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ABSTRACT

In this study, we propose the application of multiple parametric regularizations and

parametric weight parameters to the loss function of the scene text image super-resolution

(STISR) method to improve scene text image quality and text recognition accuracy. STISR

is regarded as the process of improving the image quality of low-resolution (LR) scene

text images to improve text recognition accuracy. In a previous study, a text attention net-

work (TATT) was introduced to reconstruct high-resolution scene text images; the backbone

method involved the convolutional neural network (CNN)-based and transformer-based ar-

chitecture. Although it can deal with rotated and curved-shaped texts, it still cannot properly

handle images containing improper-shaped texts and blurred text regions. This can lead to

incorrect text predictions during the text recognition step. Parametric regularization in the

single-image super-resolution (SISR) model has recently been proposed to deal with arti-

facts and restore the unseen texture in the natural image domain. However, unlike STISR,

SISR does not focus only on text information. Here, we design and extend it into three

types of methods: adding multiple parametric regularizations, modifying parametric weight

parameters, and combining parametric weights and multiple parametric regularizations. Ex-

periments were conducted and compared with state-of-the-art of STISR models. The results

showed a significant improvement for every proposed method. Our methods achieved the

best text recognition accuracy of 80.4% for the easy set, 64.1% for the medium set, and

46.5% for the hard set of Textzoom. Moreover, our methods generated clearer and sharper

edges than the baseline with a better-quality image score.

Keywords: Scene Text, Image Reconstruction, Trainable parameter, Parametric, Regular-

ization, Loss function
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CHAPTER 1
INTRODUCTION

1.1 Overviews

Scene text recognition is fundamental to detecting text regions in complex

backgrounds and labels. Textual information from different sources, such as scanned

documents, the label of products on shops, or vehicle number plates, has risen to

a large extent in the digitalization era Chen et al. (2022a). To make text detection

and understanding, advanced computer vision is applied to convert the text present in

the image or scanned documents to a machine-readable format that can be processed

later, called optical character recognition (OCR) Chen et al. (2022a). To make effi-

cient text recognition, a high-resolution (HR) scene text image is required. However,

HR images need a high capacity to store. Although imaging devices and techniques

are proposed, this kind of approach has limitations, flexibility, and cost when applied

in practical applications.

Detection and recognition of text from natural scene images are challenging

works. Since the text in the natural scene can be varied such as different languages,

fonts, sizes, orientations, and shapes. We need to deal with diversity and variability.

Sometimes, the natural scene may have pattern backgrounds with a shape that is ex-

tremely like any text which creates a problem of text detection. Moreover, disrupted

images such as low-resolution (LR) images are common problems that directly affect

the text detection, and recognition process Wang et al. (2019). The poor resolution

of scene text images can lead to the wrong prediction of text recognizers because of

losing the detailed content information as shown in Figure 1.1.

To alleviate this addressed the problem, the super-resolution (SR) technique

is applied as a pre-processing step as shown in Figure 1.2 to enhance the quality of
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Figure 1.1 LR text image fed to a text recognizer directly

Figure 1.2 LR text images passed through the super-resolution method as a pre-processing
before feeding to a text recognizer

scene text images Cai et al. (2019) before feeding them to the text recognizer. In the

first era, SR methods were applied to enhance the scene text image Dong et al. (2016).

However, SR in text scenes is different from traditional SR in the natural image. Since

traditional SR methods only focus on reconstructing the detail of texture that satisfies

human perceptual, SR in text scene images contains the content. Which, before and

after characters have semantic information related to each other.

To develop a STISR model, paired LR-HR images are needed. Normally, it

has two main approaches for building the pair dataset which is synthetic and realistic

technique. The synthetic one is the process of downscaling the HR image and adding

some noise to get the LR image which displays in Figure1.3. While the realistic

technique, the LR and HR images are taken at different focal lengths of the camera

as shown in Figure 1.4. Many SR methods trained by synthesis and realistic images

dataset are proposed Chen et al. (2021a, 2022b); Wang et al. (2019); Zhang et al.

(2019). However, the gap in the SR performance between synthesis and realistic data

was found in practical applications, the trained models with synthesis datasets tend to
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Figure 1.3 The building the LR-HR pair images dataset by synthesis technique

Figure 1.4 The building the LR-HR pair images dataset by realistic technique

drop the performance on real-world images Wang et al. (2020). To make it practical,

some research has shifted to focus on the real-world single image.

For the realistic scene text dataset, it was proposed on ECCV-2020, namely,

Textzoom Wang et al. (2020). Both of train-set and test-set of the Textzoom dataset

are gathered from two SISR datasets: RealSR Cai et al. (2019) and SRRAW Zhang

et al. (2019). It contains various natural scenes such as shops, street views, and

documents. Comparing the synthesis and realistic LR images, the realistic one is

much more challenging because the shape, luminance, and background are various,

as shown in Figure 1.5. When we consider a small patch of the images, real LR

Figure 1.5 The examples of Textzoom dataset Wang et al. (2020) that compared between
synthesis LR (syn LR), realistic LR (real LR), and ground truth (HR) images.



4

Figure 1.6 Comparison between easy, medium, hard dataset of Textzoom dataset Wang et al.
(2020)

images provide more server blur texture, while a synthesis LR still keeps remaining

the original texture which makes it easier to restore the information.

The Textzoom consists of three subsets according to difficulty levels divided

by the focal length camera as an easy, medium, and hard subset with annotation as

shown in Figure 1.6. Moreover, they proposed the scene text image super-resolution,

namely Text Super-Resolution Network (TSRN) Wang et al. (2020). To the best of

my knowledge, TSRN is the first STISR method. A core architecture was based

on SRResNet Ledig et al. (2017a). TSRN proposed to replace, sequential residual

blocks in residual blocks, a boundary-aware loss, and a central alignment module.

A gradient profile loss was proposed to be another loss for enhancing the boundary-

aware character of the model. It was calculated by using the L1 norm of the gradient

field of HR and generated images. The generated scene images have experimented

on three text recognizers, ASTER Shi et al. (2018), MORAN Luo et al. (2019), and

CRNN Shi et al. (2017). The result reported that TSNR outperformed in image qual-

ity and text recognition accuracy compared to state-of-the-art methods. However, the

TSRN method focuses on every pixel in the image that can be disturbed from the

background. It might affect upsampling performance on text images.

Since a transformer achieved huge success in national language processing

(NLP), it was employed to develop the STISR method. To deal with the compli-

cated background problem, a Transformer-Based Super-Resolution Network (TB-
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SRN) Chen et al. (2021a) was proposed. It contains a self-attention module for ex-

tracting the sequential information, which this approach is robust to handle with the

arbitrary orientation. TBSRN also employed a Position-Aware Module to highlight

character regions with the reference of high-resolution images. It introduced to the

use of the combination of the loss function in the method, such as a position-aware

module using the L1 for computation of the attention map and a content-aware mod-

ule taking a weight cross-entropy loss. TBSRN can achieve text recognition accuracy

when compared with TSNR, at least 1% in the easy and hard subset and around 3%

for the medium subset on Textzoom. However, it still remained the text-generating

problem.

Text Gestalt Chen et al. (2022b) contains two modules, namely a Pixel-wise

Supervision Module (PSM) to recover the color and contour of text image and a

Stoke-Focused Module (SFM) to highlight the details of the stoke region. The in-

teresting idea is the stroke region that tried to mimic the human commonsense for

recovering detail process from a blurred image inspired by Gestalt psychology. The

SFM consists of the multi-head self-attention blocks and norm layers. The loss func-

tion is calculated pixel-wise, and the attention map between HR and generated image

is multiplied with a balanced parameter.

The idea of adding the knowledge to the model for the prediction of the tex-

ture of scene text was continued in Text Prior Guided Super Resolution (TPGSR)

Ma et al. (2021a). Text prior (TP) was designed to guide the useful information to

enhance the network for producing high-quality scene text. The generator of TP ap-

plied the CRNN Ma et al. (2021a) model to calculate the probability prediction. The

loss function used the L1 norm and the KL divergence to measure the similarity be-

tween the TP of LR and HR images. Since the STISR models were applied to the

Convolutional Neural Network (CNN) and transformer architectures, combining the

different loss functions to improve the reconstructed scene text image, the generated

image was much better than the previous one. However, this approach can increase

the complexity of the model, unavoidable that it is caused by the overfitting problem.

Normally, regularization is the technique to reduce overfitting problems by
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adding the coefficient parameter and penalty term. It can enhance the performance

and simplify the model. In SISR, regularization techniques were applied. SRW-

GANTV Shao et al. (2021) proposed the total variational regularization in Genera-

tive Adversarial Network (GAN) model to stabilize the network training and improve

the quality of generated images. While Lipschitz Continuity Condition (LCC) Gouk

et al. (2021) was employed to regularize the GAN model by mapping the image space

to a new optimal latent space Zhong and Zhou (2021). Recently, L1 and L2 regu-

larization terms were used in the GAN-based SISR model Viriyavisuthisakul et al.

(2022c). The result reported that adding regularization terms can generate better de-

tail than without regularization. However, the regularization parameters need to be

fixed in the regularization term. A regularization parameter plays an important role in

balancing the fidelity and regularization parameters that directly affect the reconstruc-

tion process. To overcome the limitation, Multiple Parametric Regularization (MPR)

Viriyavisuthisakul et al. (2022a) was proposed. It is allowed the regularization pa-

rameters and degree of regularization term can be adjusted as an adaptive parameter

in every training iteration. It was found that MPR can improve image quality in both

image quality assessment (IQA) scores and human perception. Moreover, it could

save computational time.

1.1.1 Research Problems and Contributions

STISR methods are special tasks which different from SR methods. Since tra-

ditional SR methods only focus on reconstructing the detail of texture and satisfying

human visual perception. While STISR contains the semantic information that before

and after characters have information related to each other. Therefore, the quality of

the image is important, it can be affected by text recognizers such as missing charac-

ters, which cause wrong predictions.

In this research, we focus on improving the visual quality of realistic low-

resolution scene text images by introducing the novel of adaptive weights and para-

metric regularization, it can employ the loss of many neural network architectures of

super-resolution reconstruction as a pre-processing of the text recognition. The pro-
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posed method should enhance the quality of images and achieve the highest accuracy

when compared with the state-of-the-art. Therefore, we set the main contributions as

below:

The main contributions of this study are as follows:

• We propose a novel adaptive framework for the loss function of STISR models

that all parameters in the framework can be learnable.

• We propose three methods in the loss function of studied models: (1) Multiple

Parametric Recognition (MPR), (2) Parametric Weights (PW), (3) Parametric

Weights and Multiple Parametric Recognition (PW+MPR).

• The proposed method can improve the text recognition accuracy, visual com-

parison, and image quality assessment (IQA) than the state-of-the-art models.

The innovation point of this research is the adaptive learnable parameter in

the parametric weights and multiple parametric regularization. A Parametric weights

framework is different from normal balanced parameters that need to be fixed as

constant values. However, it is not a state-forward approach to indicate the weight

that should be. Most of the research was conducted by trial and error to find suitable

values or follow the previous research. In PW, it allows the network can adjust those

parameters by its gradient in every iteration. For multiple parametric regularization,

it is the most general form; the regularization parameters and regularization terms

can be added as much as needed, and the degree of the term can be any number

followed by the gradient of the network. We tested the adaptive learned parameter

regularization with Single Image Super Resolution (SISR) methods on the natural

image domain.
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CHAPTER 2

LITERATURE REVIEW

2.1 Scene Text Recognition

Scene Text Recognition (STR) aims to detect and recognize the text that ap-

pears on the scene images. There are the main approaches that involve the machine

learning algorithm to recognize individual characters in an image or video and con-

vert them into machine-readable text. It can be applied to read road signs, billboards,

product labels, or documents. STR is more challenging than ordinary Optical Char-

acter Recognition (OCR) because it includes various text styles, shapes, orientations,

and illuminations. It involves detecting and localizing text in an image or video, and

then using OCR algorithms to recognize the individual characters.

STR algorithms are typically trained using supervised learning techniques,

which involve labeling large datasets of images with the correct text to be recog-

nized. These algorithms can be improved by using techniques such as data aug-

mentation Atienza (2021), which involves generating new training data by applying

transformations to existing images or finding the shape similarity Dai et al. (2022).

The traditional methods usually adopted a bottom-up approach to recognize text im-

ages Jaderberg et al. (2014); Pan He et al. (2016). The text is detected and classified

by the separated characters, then composed into text lines with the guidance of lan-

guage models. While some approaches recognize the top-down manner Jaderberg

et al. (2016). In the deep learning era, CRNN Shi et al. (2017) proposed to combine

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in the

encoder to obtain the sequential features of the text images. A Connectionist Tempo-

ral Classification (CTC) Baek et al. (2019) based decoder employs to maximize the
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probability of paths that can reach a ground truth.

Since the scene text contains many shapes and different backgrounds, a Multi-

Object Rectified Attention Network (MORAN) Luo et al. (2019) was proposed. To

handle complex deformations, a MORAN was proposed to transform the scene text

image for easier processing. The rectified image and character sequence were recog-

nized by using an attention-based sequence recognition network. While ASTER Shi

et al. (2018) introduced a Spatial Transformer Network (STN) to rectify irregular text

images in an unsupervised manner for better recognition. FAN Cheng et al. (2017)

focused on the attention drift problem and introduced a focusing network to rectify

attention regions.

Scene text recognition has the potential to revolutionize a wide range of indus-

tries, including education, media, and advertising. It can also enable new applications

such as automated translation of street signs, other public information, and assistive

technologies for the visually impaired. However, the accuracy of scene text recogni-

tion algorithms is still limited by a number of challenges, including variations in font,

style, and layout and the presence of noise and distortion in the images.

2.2 Single Image Super-Resolution (SISR)

Single Image Super Resolution (SISR) is an ill-posed problem. It is the tech-

nique to enhance the detail of images to be a high-resolution (HR) image by using

its low-resolution (LR) image. Super-Resolution (SR) can be used to improve the

quality of images or videos for various applications, such as medical imaging Ar-

manious et al. (2020), surveillance Müller et al. (2020); Pejman et al. (2016), and

entertainment Mengyu et al. (2020). It can also be used to reduce the amount of data

required to transmit or store images and videos, by increasing the resolution of the

data without increasing its size.

To train the model, the paired LR-HR dataset is required. The simplest way to

build the paired LR image is a downscale HR image and add the noise. The degraded

information technique is the general approach to creating the dataset such as DIV2K
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Agustsson and Timofte (2017), Set5 Bevilacqua et al. (2012), Set14 Zeyde et al.

(2012), or BSD200 Martin et al. (2001). However, the real LR-HR images dataset

is considered. Since the SISR performance that trained on synthetic dataset world

decreased performance significantly on real-world images. Given an LR images as

Ilr, it can be expressed as Equation 2.1

Ilr = D(Ihr, θ) (2.1)

where D () represents the downsampling process by the parameter of θ. The down-

scaling parameter θ is unknown in the real scenario. Ihr is HR images.

To obtain the estimate of the potential HR image, the process is reversed in

Equation 2.1, which can be represented as below.

Isr = F(Isr, θp), (2.2)

where Isr is generated image and F() is super resolution process while θp represents

corresponding parameter.

The traditional approaches leverage the detail by taking the average of neigh-

boring pixels, the interpolation technique. These methods use algorithms to estimate

the missing pixels in an image or video, based on the information in the surrounding

pixels. However, the interpolation technique has a limitation in giving the image de-

tail because of the data processing inequality Beaudry and Renner (2011). To improve

the quality of image, machine learning based method was applied. The convolutional

neural network was proposed to apply in SISR. These methods use machine learn-

ing algorithms to learn patterns in high-resolution images and use this information

to generate enhanced versions of low-resolution images or videos. The limitation in

the interpolation technique is solved by learning from the large dataset that the CNN

network can learn to hallucinate the detail; namely, SRCNN Dong et al. (2016).

Recently, a Generative Adversarial Network (GAN) has become more pop-
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ular in SISR, and SRGAN Ledig et al. (2017b) is the first pioneer work. In 2018,

Enhanced SRGAN or ESRGAN Wang et al. (2018) was proposed to improve the

architecture of SRGAN and loss function.

2.3 Scene Text Super-Resolution

A Scene Text Super-Resolution STISR aims to improve the resolution qual-

ity of text image and reconstructs semantically correct text which is different from

SISR methods. In the part of improve the visual quality, those SISR methods can be

directly adopted for STISR process. In the first era, the deep learning-based models

are conducted many text super-resolution methods. SRCNN Dong et al. (2016) was

applied in text image and achieved the best performance in ICDAR 2015 competi-

tion Peyrard et al. (2015). While, CNN layers were employed for feature extraction

in binary document image by transposed convolution Pandey et al. (2018). In Lai

et al. (2017), a Laplacian-pyramid backbone was applied and Gradient Difference

Loss (GDL) with L1/L2 loss was proposed to enhance edges in super-resolution im-

age. However, those SR methods were proposed for natural images super-resolution

which not suitable for handling scene text images. Since, it directly used generic SR

frameworks and ignored text-specific properties such as the character-level details

and text layouts. Moreover, most of the models were trained by using the synthesis

LR-HR image dataset which the performance would degrade significantly on real-

world images.

To improve the performance of STISR Wang et al. (2020) created as a real-

world STISR image dataset, namely Textzoom. Moreover, TSRN Wang et al. (2020)

models proposed to use the central alignment module and sequential residual block

(SRB) to take the semantic information in internal features. In STISR, the charac-

ter edges are important. Therefore, many models tried to propose a technique that

can reconstruct the shape edge. A Gradient Profile Prior (GPP) loss was proposed

in TSRN to generate the shape edge. Text Gestalt Chen et al. (2021c) proposed a

pixel-wise supervision module (PSM) to recover the color and a stroke-focused mod-
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Figure 2.1 The overview architecture of TSRN Wang et al. (2020).

ule (SFM) to highlight the detail of stroke regions. While Transformer-Based Super

Resolution Network (TBSRN) Chen et al. (2021b) contains a position-aware module

and a content-aware module providing text prior to tackling the text detail proper-

ties. TPGSR Ma et al. (2021a) is the first method that introduces the categorical text

prior information into the model learning process. TATT Ma et al. (2022) proposed

combining the CNN and text attention network because only CNN-based methods

are ineffective in dealing with spatially-deformed text images, including rotation and

curved shapes.

2.3.1 Text Super-Resolution Network

The architecture of Text Super-Resolution Network (TSRN) is a CNN-based

STISR method that improved from SRResNet Ledig et al. (2017a) architecture. The

overview of TSRN is shown in Figure 2.1. TSRN proposed that sequential residual

blocks (SRBs) replace the traditional ones in SRResNet. Second, gradient profile loss

was introduced to enhance the edge of characters by using the gradient between HR

and generated images. Moreover, they found that alignment between LR-HR paired

images can affect the reconstructed images. Therefore, the central alignment method

was proposed to connect the position of pixels.

From Figure 2.1 the RGB scene text images were rectified and aligned by
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Figure 2.2 Structure of the rectification network Shi et al. (2018).

Figure 2.3 The illustration of gradient field and Gradient Prior Loss Shi et al. (2018).

the central alignment model as an input. Noted that the RGB rectified image is the

process of transforming the text in the image to be easier to process by using the lo-

calization and control point of Thin-Plate-Spline (TPS) Dong et al. (2014) as shown

in Figure 2.2. Then, the RBG rectified images are changed to the grayscale image

and fed to the pipeline. CNN layers extract the shallow feature and pass through the

chained SRBs. Here SRBs can extract deeper and sequential dependent features and

do shortcuts like ResNet. It was modified to add the Bi-directional LSTM (BLSTM)

mechanism, which can take the horizontal and vertical convolutional features as se-

quential input and update the weight by backpropagation. The loss function is calcu-

lated by MSE loss and Gradient profile loss which can be expressed below.

LTS = L2+LGP, (2.3)

where L2 represents MSE loss and LGP is Gradient profile loss.



14

Figure 2.4 Architecture of TATT network for STISR Ma et al. (2022).

LGP = ‖∇Ihr(x)−∇Isr(x)‖1 (2.4)

where ∇Ihr(x) and ∇Isr(x) represent the gradient field of HR image and SR images

respectively.

Gradient Profile loss is designed to encourage the model to generate a sharper

edge in SISR as shown in Figure 2.3. The idea of this loss function takes advantage

of the color of text characters in images that contrast with the background. In this

case, sharpening the boundaries rather than smoothing the world make the character

more obvious.

2.3.2 Text Attention Network (TATT)

Text Attention Network (TATT) was proposed to solve the problem of spatially

deformed text in reconstructed text images, especially rotated and curved-shaped im-

ages. It was caused by the CNN-based methods that are adopted in locality-based

operations. The architecture of TATT combined the ability of the CNN and Trans-

former to extract the text prior information and semantic guidance of text prior to the

recognition process. To refine the visual appearance by imposing structural consis-

tency on the reconstructions of regular and deformed text, a text structure consistency

loss is proposed.
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Figure 2.5 Architecture of TP Interpreter Ma et al. (2022).

The architecture of TATT is shown in Figure 2.4. The LR images are fed as

the input to the Text Prior Generator (TPG) for finding the categorical probability

vectors with 37 classes in total, a to z, 0 to 9, a blank class, while LR images are

passed through 9 × 9 convolution layer to extract space the image features. The text

prior from TPG and image feature is sent to the Text Prior Interpreter (TP Interpreter)

for mapping the correlation of text prior and image feature, then assigning the seman-

tic guideline in the text prior sequence as TP map to a corresponding location with

spatial domain for reconstructed image process. The TP map and image feature is the

input in Text Prior Guided Blocks (TPGBs) that are composed of five blocks. Each

TPGB fuses the TP map and image feature with element-wise attention to Sequential

Recurrent Blocks (SRBs) to reconstruct the high-resolution image features.

In the proposed method TATT, TP Interpreter (TPI) is one of the crucial parts

that aims to interpret the text prior to TPG and image features. It is designed to do

the semantics guidance to the correlated spatial position in the image feature domain.

The main idea of TP Interpreter is to enlarge the text prior to TPG to the shape of

the image feature and merge them by convolution. Since the convolution operation

is limited to a small effective range, the semantic of text prior cannot be assigned

to the distant spatial location. Hence, TATT applies a Transformer-based attention

mechanism in this unit to enforce the global correlation between text prior and image

features.

In Figure 2.5, the TP Interpreter consists of encoder and decoder. Using the
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correlation between the semantics of each character in the text, the Encoder encodes

the text prior to outputting its context-enhanced features. As part of the semantic

information to be translated into image features, the decoder applies cross attention

between the context-enhanced feature and the image feature to it. In the next section,

the loss function of TATT is described in detail.

Text Structure Consistency Loss

A Text Structure Consistency (TSC) loss is proposed to improve the visual

appearance. Since the CNN model has a limitation on the deformed text feature rep-

resentation from regular text features and the reconstructed text images have weaker

character structures with relatively low contrast. A TSC loss minimizes the distance

of three types of images, the deformed version of SR text images DF (Y), the SR

version of the deformed LR text image F (DY), and the deformed ground truth D(X).

This loss is extended the structure-similarity index measure (SSIM) as in Equation

2.5 to the triplex SSIM (TSSIM) as Equation 2.6.

S S IM =
(2µxµy+C1)(2σxy+C2)

(µ2
x+µ

2
y +C1)(σ2

x+σ
2
y +C2)
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(2.6)

where µx,µy,µz and σx,σy,σz represent the mean and standard deviation of triplet x, y

and z, respectively. While, σxy,σyz and σxz denote the correlation coefficient between

(x, y), (y,z) and (x,z), respectively. C1 and C2 are small constants to the stability of

the dividing values close to zero.

LTS C = 1−TS S IM(DF (Y),F (DY),D(X)) (2.7)

Finally, TSC loss LTS C is used to measure the mutual structure difference
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among DF (Y),F (DY) and D(X) as in Equation 2.7, when D denotes the random

deformation.

TATT loss function

The overall loss function of TATT consists of super-resolution loss LS R, a

text prior loss LT P and TSC loss LTS C. The SR loss LS R calculates the difference

between SR output and the ground-truth HR image by adopting the L2 norm. The TP

loss LT P measures between the text prior that extracted from the LR image and those

from the ground truth by taking L2 norm and KL Divergence. The LS R and LT P are

summed up with TSC loss LTS C as the Equation 2.8.

LT ATT =LS R+αLT P+βLTS C (2.8)

where α and β are balancing parameters that set to 1.0 and 0.1 respectively.

2.4 Regularization

To the best of our knowledge, the regularization term is applied to reduce

the overfitting problems by adding the coefficient parameter and penalty term. It can

enhance the performance and simplify the model. There are three types of regulariza-

tion methods: L1 regularization, L2 regularization, and Elastic Net regularization. L1

regularization or Least Absolute Shrinkage and Selection Operator regression (Lasso

regression) can estimate the median of the data distribution while calculating loss. L2

regularization or Ridge regression is performed by adding the square of the magnitude

of nonzero coefficients. Each of these regularization techniques has its own advan-

tage and disadvantage. L1 regularization trends to produce spare models, whereas

L2 regularization trend to produce model with small weights. Meanwhile, Elastic

Net regularization tried to merge both L1 and L2 regularization terms. Therefore,

it can take benefit from both, good learning of complex data and robust to outlier

data. However, adding the regularization term need to fix the regularization parame-
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ter. The regularization parameter is important when the loss functions are combined.

It is the weight coefficient of the total loss function to balance the fidelity term and

regularization term. To make the regularization term more efficient, the parametric

regularizations for the loss function are proposed in the next topic.

2.4.1 L1 and L2 regularization

L1 regularization or Least Absolute Shrinkage and Selection Operator regres-

sion (Lasso regression) is the sum of the absolute values of the weight parameters.

For the loss function, the L1 regularization term is multiplied with the regularization

parameter and added to the loss function as Equation 2.9. While calculating loss, L1

regularization estimates the median of the data distribution. It is robust to outliers but

weak when learning complex patterns.

Lℓ1reg =Ltotal+λ
∑
∀ j

∥∥∥W j
∥∥∥, (2.9)

Lℓ2reg =Ltotal+λ
∑
∀ j

(
W j

)2
, (2.10)

where

• Ltotal is the traditional loss of ground-truth and predicted result.

• λ is the hyper-regularization parameter of the weight coefficient that must be

manually tuned.

• W j is the value of the weight parameters.

L2 regularization or Ride Regression or weight decay is the most common type

of all regularization techniques. The L2 regularization term of L2 is defined as the

Euclidean Norm of the weight matrices. It is the sum overall squared weight value

of a weight matrix. To be the loss function, L2 performs adding the penalty which
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is equivalent to the square of the magnitude of nonzero coefficients as expressed in

Equation 2.10. Despite its limitations, it is effective when learning complex patterns.

It reduces complexity without reducing variables but is not robust to outliers data.

Due to the squared difference, the error would be much larger.

To make the model more efficient and stable, the L1 and L2 regularization

techniques were applied to the GAN-based SISR model Viriyavisuthisakul et al.

(2022c). Results showed that adding regularization terms produces better detail in

both image quality score and perception.

2.4.2 Elastic Net regularization

To make the Elastic Net regularization robust against outliers and good for

learning complex patterns, it mixes both L1 and L2 regularization terms.

Lelastic reg =Ltotal+α
∑
∀ j

∥∥∥W j
∥∥∥+β∑

∀ j

(
W j

)2
, (2.11)

where

• Ltatal is the traditional loss of ground-truth and predicted result.

• α and β are the regularization parameters that need to be manually tuned.

• W j is the value of the weight parameters.

System performance is strongly affected by parameter selection for regulariza-

tion. However, this network parameter can be very difficult to optimize. We propose

an approach in the next section that can help find the optimal parameter for the net-

work.

2.5 Adaptive learned parameter (Parametric)

In an adaptive learning system, an activation function called Parametric Rec-

tified Linear Unit (PReLU) He et al. (2015) has been proposed to rectify the neural
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network. PReLU is designed to overcome the limitation of Rectified Linear Unit

(ReLU) Xu et al. (2018) or Leaky Rectified Linear Unit (LeakyReLU) Maas et al.

(2013) in a negative part. Since ReLU fixes a value as a zero to control the nega-

tive part as Equation 2.12 that can deactivate and activate some neurons at the same

time. Compared to sigmoid/tanh functions, it greatly accelerates stochastic gradient

descent (SGD). However, ReLU can be fragile during training, it is not zero-centric.

It can have a dead neuron which is the biggest problem, due to the non-differentiable

at zero. To fix the problem, instead of the function is zero, the LeakyReLU requires

a small positive slope constant to avoid zero gradients as in Equation 2.13. This

may reduce the occurrence of the detrimental zigzag effect that is noted in the linked

thread.

Instead of fixing the slope parameter as in LeakyReLU, PReLU allows it to

be adjustable. Since each layer learns a single slope parameter in the feed-forward

network, it can be a learnable parameter. It can simply explain as the below Equation

2.14. Figure 2.6 shows the ReLU, LeakyReLU, and PReLU activation functions.

f (x) =max(0, x) (2.12)

f (x) = 1(x < 0)(αx)+1(x ≥ 0)(x) (2.13)

when α is a small constant such as 0.01, or so.

f (x) =
{

x, i f

ax, i f

x > 0

x ≤ 0
(2.14)

Given x is any input and a is the negative slope which is a learnable parameter.

• if a = 0, f becomes ReLU
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Figure 2.6 The activation function of ReLU, LeakyReLU, and PReLU function

• if a > 0, f becomes leaky ReLU

• if a is a learnable parameter, f becomes PReLU

From above formula can also be written as equation 2.15

f (x) =max(0, x)+amin(0, x) (2.15)

To alleviate the problem of the suitable parameters in regularization term, an

adaptive learned parameter regularization, Parametric L1 regularization, Parametric

L2 regularization, Parametric elastic net regularization, and Multiple parametric reg-

ularizations were proposed Viriyavisuthisakul et al. (2022a). The parametric regular-

ization function can work in both CNN-based and GAN-based SISR models. It can

encourage the network to produce more detail and converge faster.

2.5.1 Image Quality Assessment

An automated Image Quality Assessment (IQA) has been developed to deter-

mine the suitability of an image for diagnostic purposes. However, it has emerged

more recently Barman et al. (2019). Image Quality Assessment (IQA) is important in

many fields, including photography, digital imaging, and computer vision. IQA algo-

rithms are based on generic image quality parameters such as illumination, contrast,

and sharpness, while some algorithms are based on storing image quality parameters
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such as main position anatomical features within images. By evaluating the quality of

images, it is possible to improve the accuracy and reliability of image-based systems

and to ensure that the images produced by these systems are of the highest possible

quality. This is typically done by comparing the original image to a reference image.

There are many methods for assessing image quality, each with its own strengths and

weaknesses. One common method is Peak-Signal-to-Noise-Ration (PSNR). It takes

the mean squared error (MSE), for calculating the average of the squares of the pixel-

wise differences between the original and reference images. This method is useful for

determining the level of distortion in an image, but it can be sensitive to noise. It may

not always provide an accurate assessment of image quality. The structural similarity

index (SSIM) measures the structural similarity between two images by looking at

the degradation in the image due to processing. Another method

IQA is a kind of objective evaluation method that is widely used in the super-

resolution task. It can be classified into three groups such as Full-Reference (FR),

Reduced-Reference (RR), and No-Reference (NR) or objective blind, as shown in

Figure 2.7.

Full-reference IQA

Full-Reference (FR) image quality assessment involves comparing an origi-

nal, pristine image with a modified version of that same image (e.g., a compressed

version) and using a metric to quantify the difference between the ground truth and

generated image. This allows for a direct comparison of the quality of the modified

image to the original Soundararajan et al. (2020).

Many different full-reference image quality assessment metrics have been de-

veloped, including:

• Peak Signal-to-Noise Ratio (PSNR) is a full-reference image quality assessment

metric that measures the ratio of the peak signal strength to the noise present

in an image. It is commonly used to compare the quality of lossy images and

video compression.
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Figure 2.7 The list of metrics. (a) Full-Reference (FR) requires target and generated image
or output to calculate the IQA score, (b) Reduced-Reference (RR) requires some part of
the target image along with output, (c) No-Reference or Objective-blind is not require any
target.

To calculate PSNR, the difference between the original and modified images is

first calculated using Mean Squared Error (MSE) as Equation 2.16. The MSE

is then converted to PSNR using the following formula:

PS NR = 10 · log10

(
MAX2

MS E

)
(2.16)

where MAX is the maximum possible pixel value (e.g., 255 for 8-bit grayscale

images or 65,535 for 16-bit images).

The resulting PSNR value is expressed in decibels (dB). A higher PSNR value

indicates a higher quality image, with a maximum value of infinity for an exact

copy of the original image. A PSNR value of 20 dB or higher is generally

considered to be good quality.

PSNR is a simple and easy-to-compute metric, but it has some limitations. It
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is sensitive to noise and can give overly optimistic results for images with high

noise levels. It is also not a good predictor of perceived image quality, as it does

not take into account the way the human visual system processes images.

• Structural SIMilarity index (SSIM) is a full-reference image quality assessment

metric that compares local patterns in the original and modified images to de-

termine their similarity. It is based on the idea that small local changes in an

image are typically more noticeable to the human eye than global changes.

To calculate SSIM, the original and modified images are first divided into smaller

image windows and the mean, variance, and covariance of the pixel intensities

within these windows are calculated. These values are then used to calculate

the SSIM index using the following formula:

S S IM =
(2 ·µ1 ·µ2+ c1) · (2 ·σ12+ c2)
(µ2

1+µ
2
2+ c1) · (σ2

1+σ
2
2+ c2)

(2.17)

where µ1 and µ2 are the means of the pixel intensities in the original and mod-

ified images, σ2
1 and σ2

2 are the variances, and σ12 is the covariance. c1 and c2

are constants that ensure that the SSIM index is bounded between -1 and 1.

The resulting SSIM index is a value between -1 and 1, with a value of 1 indicat-

ing a perfect match between the original and modified images. SSIM is consid-

ered to be a more reliable predictor of perceived image quality than PSNR, as

it takes into account the way the human visual system processes images. How-

ever, it is more computationally expensive to calculate than some other image

quality assessment metrics.

• Learned Perceptual Image Patch Similarity (LPIPS) Johnson et al. (2016) is a

no-reference image quality assessment metric that uses machine learning tech-

niques to learn the features of high-quality images and use these features to

predict the quality of a given image. It is based on the idea that the human
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visual system is more sensitive to certain image features than others, and that

these features can be learned from a dataset of high-quality images.

To calculate LPIPS, the original and modified images are first divided into

smaller image patches and the features of these patches are extracted using a

convolutional neural network (CNN). The feature vectors for the patches in the

original and modified images are then compared using a distance metric, such

as the Euclidean distance or the cosine similarity. The overall LPIPS score for

the images is calculated as the average distance between the patches.

LPIPS is considered to be a more reliable predictor of perceived image quality

than some other IQA metrics, as it takes into account the way the human visual

system processes images. However, it requires a large dataset of high-quality

images for training and is computationally expensive to calculate.

• Mean squared error (MSE) Sheikh and Bovik (2006a); Zhang and Kaveh (2015):

This measures the average squared difference between the original and modi-

fied images. It is a simple metric that is easy to compute, but it can be sensitive

to noise.

• Wavelet-based image quality metrics Sheikh and Bovik (2005, 2006b): These

metrics use wavelet transforms to decompose the images into different fre-

quency bands and compare the energy in these bands between the original and

modified images.

• Learned image quality metrics Bendale and Boult (2016); Ma et al. (2018):

These use machine learning techniques to learn the features of high-quality im-

ages and use these features to predict the quality of a given image.

In general, full-reference image quality assessment is considered to be more

reliable and accurate than no-reference or reduced-reference methods, as it takes into

account the entire original image when evaluating quality. However, it is also more

computationally expensive and requires access to the original image, which may not

always be available.
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In this research, we apply the well-known IQA, PSNR, and SSIM to measure

the quality of images.

Reduced-Reference IQA

Reduced-Reference (RR) image quality assessment involves evaluating the

quality of a modified image using only partial information about the original im-

age. This can be useful in situations where the original image is not available or is

too large to use for comparison.

Several different reduced-reference image quality assessment metrics have

been developed, including:

• Feature-based metrics: These measure the similarity between features extracted

from the original and modified images. The features could be based on color,

texture, or other image characteristics.

• Noise-based metrics: These estimate the noise present in the modified image

and compare it to the noise present in the original image.

• Spatial pooling-based metrics: These divide the original and modified images

into smaller regions and compare the average pixel values within each region.

Reduced-reference image quality assessment is generally less accurate than

full-reference methods, as it does not take into account the entire original image.

However, it can be more practical in some situations, such as when the original image

is unavailable or too large to compare.

No-Reference IQA

No-Reference (NR) image quality assessment involves evaluating the quality

of an image without using any information about the original image. This can be

useful in situations where the original image is not available or when it is not practical

to use a full-reference, or reduced-reference method Zhang and Kankanahalli (2016).

Several different no-reference image quality assessment metrics have been de-

veloped, including:
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• Natural image statistics (NISQ) Field (2002): These metrics use statistical mod-

els of natural images to predict the perceived quality of a given image.

• Blur and noise estimation: These metrics estimate the amount of blur and noise

present in an image and use this information to predict the perceived quality.

• Human visual system (HVS) models: These models simulate how the human

visual system processes images and uses this information to predict the per-

ceived quality of an image.

• Mean Opinion Score (MOS): This method obtains from human individual opin-

ion scores. However, the MOS score is employed objective metrics and is costly

which can have bias, but it can reflect the quality of the image by human per-

ception. However, the MOS score is employed objective metrics and is costly

which can have bias, but it can reflect the quality of the image by human per-

ception.
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CHAPTER 3
METHODOLOGY

In this section, we will explain the proposed methods in STISR such as CNN-

based and Transformer-based methods in detail, followed by the design of the loss

function.

3.1 Dataset

The dataset used in this study is Textzoom, which was introduced by Wang et

al. in their work ”TextZoom: A Magnification-Aware Dataset for Real-World Scene

Text Super-Resolution” (2020) Wang et al. (2020). Textzoom is a novel dataset that

addresses the need for real-scene text super-resolution (SR) by leveraging the Re-

alSR and SR-RAW datasets. The Textzoom dataset comprises a total of 21,740 high-

quality images, which are divided into a training set and a test set. The training set

consists of 17,367 images, while the test set contains 4,373 images. Each image

pair in Textzoom consists of a low-resolution (LR) text image and its corresponding

high-resolution (HR) counterpart. Notably, each LR-HR image pair is meticulously

annotated with information about its content, direction, and focal length.

To evaluate the performance of SR algorithms on the Textzoom dataset, the test

set is further divided into three subsets based on the camera length: easy, medium,

and hard. The easy subset contains 1,619 samples, the medium subset consists of

1,411 samples, and the hard subset comprises 1,343 samples. This division allows for

a comprehensive assessment of SR algorithms across different difficulty levels, pro-

viding insights into their robustness and generalization capabilities. The availability

of well-annotated LR-HR image pairs in the Textzoom dataset makes it a valuable

resource for researchers and practitioners working on scene text super-resolution. By
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leveraging this dataset, researchers can develop and evaluate novel SR algorithms that

aim to enhance the quality and legibility of text in real-world scenes.

3.2 CNN-based STISR model with parametric weights

In Section 2.3.1, we introduced the Text Super-Resolution Network (TSRN)

as a method to enhance the performance of super-resolution for scene text images.

Our proposed approach builds upon the TSRN model by incorporating additional

parameters weights into the traditional loss function, as illustrated in Figure 3.1. To

improve the accuracy of text super-resolution, we utilize paired LR (low-resolution)

and HR (high-resolution) images as inputs to the TSRN model. These image pairs

are carefully annotated with corresponding text content, direction, and focal length,

which are essential factors in accurately reconstructing SR scene text images.

During the optimization process, the loss function plays a crucial role in guid-

ing the training of the TSRN model. In our approach, the loss function is calculated

using two main components: the Mean Squared Error (MSE) and the gradient profile

loss. The MSE measures the pixel-wise difference between the predicted HR image

and the ground truth HR image. By minimizing this error, the TSRN model learns

to generate higher-resolution text images that closely resemble the ground truth. In

addition to the MSE loss, we introduce the gradient profile loss, which focuses on

preserving the structural details of the text during the super-resolution process. By

incorporating this loss component, the TSRN model is encouraged to generate im-

ages with sharper edges and clearer text boundaries, leading to improved legibility

and visual quality. By combining these loss components and incorporating parameter

weights into the optimization process, our proposed TSRN model demonstrates en-

hanced performance in reconstructing SR scene text images. The additional weights

allow us to fine-tune the importance of different loss components, enabling better

control over the optimization process and ultimately improving the overall super-

resolution results.

In our study, we have made significant advancements in the trade-off weight
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formulation between the Mean Squared Error (MSE) loss, denoted as L2, and the gra-

dient profile loss, denoted as LGP, as shown in Equation 2.3. Instead of employing

a constant value for this trade-off weight, we have introduced adaptive parameters

that dynamically adjust to align with the gradients of the network. This modifica-

tion enhances the flexibility and adaptability of the TSRN model during the training

process.

To achieve this, we have incorporated the concept of parametric weights into

the TSRN model, which enables the adjustment of the trade-off weight in each train-

ing iteration. These parametric weights are updated by the Stochastic Gradient De-

scent (SGD) optimizer, allowing the network to optimize and fine-tune the importance

of the MSE loss and the gradient profile loss based on the specific characteristics of

the input data. The new value is updated by the SGD optimizer in each training

iteration, called parametric weight as in the yellow area in Figure 3.1

The adaptive nature of the parametric weights offers several benefits. Firstly, it

allows the network to dynamically prioritize different loss components based on the

current training stage and the complexity of the scene text images being processed.

This adaptability ensures that the model can effectively balance the reconstruction

accuracy and the preservation of fine details, leading to improved super-resolution

results.

Furthermore, by aligning the parametric weights with the gradients of the net-

work, the optimization process becomes more efficient and effective. The network

can focus its learning on areas where the gradients are more prominent, enabling

better convergence and facilitating the extraction of relevant features from the input

data.

LTS P = (W1
p)L2+ (W2

p)LGP, (3.1)

where L2 represents MSE loss and LGP is gradient profile loss. While W1
p and W2

p are

the parametric weight of MSE and gradient profile loss.
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Figure 3.1 The proposed method of TSRN and weight parameter

3.2.1 CNN and Transformer-based STISR model with Parametric framework

Through our experiments, we have observed that traditional super-resolution

(SR) techniques designed for natural images have limitations when applied to scene

text image reconstruction. Recognizing this limitation, we have explored the inte-

gration of Convolutional Neural Networks (CNNs) and transformer techniques to

overcome the challenges specific to scene text SR. CNNs have demonstrated their ef-

fectiveness in extracting meaningful features from images, making them an essential

component in image processing tasks. However, when it comes to scene text SR, the

transformer technique, with its attention mechanism and ability to capture sequential

information, proves to be a better fit. This is because scene text SR requires not only

generating high-quality textures but also accurately locating the pixels corresponding

to the text regions. The attention maps generated by transformers aid in capturing the

intricate details and relationships among text pixels, contributing to more precise and

context-aware super-resolution results.

Furthermore, one of the common challenges faced by many STISR (Scene

Text Image Super-Resolution) models is the problem of overfitting. Overfitting oc-

curs when the model learns to predict characters in a scene text image that resemble

other characters with similar shapes. To address this issue, regularization techniques

are commonly employed to prevent the model from becoming overly sensitive to

minute variations and noise in the training data. Regularization methods, such as L1

or L2 regularization, introduce penalties to the loss function during training. These
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penalties discourage the model from assigning excessive importance to individual

pixels and encourage it to learn more generalized representations. By promoting

smoother and more robust predictions, regularization helps prevent overfitting and

improves the generalization capability of the STISR models.

Multiple Parametric Regularization (MPR) technique, introduced by Viriyav-

isuthisakul et al. in their work ”Multiple Parametric Regularization for Single Image

Super-Resolution” (2022) Viriyavisuthisakul et al. (2022a), has shown promising per-

formance in the field of image super-resolution. MPR utilizes multiple regularization

parameters to enhance the regularization process and improve the quality of the super-

resolved images. This technique can be effectively combined with both CNN-based

and GAN-based models to achieve superior results.

However, it is important to recognize that text images present unique chal-

lenges compared to general image super-resolution tasks. Text images often have

specific characteristics and requirements that differ from those of regular natural im-

ages. For example, accurately preserving the sharpness and legibility of text, en-

suring the correct reconstruction of fine details, and precisely locating text regions

are crucial factors in scene text image super-resolution. While CNN or GAN-based

models have demonstrated success in various image-related tasks, including image

super-resolution, the particularities of text images require additional considerations.

Models designed specifically for scene text super-resolution must incorporate mech-

anisms that address the intricacies of text, such as the attention to character shape,

alignment, and readability.

Therefore, when applying the MPR technique to text image super-resolution,

it is essential to adapt and tailor the approach to the unique requirements of text

reconstruction. This could involve incorporating attention mechanisms, utilizing text-

specific loss functions, or incorporating additional contextual information during the

super-resolution process. By accounting for these specific considerations, the MPR

technique, when combined with CNN or GAN-based models, has the potential to

deliver notable improvements in text image super-resolution.

Then we are eager to know how MPR works in the STISR methods. As the
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Figure 3.2 The architecture of our proposed method. The multiple parametric regularizations
are added in the loss function. It was accumulated to be the new loss function.

MPR framework can work compatible with any type of model since it is applied in

the loss function. Therefore, we aim to modify the loss function of the TATT model

that has a CNN and Transformer as the backbone. We observe the loss function

of TATT, it combines the three types of loss together, text prior, super-resolution,

and text structure consistency loss as described in Section 2.3.2. Based on the idea

of MPR, it is designed to adjust the value of the regularization parameters and the

degree of regularization terms which it is freely adjusted and can be added as needed.

The method presented in this study is summarized in Figure 3.2. The input

to the model consists of low-resolution (LR) and high-resolution (HR) text images,

which are processed by the Text Attention-Aware Transformation (TATT) module.

The reconstructed text image is then passed to the ASTER text recognizer, which

predicts the text contained in the image.

The loss function used in the TATT module comprises three components: the

super-resolution loss (LS R), the text prior loss (LT P), and the text structure con-

sistency (TSC) loss (LTS C), as defined i n E quation 2 .8. T hese l oss components 

contribute to the optimization of the model by guiding it to generate high-quality

super-resolved text images.

In addition to the traditional loss function, the Multiple Parametric Regular-
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ization (MPR) techniques is proposed to further enhance the TATT model. MPR

introduces a set of regularization parameters, denoted as λn, to control the strength

of the regularization terms. To ensure non-negative values for these parameters, a

sigmoid function (σ) is applied.

During the weight optimization process, all the parametric parameters, includ-

ing the regularization parameters, are updated using the Stochastic Gradient Descent

(SGD) optimizer. On the other hand, the Adam optimizer is specifically used for op-

timizing the network gradients, ensuring efficient and effective training of the TATT

model. By incorporating MPR and utilizing both SGD and Adam optimizers, the

TATT model benefits from enhanced regularization capabilities and optimized net-

work gradients, leading to improved performance in super-resolution and text recog-

nition tasks.

LMPR
T ATT =LT ATT +

∑
∀n

λn

∑
∀ j

∥∥∥W j
∥∥∥dn
, (3.2)

whereLT ATT indicates the traditional loss function of TATT. λn is the parametric reg-

ularization parameters that passed to the sigmoid function σ, which becomes σ(λn).

The parametric degree represents dn, and W j is the weight parameters in the network.

3.2.2 CNN and Transformer-based STISR model with adding parametric weight

and combining parametric weight and multiple parametric regulariza-

tions

In the context of the balancing parameters in text prior and text structure con-

sistency loss, it is crucial to determine suitable values for the fixed parameters α and β

in Equation 2.8. These parameters play a significant role in controlling the influence

of each loss component and ultimately affect the performance of the super-resolution

model.

Traditionally, determining the optimal values for these parameters involves

conducting multiple experiments or referring to the state-of-the-art in the field. Re-
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searchers often compare the performance of the super-resolution model with different

parameter values to find the most suitable configuration. However, it is important to

note that the ideal values may vary depending on the specific characteristics and re-

quirements of the input data.

To address this challenge, we propose modifying these fixed parameters into

parametric weights (PW), allowing them to be adjusted dynamically during the train-

ing process. The use of parametric weights enables the model to adaptively learn the

importance of each loss component based on the characteristics of the input data and

the specific training stage.

In Section 4.1, we conducted experiments on a CNN-based super-resolution

method with the introduction of parametric weights. These experiments aimed to

evaluate the impact of the parametric weight approach on text recognition accuracy

and image quality. By incorporating the parametric weights, the model gained the

ability to dynamically adjust the influence of different loss components, leading to

improved performance and enhanced adaptability.

The introduction of parametric weights not only addresses the challenge of

determining suitable fixed parameter values but also allows the model to learn the op-

timal balance between the text prior and text structure consistency loss components.

This adaptability is particularly valuable in the context of scene text super-resolution,

as it enables the model to effectively capture and reconstruct fine text details while

maintaining the overall structure and coherence of the text region.

LPW
T ATT =LS R+ α̂LT P+ β̂LTS C, (3.3)

where α̂ and β̂ are the parametric weight parameters, α̂, and β̂. It is multiplied with

LT P and LTS C, then it is summed up with LS R. It can be described in Equation 3.3.

Text recognition accuracy can be significantly improved by modifying bal-

ancing parameters. Nevertheless, the reconstructed text image shows some inconsis-

tency. For example, in Figure 4.7(B), we compare the word lles in naturelles between
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Figure 3.3 Architecture of our proposed method. The balancing parameters are modified
to be the adaptive weight parameters or parametric weight parameters and multiplied with
other losses.

adding MPR and PW which combining PW seems to give an inconsistency texture in

this region, while the result of adding MPR is better. Further, the PW model tends to

give blurrier results than MPR, such as Figures 4.7(a) and 4.7(e), but PW can increase

the text recognition accuracy when we compare with baseline methods surprisingly.

Here, we take advantage of both worlds, MPR and PW. We extend previously pro-

posed methods by utilizing the MRP and PW together as Equation 3.4.

Figure 3.4 The overview of our proposed method. The parametric weight parameters are
multiplied with text prior lossLT P and text structure consistencyLTS C . Then, it is calculated
with multiple parametric regularizations.
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LPW MPR
T ATT =LS R+ α̂LT P+ β̂LTS C +

∑
∀n

λn

∑
∀ j

∥∥∥W j
∥∥∥dn
, (3.4)

The overview is shown in Figure 3.4. To address the challenges encountered in

the previous method, we propose a modified approach where the traditional fixed bal-

ancing parameters are replaced with adaptive parameters called parametric weights

(PW). These parametric weights are designed to be adjustable throughout the training

process, allowing for greater flexibility in controlling the regularization parameters

and the degree of regularization.

By incorporating parametric weights, we establish a direct relationship be-

tween the Multiple Parametric Regularization (MPR) terms and the adaptive regu-

larization parameters. This adjustment enables the model to dynamically adapt the

regularization strength based on the specific requirements of the training data and the

current stage of training.

During each iteration of the training process, the Stochastic Gradient Descent

(SGD) optimizer is employed to update all the parametric parameters, including the

regularization parameters and the parametric weights. This adjustment ensures that

the model continually learns and optimizes the regularization process according to

the evolving characteristics of the data. On the other hand, the Adam optimizer is

utilized to handle the gradient of the network, optimizing the network parameters and

facilitating efficient and effective training.

Adaptive parameters and utilizing both SGD and Adam optimizers, our pro-

posed approach provides increased flexibility in adjusting the regularization parame-

ters and controlling the degree of regularization. This adaptability allows the model

to effectively learn and generalize from the training data, leading to improved perfor-

mance in terms of super-resolution and text recognition.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 Experiment on CNN-based STISR model with parametric weights

Our proposed method is compared the performance with the baseline model.

The parametric weight parameters are added to MSE and gradient profile loss. We in-

vestigate the impact of parametric weight on training time, text recognition accuracy,

and visual perception. All evaluation is performed on the real-world STISR dataset

Textzoom. The text recognization is performed by ASTER Shi et al. (2018).

In Table 4.1, the text recognition accuracy of the proposed method in medium

and hard are increased at 56.91% and 40.21%, respectively while the accuracy of

easy level is degraded down to 71.59%. However, our method can accelerate the

model to converge faster. Since TSRN requires 500 epochs or around 54.39 hrs. but

adding parametric weight can decrease the number of epochs down to 130 epochs.

We visualize the SR images by comparing them with high resolution (HR), low res-

olution (LR), outputs of TSRN, and outputs of our proposed method in each subset

as shown in Figures 4.1-4.3. The wrong prediction characters of text recognition are

represented in red color. Compared with the baseline, adding parametric weight can

boost the important detail of the text. However, the proposed method still has room

for improvement. In Figure 4.4, it is some examples of wrong prediction because the

SR images are not clear enough for text recognizer.
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Table 4.1 SR text recognition performance of competing between TSRN and TSRN with
parametric weight.

Model Loss Required epochs/times
Accuracy

Easy Medium Hard
TSRN L2+LGP 500 75.1 56.3 40.1
Ours (W1

p)L2+ (W2
p)LGP 130 71.59 56.91 40.21

Figure 4.1 Visual comparison between TSRN and proposed method on Textzoom in easy
subset.

Figure 4.2 Visual comparison between TSRN and proposed method on Textzoom in medium
subset.
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Figure 4.3 Visual comparison between TSRN and proposed method on Textzoom in hard
subset.

Figure 4.4 Example of wrong prediction in proposed method
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Table 4.2 Average PSNR/SSIM/LPIPS comparison between the baseline and our proposed
methods on the Textzoom dataset. Med. stands for the medium, which is one of the test sets.

Method
PSNR SSIM LPIPS

easy med. hard easy med. hard easy med. hard
TATT 24.15 18.96 20.23 0.892 0.681 0.766 0.106 0.205 0.176
MPR 19.82 17.61 18.15 0.774 0.610 0.662 0.132 0.202 0.204
PW 24.3 18.79 19.66 0.897 0.694 0.768 0.102 0.214 0.214
PW+MPR 24.77 18.87 20.09 0.897 0.692 0.768 0.098 0.150 0.140

4.2 Experiment on CNN and Transformer-based STISR method with multiple

parametric regularization and parametric weights

In this section, we compare the performance of the proposed methods in Sec-

tion 3.2.2 that modify the loss function with state-of-the-art on visual quality and text

recognition accuracy. Image quality assessment (IQA) metrics are used to display the

quantitative criteria of the generated images. To make a fair comparison, we take the

pre-trained text recognizer as ASTER to predict the answer from the output.

We conduct experiments to demonstrate the effectiveness of the proposed meth-

ods in the loss function of TATT, adding MPR, modifying balancing parameters to

be PW, and merging between MPR and PW. Based on the TATT model, we use the

symbols ✗ and ✓ to represent our setting which ✗ means no adding and ✓ is adding

in the loss function in Table 4.3 -4.5.

4.2.1 Quantitative measurement

To examine the performance of our three proposed methods, the well-known

IQA metrics are applied, Peak-Signal-to-Noise Ratio (PSNR), Structural Similarity

Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS).

Typically, higher is better in PSNR and SSIM, while LPIPS prefers a lower score. Our

proposed methods, MPR, PW, and PW+MPR, are compared with TATT on Textzoom

dataset as in Table 4.2. TATT can achieve better performance on PSNR in medium

and hard set, but PW+MPR gets a higher score in the easy set. While PW obtains

further performance improvement in SSIM, PW+MPR can get the best LPIPS scores

in every set. Tables 4.3-4.5 shows the IQA scores of each method compared with the
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Table 4.3 Average PSNR comparison between the baseline and our proposed methods on the
Textzoom dataset. Multiple parametric regularizations are MPR, and parametric weight is
PW.

No. of
MPR

Using PW
PSNR

easy medium hard
✗ ✗ 24.15 18.96 20.23
1 ✗ 18.53 17.50 17.80
2 ✗ 18.87 17.12 16.99
3 ✗ 19.07 17.24 17.77
4 ✗ 19.82 17.61 18.15
5 ✗ 18.79 17.26 17.26
✗ ✓ 24.30 18.79 19.66
1 ✓ 24.61 18.87 20.09
2 ✓ 23.81 18.57 20.09
3 ✓ 24.77 18.75 20.00
4 ✓ 22.94 18.20 19.21
5 ✓ 19.88 16.91 17.06

Table 4.4 Average SSIM comparison between the baseline and our proposed methods on the
Textzoom dataset. Multiple parametric regularizations are MPR, and parametric weight is
PW.

No. of
MPR

Using PW
SSIM

easy medium hard
✗ ✗ 0.892 0.681 0.766
1 ✗ 0.732 0.592 0.630
2 ✗ 0.753 0.610 0.646
3 ✗ 0.745 0.593 0.642
4 ✗ 0.774 0.604 0.662
5 ✗ 0.729 0.582 0.623
✗ ✓ 0.897 0.694 0.768
1 ✓ 0.897 0.692 0.768
2 ✓ 0.895 0.685 0.766
3 ✓ 0.896 0.683 0.766
4 ✓ 0.887 0.680 0.759
5 ✓ 0.868 0.669 0.732
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Table 4.5 Average LPIPS comparison between the baseline and our proposed methods on
the Textzoom dataset. Multiple parametric regularizations are MPR, and parametric weight
is PW.

No. of
MPR

Using PW
LPIPS

easy medium hard
✗ ✗ 0.106 0.205 0.176
1 ✗ 0.207 0.227 0.259
2 ✗ 0.132 0.220 0.204
3 ✗ 0.171 0.218 0.217
4 ✗ 0.150 0.257 0.223
5 ✗ 0.163 0.223 0.247
✗ ✓ 0.102 0.214 0.214
1 ✓ 0.098 0.150 0.140
2 ✓ 0.115 0.184 0.172
3 ✓ 0.102 0.200 0.153
4 ✓ 0.115 0.214 0.161
5 ✓ 0.112 0.226 0.174

baseline in each test set.

Even though the IQA score is used to measure the quality of images from

the reference images, it cannot express human perception. Since most IQA metrics

calculate all of the pixels in the images, but scene text image focuses on the text

region that can affect the text prediction process.

4.2.2 Qualitative measurement

To verify the superiority of our proposed framework, we use several popu-

lar SISR and state-of-the-art STISR models, including SRCNN Dong et al. (2016),

SRResNet Ledig et al. (2017a), HAN Niu et al. (2020), TSRN Wang et al. (2020),

PCAN Zhao et al. (2021), TG Chen et al. (2021c), TSRGAN Fang et al. (2021), TB-

SRN Chen et al. (2021b), TPGSR Ma et al. (2021b), TRSRT Honda et al. (2022), and

TATT Ma et al. (2022) along with our proposed methods. The loss of each method is

shown by pre-trained text recognizers, ASTER, MORAN, and CRNN in Table 4.6,

which the later STISR models tend to combine the different types of loss to make the

model more robust.

The results of text recognition accuracy are presented in Tables 4.9-4.11. We

found that our proposed methods can significantly improve text recognition accuracy.
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Table 4.6 Loss function of the state-of-the-art STISR methods and our proposed methods.
TRSRT-EDSR and TRSRT-BLSTM indicate that the backbones are Resblock of EDSR and
Resblock with BLSTM. Each parameter is defined in Table 4.8.

Method Loss
LR -
Bicubic -
SRCNN Dong et al. (2016) L2
SRResNet Ledig et al. (2017a) L2+LTV +LP
HAN Niu et al. (2020) L2
TSRN Wang et al. (2020) L2+LGP
PCAN Zhao et al. (2021) L2+LGP
TG Chen et al. (2021c) L2+LS FM
TSRGAN Fang et al. (2021) LREC +λLG +λLWAV
TBSRN Chen et al. (2021b) LPS M +λLPA+λLC
TPGSR Ma et al. (2021b) L2+LT P
TRSRT-EDSR/BLSTM Honda et al. (2022) λLS R+λLREC +λLFeat
TATT Ma et al. (2022) L2+LT P+LTS C
Ours (MPR) L2+LT P+LTS C +MPRn

Ours (PW) L2+ α̂LT P+ β̂LTS C

Ours (PW+MPR) L2+ α̂LT P+ β̂LTS C +MPRn
HR -

Taking TATT as an example, comparing MPR with it, the accuracy on the easy set is

equal and drops 0.3% on the medium set but increases 0.4% on the hard set. How-

ever, when we compare the accuracy between MPR and PW, it shows that the easy

set is improved from 78.9% to 79.5% (increasing 0.6%), from 63.1% to 63.9% (in-

creasing 0.8%) on medium set, and the hard set is dropped 0.1% 4 According to the

output image from MRP method and the text recognition accuracy on PW method,

we combine two methods to be PW+MPR. Not only generate more text detail when

compared with other methods but also boost the performance in every test set, from

78.9% to 80.4% (increasing 1.5%) on easy, from 63.4% to 64.1% (increasing 0.7%),

from 45.4% to 46.5% (increasing 1.1%) when compared with TATT. This indicates

the effectiveness and advantages of our methods. In Figure 4.7, our proposed meth-

ods can reconstruct the detail better than the baseline, especially when parametric

weight and multiple parametric regularizations are added.

Figure 4.5 compares the reconstructed images around the edge regions. Among

our proposed methods, we found that PW+MPR5 reconstructs pixel-level charac-
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Figure 4.5 Comparison of the reconstructed images around the edge regions.

Table 4.7 Comparison of the performance of each method.

No. of MPR Using PW.
Avg time

(seconds)/epoch
Baseline

ratio
� � 61.2 1.00
1 � 67.4 1.10
2 � 78.2 1.28
3 � 87.6 1.43
4 � 102.6 1.68
5 � 116.4 1.90
� � 61.4 1.00
1 � 79.4 1.30
2 � 90.0 1.47
3 � 102.8 1.68
4 � 122.0 1.99
5 � 129.0 2.11

ter outlines and color with more readable character strokes, resulting in correct text

recognition.

According to training time, it is summarized in Table 4.7. The average time per

epoch increases when the MPR terms are added, while the parametric weight method

does not require more time to train when we compare it with the baseline ratio. The

number of parameters is the same in every method, 15.94 M parameters which the

two-parameter is added when we use the parametric wights because of alpha α and

beta. Meanwhile, MPR requires two more parameters when one term of MPR is

added because each MPR uses a regularization parameter and degree of the term.

Here, we do the experiment on five MPR terms, which means the ten parameters are
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Figure 4.6 The demonstrated graph to show the ability of our proposed method (a) The
performance comparison of loss function between baseline and our proposed method
(PW+MPR) and (b) The value of α and β in parametric weight.
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Table 4.8 Parameters description that displayed in Table 4.6.

Parameter Discription
λ Hyperparameter
LTV Total Variation Loss
LP Perceptual Loss
LGP Gradient Profile Loss
LC Content-aware Loss
LPA Position-aware Loss
LT P Text Prior Loss
LTS C Text Structure Consistency Loss

LEG

Calculated by the squared term expectation of
the difference between the function of the network
output SR images and HR images

LG Generator Loss
LWAV Wavelet Loss
LS FM Stroke-Focused Module Loss
LPS M Pixel-wise Supervision Loss
LFeat Feature-driven Loss

added to the computational graph.

The convergence speed enhancement using our proposed method is demon-

strated in Figure 4.6. We can observe that our proposed method can achieve much

smoother and quicker convergence than the baseline method. Figure 4.6(b) shows

the time evolution of α and β. In the early stage, α and β are both large, and they are

quickly reduced to small values. The total loss is decreased drastically by the assist

of α and β. It is clearly shown that setting proper α and β lets the LS R become smaller

smoothly.
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Table 4.9 Comparing the accuracy between the state-of-the-art STISR methods and our pro-
posed methods in Textzoom test set by ASTER.

Method ASTER
easy med hard

Bicubic 64.7 42.4 31.2
SRCNN Dong et al. (2016) 69.4 43.4 32.2
SRResNet Ledig et al. (2017a) 69.6 47.6 34.3
HAN Niu et al. (2020) 71.1 52.8 39
TSRN Wang et al. (2020) 75.1 56.3 40.1
TSRGAN Fang et al. (2021) 75.7 57.3 40.9
TBSRN Chen et al. (2021b) 75.7 59.9 41.6
TG Chen et al. (2021c) 77.9 60.2 42.4
PCAN Zhao et al. (2021) 77.5 60.7 43.1
TPGSR Ma et al. (2021b) 77 60.9 42.4
TRSRT-EDSR Honda et al. (2022) 72.1 55.6 39.5
TRSRT-BLSTM Honda et al. (2022) 74.8 59.5 42
TATT Ma et al. (2022) 78.9 63.4 45.4
Ours (MPR) 78.9 (n=3) 63.1 (n=1) 45.8 (n=3)
Ours (PW) 79.5 63.9 45.7
Ours (PW+MPR) 80.4 (n=5) 64.1 (n=3) 46.5 (n=2)
HR 94.2 87.5 76.2

Table 4.10 Comparing the accuracy between the state-of-the-art STISR methods and our
proposed methods in Textzoom test set by MORAN.

Method MORAN
easy med hard

Bicubic 60.6 37.9 30.8
SRCNN Dong et al. (2016) 63.2 39.0 30.2
SRResNet Ledig et al. (2017a) 60.7 42.9 32.6
HAN Niu et al. (2020) 67.4 48.5 35.4
TSRN Wang et al. (2020) 70.1 53.3 37.9
TSRGAN Fang et al. (2021) 72 54.6 39.3
TBSRN Chen et al. (2021b) 74.1 57.0 40.8
TG Chen et al. (2021c) 75.8 57.8 41.4
PCAN Zhao et al. (2021) 73.7 57.6 41.0
TPGSR Ma et al. (2021b) 72.2 57.8 41.3
TRSRT-EDSR Honda et al. (2022) 69.8 54.3 37.9
TRSRT-BLSTM Honda et al. (2022) 72.5 57.2 40.2
TATT Ma et al. (2022) 72.5 60.2 43.1
Ours (MPR) 76.5 (n=2) 60.9 (n=5) 44.0 (n=3)
Ours (PW) 75.5 60.3 43.5
Ours (PW+MPR) 75.2 (n=4) 61.0 (n=4) 44.2 (n=4)
HR 91.2 85.3 74.2
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Figure 4.7 Comparing the reconstruction text region and text prediction between TATT and
our proposed methods. The red characters below the image are the wrong prediction.
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Table 4.11 Comparing the accuracy between the state-of-the-art STISR methods and our
proposed methods in Textzoom test set by CRNN.

Method CRNN
easy med hard

Bicubic 36.4 21.1 21.1
SRCNN Dong et al. (2016) 38.7 21.6 20.9
SRResNet Ledig et al. (2017a) 39.7 27.6 22.7
HAN Niu et al. (2020) 51.6 35.8 29
TSRN Wang et al. (2020) 52.5 38.2 31.4
TSRGAN Fang et al. (2021) 56.2 42.5 32.8
TBSRN Chen et al. (2021b) 59.6 47.1 35.3
TG Chen et al. (2021c) 61.2 47.6 35.5
PCAN Zhao et al. (2021) 59.6 45.4 34.8
TPGSR Ma et al. (2021b) 61.0 49.9 36.7
TRSRT-EDSR Honda et al. (2022) 51.7 39.6 31.2
TRSRT-BLSTM Honda et al. (2022) 57.3 45.6 35.4
TATT Ma et al. (2022) 62.6 53.4 39.8
Ours (MPR) 64.1 (n=4) 54.3 (n=1) 39.9 (n=2)
Ours (PW) 64.2 54.6 40.9
Ours (PW+MPR) 64.1 (n=4) 54.4 (n=3) 40.1 (n=3)
HR 76.4 75.1 64.6
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Applying scene text image super-resolution techniques has shown promising

results in enhancing the quality of low-resolution scene text images, leading to in-

creased text recognition accuracy. Using advanced image processing algorithms,

scene text images can be upscaled to higher resolutions, resulting in sharper and

clearer text that is easier for text recognition systems to interpret.

However, our preliminary study revealed that most STISR models tend to over-

fit, reconstructing the same or different characters and blurring the texture edges.

While regularization can be used, its fixed value poses a limitation. To address this

issue, we propose a novel parametric framework that incorporates a customized loss

function in deep learning-based methods, including convolutional neural network

(CNN), generative adversarial network (GAN), transformer-based SR, and STISR.

Our parametric framework applies parametric weight and multiple parametric

regularizations to CNN, GAN, transformer-based SR, and STISR methods. We found

that STISR methods with parametric weight improved image quality and text recog-

nition accuracy, while GAN and transformer SR models failed to enhance the image.

Although the CNN-based STISR method worked well with parametric weight, its

architecture was limited in local feature extraction. Thus, we propose to use paramet-

ric weights and multiple parametric regularizations with CNN and transformer-based

STISR models, which surprisingly enhanced image quality and accuracy in different

ways. Adding multiple parametric regularizations improved edge characters while

modifying parametric weight achieved the best text recognition accuracy.

To prove our hypothesis, we incorporated the two proposed methods and com-

pared the performance with 12 state-of-the-art methods in IQA score, human per-
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Figure 5.1 Samples of visualization on misprediction of text recognizer and human percep-
tion.

Figure 5.2 Example on the visualization result and text recognition on extremely dark,
blurred, compressed, and unaligned text images.
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Figure 5.3 Samples of reconstructed images on real low-resolution images without the tar-
get images. It consists of low-resolution images as the input in the first column and the
reconstructed results of baselines and our proposed methods. The last column shows the
ground-truth texts.

ception, and text recognition accuracy. Our proposed STISR method effectively en-

hanced the quality of low-resolution scene text images, providing clear and easily rec-

ognizable text information crucial for human recognition and perception. However,

the method had limitations in extremely dark text images, compressed or unaligned

text, or text overlaid with noise as displayed in Figure 5.2. Additionally, errors could

occur due to misprediction in text recognizer 5.1.

In Figure 5.3, our proposed method of STISR has been verified to enhance

the quality of low-resolution scene text images effectively. The results of STISR

show that the enhanced images provide clear and easily recognizable text informa-

tion, which is crucial for human recognition and perception. By improving the quality

of low-resolution images, STISR has the potential to improve the accuracy of text de-

tection in real-world applications and provide valuable information.

In summary, our proposed parametric framework improves the performance

of CNN, GAN, transformer-based SR, and STISR methods by optimizing the loss

function parameters for each specific model, leading to higher accuracy and better

visual quality in super-resolved images. The proposed STISR method enhances the

quality of low-resolution scene text images, potentially improving the accuracy of

text detection in real-world applications and providing valuable information.
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For the potential directions in scene text image super-resolution, the current

study mainly focuses on enhancing the quality of low-resolution scene text images

with traditional training datasets. Future work could investigate the use of trans-

fer learning techniques or the creation of more diverse and challenging datasets to

improve the performance of STISR methods on real-world applications. The current

study focuses on English text, STISR methods can potentially be applied to other lan-

guages or scripts that use different characters or fonts. This can be particularly useful

in multilingual or cross-cultural settings, where accurate text recognition is crucial

for effective communication. Moreover, it is important to consider the computational

cost of STISR methods, particularly in real-time applications.
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CHAPTER 6

APPENDIX

6.1 GAN-based SR model with multiple parametric regularization loss

According to the result of parametric weight described in Section 4.1 of our

method in Section 3.2, the text recognizer still predicted the wrong answer in some

samples. It is possible that some important textures are missing or not clear enough

to detect. Therefore, we concentrate on improving the resolution in the generated

scene text image. Intuitively, the model should have more complexity and capacity

to extract the feature from LR input. From our knowledge, SR GAN-based model

performs well in generating the detail of images in the natural image domain. Hence,

we replace the GAN-based model to do the super-resolution. Many loss functions are

combined such as pixel loss, adversarial loss, and feature loss. Multiple parametric

regularizations Viriyavisuthisakul et al. (2022b) can give the impressed result in the

natural image domain. We also apply it to the network as another loss function.

The proposed method is illustrated in Figure 6.1. The SR images are fed to the text

recognition and predict the text inside. The overall loss function can be expressed as

Equation 6.4.

Figure 6.1 The proposed SR method with multiple parametric regularizations
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A pixel loss is defined to use the L1-norm to calculate the distance between

the ground truth and a reconstructed image as the Equation 6.1.

Lpixel =

W∑
x=1

H∑
y=1

∥∥∥IHR
x,y − IS R

x,y

∥∥∥, (6.1)

where IHR
x,y and IS R

x,y are a coordinate pixel of ground truth, and a generated IS R
x,y =

G(ILR
x,y) image, reconstructed from the LR image ILR

x,y input by the generator. Moreover,

the features of both images were also used to measure the difference by the VGG

network as shown in Equation 6.2.

L f eature =

Wi, j∑
x=1

Hi, j∑
y=1

∥∥∥ϕi, j(IHR
x,y )−ϕi, j(IS R

x,y )
∥∥∥, (6.2)

where Wi, j and Hi, j are the dimensions of the respected feature map ϕ within the

VGG feature extractor network. Finally, the adversarial loss is applied to the rela-

tivistic discriminator to appraise the realistic probability of realness and fakeness in

the generated images and HR images.

Ladv = −EIHR[log(1−DRa(IHR, IS R))]−EIS R[log(DRa(IHR, IS R))], (6.3)

where DRa is relativistic discriminator. These models demonstrate the improvement

of perceived quality and reconstructed accuracy of the generated image compared

with the previous SR methods as it enables to produce more realistic and sharper

details.

LGAN MPR = Lpixel+Lads+L f eature+Lmpr, (6.4)

where
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Figure 6.2 The proposed SR method with 16 RRDBs in the generator and multiple paramet-
ric regularization

• Lpixel is the pixel loss that calculates the distance between the corresponding

pixel of HR and SR images.

• Lads is the adversarial loss from relativistic discriminator

• L f eature is the feature loss that calculates the distance between features of HR

and SR images.

• Lmpr is the multiple parametric regularization method to balance the losses in

the network.

6.1.1 GAN-based SR model with RRDB 16 and multiple parametric regular-

ization loss

From the experiment of the proposed method in Section 6.3 of the proposed

method in Section 6.1, the GAN-based model can restore the detail from the scene

text image better the baseline when we compared by human perception. However, the

text recognition accuracy is dropped. Since the GAN-based model treats the scene

text image as the natural image, it tried to boost up the detail in every pixel as a

result of the SR reconstruction module. It does not focus on the edge of the character.

Therefore, it can come up with noise regarding scene text images.

In this proposed method, we aim to decrease the feature extraction process in

the GAN model. Residual in Residual Dense Blocks (RRDBs) is the module that

is applied for local feature extraction. The overview of the proposed method is dis-

played in Figure 6.2. Instead of adding the 23 RRDBs as the original of GAN-based
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Figure 6.3 The architecture of ESRT model Lu et al. (2022)

Figure 6.4 The proposed SR method with ESRT

SR model to the generator, it is modified to 16 RRDBs same as in SRGAN as in the

yellow area. We still combined the pixel, adversarial, feature loss, and multiple para-

metric regularizations in the loss function following Equation 6.4. For other settings,

we keep maintaining all datasets and parameters the same as the previous method.

6.2 Transformer-based SR model in scene text images recognition

Recently, the transformer performed an outstanding result in the Natural Lan-

guage Processing (NLP) task. It is also explored in the application of Transformer in

computer vision tasks Han et al. (2022). One of the well-known architectures in Vi-

sion Transformer (ViT) proposed for image recognition Dosovitskiy et al. (2020). It

can be beaten with state-of-the-art CNN models. However, with the heavy computa-

tional cost and high GPU memory occupation of the vision transformer, the network

cannot be designed too deep.

To overcome this problem, Efficient Transformer for Single Image Super-

Resolution (ESRT) Lu et al. (2022) is designed for fast and accurate image super-
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resolution images. ESRT is a hybrid method between transformer and CNN-based

SR networks. ESRT composes of two backbones as in Figure 6.3, lightweight CNN

backbone (LCB), and lightweight Transformer backbone (LTB). LCB is a lightweight

SR network that dynamically resizes the feature map to obtain deep SR features us-

ing low computational resources. It allows the model to gain initial SR capability

and extract the latent SR features in advance. An LCB is composed of series of High

Preserving Blocks (HPBs). A characteristic of HPB is the reduction of shape and size

of processing features. However, the results in relativity unnatural SR images due to

the loss of image details. HPB solves this problem by creatively preserving high-

frequency information while reducing the feature map size using the High-frequency

Filtering module (HFM). Meanwhile, LTB consists of a series of Efficient Trans-

formers (ET). A low-cost ET algorithm can capture long-term dependence between

similar local regions within an image, In this section, we proposed to apply the trans-

former architecture in the SR process. Here, ESRT is employed as an SR module in

pre-processing. The overview of the method is shown in Figure 6.4.

6.3 Experiment on GAN-based SR model with multiple parametric regulariza-

tion loss

In this section, we do the experiment of the proposed method that is explained

in Section 6.1. We focus on restoring the detail of the text in the text image by using a

GAN-based SR model and multiple parametric regularizations. The model is trained

in 300K iterations. From the experiment of the multiple parametric regularizations,

they reported that the model could converge faster at 100K iterations. Therefore,

we inspect the result on 100k and 300k iterations to compare the effectiveness of

the model. We compare the result between HR images, LR images, the generated

images from TSRN, the generated image from the proposed method at 100k, and

300k iterations as shown Figures 6.5-6.7.

The SR images generated from our proposed method are clearer than the base-

line in every subset. For example, in Figure 6.6, our proposed method at 100k itera-
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Figure 6.5 Visual comparison between TSRN and proposed method at 100k and 300k itera-
tions on Textzoom in easy subset.

Figure 6.6 Visual comparison between TSRN and proposed method at 100k and 300k itera-
tions on Textzoom in medium subset.
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Figure 6.7 Visual comparison between TSRN and proposed method at 100k and 300k itera-
tions on Textzoom in hard subset.

Table 6.1 SR text recognition performance of competing between TSRN and the proposed
method at 100k and 300k iterations.

Model Loss
Training
epochs

Accuracy
Easy Medium Hard

TSRN L2+LGP 500 75.1 56.3 40.1
Ours Lpixel+Lads+L f eature+Lmpr 100 61.58 48.97 34.48
Ours Lpixel+Lads+L f eature+Lmpr 300 60.59 47.20 31.87

tions can generate the texture of the word building better than TSRN same as the word

rules. However, the text recognition accuracy of our proposed method is dropped as

displayed in Table 6.1.

6.3.1 Experiment on GAN model with RRDB 16 and multiple parametric reg-

ularization loss

From the proposed method in Section 6.1.1, we aim to decrease the feature

extraction process by dropping the RRDBs from 16 to 23 blocks. The GAN model

and multiple parametric regularizations are applied like the proposed method in Sec-

tion 6.1.

We compare the efficiency of the model between the baseline, the proposed
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Figure 6.8 Visual comparison between TSRN and proposed method in the proposed method
in Section 6.1 (Ours 1) and proposed method in Section 6.1.1 (Ours 2) at 100k on Textzoom
in easy subset.

method in Section 6.1, and this proposed method in both text recognition accuracy

and quality of images. Figures 6.8-6.10, shows the visual comparison of HR, LR,

baseline (TSRN), the proposed method on Section 6.1 (Ours 1), and the proposed

method in this Section 6.1.1 (Ours 2). The wrong text prediction is displayed in red

text.

We found that RRDB has affected directly with reconstruction process. De-

creasing in the number of RRDB, it results in missing character details in generated

image. For example, the word Beef in Figure 6.8, Ours 1 can generate the horizontal

line of the f character in 100k training iterations while Ours 2 is unable and predicts

the wrong answer to be Beel. Another example, it is the result in Figure 6.9, Ours 2

cannot generate the clear edge of text in the word building but it is suilding. For the

text recognition accuracy, the performance is dropped around 1-2% after removing

some RRDBs from the generator as in Table 6.2, but it can save a lot of computational

time.
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Figure 6.9 Visual comparison between TSRN and proposed method in the proposed method
in Section 6.1 (Ours 1) and proposed method in Section 6.1.1 (Ours 2) at 100k on Textzoom
in medium subset.

Figure 6.10 Visual comparison between TSRN and proposed method in the proposed method
in Section 6.1 (Ours 1) and proposed method in Section 6.1.1 (Ours 2) at 100k on Textzoom
in hard subset.
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Table 6.2 SR text recognition performance of competing between TSRN and the proposed
method in Section 6.1 (Ours 1) and the proposed method in Section 6.1.1 (Ours 2)

Model Loss
Training
epochs

Accuracy
Easy Medium Hard

TSRN L2+LGP 500 75.1 56.3 40.1
Ours 1

(RRDB23) Lpixel+Lads+L f eature+Lmpr 100 61.58 48.97 34.48

Ours 2
(RRDB16) Lpixel+Lads+L f eature+Lmpr 100 60.59 47.98 32.09

Figure 6.11 Visual comparison between TSRN and proposed method in ESRT on Textzoom
in easy subset.

6.4 Experiment on Efficient Transformer for Single Image Super-Resolution

(ESRT)

We investigate the result of the proposed method in Section 6.2. The visual

quality of the generated images is illustrated in Figures 6.11-6.13. The ESRT is

designed to support the SISR task using CNN and a transformer. However, we found

that the transformer is a data greedy method. While Textzoom is insufficient for its.

Therefore, the reconstructed images are unsuitable for scene text recognition and lead

to the wrong prediction, as shown in Table 6.3.
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Figure 6.12 Visual comparison between TSRN and proposed method in ESRT on Textzoom
in medium subset.

Figure 6.13 Visual comparison between TSRN and proposed method in ESRT on Textzoom
in hard subset.

Table 6.3 SR text recognition performance of competing between TSRN and the proposed
method that applied in transformer-based SR method.

Model Loss
Accuracy

Easy Medium Hard
TSRN L2+LGP 75.1 56.3 40.1
Ours L1 50.96 37.42 24.94
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Figure 6.14 Visual comparison between TSRN and proposed methods on Textzoom in easy
subset. TSRN+para indicates a CNN-based method with parametric weight. Ours[100K]
and Ours[300K] are GAN-based SR methods with multiple parametric regularizations at
100K and 300K iterations, respectively. Ours16 represents the result from the GAN-based
SR method with reduced RRDB to 16 blocks at 100K iterations. Transformer is the result of
a Transformer-based SR model in scene text image recognition.

6.5 Summarizing

We summarize the performance of our four proposed method from Section

4.1-6.4 as follow.

• CNN-based SR model with parametric weights

• GAN-based SR model and multiple parametric regularization loss

• Transformer-based SR model in scene text image recognition

All proposed methods focus on improving image quality by using a super-

resolution process and text recognition accuracy. We compare the result of the meth-

ods with HR, LR, TSNR, and the above three proposed methods on easy, medium,

and hard on Textzoom dataset as shown in Figures 6.14-6.16. The red characters

below the images are the wrong predictions.

From Table 6.4, we have compared the results of our proposed methods with

the baseline model. All evaluation is performed on Textzoom. The text recogni-
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Figure 6.15 Visual comparison between TSRN and proposed methods on Textzoom in
medium subset. TSRN+para indicates a CNN-based method with parametric weight.
Ours[100K] and Ours[300K] are GAN-based SR methods with multiple parametric regu-
larizations at 100K and 300K iterations, respectively. Ours16 represents the result from the
GAN-based SR method with reduced RRDB to 16 blocks at 100K iterations. Transformer
is the result of a Transformer-based SR model in scene text image recognition.

Figure 6.16 Visual comparison between TSRN and proposed methods on Textzoom in hard
subset. TSRN+para indicates a CNN-based method with parametric weight. Ours[100K]
and Ours[300K] are GAN-based SR methods with multiple parametric regularizations at
100K and 300K iterations, respectively. Ours16 represents the result from the GAN-based
SR method with reduced RRDB to 16 blocks at 100K iterations. Transformer is the result of
a Transformer-based SR model in scene text image recognition.
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Table 6.4 The summary of the text recognition accuracy between baseline and proposed
methods

Architecture Accuracy
Model

Engine Loss
Training
epochs Easy Meduim Hard

TSRN
(Baseline) TSRN L2+LGP 500 75.1 56.3 40.1

Ours
(Method 1) TSRN (W1

p)L2+ (W2
p)LGP 130 71.59 56.91 40.21

Ours
(Method 2)

nESRGAN+
(RRDB 23)

Lpixel+Lads+L f eature
+Lmpr

100 61.58 48.97 34.48

Ours
(Method 2)

nESRGAN+
(RRDB 23)

Lpixel+Lads+L f eature
+Lmpr

300 60.59 47.20 31.87

Ours
(Method 3)

nESRGAN+
(RRDB 16)

Lpixel+Lads+L f eature
+Lmpr

100 60.59 47.98 32.09

Ours
(Method 4)

Efficient
transformer L1 400 50.96 37.42 24.94

tion is performed by ASTER Shi et al. (2018). Our first proposed method archives

the best performance in text prediction and visual image when we compared it with

others. It archives text recognition accuracy in the medium and hard levels are in-

creased up to 56.91%, and 40.21%, respectively while the accuracy of the easy level

is degraded down to 71.59%. Moreover, TSRN requires 500 epochs for training but

adding parametric weight can decrease the number of epochs down to 130 epochs.

It can highlight the performance of multiple parametric regularizations to accelerate

the model to converge faster.
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