exclusion protocols, and from a distributed
protocol to real cryptographic protocols currently in use.

1.2 Post-quantum cryptographic protocols

Cryptographic protocols and security analysis

Cryptographic protocols are designed to provide information security, such as confidentiality
and integrity, enabling two parties to securely communicate over insecure networks, such as
the Internet. In our daily life, cryptographic protocols are used to protect bank transactions,
online credit card payment systems, and radio-frequency identification, among others. They are
crucial, but it is extremely hard to design a secure cryptographic protocol and it is challenging
to detect flaws lurking in the design [58]. A very famous example illustrating this difficulty is the
Needham-Schroeder public key authentication protocol (NSPK) [107]. Even though its authors,
namely Needham and Schroeder, are security experts, the protocol was uncovered against an
attack by Lowe [98] 17 years after its publication. The same thing has been happening with
other cryptographic protocols, even very important ones used in practice, such as the Secure
Sockets Layer protocol (SSL) and its successor Transport Layer Security protocol (TLS) [104].
Program testing unfortunately cannot be used to detect security flaws in cryptographic protocols
because that technique lacks the presence of malicious participants. Therefore, techniques and
supporting tools for the security analysis of cryptographic protocols are very crucial.

There are two complementary approaches to the security analysis of cryptographic protocols:

• Computational approach: This approach treats messages as bit strings and cryptographic
primitives as functions from bit strings to bit strings. The attacker is an arbitrary proba-
bilistic polynomial-time Turing machine. Computational security verification was studied
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since the early 1980s [75, 150]. A security proof in the computational approach requires
a definition of secure cryptographic construction (of a primitive or a protocol) and some
assumptions about the computationally infeasible problem. The proof can be regarded
as a mathematical reduction, such that it makes sure that the only chance to violate the
security of such a construction is to solve the infeasible problem.

• Symbolic approach: This approach models messages as terms and cryptographic primitives
as functions from terms to terms. A term is either a constant, a variable, or an applica-
tion of a function symbol to a list of argument terms. Symbolic security verification was
originally proposed by Dolev and Yao [56]. Since then, the threat model proposed in that
work has been widely used as a de facto standard to model the attacker’s capabilities, and
it is often called the Dolev-Yao model. The Dolev-Yao attacker can completely control the
network, including intercepting, deleting, and modifying messages in the network, gleaning
information from such messages, and synthesizing information to build messages to send
to others. Those capabilities are specified by manipulating terms representing messages
exchanged in the network. Symbolic verification typically assumes perfect cryptography,
treating cryptographic primitives as black boxes. Equational theory may be used to specify
algebraic properties of cryptographic primitives.

The computational approach is widely used by cryptographers as a standard way to verify
the security of cryptographic protocols, while formal method researchers typically prefer the
symbolic approach. Blanchet [31, 30] has surveyed various techniques and supporting tools for
security protocol verification in both symbolic and computational approaches. In comparison
between the two approaches, a computational proof gives a tighter security guarantee because it
takes probability and complexity into account. However, a computational proof is complicated in
general and not easy to understand for non-experts in cryptography. Flawed proofs often happen
and it is not so easy to check the correctness of a proof. Although it is possible to mechanize
security proofs in the computational approach to some extent with some supporting tools, such as
CryptoVerif [29] and EasyCrypt [17, 16], the techniques are still not mature and the proofs are not
fully automated. On the other hand, a symbolic verification is easier to understand, computer-
verified, and suitable for automation. Since the 1990s, symbolic verification of cryptographic
protocols has been an attractive research direction in the applied formal method field. Based
on different theory foundations, such as applied pi calculus [1], multiset rewriting [103], and
narrowing & rewriting logic [68], many tools supporting for symbolic verification of cryptographic
protocols have been developed, such as Syther [47], Tamarin [101], ProVerif [28], DEEPSEC [38],
and Maude-NPA [64]. Some tools support an unbounded number of executions of the protocol.
Whereas, some others limit the number of executions of the protocol and/or the size of messages
in order to make the state space finite so that the standard model checking techniques can be
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applied. DEEPSEC, for instance, is classified into this class.

Post-quantum cryptographic protocols

In recent years, advanced research in the field of quantum computing and quantum information
theory has brought a credible threat to cryptosystems currently in use. The most popular public-
key (or asymmetric) primitives used today will become insecure under sufficient strong quantum
computers because they can be efficiently broken by Shor’s algorithm [135]. The security of
these primitives relies on one of the following three hard mathematical problems:

• The integer factorization problem: given a composite number K, find two integers M

and N such that M · N = K. When the composite number K is sufficiently large, no
efficient integer factorization algorithm on classical computers is known. RSA public-key
encryption and RSA digital signature [128] were invented based on the assumed difficulty
of this problem.

• The discrete logarithm problem: given a multiplicative cyclic group G with the base b and
an element a in the group, find the discrete logarithm x to the base b of a in the group
G, i.e., bx = a with respect to G. With some selected group, no efficient algorithm on
classical computers is known to solve the problem. Based on the presumed difficulty of the
discrete logarithm problem, some cryptographic protocols are built, such as Diffie-Hellman
key exchange protocol [53] and ElGamal public-key encryption scheme [74].

• The elliptic curve discrete logarithm problem: given an elliptic curve E and two points P

and Q in E, find a number k such that kP = Q. This is a special case of the discrete
logarithm problem. With some specific curves, no efficient algorithm to solve the problem
on classical computers is known. Elliptic Curve Diffie-Hellman protocol [14] bases its
security on the difficulty of this problem.

Unfortunately, although these three problems are hard under conventional computers, they
can be efficiently solved by sufficiently large quantum computers. On the other hand, symmetric
primitives can be said to be secure against quantum attackers. The most well-known quan-
tum algorithm, namely Grover’s algorithm [76], can reduce the complexity to break symmetric
primitives to some extent, however, doubling the key size can efficiently ignore these attacks.
For example, we can say that AES-256 would be as hard to break by a quantum computer as
AES-128 is by a classical computer. Although right now there is no quantum computer with
enough power to break the real cryptosystems currently used, with a huge research and devel-
opment investment recently from many tech giants, such as Intel, IBM, and Google, large-scale
quantum computers are promisingly becoming available in the near future. Besides, attackers
can record the encrypted information from now and later decrypt it when large-scale quantum
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computers become available, which is known as the harvest now and decrypt later attack. These
are motivations for the early construction of cryptographic algorithms that are resistant to quan-
tum attackers, the so-called post-quantum cryptographic algorithms, and security verification of
them. Historically, it took some decades to deploy the modern public-key cryptosystems today.
Therefore, it is crucial to start research on post-quantum cryptographic protocols now.

This thesis presents two security verification case studies with two protocols: (1) the Hybrid
Post-Quantum Transport Layer Security Protocol [36] (PQ TLS) and (2) the Hybrid Post-
Quantum Secure Shell Transport Layer Protocol [84] (PQ SSH). PQ TLS has been proposed
by Amazon Web Services (AWS) as a quantum-resistant version of the TLS 1.2 protocol [123],
which is one of the most crucial and extensively used cryptographic protocols. PQ SSH has
been proposed as a quantum-resistant version of the SSH Transport Layer protocol [96], where
AWS is also one of the authors. For each protocol, we conduct a formal analysis of the security
properties claimed in its design specifications.

1.3 Contributions

In summary, in this study, we automate the proof score writing process with a supporting tool
to formally verify the desired properties of systems. The tool is demonstrated to be applicable
to various systems/protocols. In this thesis, we mainly focus on reporting the application of the
tool in the verifications of post-quantum cryptographic protocols with security properties.

For the automation of the proof score writing process, our contributions are summarized as
follows:

• An approach to the generation of proof scores for formal verifications of invariant proper-
ties.

• A supporting tool called IPSG. Given a CafeOBJ formal specification and an invariant
property list, the tool can automatically produce the proof scores of those properties. By
using the tool, not only human efforts are saved, but also potential human errors lurking
in the proof scores can be avoided.

• To demonstrate the efficiency and the practicability of the tool, experiments are conducted
with various systems/protocols, including classical security protocols, mutual exclusion
protocols, a real-time system, a distributed protocol, and especially, a cryptographic pro-
tocol currently used in practice. For each verification experiment, we confirm the correct-
ness of the generated proof scores by using the CafeOBJ proof assistant CiMPA and proof
generator CiMPG [126].
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• A lemma conjecture technique called Lemma Weakening, which can make the verification
attempt of a protocol converge that otherwise does not seem to converge in a reasonable
amount of time.

The source code of the tool is publicly available on the webpage3 and the verifications of the
protocols and systems are publicly available on the webpage4.

With the PQ TLS verification case study, our contributions are summarized as follows:

• A comprehensive symbolic model of the protocol that is formally specified in CafeOBJ as
two separate specifications: one for the case when client authentication is not requested
and the other for the case when it does request client authentication. Each specifica-
tion faithfully captures what is specified in the Internet Engineering Task Force (IETF)
Draft [36] and covers both the full and abbreviated handshake modes.

• We formally prove that the protocol enjoys three desired security properties including
session key secrecy, forward secrecy, and authentication, which are either claimed in the
IETF Draft [36], or inherited from the original TLS 1.2 [123], but have not yet been formally
proved. The formal verification is achieved under a threat model with the presence of an
active attacker who can control the network. The attacker can break the classical key
exchange algorithms, i.e., ECDH, by utilizing the power of large quantum computers.
Moreover, the threat model also assumes the compromises of (1) symmetric handshake
keys, (2) ECDHE secret keys, (3) PQ KEM secret keys, and (4) long-term private keys of
honest principals. The verification is done by using IPSG to generate proof scores with
respect to an unbounded number of protocol executions.

The protocol formal specification with detailed clarification, the proof scores, and the input
requirements as well as the detailed guideline on how to generate the proof scores again are
publicly available on the webpage5.

With the PQ SSH verification case study, our contributions are summarized as follows:

• A symbolic model of the protocol that is formally specified in CafeOBJ as a specification,
faithfully captures what is specified in the IETF Draft [84].

• Formal verifications that the protocol enjoys three desired security properties including
(1) session key secrecy, (2) forward secrecy, and (3) session identifier uniqueness, where
IPSG is used to generate the proof scores. The verifications are achieved with respect to
an unbounded number of protocol participants and session executions.

3https://github.com/duongtd23/IPSG-tool
4https://github.com/duongtd23/IPSG-TLS
5https://github.com/duongtd23/PQTLS
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• We consider another property, namely authentication, which we find a counterexample
against the property. We propose to slightly revise the protocol by adding the identifiers
of the client and the server into the exchange hash. We revise the CafeOBJ formal speci-
fication accordingly so that we can formally verify that the improved protocol enjoys the
authentication property as well as (1), (2), and (3).

• For the threat model, more general transitions are used (than those of the PQ TLS case
study) to specify the intruder’s capabilities of learning information and forging messages,
making sure that the intruder is given the full capability of forging an arbitrary message
synthesized from the information that has been learned. Moreover, efforts can be saved
when specifying other cryptographic protocols since those transitions may be reused.

The protocol formal specification, the proof scores, and other related materials used in this case
study are available on the webpage6.

1.4 Thesis organization

In this first chapter, we have briefly introduced formal verification with two major approaches,
cryptographic protocols with two major security analysis approaches, and the necessitate of
constructing post-quantum cryptographic protocols as well as verifying their security. The re-
maining of this thesis consists of six chapters, and each chapter is summarized as follows:

• Chapter 2 gives some preliminaries, which are background requirements to understand
the main content of this thesis, including the simultaneous induction proof method, the
syntax of the CafeOBJ language in a nutshell, and the proof score writing approach to
formal verification.

• Chapter 3 presents how to automatically generate proof scores and the implementation
of the tool IPSG. To demonstrate the efficiency and practicability of the tool, experiments
with various systems/protocols are conducted and their experimental results are reported
in this chapter.

• Chapter 4 presents how to model and specify the PQ TLS protocol in CafeOBJ and the
formal verification of the three desired properties of the protocol. IPSG is employed to
automatically produce the proof scores to complete the verification and its experimental
results are reported.

• Chapter 5 presents the CafeOBJ formal specification of the PQ SSH protocol and the
verification that the protocol enjoys the three desired properties with the employment of

6https://github.com/duongtd23/PQSSH
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IPSG. This chapter also shows the counterexample that the protocol does not enjoy the
authentication property, the improved protocol we proposed, and the formal verifications
of the improved version.

• Chapter 6 discusses some work closely related to ours, particularly some techniques and
existing tools supporting formal verification with CafeOBJ, several state-of-the-art tools
supporting cryptographic protocol analysis, and some case studies on security verification
of post-quantum cryptographic protocols.

• Chapter 7 summarizes our main contributions and mentions several lines of our future
work.
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Chapter 2

Preliminaries

This chapter first gives the definition of OTS and then describes the simultaneous induction
proof method and the syntax of the CafeOBJ language in a nutshell. After that, with a simple
protocol serving as a running example, we describe how to use CafeOBJ to specify the protocol
and how to write proof scores based on the simultaneous induction proof method to formally
verify a desired property of the protocol.

2.1 Observational Transition System (OTS)

We suppose that there exists a universal state space denoted by Υ, where each data type used
in OTSs is provided. The data types include Bool for Boolean values. A data type is denoted
by D, possibly with a subscript, such as Do1 and Do.

Definition 1. An OTS S is a tuple ⟨O, I, T ⟩ in which:

• O: A finite set of observers. Each observer o : ΥDo1 . . . Dom → Do takes one state and
m (m ≥ 0) data values and returns one data value. The equivalence relation (υ1 =S υ2) be-
tween two states υ1 and υ2 is defined as (∀o ∈ O)(∀x1 ∈ Do1) . . . (∀xm ∈ Dom).(o(υ1, x1, . . . , xm) =

o(υ2, x1, . . . , xm)).

• I: The set of initial states, where I ⊆ Υ.

• T : A finite set of transitions. Each transition t : ΥDt1 . . . Dtn → Υ takes one state and
n (n ≥ 0) data values, and returns one state. Each transition t has the effective condition
c-t : ΥDt1 . . . Dtn → Bool. If c-t(υ, x1, . . . , xn) does not hold, then t(υ, x1, . . . , xn) =S υ

for x1 ∈ Dt1, . . . , xn ∈ Dtn.

A pair (υ, υ′) of states is called a transition instance if there exists t ∈ T such that υ′ =S

t(υ, x1, . . . , xn) for some xi ∈ Dti for i = 1, . . . , n. Such a pair (υ, υ′) may be denoted by υ →S υ′

(or υ → υ′) to emphasize that υ directly goes to υ′ by one step.
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Each state that is reachable from an initial state through transitions is called a reachable
state.

Definition 2. Given an OTS S, reachable states with respect to (wrt) S are inductively defined:

• Each υ ∈ I is reachable wrt S.

• For each t ∈ T and each xk ∈ Dtk for k = 1, . . . , n, t(υ, x1, . . . , xn) is reachable wrt S if
υ ∈ Υ is reachable wrt S.

Let RS be the set of all reachable states wrt S.

Predicates whose types are ΥD1 . . . Dn → Bool are called state predicates. A state predicate
that holds in all reachable states is called an invariant. For example, predicate ρ : ΥD1 . . . Dn →
Bool, where (∀υ ∈ RS)(∀d1 ∈ D1) . . . (∀dn ∈ Dn). ρ(υ, d1, . . . , dn), is an invariant wrt S.

2.2 Simultaneous induction proof

This section briefly describes the simultaneous induction proof method (for more detail, readers
are referred to [109, 116]). This proof method is used for proving invariant properties. Let
us consider a predicate p1 : Υ Dp1 . . . Dpl → Bool, in which we want to prove (∀x1 ∈
Dp1) . . . (∀xl ∈ Dpl) p1(υ, x1, . . . , xl) is an invariant wrt an OTS S. To make the formula become
easier to see, let us use D1 to denote Dp1 . . . Dpl and x1 to denote x1, . . . , xl. This is also applied
with other notations in the rest of this thesis as well, i.e., a bold upper-case letter denotes a list
of data types while a bold lower-case letter represents a list of variables. Consequently, what is
needed to prove is (∀υ ∈ RS)(∀x1 ∈ D1) p1(υ,x1). We prove that by using induction on the
argument of states of p1. For the base case, we need to prove the following:

(∀υ ∈ IS)(∀x1 ∈ D1) p1(υ,x1) (2.1)

Recall that IS denotes the set of initial states of S. (2.1) can typically be proved by deduction
(or if we use a theorem prover, it can be straightforwardly resolved by the prover).

For each induction case t associated with the transition t : Υ Dt → Υ, what we need to prove
is as follows:

(∀υ ∈ RS)

((∀x1 ∈ D1) p1(υ,x1)⇒ (∀yt ∈ Dt)(∀x1 ∈ D1) p1(t(υ,yt),x1))
(2.2)

It suffices to prove p1(t(υ,y′
t),x

′
1) for an arbitrary state υ and arbitrary values y′

t and x′
1 of Dt and

D1, respectively, under the induction hypotheses (∀x1 ∈ D1)p1(υ,x1). The induction hypothesis
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instance p1(υ,x
′
1) is often used for that proof. We can also use other instances, such p1(υ,x2)

and p1(υ,x3). It is, however, typically impossible to prove (2.2) standalone for non-trivial p1.
Instead, we often prove the conjunction of p1 and k − 1 other predicates, let’s say p2, . . . , pk,
where pi : Υ Di → Bool for i = 2, . . . , k. That is, we prove (∀x1 ∈ D1)p1(υ,x1) ∧ . . . ∧ (∀xk ∈
Dk)pk(υ,xk) is invariant wrt S. Subsequently, for the base case, now we need to prove the
following:

(∀υ ∈ IS)(∀x1 ∈ D1) . . . (∀xk ∈ Dk)

(p1(υ,x1) ∧ . . . ∧ pk(υ,xk))
(2.3)

To prove (2.3), we can prove each conjunct pi(υ,xi) separately. As mentioned before, it can
typically be proved by deduction for each i = 1, . . . , k.

For the induction case associated with the transition t, (2.2) is now changed to:

(∀υ ∈ RS)

((∀x1 ∈ D1) p1(υ,x1) ∧ . . . ∧ (∀xk ∈ Dk) pk(υ,xk)

⇒(∀yt ∈ Dt) ((∀x1 ∈ D1) p1(t(υ,yt),x1) ∧ . . . ∧ (∀xk ∈ Dk) pk(t(υ,yt),xk)))

(2.4)

It suffices to prove each conjunct pi(t(υ,y
′
t),x

′
i) of the conclusion part for an arbitrary state

υ and arbitrary values y′
t and x′

i of Dt and Di, respectively, under the induction hypotheses
(∀x1 ∈ D1) p1(υ,x1) ∧ . . . ∧ (∀xk ∈ Dk) pk(υ,xk). Typically, it suffices to use only pi(υ,x

′
i) as

the induction hypothesis instance:

pi(υ,x
′
i)⇒ pi(t(υ,y

′
t),x

′
i) (2.5)

Sometimes, it is necessary to use some more instances, for example:

pj(υ,xj)⇒ pi(υ,x
′
i)⇒ pi(t(υ,y

′
t),x

′
i) (2.6)

Note that (2.6) is equivalent to pj(υ,xj) ∧ pi(υ,x
′
i) ⇒ pi(t(υ,y

′
t),x

′
i) (as usual, ∧ has higher

precedence than ⇒). In this case, we can say that the proof of pi uses pj as a lemma. From
what has been presented, although k predicates depend on each other, we can prove them
compositionally by using induction for each predicate, and in the proof of pi, pj can be used
to strengthen the induction hypothesis. Therefore, the proof method is called simultaneous
induction. It may also be called compositional proofs. An interesting point of the simultaneous
induction method is that even if pj is used to strengthen the induction hypothesis in the proof of
pi and vice versa, i.e., pi is used to strengthen the induction hypothesis in the proof of pj, there
is no problem. In the next sections, we briefly give the CafeOBJ syntax and then present how
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to use CafeOBJ to write proof scores for k invariants individually based on this proof method.

2.3 CafeOBJ in a nutshell

CafeOBJ is an advanced language for writing formal specifications for a wide variety of systems
and protocols. It is equipped with a powerful specification syntax and many useful features for
both writing formal specifications and specifying required properties of even complex systems,
for example, module expressions, modules instantiated parameters using views, and the flexible
mix-fix syntax. CafeOBJ supports order-sorted equational logic and can be used as a powerful
interactive theorem proving system. This section gives the syntax of CafeOBJ, in a nutshell, to
help readers understand the rest of this thesis. For the complete syntax, readers are referred to
its user manual [105] and the book [52].

Module

Modules are the most basic building block of CafeOBJ. A module has the syntax: module M {

module_elements }, where M is the module name. module can be abbreviated as just mod, and
it can be alternatively declared as: (1) mod* denoting that the module has loose semantics, or
(2) mod! denoting that the module has tight semantics. A loose semantic module denotes a class
of models, which means many different implementations for the sorts and operators declared in
the module satisfy the given axioms [11]. Whereas, a tight semantic module denotes a unique
model up to isomorphism. module_elements may contain the following declarations:

• declarations of importations of previously defined modules. There are four modes of im-
portation: protecting, extending, using, and including. For example, pr(M ′) denotes the
module M ′ is imported under the protecting mode (pr is the abbreviation of protecting).

• sort declarations: [ s1 s2 . . . sn ], where s1, s2, . . . , sn are sort names.

• declarations of ordering sorts relation: [ s1 < s2 ] denotes that s1 is a subsort of s2.

• operator declarations: op f : s1 . . . sn → s {at1 . . . atk} or ops f1 f2 : s1 . . . sn → s

{at1 . . . atk} where s is also a sort name, and at1, . . . , atk are equational theory attributes,
such as assoc (associativity) and comm (commutativity).

• variable declarations: var V : s or vars V V2 . . . : s, where V, V2, . . . are variable names.
Note that by convention, variable names in CafeOBJ should be in upper case.

• unconditional equation declarations: eq t1 = t2 ., where t1 and t2 are terms.

15



• conditional equation declarations: ceq t1 = t2 if cond ., where cond is a Boolean term,
which may be a conjunction of equations, such as c1 = c2.

The following is a simple example of a module definition, which specifies natural numbers
only with the addition:

mod SIMPLE-NAT {

[ Zero NzNat < Nat ]

op 0 : -> Zero

op s : Nat -> NzNat

op _+_ : Nat Nat -> Nat

vars N N’ : Nat

eq 0 + N = N .

eq s(N) + N’ = s(N + N’) .

}

0 of the sort Zero represents zero, and it is called a constant since the operator has empty arity.
The two sorts NzNat and Nat represent non-zero numbers and natural numbers (either zero, or
non-zero), respectively. Zero and NzNat are subsorts of Nat, meaning that any terms of the sort
Zero and the sort NzNat also belong to the sort Nat. s is the successor function of natural numbers,
taking as input a natural number and returning as output a non-zero natural number (successor
of n is n + 1). 0 and s are declared in the standard operator declaration, i.e., prefix syntax,
while _+_ is introduced as an infix operator, thanks to the flexible mid-fix syntax of CafeOBJ.
Two underscores in _+_ represent two natural numbers that are inputs of the addition operator
(e.g., we write 0 + s(0)). The last two equations define the semantics of the operators.

Open-close environment

An open-close environment in CafeOBJ provides a temporary copy of a given module, which is
particularly useful to do theorem proving. An open-close environment has the following syntax:
open M .

...

close

This is also called the open-close fragment. New operators, equations, etc. may be introduced
inside the fragment (...). This fragment creates a new temporary module by copying the module
M and adding into the new module all the operators, equations, etc. newly introduced. We
can use this environment, for example, to check that s(0) + s(s(0)) is truly s(s(s(0))) as our
expectation (namely, 1 + 2 is 3) with respect to the definition of the module SIMPLE-NAT:

open SIMPLE-NAT .

red s(0) + s(s(0)) .

close
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loop { “Remainder Section”
rs : enqueue(queue, i);

ws : repeat until top(queue) = i;

“Critical Section”
cs : dequeue(queue); }

Figure 2.1: Qlock protocol

where red (standing for reduce) reduces the given term to its normal form. Feeding the open-close
fragment into CafeOBJ, CafeOBJ returns the result as follows:

%SIMPLE-NAT> -- reduce in %SIMPLE-NAT : (s(0) + s(s(0))):Nat

(s(s(s(0)))):NzNat

s(s(s(0))) is returned as our expectation. This open-close environment is more helpful than
what has just been illustrated, for example, when doing theorem proving based on induction,
an open-close fragment can be used to solve the base case and several other ones can be used to
solve the induction cases, where each of them requires a different declaration of the induction
hypothesis instance used. The next section illustrates how to use open-close environments to
write a formal proof in CafeOBJ.

2.4 Formal verification by writing proof scores

Based on the simultaneous induction proof method, this section illustrates how to use CafeOBJ
to write a computer-verified proof, a so-called proof score [116, 109], for a given property.

Definition 3. Given a CafeOBJ equation specifying a theorem, the proof score in CafeOBJ
proving the theorem is a collection of open-close fragments that describe the proof tree leaves of
the equation and are discharged by reduction.

If the proof score is executed with CafeOBJ in which each term in each open-close fragment
reduces as expected, such as to true, then the theorem undertaking is proved. To illustrate
the proof score verification approach and the correspondence between the proof tree leaves
and CafeOBJ open-close fragments, let us consider a mutual exclusion protocol, namely Qlock,
which has the pseudo-code as in Figure 2.1. In the figure, rs, ws, and cs stand for Remainder
Section, Waiting Section, and Critical Section, respectively. queue is an atomic queue of process
identifiers (IDs) shared by all processes. Initially, queue is empty and each process i is located
at rs. If i wants to enter cs, it first enqueues its ID i into queue and moves to ws. While the top
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of queue is not i, it needs to wait there. When i leaves cs, it dequeues queue and goes back to
rs.

With this protocol, we want to formally verify that it enjoys the mutual exclusion property.

Definition 4. Mutual exclusion property is:
There always exists at most one process located at the Critical Section.

To verify that property, we first formally specify Qlock in CafeOBJ as an OTS SQlock. We
introduce sort Sys representing RSQlock

and sort Queue representing the set of process ID queues.
We use two observers pc and queue to observe the location of each process and the queue:

op pc : Sys Pid -> Label

op queue : Sys -> Queue

where Pid is the sort of process IDs, and Label is the sort of locations such as rs, ws, and cs.
Given a state s (of the sort Sys) and process p (of the sort Pid), pc(s,p) denotes the location
at which p is located in state s and queue(s) is the queue in state s. Observers and CafeOBJ
operators that express observers are interchangeably used in this thesis.

We use three transitions that are expressed as CafeOBJ operators want, try, and exit. An
arbitrary initial state of SQlock is represented by constant init. They are declared as follows:

op init : -> Sys {constr}

op want : Sys Pid -> Sys {constr}

op try : Sys Pid -> Sys {constr}

op exit : Sys Pid -> Sys {constr}

where the attribute constr states that the four operators are constructors of Sys. The four
operators together with process IDs construct RSQlock

. Let I and J be CafeOBJ variables of the
sort Pid. init is defined in terms of equations as follows:

eq pc(init,I) = rs .

eq queue(init) = empty .

The equations state that each process I is located at rs and queue is empty in the initial state
init. We show here how to define the transition try, which models the movement of a process
from ws to cs, while the transitions want and exit are defined in a similar way.

ceq pc(try(S,I),J) = (if I = J then cs else pc(S,J) fi) if c-try(S,I) .

eq queue(try(S,I)) = queue(S) .

ceq try(S,I) = S if not c-try(S,I) .

eq c-try(S,I) = (pc(S,I) = ws and top(queue(S)) = I) .

where c-try is the effective condition of the transition; if c then a else b fi is a if the condition
c holds and is b if c does not. The equations say that if process I is located at ws and the top
of queue is I in the state denoted by S, then I moves to cs in the successor state of S, which is
denoted by try(S,I); otherwise, nothing changes.
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Once the formal specification of Qlock is complete, we can turn to formally verify the mu-
tual exclusion property. This property is formally specified in CafeOBJ as the following state
predicate inv1:

op inv1 : Sys Pid Pid -> Bool

eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs) implies (I = J) .

It says that if two processes I and J both are located at cs, they must be identical. We prove that
QLOCK ⊢ (∀S ∈ Sys)(∀I,J ∈ Pid) inv1(S,I,J) = true, namely, inv1(S,I,J) = true can be derived
from QLOCK, the CafeOBJ module contains the complete specification of the protocol (we may
use inv1(S,I,J) as an abbreviation of inv1(S,I,J) = true). In other words, we prove (∀i, j ∈
Pid) inv1(υ, i, j) is an invariant wrt SQlock (we may also shortly call that inv1 is an invariant).
The predicate is proved by (simultaneous) induction on the argument of the sort Sys. There are
one base case and three induction cases. For the base case, we need to prove: QLOCK ⊢ (∀I,J ∈
Pid) inv1(init,I,J). By applying the theorem of constants, the free variables I and J can be
replaced by two CafeOBJ fresh constants i and j, and then the proof of the base case is done
by the following open-close fragment, which is referred to as fragment (init):

open QLOCK .

ops i j : -> Pid .

red inv1(init,i,j) .

close

The fresh constants i and j denote arbitrary process identifiers. CafeOBJ returns true for
the open-close fragment, meaning that the base case is discharged. The open-close fragment
describes a leaf of the proof tree of QLOCK ⊢ (∀S ∈ Sys)(∀I,J ∈ Pid) inv1(S,I,J), which is partially
depicted in Figure 2.2. What we need to prove is written in the tree root. By using induction on
variable S, an induction case and three induction cases are produced, where the two induction
cases associated with the transitions want and exit are omitted in the figure. For the base case
(the leftmost branch from the root), after applying the theorem of constants, inv1(init,i,j)

can be derived from the specification denoted by (QLOCK, ops i j : -> Pid), that is, an extended
module of QLOCK by adding two fresh constants i and j. Thus, the open-close fragment (init)
shown above exactly describes the leftmost leaf of the proof tree. The proof score of inv1 consists
of a collection of open-close fragments, where each one describes a leaf in the proof tree.

Turning to the three induction cases, for the induction case associated with the transition
try, we need to prove: QLOCK ⊢ (∀I,J ∈ Pid) inv1(try(s,k),I,J) under the induction hypotheses
(∀I, J ∈ Pid) inv1(s,I,J), where s and k are fresh constants of Sys and Pid, respectively. Again,
the free variables I and J are replaced by CafeOBJ fresh constants i and j (step “By theorem of
constants” in Figure 2.2). After that, the most typical induction hypothesis instance inv1(s,i,j)

is used, and the proof attempt of this induction case is written as the following open-close
fragment:
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QLOCK ⊢ (∀S ∈ Sys)(∀I,J ∈ Pid) inv1(S,I,J)

QLOCK

⊢ (∀I,J ∈ Pid) inv1(init,I,J)

QLOCK, ops i j : -> Pid

⊢ inv1(init,i,j)

QLOCK, op s : -> Sys, op k : -> Pid

⊢ (∀I,J ∈ Pid) inv1(try(s,k),I,J)

QLOCK, op s : -> Sys, ops i j k : -> Pid

⊢ inv1(try(s,k),i,j)

QLOCK, op s : -> Sys, ops i j k : -> Pid,
eq inv1(s,i,j) = true

⊢ inv1(try(s,k),i,j)

QLOCK, op s : -> Sys, ops i j k : -> Pid,
eq inv1(s,i,j) = true,
eq pc(s,k) = ws

⊢ inv1(try(s,k),i,j)

. . . . . .

QLOCK, op s : -> Sys, ops i j k : -> Pid,
eq inv1(s,i,j) = true,
eq (pc(s,k) = ws) = false

⊢ inv1(try(s,k),i,j)

. . .
By induction on S

(init)
By theorem of constants

By use of induction hypothesis

By case splitting (try-2)

By case splitting

Figure 2.2: Proof tree of inv1

open QLOCK .

op s : -> Sys . ops i j k : -> Pid .

eq inv1(s,i,j) = true .

red inv1(try(s,k),i,j) .

close

Or alternatively, we can declare the induction hypothesis instance as the premise of the red

command:

open QLOCK .

op s : -> Sys . ops i j k : -> Pid .

red inv1(s,i,j) implies inv1(try(s,k),i,j) .

close

Let us use the name (try) to refer to this open-close fragment. However, feeding this open-close
fragment into CafeOBJ, the returned result is neither true nor false, but instead a complicated
term as follows:

(((pc(try(s,k),j) = cs) and ((i = j) and (pc(try(s,k),i) = cs))) xor

(((pc(try(s,k),i) = cs) and ...)))

where ... stands for terms that are omitted. The term cannot be reduced because the module
lacks information on the processes k, i, and j. Case splitting is used to overcome this situation.
The case is first split into two sub-cases: (try-1) pc(s,k) = ws and (try-2) (pc(s,k) = ws) =

false. The open-close fragment (try-2) for the latter is as follows:
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open QLOCK .

op s : -> Sys . ops i j k : -> Pid .

eq (pc(s,k) = ws) = false .

red inv1(s,i,j) implies inv1(try(s,k),i,j) .

close

The equation characterizes the sub-case. Feeding the fragment into CafeOBJ, CafeOBJ returns
true, indicating that the sub-case is discharged. The open-close fragment corresponds to the
leaf tagged with (try-2) in the proof tree in Figure 2.2. For the sub-case (try-1), as indicated
in Figure 2.2, it is necessary to conduct case splitting several more times. Let us consider a
sub-case of (try-1), which has the following open-close fragment:

open QLOCK .

op s : -> Sys . ops i j k : -> Pid .

eq pc(s,k) = ws .

eq top(queue(s)) = k .

eq i = k .

eq (j = k) = false .

eq pc(s,j) = cs .

red inv1(s,i,j) implies inv1(try(s,k),i,j) .

close

false is returned for the open-close fragment. It means that we need to conjecture a lemma to
discharge the sub-case. Provided that inv1 is truly invariant wrt SQlock as our expectation, what
can be deduced is that states denoted by the fresh constant s must be unreachable wrt SQlock.
There should exist a contradiction among the equations characterizing the sub-case. From our
comprehension of the protocol, we strongly believe that if a process is located at the Critical
Section, the process must be the top of queue. Consequently, it turns out that the following
three equations have a contradiction:

eq top(queue(s)) = k .

eq (j = k) = false .

eq pc(s,j) = cs .

because process j is located at cs, but the top the queue is k, which is different from j. Based
on that deduction, a lemma candidate, namely inv2, is conjectured as follows:

op inv2 : Sys Pid -> Bool

eq inv2(S,I) = (pc(S,I) = cs implies top(queue(S)) = I) .

It says that when process I is located at the Critical Section, it must be the top of queue. Then,
in the open-close fragment above, we can use inv2 as a lemma to discharge the sub-case as
follows:

red inv2(s,j) implies inv1(s,i,j) implies inv1(try(s,k),i,j) .
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CafeOBJ now returns true for the open-close fragment. The formal verification now changes to
prove the conjunction of inv1 and inv2. In a similar way, we can complete the proof score of
inv1, which is a collection of open-close fragments like the three ones shown above. After that,
to complete the formal verification, we need to write a proof score to prove that inv2 is also an
invariant wrt SQlock. In the proof of inv2, inv1 is used as a lemma. The proof of inv1 uses inv2

as a lemma and vice versa, however, as proved in Section 2.2, there is no circular error in the
verification.
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Chapter 3

IPSG: Invariant Proof Score Generator

In this chapter, we propose an approach and implement a tool (called IPSG) that can auto-
matically generate proof scores for formal invariant property verification. This is motivated by
the fact that writing proof scores by hand are prone to human errors and time-consuming even
though the approach is powerful and flexible, which has been demonstrated through many case
studies.

3.1 The drawbacks of writing proof score

CafeOBJ [52], as mentioned in Sections 2.3 and 2.4, is a powerful language for writing for-
mal specifications of systems and for verifying system requirements by writing proof scores.
In the proof score approach [116, 118, 109], OTSs are used as transition systems to model a
system, and then proof scores are written essentially by applying simultaneous induction on a
state variable, which has been presented through a running example in Section 2.4. The useful-
ness of the approach essentially comes from the power of the CafeOBJ language in specifying
systems and its flexibility in writing proof scores. Using the approach, various formal verifica-
tion case studies have been conducted analyzing many systems/protocols, such as the Mondex
payment system [87], the iKP electronic payment protocol [111, 112], the OMA license choice
algorithm [146], the Transport Layer Security 1.0 protocol [110], and the electronic commerce
protocols [115].

The flexibility of writing proof scores, however, comes at a cost, that is the approach is
subject to human errors. Proof scores consist of many user-defined open-close fragments (also
called proof fragments), where each of them has one reduction command, which generally gives
a term to be reduced to true or false. If each reduction command reduces to true as expected,
which is supposed to be checked by human users, the formal verification concerned is done.
Therefore, human users are responsible for the correctness of the proof. In particular, human
users need to make sure that the proof covers all base/induction cases, the proof uses proper
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Figure 3.1: Formal verification by using IPSG

case splittings, and each open-close fragment uses proper induction hypotheses and/or lemmas.
However, because an open-close fragment is user-defined, human users can, for example, add
an extra equation, incorrectly write some equations, or overlook some open-close fragments or
sub-cases. That is the reason why proof scores are said to be prone to human errors. Moreover,
the task of writing proof scores is really time- and effort-consuming, especially with complicated
systems or specifications. During the verification, there are many trivial sub-cases that are
tedious to write the proof again and again.

To address the above-mentioned drawbacks, we propose an approach and implement a tool,
called IPSG (Invariant Proof Score Generator), that can automatically generate proof scores for
formal invariant property verification. By using the tool, human users only need to focus on
solving non-trivial sub-cases, which typically require additional lemmas, but trivial sub-cases
are already discharged by the tool. The formal verification approach by using IPSG is visualized
in Figure 3.1. To demonstrate the efficiency and the practicability of the tool, we conduct
experiments with various systems/protocols, ranging from a classical key distribution protocol
to authentication protocols, from a cloud synchronization protocol to mutual exclusion protocols,
and from a distributed protocol to real cryptographic protocols currently in use. The source code
of the tool is publicly available on the webpage1, while the specifications, the proof scores, and
other related materials of all experiments are available on the webpage2.

3.2 CafeInMaude and Maude meta-level functionalities

The tool is implemented in Maude [43, 62]. It uses CafeInMaude [127], which is the second
major implementation of CafeOBJ in the Maude environment. Providing a formal specification
written in CafeOBJ, CafeInMaude makes it possible to convert the specification into the Maude
environment. After that, we can utilize Maude functionalities, such as meta-level representa-
tions of modules and terms, to parse the specification and the properties under verification.
Such functionalities are not available in CafeOBJ, which is the reason why we need to employ
CafeInMaude and Maude. Figure 3.2 visualizes how CafeInMaude and Maude are used in the

1https://github.com/duongtd23/IPSG-tool
2https://github.com/duongtd23/IPSG-TLS
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Figure 3.2: The uses of CafeInMaude and Maude

implementation of IPSG to generate proof scores. Before going into the tool implementation,
this section first briefly describes some Maude meta-level functionalities.

Maude is a declarative language and high-performance tool that focuses on simplicity, ex-
pressiveness, and performance to support the formal specification and analysis of concurrent
programs/systems in rewriting logic. Rewriting logic is a reflective logic, which means that
the logic can be faithfully interpreted in itself [43]. This section borrows some descriptions
from Chapter 14 of the book [43] to briefly describe reflection and metaprogramming in Maude.
Rewriting logic is reflective in a precise mathematical way, namely, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent in U any finitely presented
rewrite theory M (including U itself) as a term M, any terms t, t′ in M as terms t, t′, and
any pair (M, t) as a term ⟨M, t⟩, in such a way that the rewrite t → t′ with respect to M are
equivalence to the rewrite ⟨M, t⟩ → ⟨M, t′⟩ with respect to U :

M ⊢ t→ t′ ⇐⇒ U ⊢ ⟨M, t⟩ → ⟨M, t′⟩

Because U is representable in itself, we can achieve a “reflective tower” with an arbitrary number
of levels of reflection:

M ⊢ t→ t′ ⇐⇒ U ⊢ ⟨M, t⟩ → ⟨M, t′⟩ ⇐⇒ U ⊢ ⟨U , ⟨M, t⟩⟩ → ⟨U , ⟨M, t′⟩⟩ . . .

In this chain of equivalences we say that the first rewriting computation takes place at level 0,
the second at level 1, and so on. In Maude, the key functionality of the universal theory U has
been efficiently implemented in the functional module META-LEVEL. In this module:

• any Maude term can be reified as an element of the data type Term in the module META-TERM.

• any Maude module can be reified as a term of the data type Module in the module
META-MODULE.
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• two functions upModule and upTerm allow for moving modules and terms, respectively, from
object level to meta-level.

• function downTerm allows for moving terms from meta-level to object level.

• reducing a term to canonical form using Maude reduce command is meta represented by
the built-in function metaReduce, whose signature is as follows:

op metaReduce : Module Term ~> ResultPair [special (...)] .

The function takes as inputs the metarepresentation of a moduleM and the metarepresen-
tation of a term t, and returns as output the metarepresentation of the canonical form of
t by using the equations inM, together with the metarepresentation of its corresponding
sort or kind, paired in a term of sort ResultPair. Note that this function is partial (denoted
by ~>) because it is possible that the term does not make sense in the module.

• rewrite a term using the command rewrite is meta represented by the built-in function
metaRewrite, whose signature is as follows:

op metaRewrite : Module Term Bound ~> ResultPair [special (...)] .

The function takes as inputs the metarepresentation of a moduleM, i.e.,M, the metarep-
resentation of a term t, i.e., t, and a bound b, which can be either a natural number or
the constant unbounded. When b is a number, metaRewrite(M, t, b) returns as output the
metarepresentation of the term obtained from t after at most b rewriting steps by using
both equations and rewrite rules inM. When b is unbounded, there is no limitation about
the number of rewriting steps.

Metaprogramming is a programming technique of writing computer programs that manipu-
late other programs or even themself. A metaprogram can read another program or even itself,
analyze and modify that program and return the modified program. Therefore, metaprogram-
ming is very powerful and helpful to manipulate programs on the fly. The ability of a program-
ming language to be its own metalanguage is called reflection. Maude is a high-performance
reflective language that supports human users to write metaprograms. In Maude, a term in the
object level has the corresponding representation in the meta-level and vice versa. We can write
metaprograms in Maude simply by importing the module META-LEVEL, and then we can use the
built-in functions mentioned above, such as metaReduce and metaRewrite.
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3.3 Invariant Proof Score Generator

The key idea to automatically generate proof scores is briefly described as follows: When we feed
an open-close fragment into CafeOBJ and it returns a term t, which is neither true nor false,
we will select a sub-term of t, say t′, and split the current open-close fragment (or case) into
two sub-cases: one when t′ holds, and the other when it does not. For each sub-case, the same
procedure is applied. We start running the procedure with a list of initial open-close fragments,
where all of them do not contain any equation. Some of them (typically only one) are for base
cases, such as the open-close fragment (init) shown in Section 2.4, while the remains are for
induction cases, such as the open-close fragment (try) shown in Section 2.4. Eventually, we get
the proof that consists of a list of open-close fragments in which the reduction commands return
either true or false. If true is returned, the current case is discharged and we do not need to
do anymore. If false is returned, the tool tried to find a lemma from a collection of all possible
lemmas provided by human users that can be used to discharge the current case. We must
emphasize that this is a concise and abstract description of how to automate the proof score
writing process. To make the idea work and to implement an efficient tool supporting that idea,
many other detailed procedures and algorithms are required, such as how should we choose the
sub-term t′ and how to find a lemma that can be used. We present them in the next sections.

3.3.1 Proof score generation algorithm

The algorithm for generating proof scores is described in Algorithm 1. The algorithm takes as
inputs (1) CafeOBJ module M describing an OTS, (2) a state predicate inv : ΥD1 . . . Dn →
Bool, in which we want to generate a proof score (i.e., a collection of open-close fragments)
to prove that (∀d1 ∈ D1) . . . (∀dn ∈ Dn) inv(υ, d1, . . . , dn) is an invariant of the OTS, (3) the
argument of inv on which induction is used Υ, and (4) a lemma list lms, which might be used
in the proof of inv. The algorithm starts by extracting CafeOBJ operators that represent initial
states (inits) and transitions (ts) from the module M and the argument on which induction
is used Υ, i.e., the argument of states. Returning to our verification example with the Qlock
protocol presented in Section 2.4, inits would be the single operator init, while ts would be the
set of want, try, and exit:

op init : -> Sys {constr}

op want : Sys Pid -> Sys {constr}

op try : Sys Pid -> Sys {constr}

op exit : Sys Pid -> Sys {constr}

In this case, Υ is Sys. The moduleM in the object level is converted to its metarepresentation
by using the Maude built-in function upModule. Then, the algorithm extracts fromM’s metarep-
resentation the operators attached with the constr attribute whose coarity is Υ, among them,
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the ones with empty arity form inits, while the ones with Sys in their arity form ts. Hereinafter,
let us use initial states (respectively, transitions) and CafeOBJ operators representing them in-
terchangeably in this thesis even though precisely, multiple instances of the former are typically
represented by one instance of the latter.

The algorithm essentially consists of two parts: one for generating the proof score of base
cases (lines 5-8), and the other for generating the proof score of induction cases (lines 9-13).
With the former, the algorithm enumerates each state i in the set of the initial states extracted
from the specification (line 5), while with the latter, the algorithm enumerates each transition
υ → υ′ in the set of the transitions extracted (line 9). The variable re is initially set to empty (by
the function empty-list()). Then, it is respectively appended the proof score of the base cases &
the induction cases (by the function append()). Finally, it is returned as the output. Note that
re receives as value a list of open-close fragments and append() is the concatenation function of
lists. The function empty-prsc() at line 6 and line 10 initializes an open-close fragment, which
does not contain any equation, but consists of only fresh constant (operator) declarations and
a reduce command in which the most typical induction hypothesis instance is used if it is an
induction case. Mapping to the Qlock verification example presented in Section 2.4, p at line 6
would receive the open-close fragments (init) as a value:

open QLOCK .

ops i j : -> Pid .

red inv1(init,i,j) .

close

while p at line 10 would receive the open-close fragments (try) as a value:

open QLOCK .

op s : -> Sys . ops i j k : -> Pid .

red inv1(s,i,j) implies inv1(try(s,k),i,j) .

close

The two parts share the same function GenPrsc, which takes as inputs the moduleM, the
current open-close fragment p, and the target term te that we try to reduce in p, and returns
as output a list of open-close fragments. Mapping to the Qlock verification example, te is the
argument of the red command in each of the two open-close fragments shown above, i.e., the
metarepresentation of the term inv1(init,i,j) if we want to generate the proof of the base case,
and the metarepresentation of the term inv1(s,i,j) implies inv1(try(s,k),i,j) if the induction
case try is taken into account.

In line 16, the function tries to reduce the target term wrt the current open-close fragment,
thanks to the Maude built-in function metaReduce. Note that the notation M||p denotes the
metarepresentation of the module in which M and all operators & equations in the open-close
fragment p are available. The obtained result (t) falls into one of the following three cases:
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1. The result is true. The current case of the proof is discharged, and then the algorithm
simply returns the current open-close fragment.

2. The result is false. This is a non-trivial case of the proof. To discharge this case, we need
to find a possible lemma that can be used for this case. The function HandleFalseCase

is invoked, which tries to find and use some suitable lemma from the lemma list provided
by human users. We leave the description of this function in Section 3.3.2.

3. The result is neither true nor false, i.e., a composite term. The function ChooseATermCS

extracts and chooses one sub-term in the result to apply case splitting (line 22). Which
sub-term is chosen may affect the efficiency of the whole algorithm. In writing proof
scores, if we choose a good order of equations used for case splitting, then the number
of fragments will be reasonably compact. In contrast, if the order is not good, the size
of the proof scores will become larger. The function ChooseATermCS implements several
techniques for selecting an appropriate sub-term to conduct case splitting at this step. For
example, if the result contains a sub-term if c then a else b endif , the sub-terms inside
the condition c will be given the highest priority for choosing.

The function then recursively calls itself twice in which the second parameters are updated
by adding two equations, i.e., the selected sub-term equals true and it equals false, into
itself. The obtained results of the two recursive calls are then concatenated together and
returned as output (line 23). Returning to the Qlock verification example in the previous
chapter, when the induction case try is taken into account, firstly, the Boolean term
pc(s,k) = ws is used to split the case into two sub-cases: (try-1) it is true and (try-2)
it is false. In the sub-case (try-2), the eq (pc(s,k) = ws) = false . is inserted into the
associated open-close fragment.

3.3.2 Finding and using suitable lemmas

For each sub-case in the induction cases such that false is returned for the reduction command in
the associated open-close fragment, IPSG tries to find and use a suitable lemma from the lemma
list provided by human users. The function HandleFalseCase is in charge of performing this
task, and its algorithm is shown in Algorithm 2.

The function first collects all terms and sub-terms (sts) that exist in the current open-close
fragment (line 2). For each possible lemma, it tries to find a list of terms that can be used as
parameters to instantiate the lemma. Precisely, for each lemma lm : Υ D̄1 . . . D̄m → Bool, it
tries to find a term list d̄1, . . . , d̄m whose each entry belongs to sts and the term list can be
instantiated as parameters to lm (i.e., d̄1 ∈ D̄1, . . . , d̄m ∈ D̄m). The function then tries to reduce
the instantiated lemma lm(υ, d̄1, . . . , d̄m) in the context of the open-close fragment p (line 5). If
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the obtained result is false (line 6), we can use this lemma to strengthen the induction hypothesis
to discharge the current proof (because when lm(υ, d̄1, . . . , d̄m) is false, then “lm(υ, d̄1, . . . , d̄m)

implies te” will be true). If that is the case, the states (denoted by υ) are not reachable wrt
the OTS concerned, and then we do not need to consider the states provided that the lemma is
invariant wrt the OTS (which we also need to prove). Note that we suppose that the lemma lm

is also proved by simultaneous induction on the same state variable as of inv. Therefore, the
state parameter υ is fixed when instantiating each possible lemma.

If the function finishes enumerating every lemma but cannot find any suitable lemma that
can be used to discharge the current proof, it simply returns the original open-close fragment.
This case is marked as a “false case” and left for human users to resolve manually.

3.3.3 Handling conditional equations

This section presents in detail the algorithm for handling conditional equations in the input
CafeOBJ specification. Recall from Section 2.4, when we feed the open-close fragment (try) into
CafeOBJ, the following result is returned:

(((pc(try(s,k),j) = cs) and ((i = j) and (pc(try(s,k),i) = cs))) xor

(((pc(try(s,k),i) = cs) and ...)))

If we select, for example, the sub-term pc(try(s,k),j) = cs for conducting case splitting, it is
not correct because the sub-term contains the successor state of s, i.e., try(s,k). The term
pc(try(s,k),j) could be simplified more depending on whether the value of c-try(s,k) is true
or false. Indeed, the specification defines the change of the value observed by the observer pc

through the transition try by the following two conditional equations:

ceq pc(try(S,I),J) = (if I = J then cs else pc(S,J) fi) if c-try(S,I) .

ceq try(S,I) = S if not c-try(S,I) .

There exists a pattern match σ1 = {S 7→ s, I 7→ k, J 7→ j} between the left handside of the first
equation and the term pc(try(s,k),j), and a pattern match σ2 = {S 7→ s, I 7→ k} between the
left handside of the second equation and the term try(s,k). Then, pc(try(s,k),j) is rewritten
to if k = j then cs else pc(s,j) fi based on the first equation if c-try(s,k) is true, and it is
rewritten to pc(s,j) based on the second equation if c-try(s,k) is false. In both cases, try(s,k)
no longer appears.

However, CafeOBJ (or CafeInMaude) cannot rewrite the term pc(try(s,k),j) based on the
two equations above in the context of the open-close fragment (try). The reason is that the value
of c-try(s,k) cannot be determined whether it is true or false in the context of the open-close
fragment. It can only be reduced to pc(s,k) = ws and top(queue(s)) = k, which is neither true
nor false, based on the equation defining c-try. Recall from Section 2.4, the open-close fragment
(try) does not contain any equation, thus, it lacks information on s and k, making the term
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unable to be rewritten more.
The IPSG implementation addresses this problem, making it possible to handle conditional

equations. Inside the function ChooseATermCS(M, p, t) (at line 22 of Algorithm 1), after ex-
tracting a sub-term from t, say tcs′, the procedure is as follows. If there exists a conditional
equation, say ceq l = r if c, in the module M such that there exists pattern match σ between
l and tcs′, and σ(c) is reduced to term c′, which is neither true nor false, in the module denoted
byM||p (i.e., the extended module ofM where all operators & equations in the p are available),
then a sub-term of c′ is returned as output. Otherwise, if there does not exist such an equation
or such a pattern match, tcs′ is returned as output. The algorithm can deal with not only con-
ditional equations dedicated to specifying transition effective conditions but also all conditional
equations in general.

3.3.4 Case splitting is used first before reduction

The practicability and efficiency of the tool should be evaluated with large CafeOBJ specifica-
tions and complex properties. The property under verification may cause the tool to lose its
performance in terms of running time if the property consists of many logical connectives, such
as and & or. This is due to the time taken to reduce the property to canonical form, i.e., the time
taken by the function metaReduce, probably becomes very long. Because this function is invoked
many times during the algorithm execution, it should not be expensive; otherwise, the running
time of the tool will become very long. To avoid that situation, at the beginning of the function
GenPrsc in Algorithm 1, if the total number of logical connectives exceeds a specific threshold,
case splitting is used first before the function metaReduce at line 16 is invoked to reduce the term
te. The technique, therefore, is called “case splitting is used first before reduction.” By using
case splitting in advance, the property will be rewritten to a term with fewer logical connectives
in each sub-case so that metaReduce can reduce the term in a reasonable amount of time.

Algorithm 3 shows the precise algorithm dealing with this problem, in which the function
GenPrsc is revised. We define: (1) a flag, namely csF irst, to enable/disable the use of this
technique, and (2) a threshold of logical connectives, namely maxLogConn, such that if the
number of logical connectives in the given term exceeds maxLogConn, case splitting is used;
otherwise, metaReduce is invoked as usual. If the flag is enabled, the algorithm first tries to rewrite
the induction hypothesis inv(υ, d1, . . . , dn) within only one rewriting step (line 3), thanks to the
Maude built-in function metaRewrite. Because only one rewriting step is allowed, this invocation
is much less expensive than the one with the function metaReduce, which tries to reduce the given
term to canonical form. If the number of logical connectives in the obtained result t is greater
than the threshold (line 4), then the algorithm extracts and selects a sub-term from t by the
function ChooseATermCS to apply case splitting. The procedure is recursively recalled until
the number of logical connectives in t is smaller than the threshold. The technique, however,
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will make the number of open-close fragments in the generated proof score increase, which is
understandable because case splitting is extensively used.

In the experiment with the MCS protocol which will be shown later on (Section 3.4), by
choosing a suitable value of maxLogConn, this technique can reduce by nearly 65% the time
taken by IPSG in generating the proof scores. What value should be chosen for the threshold is
a subtle job. Generally speaking, a small value should be chosen so that the cost of invoking the
function metaReduce would not be expensive. However, choosing a too-small value may backfire
because a huge number of open-close fragments are generated, making the handling time in
total longer than our expectation. We will soon come back to discuss this problem in the section
describing the MCS experiment.

3.3.5 Other features

In addition to what has been described above, we mention in this section two other helpful
features that are implemented in the tool.

Keywords only and exclude

The tool provides two useful keywords: only and exclude. The former supports generating
proof for only induction cases specified. Whereas, the latter supports generating proof excluding
some induction cases specified. They are helpful when conducting formal verification with a
large CafeOBJ specification. In practice, when conducting formal verification, we start with
a property that we aim to verify that it is actually invariant. The proof attempt produced
by the tool typically contains several fragments/cases where false is returned for the reduction
command. To discharge those cases, we first need to conjecture certain auxiliary lemmas and
then rerun the tool again with the uses of these conjectured lemmas. However, it is redundant
to ask the tool to generate the proof score for all induction cases again. Instead, it is enough to
re-tackle only the induction cases in which false is returned for some open-close fragments. For
this purpose, we can use the keyword only to specify such induction cases or use the keyword
exclude to ignore other induction cases.

Use more than one lemma

The algorithm for finding and using suitable lemmas presented in Section 3.3.2 does not men-
tion the case in which we need to use more than one lemma to discharge a sub-case. Even
though, the tool does support such a situation. The tool has a configuration variable, namely
depthTryUseLm, which is set by human users and receives 0 as its default value. For each
open-close fragment in which false is returned, depthTryUseLm specifies how many times the
tool tries to split the case and find lemmas that can be used to discharge the sub-cases. For
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Table 3.1: Experimental results

Name No.
lines

No.
properties

No.
lemmas

Time
(s)

No. open-close
fragments

TAS 36 1 1 0.02 22
Qlock 78 1 1 0.05 32
ASDS-RT 141 1 3 0.2 38
Cloud 95 1 6 0.24 132
IFF 176 1 1 0.17 50
A-Anderson 103 1 8 0.48 190
SDS 358 1 8 2.69 403
Suzuki-Kasami 386 1 5 4.18 374
MCS 288 1 7 110.66 665
NSLPK† 441 3 20 27.05 1534
TLS 1.2† 1296 3 17 497.4 2537
†: Invariants and lemmas are split into some smaller groups and IPSG is asked to generate

proof scores for each group one by one.

instance, when depthTryUseLm is 1, for each case in which false is returned, if IPSG finishes
running Algorithm 2 but cannot find a suitable lemma to discharge the proof, the tool will try to
split the current case into two sub-cases by some equation/term such that one of the sub-cases
can be discharged by some lemma. For the other sub-case, the tool executes Algorithm 2 once
again to find some other lemma to discharge the sub-case.

From our experience, for most cases, depthTryUseLm’s default value, i.e., 0, is enough to
complete a formal verification problem when suitable additional lemmas are provided. However,
with the Suzuki-Kasami protocol, which will be discussed later in Section 3.4, to generate proof
scores in which all fragments are reduced to true, we need to set depthTryUseLm’s value to 1.

3.4 Experimental evaluations

The complete implementation of IPSG consists of about 3250 lines of Maude code, excluding the
source code of CafeInMaude. Let us illustrate how to use the tool to generate the proof scores
to verify the mutual exclusion property of the Qlock protocol described in Section 2.4. Recall
that the mutual exclusion property is proved with one additional lemma. The following script
is used to generate the proof scores:

load qlock.cafe .

ipsgopen QLOCK .

inv inv1(S:Sys, P:Pid, Q:Pid) .

inv inv2(S:Sys, P:Pid) .

generate inv1(S:Sys, P:Pid, Q:Pid) induction on S:Sys .

generate inv2(S:Sys, P:Pid) induction on S:Sys .
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Property
(in CafeOBJ) IPSG Proof attempt #1 Lemma(s) #1

IPSGProof attempt #2. . .IPSGFinal proof

Figure 3.3: A typical verification process

close

set-output proof-scores.cafe .

:save-proof .

Suppose that the CafeOBJ specification of the protocol is saved in the file named qlock.cafe,
the load command reads the file and loads the specification. The two inv commands declare the
two invariants to be used as lemmas during the simultaneous induction proof. The two generate

commands ask the tool to generate the proof scores of the two invariants, where simultaneous
induction is used on the argument S:Sys. The generated proof scores are then saved to the file
proof-scores.cafe by the last two commands. IPSG successfully generates the proof scores after
about 50 milliseconds on a MacBook Pro i7 2.3 GHz, 32 GB memory. The result consists of 32
open-close fragments in total.

To demonstrate the practicability of IPSG, in addition to Qlock, we have conducted experi-
ments with ten other systems/protocols including mutual exclusion protocols, classical security
protocol, a real-time system, and a real cryptographic protocol widely used every day. The
experimental results of those protocols are reported in Table 3.1. The experiments have been
conducted on a MacBook Pro i7 2.3 GHz with 32 GB of memory. In the table, the second column
shows the number of lines of CafeOBJ code of each formal specification (including invariants
and lemmas specification). The third and fourth columns indicate the number of properties to
be verified and the number of lemmas needed to complete the verification of each protocol (the
lemmas are also invariant). The time taken by IPSG to generate the proof scores is shown in
the fifth column (in seconds). The last column indicates the number of open-close fragments in
the generated proof scores of each experiment.

There are two things that we need to emphasize. Firstly, all auxiliary lemmas are supposed to
be provided by human users, in which IPSG provides good hints for conjecturing them. Secondly,
even if auxiliary lemmas are missing, IPSG will still produce a list of open-close fragments, but
there may exist some fragments in which false is returned (they will be indicated by the tool).
If all auxiliary lemmas are provided in advance, we can simply ask IPSG to generate the proof
scores for the property under verification as well as those lemmas. In fact, however, such auxiliary
lemmas are not available in advance when we try to verify a given property. In that case, the
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verification process normally follows Figure 3.3. The user conducting verification first uses IPSG
to generate the proof score attempt of the property. In that generated proof, there may exist
some sub-cases in which false is returned, and then the user is supposed to conjecture some
additional lemma(s) to discharge the sub-cases. The property and the conjectured lemmas are
fed into IPSG, asking it to produce the proof again for the property as well as the proof attempt
for those new lemmas. The second proof attempt produced may require the user to conjecture
some other lemmas. The process is repeated until the final proof contains no sub-case in which
false is returned.

In summary, IPSG can automatically conduct case splitting such that for each sub-case
either true or false is returned. Each case in which true is returned has been discharged or
proved. For each case in which false is returned, users are supposed to conjecture lemma(s) to
discharge the case. Thus, IPSG allows human users to concentrate on the most difficult task
in interactive theorem proving, that is, lemma conjecture. Nevertheless, the case produced by
IPSG (in which false is returned) does provide good hints for conjecturing lemmas. By looking
into the equations characterizing the case, the users are supposed to find out a contradiction
among them and based on that contradiction conjecture a lemma. This has been illustrated in
Section 2.4, where we explained how to conjecture lemma inv2 to solve a sub-case of inv1 in the
verification of the Qlock protocol. By using the tool, more importantly, lots of manual effort can
be saved. For example, with the verification of the TLS 1.2 protocol, there are 20 proof scores,
where each of them consists of around 100-200 open-close fragments, around several thousand
lines of CafeOBJ code. It would cost lots of time and effort to manually write such proof scores.

In the following, we give a brief description for each verification experiment in Table 3.1.

Test and Set (TAS)

loop { “Remainder Section”
rs : repeat while test&set(locked);

“Critical Section”
cs : locked := false; }

Figure 3.4: TAS protocol

This is a mutual exclusion protocol that uses the atomic instruction test&set. The pseudo-
code of the protocol is depicted in Figure 3.4, where locked is a Boolean variable shared by all
processes and initially is false. Each process is located at either rs (Remainder Section) or cs

(Critical Section) and initially at rs. test&set(locked) atomically does the following: if locked is
false, then it sets locked to true and returns false; otherwise, it just returns true.
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A desired property of TAS that we want to verify is the mutual exclusion property whose
informal description is that there is always at most one process located at the Critical Section.
To complete the formal verification of the mutual exclusion property, one additional lemma is
used. The complete specification of the protocol consists of 36 lines of CafeOBJ code, which is
a quite simple mutual exclusion protocol.

ASDS-RT

This is an Asynchronous Data Sending system, a real time system [114] (Asynchronous Data
Sending - Real Time). In this system, there exist a sender and a receiver. The sender repeatedly
sends natural numbers to the receiver one by one from zero in ascending order via a cell. The
sender puts a natural number into the cell and the receiver gets a natural number from the cell if
the cell is not empty. The receiver on reception of a number puts it into a list owned by his/her.
If the sender puts a natural number in the cell that is not empty, some natural numbers will be
lost, i.e., such numbers will not received by the receiver. The sender, however, is not able to
check whether the cell is empty or not. Instead, the system uses timing constraints to guarantee
that no natural numbers sent by the sender will be lost, that is, the sender should not put a new
natural number into the cell before the receiver gets a natural number from the cell provided
that the cell is not empty. In other words, the receiver should get a natural number from the cell
before the sender puts a new natural number into the cell provided that the cell is not empty.
To this end, two time units dmax

rec and dmin
send are used, where:

• dmax
rec : the receiver is forced to get a natural number from the cell within this time units

after the number is put into the cell by the sender.

• dmin
send: After putting a natural number into the cell, the sender must not send a new number

within this time units.

• dmax
rec < dmin

send.

The challenging task is to describe real numbers in the CafeOBJ specification of this system.
The verified property is described as follows: no natural number sent by the sender is lost. The
complete specification of the protocol consists of 141 lines of CafeOBJ code. To complete the
formal verification of that property, three auxiliary lemmas with proofs and a trivial lemma
without proof on real numbers are used. The trivial lemma is as follows:

eq lemma1(T,T1,T2) = (T <= T1 and T1 <= T2)

implies T <= T2 .

It states that if a real number T is not greater than T1, and T1 is not greater than T2, then T

is not greater than T2. We do not prove it due to its obviousness. Equations cannot be used
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loop { “Idling”
gotval : statusp := gotval; statusc := busy; tempp := valuec;

updated : statusp := updated;

if tempp ≤ valuep

valuec := valuep; tempp := valuep;

else

valuep := tempp;

finished : statusp := idle; statusc := idle; tempp := 0; }

Figure 3.5: Cloud protocol: synchronization between a client (p) and the cloud (c)

to define that lemma, but we need to use the operator lemma1 because CafeOBJ does not allow
equations with variables on the right-hand side do not appear on the left-hand side.

Cloud

This is a simplified cloud synchronization protocol [125]. In the protocol, there is a cloud
computer together with many PCs (clients), and they try to keep a value synchronized, i.e., new
values appearing in the PCs must be uploaded to the cloud and, similarly, PCs must retrieve new
values from the cloud. Figure 3.5 shows how synchronization happens between a client (p) and
the cloud (c). The cloud c is represented by its current value, which is a natural number, and
its status, which is either idle or busy. Each client p is represented by its temporal value fetched
from the cloud denoted by tempp, its current value denoted by valuep, and its status denoted
by statusp, which is either idle, gotval, or updated. Initially, the status of the cloud and each
client is idle. A client can increment its valuep at any time, which is not shown in Figure 3.5.
Synchronization between a client and a server depicted in the figure cannot be started unless
the statuses of both the client and the cloud are idle. The actions at each step gotval, updated,
and finished are atomically executed.

The protocol is formally verified that it enjoys the synchronization property, which states
that if a client has its status updated, then the client has the same value as the cloud. Six
auxiliary lemmas are used to complete the formal verification. The complete specification of the
protocol including the seven invariants consists of 95 lines of CafeOBJ code.

Identify Friend or Foe (IFF)

This is an authentication protocol [8] that verifies whether a principal is a member of a group.
There are some different groups, where each group is given a unique symmetric key in advance
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and each principal belongs to only one group. Let A and B denote two principals. The protocol
consists of two messages exchanged as follows:

Check A→ B : r

Reply B → A : senc(k, r ;B)

where senc denotes symmetric encryption and ; is the concatenation operator. Whenever A

wants to determine whether B is also a part of A’s group, A first selects a fresh random r and
sends it to B via a Check message. Upon receiving that message, B replies to A with a Reply

message whose content is the received random and the ID of B encrypted by the symmetric key
of B’s group, i.e., k. Upon receiving that Reply message, A will know that B also belongs to
the same group if A successfully decrypts the ciphertext using their group’s symmetric key and
the plaintext contains r and B.

A desired property of IFF that we want to verify is the identifiable property, whose informal
description is as follows: if principal A receives a valid Reply message and A believes that the
message was sent by B, B belongs to the same group with A. This property is proved with the
use of an auxiliary lemma. The complete specification of the protocol consists of 179 lines of
CafeOBJ code.

A-Anderson

loop { “Remainder Section”
rs : place[i] = fetch&inc(next);

ws : repeat until array[place[i]];

“Critical Section”
cs : array[place[i+ 1]] := true; }

Figure 3.6: A-Anderson protocol

This protocol [145] is a revised and abstract version of the Anderson mutual exclusion proto-
col [9]. We suppose that there are N processes participating in the protocol. The pseudo-code
of the protocol for each process i is depicted in Figure 3.6. Each process is located at rs, ws or
cs and initially located at rs. place is an array of size N whose each element stores one from
{0, 1, . . . ,N − 1}. Initially, each element of place can be any from {0, 1, . . . ,N − 1} but is 0 in
this thesis. Although place is an array, each process i only uses place[i] and then we can regard
place[i] as a local variable to each process i. array is an infinite Boolean array. Initially, array [0]
is true and array [j] is false for any non-zero natural number j. next is a natural number variable
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Alice Bob

(i) aenc(PKB, aenc(SKA, B ;K))

(ii) senc(K,A ;B)

Figure 3.7: Two messages exchanged in the SDS protocol

and initially set to 0. fetch&inc(next) atomically does the following: setting next to next + 1

and returning the old value of next .
The mutual exclusion property of this protocol is verified with eight additional lemmas. The

complete specification of the protocol consists of 103 lines of CafeOBJ code.

SDS

This protocol is a simplified version of the classical key distribution protocol proposed by Denning
and Sacco [51]. The protocol is called SDS (Simplified Denning-Sacco) in this thesis. Digital
certificates and timestamps are excluded in our simplified version. The purpose of the protocol
is to securely distribute a secret key between principals. Let A and B denote two principals, the
message exchanged in the protocol is depicted in Figure 3.7. aenc and senc denote asymmetric
encryption and symmetric encryption, respectively. Each principal A has a pair of public and
private keys denoted by PKA and SKA, respectively, that can be used for asymmetric encryption
and decryption. As usual, the public key of a principal is known by everyone, whereas, nobody
knows the private key of others. K denotes a secret key, which is unguessable, and ; is the
concatenation operator. The two messages exchanged between A and B can be explained as
follows. A first selects a secret key K, and encrypts it together with the identifier of B under the
private key of A, obtaining a ciphertext. The ciphertext is once more encrypted by the public
key of B, and then A sends the obtained result to B. When B receives the message from A, B
consecutively decrypts the content received twice respectively with his/her private key and the
public key of A. If the two decryptions are successful and the final obtained plaintext consists
of his/her identifier and a key K, then B responds back to A with the identifiers of A and B

symmetrically encrypted by the key K in order to prove the possession of the secret key.
We formally verify the key secrecy property, which states that a secret key can be securely

distributed to principals, or in other words, two principals can establish a key that cannot be
compromised even by an active attacker placed in the middle of the connection. The property is
proved with eight auxiliary lemmas. The complete specification of the protocol consists of 403
lines of CafeOBJ code.
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procedure P1
requesting := true;
if ¬have_privilege then
rn[i] := rn[i] + 1;
for all j ∈ {1, …, N} – {i} do

send request(i, rn[i]) to node j;
endfor
wait until privilege(queue, ln) is received;
have_privilege := true;

endif
Critical Section;
ln[i] := rn[i];
for all j ∈ {1, …, N} – {i} do
if (j ∉ queue)	∧ (rn[j] = ln[j] + 1) then

queue := enq(queue, j);
endif

endfor
if queue ≠ empty then
have_privilege := false;
send privilege(deq(queue), ln) to node top(queue);

endif
requesting := false;

endproc

// request(j, n) is received; P2 is indivisible. 
procedure P2

rn[j] := max(rn[j], n);
if have_privilege ∧ ¬requesting ∧ (rn[j] = ln[j] + 1) 

then have_privilege := false;
send privilege(queue, ln) to node j;

endif
endproc

try(i)
setReq(i)
chkPrv(i)
incRN(i)

sndReq(i)

wtPrv(i)

exit(i)
cmpReq(i)

updQ(i)

chkQ(i)

trsPrv(i)

rstReq(i)

recReq(i)

rem
l1
l2
l3

l4

l5

cs
l6

l7

l8

l9

l10

Figure 3.8: Suzuki-Kasami protocol

Suzuki-Kasami

Suzuki-Kasami is a distributed mutual exclusion protocol [141]. The name Suzuki-Kasami came
from its authors’ names, namely Ichiro Suzuki and Tadao Kasami. The protocol is designed to
work over the network with the participation of multiple nodes. The key idea of the protocol is
a shared privilege, in which a node cannot enter the critical section unless it owns the privilege,
and the privilege can be transferred between nodes in the network. Suppose that there are N

nodes participating in the protocol, where 1, . . . , N are used as their identifiers. The pseudo-code
of the protocol for each node i is shown in Figure 3.8. A node i can send a request message,
which is in the form of request(i, n), to another node to request for the privilege, where n is a
natural number that identifies the request number. A node can send a privilege message, which
is in the form of privilege(q, a), to another node to transfer the privilege after it exits the critical
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section, where q is a queue of node IDs and a is an N -array of natural numbers.
Each node i maintains the following local variables:

• requesting: a Boolean variable, which is true if the node wants to enter the critical section;
otherwise, it is false.

• have_privilege: a Boolean variable, which is true if the node currently owns the privilege;
otherwise, it is false.

• queue: a queue of node IDs that are requesting to enter the critical section.

• ln: an N -array of natural numbers, where ln[j] is the request number of the request of
node j granted most recently.

• rn: an N -array of natural numbers recording the largest request number ever received
from each other node.

Figure 3.8 consists of two procedures, namely P1 and P2. The former is invoked when a
node i attempts to enter the critical section. First, requesting is set to true. If i owns the
privilege, it directly moves to the critical section. Otherwise, it increments rn[i] and sends the
request message, i.e., request(i, rn[i]), to all other nodes in the network. Then, i waits for the
privilege. Once the privilege is received, it updates its queue and ln by the ones received in that
privilege message, sets have_privilege to true, and moves to the critical section. When i leaves
the critical section, it updates ln[i] by rn[i]. After that, i checks for each node j if j is waiting to
enter the critical section (rn[j] = ln[j]+1) and j is not in the queue maintained by i (j ̸∈ queue).
If that is the case, j is put into the queue. After that, if the queue is empty, i sets requesting

to false and keeps the privilege. Otherwise, have_privilege is set to false and i transfers the
privilege to the node at the top of the queue by sending the message privilege(deq(queue), ln)

to it.
Procedure P2 is invoked when node i receives a request message in the form of request(j, n)

from node j. Note that the procedure is atomically executed.
The mutual exclusion property is formally verified, i.e., two different nodes cannot simul-

taneously access the critical section. The property is proved with five more lemmas. During
the process of proof score generation, there exist some open-close fragments such that the tool
needs to use more than one lemma to discharge each of the cases as discussed in Section 3.3.5.
Precisely, we need to set the value of depthTryUseLm to 1 so that all open-close fragments
in the generated proof scores are reduced to true. The complete specification of the protocol
consists of 386 lines of CafeOBJ code.
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rs : “Remainder Section”
l1 : nextp := nop;

l2 : predep := fetch&store(glock, p);

l3 : if predep ̸= nop {
l4 : lockp := true;

l5 : nextpredep := p;

l6 : repeat while lockp; }
cs : “Critical Section”

l7 : if nextp = nop {
l8 : if comp&swap(glock, p, nop)

l9 : goto rs;

l10 : repeat while nextp = nop; }
l11 : locknextp := false;

l12 : goto rs;

Figure 3.9: MCS protocol

MCS

MCS is a mutual exclusion protocol invented by Mellor-Crummey and Scott [102]. Variants of
MCS have been used in Java VMs and therefore the 2006 Edsger W. Dijkstra Prize in Distributed
Computing went to their paper [102]. The algorithm inside the MCS protocol is a scalable
algorithm for spin locks that generates O(1) remote references per lock acquisition, independent
of the number of processes attempting to acquire the lock. Figure 3.9 shows the pseudo-code
of the protocol for each process p. MCS uses one global variable glock and three local variables
nextp, predep and lockp for each process p. Process IDs are stored in glock, nextp, and predep,
while a Boolean value is stored in lockp. There is one special (dummy) process ID, i.e., nop,
that is different from any real process IDs. Initially, each of glock, nextp and predep is set to
nop and lockp is set to false. We suppose that each process is located at one of the labels, such
as rs, l1, and cs. Initially, each process is located at rs. When a process wants to enter “Critical
Section,” it first moves to l1 from rs.

MCS uses two non-trivial atomic instructions: fetch&store and comp&swap. For a variable x
and a value a, fetch&store(x, a) atomically does the following: x is set to a and the old value of
x is returned. For a variable x and values a, b, comp&swap(x, a, b) atomically does the following:
if x equals a, then x is set to b and true is returned; otherwise, false is just returned.

Figure 3.10 graphically visualizes the change of state of MCS when a process p moves to l3

from l2. In the state υ, which is represented by Figure 3.10 (a), processes p, q, and r, located at
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Figure 3.10: The change of state of MCS when a process p moves to l3 from l2

l2, l5, and cs, respectively; glock is q; next of r is q; and prede of q is r. When process p moves
to l3, glock is set to itself, and its prede is set to q (Figure 3.10 (b)).

Seven auxiliary lemmas are used to prove that the protocol enjoys the mutual exclusion
property and IPSG took 110.66 seconds to generate the proof scores of all invariants. Four of
these consist of many and & or logical connectives, for example, one of which is as follows:

eq inv7(S,P,Q) = (((pc(S,Q) = l11 or pc(S,Q) = l10 or pc(S,Q) = l8 or pc(S,Q) = l7 or

pc(S,Q) = cs) and (P = Q) = false) implies ((pc(S,P) = cs or pc(S,P) = l7 or pc(S,P)

= l8 or pc(S,P) = l10 or pc(S,P) = l11 or (pc(S,P) = l6 and lock(S,P) = false)) =

false)) .

where pc(S,P) and lock(S,P) denote the location and lock of process P, respectively, in state S.
As explained in Section 3.3.4, the time taken to generate the proof score of this kind of property
can be reduced by using the technique “case splitting is used first before reduction.” Therefore,
with this MCS protocol, we conducted some more experiments to check the performance of the
tool when enabling that technique with different thresholds of the number of logical connectives.
The experimental results are shown in Table 3.2 and graphically visualized in Figure 3.11. In
the table, the second column denotes the threshold values used, i.e., 20, 15, 10, 7, and 5. The
symbol ∞ denotes that the technique is not used (we can say that the threshold, in this case,
is infinity). The third column shows the time taken by IPSG to generate the proof scores with
each threshold. The fourth column shows how much improvement in the time taken for each
experiment is in comparison to when the technique is not used. The last column shows the
number of open-close fragments in the generated proof scores for each experiment. When the
technique is not enabled, IPSG took about 110.66 seconds to generate the proof scores consisting
of 665 open-close fragments in total. When the technique is enabled with the threshold is 20, the
time taken by the tool was significantly reduced by 54.14% down to 50.75 seconds. In contrast,
the number of open-close fragments increased to 1788, which is understandable because case
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Table 3.2: Experimental results of MCS when “case splitting is used first before reduction” with
different thresholds

Protocol Threshold Time
(s)

Percentage of
improvement

No. open-close
fragments

MCS

∞ 110.66 - 665
20 50.75 54.14% 1788
15 48.31 56.34% 1837
10 39.67 64.15% 2030
7 38.87 64.87% 2355
5 40.08 63.78% 2601

splitting is used much more extensively in this experiment. With the thresholds 15, 10, and
7, the time taken was gradually reduced when the threshold is decreased, but there is not a
significant improvement when decreasing the threshold from 10 to 7, namely the improvement
is less than 1 second. When the threshold is decreased to 5, the time taken was even increased.
That is likely because too many case splittings are used and many sub-cases are generated in
this experiment (i.e., 2601), hence, although the time taken to handle each sub-case is small
enough, the total time to handle all the sub-cases could not become smaller.

The changes in the time taken and the number of open-close fragments generated are graph-
ically visualized in the line chart in Figure 3.11. The red line (with circle points) denotes the
change in the time taken to generate the proof scores, while the blue line (with cross points)
denotes the change in the number of open-close fragments in the generated proof scores. The
experiments give us a suggestion about choosing a suitable value of the threshold of the logical
connective: we should choose a small enough value, but it should not be too small to keep the
balance with the number of open-close fragments in the generated proof scores, for example, 7
is a good option.

Needham-Schroeder-Lowe Public Key (NSLPK)

The Needham-Schroeder Public Key (NSPK) protocol [107] is a classical authentication protocol,
which has the following three messages exchanged:

A→ B : aenc(PKB, A ;NA)

B → A : aenc(PKA, NA ;NB)

A→ B : aenc(PKB, NB)

where A and B denote Alice and Bob principal identifiers. NA and NB are nonces, which are
unique and unguessable values, generated by A and B, respectively. Recall that aenc(PKA,m)
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Figure 3.11: Experimental results of MCS when “case splitting is used first before reduction”
with different thresholds

denotes asymmetric encryption of message m by the public key of A. The three messages can be
explained as follows. A first generates a nonce NA and sends it together with their ID encrypted
by B’s public key to B (note that the semicolon denotes the concatenation). Upon receiving
that message, B decrypts it and obtains a nonce. The nonce and a newly generated nonce
NB are encrypted by A’s public key and then sent back to A. When receiving the message,
A decrypts it, getting two nonces, and checking if the first one is exactly the one that A has
sent in this session. A finishes the communication by sending to B the other nonce encrypted
under B’s public key. Lowe found a man-in-the-middle attack on NSPK, and then he proposed
a modified version of the protocol, called the Needham-Schroeder-Lowe Public Key (NSLPK)
protocol. NSLPK has the following three messages exchanged:

A→ B : aenc(PKB, A ;NA)

B → A : aenc(PKA, NA ;NB ;B)

A→ B : aenc(PKB, NB)

The first, second, and third messages are respectively called the Challenge, Response, and Con-
firmation messages. There are three properties are verified:

• the nonce secrecy property: all nonces available to the intruder are those created by the
intruder or those created for the intruder.

• the one-to-many correspondence property from the initiator point of view: whenever A

has sent a Challenge message to B and receives a valid Response message apparently from
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B, the principal that A is communicating with is indeed B.

• the one-to-many correspondence property from the responder point of view: whenever B

has sent a Response message to A and receives a valid Confirmation message apparently
from A, A has indeed sent that Confirmation message.

20 additional lemmas are used to complete the verification of the three above-mentioned
properties. The complete specification of the protocol consists of 441 lines of CafeOBJ code. In
this verification experiment, we did not ask IPSG to generate the proof scores at once, but we
split the invariants into some smaller groups, and then run the tool with each group one by one.

Transport Layer Security (TLS) 1.2

Transport Layer Security (TLS) is one of the most widely deployed cryptographic protocols in
practice, protecting numerous internet communications every day. Although the newest version
of TLS is 1.3 [122], its predecessor, namely TLS 1.2 [123], still plays an important role because
only a modest number of endpoints support TLS 1.3 so far [137]. That is the reason why
the protocol version 1.2 is chosen to conduct formal verification. The protocol consists of two
layers (or subprotocols): the TLS Record Protocol and the TLS Handshake Protocol. The TLS
Handshake Protocol allows a server and a client to authenticate each other and to negotiate
an encryption algorithm and cryptographic keys that will be used later in the Record Protocol.
The TLS Record Protocol provides confidentiality and integrity for communication between two
parties. That is all messages exchanged are encrypted by using symmetric keys established
before in the Handshake Protocol, and each message also includes message integrity check.
Hereinafter, if we say TLS without any more specific information, we are talking about the TLS
1.2 Handshake Protocol.

With the handshake, we consider only the most common case, i.e., server authentication
is mandatory, while client authentication is not requested. Concretely, a server always sends
his/her certificate through a Certificate message to a client in a full handshake but never sends
a CertificateRequest message, whereas the client sends neither Certificate nor CertificateVerify

messages. Furthermore, ServerHelloDone and ChangeCipherSpec messages are omitted. Those
assumptions help the ease of the verification, but the protocol is still much more complex than
classical security protocols, such as SDS. This can be seen through the experimental results
reported in Table 3.1.

Let C and S denote a client and a server, messages exchanged between them are shown in
Figure 3.12. The first seven messages are for a full handshake, while the remaining four mes-
sages are for an abbreviated handshake, which is a session resumption of a previously established
session. RandX denotes a unique random generated by principal X. PKX and SKX denote the
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ClientHello C → S : RandC ,CipherSuites

ServerHello S → C : RandS,CipherSuite, SID

ServerCert S → C : CertificateS

ServerKeyEx S → C : PublicKeyShareS, SignParams

ClientKeyEx C → S : PublicKeyShareC
ClientFinished C → S : εHSC (CFin)

ServerFinished S → C : εHSS(SFin)

ClientHello2 C → S : RandC , SID,CipherSuites

ServerHello2 S → C : RandS, SID,CipherSuite

ServerFinished2 S → C : εHSS(SFin2)

ClientFinished2 C → S : εHSC (CFin2)

Figure 3.12: Messages exchanged in the TLS Handshake Protocol

long-term public and private keys of X, respectively. εK(PlainText) denotes the ciphertext ob-
tained by encrypting the PlainText with key K (either symmetric or asymmetric). CipherSuites
denotes a list of cipher suites offered by the client, while CipherSuite denotes a cipher suite
selected by the server. Composite data used in the protocol are as follows:

• CertificateX : {X,PKX}CA - the certificate of X signed by the trustable certificate authority
CA.

• SignParams: εSKS
(RandC ,RandS,PublicKeyShareS) - the signature over the server’s key

exchange parameters signed under the server’s long-term private key, where
PublicKeyShareS is an ephemeral public key of S.

• Context: {C, S,RandC ,CipherSuites,RandS,CipherSuite, SID,CertificateS,

PublicKeyShareS, SignParams,PublicKeyShareC} - the concatenation of all messages ex-
changed from ClientHello to ClientKeyEx.

• CFin: PRF (MS, “client finished”, H(Context)) - where H and PRF are a hash function
and a pseudorandom function, respectively, MS is the master secret key, which is computed
as explained below.

• SFin: PRF (MS, “server finished”, H(Context)).

• Context2: {C, S,RandC , SID,CipherSuites,RandS,CipherSuite} - the concatenation of
two messages exchanged ClientHello2 and ServerHello2.
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• SFin2: PRF (MS, “server finished”, H(Context2)).

• CFin2: PRF (MS, “client finished”, H(Context2)).

Note that CipherSuites contains not only the cryptographic options supported by the client
but also other necessary information, such as the version of the protocol by which the client
wishes to communicate during this session. CipherSuite is understood in a similar fashion. We
assume that CA is the only trustable certificate authority. There are three types of secret keys,
which are calculated as follows:

• PMS - pre-master secret, computed from the ephemeral public key PublicKeyShareS (or
PublicKeyShareC) and the corresponding ephemeral secret key of C (or S).

• MS - master secret, computed by MS = PRF (PMS, “master secret”, RandC ,RandS).

• HSC and HSS - symmetric handshake keys of client and server, respectively, computed by
(HSC ,HSS) = PRF (MS, “key expansion”, RandC,RandS).

The following three properties are verified:

• the key secrecy property: the negotiation of handshake keys between two honest principals
is secure, that means nobody except for the honest client and the honest server who
established the handshake keys can learn the shared keys.

• the authentication property with respect to a full handshake: when honest client C has
received a valid Finished message in a full handshake apparently from server S, then S

has indeed sent that message.

• the authentication property with respect to an abbreviated handshake: the property has a
similar description to the previous one, except for now, the property is stated with respect
to an abbreviated handshake.

TLS can be regarded as the most complicated one among the protocols used in our experi-
ments. Indeed, the complete specification of TLS consists of 1296 lines of CafeOBJ code, and the
proof scores to verify the three above-mentioned properties consist of 2537 open-close fragments,
which are larger than any other protocols.

3.5 Confirming correctness of proof scores with CiMPG and

CiMPA

We confirm the correctness of the generated proof scores in our experiments by employing
the CafeInMaude Proof Assistant (CiMPA) and Proof Generator (CiMPG) [126]. The proof
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Table 3.3: Time taken by CiMPG to generate proof scripts from proof scores

Protocol No.
invariants

No. open-close
fragments

Time
(h:m:s)

TAS 2 22 0:00:03
Qlock 2 32 0:00:06
Cloud 7 132 0:00:33
IFF 2 50 0:00:27
A-Anderson 9 190 0:03:06
SDS 9 403 0:10:59
Suzuki-Kasami 6 374 1:08:37
MCS 8 665 1:05:00
NSLPK 23 1534 2:11:00
TLS 1.2 20 2537 9:45:00

generator CiMPG takes proof scores as input and generates another kind of formal proof, called
proof script, that can be checked by the proof assistant CiMPA. Traditional, with hand-written
proof scores, if CiMPG successfully generates the proof scripts from those proof scores, and
the generated proof scripts are successfully checked by CiMPA, we can confirm that there is no
human error lurking in the hand-written proof scores. In this section, we employ the two tools to
confirm the correctness of the proof scores generated by IPSG, and subsequently, can confirm the
correctness of IPSG to some extent as well as there is no flaw in the tool implementation. The
theory foundations of CiMPA and CiMPG are given in the article [126]. We also refer readers to
that article for the syntax of proof scripts. The two kinds of formal proofs in comparison, proof
scores are easier for human users to comprehend and/or to analyze a proof than proof scripts,
for example, to conjecture a new lemma candidate when encountering a case that requires an
additional lemma. Therefore, our tool, IPSG, generates proof scores but not proof scripts.

To use CiMPG, all we need to do is to annotate each open-close fragment in the input proof
scores with an identifier and then feed the annotated proof scores into CiMPG. For example,
the proof fragment (try-2) in Section 2.4, by annotating identifier qlock, becomes as follows:

open QLOCK .

:id(qlock)

op s : -> Sys . ops i j k : -> Pid .

eq (pc(s,k) = ws) = false .

red inv1(s,i,j) implies inv1(try(s,k),i,j) .

close

Table 3.3 shows the time taken by CiMPG to generate the proof scripts from the proof scores
of each verification experiment. All of the generated proof scripts are successfully checked by
CiMPA, confirming the correctness of the proof scores generated by IPSG. The second and third
columns of the table recall the number of invariants (properties and lemmas) and the number of

49



open-close fragments in the proof scores of each verification. With the MCS protocol, we use the
most compact proof scores, namely the one with 665 open-close fragments. It can be seen from
the table that with simple systems/protocols like TAS and Qlock, CiMPG only took several
seconds to produce the proof scripts from the proof scores. However, with the more complicated
protocols and properties, the time taken quickly increases as the number of open-close fragments
increases. With the TLS 1.2 protocol, CiMPG even took nearly 10 hours to complete the job.
CiMPA may take up to several minutes to check the generated proof scripts of each experiment.

3.6 Lemma weakening - a technique for lemma conjecture

in invariant proofs

Lemma conjecture is the creativity task that IPSG leaves to the users conducting formal veri-
fication. In the simultaneous induction proof method, to prove that a state predicate p1 is an
invariant wrt an OTS S, we typically prove a stronger version of it, namely p, in the form of
p1 ∧ p2 ∧ . . .∧ pk, where p2, . . . , pk are the lemmas of the proof. We propose a lemma conjecture
technique called Lemma Weakening, which replaces some lemma pi with a weaker version of it.
The technique is used to conjecture the lemmas for the MCS’s formal verification.

Definition 5. A state predicate p : Υ Dp → Bool is called an inductive invariant wrt an OTS
S if it satisfies the following two conditions:

(i) (∀υ ∈ I)(∀x ∈ Dp). p(υ,x)

(ii) For each t ∈ T , where t : Υ Dt → Υ,
(∀υ ∈ Υ)((∀x ∈ Dp). p(υ,x)⇒ (∀yt ∈ Dt)(∀x ∈ Dp). p(t(υ,yt),x))

As usual, Dp and Dt denote lists of data types. Informally, inductive invariants are invariants
preserved by all transitions.

Proposition 1. Inductive invariants wrt S are invariants wrt S.

Proof. The proof is directly derived from the definition. (Q.E.D.)

However, the vice versa is not correct, namely, an invariant is not always inductive. Let us show
a toy example reflecting this case. An OTS is defined by a single observer, namely m ∈ Z, a
single initial state in which m = 3, and a single transition, which updates m by 2m − 2. The
predicate p ≜ m > 0 is an invariant wts the OTS, but not an inductive invariant. Indeed, given
m > 0, it is impossible to prove that 2m − 2 > 0 (m = 1 would falsify that), and thus the
condition (ii) of Definition 5 is not satisfied. The predicate p′ ≜ m > 1 is an inductive invariant.
p′ is stronger than p, namely p′ ⇒ p.
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Figure 3.13: The reason why invariant proofs become non-trivial and two approaches to tackling
the non-trivial situation

3.6.1 Lemma Strengthening

In general, when proving that a state predicate p1 is an invariant wrt an OTS S, it is often
the case that p1 is not inductive, which means that there exists a transition instance υ → υ′

that does not preserve p1, i.e., p1(υ) holds but p1(υ
′) does not. This situation is depicted in

Figure 3.13 (a), where ∆p1 ≜ {υ ∈ Υ | p1(υ)}. This is the reason why invariant proofs become
non-trivial or even very hard. If we can show that the source υ is unreachable wrt S (like
the case m = 1 in the toy example above), then we will not need to consider the transition
instance anymore. One possible way to do so is by finding pstr such that: (1) it is stronger than
p1, (2) pstr(υ) does not hold, and (3) pstr is an invariant wrt S. This technique is depicted in
Figure 3.13 (b). If pstr is inductive wrt S, the verification is done without any more lemmas.
This technique has been summarized as the proof rule Inv by Manna and Pnueli [100].

As described in Section 2.2, pstr is typically in the form p1 ∧ p2 ∧ . . . ∧ pk. p2, . . . , pk are the
lemmas of the proof that p1 is an invariant of S. However, when doing proof, we do not know
any of p2, . . . , pk in advance. Instead, we need to gradually conjecture p2, . . . , pk one by one
when we encounter the situation depicted in Figure 3.13 (a). For example, while proving that
p1 is an invariant wrt S, we may conjecture p2, and when proving p2, we need to conjecture p3.
Therefore, invariant proofs can be regarded as strengthening lemmas, which is called Lemma
Strengthening (LS) in this thesis.

We also need to use LS when conjecturing each individual lemma candidate pi. For instance,
suppose that we need to prove rev(rev(L)) = L for all lists L by induction on L, where rev is the
reverse function of lists. The equation says that two consecutive reverses of a list L returns L

itself. In the induction case, we need to use a lemma, for which the most straightforward lemma
would be:

rev(rev(L) @ (E | nil)) = E | L (3.1)
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for all lists L and all elements E, where @ is the concatenation function of lists, | is the constructor
of lists, and nil is the empty list. The proof of the lemma 3.1 requires us to use another lemma:

rev(rev(L) @ (E1 | E2 | nil)) = E2 | E1 | L (3.2)

for all lists L and all elements E1, E2. If we only use the most straightforward lemmas, we
may move toward the direction in which our proof attempt never converges. To make the
proof converge, we need to strengthen such lemma candidates. One possible lemma obtained by
strengthening the lemmas 3.1 and 3.2 is:

rev(rev(L1) @ L2) = rev(L2) @ L1 (3.3)

for all lists L1, L2. 3.3 is stronger and more generic than 3.1 and 3.2. By using that lemma, the
proof is done.

3.6.2 Lemma Weakening

The reason why invariant proofs become non-trivial or even can become very hard is because
there exists a transition instance υ → υ′ as shown in Figure 3.13 (a). The proof rule Inv gets rid
of such a transition instance as shown in Figure 3.13 (b). Another possible way to get rid of such
a transition instance is to find pwk that is weaker than p1 such that pwk(υ

′) holds and to prove
that pwk is an invariant wrt S. This technique is depicted in Figure 3.13 (c). Even though pwk

is an invariant wrt S, it does not guarantee that p1 is an invariant wrt S. This is because ∆p1

may not contain all reachable states in RS even though ∆pwk
does contain all reachable states

in RS . Therefore, the technique is not suitable for the proof that p1 is an invariant wrt S. The
technique, however, may be useful for some pi, a lemma of the proof that p1 is an invariant wrt
S. In this thesis, weakening lemmas pi is called Lemma Weakening (LW). While proving that
MCS enjoys the mutual exclusion property, we realized that LW could make the proof attempt
to converge that otherwise did not seem to converge in a reasonable amount of time. In the next
section, we describe in which way LW is used to complete the verification of MCS.

3.6.3 Use of Lemma Weakening in the MCS’s formal verification

We do not go into detail on how to specify the MCS protocol in CafeOBJ as OTS SMCS. We
refer readers to the webpage mentioned at the beginning of this chapter as well as the description
of the Qlock protocol specification presented in Section 2.4 because both are mutual exclusion
protocols and they share some common parts. Sorts Sys and Pid represent state space and
process IDs, respectively. Given a state s and a process p, glock(s), pc(s,p), next(s,p), and
prede(s,p) denote glock, the location of p, nextp, and predep, respectively.
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There are mainly two cases in which LW is used.

Case 1

Let us consider the following predicate, which is a lemma candidate to prove the mutual exclusion
property:

eq inv4-0(S,P) = ((pc(S,P) = l3 or pc(S,P) = l4 or pc(S,P) = l5 or pc(S,P) = l6 or

pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or pc(S,P) = l10 or pc(S,P) = l11)

implies not(glock(S) = nop)) .

where S and P are variables of states and process IDs. The predicate states that if there exists
a process P located at l3 or l4 or l5 or l6 or cs or l7 or l8 or l10 or l11, then glock is different
from nop, i.e., it is not null. Intuitively, glock is the tail of the virtual queue, i.e., the last process
requesting to enter the critical section. Thus, if process P is located at one of the aforementioned
locations, the virtual queue cannot be empty, and subsequently, glock - the tail of the virtual
queue, cannot be null. From that justification, we strongly believe that inv4-0 is an invariant wrt
SMCS. However, it seems very tough to prove that. Let us consider a sub-case of an induction
case for the proof attempt of inv4-0. The open-close fragment of the sub-case is as follows:

open INV .

op s : -> Sys . ops p r : -> Pid .

eq pc(s,r) = l8 . eq (p = r) = false .

eq glock(s) = r . eq pc(s,p) = l3 .

red inv4-0(s,p) implies inv4-0(chglk(s,r),p) .

close

chglk defines the transition in which a process moves to l9 or l10 (depending on whether glock
equals that process or not) from l8. CafeOBJ returns false for the fragment. Let υ40 be an
arbitrary state in which the four equations used in the fragment hold. In such a state, there
exist two processes p and r located at l3 and l8, respectively, and glock is r. Because glock is r,
r must be the tail of the virtual queue, so its request to enter the critical section must happen
after p’s request. Consequently, r cannot enter (and exit) the critical section before p, which is
contradicted by p and r located at l3 and l8. Therefore, the state υ40 would be unreachable, and
we need to conjecture another lemma to complete the proof of inv4-0. From the four equations
used in the open-close fragment, by using LS, we conjecture the following lemma:

eq inv4-1(S,P,Q) = ((pc(S,P) = l3 or pc(S,P) = l4 or pc(S,P) = l5 or pc(S,P) = l6 or

pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or pc(S,P) = l10 or pc(S,P) = l11) and

glock(S) = Q and not(P = Q))

implies not(pc(S,Q) = cs or pc(S,Q) = l7 or pc(S,Q) = l8 or pc(S,Q) = l10 or

pc(S,Q) = l11 or (pc(S,Q) = l6 and lock(S,Q) = false)) .

When attempting to prove inv4-1, we encounter a sub-case in which false is returned:
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open INV .

op s : -> Sys . ops p q r : -> Pid .

eq pc(s,r) = l11 . eq next(s,r) = q .

eq glock(s) = q . eq pc(s,p) = l3 .

eq pc(s,q) = l6 . eq lock(s,q) = true .

eq (p = r) = false . eq (q = r) = false .

eq (p = q) = false .

red inv4-1(s,p,q) implies inv4-1(stlnx(s,r),p,q) .

close

stlnx defines the transition in which a process moves to l12 from l11. There exist other two
sub-cases that CafeOBJ also returns false. Those two sub-cases differ from the sub-case shown
above only in pc(s,p) = l4 and pc(s,p) = l5 are respectively used instead of pc(s,p) = l3. Let
υ41 be an arbitrary source state of the three sub-cases. The state is partially visualized in
Figure 3.14 (a), saying that q is located at l6, r is located at l11, nextr is q, glock is q and
lockq is true. After the transition proceeded, in the successor state, r moves to l12 and q has
permission to enter the critical section (lockq is false). Because p is located at l3 (or l4 or l5),
it must have requested to enter the critical section and it must be in the virtual queue. q is the
tail of the queue, but it is granted access to the critical section while p is waiting, which is a
contradiction. Therefore, υ41 would be unreachable. We conjecture another lemma to discharge
the sub-cases:

eq inv4-2(S,P,Q,R) = (glock(S) = Q and next(S,R) = Q and not(P = R or Q = R or P = Q)

and (pc(S,R) = cs or pc(S,R) = l7 or pc(S,R) = l8 or pc(S,R) = l10 or

pc(S,R) = l11 or (pc(S,R) = l6 and lock(S,R) = false)))

implies not(pc(S,P) = l3 or pc(S,P) = l4 or pc(S,P) = l5 or pc(S,P) = l6) .

When attempting to prove inv4-2, we again encounter a sub-case in which false is returned:

open INV .

op s : -> Sys . ops p q r t : -> Pid .

eq pc(s,t) = l11 . eq next(s,t) = r .

eq next(s,r) = q . eq glock(s) = q .

eq pc(s,q) = l6 . eq lock(s,q) = true .

eq pc(s,r) = l6 . eq lock(s,r) = true .

eq pc(s,p) = l3 .

eq (p = t) = false . eq (q = t) = false .

eq (r = t) = false . eq (p = r) = false .

eq (q = r) = false . eq (p = q) = false .

red inv4-2(s,p,q,r) implies inv4-2(stlnx(s,t),p,q,r) .

close

There also exist other two sub-cases that CafeOBJ returns false. Those two sub-cases differ
from the sub-case shown above only in pc(s,p) = l4 and pc(s,p) = l5 are respectively used
instead of pc(s,p) = l3. Let υ42 be an arbitrary source state of the three sub-cases. The state
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Figure 3.14: States υ41, υ42, υ43, and υ4n

is partially visualized in Figure 3.14 (b), saying that q and r are located at l6, t is located at
l11, nextr is q, nextt is r, glock is q, lockq and lockr are true.

The similarity and difference between υ41 and υ42 can be visually observed from Figures 3.14
(a) and (b). One process located at l6 is inserted between the two processes in Figure (a) and
its lock is true, although t is used in Figure (b) instead of r in Figure (a). What if we keep on
doing the proof attempt as we did? If we conjecture a new lemma, say inv4-3, to discharge the
three sub-cases of inv4-2 as we did with inv4-1 and inv4-2, we will encounter some sub-cases in
which

inv4-3(s,p,q,r,t) implies inv4-3(stlnx(s,w),p,q,r,t)

reduces to false while proving inv4-3. Let υ43 be an arbitrary source state of such sub-cases,
which is partially visualized in Figure 3.14 (c). The difference between Figures (b) and (c) is
essentially the same as that of Figures (a) and (b). One more process located at l6 such that
its lock is true is inserted into the structure constructed with next variables. The structure
virtually forms the queue in which processes requesting to enter the critical section wait. If we
repeat what we did, we will encounter the situation that can be partially visualized as shown in
Figure 3.14 (d), which suggests that this way to conjecture lemmas never converges.

There must be a generic lemma that is stronger than all of inv4-1, inv4-2, etc. similar to
rev(rev(L1) @ L2) = rev(L2) @ L1 for the proof of rev(rev(L)) = L, but we could not construct
such a generic one. Instead, we make inv4-0 weaker, constructing inv4:

eq inv4(S,P) = (pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or pc(S,P) = l10 or

pc(S,P) = l11 or (pc(S,P) = l6 and lock(S,P) = false) or

(pc(S,P) = l3 and prede(S,P) = nop))
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implies not (glock(S) = nop) .

inv4 is made weaker than inv4-0 by attaching two conditions in the premise part: (1) lock(S,P)

= false when pc(S,P) = l6 and (2) prede(S,P) = nop when pc(S,P) = l3. Subsequently, the
sub-case of inv4-0 shown above now becomes as follows:

open INV .

op s : -> Sys . ops p r : -> Pid .

eq pc(s,r) = l8 . eq (p = r) = false .

eq glock(s) = r . eq pc(s,p) = l3 .

eq prede(s,p) = nop .

red inv4(s,p) implies inv4(chglk(s,r),p) .

close

The only difference between the two sub-cases is that the equation prede(s,p) = nop is added
in the sub-case of inv4. This sub-case can be discharged by using a lemma, namely inv1, which
essentially states that if there exists a process located at l3 and its prede is not null, then there
does not exist any process located at cs or l7 or l8 or l10 or l11. inv1 is successfully proved
with some additional lemmas.

We strongly believe that inv4-0 as well as inv4-1 and inv4-2 are invariants wrt SMCS. We
were, however, not able to construct any generic lemma that is stronger than all of inv4-1, inv4-2,
etc., and subsequently, we have not successfully completed the proof of inv4-0. Consequently,
we cannot guarantee that inv4-0 is actually an invariant wrt SMCS. However, by using LW, inv4,
a weaker version of inv4-0, has been successfully proved. Note that the proof of the mutual
exclusion property requires the use of inv4 (or inv4-0).

Case 2

During the verification, the following lemma is conjectured to complete the verification:

eq inv5-0(S,P,Q) = (not(pc(S,Q) = l12 or pc(S,Q) = l1 or pc(S,Q) = rs) and

next(S,Q) = P)

implies (pc(S,P) = l6 and lock(S,P) = true and prede(S,P) = Q) .

A weaker version of it is made by adding the condition not(P = Q) to its premise:

eq inv5(S,P,Q) = (not(pc(S,Q) = l12 or pc(S,Q) = l1 or pc(S,Q) = rs) and

next(S,Q) = P and not(P = Q))

implies (pc(S,P) = l6 and lock(S,P) = true and prede(S,P) = Q) .

Intuitively, next variables are used to virtually construct the queue of process IDs requesting
to enter the critical section. nextp refers to the process that has requested to enter the critical
section right after p. Thus, we strongly believe that nextp never receives p as its value, and then
the condition not(P = Q) (or not(next(S,Q) = Q)) in the premise of inv5 is unnecessary. In other
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words, inv5-0 is an invariant wrt SMCS if inv5 is an invariant wrt SMCS. Initially, we conjectured
and used inv5-0. We realized, however, that the proofs of the two lemmas are totally different.

The proof of inv5 uses only inv3 as a lemma and the proof of inv3 uses only inv5 as a lemma.
On the other hand, the proof of inv5-0 requires two more lemmas inv5-1 and inv5-3 in addition
to inv3. The proof of inv5-1 requires inv3, inv5-0, inv5-2, and inv5-3 as lemmas. The proof of
inv5-2 uses inv5-3 as a lemma. inv5-1, inv5-2 and inv5-3 are as follows:

eq inv5-1(S,P,Q) = (not(pc(S,P) = l12 or pc(S,P) = l1 or pc(S,P) = rs) and

not(pc(S,Q) = l12 or pc(S,Q) = l1 or pc(S,Q) = rs) and

not(next(S,Q) = nop) and not(P = Q))

implies not(next(S,P) = next(S,Q)) .

eq inv5-2(S,P) = not(next(S,P) = P) .

eq inv5-3(S,P) = not(prede(S,P) = P) .

inv5-0 is obtained by removing the seemingly unnecessary assertion not(next(S,Q) = Q) from
inv5 to make it stronger. However, to complete the verification of inv5-0, eventually, we need
to use and prove that assertion, which is in form of the lemma inv5-2. Similar to nextp, predep
would never receive p as its value, and then inv5-3 must be invariant. We realized, however,
that it is not straightforward to prove inv5-3 despite its triviality. Precisely, the proof of inv5-3
requires six new lemmas, namely inv5-4, inv5-5, inv5-6, inv5-7, inv5-8, and inv5-9. We again
refer readers to the webpage mentioned at the beginning of this chapter for their definition and
their proofs. In summary, even we could prove inv5-0, the proof required nine new lemmas.
Whereas, a weaker version of it obtained by using LW, i.e., inv5, could be proved without
introducing any new lemma. inv5 is enough for the proof of the mutual exclusion property.

3.7 Limitations

Invariant properties are the only ones that IPSG can produce proofs of. The tool cannot work
with (1) liveness properties and (2) safety properties that are not invariant properties (non-
invariant safety properties). The simultaneous induction proof method is not feasible to apply
to liveness properties because they take future states into account. For a non-invariant safety
property, although the tool cannot deal with it, we may overcome this by choosing a suitable way
to formalize the system under verification as an OTS so that the property can be specified as an
invariant property instead. If the OTS is formalized such that the observers save all necessary
information that happened during past state transitions, then the values of the observers in the
current state contain all necessary information related to the past states, and consequently, we
can specify the property as an invariant property because it is no longer necessary to query the
past states. To make it clearer, let us recall the authentication property of the TLS 1.2 protocol,
which asserts (with respect to a full handshake): when honest client C has received a valid
Finished message in a full handshake apparently from server S, then S has indeed sent that
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message. Given a state s in which C has just received a valid Finished message, the assertion of
the property refers to some past state of s when S has sent the message. However, because the
formal specification defines an observer observing the network (messages exchanged), namely
nw, where nw in state s saves all messages exchanged by all principals so far, the property can be
specified without taking past states into account. Precisely, the assertion “S has indeed sent that
message” can be specified as “msg ∈ nw(s)”, where msg denotes the Finished message concerned.

3.8 Summary

Doing formal verification by writing proof scores in CafeOBJ, although has been demonstrated
through many conducted case studies in the past that it is powerful and flexible, the process
is time-, effort- consuming, and human errors can be lurking in the hand written proofs. To
help human users no longer waste time writing proof scores manually and to avoid subtle errors
during writing them, this chapter has presented an approach to automation of the proof score
writing process and the implementation of the tool supporting it. Given a CafeOBJ formal
specification of a protocol and an invariant property specified as a CafeOBJ equation, IPSG
can automatically generate the proof score proving that the protocol enjoys the property. The
tool has been implemented in Maude, with the use of CafeInMaude, the second major imple-
mentation of CafeOBJ in the Maude environment. The experiments have been conducted with
various protocols, demonstrating the efficiency and the practicability of the tool. Among them,
including classical security protocols, mutual exclusion protocols, and especially, a complicated
cryptographic protocol currently in use, i.e., TLS. For each experiment, we have verified the
correctness of the generated proof scores with the use of a proof generator and a proof assistant,
guaranteeing that there is no subtle error in the generated proof scores.

We have also proposed the Lemma Weakening technique for conjecturing lemmas. A non-
trivial invariant typically cannot be proved standalone, instead, we often prove a stronger version
of it, which is in the form of a conjunction of that invariant and some auxiliary lemmas. Lemma
Strengthening is typically used to make each of such lemmas generic enough, otherwise, its proof
may be tough or even impossible. We found, however, that Lemma Weakening, which replaces a
lemma with a weaker version of it, was an effective way to make the verification attempt of the
MCS protocol converge. Without the use of LW, the MCS verification did not seem to converge
in a reasonable amount of time.

In the next chapters, IPSG will be employed to conduct formal verification of a class of
protocols, namely post-quantum cryptographic protocols. They are designed as replacements
for classical cryptosystems as a precaution against future attacks from quantum computers.
Practical quantum computers are promised to become available in near future as a result of
advanced research in the field of quantum computing and significant investment from industry
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giants in recent years. Therefore, it would be very useful and meaningful to apply the formal
verification technique to post-quantum cryptographic protocols.
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Algorithm 1 Algorithm for generating proof scores
Require: ModuleM,

predicate inv : Υ D1 . . . Dn → Bool,
argument where induction is used Υ,
possible lemma list lms.

1: inits ← extract-initial-states(M,Υ)
2: ts ← extract-transitions(M,Υ)
3: d1, . . . , dn ∈ D1, . . . , Dn ▷arbitrary d1, . . . , dn
4: re ← empty-list()
5: for each i in inits do
6: p← empty-prsc() ▷create an empty fragment
7: re← append(re,GenPrsc(M, p, inv(i, d1, . . . , dn)))
8: end for
9: for each (υ → υ′) in ts do ▷υ′ is a successor state of v

10: p← empty-prsc() ▷create an empty fragment
11: te← (inv(υ, d1, . . . , dn)⇒ inv(υ′, d1, . . . , dn))
12: re← append(re,GenPrsc(M, p, te))
13: end for
14: return re

15: function GenPrsc(M, p, te)
16: t← metaReduce(M||p, te) ▷try to reduce the term
17: if t = true then return p
18: else
19: if t = false then
20: return HandleFalseCase(M, p, te, lms) ▷try to find a lemma
21: else
22: tcs← ChooseATermCS(M, p, t) ▷extract a sub-term for case splitting
23: return append(

GenPrsc(M, addEq(p, eq tcs = true), te),
GenPrsc(M, addEq(p, eq tcs = false), te))

24: end if
25: end if
26: end function
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Algorithm 2 Finding a suitable lemma for a sub-case of induction cases
Require: ModuleM,

current open-close fragment p,
term te← (inv(υ, d1, . . . , dn)⇒ inv(υ′, d1, . . . , dn)),
possible lemma list lms.

1: function HandleFalseCase(M, p, te, lms)
2: sts← extract-sub-terms(p) ▷collect all terms and sub-terms in p
3: for each lm : Υ D̄1 . . . D̄m → Bool in lms do
4: for each (d̄1, . . . , d̄m) ∈ sts | d̄1 ∈ D̄1, . . . , d̄m ∈ D̄m do

▷for each term list d̄1, . . . , d̄m in sts such that it can be instantiated to lm
5: t← metaReduce(M||p, lm(υ, d̄1, . . . , d̄m)) ▷note that υ is the source state
6: if t = false then
7: return p using lemma lm ▷use lm as a lemma
8: end if
9: end for

10: end for
11: return p ▷cannot find any suitable lemma
12: end function
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Algorithm 3 Case splitting is used first before reduction for induction cases
Require: ModuleM,

predicate inv : Υ D1 . . . Dn → Bool,
argument where induction is used Υ,
transition υ → υ′,
term te← (inv(υ, d1, . . . , dn)⇒ inv(υ′, d1, . . . , dn)),
possible lemma list lms,
flag csF irst,
logical connective threshold maxLogConn.

1: function GenPrsc(M, p, te)
2: if csF irst then
3: t← metaRewrite(M||p, inv(υ, d1, . . . , dn), 1) ▷rewrite only one step
4: if NoLogConn(t) > maxLogConn then
5: tcs← ChooseATermCS(M, p, t) ▷extract a sub-term for case splitting
6: return append(

GenPrsc(M, addEq(p, eq tcs = true), te),
GenPrsc(M, addEq(p, eq tcs = false), te))

7: else GenPrsc’(M, p, te)
8: end if
9: else GenPrsc’(M, p, te)

10: end if
11: end function

12: function GenPrsc’(M, p, te)
13: t← metaReduce(M||p, te) ▷try to reduce the term
14: if t = true then return p
15: else
16: if t = false then
17: return HandleFalseCase(M, p, te, lms) ▷try to find a lemma
18: else
19: tcs← ChooseATermCS(M, p, t) ▷extract a sub-term for case splitting
20: return append(

GenPrsc’(M, addEq(p, eq tcs = true), te),
GenPrsc’(M, addEq(p, eq tcs = false), te))

21: end if
22: end if
23: end function
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Chapter 4

Security verification of Hybrid
Post-Quantum TLS Handshake Protocol

Transport Layer Security (TLS) Protocol plays an important role in providing safe communica-
tion between two peers over insecure networks, which makes it one of the most extensively used
cryptographic protocols. Unfortunately, once large-scale quantum computers become available,
the traditional key exchange schemes in TLS will be vulnerable to quantum attacks, which ne-
cessitates the development of a quantum-resistant version of the protocol. Taking into account
that potential threat, the Amazon Web Services team has proposed the Hybrid Post-Quantum
TLS Protocol [36], a quantum-resistant version of the TLS 1.2 protocol. In this chapter, we
construct a comprehensive symbolic model of the proposed protocol, specify it in CafeOBJ, and
formally prove the claimed security properties with the employment of the tool IPSG.

4.1 Key Encapsulation Mechanism (KEM)

In 2017, The National Institute of Standards and Technology (NIST) started the Post-Quantum
Cryptography Standardization Project [138], calling for proposals of public-key algorithms that
are secure against both conventional and quantum computers. In the first round of this stan-
dardization project, there were 69 submissions. After two rounds of evaluation, the seven most
promising candidates have been selected as the finalists for the first track and eight alternative
candidates have been selected for the second track [139]. The submissions are classified into two
types of public-key algorithms, namely public-key encryption (and key exchange) algorithms and
digital signatures. According to the NIST standardization project, public-key encryption (and
key exchange) algorithms are formulated as key encapsulation mechanisms. The following is the
definition of a key encapsulation mechanism.

Definition 6. A key encapsulation mechanism (KEM) is a tuple of algorithms (KeyGen, Encaps,
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Alice

(pk, sk)← KeyGen()

Bob
k ← Decaps(c, sk)

(c, k)← Encaps(pk)
pk

c

Figure 4.1: KEM visualization

Decaps) along with a finite key space K:

• KeyGen() → (pk, sk): A probabilistic key generation algorithm that outputs a public key
pk and a secret key sk.

• Encaps(pk) → (c, k): A probabilistic encapsulation algorithm that takes as input a public
key pk, and outputs an encapsulation (or ciphertext) c and a shared secret k ∈ K.

• Decaps(c, sk) → k: A (usually deterministic) decapsulation algorithm that takes as inputs
a ciphertext c and a secret key sk, and outputs a shared secret k ∈ K.

Figure 4.1 visualizes how KEM is used by Alice and Bob to establish a shared secret k. There
are different approaches to post-quantum public-key cryptographic algorithm construction, such
as lattice-based, hash-based, and code-based. The latticed-based approach tends to be the
most promising way to construct future post-quantum KEMs as the number of latticed-based
submissions is the most in the NIST standardization competition. In this approach, a post-
quantum algorithm can base its security on the difficulty of learning with errors, ring learning
with errors, and learning with rounding, among others. For example, a KEM based on learning
with errors generally computes the public key pk = As + e, where A is a public matrix, s is
a vector serving as a secret key, and e is a small error vector acting as a noise. This public
key is sent to Bob with the expectation that Eve is unable to derive As (and subsequently, s)
even though A and pk are given. As can be interpreted as a vector in the lattice L{a1, . . . , ak}.
Because e is small, pk is close to As. Thus, recovering As corresponds to finding the closest vector
problem in lattices. No efficient algorithm on either classical computers or quantum computers
is known to break the closest vector problem, so it is believed hard even for quantum computers.
Figure 4.2 illustrates this problem in a 2-dimensional lattice generated by two vectors a⃗1 = (2, 3)

and a⃗2 = (2,−1). Each blue point in the figure denotes a vector of the lattice, which would be
a linear combination of a⃗1 and a⃗2, i.e., ma⃗1 + na⃗2, with m,n ∈ Z. Given an external vector
denoted by the red point in the figure, the closest vector problem is to find the closest vector
that belongs to the lattice. In this case, the closest vector should be b⃗. That external vector
(in red) may be made by adding a noise (or an error) to b⃗. When the dimension becomes large,
the problem to find the closest lattice vector becomes intractable to solve. There exist some
other lattice problems that are believed hard even for quantum computers, such as the shortest
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Figure 4.2: An illustration of the closest vector problem in 2-dimensional lattice L{a⃗1, a⃗2}, where
a⃗1 = (2, 3) and a⃗2 = (2,−1)

vector problem and shortest independent vectors problem. Various latticed-based KEMs can
be named, such as CRYSTALS-Kyber [35], Saber [48], FrodoKEM [5], NTRU [80], and NTRU
Prime [22].

4.2 Hybrid Post-Quantum TLS Handshake Protocol

Various kinds of communications over the Internet every day are secured by the TLS proto-
col [122, 123], the successor of Secure Sockets Layer protocol (SSL) [121, 15]. This importance
has led to numerous security analysis studies of the protocol in both the computational model,
such as [60, 59, 70, 90, 82], and the symbolic model, such as [44, 25, 142, 45]. Although TLS
is safe under classical computers today, traditional key exchange schemes currently used by the
protocol, such as Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH), are vulnerable
to new generation attacks from quantum computers. As mentioned in Chapter 1, it is well known
that the public-key primitives in use today will lose their security under the presence of suffi-
ciently large quantum computers. The reason is that the computationally hard mathematical
problems on which they are relying can be efficiently solved by Shor’s algorithm [135] running
on a sufficiently large quantum computer. In particular, the elliptic curve discrete logarithm
problem will be no longer hard with large quantum computers, and one of the assumptions in
our threat model in this case study verification - the intruder can break the ECDH key exchange
scheme, makes sense. Because there is a substantial amount of advanced research in quantum
computing and quantum information theory in recent years, quantum attacks are really a threat

65



that security research groups need to seriously pay attention to.
As an effort against the quantum attack threat, an Internet Engineering Task Force (IETF)

Working Group established by the Amazon Web Services (AWS) has designed a quantum-
resistant version of the TLS 1.2 protocol, namely the Hybrid Post-Quantum TLS Protocol [36],
which is shortly called PQ TLS in this thesis. The hybrid key exchange scheme used in the
proposal attempts to enable two concurrent key exchanges, one is a classical key exchange algo-
rithm, which is fixed to ECDH, and the other is a quantum-safe key encapsulation mechanism
(KEM), such as BIKE [10] and CRYSTALS-Kyber [35, 12]. In that way, a shared secret is ex-
pected to be secure as strong as ECDH against a classical attacker and as strong as the selected
post-quantum KEM (PQ KEM) against a quantum attacker. In 2020, Amazon announced that
the AWS Key Management Service (AWS KMS) supported the PQ TLS protocol on their cloud
service, which means that their customers can freely enable the use of the protocol. Although
TLS 1.3 was released in 2018, TLS 1.2 still keeps an important role because not every endpoint
supports the latest version so far [137], especially with a big service like AWS, upgrading soft-
ware for all endpoints immediately is almost impossible. This is one of the reasons why they
proposed the quantum-resistant version for TLS 1.2 but not TLS 1.3.

We present a formal verification of PQ TLS in this chapter. Verification and analysis of
security protocols, such as SDS, NSLPK, and TLS 1.2, require the assumption of the presence
of malicious participants in addition to honest participants, which is an essential difference
from verification of other systems/protocols. The Dolev-Yao generic intruder model [56] is
used for this purpose as a de facto standard. To tackle security verification of post-quantum
cryptographic protocols, such as PQ TLS, however, we need to extend the Dolev-Yao intruder
model because the availability assumption of large-scale quantum computers gives the intruder
some new capabilities. To come up with a reasonable and strong threat model for formal
verification of post-quantum cryptographic protocols like PQ TLS is a creative task. Many
quantum algorithms have been proposed. Among them, Shor’s algorithm [135] and Grover’s
algorithm [76] are considered potential threats to public-key primitives and symmetric primitives,
respectively, used today. We can work around Grover’s algorithm by doubling the symmetric
key length. Thus, Shor’s algorithm is the only one for which we need to come up with new
public-key cryptographic primitives to make cyberspace in the quantum era secure. To this end,
NIST has been then launching the competition to standardize new public-key primitives, such
as KEMs. We need to comprehend such post-quantum primitives as well as to come up with a
way to model them for verification of higher-level protocols, such as PQ TLS in this chapter.

In the previous chapter, to demonstrate the efficiency and practicability of IPSG, we have
presented a verification case study with the TLS 1.2 protocol (but not PQ TLS), but with several
simplifications:

1. Client authentication has not been considered. In contrast, in this PQ TLS case study, we
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cover both cases when client authentication is not requested and when it is requested.

2. With the threat model, the compromise of any secret keys has not been taken into ac-
count. In contrast, in this PQ TLS case study, we consider the compromises of symmetric
handshake keys, ECDH secret keys, PQ KEM secret keys, and long-term private keys of
honest principals.

3. Only the session key secrecy and authentication properties have been verified. With the
PQ TLS case study presented in this chapter, we furthermore verify the forward secrecy
property.

4. Some kinds of messages, such as ServerHelloDone and ChangeCipherSpec, have been ex-
cluded for ease of verification. With the PQ TLS case study presented in this chapter, no
message is excluded, we try to model the protocol in CafeOBJ faithfully capturing what
is specified in the IETF Draft [36].

Besides, the hybrid key exchange mechanism obviously makes the PQ TLS protocol different
from the original one, namely different formats of messages exchanged between principals. In
summary, all the above-mentioned differences make our verification presented in this chapter
superior to the previous one.

We provide the webpage1, from which readers can find the comprehensive clarification for
the CafeOBJ formal specifications, the proof scores from which readers can execute them with
CafeOBJ to re-check our proofs, the input requirement as well as the detailed guideline on how
to generate those proof scores again, and other related materials used in this chapter.

Messages exchanged in a Full handshake

A full handshake of the protocol consists of several messages as depicted in Figure 4.3, where ∗

indicates that the message is sent only in the case when client authentication is requested, and
[ ] indicates that the message actually belongs to the change cipher spec protocol. The hybrid
key exchange mechanism directly impacts on ClientHello, ServerHello, ServerKeyExchange, and
ClientKeyExchange messages.

Suppose that client C wants to initiate a new connection with server S. C starts by sending
a ClientHello message to S, which consists of the protocol version, a random number, an empty
session ID, a cipher suite list, and a set of post-quantum KEM parameters (including the name
of KEM and its parameters) supported by C. In response, S sends back to C a ServerHello

message, which consists of the protocol version, a random number, a non-empty session ID, and
a selected cipher suite. Next, S sends their digital certificate followed by a ServerKeyExchange

1https://github.com/duongtd23/PQTLS
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Client Server
ClientHello −→

ServerHello
Certificate

ServerKeyExchange
CertificateRequest∗

←− ServerHelloDone
Certificate∗

ClientKeyExchange
CertificateVerify∗

[ChangeCipherSpec]
Finished −→

[ChangeCipherSpec]
←− Finished

Figure 4.3: Messages exchanged in a full handshake of PQ TLS

message, which consists of S’s ECDH & PQ KEM public keys and a signature over the two public
keys together with the two random numbers in the ClientHello and ServerHello messages (Hello
messages) signed under S’s long-term private key. S can optionally send a CertificateRequest

message if client authentication is requested. After that, S sends a ServerHelloDone message,
informing C that the hello handshake phase on the server side is complete.

Upon receiving the ServerHelloDone message, C first sends their digital certificate if they have
received a CertificateRequest message from S (indicating that client authentication is requested).
In either case with or without client authentication, C always sends a ClientKeyExchange mes-
sage, which consists of C’s ECDH public key and the PQ KEM ciphertext value. If client
authentication is requested, next, the client will send a CertificateVerify message, whose content
is a digital signature over all messages exchanged so far signed by C’s long-term private key.
After that, C sends a ChangeCipherSpec message (which actually belongs to the change cipher
spec protocol), indicating that subsequent messages will be secured by the symmetric handshake
keys. The procedure to compute these keys for both C and S is depicted in Figure 4.4. They first
compute the pre-master secret, which is the concatenation of the ECDH shared secret Z and the
KEM shared secret K. The master secret is then computed by using the pseudorandom function
taking as inputs the pre-master secret and a seed, which consists of the two random numbers
(sent in the Hello messages), the ECDH public key, and the PQ KEM ciphertext sent by C in
the ClientKeyExchange message. From the master secret, the handshake keys are derived by
using the pseudorandom function with the two random numbers acting as a seed. A Finished

message encrypted by the client handshake key is finally sent by C.
Upon receiving the Finished message from C, S validates it, and respectively sends their own

ChangeCipherSpec and Finished messages.
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ECDH shared secret
Z

KEM shared secret
K

Pre-master secret
PMS = Z ||K

Master secret
MS = PRF(PMS, RC || RS || PK′

ECDH || CKEM)

Handshake keys
(HS ; HC) = PRF(MS,RC || RS)

where PRF denotes the pseudorandom function

Figure 4.4: Key calculation in PQ TLS

Client Server
ClientHello −→

ServerHello
[ChangeCipherSpec]

←− Finished
[ChangeCipherSpec]
Finished −→

Figure 4.5: Messages exchanged in an abbreviated handshake of PQ TLS

Messages exchanged in an Abbreviated handshake

When client C and server S want to resume a previously established session, instead of exchang-
ing the complete handshake messages, the two principals can perform an abbreviated handshake,
with messages exchanged depicted in Figure 4.5. C first sends a ClientHello using the session
ID of the session to be resumed. Upon receiving that message, S sends a ServerHello message
with the same session ID value after checking that there exists a matching session ID. Then, S
jumps to sending a ChangeCipherSpec message followed by a Finished message. Similarly, C
sends their ChangeCipherSpec message followed by a Finished message.

4.3 Modeling the protocol

This section first describes the threat model used and then presents how to specify the protocol
in CafeOBJ under that threat model. We focus on presenting the specification in the case when
client authentication is not requested, while only briefly describing it in the case when client
authentication is requested.
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4.3.1 Threat model

When modeling a mutual exclusion protocol, such as Qlock presented in Section 2.4, it suffices to
model the behavior of participants following the protocol algorithm. Modeling a cryptographic
protocol like PQ TLS, however, requires us to additionally model the presence of malicious par-
ticipants, who do not follow the protocol execution. In this case study, the combination and
cooperation of malicious participants is modeled as a generic intruder based on the Dolev-Yao
model [56]. The intruder can intercept and modify messages sent in the network, glean infor-
mation from such messages, synthesize information to construct new messages, and impersonate
some participants to send the messages to others.

Moreover, we also consider:

• the intruder can break the classical key exchange algorithm (ECDH) (this is because the
intruder can utilize quantum computers, running Shor’s algorithms [135]);

• an ECDH secret key can be leaked to the intruder;

• a PQ KEM secret key can be leaked to the intruder;

• a handshake key established between two principals can be leaked to the intruder;

• a long-term private key of an honest principal can be leaked to the intruder.

We assume some perfect cryptographic assumptions, in which the intruder is unable to:
decrypt a ciphertext without the appropriate decryption key, sign some data without knowing
the appropriate key, and reverse the hash function to compute the preimages of a hash. Note
that the digital signature algorithms used in the protocol are resistant to quantum computers.
There is a number of quantum-resistant digital signature algorithms have been proposed, such
as CRYSTALS-Dilithium [61] and Rainbow [55].

4.3.2 Modeling hybrid key exchange and key calculation

Classical key exchange algorithms

We first model classical key exchange algorithms, or precisely, ECDH, because only ECDH
is nominated for the classical key exchange algorithm in the protocol proposal [36]. Sorts
ClPriKeyEx, ClPubKeyEx, and ClassicKey are introduced representing ECDH secret keys, public
keys, and shared keys, respectively. We declare the following operators and equation:

-- the associated ECDH public key is derived from a secret key

op clPubKeyEx : ClPriKeyEx -> ClPubKeyEx {constr}

-- a shared key is computed from a public and a secret keys

op classicKey : ClPubKeyEx ClPriKeyEx -> ClassicKey
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-- constructor of a shared key is a secret key pair

op _&_ : ClPriKeyEx ClPriKeyEx -> ClassicKey {constr comm}

eq classicKey(PK,K) = (priClKey(PK) & K) .

where PK and K are variables of the corresponding sorts. The first and second operators reflect
that an ECDH public key is derived from a secret one and a principal calculates an ECDH
shared key from a public/secret key pair, respectively. comm attribute says that the binary infix
operator _&_ is commutative. This is necessary to make the rewriting of the ECDH shared keys
on the client side and server side result in the same value. priClKey is the projection operator
taking as input an ECDH public key and returning as output its associated secret key.

Key encapsulation mechanisms

We choose to model KEMs based on their general definition, i.e., Definition 6. The CafeOBJ
formal specification of the protocol does not take into account how KEMs like CRYSTALS-
Kyber [35] and BIKE [10] are implemented, that is, we omit to specify their implementation
components in detail, such as vectors and matrices. The three algorithms KeyGen, Encaps, and
Decaps are regarded as three black boxes taking some inputs and returning the outputs. As
mentioned previously, there are different approaches to post-quantum KEMs construction, such
as CRYSTALS-Kyber is based on the learning with errors problem over module lattices, while
BIKE relies on error correction codes in coding theory. Because their designs are totally different,
there is no way to specify them consistently in a specification unless we use an abstract model
that represents all. Using abstract versions of cryptographic primitives to model them like this
and assumption of their security are commonly made in the symbolic analysis of cryptographic
protocols. For example, to model hash functions, typically, it suffices to use just a function/-
operator, which takes any data as input and returns the corresponding hash. The design and
implementation aspects of the hash functions, such as block cipher, would be omitted in the
formal specification. The hash function is assumed to be secure, namely, given a hash value,
attackers are unable to derive its preimage.

To model KEMs in CafeOBJ, we introduce sorts PqPriKey, PqPubKey, PqCipher, and PqKey rep-
resenting KEMs secret keys, public keys, encapsulations, and shared keys, respectively. Similar
to modeling ECDH, an operator is declared reflecting the calculation of KEMs public keys from
secret keys:

op pqPubKeyEn : PqPriKey -> PqPubKey {constr}

Actually, the operator represents the algorithm KeyGen. Indeed, because KeyGen is probabilistic,
to model it as a deterministic procedure in CafeOBJ, we need to add an input argument serving
as the random parameter. In this case, we set PqPriKey as such an input argument.

In the same manner, we should add one more extra argument of the sort PqPriKey into the
arity of the operator modeling the algorithm Encaps in addition to the argument of the sort
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PqPubKey because the algorithm is also probabilistic, but not deterministic. Given two secret
keys k′ and k′

2, then a shared key may be in the form of (k′ & k′
2), where _&_ is the constructor of

PqKey similar to the case of ECDH. However, in this case, we want to embed one more argument
in the constructor of PqKey. Such an argument stores the time when the corresponding shared
key is established, which is used to verify the forward secrecy property later on. For example,
the verification needs to check whether the key concerned is established before the compromise
of the long-term private key of the server, who established that key in a session with another
client. For that time information, here we simply use a natural number to represent. The idea
is basically as follows: initially, time is set to 1, and after some actions of honest principals, such
as sending a ClientKeyExchange/ServerKeyExchange message, or compromising some long-term
private key, it is incremented. Consequently, the constructor of PqKey and the operators modeling
Encaps are defined as follows:

op _&_ : PqPriKey PqPriKey -> $PqKey {constr}

op pqKey : $PqKey Nat -> PqKey {constr}

op encapsCipher : PqPubKey PqPriKey -> PqCipher {constr}

op encapsKey : PqPubKey PqPriKey -> $PqKey

eq encapsKey(PK’,K2’) = (priPqKey(PK’) & K2’) .

where Nat is the sort of natural numbers, and PK’ and K2’ are variables of the corresponding
sorts. Here, we introduce one more sort - $PqKey. priPqKey is the projection operator taking
as input a PQ KEM public key and returning as output its secret counterpart. The algorithm
Encaps is modeled by two separate operators encapsCipher and encapsKey returning the ciphertext
and the shared key, respectively. We can choose to use only one operator, but then we need to
define two new projection operators (e.g., getCiphertext and getKey).

The deterministic algorithm Decaps can be straightforwardly modeled as follows:

op decaps : PqCipher PqPriKey -> $PqKey

Finally, the algebraic property of KEMs is specified as follows:

eq (decaps(EN,K’) = (K3’ & K2’)) =

(K3’ = K’ and EN = encapsCipher(pqPubKeyEn(K’),K2’)) .

The equation says that taking as inputs a ciphertext EN and a secret key K’, Decaps can be
successfully performed only when the ciphertext is obtained by the Encaps procedure taking as
input the public key associated with the secret key K’.

Turning to model key calculation, we introduce four more CafeOBJ sorts including Key, Ms,
Pms, and Seed representing handshake keys, master secrets, pre-master secrets, and seeds (used
for pseudorandom function - PRF), respectively. Four constructor operators of Pms, Ms, and Key

are declared as follows:

op _||_ : ClassicKey PqKey -> Pms {constr}

op prf-ms : Pms Seed -> Ms {constr}
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op prf-ckey : Ms Seed -> Key {constr}

op prf-skey : Ms Seed -> Key {constr}

where prf-ckey and prf-skey are used to calculate symmetric handshake keys on the client side
and the server side, respectively. We define: (1) the projection operator getMs of prf-ckey

and prf-skey, which returns the corresponding master secret of a given handshake key, (2) the
projection operator getPms of prf-ms, which returns the corresponding pre-master secret of a
given master secret, and (3) two projection operators pmsClKey and pmsPqKey of _||_, which
return the corresponding ECDH shared key and PQ KEM shared key of a given pre-master
secret, respectively.

4.3.3 Modeling messages exchanged

In the case when client authentication is not requested, we introduce sort Msg with 14 constructor
operators to represent all kinds of messages exchanged in the protocol (covers both the full hand-
shake and the abbreviated handshake modes). Among them, we show here three ones including
chM, skexM, and ckexM, which denote ClientHello, ServerKeyExchange, and ClientKeyExchange

messages in the full handshake mode, respectively. Their declarations are as follows:

op chM : Prin Prin Prin Version Rand CipherSuites PqKemParams -> Msg {constr}

op skexM : Prin Prin Prin ClPubKeyEx PqPubKey Cipher Nat -> Msg {constr}

op ckexM : Prin Prin Prin ClPubKeyEx PqPubKey Nat -> Msg {constr}

where Prin, Version, Rand, CipherSuites, PqKemParams, and Cipher, are the sorts denoting princi-
pals, protocol versions, random numbers, cipher suite lists, PQ KEM cryptographic parameters,
and ciphertexts (encrypted by some keys), respectively. Given three principals a, b, a1, an ECDH
public key pk1, a PQ KEM public key pk2, and a number t, a ClientKeyExchange message is in
the form of ckexM(a1, a, b, pk1, pk2, t), where b is the recipient of the message and a is the seeming
sender whom b believes that he/she is the principal who sent the message. Furthermore, the
first argument a1 is embedded into the message denoting the real creator of that message. In
particular, when a1 is the intruder, the intruder tries to impersonate a to send the message
to b. Note that the first argument is used for modeling and verification purposes only, but it
can neither be seen by the receiver nor be controlled by the intruder. Given a term denoting
a message, projection operators crt, src, and dst return the first, second, and third arguments
of the term, respectively. The argument of the sort Nat is embedded to the last of each skexM

and ckexM to store the time when the corresponding message is sent. Recall that it is necessary,
otherwise, we can neither specify nor verify the forward secrecy property later on.
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4.3.4 Modeling protocol execution of honest principals

Five observers nw, ur, ui, uclk, and upqk are introduced. The first one observes the network, which
is modeled as an associative-commutative collection (AC-collection) of messages exchanged. The
four remaining ones observe the sets of (1) random numbers, (2) session IDs, (3) ECDH secret
keys, and (4) PQ KEM secret keys, respectively, have been used. They are all declared as follows:

op nw : Sys -> Network

op ur : Sys -> URand

op ui : Sys -> USid

op uclk : Sys -> ClPriKeyExS

op upqk : Sys -> PqPriKeyS

where URand, USid, ClPriKeyExS, and PqPriKeyS are the sorts of sets of the above-mentioned data
types (1), (2), (3), and (4), respectively.

In the case when client authentication is not requested, we define 17 transitions to model
protocol execution of honest principals. For the sake of simplicity, we show here the definition
of shello, which is one of the simplest transitions. For the complete specification with detailed
interpretation, readers are referred to the webpage mentioned in Section 4.2 (and in Chapter 1
also).

op shello : Sys Rand CipherSuite Sid

Prin Prin Prin Version Rand CipherSuites PqKemParams -> Bool

ceq nw(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) =

(shM(B,B,A,V,R2,CS,I) , nw(S))

if c-shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) .

ceq ur(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = (R2 ur(S))

if c-shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) .

eq uclk(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = uclk(S) .

eq upqk(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = upqk(S) .

ceq ui(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = (I ui(S))

if c-shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) .

eq ss(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs),A9,B9,I9) = ss(S,A9,B9,I9) .

eq clkLeaked(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = clkLeaked(S) .

eq pqkLeaked(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = pqkLeaked(S) .

eq hskLeaked(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = hskLeaked(S) .

eq ltkLeaked(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = ltkLeaked(S) .

eq time(shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs)) = time(S) .

ceq shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) = S

if not c-shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) .

eq c-shello(S,R2,CS,I,A2,A,B,V,R,CSs,KEMs) =

(not(R2 \in ur(S) or I \in ui(S)) and

chM(A2,A,B,V,R,CSs,KEMs) \in nw(S) and

CS \in CSs) .
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Parameters of the term shello(...), such as A, B, and R, are variables of the corresponding sorts.
c-shello is the effective condition of the transition. The equations say that if principal B has
received a ClientHello message apparently sent from A, random R2 and session ID I have not
been used before, and cipher suite CS is in the cipher suite list sent in the ClientHello message,
then B replies to A a ServerHello message using R2, CS, and I. Together with that, R2 and I are
put into the set of used random numbers and session IDs, respectively. If one of the conditions
above is not satisfied, nothing changes. Note that the ClientHello message is actually sent by
A2, possibly different from A.

Checking the specification

Before going to model the intruder’s capabilities, we check that the CafeOBJ specification we
have specified so far allows two principals successfully complete a handshake and obtain the
symmetric handshake keys. This must be fulfilled, otherwise, anything we do after is entirely
meaningless. We have confirmed that by showing a state (through an open-close fragment)
satisfying the above-mentioned requirement.

4.3.5 Modeling the intruder

Our threat model assumes the compromises of (1) symmetric handshake keys, (2) ECDH secret
keys, (3) PQ KEM secret keys, and (4) long-term private keys of honest principals. In the
CafeOBJ formal specification, four observers hskLeaked, clkLeaked, pqkLeaked, and ltkLeaked are
introduced to store the sets of (1), (2), (3), and (4), respectively:

op hskLeaked : Sys -> KeyS

op clkLeaked : Sys -> ClPriKeyExS

op pqkLeaked : Sys -> PqPriKeyS

op ltkLeaked : Sys -> PriKeyTimeS

Given a long-term private key sk and a time t, each entry of PriKeyTimeS is in the form of
pkNPair(sk, t), where t is the time when sk is compromised. In the case when client authentication
is not requested, there are 6 transitions modeling the compromises of different kinds of secret
keys. We show here the definition of one among two transitions modeling the compromise of PQ
KEM secret keys.

op leakPKE2 : Sys Prin Prin Prin ClPubKeyEx PqPubKey Cipher Nat -> Sys {constr}

ceq pqkLeaked(leakPKE2(S,A2,B,A,PK,PK’,CI,N))

= (pqkLeaked(S) priPqKey(PK’))

if c-leakPKE2(S,A2,B,A,PK,PK’,CI,N) .

...

ceq leakPKE2(S,A2,B,A,PK,PK’,CI,N) = S

if not c-leakPKE2(S,A2,B,A,PK,PK’,CI,N) .
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eq c-leakPKE2(S,A2,B,A,PK,PK’,CI,N)

= skexM(A2,B,A,PK,PK’,CI,N) \in nw(S) .

where ... indicates that some more equations stating that the remaining observers are not
changed by leakPKE2 are omitted. The equations say that when there exists a ServerKeyExchange

message in the network where the PQ KEM public key PK’ is sent, then the associated secret
key is compromised and added to the set of PQ KEM secret keys compromised in the successor
state.

The intruder tries to learn several kinds of information from the network, among them
including handshake keys, pre-master secrets, ECDH shared keys, and PQ KEM shared keys,
which are specified in CafeOBJ by operators chsk, cpms, cclk, and cpqk, respectively:

op chsk : Sys -> ColHsK

op cpms : Sys -> ColPms

op cclk : Sys -> ColClKey

op cpqk : Sys -> ColPqKey

op existPqPriKexM : PqKey Network -> Bool .

-- a handshake key is available to intruder if it is compromised or intruder learned its

pre-master secret

eq HSK \in chsk(S) =

HSK \in hskLeaked(S) or getPms(getMs(HSK)) \in cpms(S) .

-- a pre-master secret is available to intruder if intruder learned both its ECDH and PQ

KEM shared secrets

eq PMS \in cpms(S) =

pmsClKey(PMS) \in cclk(S) and pmsPqKey(PMS) \in cpqk(S) .

-- a PQ KEM shared secret is available to intruder if intruder learned one of its two

secret keys or existPqPriKexM holds.

eq KP \in cpqk(S) =

$pqKey1(KP) \in pqkLeaked(S) or

$pqKey2(KP) \in pqkLeaked(S) or

existPqPriKexM(KP, nw(S)) .

eq existPqPriKexM(KP, void) = false .

eq existPqPriKexM(KP, (M , NW)) =

(((skexM?(M) and

(priPqKey(getPqKey(M)) = $pqKey1(KP) or

priPqKey(getPqKey(M)) = $pqKey2(KP))) or

(ckexM?(M) and

(priPqKey(getPqCipher(M)) = $pqKey1(KP) or

priPqKey(getPqCipher(M)) = $pqKey2(KP)))

) and crt(M) = intruder and time(M) = time(KP))

or existPqPriKexM(KP, NW) .

where HSK, PMS, KP, NW, and M are variables of the sorts Key, Pms, PqKey, Network, and Msg, respec-
tively. skeyM?(M) and ckeyM?(M) check whether message M is the ServerKeyExchange message and
the ClientKeyMessage message, respectively. Recall that getPms, getMs, pmsClKey, and pmsPqkey
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are projection operators. Given a number n and two PQ KEM secret keys k′ and k2′, the projec-
tion operators $pqKey1, $pqKey2, and time on pqKey(k′ & k2′, n) return k′, k2′, and n, respectively.
The first equation says that a handshake key is available to the intruder if it is compromised
or the intruder has learned its pre-master secret. The second equation says that a pre-master
secret is available to the intruder if the intruder has learned both its ECDH and PQ KEM shared
secrets. The third equation says that a PQ KEM shared secret KP is available to the intruder
if either the intruder has learned one of its two secret keys or existPqPriKexM(KP,nw(S)) holds.
The predicate existPqPriKexM(KP,nw(S)) checks whether there exists a ServerKeyExchange or a
ClientKeyExchange message (called KeyExchange message for short) in the network such that
one of the two secret keys of KP equals the secret key associated with the PQ KEM public key
sent in that message and intruder is the actual creator of that message (only in that case, the
intruder owns the secret key). We omit the equations defining cclk.

In the case when client authentication is not requested, in addition to the 6 transitions
modeling the secret compromises, the specification has 15 transitions modeling the intruder’s
capabilities. Among them, let us consider a transition in which the intruder tries to fake a
ServerKeyExchange message. For the others, readers are asked to check the webpage mentioned
in Section 4.2. The following are some equations among the set of equations defining that
transition:

op fkSkeyex : Sys Prin Prin ClPriKeyEx PqPriKey Rand Rand -> Sys {constr}

ceq nw(fkSkeyex(S,B,A,K,K’,R,R2)) =

(skexM(intruder,B,A,clPubKeyEx(K),pqPubKeyEn(K’),

encH(priKey(B), hParams(R,R2,

clPubKeyEx(K),pqPubKeyEn(K’))),time(S)) , nw(S))

if c-fkSkeyex(S,B,K,K’) .

ceq time(fkSkeyex(S,B,A,K,K’,R,R2)) = s(time(S))

if c-fkSkeyex(S,B,K,K’) .

ceq fkSkeyex(S,B,A,K,K’,R,R2) = S

if not c-fkSkeyex(S,B,K,K’) .

eq c-fkSkeyex(S,B,K,K’) = priKey(B) \in’ ltkLeaked(S)

and not(K \in uclk(S) or K’ \in upqk(S)) .

where priKey(B) denotes the long-term private key of B, hParams denotes the hash function,
and encH encrypts the hash by some key. \in’ is a predicate checking whether a given long-
term private key exists in the set of compromised keys (checking the existence of the key in
ltkLeaked(S)). The equations say that if the long-term private key of principal B is compromised
and the two secret keys K & K’ have not been used before, then the intruder can construct a
ServerKeyExchange message from the two secret keys, sign them with the compromised key, and
impersonate B to send the message to A. Together with that, the current time is embedded at
the end of the message and the time of the system is incremented. Note that there are actually
some more equations defining fkSkeyex, but they are omitted.
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4.3.6 Client authentication is requested

In the case when client authentication is requested, we need to introduce three more con-
structors of Msg. They are certReqM, ccertM, and certVerM which denote CertificateRequest,
client Certificate, and CertificateVerify messages, respectively. Three more transitions are also
added, specifying a client/server sends messages that belong to those three kinds of messages.
Consequently, some effective conditions of some existing transitions need to be updated. For
example, before sending the Finished message, a server needs to ensure that Certificate and
CertificateVerify messages have been received from a client in addition to the ClientKeyExchange,
ChangeCipherSpec, and Finished messages. For the intruder, several transitions are also added
to model the capability of faking messages that belong to those three kinds of messages.

In summary, the complete formal specification in case client authentication is requested con-
sists of 2895 lines of CafeOBJ code. Among them, 2314 lines are dedicated to specifying the
protocol execution and 581 lines are dedicated to defining invariants (and lemmas), which are
used for the formal verification. On the other hand, the specification without client authentica-
tion includes 2276 lines of code in total, where 1931 lines are dedicated to specifying the protocol
execution and 345 lines are used for specifying invariants and lemmas. Note that we limit neither
the number of honest principals participating in the protocol nor the number of sessions that
the protocol can execute in both models. Roughly speaking, the CafeOBJ specifications allow
any principal (a variable of sort Prin) to initialize a session with any other principal regardless of
how many times and without any restriction by executing the chello transition, which formalizes
sending a ClientHello message.

4.4 Security verification

This section first mentions the security properties of the protocol claimed in the IETF Draft. We
then separately present security verification of the protocol in each case without and with client
authentication. In the latter case, tighter properties are proved and more invariants/lemmas are
introduced.

4.4.1 Security properties

The IETF Draft [36] claims that the security of the PQ TLS protocol is as strong as the orig-
inal TLS 1.2. The TLS 1.2 standard document [123] states the following two desired security
properties:

• A shared secret is securely negotiated. The shared secret cannot be compromised by an
external party for any authenticated connection, even by an active attacker placed in the
middle of the connection.
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• A shared secret is reliably negotiated. The communication to establish the shared secret
cannot be silently modified by an attacker without being detected by the two parties.

Note that the TLS 1.2 standard document [123] states that authentication is not mandatory
but is usually required for at least one peer. On the other hand, in the IETF Draft of the PQ
TLS protocol [36], it requires that server authentication is mandatory. Furthermore, the IETF
Draft also claims its forward secrecy property:

• The establishment of shared secrets achieves forward secrecy provided that all ephemeral
keys are unique.

We formally specify and verify three properties including (1) session key secrecy, (2) forward
secrecy, and (3) authentication. The first property makes sure that nobody can learn a session
key established between a client and a server except those two principals. The second property
guarantees that even if a long-term private key of a client or a server is compromised, session
keys established before the compromise are still secure. The third property ensures that upon
completion of a handshake, if client C has communicated apparently with server S, then the
server is indeed S. The authentication property is also called the correspondence property by
Woo and Lam [149] and by Lowe [97].

4.4.2 Without client authentication

Security verification in the case when client authentication is not requested is presented first.

Session key secrecy property

Handshake keys must be securely negotiated between an honest client and an honest server.
Nobody except for the two honest principals can know the shared handshake keys. The secrecy
of handshake keys established in the full handshake mode is specified by the following invariant:

op ssKeySe : Sys Prin Prin ClassicKey

PqPriKey PqPriKey Seed Seed Hash Nat -> Bool

eq ssKeySe(S,A,B,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

not(prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in hskLeaked(S)) and

not(priKey(B) \in’ ltkLeaked(S)) and

cfM(A,A,B, encFin(

prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-cfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

not(prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in chsk(S)) .
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where cfM is a constructor of the sort Msg, representing Finished messages sent from the client
side in the full handshake mode. prf-cfin computes the value for the verify_data field in those
Finished messages from the master secret and the hash of the handshake messages (H). encFin

denotes the encryption of the verify_data by the client symmetric handshake key. ssKeySe says
that when honest client A has sent to honest server B a Finished message indicating that the key
negotiation has been completed in which the established handshake key is not trivially compro-
mised, its two PQ KEM secret keys and the long-term private key of B are not compromised,
then the intruder cannot learn the handshake key.

ssKeySe is simply proved without induction by using the following lemma:

op pqKeySe : Sys Prin Prin ClassicKey

PqPriKey PqPriKey Seed Seed Hash Nat -> Bool

eq pqKeySe(S,A,B,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

(not(priKey(B) \in’ ltkLeaked(S)) or

not(N > timeLeak(priKey(B), ltkLeaked(S)))) and

cfM(A,A,B,encFin(

prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-cfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

not existPqPriKexM(pqKey(K’ & K2’,N), nw(S)) .

pqKeySe says that when honest client A has sent to honest server B a Finished message indicating
that the key negotiation has been completed in which the two PQ KEM secret keys are not
compromised and either the long-term private key of B is not compromised or it is compromised
but the time when the compromise happens (denoted by timeLeak(priKey(B), ltkLeaked(S))) is
after the handshake key establishment (denoted by N), then there does not exist a KeyExchange

message created by the intruder in the network such that the secret key associated with the PQ
KEM public key sent in that message equals one of the two PQ KEM secret keys. The proof of
ssKeySe using pqKeySe is simply as follows:

open INV .

op s : -> Sys . op n : -> Nat . op h : -> Hash .

ops k’ k2’ : -> PqPriKey . ops a b : -> Prin .

op kc : -> ClassicKey . ops sd sd2 : -> Seed .

red pqKeySe(s,a,b,kc,k’,k2’,sd,sd2,h,n)

implies ssKeySe(s,a,b,kc,k’,k2’,sd,sd2,h,n) .

close

CafeOBJ returns true for that red command, meaning that ssKeySe is proved. The proof is
accomplished with respect to an unbounded number of sessions. Readers may argue that a and
b are fresh constants, and thus the proof by the red command above is limited to only two
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particular principals a and b. But this argument is a mistake. a and b are defined as fresh
constants of the sort Prin without any constraint, denoting two arbitrary principals among all
principals participating in the protocol (which is unbounded). The protocol execution does not
limit to only a and b, but it also includes the involvement of other principals as well. Recall that
the previous section has clarified that the CafeOBJ specifications allow an unbounded number
of sessions and principals. From what has been clarified, we can affirm that ssKeySe is proved
under an unbounded number of sessions and this is also true with the remaining invariant proofs
in this verification case study.

We need to prove pqKeySe is also invariant, for which now we use simultaneous induction
with some other lemmas. As mentioned before, we employ IPSG to infer proof scores of them,
for which we prepare a simple script. IPSG successfully generates the proof score of pqKeySe,
consisting of 369 open-close fragments in total after about 20 seconds on a MacBook Pro carrying
32 GB of memory with a processor i7 2.3 GHz (see Section 4.4.5). Note that this is the time
taken for generating the executable proof score of pqKeySe, but not the time for executing the
proof. Once the proof is generated, it is unnecessary to infer the proof again; just executing the
generated proof with CafeOBJ is all we need to do for the verification.

Forward secrecy property

We consider the case that the long-term private key of an honest server is compromised. Even
in that case, session keys established before the compromise are still secure. This is called the
forward secrecy property, which is specified by the following invariant:

op forwardSe : Sys Prin Prin ClassicKey

PqPriKey PqPriKey Seed Seed Hash Nat -> Bool

eq forwardSe(S,A,B,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

not(prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in hskLeaked(S)) and

priKey(B) \in’ ltkLeaked(S) and

not(N > timeLeak(priKey(B), ltkLeaked(S))) and

cfM(A,A,B,encFin(

prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-cfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

not(prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in chsk(S)) .

forwardSe says that if honest client A has sent to honest server B a Finished message indicating
that the key negotiation has been completed in which the established handshake key is not
trivially compromised, its two PQ KEM secret keys are not compromised, the long-term private
key of B is compromised but the compromise happens after the handshake key establishment, then

81



the intruder cannot learn the handshake key. forwardSe guarantees that even if the long-term
private key of an honest server is compromised, ciphertexts encrypted by using the handshake
keys established between the server and some honest client cannot be decrypted by the intruder
if the compromise happens after the establishment of the handshake keys. forwardSe is simply
proved without induction by using pqKeySe.

Authentication property

The handshake process completes once the client and the server complete sending their Finished
messages. After receiving a Finished message from a server in either a full handshake or an
abbreviated handshake, from a client’s point of view, the authentication property is stated as
follows. If honest client A has been communicating apparently with server B, where A receives a
valid Finished message seemingly sent from B, then the server that A has been communicating
with is indeed B. This authentication property is verified through two invariants, one for the full
handshake mode, and the other for the abbreviated handshake mode. The former is as follows:

op authent : Sys Prin Prin Prin ClassicKey PqPriKey

PqPriKey Seed Seed Hash Nat -> Bool

eq authent(S,A,B,B1,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

(not(priKey(B) \in’ ltkLeaked(S)) or

not(N > timeLeak(priKey(B), ltkLeaked(S)))) and

cfM(A,A,B,encFin(

prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-cfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S) and

sfM(B1,B,A,encFin(

prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-sfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

sfM(B,B,A,encFin(

prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-sfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S) .

where sfM is another constructor of the sort Msg, representing Finished messages sent from the
server side in the full handshake mode. prf-sfin computes the value for the verify_data field
in those Finished messages from the master secret and the hash of the handshake messages.
Precisely, authent says that when a full handshake between two honest principals A and B has
been completed, where A sent a Finished message to B and received back another valid Finished

message apparently sent from B such that the two PQ KEM secret keys of the pre-master
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secret are not compromised, and either the long-term private key of B is not compromised or
the compromise happens after the handshake key establishment, then the Finished message A
received really created by B. Note that because we allow the intruder to replay a Finished

message in the network, it is impossible to use B1 = B in the conclusion of authent. In other
words, it is possible that B1 is intruder, making B1 different from B (there are two different sfM

messages, one is created by B and the other is created by intruder). authent is proved by using
IPSG to automatically generate proof scores with the use of two lemmas, one of which is pqKeySe.

A similar invariant is defined to specify the authentication property in the abbreviated hand-
shake mode, and its proof is also fully generated by IPSG with the use of pqKeySe and another
new lemma. The invariant is defined as follows:

op authent2 : Sys Prin Prin Prin ClassicKey PqPriKey

PqPriKey Seed Seed Seed Hash Hash Nat -> Bool

eq authent2(S,A,B,B1,KC,K’,K2’,SD,SD2,SD3,H,H2,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

(not(priKey(B) \in’ ltkLeaked(S)) or

not(N > timeLeak(priKey(B), ltkLeaked(S)))) and

cfM(A,A,B,encFin(

prf-ckey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-cfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S) and

sf2M(B1,B,A,encFin(

prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD3),

prf-sfin2(prf-ms(KC || pqKey(K’ & K2’,N),SD),H2)))

\in nw(S))

implies

sf2M(B,B,A,encFin(

prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD3),

prf-sfin2(prf-ms(KC || pqKey(K’ & K2’,N),SD),H2)))

\in nw(S) .

where sf2M is another constructor of the sort Msg, representing Finished messages sent from the
server side in the abbreviated handshake mode. prf-sfin2 computes the value for the verify_data
field in those Finished messages from the master secret and the hash of the handshake messages.

In summary, when client authentication is not requested, the verification consists of 31 invari-
ants, among them, four invariants specify the three properties, whereas the remaining 27 ones
serve as lemmas for the proofs. Six invariants are simply proved by using some others without
induction, while the proofs of the remaining ones are completely generated by IPSG (all of them
are available on the webpage mentioned in Section 4.2).
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4.4.3 Invalid invariant candidates and counterexamples

As mentioned before, our threat model supposes the security of ECDH can be broken, i.e., the
intruder can learn the ECDH shared secret from the two public keys exchanged between a client
and a server. To illuminate that we have correctly modeled the intruder’s capability in this
assumption, let us use the following predicate:

op pd1 : Sys Prin Prin ClPriKeyEx ClPriKeyEx PqKey Seed Seed Hash -> Bool

eq pd1(S,A,B,K,K2,KP,SD,SD2,H) =

(not(A = intruder or B = intruder or A = B) and

not(K \in clkLeaked(S) or K2 \in clkLeaked(S)) and

cfM(A,A,B,encFin(prf-ckey(prf-ms(K & K2 || KP, SD),

SD2), prf-cfin(prf-ms(K & K2 || KP, SD), H)))

\in nw(S))

implies not((K & K2) \in cclk(S)) .

pd1 says that when honest client A has sent to honest server B a Finished message indicating
that the key negotiation has been completed in which the two ECDH secret keys of the shared
secret are not compromised, then the intruder cannot learn ECDH shared secret. Because of the
above-mentioned assumption, pd1 should be violated (not invariant). The intruder can grasp
the two ECDH public keys carried in the ServerKeyExchange and ClientKeyExchange messages
sent in the same session with that Finished message, from that, it is possible for the intruder to
derive the shared secret. Indeed, a counterexample is found for pd1. The counterexample and
action sequence leading to it are described in detail on the webpage mentioned at the beginning
of this chapter. Through this demonstration, it can be confirmed that at least we have correctly
modeled the protocol execution and the intruder’s capability of breaking ECDH.

Let us now turn to a more complicated case. Recall that ssKeySe confirms the session key
secrecy property from a client’s point of view. Following that, it is natural to think about
the counterpart of ssKeySe, which expresses the property from a server’s point of view. Let us
consider the following predicate:

op pd2 : Sys Prin Prin ClassicKey PqPriKey PqPriKey Seed Seed Hash Nat -> Bool

eq pd2(S,A,B,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

not(prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in hskLeaked(S)) and

not(priKey(A) \in’ ltkLeaked(S)) and

sfM(B,B,A,encFin(prf-skey(prf-ms(KC ||

pqKey(K’ & K2’,N),SD),SD2),

prf-sfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

not(prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in chsk(S)) .
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What pd2 specifies is the counterpart of ssKeySe from a server’s point of view, so we do not
explicitly clarify it. Actually, this predicate is not invariant, a counterexample violating it is
found. The counterexample and action sequence leading to it are described in detail on the
webpage mentioned at the beginning of this chapter. Basically, the reason is that the intruder
can impersonate A to communicate with B. Consequently, the handshake key that B believes
they have established with A is actually owned by the intruder. Together with the previous
demonstration, the predicate and the counterexample of this case can be used for the purpose
of checking the specification, through that, roughly speaking, we can confirm the correctness of
the protocol execution specification as well as the intruder’s capability specification.

4.4.4 With client authentication

Session key secrecy property: When client authentication is requested, ssKeySe remains to be
invariant specifying the session key secrecy property from a client’s point of view. Moreover, a
new invariant, namely ssKeySeAu, is introduced to specify the property from a server’s point of
view:

op ssKeySeAu : Sys Prin Prin ClassicKey PqPriKey PqPriKey

Seed Seed Hash Nat -> Bool

eq ssKeySeAu(S,A,B,KC,K’,K2’,SD,SD2,H,N) =

(not(A = intruder or B = intruder or A = B) and

not(K’ \in pqkLeaked(S) or K2’ \in pqkLeaked(S)) and

not(prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in hskLeaked(S)) and

not(priKey(A) \in’ ltkLeaked(S)) and

sfM(B,B,A,encFin(

prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2),

prf-sfin(prf-ms(KC || pqKey(K’ & K2’,N),SD),H)))

\in nw(S))

implies

not(prf-skey(prf-ms(KC || pqKey(K’ & K2’,N),SD),SD2) \in chsk(S)) .

ssKeySeAu is simply proved without induction by using another lemma, which is the counterpart
of pqKeySe. Like pqKeySe, the proof score of that lemma is also generated by IPSG.

Similar to the session key secrecy property, tighter versions of the forward secrecy property
and the authentication property are formally verified in the case when client authentication is
requested. Concretely, one more invariant, namely forwardSeAu, is defined with respect to the
CafeOBJ formal specification with client authentication to specify the forward secrecy property,
whereas two more invariants, namely authentAu and authentAu2, are defined specifying the au-
thentication property corresponding to the full handshake and abbreviated handshake modes. In
summary, in the case when client authentication is requested, we introduce four more invariants
specifying the three properties and 15 additional lemmas to complete the formal verification.
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Table 4.1: Time taken by IPSG to generate proof scores in case of non-client authentication

Invariant Time
(s)

No. open-close
fragments

pqKeySe 17.2 329
authent 35.9 691
authent2 36.1 691
inv3 12 279
inv4 11.4 233
inv4’ 10.5 233
inv4’’ 8.2 192
inv5 7.9 187
inv6 8.6 173
inv9 16.1 329
inv10 29.4 323
inv11 7.3 171
inv12 9.7 188

Invariant Time
(s)

No. open-close
fragments

inv13 9.4 190
inv16 8.6 184
inv17 50.3 772
inv18 31 652
inv19 45.1 648
inv20 27.3 553
inv20’ 25.8 541
inv21 8.3 184
inv24 47.3 772
inv25 24.1 569
inv26 52.1 565
inv27 15.6 336

There are six other invariants that are proved without induction but simply by using others as lemmas.

Among those new 19 invariants, six invariants are simply proved by using some others without
induction, while IPSG automatically generates the proof scores for the remaining 13 invariants.

4.4.5 IPSG experimental results

Table 4.1 reports the time taken by IPSG to generate the proof scores of the 25 invariants in
case client authentication is not requested. The third column shows the number of open-close
fragments in the generated proof score of each invariant. Recall that the six other invariants
(i.e., ssKeySe, forwardSe, inv7, inv8, inv15, and inv23), in this case, are proved without induction
but simply by using some other invariants as lemmas. The experiments have been conducted
on a MacBook Pro carrying 32 GB of memory with a processor i7 2.3 GHz. Table 4.2 shows
the time taken in case client authentication is requested. The table omits the times to produce
the proof scores of the 25 old invariants in case client authentication is not requested (those in
Table 4.1). Note that what is depicted in the two tables is the time taken for generating the
proofs with IPSG, but not the time for executing the proofs (the verification is confirmed by
running the generated proof scores with CafeOBJ).

4.5 Limitations

To model the intruder’s capability of forging messages, we have defined some specific transitions.
Concretely, for each kind of message, there are one or several transitions dedicated to specifying
how the intruder impersonates a principal to send an instance of that message to another.
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Table 4.2: Time taken by IPSG to generate proof scores in case of client authentication

Invariant Time
(s)

No. open-close
fragments

pqKeySeAu 23.7 367
authentAu 48.1 733
authentAu2 62 733
inv33 20.7 327
inv36 14.6 239
inv37 15.7 234
inv38 17.2 236

Invariant Time
(s)

No. open-close
fragments

inv39 51.9 800
inv41 52 800
inv43 55.5 691
inv44 35.8 591
inv44’ 34.7 579
inv45 61.8 603

There are six other invariants that are proved without induction but simply by using others as lemmas.

Even though the specification defines 15 transitions, allowing the intruder to forge every kind of
message, covering most of the significant cases, it is hard to verify that the intruder is given the
full capability of forging an arbitrary message synthesized from the information that has been
learned. In other words, it can be said that the transitions specifying the intruder’s capabilities
of forging messages are dedicated to this PQ TLS protocol only. It is better to use some general
transitions, for example, if the intruder knows two pieces of information A and B, then they
can combine them to obtain the composition information in the form of A || B, from which
they can impersonate a principal to send the faking message A || B to some other. In this way,
efforts can be saved when specifying different cryptographic protocols and it is easy to verify
that the intruder is given the full capability of forging an arbitrary message synthesized from
the information that they have learned. Besides, it is unnatural to embed time information into
PQ KEM shared keys in order to verify the forward secrecy property. The above-mentioned
limitations will be addressed in the case study presented in the next chapter.

Regarding the threat model in the quantum era used in this case study, essentially, the novelty
of the intruder’s capabilities is only the assumption of breaking classical key exchange schemes
such as ECDH. The remaining considerations are known as non-novel things from a traditional
cryptographic protocol analysis point of view. We expect some more non-trivial capabilities for
a quantum attacker will be included in our future work.

When the input is an invalid invariant property, a counterexample violating the property
cannot be automatically produced by IPSG as other well-known symbolic cryptographic ana-
lyzers, such as Tamarin [101] and Maude-NPA [64], can do. Manual efforts have been spent to
find the counterexamples discussed in Section 4.4.3. This restriction is a limitation of interac-
tive theorem proving in general compared to the model-checking approach. Despite that, we
must emphasize that doing theorem proving did help human experts to find counterexamples of
non-trivial security properties [21, 120, 113]. This is extra helpful in the case when the security
protocol under verification is complicated so that model checking cannot deal with it due to the
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state space explosion problem.

4.6 Summary

In this chapter, we have symbolically modeled the Hybrid Post-Quantum TLS Protocol and
specified it in CafeOBJ. Our model covers both the full handshake and abbreviated handshake
modes, and both cases when client authentication is requested and when it is not. We have
formally verified that the protocol enjoys the three desired security properties including session
key secrecy, forward secrecy, and authentication with respect to an unbounded number of pro-
tocol participants and session executions. The first property makes sure that the negotiation of
session keys is secure (i.e., nobody can glean the shared key except for the client and the server
who have established those keys). The second property ensures that the hybrid key exchange
mechanism achieves forward secrecy (i.e., even if a long-term private key of a client or a server
is compromised, sessions completed before the compromise remain secure). The third property
guarantees that upon completion of the handshake, if a client C believes that he/she is commu-
nicating with a server S, then the server is indeed S. The three properties have been specified
by equations in CafeOBJ, and then their formal proofs, i.e., proof scores, have been generated
by using the tool IPSG. These proof scores are executable, and the formal verification is done
by executing the proof scores with CafeOBJ.

Comprehending the protocol is the task that takes the most time to conduct the formal
analysis. The protocol itself is complicated, with the combination of various handshake options,
such as full or abbreviated handshake and with or without client authentication. The most
difficult task would be to comprehend the post-quantum cryptographic primitives used in the
protocol, such as CRYSTALS-Kyber KEM. That is a challenge in the verification/analysis of
post-quantum cryptographic protocols compared to classical ones. After understanding such
primitives, another challenge is to find a way to model them for formal verification, such as
by abstracting KEMs as we did. To come up with a reasonable and strong threat model is
also a creative task. Attackers must have quantum-based power, such as breaking classical key
exchange algorithms, and must have powerful capabilities, such as fully controlling the network.
To find out how to specify in CafeOBJ the attacker’s capability of fully controlling the network
is also a challenging task.

Through the case study, we once again demonstrate that IPSG is efficient and applicable to
even complicated protocols like PQ TLS. The complicate of the case study can be partially seen
from the size of the specifications, consisting of more than 2000 lines of CafeOBJ code, as well
as the total number of invariants used, i.e., more than 30 invariants. Although in the previous
chapter, a verification case study has been conducted with the TLS 1.2 protocol, there are
several simplifications in that verification, such as client authentication has not been considered,
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no consideration about the compromise of any secret keys, some kinds of messages have been
excluded for ease of verification, and only the session key secrecy and authentication properties
have been verified. That makes the formal specification and verification of TLS 1.2 much less
complicated than these ones of PQ TLS presented in this chapter. Concretely, in this PQ TLS
verification case study, we have covered both cases when client authentication is not requested
and when it is requested, have considered the compromises of all secret keys, have not excluded
any kind of messages, and have additionally verified the forward secrecy property.
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Chapter 5

Formal analysis of Hybrid Post-Quantum
SSH Transport Layer Protocol

This chapter presents a formal analysis case study with the Hybrid Post-Quantum SSH Transport
Layer Protocol [84], a quantum-resistant version of the SSH Transport Layer Protocol [96]. The
Hybrid Post-Quantum SSH Transport Layer Protocol is shortly called PQ SSH in this thesis.
Similar to PQ TLS, the hybrid key exchange scheme used in PQ SSH enables two concurrent
key exchanges, one is a classical key exchange algorithm and the other is a quantum-resistant
KEM. We take into account four desired security properties including (1) session key secrecy,
(2) forward secrecy, (3) session identifier uniqueness, and (4) authentication properties, where
(1), (2), and (3) are formally verified. The formal verifications of (1), (2), and (3) share many
commons with what has been used in the PQ TLS verification case study. However, there are
some novel distinctions in this PQ SSH case study as follows:

• For the threat model, we specify the intruder’s capabilities in a more general way, address-
ing the limitation mentioned in Section 4.5 of the previous chapter. The formal specifica-
tion guarantees that the intruder is given the full capabilities of learning exchanged infor-
mation, manipulating it, and forging messages. This part will be shown in Section 5.2.4.

• We find a counterexample of (4), meaning that the protocol does not enjoy the authen-
tication property. We propose to slightly revise the protocol by adding the identifiers of
the client and the server into the exchange hash. We revise the CafeOBJ formal specifi-
cation accordingly so that we can formally verify that the improved protocol enjoys the
authentication property as well as (1), (2), and (3). This will be presented in more detail
in Sections 5.3.4 and 5.3.5.

We provide a webpage1, from which readers can find the CafeOBJ formal specification of the
PQ SSH protocol and the improved version, the counterexample of the authentication property,

1https://github.com/duongtd23/PQSSH
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the proofs from which readers can execute them to verify the four properties, and other related
materials used in this chapter.

5.1 Hybrid Post-Quantum SSH Transport Layer Protocol

The Secure Shell protocol (SSH) [95] is a cryptographic protocol that gives users a secure way
to access a computer over an unsecured network. The most well-known application of SSH is to
allow users, particularly system administrators, to securely remote login to a server and execute
commands through the command line environment. An essential difference between SSH and
TLS is that SSH operates at the Application Layer, the 7th layer of the OSI model, while TLS
operates at the Transport Layer through the Application Layer (the 4th-7th layers) of the OSI
model. The protocol consists of the following three sub-protocols:

• Transport Layer protocol [96]: executes key negotiation to establish symmetric keys, which
are used by the Connection protocol to securely exchange information between two par-
ticipants. This protocol provides server authentication to the client.

• User Authentication protocol [93]: provides client authentication to the server.

• Connection protocol [94]: provides channels to securely exchange information between two
participants by using the negotiated keys to encrypt/decrypt data.

Due to the threat of quantum attacks, an IETF Working Group has proposed a post-quantum
version of the SSH Transport Layer protocol (PQ SSH) [84]. The proposed protocol is being
standardized and its latest version is 01 by June 2023. Similar to PQ TLS, the proposed
protocol also bases its security on the post-quantum hybrid key exchange method, which uses a
classical key exchange algorithm and a quantum-resistant Key Encapsulation Mechanism (KEM)
in parallel. In the IETF Draft [84], the classical key exchange algorithm and the quantum-
resistant KEM are fixed to ECDH and CRYSTALS-Kyber [35, 12], respectively. In this chapter,
we present a security analysis of PQ SSH version 01 [84].

The messages exchanged in the PQ SSH protocol are depicted in Figure 5.1. Each server
host B owns a public host key (LKB) and a private host key (LSKB), where the public host
key is known by all clients. To initialize a new connection between client A and server B,
a pair of VERSION_EX messages is sent by them, exchanging the protocol versions on each
side. The message can be called the version exchange message. Then, they exchange a pair of
KEX_ALGR messages, indicating their supported algorithms (cryptographic primitives) sorted
in order of preference. The message can be called the key exchange algorithms message. After
that A generates: (1) an ECDH ephemeral key pair, i.e., secret key and its associated public key
(ECDHPKA

), and (2) a KEM public key (KEMPKA
), i.e., the output of the algorithm KeyGen.
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version exchange VERSION_EX A→ B : VersionA

VERSION_EX B → A : VersionB

key exchange algorithms KEX_ALGR A→ B : SuitesA

KEX_ALGR B → A : SuitesB

key exchange initiation KEX_HBR_INIT A→ B : ECDHPKA
,KEMPKA

key exchange reply KEX_HBR_REPLY B → A : LKB,ECDHPKB
,KEMCB

, SIGN

Figure 5.1: Messages exchanged in the PQ SSH protocol

ECDH shared secret
KCL

KEM shared secret
KPQ

Shared secret
K = hash(KCL ||KPQ)

Exchange hash
H = hash(VersionA || VersionB || SuitesA || SuitesB || LKB ||

ECDHPKA
||KEMPKA

|| ECDHPKB
||KEMCB

||K)

Signature
SIGN = sign(LSKB,H)

Figure 5.2: Exchange hash and signature calculation

A then sends the two public keys to B through a KEX_HBR_INIT message (key exchange
initiation message). Upon receiving that KEX_HBR_INIT message, B also generates an ECDH
ephemeral key pair and performs the algorithm Encaps to get a ciphertext (KEMCB

). B then
replies back to A with a KEX_HBR_REPLY message (key exchange reply message), consisting
of the public host key of B (LKB), the ECDH ephemeral public key, the ciphertext, and a
signature of the “exchange hash.” The precise computations of the exchange hash and the
signature are depicted in Figure 5.2, where hash denotes the hash function. First, the shared
secret K is computed by hashing the concatenation of the ECDH and KEM shared secrets.
Then, the exchange hash H is computed by hashing the concatenation of the payloads of the
two VERSION_EX messages and the two KEX_ALGR messages, the public host key of B,
the ECDH and KEM ephemeral public keys of the client, the ECDH ephemeral public key and
the KEM ciphertext of the server, and the shared secret K. Afterward, the signature SIGN is
computed by signing H under the private host key of B (LSKB).
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5.2 Modeling the protocol

This section presents how to model the protocol in CafeOBJ. We also explain the threat model
used in this case study, pointing out the difference with the one used in the PQ TLS case study.

5.2.1 Modeling ECDH and KEM

Elliptic Curve Diffie-Hellman

We introduce CafeOBJ sorts EcSecretK, EcPublicK, and EcShareK representing ECDH secret keys,
public keys, and shared secrets, respectively, and some operators as follows:

[EcSecretK EcPublicK EcShareK]

-- the associated ECDH public key is derived from a secret key

op ecPublic : EcSecretK -> EcPublicK {constr}

-- a shared key is computed from a public and a secret keys

op ecShare : EcPublicK EcSecretK -> EcShareK

-- constructor of a shared key is a secret key pair

op _|_ : EcSecretK EcSecretK -> EcShareK {constr comm}

The first operator represents the computation of the associated public key from a secret key,
where the attribute constr states that the operator is a constructor of the sort EcPublicK. The
second operator represents the computation of the shared secret from a public key and a secret
key. Let PK and K be CafeOBJ variables of the sorts EcPublicK and EcSecretK, respectively, the
semantic of ecShare is defined by the following equation:

eq ecShare(PK,K) = (ecSecret(PK) | K) .

where ecSecret returns the associated secret key of a given public key (it is the projection
function of ecPublic). Given two ECDH secret keys k1 and k2, ecPublic(k1) denotes the public
key associated with k1, and (k1 | k2) denotes the shared secret obtained from that public key
and the secret key k2. The operator _|_ is commutative, namely (k1 | k2) and (k2 | k1) are
identical, thanks to the CafeOBJ attribute comm.

Key encapsulation mechanisms

As explained in the previous chapter, KEMs are modeled based on the abstract version defined
in Definition 6. We introduce sorts PqSecretK, PqPublicK, PqShareK, and PqCipher, representing
secret keys, public keys, shared secrets, and ciphertexts (or encapsulations), respectively. Let
K’, K2’, and K3’ are variables of PqSecretK, PK’ and C are variables of PqPublicK and PqCipher,
respectively. The algorithms KeyGen, Encaps, and Decaps are modeled by the following operators
and equations:

op keygen : PqSecretK -> PqPublicK {constr}
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-- Encaps algorithm: returns ciphertext

op encapsC : PqPublicK PqSecretK -> PqCipher {constr}

-- Encaps algorithm: returns shared key

op encapsK : PqPublicK PqSecretK -> PqShareK

op decaps : PqCipher PqSecretK -> PqShareK

-- constructor of a shared key is a secret key pair

op _&_ : PqSecretK PqSecretK -> PqShareK {constr}

eq encapsK(PK’, K’) = (pqSecret(PK’) & K’) .

ceq decaps(C, K’) = (K’ & pqSecret(C)) if (pqPublic(C) = keygen(K’)) .

ceq (decaps(C, K’) = (K’ & K2’)) = false if not(K2’ = pqSecret(C)) .

ceq (decaps(C, K’) = (K2’ & K3’)) = false if not(K’ = K2’) .

Note that KeyGen and Encaps are probabilistic algorithms. Thus, to specify them as deterministic
procedures in CafeOBJ, an argument of the sort PqSecretK is added as the input argument. Note
also that with Encaps, two separate operators encapsC and encapsK are defined, respectively re-
turning the ciphertext and the shared secret. pqPublic and pqSecret are the projection functions
of encapsC, returning its first and second arguments, respectively (pqSecret is also the projection
function of keygen). Given an encapsulation C and a secret key K’, the second equation states
that Decaps(C,K’) properly outputs the shared secret only if C encapsulates some secret to the
associated public key of K’ (in other words, the public key of C is the associated public key of
K’). The third equation states that Decaps(C,K) cannot be (K’ & K2’) if C does not encapsulate
K2’.

5.2.2 Modeling cryptographic primitives and messages exchanged

We introduced sorts Prin, PubKey, PriKey, Version, and Suites representing principals, public
host keys, private host keys, protocol versions, and lists of supported algorithms, respectively.
We additionally introduce two generic sorts Data and DataL, which are the supersorts of all sorts
mentioned before, such as EcPublicK and PqPublicK. || is used as the concatenation operator,
where assoc indicates that the operator is associative:

[Data < DataL]

[EcPublicK EcShareK PqSecretK PqPublicK ... < Data]

-- concatenation operator

op _||_ : DataL DataL -> DataL {assoc constr}

where ... denotes that some other sorts are omitted.
To model the hash function, the Sign and Verify signature algorithms, we declare the following

operators:

-- hash function

op h : DataL -> Data {constr}
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-- key plaintext signature

op sign : DataL DataL -> Data {constr}

-- key plaintext signature

op verify : DataL DataL DataL -> Bool

There are several equations defining those operators, for example:

eq verify(pubK(A), D, SIGN) = (SIGN = sign(priK(A),D)) .

which states that given a public host key of principal A, a message D, and a signature, Verify
outputs true when the signature is obtained by signing D under the private host key of A.

We turn to model messages exchanged in the protocol. The VERSION_EX, KEX_ALGR,
KEX_HBR_INIT, and KEX_HBR_REPLY messages depicted in Figure 5.1 are respectively
represented by the following operators:

op verM : Prin Prin Prin Version -> Msg {constr}

op kexAlgM : Prin Prin Prin Suites -> Msg {constr}

op hbrIniM : Prin Prin Prin DataL Nat -> Msg {constr}

op hbrRepM : Prin Prin Prin DataL Nat -> Msg {constr}

The first, second, and third arguments of each operator denote the real author, the seeming
sender, and the recipient of a given message, respectively. Recall that the first argument is used
for modeling and verification purposes only, but it can neither be seen by the receiver nor be
controlled by the intruder. In contrast, the other arguments may be forged by the intruder,
which will be described in Section 5.2.4. Nat is the sort of natural numbers. The argument of
the sort Nat is embedded in the last of the two operators representing key exchange initiation
and key exchange reply messages to store the time when the corresponding message is sent.
That time information is necessary to specify and verify the forward secrecy property later on,
for instance, to check whether the key concerned is established before the compromise of the
server’s private host key who established that key in a session with another client. The time
is represented as a natural number. Initially, the time of the system is set to 0, and after each
action such as a message being sent, it is incremented. With the first two operators, we could
also embed an argument of the sort Nat in the last of each one, but saving time information of
version exchange and key exchange algorithms messages is not strictly necessary to complete the
verification.

5.2.3 Modeling the protocol execution

Sorts Sys and Network are defined, representing the state space and the network, where the
network is modeled as an AC-collection of messages exchanged between principals. All initial
states are represented by the constant init. Five observers nw, usecret, time, leakscr, and knl are
defined, observing the network, the set of ECDH & KEM secret keys used by all principals, the
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system time, the compromised secrets, and the knowledge of the intruder, respectively. usecret

is used to guarantee the uniqueness of ephemeral secret keys. The compromised secrets can be
ephemeral secret keys, private host keys, and shared secrets between two participants, which
will be described in the next sections. The declarations of init and the five observers and the
definition of initial states are as follows:

op init : -> Sys {constr}

op nw : Sys -> Network

op usecret : Sys -> SecretKS

op time : Sys -> Nat

op leakscr : Sys -> SecretKS

op knl : Sys -> DataL

eq nw(init) = void .

eq usecret(init) = empty .

eq time(init) = 0 .

eq leakscr(init) = empty .

eq knl(init) = (priK(intru) || pubK(intru)) .

where SecretKS is the sort of sets of secret data types (e.g., private host keys, ECDH & KEM
secret keys). From the five equations, it follows that in an initial state, the network is empty
(denoted by void), the set of secrets used is also empty, time of the system is 0, no secret is
revealed, and the intruder knowledge is their own private and public host keys.

For each of the six messages depicted in Figure 5.1, we define a transition modeling how that
message is sent. For instance, the transition cHbrInit below specifies how a client sends a key
exchange initiation message.

op cHbrInit : Sys Prin Prin Prin EcSecretK PqSecretK

Version Version Suites Suites -> Sys {constr}

ceq nw(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

(hbrIniM(A,A,B, ecPublic(K) || keygen(K’), time(S)) , nw(S))

if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

ceq usecret(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

(K K’ usecret(S))

if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

ceq time(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

s(time(S))

if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

eq leakscr(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) = leakscr(S) .

ceq knl(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

(ecPublic(K) || keygen(K’) || knl(S))

if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

ceq cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) = S

if not c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

eq c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) =

(kexInitM(A,A,B,CSs) \in nw(S) and
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kexInitM(B2,B,A,CSs2) \in nw(S) and

not(K \in usecret(S) or K’ \in usecret(S))) .

where A, B, V, etc., are CafeOBJ variables of the corresponding sorts. \in is the membership
predicate. c-cHbrInit is the effective condition of the transition, which states that the transition
cannot proceed unless two key exchange algorithms messages have been exchanged, and the two
secret keys (ECDH and KEM) K and K’ have not been used before. The first five (conditional)
equations say that if the effective condition is satisfied, from the two secret keys K and K’, client
A sends the two associated public keys to B under a key exchange initiation message (by putting
that message into the network), the two secret keys are put into the set of secret keys used,
the time is incremented, and the two public keys are added to the intruder knowledge (i.e.,
the intruder learned the two public keys). The sixth equation states that everything remains
unchanged if the effective condition is not satisfied.

5.2.4 Threat model and modeling the intruder

The threat model used in this verification case study is an extended version of the Dolev-Yao
intruder model [56]. As a Dolev-Yao intruder, the intruder can completely control the network,
concretely:

(1) The intruder can intercept any message sent in the network and glean information carried
in that message. This capability has been partially illustrated through the definition of the
transition cHbrInit presented in Section 5.2.3. That is, whenever an honest principal sends
two public keys to another one through a key exchange initiation message, the intruder
will learn the two public keys.

(2) The intruder also knows all publicity information such as protocol versions, names of cryp-
tographic primitives, and public host keys even without gleaning them from the network.

(3) The intruder can select an ephemeral secret key (either ECDH one or KEM one), and
generate the corresponding public key or the shared secret provided that the secret key
has not been used before (uniqueness).

(4) If a piece of information is available to the intruder, they can use any cryptographic
primitive function taking the information as input and learning the output.

(5) The intruder can use the information available to them to build a message and impersonate
some honest principal to send the message to another.

In addition to the Dolev-Yao capabilities above, our threat model also considers the following:
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(6) The security of ECDH is broken. If two ECDH public keys are given to the intruder,
the intruder can derive the corresponding shared secret, which is assumed by utilizing the
power of large quantum computers.

(7) Secrets may be compromised and the intruder gleans them. All of ECDH & KEM ephemeral
secret keys, private host keys, and shared secrets established between two principals are
possibly revealed.

For each capability, multiple transitions are defined to specify it. One of the transitions
specifying the capability (3) is as follows:

op gPqSecretK : Sys PqSecretK -> Sys {constr}

eq nw(gPqSecretK(S,K’)) = nw(S) .

ceq usecret(gPqSecretK(S,K’)) = (K’ usecret(S))

if c-gPqSecretK(S,K’) .

eq time(gPqSecretK(S,K’)) = time(S) .

eq leakscr(gPqSecretK(S,K’)) = leakscr(S) .

ceq knl(gPqSecretK(S,K’)) = (K’ || keygen(K’) || knl(S))

if c-gPqSecretK(S,K’) .

ceq gPqSecretK(S,K’) = S

if not c-gPqSecretK(S,K’) .

eq c-gPqSecretK(S,K’) = not(K’ \in usecret(S)) .

It states that the intruder can randomly select a KEM secret key K’, add it and the public key
generated by the algorithm KeyGen to their knowledge provided that K’ has not been used before.

The following is a part of a transition, which partially specifies the capability (4):

op g1 : Sys DataL -> Sys {constr}

ceq knl(g1(S,DL)) = (h(DL) || knl(S))

if c-g1(S,DL) .

eq c-g1(S,DL) = DL \in knl(S) .

It states that the intruder can learn the hash of a piece of information if that information is
available to them. Multiple other transitions specify that the intruder can sign any available
information by any available key, compute ECDH shared secrets from any available public/secret
key pair, and compute KEM ciphertexts and shared secrets by Encaps and Decaps on the available
inputs, among others.

With the capability (5), for instance, a part of the transition fkHbrInit shown below illustrates
how the intruder can forge a key exchange initiation message:

op fkHbrInit : Sys Prin Prin EcPublicK PqPublicK -> Sys {constr}

ceq nw(fkHbrInit(S,A,B,PK,PK’)) =

(hbrIniM(intru,A,B, PK || PK’, time(S)) , nw(S))

if c-fkHbrInit(S,A,B,PK,PK’) .

ceq time(fkHbrInit(S,A,B,PK,PK’)) = s(time(S))
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if c-fkHbrInit(S,A,B,PK,PK’) .

eq c-fkHbrInit(S,A,B,PK,PK’) = (PK \in knl(S) and PK’ \in knl(S)) .

The equations state that if the two ECDH and KEM public keys PK and PK’ are in the intruder
knowledge, the intruder can impersonate principal A, sending the two public keys through a
key exchange initiation message to principal B. As mentioned before, the first parameter inside
hbrIniM is intru but not A, which is impossible to be seen by the receiver. Note that the system
time is incremented also. The formal specification also specifies how the intruder can forge other
kinds of messages, such as a key exchange reply message.

With the capability (7), the following transition lPqSecretK1 partially specifies the compro-
mise of a KEM ephemeral secret key:

op lPqSecretK1 : Sys Prin Prin EcSecretK PqSecretK Nat -> Sys {constr}

ceq time(lPqSecretK1(S,A,B,K,K’,N)) = s(time(S))

if c-lPqSecretK1(S,A,B,K,K’,N) .

ceq leakscr(lPqSecretK1(S,A,B,K,K’,N)) = (K’ leakscr(S))

if c-lPqSecretK1(S,A,B,K,K’,N) .

ceq knl(lPqSecretK1(S,A,B,K,K’,N)) = (K’ || knl(S))

if c-lPqSecretK1(S,A,B,K,K’,N) .

eq c-lPqSecretK1(S,A,B,K,K’,N) =

hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) .

It states that if a key exchange initiation message is in the network, the KEM secret key associ-
ated with the public key sent in that message can be compromised. If that is the case, the secret
key is added to the intruder knowledge as well as the set of compromised secrets, and the system
time is incremented. Another transition specifies the compromise of KEM ephemeral secret keys
through key exchange reply messages. The formal specification also specifies the compromises
of KEM shared secrets and private host keys.

From what has been described, it can be seen that a more general way has been used to model
the intruder’s capabilities of learning information and forging messages rather than by using
specific transitions dedicated to a protocol only. Besides, we no longer embed time information
into shared keys, which is unnatural, in order to verify the forward secrecy property. In summary,
the complete formal specification of the PQ SSH protocol consists of 993 lines of CafeOBJ code,
where 723 lines are dedicated to specifying the protocol execution and 270 lines are dedicated to
defining security properties and auxiliary lemmas, which are used for the formal verification. The
formal specification limits neither the number of honest principals participating in the protocol
nor the number of sessions that the protocol can execute. Generally speaking, it allows any
principal (a variable of sort Prin) to initialize a session with any other principal regardless of
how many times and without any restriction by executing the transition formalizing the sending
of a VERSION_EX message.
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5.3 Formal analysis

Security considerations of the SSH Transport Layer protocol are claimed in [96] as follows:

This protocol provides a secure encrypted channel over an insecure network. It per-
forms server host authentication, key exchange, encryption, and integrity protection.
It also derives a unique session ID that may be used by higher-level protocols.

Such security requirements should be kept fulfilled in the PQ SSH protocol. This section presents
the formal analysis of four properties including (1) session key secrecy, (2) forward secrecy, (3)
session identifier uniqueness, and (4) authentication. (1) makes sure that nobody can learn
a shared secret negotiated between a client and a server except those two principals (see Sec-
tion 5.3.1). (2) guarantees that even if a private host key of a server is compromised, shared
secrets established before the compromise remain secure (see Section 5.3.2). (3) ensures that
the exchange hash, acting as the session identifier, is unique (see Section 5.3.3). (4) states that
upon completion of a protocol execution, if client A has communicated apparently with server
B, then the server is indeed B (see Section 5.3.4).

Checking the specification

We first check that the formal specification allows two principals successfully complete a protocol
execution and obtain the shared secret. This must be fulfilled, otherwise, anything we do after
is entirely meaningless. We have confirmed that by showing a reachable state satisfying that
requirement through a sequence of transitions, which can be found on the webpage mentioned
at the beginning of this chapter.

Checking intruder capability of learning ECDH shared secret

We also confirmed that the intruder is able to learn the ECDH shared secret established between
two honest principals as what has been modeled for the intruder’s capabilities. Similarly, we
have verified that by pointing out a reachable state in which the intruder can learn such a secret.

5.3.1 Session key secrecy property

The negotiation of a shared secret between two principals must be secure against any third party.
This is called the session key secrecy property, which is specified by the following predicate:

op keySe : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat -> Bool

eq keySe(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2) =

(not(A = intru or B = intru) and
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hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) and

hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2) \in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||

h(ecShare(PK2,K) || decaps(C,K’))),

SIGN) and

not(decaps(C,K’) \in leakscr(S)) and

not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and

not(priK(B) \in’ leakscr(S)))

implies not(h(ecShare(PK2,K) || decaps(C,K’)) \in knl(S)) .

The predicate states that when honest client A has sent to honest server B a key exchange initi-
ation message and has received back a key exchange reply message apparently sent from B with
a valid signature of the exchange hash, neither the KEM shared secret, the two corresponding
ephemeral secret keys, nor the private host key of the server is revealed, then the intruder cannot
learn the shared secret (i.e., the hash of the ECDH shared secret and the KEM shared secret).

All sub-constraints in the premise of the predicate are necessary, namely, if any of them is
eliminated, the predicate will be no longer valid. Indeed, if the following constraint:

(1) the signature of the exchange hash in the key exchange reply message is valid
is eliminated, the reply message received may be actually forged by the intruder (B2 is intru),
who is trying to impersonate B. In this case, the signature will be failingly verified if A does a
check, however, it is not performed actually because (1) is removed.

If the following constraint:
(2) the KEM shared secret is not revealed

is removed, the intruder can derive the shared secret because the intruder can break ECDH’s
security to learn the ECDH shared secret. It also explains why we only bind the non-reveal of
the KEM shared secret in the premise of keySe.

If the following constraint:
(3) the two corresponding KEM ephemeral secret keys are not revealed

is removed, the intruder can easily derive the KEM shared secret, and then they can derive the
shared secret as explained above.

If the following constraint:
(4) the private host key of the server is not revealed

is eliminated, the intruder can use the revealed key to sign the exchange hash to make a valid
signature. Subsequently, the intruder can completely impersonate server B to do the key exchange
with A. As a result, the shared secret is obviously available to the intruder. Readers can find on
the above-mentioned webpage the counterexamples showing that the predicate will be no longer
valid if any of (1), (2), (3), and (4) is eliminated. Appendix B gives a detailed clarification of
the counterexample when the constraint (4) is eliminated, which can be regarded as the most
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interesting one.
keySe is simply proved without induction by using the following two lemmas:

op inv0 : Sys EcSecretK PqSecretK EcPublicK PqCipher -> Bool

eq inv0(S,K,K’,PK2,C) = h(ecShare(PK2,K) || decaps(C,K’)) \in knl(S)

implies decaps(C,K’) \in knl(S) .

op secrecy : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat -> Bool

eq secrecy(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2) =

(not(A = intru or B = intru) and

hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) and

hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2) \in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||

h(ecShare(PK2,K) || decaps(C,K’))),

SIGN) and

not(decaps(C,K’) \in leakscr(S)) and

not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and

(not(priK(B) \in’ leakscr(S)) or

N2 < timeLeak(priK(B), leakscr(S))))

implies not(decaps(C,K’) \in knl(S)) .

inv0 states that if a shared secret is available to the intruder, then the KEM shared secret
component must be available to the intruder. secrecy states that when honest client A has
sent to honest server B a key exchange initiation message and has received back a key exchange
reply message apparently sent from B with a valid signature of the exchange hash, neither the
KEM shared secret nor the two corresponding ephemeral secret keys are revealed, and either the
private host key of B is uncompromised or it is compromised but the time when the compromise
happens (denoted by timeLeak(priK(B), leakscr(S))) is after the shared secret establishment
(denoted by N2), then the intruder cannot learn the KEM shared secret.

The proof of keySe using the two lemmas is simply as follows:

red (inv0(s,k,k’,pk2,c) and

secrecy(s,b2,a,b,v,v2,css,css2,k,k’,pk2,c,sign,n,n2))

implies keySe(s,b2,a,b,v,v2,css,css2,k,k’,pk2,c,sign,n,n2) .

where s, a, b, etc., are fresh constants of the corresponding sorts. As explained in Section 4.4.2,
the proof is accomplished with respect to an unbounded number of protocol executions. To prove
the two lemmas are invariants, we use the tool IPSG with some other lemmas to generate their
proof scores. The complete proof scores are available on the webpage2. Detailed information
about the time taken as well as the size of the generated proof scores are available in Section 5.3.6.

2https://github.com/duongtd23/PQSSH

102

https://github.com/duongtd23/PQSSH


5.3.2 Forward secrecy property

Forward secrecy property in general is defined as that the compromise of a long-term private key
does not break the secrecy of a session key if the session is completed before the compromise.
This property is specified by the following predicate:

op fwdSe : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat -> Bool

eq fwdSe(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2) =

(not(A = intru or B = intru) and

hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) and

hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2) \in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||

h(ecShare(PK2,K) || decaps(C,K’))),

SIGN) and

not(decaps(C,K’) \in leakscr(S)) and

not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and

priK(B) \in’ leakscr(S) and

N2 < timeLeak(priK(B), leakscr(S)))

implies not(h(ecShare(PK2,K) || decaps(C,K’)) \in knl(S)) .

The predicate states that if honest client A has sent to honest server B a key exchange initiation
message and has received back a key exchange reply message apparently sent from B with a
valid signature of the exchange hash, neither the KEM shared secret nor the two corresponding
ephemeral secret keys are revealed, the private host key of the server is compromised but the
compromise happens after the key exchange reply message is sent, then the intruder cannot
learn the shared secret. fwdSe and keySe are almost identical, except for the only difference in
the constraint about the compromise of the server private host key in the premise part. fwdSe

guarantees that even if the server’s private host key is compromised, shared secrets negotiated
before the compromise remain secure. Similar to keySe, fwdSe is also simply proved without
induction by using the two lemmas inv0 and secrecy:

red (inv0(s,k,k’,pk2,c) and

secrecy(s,b2,a,b,v,v2,css,css2,k,k’,pk2,c,sign,n,n2))

implies fwdSe(s,b2,a,b,v,v2,css,css2,k,k’,pk2,c,sign,n,n2) .

We cannot eliminate any constraint in the premise of fwdSe because of the same reasons
explained previously with keySe. The three above-mentioned constraints (1), (2), and (3) are
compulsory assumptions to guarantee the secrecy of a shared secret, that is, the signature of
the exchange hash in the reply message received must be correctly verified and the KEM shared
secret & the two KEM ephemeral secret keys must be not compromised. While with the server’s
private host key, we need to require that either the key is uncompromised or the compromise
happens after the sending of the key exchange reply message.
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5.3.3 Session identifier uniqueness property

During the key negotiation between two principals, the server authenticates himself/herself by
signing the exchange hash with his/her private host key and sending the signature to the client.
Besides that purpose, the exchange hash is also used as the session identifier for this connection.
This session identifier must be unique in order to be used by some higher-level protocols as
claimed in [96]. The following invariant specifies the uniqueness property of session identifiers:

op unique : Sys Prin Version Version Suites Suites

EcSecretK PqSecretK EcSecretK PqSecretK

Prin Version Version Suites Suites

EcSecretK PqSecretK EcSecretK PqSecretK -> Bool

eq unique(S,B,V,V2,CSs,CSs2,K,K’,K2,K2’,

B3,V3,V4,CSs3,CSs4,K3,K3’,K4,K4’) =

h(V || V2 || CSs || CSs2 || pubK(B) || ecPublic(K) ||

keygen(K’) || ecPublic(K2) || encapsC(keygen(K’),K2’) ||

h((K | K2) || (K’ & K2’))) =

h(V3 || V4 || CSs3 || CSs4 || pubK(B3) || ecPublic(K3) ||

keygen(K3’) || ecPublic(K4) || encapsC(keygen(K3’),K4’) ||

h((K3 | K4) || (K3’ & K4’)))

implies (K = K3 and K’ = K3’ and K2 = K4 and K2’ = K4’) .

The equation states that if two session identifiers are identical, the corresponding ephemeral
secret keys that construct the two sessions must be equal. Provided that all ephemeral secret
keys are one-time used, it can be deduced from unique that two session identifiers are always
different. unique is proved by reduction only, that is CafeOBJ directly reduces the invariant to
true:

red unique(s,b,v,v2,css,css2,k,k’,k2,k2’,b3,v3,v4,css3,css4,k3,k3’,k4,k4’) .

In summary, 17 additional lemmas are introduced to complete the verifications of the session
key secrecy, forward secrecy, and session identifier uniqueness properties.

5.3.4 Authentication property

The IETF Draft [84] states that the protocol provides server authentication. This property is
stated (from a client’s point of view) as follows: if client A performs a key negotiation apparently
with server B, then the server that A communicates with is really B. We attempt to specify
this property in CafeOBJ by the following predicate, where ?M is existentially quantified.

op auth : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat Nat -> Bool

eq auth(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2,?M) =

(not(A = intru or B = intru) and

not(decaps(C,K’) \in leakscr(S)) and
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Step-1 A A→ B : ECDHPK ||KEMPK

Step-2 I learns ECDHPK ||KEMPK

Step-3 I A2 → B : ECDHPK ||KEMPK

Step-4 B B → A2 : LKB || ECDHPK2 ||KEMC || SIGN

Step-5 I learns LKB || ECDHPK2 ||KEMC || SIGN

Step-6 I B → A : LKB || ECDHPK2 ||KEMC || SIGN

where I denotes the intruder

Figure 5.3: Counterexample of auth

not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and

not(priK(B) \in’ leakscr(S)) and

hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) and

hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2) \in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||

h(ecShare(PK2,K) || decaps(C,K’))),

SIGN))

implies

hbrRepM(B,B,A, pubK(B) || PK2 || C || SIGN, ?M) \in nw(S) .

The equation states that if honest client A has sent to honest server B a key exchange initiation
message and has received back a key exchange reply message apparently sent from B with a valid
signature of the exchange hash, neither the KEM shared secret, the two corresponding ephemeral
secret keys, nor the private host key of the server is revealed, then B has indeed sent the key
exchange reply message to A at some time denoted by ?M. We repeat again that it is wrong to
affirm B2 = B in the conclusion of auth because B2 may be the intruder, who replayed the key
exchange reply message originally sent by B. As a result, there exist two different messages in
the network: an original one sent by B and the other one replayed by the intruder. Note that ?M,
which is existentially quantified, must be used because the time when the original message was
sent by the honest server is unknown, in particular, it cannot be derived from the time when the
replaying message was sent by the intruder (i.e., N2). The ?-symbol prefix is not mandatory from
a syntactic point of view, but it helps to distinguish variables that are existentially quantified
and universally quantified.

However, a counterexample of auth is found, namely, the property stated by auth does not
hold. The counterexample can be found on the webpage mentioned before. Figure 5.3 briefly
explains how the counterexample can happen. According to the figure, there are mainly six steps,
where the first name at each step denotes the principal who performs the given action. In the
first and second steps, A sends two ephemeral public keys to B under a key exchange initiation
message, and then the intruder gleans them. Using the two public keys gleaned, in Step-3, the
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intruder tries to impersonate another client A2 to initialize a new session with B, sending the two
public keys just gleaned to B. Upon receiving the faking message, B believes that it was truly
sent from A2, and then in Step-4, B replies back to A2 with a key exchange reply message with
the public host key, an ECDH ephemeral public key, a KEM ciphertext, and a signature over the
exchange hash. In Step-5, the intruder once again intercepts the key exchange reply message,
gleaning all pieces of information in that message. In the final step, by using the information
just learned, the intruder tries to impersonate B to send a key exchange reply message to A.
After this step, there exists in the network a valid key exchange reply message whose creator
is the intruder, the seeming sender is B, and the receiver is A, i.e., the message in the form of
hbrRepM(intru,B,A,...). However, there does not exist a key exchange reply message with the
same content really sent by B to A in the network. B sent such a message to A2 instead. The
CafeOBJ code showing the transition sequence leading to this counterexample is presented in
detail in Appendix A.

The found counterexample can be regarded as a weakness of the protocol. This weakness
does not affect the confidentiality of session keys shared by honest participants. Indeed, I can-
not learn the shared secret derived from the keys generated by A and B depicted in Figure 5.3.
The intruder could only learn the public information sent in the messages intercepted and for-
ward/replay them to someone, but could not derive the associated secret information, such as
the KEM secret key and shared key.

5.3.5 Revising the exchange hash

To address the weakness described above and to make the protocol enjoy the authentication
property, we proposed to revise the protocol by including the identifiers of the client and the
server in the exchange hash. Precisely, the exchange hash is computed as follows:

H = hash(VersionA || VersionB || SuitesA || SuitesB || LKB ||

ECDHPKA
||KEMPKA

|| ECDHPKB
||KEMCB

||K || A ||B)

In this way, when the intruder tries to impersonate B to send the key exchange reply message
to A (Step-6 in Figure 5.3), A will not accept that message because the signature SIGN will not
be successfully verified. Upon reception of that message, A expects that the identifier of A is
included in the signature, but actually, SIGN is signed over A2 rather than A. Therefore, the
counterexample will be prevented.

That is the informal argument, to prove that revising the protocol in that way does indeed
make it enjoy the authentication property, formal verification must be conducted. We revise the
CafeOBJ formal specification accordingly and verify the authentication property again. With
the improved version, we successfully prove auth with the employment of IPSG. Besides, the
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three other properties remain secure with respect to the improved protocol. Note that we need
to slightly revise the four predicates specifying the four properties to make the client and the
server identifiers included in the exchange hash. Again, the proofs with respect to the improved
protocol are available on the webpage3.

IPSG has been used to produce the proof of auth. To this end, IPSG has been extended so
that it can handle existentially quantified variables based on the Skolemization process, a way of
removing existential quantifiers from a formula. This is done by introducing a Skolem constant
or a Skolem function to replace a variable that is existentially quantified. With variables bound
by existential quantifiers which are not inside the scope of universal quantifiers, the variables can
simply be replaced by Skolem constants. For example, ∃mP (m) can be changed to P (c), where
c is a suitable constant. With an existentially quantified variable inside universal quantifiers, the
variable can be replaced by a Skolem function on the variables that are universally quantified.
For example, ∀a∃mQ(a,m) can be changed to ∀a Q(a, f(a)), where f is a new function.

The 17 auxiliary lemmas can be reused to formally verify again the session key secrecy, for-
ward secrecy, and session identifier uniqueness properties with respect to the improved protocol.
To this end, we need to slightly revise 5 among those lemmas by simply adding the identifiers
of the client and the server concerned into the exchange hash. No new lemma is needed. The
remaining job is just to ask IPSG to produce the proofs again for the three properties and the
lemmas. The experimental results, which are available in the upcoming section, indicate that
IPSG took 1 second up to around 8 seconds to produce each invariant proof score, which is
reasonably small. Therefore, the verification process helps us to save a lot of time and effort.
Once a property has been successfully proved, when the protocol and/or the property are slightly
changed, the verification by proof scores allows us to reuse most of the auxiliary lemmas, while
the others are only needed to be slightly revised. Regenerating the proofs is trivial because it
is automated by the tool taking only a bit of time. This is an advantage of the verification ap-
proach compared to model checking-based and its variant approaches. When conducting model
checking, each time the protocol or the properties under verification are changed even a little
bit, verification should be redone from the beginning, meaning that it is time-consuming because
the model checker takes time to terminate for each verification experiment.

5.3.6 IPSG experimental results

In summary, to complete the formal verification of the four properties with respect to the im-
proved protocol, 20 lemmas have been conjectured and used. Table 5.1 reports the time taken
by IPSG to generate the proofs of those 20 lemmas and auth, which specifies the authentication
properties. Recall that keySe and fwdSe are simply proved without induction by using the lemma

3https://github.com/duongtd23/PQSSH
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Table 5.1: Time taken by IPSG to generate proofs (with respect to the improved protocol)

Invariant Time
(s)

No. open-close
fragments

auth 7.1 132
secrecy 9.3 192
inv0 1.0 69
inv1 1.8 95
inv2 1.2 72
inv3 1.5 84
inv4 1.6 86
inv5 6.6 120
inv6 8.4 359
inv7 1.0 70
inv8 1.1 66

Invariant Time
(s)

No. open-close
fragments

inv9 1.3 74
inv10 1.8 112
inv11 1.5 81
inv12 1.2 66
inv13 2.1 98
inv14 1.7 91
inv15 1.3 68
inv16 2.9 107
inv17 2.0 99
inv18 1.6 98

secrecy, while unique is proved by reduction only. In the table, the last column shows the num-
ber of open-close fragments in the generated proof of each invariant. The experiments have been
conducted on a MacBook Pro carrying 32 GB of memory with a processor i7 2.3 GHz.

Three lemmas inv16, inv17, and inv18 are used only for the auth’s proof, meaning that they
are not valid with the original protocol. The experimental results of the 17 remaining lemmas
(i.e., secrecy, inv0, . . . , inv15) with the original protocol are almost similar to those in Table 5.1
in terms of both the time taken and the number of open-close fragments generated.

5.3.7 Incorrect KEX_HBR_REPLY message format in the IETF Draft

The analysis reported above has been tackled with version 01 of the proposed protocol, which is
the latest version by June 2023. Initially, however, we conducted the analysis with version 004

instead, which was the latest version by the time we started. There is an essential difference
between the two versions, that is the IETF Draft version 00 actually defines the format of the
key exchange reply message as a string S_REPLY, where:

S_REPLY is the concatenation of S_PK1 and S_CT2. Typically, S_PK1 repre-
sents the ephemeral (EC)DH server public key. S_CT2 represents the ciphertext c

output of the corresponding KEM’s algorithm Encaps generated by the server which
encapsulates a secret to the client public key.

That means the server’s public host key and the signature over the exchange hash are not in-
cluded. The missing of these two parts may result in server authentication, which is stated as
a security property in the draft, is not guaranteed. Indeed, we have attempted to make the

4https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/00/
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CafeOBJ formal specification of the protocol, in which the key exchange reply message does not
contain the server public host key and the signature, and then we could point out counterex-
amples of both keySe and auth, meaning that both the session key secrecy and authentication
properties were not valid. The reason essentially is that the intruder can completely impersonate
server B to communicate with client A. The shared key that A believes is established with B is
available to the intruder because the opposite peer is actually the intruder. As a result, this lack
of server authentication also leads to a man-in-the-middle attack, i.e, in the connection between
A and B, the intruder in the middle of the connection does: (1) impersonates B, acting as a server
role to communicate with A, and (2) impersonates A, acting as a client role to communicate with
B.

This difference can be regarded as a writing mistake in the IETF Draft version 00 because it
has been corrected in the updated version 01. Moreover, both IETF Internet Standards of the
SSH Transport Layer protocol based on DH [96] and ECDH [140] consistently define the format of
such a message (SSH_MSG_KEXDH_REPLY in [96] and SSH_MSG_KEX_ECDH_REPLY
in [140]) include the server public host key and the signature over the exchange hash. Even
though the mistake has been corrected in the latest version, we have indeed found it in the
formal analysis initially conducted.

5.4 Limitations

In this case study, we have addressed the limitations of modeling the intruder’s capability by
some specific transitions as well as embedding the time information in the shared secrets used
in the PQ TLS case study. However, there are other two limitation points remaining unsolved.
First, regarding the threat model we used, the only novel point of the intruder’s capabilities is the
presumption that they can break classical key exchange algorithms. Under the assumption of the
presence of quantum computers, we expect the intruder will have some other novel quantum-
based capabilities in our future work. Second, IPSG is not able to automatically produce a
counterexample against an invalid invariant property. We repeat again that: (1) this is generally
a drawback of interactive theorem proving compared to the model checking approach, and (2)
doing theorem proving could help human experts to find counterexamples of non-trivial security
properties, where model checking may be unable to do so due to the state explosion problem.

5.5 Summary

We have presented in this chapter the formal analysis of the PQ SSH protocol, a quantum-
resistant version of the SSH Transport Layer protocol. Four properties have been taken into
account including (1) session key secrecy, (2) forward secrecy, (3) session identifier uniqueness,
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and (4) authentication. The analysis has formally verified that the protocol enjoys (1), (2), and
(3), while it does not enjoy (4). The protocol was then proposed to be slightly improved by
adding the identifiers of the client & server into the exchange hash. The formal verification
has confirmed that the improved protocol enjoys (4). The properties have been proved with
respect to an unbounded number of protocol participants and session executions, by using the
tool IPSG to produce the proof scores in CafeOBJ. Even though the verification process is not
completely automated, the use of IPSG allows us to only focus on only one task, namely to
conjecture lemmas. The reuse of most auxiliary lemmas has helped us to save a lot of time and
effort when conducting verifications again for the three properties (1), (2), and (3) with respect
to the improved protocol. The formal verification shares many commons with what has been
used in the PQ TLS verification case study presented in the previous chapter. However, there is
also a novel distinction in this case study, that is, we no longer modeled the intruder’s capability
of learning information from sent messages and forging messages by some specific transitions as
in the PQ TLS case study. Instead, we have chosen a more general way to model the intruder’s
capabilities, which results in at least two superiorities: (1) efforts can be saved when specifying
other cryptographic protocols because those transitions may be reused, and (2) making sure
that the intruder is given the full capability of learning information from messages exchanged in
the network and forging an arbitrary message synthesized from the information that has been
learned.

Similar to the PQ TLS verification case study, comprehending the protocol is the task that
takes the most time before conducting the formal analysis. The most difficult task would
be to comprehend the post-quantum cryptographic primitives used in the protocol, such as
CRYSTALS-Kyber KEM. The challenges in the analysis are also to come up with a reasonable
and strong threat model, comprehend the post-quantum cryptographic primitives, and abstract
them to use in the formal specification. Another challenge in the analysis is to find out the
general way to specify in CafeOBJ the attacker’s capability of fully controlling the network,
which was not carried out in the last PQ TLS verification case study.

Symbolic and computational approaches to cryptographic protocol verification are comple-
mentary to each other. Historically, both of them have been widely used for protocol security
analysis, resulting in the modern cryptographic protocols used today. To prepare for the up-
coming quantum computing era, their combination once again is necessary for security analysis
research to construct secure post-quantum cryptosystems. So far, however, to the best of our
knowledge, the number of case studies on symbolic verification of post-quantum cryptographic
protocols, like our case studies presented in this chapter and the previous chapter, is very limited.
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Chapter 6

Related work

In this chapter, we discuss some research closely related to our work presented in this thesis. We
mention some existing tools supporting formal verification with CafeOBJ as well as several most
advanced interactive theorem provers. We mention some case studies on security verification
of post-quantum cryptographic protocols as well as several state-of-the-art tools supporting
cryptographic protocol analysis.

6.1 CafeOBJ formal verification

Providing a formal specification written in CafeOBJ or Maude, CiMPG+F [125, 124], CITP [73],
and Creme [106] are three existing tools that can generate different kinds of formal proofs for
formal verification of invariant properties to some extent. CiMPG+F (CafeInMaude Proof
Generator & Fixer-upper) [125, 124], which is an extension of CiMPG, can infer proof scripts
of invariant properties from CafeOBJ specifications. Given an invariant property, to generate
its formal proof, similar to IPSG, CiMPG+F also requires human users to provide all necessary
lemmas and the input argument where induction is used. The formal verification of the property
is done by executing the generated proof script with the proof assistant CiMPA. CiMPG+F
conducts case splitting based on sort constructors, while the case splitting used by IPSG can be
regarded as based on constructors of Boolean, which are true and false. This difference results
in an advantage of CiMPG+F over IPSG, that is, with some case studies, CiMPG+F may use
fewer equations than IPSG to characterize a sub-case in the proof generated. To make it clearer,
let us return to the MCS protocol introduced in Section 3.4 and consider an example in the
following. Suppose that case splittings are used to categorize the location of process p in state
s into l1, l2, l3, or somewhere else. Four sub-cases are generated by each tool as depicted
in Figure 6.1, where sub-cases (1), (2.1), (2.2.1), and (2.2.2) of IPSG respectively correspond
to sub-cases (1), (2), (3), and (4) of CiMPG+F. IPSG uses the following three equations to
characterize the sub-case (2.2.1):
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(1) pc(s,p) = l1 (pc(s,p) = l1) = false

(2.1) pc(s,p) = l2 (pc(s,p) = l2) = false

(2.2.1) pc(s,p) = l3 (2.2.2) (pc(s,p) = l3) = false

(a) Case splitting by IPSG

(1) pc(s,p) = l1 (2) pc(s,p) = l2 (3) pc(s,p) = l3

(4) (pc(s,p) = l1) = false

(pc(s,p) = l2) = false

(pc(s,p) = l3) = false

(b) Case splitting by CiMPG+F

Figure 6.1: An example of case splitting by IPSG and by CiMPG+F

eq (pc(s,p) = l1) = false .

eq (pc(s,p) = l2) = false .

eq pc(s,p) = l3 .

While CiMPG+F uses only one equation to characterize the sub-case (3):

eq pc(s,p) = l3 .

CiMPG+F is able to do so because l1, l2, and l3 are constructors of the sort Label, i.e., the sort
of process locations. Initially, CiMPG+F was dedicated to fixing incomplete proof scores during
the proof script generation of CiMPG. That is, if CiMPG cannot generate proof scripts properly
because of incomplete proof scores input, CiMPG+F will be invoked to infer the proof for the
missing part. To do so, CiMPG+F uses a configurable bounded depth. For each sub-case in
which CiMPG+F finds that the corresponding proof score part is missing, CiMPG+F tries to
check whether the sub-case can be reduced to true by using induction hypotheses as premises or a
case splitting can be used. When a case splitting is used, the procedure is recursively re-invoked
provided that the total number of case splitting used so far is smaller than the bounded depth.
If CiMPG+F could solve the sub-case up to the configured depth, it returns the part of the proof
script for the missing proof score; otherwise, a :postpone command is returned, meaning that
the sub-case is left to human users for resolving. IPSG produces proof scores, while CiMPG
produces proof scripts from proof scores. As we already mentioned previously, a proof score
is typically easier for human users to understand and/or analyze than the corresponding proof

112



script because, for example, we can see clearly the set of equations characterizing a sub-case in
the proof score, while it is not straightforward to do the same with the proof script. Besides,
CiMPG may take a quite long time to produce proof scripts when complicated specifications
and properties are taken into account. For instance, as reported in Chapter 3, with the TLS 1.2
protocol, CiMPG took nearly 10 hours to complete the job.

D. Gâinâ et al. [73] have developed CITP (Constructor-based Inductive Theorem Prover),
which is also implemented in Maude using its meta-level functionalities. CITP can automatically
verify invariant properties if all needed lemmas are provided. Similar to IPSG and CiMPG+F,
CITP is essentially based on inductive proof, however, it takes as inputs formal specifications
written in Maude rather than in CafeOBJ. The difference between the two specification languages
leads to some additional jobs that would be required for human users. For instance, when
writing Maude specifications, human users are supposed to define the counterpart of the CafeOBJ
predicate _=_ (which is typically defined as _=?_). Although the predicate _==_ is pre-defined
in Maude, it cannot be used. With IPSG, it takes specifications written in CafeOBJ, and so
we can straightforwardly use the built-in predicate _=_. To handle case splitting, CITP requires
human users to annotate metadata attributes to equations that will be used for case splitting in
the Maude specification. Afterward, the users are supposed to write a list of proof tactics, where
each tactic can be, for example, applying theorem of constants, case splittings, implication, and
reduction, to do theorem proof. With IPSG, case splitting is conducted automatically without
annotating any metadata attributes. For the verification, we only need to declare invariants &
lemmas, and indicate the argument where induction is used but need not do anything else. A
case study using the Alternating Bit Protocol [18] was presented in the paper to demonstrate
the practicability of CITP.

M. Nakano et al. [106] have proposed an automated invariant verification method as well as
a supporting tool, namely Creme. OTSs are also used as state machines, but formal specifica-
tions need to be written in Maude. They have shown that Creme could automatically prove the
NSLPK authentication protocol [98] satisfies the secrecy property without human creativity in
providing auxiliary lemmas. It is not clear whether Creme is applicable to other case studies,
especially complicated ones, such as the PQ TLS and PQ SSH protocols presented in this the-
sis. Generally speaking, systematically conjecturing correct lemmas for any formal verification
problem is an issue that has no solution. IPSG although leaves the lemma conjecture task to
human users, it has been demonstrated to be applicable to various systems/protocols. Because
Creme takes as input Maude specification similar to CITP, users are also supposed to do some
additional jobs when specifying the protocol under verification, such as to define the counterpart
of the CafeOBJ predicate _=_.

The induction approach has been studied for security verification of cryptographic protocols
by Lawrence C. Paulson [120]. In his inductive approach, the protocol under verification is
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formalized as a set of traces. Each trace is a list of events, such as, Alice sending a message M

to Bob. Desired security properties are then specified and proved by induction on traces. The
verification is assisted by the interactive theorem prover Isabelle/HOL [108]. The verification
process requires an amount of manual effort to guide the proof, i.e., to specify a series of tactics
(procedures) to apply, such as to tell Isabelle/HOL to apply rules & theorems, to use lemmas, and
to do case splittings. Paulson’s verification approach and our approach both rely on induction,
but our tool IPSG does case splitting automatically. Automating proof tactics in order to attain
the tactic series and the proof of the theorem automatically has been studied well, resulting
in many automated tactics being introduced and integrated into Isabelle/HOL over time. In
summary, the only essential difference is that just different theorem provers and different tools
are used for the two verification approaches.

In addition to the induction-based verification method, there exists also the simulation-based
method for verifying state machines enjoy invariant properties. Simulation has originally been
proposed and used by N. A. Lynch [99] for formal verification of distributed algorithms. The
simulation-based verification involves two state machines: an abstract state machine and a
concrete state machine. Simulation proves that an abstract state machine simulates a concrete
state machine or a concrete state machine is a proper implementation of an abstract state
machine. We may need to use mathematical induction to prove that an abstract state machine
enjoys some invariant properties so that we can conclude that a concrete state machine enjoys
the invariant properties as well from the simulation proof. We may also need to prove that the
simulation preserves the invariant properties. K. Ogata and K. Futatsugi [117] have conducted
a case study in which they formally proved that the Alternating Bit Protocol (ABP) [18] enjoys
an invariant property by both the induction-based technique (by writing CafeOBJ proof scores)
and the simulation-based technique. In the simulation-based proof, two more abstract protocols,
namely BCP and SCP, were used. CafeOBJ and OTSs were used to formalize and specify all
protocols as state machines. They defined a simulation from an OTS S to an OTS SA, which
is more abstract than S, as a relation r between the reachable states of S and those of SA
that satisfies some conditions. They then proved a theorem stating that a state predicate p is
invariant wrt S if a state predicate pA is invariant wrt SA and p is deduced from pA assuming
the simulation relation r. The OTS formalizing ABP acts as S, while the OTSs formalizing
the abstract protocols (BCP and SCP) act as SA, from that the desired property of ABP was
proved. They concluded that there is no significant difference between the two formal proofs
(induction-based and simulation-based) in terms of the proof sizes.

Extending the simulation relation between two OTSs, D. D. Tran et al. [144] have defined a
variant of it, a so-called observably equivalent simulation. They have reported two case studies
in which the MCS and Anderson mutual exclusion protocols [102, 9] are formally verified that
enjoying the mutual exclusion property with the simulation-based technique. They made two
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modified versions of the MCS protocol called MCS2 and MCS3 such that MCS2 observably
equivalently simulates MCS and MCS3 observably equivalently simulates MCS, and proved that
the observably equivalent simulations preserve the mutual exclusion property. The two formal
proofs of MCS obtained by the induction-based technique and the simulation-based technique
are comparable in terms of the proof sizes. However, they completed the proof by the simulation-
based technique earlier than the one by the induction-based technique even though they started
the latter formal verification earlier. With the Anderson case study, they attempted but could
not complete the proof that the protocol enjoys the mutual exclusion property by the induction-
based technique, which is mostly because an unbounded series of lemmas are required. They
then made an abstract version of the protocol by replacing the finite array with an infinite array,
which is called A-Anderson, and proved that A-Anderson simulates Anderson and the mutual
exclusion property is preserved by the simulation relation used. Subsequently, Anderson was
proved to enjoy the mutual exclusion property because A-Anderson was already proved to enjoy
the property by the proof score method (or induction-based method) [145]. Through the two
case studies, they concluded that the simulation-based technique is helpful for them to complete
the verifications of the two protocols.

Refinement, which is the reverse direction of simulation, has been extensively used in one
main stream of formal methods, such as Vienna Development Method (VDM) (or VDM++) [83],
B method [3] and Event-B [2], Z method [129], and Abstract State Machine (ASM) [34]. Start-
ing with a very abstract formal specification (or requirements specification), a bit more concrete
formal specification is made such that the latter refines the former or the latter is a proper
implementation of the former, which is repeated until an executable program or a detailed speci-
fication that can be straightforwardly written in a programming language is obtained. This way
to develop software systems is known as the correct-by-construction method. With this method,
we can verify the final specification/implementation by verifying each individual refinement step.

There exist many proof assistants (interactive theorem provers) in the field of theorem prov-
ing, such as Isabelle/HOL [108], ACL2 [85], and Coq [24]. Through human-computer collabo-
ration, those provers facilitate the development of formal proofs for some specific mathematical
theorems. Not limited to only mathematical theorems like those theorem provers, CafeOBJ
is a high-level specification language and also a verification tool that can be used for a wide
variety of systems. CafeOBJ is equipped with many useful features and a powerful specification
syntax for writing formal specifications and required properties of even complex systems. For
example, module expressions, modules instantiated parameters using views, operators & equa-
tions for specifying system transitions, and the flexible mix-fix syntax are some superiorities of
CafeOBJ. Particularly, talking about cryptographic protocols, these features allow the users to
specify algebraic properties of cryptographic functions, such as Diffie-Hellman exponentiation
and cancellation between symmetric public encryption & decryption.
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It is worth mentioning some lemma conjecture techniques because lemma conjecture can be
regarded as one of the most challenging tasks in theorem proving. When we want to prove
that a state predicate p is an invariant wrt a state machine S by induction, there often exists a
non-trivial case such that p(υ) holds but p(υ′) does not, where υ → υ′ is a transition instance.
To deal with such a case, we need to find pstr that is stronger than p such that pstr(υ) does not
hold (which implies the source υ is not reachable wrt S) and to prove that pstr is an invariant wrt
S. pstr is typically in the form p∧ p′ and p′ is typically in the form q1∧ . . .∧ qn. LS tries to make
each individual lemma q1, . . . , qn as strong as possible. Whereas LW tries to make some qi a bit
weaker such that it is still enough to make pstr inductive and it is possible to prove qi. However,
J. M. Rushby [131] has demonstrated that the use of disjunctive invariants q1 ∨ . . . ∨ qn makes
invariant verification easier for synchronous concurrent (and/or distributed) systems. Precisely,
with his technique, pstr is in the form p∧ (q1 ∨ . . .∨ qn). LW, together with LS, can be regarded
as a generalized version of his technique. Instead of p ∧ q1 ∧ . . . ∧ qi ∧ . . . ∧ qn, we prove that
p ∧ q1 ∧ . . . ∧ q′i ∧ . . . ∧ qn′ is an inductive invariant wrt a system, where q′i is weaker than qi

(and n′ is much less than n in our case study). q′i may be in the form q′i1 ∨ . . . ∨ q′im. We
have demonstrated that LW may be effective for asynchronous concurrent (and/or distributed)
systems as well.

6.2 Post-quantum cryptographic protocol analysis

There are essentially two main approaches to security analysis of cryptographic protocols includ-
ing symbolic analysis and computational analysis. In the survey [31], plenty of case studies and
tools for analyzing cryptographic protocols in both the symbolic and computational approaches
have been discussed. In the symbolic approach, talking about the class of post-quantum cryp-
tographic protocols, to the best of our knowledge, [81] and [79] are the only two case studies
on the security analysis of these protocols. The former has presented a formal analysis of the
Ephemeral Diffie Hellman Over COSE (EDHOC) protocol [133], a variant of the Diffie Hellman
(DH) protocol designed by the IETF’s Lightweight Authenticated Key Exchange Working Group
to be used on IoT devices. EDHOC offers multiple options for authentication methods and key
exchange mechanisms. Among them, a so-called KEM-based version supports post-quantum
security, which is achieved by replacing DH with a quantum-resistant KEM. The KEM-based
version of the protocol is also covered in their analysis. An interesting point in this work is that
they used Sapic+ [37] protocol verification platform so that their formal specification written
in pi-calculus can be exported to some other security analyzer tools including ProVerif [33] and
Tamarin [19].

WireGuard [57] is a VPN protocol focusing on simplicity, fast speed, and high performance.
Facing the quantum attack threat, A. Hülsing et al. [79] have proposed its quantum-resistant
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version, namely post-quantum WireGuard (PQ-WireGuard), and presented its symbolic verifi-
cation of the desired security properties inherited from the WireGuard protocol. The symbolic
proof used Tamarin prover [19], a well-known formal method tool for symbolic verification of
cryptographic protocols. They first symbolically modeled the primitives, messages, etc. used in
the protocol as function symbols and terms, and then specified the desired security properties.
To do so, the security properties have been formalized as Tamarin lemmas, and some auxiliary
lemmas have been introduced as well. Moreover, the authors also presented security verification
in the computational model. In comparison, the symbolic proof exposes the superiority to the
computational proof in two points: first, it covers more security properties, and second, it is
computer-verified. On the other hand, the computational proof gives higher security assurances
because it took probability and complexity into account, and fewer idealizing assumptions were
made.

Formal methods with their assistant tools have been successfully used for cryptographic
protocol verification. Scyther [47] is a cryptographic protocol analysis based on multiset rewrit-
ing [103]. Scyther can provide a security verification with respect to an unbounded number of
sessions, but it supports only a fixed set of cryptographic primitives (symmetric & asymmetric
encryptions and digital signatures) and does not allow for user-specified equational theories. Its
successor, namely Tamarin [101, 19], does support equational theories. Tamarin operates based
on multiset rewriting and its verification algorithm is based on constraint solving. A specifica-
tion written in Tamarin is essentially a state machine where each state is an AC-collection of
facts. Transitions between states are defined by rules, which specify the protocol execution, the
behavior of honest parties as well as the capabilities of the Dolev-Yao intruder [56]. A security
property is specified as a trace property, then Tamarin checks the satisfiability and/or the va-
lidity of the formula formalizing the property under verification. If it is the validity checking,
Tamarin first converts the formula to its negated form in order to perform a satisfiability check-
ing instead. After that, Tamarin performs an exhaustive, symbolic search based on constraint
solving until either a satisfying trace is found or no more rewrite rules can be applied. However,
the search is not guaranteed to be terminated for every analysis attempt, and when it is the
case, the tool allows manual interaction from human users to operate it with the supplementa-
tion of some extra lemmas. There exist many case studies on security analysis of cryptographic
protocols with Tamarin, such as the Authentication and Key Agreement (AKA) protocol for
5G Authentication [20] and the IEEE 802.11 WPA2 protocol [46]. Roughly speaking, facts and
rules in Tamarin correspond to observers and transitions, respectively, in OTSs of the proof
score verification approach. Tamarin and our verification method both require manual efforts
on conjecturing lemmas. On the other hand, Tamarin’s verification algorithm and the simul-
taneous induction proof method are technically different, and the applications of Tamarin are
limited to cryptographic protocols only, while IPSG is applicable to various systems/protocols
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as demonstrated in Chapter 3.
ProVerif [28, 33] is an automated tool for symbolically reasoning cryptographic protocols

with the presence of a Dolev-Yao intruder [56]. A variant of the pi-calculus [30] is used to
model a cryptographic protocol, and then ProVerif translates it to a set of Horn clauses. This
Horn clause representation makes some abstractions, which is the cost for the support of an
unbounded number of sessions. Given a security property that we want to prove, the tool
reduces the problem of finding an attack against the property to the derivability of a fact on the
Horn clauses representing the protocol execution. If the fact is not derivable from the clauses,
the protocol is verified to enjoy the property. Otherwise, there may be an attack violating the
property under analysis, but it may also be a “false attack”, that is the found derivation actually
does not correspond to a real attack. Using ProfVerif, a number of cryptographic protocols
have been analyzed, such as LINE [134], Signal [86], and the ARINC823 avionic protocols [32].
On the one hand, similar to Tamarin, the applications of ProVerif are limited to cryptographic
protocols, while IPSG supports a more wide range of systems/protocols. On the other hand,
ProVerif can produce a counterexample violating the security property under analysis, which
IPSG cannot. However, the counterexample found by ProVerif does not always represent a
correct attack, which is a weakness of ProVerif. To show why ProVerif can output a false attack,
let us consider a simple protocol example with the following two exchanged messages:

(i) A→ B : x← senc(k, senc(k, s))

(ii) B → A : sdec(k, x)

where senc and sdec denote the symmetric encryption and decryption, respectively. k is a shared
key supposed to be known by only A and B. A choose a secret s, encrypts it with the key k

twice, obtains a ciphertext x, and sends x to B. On reception of x, B decrypts it with the key k

and sends the result back to A. We would like to verify the secrecy of s. The protocol execution
is specified in ProVerif as the following process:

new k: key; out(c, senc(k,senc(k,s)));

in(c, x: bitstring); out(c, sdec(k,x))

The first line indicates A outputs to public channel c the ciphertext x. The second line indicates
B receives x from channel c and performs the decryption. When translating to Horn clause
representation, the process above has the same representation as the following process:

new k: key; out(c, senc(k,senc(k,s)));

!in(c, x: bitstring); out(c, sdec(k,x))

where the replication !in() is the infinite composition in() | in() | .... As a result, ProVerif
thinks that the result of the first decryption, i.e., senc(k, s), can be sent again to the input,
and then the obtained result, i.e., secret s, is outputted to the public channel c. Afterward,
the intruder can easily grasp it. However, this is impossible in reality because the input can be
executed only once. The invalid attack was found because ProVerif made an abstraction when
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translating processes to Horn clause representations.
Maude-NPA [65] is another formal method tool for cryptographic protocol analysis based on

narrowing & rewriting logic [68]. The tool is implemented in Maude [43, 62]. The Dolev-Yao
intruder model [56] and the strand model [143] are used to model the intruder’s capabilities.
In this manner, the intruder is given the capability of fully controlling the network, for exam-
ple, intercepting & modifying messages and impersonating some protocol participants to send
some messages to other participants. For the analysis, Maude-NPA uses a backward narrowing
reachability analysis modulo an equational theory. Narrowing [43] is a generalization of term
rewriting that allows logical variables in subject terms and replaces pattern matching by unifica-
tion, which provides Maude-NPA with symbolic execution capabilities. The backward narrowing
reachability analysis starts from a final insecure state pattern specified by human users that rep-
resents insecure states, a so-called attack pattern, to check whether it is reachable from an initial
state, which has no further backward steps. If that is the case, the protocol is insecure with the
attack; otherwise, it is secure against the attack. Roughly speaking, the attack pattern and the
initial state (if found) in Maude-NPA correspond to the negated formula formalizing the validity
property and the satisfying trace (if found), respectively, in Tamarin. The exhaustive search has
pros as it is fully automated, but it poses cons because the search would take a long time to
terminate when the state space is large. Several optimization techniques to reduce the search
state space have been developed [66, 65, 67], such as to generate formal grammars representing
terms (states information) unreachable from initial states, but the problem remains a limita-
tion of Maude-NPA. In contrast, running time is not a problem with our verification approach
presented in this thesis since proof score execution normally takes only a short time. However,
the proof is not fully automated because manual efforts are spent to construct some additional
lemmas.

Security properties of cryptographic protocols can be classified into two categories: trace
properties and equivalence properties. The former are properties that are defined on each execu-
tion trace of the protocol, where secrecy and authentication are the two most basic ones. The
latter are properties stating that the attacker cannot distinguish two processes, so they can also
be called indistinguishability properties. For example, considering the Helios voting protocol [4]
with two honest participants A and B, and two voting options #1 and #2, we would like to
verify the vote privacy property, which states that the attacker cannot distinguish two instances
of the protocol execution: (1) A votes for option #1 while B votes for option #2, and (2) A votes
for option #2 while B votes for option #1. In this thesis, such properties and protocols have not
been considered, we leave it as a piece of our future work. DEEPSEC [38] is a verification tool
dedicated to verifying equivalence properties of cryptographic protocols. The tool decides trace
equivalence for cryptographic protocols that are specified in a dialect of the applied pi calcu-
lus [1]. Given two processes P1 and P2 representing two protocol execution instances, DEEPSEC
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constructs a so-called partition tree to guide decision of equivalence of the two processes. Each
node in this tree consists of a set of symbolic processes and constraints. From the root node,
which contains P1 and P2 and empty constraints, the tree is constructed from top to down based
on some rules. If there exists a node in the tree that does not contain both a process originating
from P1 and a process originating from P2, then the two processes are not equivalent, or the
property under verification is not satisfied. Otherwise, the property is proved. A drawback of
DEEPSEC is that it supports only proof for a bounded number of protocol executions.

The proof scores approach has been used to formally verify the TLS 1.0 handshake proto-
col [6] by K. Ogata and K. Futatsugi [110]. L. C. Paulson [119] has also analyzed the TLS 1.0
handshake protocol with his inductive method [120] and the proof assistant Isabelle/HOL [108].
Although verification of designs and specifications of cryptographic protocols has significantly
contributed to their reliability, some researchers claimed that formal verification by using some
formal specification languages to specify cryptographic protocols often lacks some aspect of de-
tails. They then proposed to verify detailed protocol implementations and deployments [26, 27,
50]. Their verification method consists of selecting a part of the implementation and writing
additional verification harness code that specifies the attacker model, the cryptographic assump-
tions, and the target security properties, and then compiling their combination to ProVerif [28].
Because the verification toolchain is automated, one can easily re-verify the code base as it
evolves, like regression testing. On the one hand, this verification technique has the benefit of
not having to worry about some potentially erroneous details of the protocol implementation
code being missed. On the other hand, the verification may be very costly. First, the verifier may
take a very long time to terminate or even may not terminate in some circumstances, especially
with a large implementation. Second, a large amount of memory may be consumed.
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Chapter 7

Conclusion

In this chapter, we summarise the work have been done and discuss several lines of our future
work.

7.1 Concluding remarks

This thesis has presented a formal verification approach with the employment of the CafeOBJ
algebraic specification language, applied to verify the requirement properties of systems includ-
ing concurrent and distributed systems. Although the approach has been demonstrated to be
applicable to various systems/protocols, this thesis has mainly focused on reporting two verifi-
cation case studies with two post-quantum cryptographic protocols, namely PQ TLS and PQ
SSH.

We have proposed an approach to automation of the proof score writing process for formal
verifications of invariant properties and implemented the supporting tool IPSG. This has been
motivated by the fact that writing proof scores is time- and effort-consuming, especially with
complicated systems or specifications, and they are subject to human errors because they are
user-defined, while CafeOBJ does not check their correctness. To demonstrate the efficiency and
the practicability of the tool, experiments with various systems/protocols have been conducted,
ranging from a classical key distribution protocol to authentication protocols, from a real-time
system to mutual exclusion protocols, and from a distributed protocol to real cryptographic
protocols currently in use. Given a CafeOBJ formal specification and an invariant property list,
the tool can produce the proof scores of those properties provided that all necessary lemmas
are given as well. Lemma conjecture is indeed a creativity task, which IPSG leaves to the users
conducting formal verification. In this thesis, we have also proposed the Lemma Weakening tech-
nique for conjecturing lemmas. A non-trivial invariant typically cannot be proved standalone,
instead, we often prove a stronger version of it, which is in the form of a conjunction of that
invariant and some auxiliary lemmas. Lemma Strengthening is typically used to make each of
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such lemmas generic enough, otherwise, its proof may be tough or even impossible. We found,
however, that Lemma Weakening, which replaces a lemma with a weaker version of it, is an
effective way to make the verification attempt of the MCS protocol converge.

PQ TLS, a quantum-resistant version of the TLS 1.2 protocol, has been proposed by the
Amazon Web Services team as a precaution against the quantum attack threat. We have con-
structed a comprehensive symbolic model of the proposed protocol, specified it in CafeOBJ, and
formally proved the claimed security properties with the employment of the tool IPSG. The
CafeOBJ specifications cover both the full handshake and abbreviated handshake modes, and
both cases when client authentication is requested and when it is not. The three desired security
properties have been proved, including session key secrecy, forward secrecy, and authentication.
The formal verification has been achieved under a threat model with the presence of an active
attacker who can control the network. The attacker could break the classical key exchange al-
gorithms, i.e., ECDH, by utilizing the power of large quantum computers. Moreover, the threat
model has also considered the compromises of (1) symmetric handshake keys, (2) ECDHE secret
keys, (3) PQ KEM secret keys, and (4) long-term private keys of honest principals.

PQ SSH has been proposed as a quantum-resistant version of the SSH Transport Layer
protocol, where Amazon Web Services is also one of its authors. This thesis has formally
verified that PQ SSH enjoys the three desired security properties, including session key secrecy,
forward secrecy, and session identifier uniqueness. Similar to the PQ TLS verification case
study, we first formally specified the protocol in CafeOBJ, and then used IPSG to generate
the proofs of the three properties. However, in this case study, for the threat model, we have
used more general transitions to model the intruder’s capability of learning information and
forging messages, making sure that the intruder is given the full capability of forging an arbitrary
message synthesized from the information that has been learned. With another property, namely
the authentication property, we have found a counterexample showing that the protocol does not
enjoy the property, although what we found does not affect the confidentiality of session keys
shared by honest participants. We then proposed to slightly revise the protocol by adding the
identifiers of the client and the server into the exchange hash. After revising the CafeOBJ formal
specification accordingly, we could verified that the improved protocol enjoy the authentication
property as well as the three other properties.

Through the two case studies with PQ TLS and PQ SSH, we have once again demonstrated
that IPSG is efficient and applicable to even complicated protocols. Even though the verification
process is not completely automated, the use of IPSG allows us to only focus on only one task,
namely to conjecture lemmas. Once a property has been successfully proved, the automation
of the tool could help us to save a lot of time and effort when conducting verifications again
after the protocol and/or the property are slightly changed. This is an advantage of the verifica-
tion approach compared to model checking-based and its variant approaches. When conducting
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model checking, each time the protocol or the properties under verification are changed even a
little bit, verification should be redone from the beginning, meaning that it is time-consuming
because the model checker takes time to terminate for each verification experiment. With the
rapid advance in quantum computer construction over the years, large-scale quantum computers
seem closely available in the near future. Cryptographers have proposed more and more post-
quantum cryptographic protocols. Thus, it is indeed very useful and meaningful to apply formal
method to post-quantum cryptographic protocol security verification like our work presented
in this thesis. Historically, it took several decades with the involvement of many verification/-
analysis approaches to construct the modern cryptographic protocols used today. Therefore,
to prepare for the upcoming quantum computing era, it is crucial to start research on building
post-quantum cryptographic protocols and verifying/analyzing their security now.

7.2 Future work

In addition to PQ TLS and PQ SSH, there exist some more proposals by some IETF working
groups to standardize new post-quantum cryptographic protocols, among them including (1) a
quantum-resistant version of the Internet Key Exchange Protocol Version 2 (IKEv2) [71], (2)
an alternative quantum-resistant version of IKEv2 [136], and (3) post-quantum OpenPGP [88].
One piece of our future work is to conduct formal verification/analysis of these protocols. The
IKE protocol is used to set up a security association (SA) in the Internet Protocol Security
(IPsec) protocol [72]. The IPsec protocol provides secure encrypted communication between two
computers over an Internet Protocol network, where the most typical application is to use to set
up virtual private networks (VPNs). IPsec operates at the Network Layer, the 3rd layer of the
OSI model, which is its essential difference from SSH and TLS. Dealing with the quantum attack
threat, the IETF Draft [71] defined a post-quantum version of IKEv2 for protecting today’s VPN
traffic against future quantum computers. The IETF Draft [136] proposed an alternative post-
quantum version of the protocol, addressing the problem that [71] did not provide protection
for IKE SA against quantum attackers from the very beginning when an initial IKE SA was
created. It was believed no sensitive information is transferred over IKE SA and so it suffices
to protect only IPsec traffic. However, it is claimed in [136] that the lack of protection for an
initial IKE SA might be unacceptable in some situations. Post-quantum OpenPGP [88] defined
a public-key algorithm extension for the OpenPGP protocol [69], one of the standard protocols
for encrypting and decrypting data. OpenPGP is widely used for email encryption, whereas,
VPNs are widely used nowadays to protect the user’s personal data and communications sent
over public networks. Therefore, it is worth conducting security analyses of the post-quantum
proposals of these protocols.

It will be better if the running performance of IPSG could be improved so that the time
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taken to generate proofs of complicated case studies could be reduced. One possible way to do
so is by parallelizing the tool. Recall that for each induction case, IPSG tries to reduce the term
representing the target goal of that induction case. If the obtained result is a composite term
different from true and false, IPSG will select a sub-term of it, say t′, and split the case into
two sub-cases: one when t′ holds and another when it does not. For each of the two sub-cases,
the same procedure is applied. Therefore, the proof of each induction case can be produced
independently. It means that one possible way to parallelize the tool is to parallelize the proof
generation of induction cases. Maude 3.2 is equipped with functionalities supporting concurrent
computation so that we can implement that idea without difficulty. A coordinator-worker model
will be used with one coordinator and multiple workers. Initially, each worker is in the idle state,
and a task queue is defined where each task (job) is in charge of generating the proof for an
independent induction case. An idle worker takes a task from the task queue, updating its state
to different from idle to indicate it is unable to receive a new task. Upon finishing the task, it
sends the result to the coordinator, resets its state to idle, and ready to receive another task
from the task queue. In this way, workers can handle tasks in parallel on each core processor of
a single computer so that the running performance of the tool can be improved.

In the context of cryptographic protocol verification, security properties can be classified
into two categories as mentioned before: trace properties and equivalence properties. The prop-
erties considered in the PQ TLS and PQ SSH protocols, such as the secrecy and authentication
properties, all are trace properties, which can be defined on each execution trace of the protocol
under verification. On the other hand, an equivalence property (or indistinguishability property)
states that the attacker cannot distinguish two processes representing two protocol execution
instances. Privacy property of voting protocols, such as [4, 49, 147], is the most common prop-
erty that needs to be expressed in a form of an equivalence property, but cannot be in a form
of a trace property. Recall that the privacy property of the Helios voting protocol [4] with two
honest participants A and B, and two voting options #1 and #2 states that the attacker cannot
distinguish two instances of the protocol execution: (1) A votes for option #1 while B votes for
option #2, and (2) A votes for option #2 while B votes for option #1. This kind of protocol
and property has not been taken into account in this thesis. Therefore, as one line of our future
work, we are also interested in conducting some formal verification case studies with equivalence
properties.
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Appendix

A PQ SSH: auth counterexample

In the PQ SSH case study, recall that auth formalizes the authentication property. A counterex-
ample of auth has been found, where the transition sequence leading to the counterexample is
as follows:

open INV .

ops s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 : -> Sys .

ops a b a2 : -> Prin . op c : -> PqCipher .

ops css css2 : -> Suites . ops v v2 : -> Version .

ops k k2 : -> EcSecretK . ops pk’ : -> PqPublicK .

ops k’ k2’ : -> PqSecretK . op sign : -> Data .

ops pk pk2 : -> EcPublicK .

-- some conditions

eq (a = intru) = false . eq (a2 = intru) = false .

eq (b = intru) = false . eq (a = a2) = false .

eq (k = k2) = false . eq (k’ = k2’) = false .

-- macros

eq pk = ecPublic(k) . eq pk2 = ecPublic(k2) .

eq pk’ = keygen(k’) . eq c = encapsC(keygen(k’), k2’) .

eq sign = sign(priK(b), h(v || v2 || css || css2 ||

pubK(b) || ecPublic(k) || keygen(k’) || ecPublic(k2) ||

encapsC(keygen(k’), k2’) || h((k | k2) || (k’ & k2’)))) .

-- a sends {pk || pk’} to b

eq s1 = cVer(init,a,b,v) .

eq s2 = sVer(s1,a,a,b,v2,v) .

eq s3 = cKexInit(s2,b,a,b,css,v,v2) .

eq s4 = sKexInit(s3,a,a,b,css2,v,v2,css) .

eq s5 = cHbrInit(s4,b,a,b,k,k’,v,v2,css,css2) .

-- intru gleans the message, impersonates a2, and sends {pk || pk’} to b

eq s6 = fkHbrInit(s5,a2,b,pk,pk’) .

eq s7 = fkVer(s6,a2,b,v) .

eq s8 = sVer(s7,intru,a2,b,v2,v) .

eq s9 = fkKexInit(s8,a2,b,css) .

eq s10 = sKexInit(s9,intru,a2,b,css2,v,v2,css) .

eq s11 = sHbrReply(s10,intru,a2,b,k2,k2’,v,v2,css,css2,pk,pk’,1) .

-- intru gleans the message, impersonates b, and sends {pk2 || c || v-sign} to a

eq s12 = gBasic(s11,v,css,pubK(b)) .

eq s13 = fkHbrReply(s12,b,a,pubK(b),pk2,c,sign) .
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-- time(s13) is 4, which can be check by command "red time(s13) ."

-- to check there does not exist such a hbrRepM message (in the conclusion part of auth)

in the network,

-- we show that for each ?M = {0,1,2,3}, auth is always false

red auth(s13,intru,a,b,v,v2,css,css2,k,k’,pk2,c,sign,0,3,2) . -- result: false

red auth(s13,intru,a,b,v,v2,css,css2,k,k’,pk2,c,sign,0,3,1) . -- result: false

red auth(s13,intru,a,b,v,v2,css,css2,k,k’,pk2,c,sign,0,3,0) . -- result: false

red auth(s13,intru,a,b,v,v2,css,css2,k,k’,pk2,c,sign,0,3,3) . -- result: false

-- message hbrRepM(b,b,a2,...,2) is in the network,

-- but message hbrRepM(b,b,a,...,2) is not

red hbrRepM(b,b,a2, pubK(b) || pk2 || c || sign, 2) \in nw(s13) . -- result: true

red hbrRepM(b,b,a, pubK(b) || pk2 || c || sign, 2) \in nw(s13) . -- result: false

close

Thirteen fresh constants s1, . . . , s13 of the sort Sys denote thirteen states in which there is a
sequence of transition instances: init → s1, s1 → s2, . . . , s12 → s13. The five macros pk, pk2

pk’, c, and sign are used because there are several occurrences of the corresponding terms in
the open-close fragment. Note, however, that their employments are not mandatory. Running
this open-close fragment, false will be returned for the first four red commands, true will be
returned for the fifth one, and false will be returned for the last one. From the initial state,
client a starts sending a version exchange message to server b, and the system state changes to s1.
b then replies back to a with another version exchange message. Afterward, a and b exchange a
pair of key exchange algorithms messages, and the system state changes to s4. a then sends two
ephemeral public keys pk and pk’ to b under a key exchange initiation message, and the system
state changes to s5. Meanwhile, the intruder also gleans the two public keys. Then, using the
two public keys gleaned, the intruder tries to impersonate another client a2 to send them to b

(the system state changes to s6). The intruder also impersonates a2 to consecutively exchange
with b a pair of version exchange messages (the system state changes to s8) and a pair of key
exchange algorithms messages (the system state changes to s10). In this state s10, the messages
exchanged so far trigger b to send to a2 an ECDH public key pk2, a KEM ciphertext c, and a
valid signature sign under a key exchange reply message (the system state changes to s11). The
intruder gleans all of them. In the final step, the intruder impersonates b to send to a a key
exchange reply message, whose content is the information just learned, i.e., pk2, c, and sign. In
this state (s13), there exists in the network a valid key exchange reply message apparently sent
by b to a, but the actual creator is the intruder, not b. b sent such a message to a2, not to a. The
system time in this state is 4, which can be checked by the command red time(s13). The first
four red commands, whose results all are false, show that there does not exist ?M such that auth

is true. The fifth red command confirms that there exists in the network a valid key exchange
reply message sent by b to a2 (but not to a), while the last command confirms that b did not
send such a message to a.
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B PQ SSH: keySe counterexample if server private host key

is revealed

In the PQ SSH case study, recall that keySe formalizes the session key secrecy property. If we
eliminate the following constraint from the premise of keySe:

(4) the private host key of the server is not revealed
the following predicate is obtained:

op keySe-f4 : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat -> Bool

eq keySe-f4(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2) =

(not(A = intru or B = intru) and

hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) and

hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2) \in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||

h(ecShare(PK2,K) || decaps(C,K’))),

SIGN) and

not(decaps(C,K’) \in leakscr(S)) and

not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)))

implies not(h(ecShare(PK2,K) || decaps(C,K’)) \in knl(S)) .

Suppose that this predicate is defined in the module PRED. A counterexample of the predicate is
found, where the transition sequence leading to the counterexample is as follows:

open PRED .

ops s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 : -> Sys .

ops a b b2 : -> Prin . ops c : -> PqCipher .

ops css css2 : -> Suites . ops v v2 : -> Version .

ops k k2 : -> EcSecretK . op dl : -> DataL .

ops k’ k2’ : -> PqSecretK . ops d sign : -> Data .

-- some conditions

eq (a = intru) = false . eq (k = k2) = false .

eq (b = intru) = false . eq (k’ = k2’) = false .

-- macros

eq c = encapsC(keygen(k’), k2’) .

eq dl = v || v2 || css || css2 || pubK(b) ||

ecPublic(k) || keygen(k’) || ecPublic(k2) || c ||

h((k | k2) || (k’ & k2’)) .

-- the private host key of server b is revealed to the intruder

eq s1 = lLtK(init,b) .

-- a sends the public keys associated with k and k’ to b

eq s2 = cVer(s1,a,b,v) .

eq s3 = sVer(s2,a,a,b,v2,v) .

eq s4 = cKexInit(s3,b,a,b,css,v,v2) .
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eq s5 = sKexInit(s4,a,a,b,css2,v,v2,css) .

eq s6 = cHbrInit(s5,b,a,b,k,k’,v,v2,css,css2) .

-- intru gleans the message, selects two ephemeral keys k2 and k2,

-- computes the shared secrets, and

-- impersonates b to send a faking reply message to a,

-- in which the revealed private key of b is used to sign the exchange hash

eq s7 = gBasic(s6,v,css,pubK(b)) .

eq s8 = gEcSecretK(s7,k2) .

eq s9 = gPqSecretK(s8,k2’) .

eq s10 = gEcShare(s9,k2,ecPublic(k)) .

eq s11 = gPqShare(s10,k2’,keygen(k’)) .

eq s12 = g1(s11,(k | k2) || (k’ & k2’)) .

eq s13 = g1(s12,dl) .

eq s14 = gSign(s13,pkNPair(priK(b), 0), h(dl)) .

eq s15 = fkHbrReply(s14, b, a,

pubK(b), ecPublic(k2), c, sign(priK(b), h(dl))) .

red keySe-f4(s15,intru,a,b,v,v2,css,css2,k,k’,

ecPublic(k2), c, sign(priK(b), h(dl)), 1, 2) . -- result: false

close

Running this open-close fragment, false will be returned, meaning that the predicate does not
hold in state s15. From the initial state, the private host key of server b is revealed to the
intruder, and the system state changes to s1. a and b consecutively exchange a pair of version
exchange messages and another pair of key exchange algorithms messages. Then, a sends two
public keys to b through a key exchange initiation message, and the system state changes to
s6. The intruder intercepts that message, learning the two public keys. The intruder selects
two secret keys k2 and k2’, computes from them and the gleaned public keys the corresponding
shared secrets, i.e., (k | k2) and (k’ & k2’), and the system state changes to s12. Afterward,
the intruder computes the hash of the exchange hash, uses the revealed private host key of b to
sign the hash, and the system state changes to s14. Finally, the intruder impersonates b to send
back to a a key exchange reply message with the signature just computed. In this last state
(s15), a receives a key exchange reply message apparently sent from b with the valid signature,
but that message actually sent by the intruder, and obviously, the share secret is available to
the intruder.
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