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Abstract

In recent years, there has been a growing trend towards using naturalistic

setups in speech research. These setups involve presenting participants

with continuous speech, such as stories or conversations, instead of isolated

words or sentences. This provides a more realistic understanding of speech

processing and comprehension in real-world conditions.

However, fMRI studies have found that naturalistic speech processing

elicits more widespread brain activation compared to traditional setups.

This highlights a challenge for traditional neurocognitive models of language,

which are based on isolated words or simple sentences and have a strong left

hemisphere bias. These models fail to explain how naturalistic speech is

processed in the brain.

To address this limitation, our study aims to describe the encoding of

speech in the brain using a linear time-invariant (LTI) model. We focus on

the process of semantic processing during speech perception and investigate

the extraction of the temporal amplitude envelope (TAE) from the speech

signal. This TAE carries crucial semantic information and is encoded by

specific brain regions involved in semantic processing.

We used EEG signals to measure brain activity and traced the origins of

activity with our proposed hyper-alignment method under natural language

paradigms. Our goal was to identify the brain regions responsible for seman-

tic processing, determine the semantic representations in the brain’s output,

and explore the possibility of recovering the original semantic information

from this representation. In an experiment, participants were exposed to

normal speech and time-reversed speech. Then, we used the hyper-alignment

method to map EEG signals from the scalp to the cortex level to overcome the

spatial limitation of EEG and obtain precise information about the semantic

processing in the brain.

Our findings reveal that semantic processing during naturalistic paradigms

involves a widespread distribution of brain regions beyond the traditional
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temporal and frontal areas. We observed the involvement of the cingulate

area and a significant role played by the right hemisphere in semantic pro-

cessing, challenging the conventional left hemisphere bias. Using multivariate

autoregressive modeling, we captured the dynamic characteristics of brain

activity and found a top-down predictive mechanism where higher-level

semantic processing areas assist in capturing upcoming acoustic features.

Through the reverse decoding process, we successfully reconstructed the

TAEs of speech from brain activity and recovered semantic information

using noise-vocoded speech (NVS). While speech intelligibility restoration on

unknown data remains a challenge due to noise and inter-subject variability,

we achieved perfect fitting of TAEs and restored semantic information to a

certain level of speech intelligibility in the known training dataset.

In summary, our study provides a unique perspective on the brain’s

natural language processing by combining both temporal and spatial dimen-

sions. We have developed an innovative methodology to estimate encoding

functions across various brain regions, which was previously difficult to

achieve with fMRI and EEG research methods. By challenging traditional

models, we emphasize the extensive involvement of multiple brain regions

and the dynamic nature of their encoding capabilities. Our findings suggest

that desynchronization between different subnetworks, especially within the

frontal and temporal areas, plays a crucial role in the brain’s semantic

information processing mechanism. Our research also involves reconstructing

speech TAEs and recovering semantic content, which deepens the under-

standing of language processing. Furthermore, our findings may potentially

lead to advancements in speech-brain interface technologies in the future.

Keywords: electroencephalography, speech encoding/decoding, temporal

response function, source localization, neural entrainment.
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Chapter 1

Introduction

1.1 Background

Speech perception is the process of organizing, identifying, and interpreting

communicative information conveyed by speech sounds, which involves the

linkage of auditory signals and the nervous system [1]. During speech per-

ception, human auditory system first transforms sound waves into electrical

signals, and the brain then decodes these signals to perceive the sound.

Speech processing is considered one of the most complex and abstract systems

in human cognitive systems, and its specific mechanisms and foundations

are not yet fully understood. To better understand the neural mechanisms

underlying speech processing in the brain, researchers use theories and

methods from psychology, cognitive neuroscience, and linguistics. Among

these methods, neuroimaging techniques, such as functional magnetic res-

onance imaging (fMRI) and electroencephalography (EEG), have become

important tools in recent decades. They have been widely used to investigate

brain regions and brain responses involved in language processing and have

advanced our understanding of these mechanisms [2–4].

In past decades, researchers tried to use isolated words or simple sentences

to investigate speech comprehension in the human brain. In those studies,

subjects were asked to participate in specific tasks such as identifying whether

the perceived word is a real word or a pseudoword [1,5], or assessing whether

a word in a sentence is congruent or incongruent with the rest of the

sentence [6]. With this kind of well-designed paradigm, researchers can use a

statistical analysis method (such as t-tests, analysis-of-variance) to estimate
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the mechanism of speech processing by comparing neural behaviors between

different conditions. For example, in an experiment designed to study the

N400 amplitude and word expectancy, it was found that N400 responses to

sentences that were inconsistent with word expectancy and common sense

(e.g., The bill was due at the end of the hour) were significantly larger com-

pared to those elicited by sentences that were consistent with expectations

and common sense (e.g., The bill was due at the end of the month) [7].

However, such a task is far away from human speech comprehension in daily

life.

In recent years, there has been a notable shift in research towards

expanding the controlled experimental paradigm beyond traditional isolated

words or simple sentences. Researchers have begun to embrace more

naturalistic experimental settings that involve scenarios where participants

engage in listening tasks with continuous speech and complete storylines [8].

Through these naturalistic experimental settings, researchers have discovered

that natural language processing engages a broader range of brain regions

compared to traditional isolated words or simple sentences [9]. Moreover,

naturalistic language processing involves widespread activation across the

entire brain, including the right hemisphere. These findings suggest that

traditional results based on isolated words or simple sentences may not fully

apply to naturalistic experimental settings [8, 10]. Therefore, it is necessary

to further investigate the process of language processing within naturalistic

paradigms.

1.2 Research significance

The research significance of the study lies in its exploration of the connection

between language, cognition, and brain activity during the process of speech

perception. By understanding how the brain converts speech into meaningful

representations during encoding and then retrieves these representations

during decoding, valuable insights can be gained into speech comprehension.

This study has significant implications for the fields of neuroscience,

psychology, and linguistics. It provides a deeper understanding of the
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intricate mechanisms that are involved in speech processing and lays a

foundation for further advancements in these disciplines. By exploring the

neural processes that underlie speech comprehension, researchers can uncover

fundamental principles of language processing and cognition.

Furthermore, this research has practical applications and potential bene-

fits for individuals with hearing loss. The insights gained from the study can

be used to develop advanced technologies that enhance speech perception

for people with hearing difficulties. This has the potential to improve com-

munication and overall quality of life for people with hearing impairments,

underscoring the significance of the research in the development of future

assistive technologies.

Overall, the study’s significance lies in its contribution to our under-

standing of speech perception, its interdisciplinary nature encompassing

neuroscience, psychology, and linguistics, and its potential to impact the

development of technologies for individuals with hearing loss.

1.3 Research motivation

My interest in investigating the relationship between the auditory perception

system and the brain system during speech perception and comprehension

has motivated my research. Although it is difficult to directly observe the

brain processes during speech perception, understanding these mechanisms

is crucial, and the study aims to achieve this.

From an engineering perspective, informed decisions or interventions are

challenging to make without observation. The theory of systems provides

a framework to evaluate the brain system’s functioning by estimating its

encoding function, which involves the conversion of speech signals into neural

representations.

The study’s motivation lies in the possibility of estimating the encod-

ing function by analyzing observed speech signals and brain activity. By

understanding the relationship between these signals and neural responses,

researchers can gain insights into how the brain processes speech informa-

tion. This understanding can inform the development of technologies and
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interventions aimed at enhancing speech perception and comprehension.

In summary, my research is motivated by the desire to uncover the

mechanisms underlying speech perception and comprehension by estimating

the encoding/decoding function through the analysis of observed speech

signals and brain activity.

1.4 Research challenges

The research challenges can be summarized as follows:

Capturing dynamic information: The comprehension of natural lan-

guage triggers a series of interconnected processes that unfold concurrently

and overlap in time. While fMRI provides excellent spatial resolution, its

temporal resolution is insufficient for capturing the rapid temporal dynamics

of speech processing. This poses a challenge in accurately assessing the

encoding function during natural language processing stages.

Spatial resolution limitations of EEG: EEG, with its high temporal

resolution, is often used to estimate the encoding function in natural lan-

guage processing. However, its lower spatial resolution means that the

signals recorded from EEG electrodes represent a mixture of many source

components, making it challenging to precisely identify the cortical origins

of the underlying processes involved in speech comprehension.

Integration of spatial and temporal information: To gain a compre-

hensive understanding of speech comprehension, it is crucial to capture both

spatial and temporal information simultaneously. Combining the strengths

of fMRI and EEG could provide a more comprehensive view of the encoding

function across different brain regions, but it presents a challenge due to the

disparate spatial and temporal resolutions of the two techniques.

Due to the current limited availability of non-invasive neuroimaging

techniques that can simultaneously provide both temporal and spatial infor-

mation, estimating the encoding function at the brain cortex level remains

challenging. Addressing these research challenges requires innovative ap-

proaches and methodologies that can effectively capture and integrate spatial

and temporal information, ultimately enabling a more accurate estimation of
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the encoding function in different brain regions during the process of speech

comprehension.

1.5 Research goal

This study aims to investigate the encoding and decoding processes of natural

language in the brain from both spatial and temporal aspects. Specifically,

we aim to address the following questions: (1) Which brain regions play a

crucial role in the comprehension of natural language? (2) Whether it can

find the speech semantic representation in these brain regions? (3) If we

can find the speech semantic representation in the brain, can we decode the

original speech semantic information from these brain’s activity? To answer

these questions, several steps need to be taken, as outlined below:

1.5.1 Crucial brain regions for speech comprehension

To identify the brain regions involved in natural language comprehension,

our study involved mapping and studying the neural activity within the

brain during speech processing tasks. We conducted an EEG experiment

that compared natural language stimuli with time-reversed speech. During

the experiment, participants were exposed to both natural and time-reversed

speech stimuli, while their brain activity was measured using EEG. Time-

reversed speech is difficult to comprehend, and its processing can be assumed

to be unrelated to language comprehension. By contrasting the neural

activity associated with natural language and time-reversed speech, we

aimed to determine which brain regions contribute more significantly to the

language comprehension process. We specifically looked for brain regions

that exhibited differential activity between the two conditions. Our goal

was to identify brain regions that showed greater activation or connectivity

patterns specific to natural language comprehension. By comparing these

differential neural responses, we aimed to pinpoint the brain regions that

are more strongly associated with language comprehension. These regions

are likely to play a critical role in processing the semantic aspects of natural
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language.

This approach allowed us to distinguish brain activity related to language

comprehension from general auditory processing or acoustic features that

are present in both natural language and time-reversed speech. By doing

so, we gained valuable insights into the specific brain regions and networks

involved in the comprehension of natural language. This, in turn, contributes

to a better understanding of the neural mechanisms underlying language

processing.

1.5.2 Semantic representation in brain cortex

To understand how semantic information is represented and processed in

the identified brain regions, we will employ advanced analytical methods,

such as common spatial pattern (CSP) [11] and multivariate autoregressive

(MVAR) [12]. These techniques can provide valuable insights into the neural

coding of semantic information, as well as describe the dynamic changes in

brain networks during the processing of semantic information.

By examining the similarity or dissimilarity of neural representations

across different stimuli or conditions, we can gain insights into how the brain

encodes and discriminates semantic information. Furthermore, the process-

ing of semantic information in the brain involves the dynamic interplay of

multiple brain regions and networks. Functional connectivity analysis can

be employed to examine the temporal correlations and interactions between

different brain regions during the processing of semantic information. This

analysis can reveal the dynamic changes in functional connectivity patterns

and identify the key network nodes involved in semantic processing.

1.5.3 Decode speech from brain activities

Read out speech directly from measured neural activity could enable natural

conversations and improve quality of life, particularly for the individuals who

suffer from neurological diseases. Using the collected brain activity data,

we will explore the possibility of decoding the original speech information.
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This can involve reconstructing speech sounds or identifying specific linguistic

features from the neural signals using machine learning approaches.

1.5.4 Interpretability of our results

Our findings from the above analyses will be interpreted and discussed in

the context of existing literature on language processing. By following

these steps, we aim to shed light on the neural mechanisms of natural

language processing, including the brain regions involved, the representation

of semantic information, and the potential for decoding speech information

from brain activity.

1.6 Research novelty

The research novelty lies in its integration of spatial and temporal per-

spectives to investigate natural language processing comprehensively. The

study aims to simultaneously consider both spatial and temporal aspects,

providing a deeper understanding of the neural mechanisms involved in

natural language comprehension.

One crucial objective is to identify specific brain regions that play a crit-

ical role in understanding natural language. By comparing neural responses

to natural speech and time-reversed speech, the research aims to identify

brain regions that are strongly associated with speech comprehension. This

exploration offers valuable insights into the neural basis of language process-

ing.

Another focus is on investigating how semantic information is repre-

sented and processed within the identified brain regions. By employing

advanced analytical methods, the study aims to uncover the neural encoding

of semantic information and explore the potential for directly decoding

speech information from measured neural activity. These findings could have

significant implications for natural conversations and improving the quality

of life for individuals with neurological conditions.
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1.7 Research originality

The current study is unique in multiple aspects. Firstly, it challenges the

traditional belief that language processing occurs only in specific brain areas.

Instead, the study explores the natural language processing process from a

new perspective of brain networks. This theoretical contribution provides

new insights into the potential mechanisms underlying language processing.

Secondly, the study presents methodological innovations by integrating

spatial and temporal perspectives, which offer a clearer understanding of

how natural language is processed in the brain. This integration allows for a

more comprehensive analysis of language processing.

Moreover, the study addresses the limitations associated with applying

source localization techniques to natural language and proposes advance-

ments in this area. It overcomes the challenges that arise when studying

natural language comprehension.

Lastly, the study explores the reconstruction of original speech infor-

mation from brain activity using noise-vocoded speech (NVS) techniques

[13]. This technological innovation holds potential applications in speech

prosthetics and communication assistance.

Overall, the study’s originality lies in its challenge to traditional theories

by adopting a brain network perspective. It also showcases methodological

advancements in integrating spatial and temporal perspectives, improving

source localization techniques for natural language, and exploring the recon-

struction of speech information from brain activity. Our study enhances the

understanding of natural language processing and holds great promise for

practical applications in the field of speech assistance.

1.8 Dissertation outline

The organization of this dissertation is illustrated in Fig. 1.1. Apart from

this introductory chapter, the remainder of the dissertation comprises five

chapters. The literature review will provide an overview of the current ad-

vancements in natural language paradigm research, followed by methodology,
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and a comprehensive presentation of our data collection. Subsequently, we

will analyze our results from both the encoding and decoding processes of

speech. Finally, we will interpret and discuss our findings in light of existing

research, while also highlighting future directions.

Chapter 2 will primarily concentrate on the development, advantages,

and distinctions in analysis methods between natural language paradigms

and traditional well-designed experimental paradigms. Additionally, we

will explain why research on natural language paradigms faces challenges

when extending to source space and the reasons behind the limitations of

traditional source localization procedures in accurately localizing cortex level

activity in natural language paradigms.

Chapter 3 will introduce our research philosophy and the methodology

in our study.

Chapter 4 is the design and procedure of our experimental.

Chapter 5 will employ the aforementioned data analysis methods to

investigate the representation of speech semantic information in the brain and

the associated brain regions, focusing on the encoding perspective. Utilizing

the proposed source localization procedures, we will present the dynamic

process of language processing in the brain from both temporal and spatial

dimensions.

Chapter 6 will delve into the decoding aspect by examining the feasi-

bility of reconstructing speech temporal amplitude envelopes (TAEs) from

recorded neural signals. Additionally, leveraging knowledge from noise-

vocoded speech (NVS), we will attempt to non-invasively reconstruct the

semantic information of the original speech using scalp EEG data.

Chapter 7 is a general discussion. We discussed the benefits of tran-

sitioning from the scalp level to the cortex level, which allows for more

precise encoding and decoding functions. By incorporating spatial and

temporal information, we can construct dynamic brain networks during

semantic processing. Additionally, we compared the decoding differences

between natural speech and time-reversed speech. Due to the lack of semantic

information in time-reversed speech, its decoding accuracy is significantly

lower than that of natural speech.

9



Chapter 8 highlights the research contributions, limitations, and future

directions of the study.

10



Figure 1.1: Thesis organization.
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Chapter 2

Literature review

This chapter begins by introducing EEG and fMRI studies that explore

language comprehension using traditional isolated words or simple sentences

paradigms. It then discusses the significance of shifting from traditional

paradigms to naturalistic experimentation and the differences in analysis

approaches compared to isolated words or simple sentences. The focus then

shifts to recent advancements in high-temporal-resolution EEG techniques

within the context of naturalistic experimentation and their limitations.

Additionally, the chapter discusses the challenges of applying EEG source

localization techniques to naturalistic experimentation paradigms.

2.1 Investigate speech processing based on

traditional well-designed paradigm

2.1.1 Insights from high spatial resolution

When utilizing neuroimaging methods to investigate speech comprehension,

researchers must decide whether to prioritize temporal or spatial resolution

for language-related tasks. In simple terms, functional magnetic resonance

imaging (fMRI) provides sufficient spatial resolution to investigate the loca-

tion of semantic processing in the brain. Figure 2.1 shows these brain areas

for semantic processing base on fMRI.

12
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Around the period of 1996, through the comparison of semantic processing

on real words and pseudowords, research revealed widely distributed activa-

tion in several brain areas. Specifically, the left middle and inferior temporal

gyri, angular gyri, superior temporal gyri, supramarginal gyri, and inferior

frontal areas were found to be activated during semantic processing [14–16].

Around 2002, an increasing number of studies reaffirmed the key role

of the previously identified brain areas, including the temporal regions and

Broca’s area of inferior frontal areas (BA44, BA45 and BA47), in semantic

processing [17–19]. Notably, when participants processed complex and

semantically incongruent phrases or sentences, the activation in these regions

became particularly evident [20]. Furthermore, other studies also highlighted

the importance of the superior temporal gyrus, temporal pole, and fusiform

gyrus in language comprehension [21,22].

Around 2007, Hickok integrated the brain regions associated with speech

semantics and comprehension and proposed the influential dual-stream model

[23, 24]. According to this model, there are two main processing pathways

involved in speech comprehension. The ventral pathway is responsible for

mapping the acoustic information of speech to its meaning. It begins in the

superior temporal gyrus and progresses ventrally into the middle temporal

gyrus and inferior temporal gyrus. This pathway is primarily involved in

sound-to-meaning mapping and is crucial for semantic processing in speech

comprehension. In contrast, the dorsal pathway is involved in the processing

of speech sounds for articulation and phonological information. It starts in

the superior temporal gyrus and extends dorsally into the superior parietal

lobule and posterior frontal areas, including Broca’s area. This pathway

is responsible for mapping speech sounds to articulatory representations

and plays a role in phonological processing during speech comprehension.

Overall, the dual-stream model provides a framework for understanding the

functional organization of the brain regions involved in speech semantics

and comprehension, highlighting the distinct processing streams involved in

sound-to-meaning mapping and articulation.

In recent years, an increasing number of studies have started to investigate

the brain regions involved in language comprehension by using more complex

14



sentences or stories. In addition to the previously mentioned brain regions,

such as the precuneus, hippocampus, and middle and superior frontal areas,

a broader range of regions have been reported to participate in semantic

processing [2, 25]. Particularly in fMRI experiments using longer stories as

stimuli, as shown in Fig. 2.2, this naturalistic paradigm has led to extensive

activation in both hemispheres of the brain [9, 10, 26, 27]. These findings

challenge the traditional view that semantic processing is predominantly

associated with the left hemisphere. Moreover, the widespread activation

across the entire brain seems to defy the explanatory power of the classical

dual-stream model, which is primarily focused on specific regions in the

left hemisphere. Although fMRI is useful in determining the specific brain

regions involved in processing various aspects of language, such as phonology,

semantics, and syntax, researchers are also interested in understanding the

timeline and mechanisms of integrating these different aspects, from syllable

sequences to phrases, and ultimately forming a comprehensible sentence.

However, as language processing in the brain occurs within 100 milliseconds,

and the BOLD signal generated by fMRI is based on fluctuations in blood

oxygen level resulting from neuronal activity changes in distinct regions of

the brain, it is not sensitive enough to capture such rapid neural activity.
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2.1.2 Insights from high temporal resolution

As mentioned earlier, language processing is a remarkably rapid process,

with words being perceived and integrated into ongoing discourse in less

than 600 milliseconds [28]. EEG, with its high temporal resolution, is a

more suitable tool for capturing these fast and dynamic events compared

to fMRI. Researchers commonly use event-related potentials (ERPs) derived

from EEG to investigate language processing in the brain [4]. However, ERPs

are not easily visible in raw EEG recordings due to their small amplitude [29].

Therefore, they are typically extracted by averaging multiple trials of the

same stimulus from the continuous EEG recording. Figure 2.3 illustrates the

analysis process involved in obtaining the N400 ERP component [30]. The

N400 response is often observed when semantic incongruence occurs. During

an experiment, semantic incongruent phrases are presented to subjects

multiple times, and averaging the brain responses across these trials helps

to reduce noise that is unrelated to the stimuli, allowing us to identify and

study these N400 responses.

Figure 2.3: Analysis processes involved in obtaining the N400 ERP [30].

Based on ERPs, previous research has found some systematic responses

to speech processing. Evoked responses occur around 50 ms after the onset of

speech stimuli, and are modulated by low-level spectro-temporal information
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of speech [31,32]. The following responses occur at 100 ms, which map acous-

tic information into phonetic features [33]. Once the phonetic features of

words have been identified, their meaning can be retrieved from our memory.

The N400 is a typical EEG response that corresponds to language semantic

feature processing [34]. P600 responses are often reported in sentence-level

processing, which may correspond to syntax information [35,36].

Although EEG can provide a clear temporal profile of when different

aspects of language are processed by the brain, it lacks sufficient spatial

information to delineate which brain regions are involved in processing these

language properties.

2.2 Beyond ERP and toward naturalistic ex-

perimentation

The shift towards naturalistic experimental settings has emerged from the

recognition that language is rarely encountered in isolation but rather in

rich and contextually meaningful contexts. As described in section 2.1.1, an

increasing number of fMRI studies have shown that naturalistic experiments

reveal different results compared to traditional isolated word research. By

incorporating continuous speech and complete storylines into experiments,

researchers can better capture the complexities of real-world language pro-

cessing. This approach allows for a more ecologically valid examination

of how individuals comprehend and make sense of language in everyday

situations. However, this approach comes with significant challenges.

Traditional well-designed experimental paradigms often involve con-

structing a set of controlled experiments and using statistical techniques

such as t-tests to compare differences between different control conditions

and determine the mechanisms of the brain when processing different types

of data. However, this approach is ineffective in most naturalistic stimulus

experiments because they cannot control confounding or correlated variables.

Moreover, it has been acknowledged by researchers that the response elicited

by natural language at a given moment can encompass a sequence of processes

18



that are initiated at distinct and overlapping time points. Consequently, tra-

ditional ERP analysis methods are not suitable for naturalistic experimental

paradigms [28].

Therefore, natural language experiments often employ alternative sta-

tistical techniques, with the most commonly used being encoding models

in current mainstream research. These models typically have numerous

free parameters estimated using a dataset called the training dataset. The

free parameters are then fixed, and the encoding model is used to predict

brain responses in a validation dataset that was not used during parameter

estimation. The performance of the encoding model can be evaluated by

comparing the predicted responses in the retained validation dataset with the

actual responses (e.g., using Pearson correlation) [10]. Recently, encoding

models have been applied to various language-related questions in EEG

research [32,37].

In encoding models, we can extract features from experimental stimuli

using prior knowledge or some manually or automatically labeled methods.

For example, in auditory experiments, temporal modulation information of

speech signals can be extracted by leveraging the auditory mechanisms of the

cochlea. These features can then be combined to construct a linear regression

model of brain responses, which is also known as a multivariate temporal

response function (TRF) [38]. Linearized models have demonstrated the

existence of strong spectrotemporal and phonetic feature representations in

brain regions such as the superior temporal gyrus and motor cortex [32,37,39].

Overall, the use of naturalistic experimental paradigms presents chal-

lenges for traditional analysis methods but has led to the development of

encoding models as a popular approach in current research. These models

allow researchers to extract features from stimuli and build regression models

to predict brain responses. By leveraging these techniques, researchers can

gain insights into the neural representation of language in the brain, consid-

ering the temporal and spectrotemporal aspects of language processing.
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2.3 Significance of naturalistic experimenta-

tion

While the naturalistic paradigm presents various challenges in analysis meth-

ods compared to traditional experimental paradigms, it also addresses several

limitations of previous research. Firstly, scientific findings are most valuable

when they can be applied to broader contexts. Current results based on well-

designed paradigms, such as isolated words or sentences, fail to generalize to

the neural mechanisms underlying natural language stimuli [8, 9]. Secondly,

in terms of experimental efficiency, well-designed paradigms often require

controlling variables by keeping other factors constant, limiting the investi-

gation of neural mechanisms to specific conditions. In contrast, naturalistic

language experiments typically do not start with specific hypotheses. Instead,

they extract relevant features from speech stimuli based on prior knowledge

or assumptions and correlate them with brain signals. The use of continuous

speech in experimental designs allows for the exploration of various linguistic

phenomena, including prosody, intonation, and discourse structure, which

play essential roles in conveying meaning and guiding comprehension [40].

Moreover, the development of statistical and signal-processing methods,

along with advances in natural language processing tools, such as parsers and

forced alignment systems, have made it easier than ever to annotate and ana-

lyze naturalistic language data [41]. While controlled laboratory experiments

remain valuable, incorporating naturalistic designs into language research

allows for a more comprehensive understanding of language processing in its

full complexity.

In addition to enhancing our understanding of language processing, natu-

ralistic studies have practical implications. They inform the development of

more effective language learning interventions, speech recognition systems,

and natural language processing algorithms. By incorporating realistic

language contexts and considering the dynamic nature of communication,

researchers can create robust models and systems that align better with

human language understanding.
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Overall, the shift towards naturalistic experimental settings in language

research is a valuable development. By transcending isolated words and sim-

ple sentences, researchers can capture the complexities of language processing

in real-world contexts. These studies provide insights into how individu-

als comprehend continuous speech, integrate prior knowledge, and utilize

linguistic cues to extract meaning. With implications for both theoretical

understanding and practical applications, naturalistic studies significantly

contribute to advancing our knowledge of language comprehension.

2.4 Current research based on naturalistic ex-

perimentation

Based on the naturalistic experiment design. Previous research have got

many exciting results. In this section, it will introduce these research and

summarize the shortcomings of these research.

2.4.1 Encoding function TRF reflect various aspects of

speech processing

In the study by Shamma et al. (2003), the estimation of encoding function

TRF in the auditory cortex of ferrets revealed the connection between TRF

and cognitive processing [42]. Subsequent research by Luo and Poeppel

(2007) demonstrated that the phase pattern of theta band responses in the

human auditory cortex tracked and synchronized with spoken sentences [43].

Ding (2012) further identified that these neural responses were influenced

by the acoustic modulations of the temporal envelope of speech [37]. These

findings set the stage for exploring the relationship between neural responses

and various speech features.

Liberto (2015) utilized forced alignment tools to extract phonemes and

phonetic features (Figure 2.4) from speech, highlighting the categorical

nature of phonetic processing in the brain’s neural responses [32]. Broderick

(2018) extended the investigation by encoding speech features with EEG sig-
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Figure 2.4: Encoding between speech phonetic feature and neural responses
[32].

nals using word vectors (Figure 2.5), demonstrating that TRF derived from

EEG signals could reflect the semantic processing of continuous speech [44].

Moreover, statistical probability models have been employed to represent

linguistic-level features, such as word surprisal and semantic prediction,

indicating that TRFs also capture linguistic-level processing. These findings

collectively contribute to a deeper understanding of how the brain translates

sound input into meaningful speech processing [45–47].

In summary, studies utilizing EEG have shown that neural responses

reflect various aspects of speech processing, including the acoustic features

of speech, phonetic processing, semantic processing, and even higher-level

linguistic processing. These findings enhance our understanding of how the

brain processes speech stimuli and pave the way for developing improved

language learning interventions, speech recognition systems, and natural

language processing algorithms.
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Figure 2.5: Encoding process from word vectors to EEG signals [44].

2.4.2 Role of neural oscillations in tracking speech

Recent research based on encoding function (TRF) has accumulated com-

pelling evidence supporting the synchronization of brain oscillations with

various speech features during the perception of speech. Notably, investiga-

tions have revealed that low-frequency neural oscillations in the theta and

delta range exhibit synchronization with the dynamics of the speech envelope,

corresponding to syllabic and phrasal rates, respectively [43,48]. Conversely,

high-frequency neural activity in the gamma range aligns with the fine-

grained temporal dynamics associated with phonetic features [49]. These

findings emphasize the role of neural oscillations in tracking and aligning

with the fundamental properties of speech.

Moreover, experimental studies have shed light on the involvement of

neural oscillations in the semantic processing of speech. Notably, it has

been observed that neural entrainment to speech is stronger when the speech

is easy to understand [39, 50]. This suggests that the synchronization of

neural oscillations with speech enhances the comprehension and processing

of semantic information.

The analysis of encoding function has provided valuable insights into the

cortical dynamics underlying semantic processing and speech comprehension

[36, 51]. Specifically, during sentence comprehension, the desynchronization
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of neural oscillations in the alpha and beta frequency ranges has been linked

to the engagement of task-relevant brain regions in supporting sentence-

level processing. This desynchronization is thought to facilitate the efficient

processing of semantic information within the sentence context.

Moreover, investigations into brain network functioning have uncovered

intricate patterns of functional connectivity between the left inferior frontal

and temporal cortex during the comprehension of sentences. Notably,

granger causality analysis has revealed that alpha activity facilitates the

transfer of information from the temporal to frontal regions, while beta activ-

ity supports information transfer in the opposite direction [52]. Additionally,

synchronized beta and low-gamma oscillations have been observed between

the left frontal and temporal regions, particularly when processing unex-

pected sentence-final words [53]. Furthermore, cross-frequency connectivity

has been reported, demonstrating interactions between gamma power in the

left prefrontal region and alpha power in the left temporal region, particularly

during the processing of anticipated sentence-final words [51].

Overall, these findings point out the significance of the left inferior

frontal and temporal cortex in speech processing. However, more research is

necessary to systematically explore the mechanisms underlying inter-regional

communication in the brain. Additionally, investigating the specific patterns

of synchronization, such as amplitude synchronization, phase-locking and

phase-amplitude coupling across various frequency bands, is crucial for a

comprehensive understanding of these processes [28].

In summary, the investigation of oscillatory activity has significantly

advanced our understanding of semantic processing, uncovering the intricate

cortical dynamics and connectivity patterns that underlie speech comprehen-

sion. By elucidating the role of neural oscillations in tracking speech features

and facilitating semantic processing, these studies provide valuable insights

into the neural mechanisms underlying language processing.
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2.5 Source Reconstruction Techniques

EEG/MEG is a non-invasive technique used to record brain activities by

measuring voltage fluctuations on the scalp (or magnetic field changes in

MEG), which directly reflect the biophysical phenomena of populations of

neurons [54]. However, the signals measured on the scalp represent a mixture

of many cortical responses, making it challenging to determine the specific

cortical origins underlying speech processing. To investigate speech encoding

and decoding processes at the cortex level, source reconstruction techniques

can be employed to estimate the original cortical responses from scalp record-

ings. In this section, we will introduce the source reconstruction technique

and explain why standardized low-resolution electromagnetic tomography

(sLORETA) is chosen as our source reconstruction method.

Figure 2.6: An example of a forward model [54].
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2.5.1 Forward Solution

Accurate source localization heavily relies on the forward head model. To

illustrate this, let’s consider placing several small probes into the brain

that can transmit a radio signal. If these probes are activated and their

signals are recorded on the scalp, what would the recorded signals look like?

The answer to this question lies in the forward solution. The shape of

the head and the conductivity of the skull strongly influence the forward

head model. Therefore, an accurate MRI-derived boundary head model

and precise electrode positions are essential for obtaining a reliable forward

solution [55,56]. This enables the study and understanding of brain activity

with better spatial resolution.

It’s important to note that these probes (dipoles) do not transmit the

radio signal in a specific direction but rather in all directions unevenly.

Thus, different orientations of the dipoles are modeled in many forward

solutions. Typically, three fixed orientations that are perpendicular to each

other are considered. Figure 2.6 shows an example of topographical maps

on the scalp for three different dipole orientations [54]. A brain source head

model consisting of 15,028 locations (each gray dot represents a location)

was constructed from an MRI image. The forward model from brain sources

into 64 channel electrodes was computed for three orientations at each source

location. The figure demonstrates how the scalp signal appears from different

dipole orientations when the dipole is activated.

2.5.2 Inverse Solution

The inverse solution aims to determine the locations, magnitudes, and

orientations of dipoles within the head based on the observed scalp signals.

It is the inverse problem of the forward solution. Figure 2.7 illustrates the

relationship between the inverse and forward solutions [57]. Similar to most

inverse problems, there is no unique solution for this inverse model, making

it an ill-posed problem from a theoretical standpoint. Estimating the states

of tens of thousands of brain sources from just a few hundred scalp electrodes

becomes particularly challenging as the number of brain sources exceeds the
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Figure 2.7: An illustration of the relationship between the forward and
inverse solutions [57].

available measurements. At a practical level, all methods for estimating the

inverse solution require several parameter selections that impact the source

reconstruction results.

2.5.3 Common Source Reconstruction Methods

2.5.3.1 Dipole Fitting

Dipole fitting aims to estimate a small number of discrete dipoles in the brain

that can explain the maximum amount of topographical potential. Once

the dipole locations, orientations, and magnitudes are estimated, the dipole

activity can be calculated for all electrodes. Dipole fitting is commonly used

in event-related potential (ERP) data analysis. However, before employing

dipole fitting, it is necessary to determine the number of dipoles to be

estimated. Estimating too many dipoles can lead to suboptimal results

due to the potential of getting ”stuck” in local minima and poor source

reconstruction [54]. Furthermore, since the inversion results are not unique,

similar topographical distributions can be produced even with a different

number of dipoles. Figure 2.8 illustrates the situation where one dipole and
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two dipoles produce similar patterns [54].

Figure 2.8: Similar topographical distributions produced by one dipole or
two dipoles [54].

2.5.3.2 Distributed-Source Imaging

Distributed-source imaging differs from dipole fitting as it involves estimating

a large number of fixed location and orientation dipoles, while only the magni-

tudes of these dipoles need to be estimated. Non-adaptive distributed-source

imaging methods establish the mapping between electrodes and dipoles based

solely on electrode locations, rendering the electrode signals independent of

the source reconstruction results. The advantage of non-adaptive methods

lies in their quick computation and stable results since only a few parameters

need to be determined. Adaptive distributed-source imaging, on the other

hand, also considers the electrode signals (such as frequency and amplitude)

in the mapping between electrodes and dipoles. This adaptation to the data

enables the method to reflect spectro-temporal information, experimental

conditions, or subject-specific factors, providing more information for source

reconstruction results. However, adaptive distributed-source imaging is

susceptible to noise in the data, which can impact the source reconstruction

outcomes.
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2.5.3.3 Why choose sLORETA

In this study, we employed a naturalistic experimental design, which is prone

to unexpected noise. Therefore, adaptive distributed-source imaging is not

suitable. Additionally, dipole fitting is limited in investigating whole-brain

level responses. For these reasons, we applied the standardized low-resolution

electromagnetic tomography (sLORETA) method to obtain plausible EEG

source estimates [58]. sLORETA has been widely used, especially in clinical

applications, over the past decade [59–64]. Although sLORETA has a lower

spatial resolution, it provides smooth and accurate localization with minimal

errors [65].

2.6 Limitation in previous research

Although EEG is an effective and non-invasive technique for investigating the

neural mechanisms behind auditory processing, previous studies on natural

spoken language have primarily focused on the electrode/sensor space (scalp-

level) due to the low spatial resolution of EEG/MEG [32,44,45,66]. However,

the mixture of source components at the scalp level makes it challenging to

explain the cortical origins of underlying natural spoken language processes.

With advancements in EEG signal processing, it has been demonstrated that

with a sufficient number of sensors or an accurate individual head model,

EEG source localization can provide precise enough information to reflect

the cortical origins of language processing [67]. Moreover, exploring brain

functions in response to continuous speech explicitly benefits from studying

EEG signals in the source space, as the generators of neural activity cannot

be unambiguously interpreted from sensor-level data alone [68].

Recent studies using EEG source localization techniques have shown

exciting results in both speech production and speech perception [1, 68, 69].

However, most of these studies have been based on the ERP paradigm [70].

In the context of the natural speech paradigm, where stimuli are typically

long segments from lectures or stories presented only once to avoid priming

effects, there are two key challenges that need to be addressed for single-trial
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analysis before source localization. Firstly, the generated electrical fields are

susceptible to contamination from external noise (e.g., eye movement, head

movement) during the transmission from the neural population to the scalp.

Naturalistic experiments often involve more complex and varied stimuli,

leading to increased signal variability and potential artifacts. These factors

can negatively impact the accuracy and reliability of source reconstruction

results. EEG signals recorded during naturalistic tasks are typically noisier

compared to controlled laboratory experiments, making it more challenging

to obtain accurate source estimates. Reconstructing a single source from

a single trial and fitting encoding function TRF directly to cortical sources

may be affected by the unexpected noise, thereby impacting the accuracy and

interpretability of the encoding function. Additionally, most of the existing

source localization techniques have been developed for the ERP paradigm,

assuming spatiotemporal sparsity [65, 71–74]. However, the natural speech

paradigm does not allow for additive averaging across repeated trials.

In this paper, we aim to explore the speech encoding and decoding pro-

cesses at the cortex level by EEG using proposed hyper-alignment methods.

By examining encoding function throughout the entire brain, we can gain

insights into how different cortical regions are involved in the comprehension

of spoken language. This approach will provide a more comprehensive

understanding of the neural mechanisms underlying language processing,

shedding light on the distributed nature of speech comprehension across the

cortex.

2.7 Summary

In this chapter, we have reviewed the literature on naturalistic experimenta-

tion in the study of language processing and comprehension. We highlighted

the shift from traditional isolated word or simple sentence paradigms to more

ecologically valid experimental settings that involve continuous speech and

complete storylines. This shift has been motivated by the recognition that

language is encountered in rich and meaningful contexts, and investigating

language processing in such naturalistic settings provides a more compre-
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hensive understanding of how individuals comprehend and make sense of

language.

We discussed the challenges posed by naturalistic experiments, including

the inability to control confounding variables and the limitations of tradi-

tional analysis methods such as ERP analysis. To overcome these challenges,

researchers have turned to encoding models, which involve extracting features

from stimuli and building regression models to predict brain responses. These

models have been successful in capturing various aspects of speech processing,

including acoustic features, phonetic processing, semantic processing, and

higher-level linguistic processing.

We also discussed the significance of naturalistic experimentation, em-

phasizing the need for findings that can be applied to broader contexts

and the practical implications for language learning interventions, speech

recognition systems, and natural language processing algorithms. By in-

corporating realistic language contexts and leveraging advancements in sta-

tistical and signal-processing methods, researchers can better understand

the complexities of language processing and improve the alignment between

computational models and human language understanding. Furthermore, we

addressed the limitations of previous research, particularly the focus on the

electrode/sensor space and the challenges associated with source localization

in naturalistic experiments. We highlighted the importance of studying EEG

signals at the cortex level to better understand the cortical origins of language

processing.

In summary, naturalistic experimentation provides valuable insights into

the neural mechanisms underlying language processing. By incorporating

continuous speech and complete storylines, researchers can capture the

complexities of real-world language comprehension. Future research should

focus on addressing the challenges of source localization in naturalistic

experiments and exploring the contributions of different cortical regions to

speech processing. Additionally, efforts should be made to develop robust

and reliable methods for analyzing and interpreting EEG signals at the cortex

level.

31



Chapter 3

Methodology

3.1 Research philosophy

The research philosophy underlying our study is guided by the following

principles, which is shown in Fig. 3.1. Firstly, we focus on the process

of speech comprehension, aiming to understand the intricate mechanisms

involved in how the human brain comprehends speech. We recognize the

initial processing of speech by the auditory system, which leads to the

extraction of temporal amplitude envelopes (TAEs). These TAEs contain

important information for subsequent semantic processing [13].

Our hypothesis posits that the semantic information within the TAEs

is encoded by specific brain areas responsible for semantic processing. We

propose a linear time-invariant system to explain this encoding process, where

the semantic content of speech is transformed into the system output. In our

study, we employ EEG to record the system output (neural response).

By leveraging the linearity of the encoding process, we propose the

possibility of reversing the transformation and recovering the original speech

TAEs from the observed semantic representation. This enables us to decode

the semantic information and reconstruct what was heard solely from brain

activity, even in the absence of direct auditory perception.

By accurately estimating the encoding function, we aim to decode and

recover the semantic information, providing insights into the neural mech-

anisms underlying speech comprehension. This research philosophy allows

us to explore the possibility of inferring speech content solely from brain

activity, expanding our understanding of speech processing in the brain.
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To validate this research philosophy, our study aims to address three

proposed key questions in section 1.5:

• Localization of the brain system for semantic processing: We want to

identify the specific brain regions that play a role in processing semantic

information during speech comprehension (Q1).

• Identification of the semantic representation in the system output:

We seek to ascertain whether the semantic content of speech can be

discerned in the output of the encoding system (Q2).

• Recovery of semantic information from the semantic representation:

We aim to assess the viability of accurately retrieving the original se-

mantic information from the observed semantic representation, thereby

demonstrating the efficacy of the encoding and decoding process (Q3).

By addressing these questions, our study aims to provide valuable insights

into the neural underpinnings of speech comprehension and shed light on the

potential for decoding semantic information from brain activity.

3.2 Overview of the study

During speech perception, information is transmitted rapidly and continu-

ously, necessitating methods with high temporal resolution to capture the

temporal dynamics between speech signals and brain activity. To address

this requirement, we first conducted a speech perception experiment and

collected EEG data to model the process of speech encoding and decoding,

as illustrated in Fig. 3.2. In Chapter 4, we provide a detailed account of the

experimental design and EEG data acquisition procedure.

As previously discussed, the mixture of source components at the elec-

trode/sensor level in EEG signals presents challenges when elucidating the

cortical origins of natural spoken language processes. Therefore, we proposed

a method to transfer EEG signals from the scalp level to the brain cortex

level. This approach aimed to overcome this challenge and enhance our

understanding of cortical involvement in speech processing.

At the cortex level, we used LTI models to explore the relationship
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Figure 3.2: Overview of the procedure in this study.

between speech temporal amplitude envelopes (TAEs) and cortex signals.

In the speech encoding process, we identified key brain regions involved in

semantic processing, addressing the first question (Q1) regarding the localiza-

tion of the brain system responsible for semantic processing. Additionally, we

aimed to demonstrate the existence of semantic representation within these

brain regions, which addresses the second question (Q2). Our study’s results

related to these inquiries will be presented in Chapter 5.

During the speech decoding process, our main goal was to reconstruct the

neural vocabulary semantics (NVS) from brain signals, with the objective of

recovering semantic information from the brain activations. This approach

addresses the third question (Q3) regarding the ability to retrieve semantic
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information from the semantic representation. The results obtained from this

investigation will be discussed in detail in Chapter 6.

By systematically addressing these questions and implementing rigorous

methodologies, our study aimed to provide valuable insights into the neural

underpinnings of semantic comprehension and the potential for decoding

semantic information from EEG signals. These findings have the potential

to contribute to the development of neurocognitive models of language

processing and advance the field of brain-computer interfaces for natural

language communication.

3.3 Methodology to improve spatial resolution

of EEG

3.3.1 Noise Reduction for EEG

External noises resulting from eye movements, heartbeat, electrical interfer-

ence, and other sources can contaminate EEG signals during their transmis-

sion from the neural population through the brain tissue and skull [54]. These

noises are often treated as random and can adversely affect the accuracy of

source reconstruction. In ERP analysis, researchers commonly employ an

averaging operation across multiple trials of the same task to mitigate these

noise sources and improve the accuracy of source reconstruction.

In our study, we adopt a similar approach to reduce noise by applying

additive averaging to EEG signals elicited by the same stimulus material

across all subjects. Assuming that the brain functions for speech processing

are consistent across individuals, a similar neural response can be expected

from different subjects for the same speech stimulus. In contrast, external

noise, involuntary breathing, and attentiveness differ from individual to

individual, and such noises can be suppressed by averaging the neural signals

of the same stimuli for all subjects.

To apply additive averaging across subjects, it is important to account

for individual differences, such as head shape, cortical location, and setup
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positions of the electrodes. These factors can introduce variability in the EEG

signals and potentially impact the accuracy of source localization. To address

this problem, we propose a functional hyper-alignment method for soft

calibration. This method aims to reduce the mismatch caused by individual

experiment settings and improve the accuracy of source localization. By

aligning the functional data across subjects, we can better account for

individual differences and obtain more accurate source estimates. It uses

a well-designed spatial filter to align the setup positions of electrodes by

minimizing the distance of the signal features among the subjects. For

example, due to the lack of methods that account for subjects’ differences in

the setup stage of the electrodes, the position of an electrode n for subject

i may not be the same as that of subject j. Thus, the additive average over

the EEG data xi(t, n)(i = 1, 2, . . . , I) cannot be used to perform denoising

properly, where I is the subject number. For this reason, we propose

using a functional hyper-alignment method for eliminating this effect. The

main idea of the functional hyper-alignment is to rotate xi(t, n) and xj(t, n)

(i ̸= j ∈ [1, 2, . . . , I]) to maximize their correlation among subjects. So far,

several methods have been proposed for this purpose, such as group task-

related component analysis (gTRCA) [75] and multi-set canonical correlation

analysis (MCCA) [76]. We choose MCCA to maximize the data correlation

among subjects, which satisfies the requirement of our study.

Here we first briefly review the canonical correlation analysis (CCA).

Consider the EEG data X1 and X2 from two subjects for the same stimulus,

the size X1 and X2 are T × N where T is data length and N is the number

of channels. For simplicity, all data are assumed to have zero average value.

Assuming vector (spatial filters) ω1 and ω2 exist, which can linear transform

the X1 and X2 to X̃1 and X̃2 by

X̃1 = ω1
TX1, X̃2 = ω2

TX2. (3.1)

Since X1 and X2 are the neural responses for the same stimulus, they should

be almost the same if they were obtained in the same location of the scalp,

and thus they should have higher correlation. Therefore, the goal of CCA
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attempt to find optimal spatial filters ω1 and ω2 to maximize correlation

coefficient ρ of X̃1 and X̃2. When average value of X1 and X2 is zero, the

correlation coefficient ρ of X̃1 and X̃2 can be calculated by

ρ
(
X̃1, X̃2

)
=

E(X̃1X̃2)√
E(X̃2

1 )

√
E(X̃2

2 )
=

ω1
TVx1x2ω2√

ω1
TVx1x1ω1

√
ω2

TVx2x2ω2

, (3.2)

where Vx1x2 , Vx1x1 , Vx2x2 is the variance-covariance matrix of X1 and X2. It is

no problem to normalize the denominator of ω1
TVx1x1ω1 = ω2

TVx2x2ω2 = 1,

therefore the solution for maximize the ρ
(
X̃1, X̃2

)
changed to the quadratic

programming with equality constraints, where

arg max
ω1, ω2

ω1
TVx1x2ω2

s.t. ω1
TVx1x1ω1 = 1

ω2
TVx2x2ω2 = 1.

(3.3)

Lagrange multiplier can be used to solve this quadratic programming prob-

lem, where

L (ω1, ω2, λω1 , λω2) = ω1
TVx1x2ω2+λω1

(
1− ω1

TVx1x1ω1

)
+λω2

(
1− ω2

TVx2x2ω2

)
,

(3.4)

the differential of ω1 and ω2 is

∂L

∂ω1

= Vx1x2ω2 − 2λω1Vx1x1ω1 = 0,

∂L

∂ω2

= Vx1x2

Tω1 − 2λω2Vx2x2ω2 = 0.

(3.5)

According to the differential of ω1 and ω2 in Eq. 3.5, we multiply both sides

of the equation by ω1
T and ω2

T , it can get

ω1
TVx1x2ω2 − 2λω1ω1

TVx1x1ω1 = 0,

ω2
TVx1x2

Tω1 − 2λω2ω2
TVx2x2ω2 = 0.

(3.6)
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It’s known that (ω1
TVx1x2ω2)

T
= ω2

TVx1x2

Tω1, and ω1
TVx1x1ω1 = ω2

TVx2x2ω2 =

1 according to Eq. 3.3. It is easy to get 2λω1 = 2λω2 = λ. Therefore, Eq.

3.5 can be be summarized into a generalized eigenvalue problem, where[
O Vx1x2

Vx1x2

T O

][
ω1

ω2

]
= λ

[
Vx1x1 O

O Vx2x2

][
ω1

ω2

]
. (3.7)

According to the solution of generalized eigenvalue problem [77], we can know

that the eigenvalue λ for generalized eigenvalue problem is the correlation ρ

of X̃1 and X̃2. The corresponding eigenvector is the spatial filters ω1 and ω2

which can linear transform the X1 and X2 to X̃1 and X̃2.

This kind of idea can be extended to multi-subjects. The goal of MCCA is

to find projection vectors ω that maximize the correlation between multiple

data sets Xi,i = 1, 2, . . . , I. The correlation ρ of all data sets can be

calculated as the ratio of the summations of the between-set covariance Vxixj

over the within-set covariance Vxixi
,

p(X̃1, X̃2, ..., X̃i, ..., X̃I) =
1

N − 1

∑I
i=1

∑I
j=1,i ̸=j ω

T
i Vxixj

ωj∑I
i=1 ω

T
i Vxixi

ωi

, (3.8)

where

Vxixj
= (Xi − X̄i)

T (Xj − X̄j), (3.9)

Vxixi
= (Xi − X̄i)

T (Xi − X̄i). (3.10)

X̄i, X̄j are the means for set i and set j. 1
N−1

ensures that the correlation ρ

scales between 0 and 1. Altogether, the above equation can be summarized

into a generalized eigenvalue problem,

Bω = λRω, (3.11)
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where

B =


O Vx1x2 · · · Vx1xI

Vx2x1 O · · · Vx2xI

...
...

. . .
...

VxIx1 VxIx2 · · · O

 , R =


Vx1x1 O · · · O

O Vx2x2 · · · O
...

...
. . .

...

O O · · · VxIxI

 . (3.12)

B is a matrix combining all between-set covariance Vxixj
, and R is a diagonal

matrix that contains all within-set covariance Vxixi
. ω is a spatial vector

set for an entire data set ω = [ωT
1 , ω

T
2 , . . . , ω

T
I ]. Finally, the spatial filter for

aligning the positions of the electrodes is reduced to solve the generalized

eigenvalue problem.

3.3.2 Source reconstruction based on hyper-alignment

EEG data

After the hyper-alignment, the EEG data are used to estimate their cortical

source activations in the brain. In this study, the forward and reverse

models for source localization were calculated by the Brainstorm toolbox [78].

The finite element method (FEM) as implemented in DUNEuro was used

to compute the forward head model using Brainstorms default parameters

with a MNI MRI template (ICBM152) [79, 80]. The FEM models provide

more accurate results than the spherical forward models and more realistic

geometry and tissue properties than the boundary element method (BEM)

methods [81]. For source estimation, the number of potential sources (grid

on the cortex surface) is set to 15,002. And the option of constrained dipole

orientations was selected, which means dipoles are oriented perpendicular to

the cortical surface. [78]. We then apply the method of standardized low-

resolution electromagnetic tomography (sLORETA) [58] to obtain plausible

EEG source estimates. Although the spatial resolution of sLORETA is low,

sLORETA can provide smooth and good localization with few localization

errors [65]. Finally, according to the Desikan-Killiany Atlas (DKA), the

cortical surface is divided into 68 anatomical regions of interest (ROIs) [82].

The time series of each ROI is calculated from the average value of all dipoles
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in the respective region. As a result, we obtain a series of brain areas (sources)

that are activated during speech comprehension, providing sufficient spatial

resolution for our study.

3.4 Methodology to identify brain regions in-

volved in semantic processing

In our experiment, participants were presented with two types of auditory

signals: normal natural speech and time-reversed speech. The aim was to

investigate participants’ ability to understand the content of the normal

speech signal, which contained semantic information, compared to the time-

reversed speech signal, which lacked semantic information.

We hypothesized that participants would be able to comprehend the

content of the natural speech signal but would struggle to understand

the time-reversed speech due to the absence of semantic information. By

examining the brain encoding processes associated with these two types of

speech signals, we aimed to identify the specific brain regions involved in

semantic processing.

Analyzing the brain encoding patterns allowed us to determine the regions

that showed differential activation or response to the natural speech signal

compared to the time-reversed speech. These identified regions would provide

valuable insights into the neural mechanisms underlying semantic processing

during speech comprehension.

3.5 Methodology to validate semantic repre-

sentation in brain responses

To determine the presence of semantic representation in brain responses, we

used a methodology based on the bidirectional encoder representations from

transformers (BERT) language model [83]. We transformed speech stimuli

into word vectors that contain semantic information using BERT. Since
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different speech stimuli carry different semantic information, different stories

or narratives would be distributed across distinct clusters in the semantic

space.

This study hypothesized that neural responses would exhibit similar dis-

tribution patterns in the spatial domain since brain responses are influenced

by these semantic information stimuli. Thus, we formally hypothesized that

these semantic representations could be found within the brain responses.

To validate this hypothesis, we performed the following steps.

We initially preprocessed the speech stimuli by encoding them into

word vectors using the BERT language model. This process captured the

semantic information contained within the speech and transformed it into a

numerical representation (word vectors). Using the word vectors obtained

from the speech stimuli, we mapped the semantic information onto a spatial

representation. This allowed us to visualize the distribution of different

stories or narratives in the semantic space.

This study then analyzed the participants’ brain responses by examining

the EEG signals and identifying neural patterns associated with semantic

processing. We applied statistical techniques, such as multivariate pattern

analysis or machine learning algorithms, to detect the presence of semantic

representation within the brain responses. To ensure the reliability and

generalizability of our findings, we performed cross-validation procedures.

This involved dividing the data into training and testing sets and evaluating

the performance of our models on independent datasets. Cross-validation

helped validate the robustness of the observed semantic representations in

the brain responses.

We compared the distribution patterns of semantic information in the

brain responses with the distribution patterns in the semantic space. This

allowed us to assess the similarity and consistency between the two repre-

sentations, further supporting the presence of semantic representation in the

brain responses.
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3.6 Methodology to recover the semantic in-

formation from brain responses

Once we have identified the brain regions involved in semantic processing and

confirmed the presence of semantic representation within these regions, we

can leverage this knowledge to recover the semantic information from brain

responses.

Based on our assumption that the transformation from TAEs to neural

responses is a linear process, we can engineer a reverse system that recon-

structs the original speech TAEs from the input of semantic representations

in these brain areas. This reverse system incorporates statistical models or

machine learning algorithms to infer the TAEs from the given input.

Using the engineered reverse system, we reconstructed the TAEs by lever-

aging the semantic representations present in the targeted brain areas. The

NVS, derived from the brain responses, provided the necessary information

to recover the original speech information with high intelligibility [84]. To

assess the quality and intelligibility of the recovered speech, we conducted

subjective evaluations for speech intelligibility ratings. These evaluations

helped validate the effectiveness of the reverse system in recovering semantic

information from brain responses.

By following this methodology, we aimed to demonstrate the feasibility of

recovering the semantic information from brain responses and reconstructing

the original speech TAEs. The reverse system, utilizing the observed

semantic representations in the identified brain areas, allowed us to bridge

the gap between brain activity and meaningful speech content.

3.7 Analysis methods in encoding process

3.7.1 Extraction of TAEs

According to the human peripheral system, the TAEs are obtained from a

gammatone filterbank followed by a power law [85–87].
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Speech signals were divided into several frequency bands by using a

band-pass filterbank. The band-pass filters were determined based on

the ERBN (Equivalent Rectangular Bandwidth) and ERBN -number scale,

which corresponds to the distance scale along the basilar membrane. In this

study, the numbers of channels of the band-pass filterbank were 16. Then,

the TAE was extracted from each filter’s output using Hilbert transformation

and performing a 64 Hz low-pass filter [84]. For the modeling of encoding

process, the TAE is then decimated to the same sampling rate as the source

signal, enabling us to relate its dynamics to the source signal.

3.7.2 Extraction of semantic representation

BERT is pre-trained on large-scale corpora and can generate high-quality

word embeddings that capture the semantic and syntactic properties of

words. These embeddings can be used to extract semantic representations

from text data. BERT has been shown to achieve state-of-the-art perfor-

mance in various language understanding and generation tasks, including

text classification, named entity recognition, and question answering [83].

To extract the semantic information from the speech stimuli in our study, we

utilized pre-trained Chinese BERT [88]. We employed final layer of BERT

at the sentence level to extract 768-dimensional word vectors. The average

word vector across all sentences within a trial was taken as the representation

of the semantic information for that specific trial. This approach allowed us

to obtain a comprehensive semantic representation for each trial based on

the extracted word vectors.

3.7.3 Modeling of speech encoding process

In this study, a linear model is used to discribe the speech encoding process.

The main principle is to treat the brain as a linear time-invariant (LTI)

system where the output (neural response) of the system is the convolution

of the input and an encoding function (TRF) of the brain, which is shown

in Fig. 3.3. The encoding function can be considered a filter that linearly

transfers the continuous speech TAE to the dynamic neural response. Let
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Figure 3.3: LTI model for speech encoding.

r(τ, ROIn) be the encoding funcyion of a brain region ROIn for an input

speech TAE s(t), the neural response signal x(t, ROIn) of the source ROIn

can be described as follows.

x(t, ROIn) =
∑
τ

r(τ, ROIn)s(t− τ). (3.13)

The optimal encoder r (τ, ROIn) is acquired by minimizing the mean square

error (MSE) between the original source signal x(t, ROIn) and predicted

source signal x̂(t, ROIn), where

argmin
r

∑
t

[x(t, ROIn)− x̂(t, ROIn)]
2, (3.14)

which is a linear regression problem. According to [89], the solution of

r (τ, ROIn) can use the following matrix operations

r =
[
STS

]−1
STX, (3.15)
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where S is the time-lag series of the speech stimulus, is defined as

s(0) 0 · · · 0 0 · · · 0

s(∆t) s(0) · · · 0 0 · · · 0
... s(∆t)

. . .
...

...
. . .

...
...

... · · · s(0)
... · · · ...

...
... · · · s(∆t) s(0) · · · ...

...
... · · · ... s(∆t) · · · ...

...
... · · · ...

... · · · s(0)
...

... · · · ...
... · · · s(∆t)

s(T ) s(T −∆t) · · · s(T − i∆t) s[T − (i+ 1)∆t] · · · s(T − τmax)



,

(3.16)

where the value τmax represent the range [0, τmax] of time lags τ . ∆t is the

sample period. Variable X is a matrix containing all the neural response

data. The r is a τmax × N matrix, where N is the number of ROI, each

column represents the univariate mapping from s to the neural response at

each brain source. The range for τ is from 0 to 800 ms in this study, as most

common ERP components in language research are within 800 ms [4].

3.7.4 Common spatial pattern analysis

To identify which parts of the brain are crucial for semantic processing, we

used a method called the common spatial pattern (CSP) algorithm [90]. The

CSP algorithm is designed to find the brain regions that can best distinguish

between two categories, based on a weighted scoring system. By applying

this method, our goal was to identify the brain regions that play a key role

in distinguishing between natural speech and time-reversed speech. These

regions are important for speech processing and semantic understanding.
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3.7.5 Brain network analysis based on encoding func-

tions

The brain network can be characterized as a community structure. Therefore,

community detection is often used in exploring the brain network during

a given task [91]. To do so, we first need to define the nodes of the

brain and links of the network [92]. In large-scale brain networks, nodes

usually represent brain regions, and links represent anatomical, functional, or

effective connections [93]. The pre-defined spatial regions of interest (ROIs)

assessed by anatomical atlases are one of the most popular methods for

defining brain nodes [94]. This study uses the 68 nodes (brain region) that

were defined in the DKA, and it uses Pearson correlation to describe the

functional link among the nodes [95]. This would result in 2278 (= C2
68)

edges if linking all pairwise nodes for each trial. Differing from the previous

studies, the link weights (temporal correlations) here are calculated using the

encoding function of each node, but not the source neural signal. As a result,

we obtain a preliminary brain network that consists of all of the brain regions

and pairwise links with a weighted edge. Subsequently, we apply statistical

testing methods to determine the statistical significance of the connections

in order to ascertain their validity.

3.8 Analysis method in decoding process

3.8.1 Modeling of speech decoding process

Similar to the speech encoding process, the speech decoding approach can be

modeled using a decoder function r−1(τ, ROIn), which is the inverse function

of r(τ, ROIn). The optimal decoder r−1(τ, ROIn) is acquired by minimizing

the MSE between the original and predicted speech stimuli, and n denotes the

number of regions. Thus, the input speech stimulus s(t) can be decoded from

the source neural signal x(t, ROIn) using the decoder function r−1(τ, ROIn).
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This can be expressed as follows:

s(t) =
∑
n

∑
τ

r−1(τ, ROIn)x(t− τ, ROIn). (3.17)

Accordingly, the optimal decoder r−1 (τ, ROIn) can be acquired by

r−1 =
[
XTX

]−1
XTS, (3.18)

where X is the time-lag series of the cortex response, is defined as

x(0, ROIn) 0 · · · 0

x(∆t, ROIn) x(0, ROIn) · · · 0
... x(∆t, ROIn)

. . .
...

...
... · · · ...

...
... · · · ...

...
... · · · ...

...
... · · · x(0, ROIn)

...
... · · · x(∆t, ROIn)

x(T,ROIn) x(T −∆t, ROIn) · · · x(T − τmax, ROIn)



, (3.19)

where the value τmax represent the range [0, τmax] of time lags τ . ∆t is the

sample period. Variable S is a matrix represents the speech stimuli. The

r−1 is a τmax × F matrix, where F is the column number of S, each column

represents the univariate mapping from the neural response to speech stimuli.

The range for τ is also be set from 0 to 800 ms in the decoding process.

3.8.2 Reconstruct noise-vocoder speech from brain re-

sponse

The auditory peripheral system, from the cochlea to the primary auditory

cortex, plays a crucial role in decomposing speech into time-frequency

representations. This process can be computationally modeled as band-pass

filtering and TAE extraction [84]. Each band-pass filter in the filterbank
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can be seen as generating a TAE with a carrier signal (temporal fine

structure). NVS is created by replacing these carriers with band-limited

noise. Interestingly, studies have shown that NVS with only a few bands is

sufficient for effective sentence recognition [13]. This suggests that humans

can perceive linguistic information primarily through the TAEs of the speech

signal.

In our study, as illustrated in Figure 3.4, we utilized the predicted TAEs

derived from brain cortex responses to reconstruct the NVS. Initially, we

extracted the original TAEs using several band-pass filters. Subsequently,

these TAEs was used to model the speech decoding process with the brain

cortex signals. Based on this model, we predicted the TAEs for the test set

from the cortex responses. Finally, the predicted TAE for each channel was

used to modulate the amplitude of band-limited noise, generated by filtering

white noise at the same boundary frequency. The resulting amplitude-

modulated narrow band-limited noises (NBN) were summed to generate the

NVS stimulus. Through the reconstruction of the NVS, our objective was to

assess the extent of information retrieval from the cortex response, concerning

the original speech.

By implementing this approach, we aimed to examine the efficacy of

utilizing the cortical response to reconstruct speech and assess the amount

of semantic information that can be recovered from the cortex response.
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Chapter 4

Data collection

When individuals perceive sounds, different regions of the brain process audi-

tory features and encode them into various representations. To explore how

speech is processed in the brain, we employed a linear time-invariant system

to model the encoding process from speech to brain signals. Additionally,

we included a control group where the original natural speech was time-

reversed, maintaining the acoustic features but reversing the temporal order

and removing semantic information. Our hypothesis suggests that brain

regions responsible for acoustic features exhibit similar encoding functions for

both natural and time-reversed speech, while regions involved in semantics

display distinct encoding functions. By comparing the encoding functions of

natural and time-reversed speech in various brain regions, we can infer which

regions primarily process acoustic features and which regions are responsible

for semantic information. Therefore, we designed the following experiment.

4.1 Participants

Twenty-four healthy Mandarin Chinese speakers (mean ± standard deviation

age, 22 ± 2.4 years; nine males; right-handed) were recruited from Tianjin

University and Tianjin University of Finance and Economics. The experi-

ments were conducted in accordance with the Declaration of Helsinki [96] and

were approved by the local ethics committee. The subjects signed informed

consent forms before the experiment and were paid for their participation

afterward. All the subjects reported no history of hearing impairment or

neurological disorders.
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4.2 Materials

For our study, we carefully selected three short stories written by Shinichi

Hoshi: ”The Illusory Princess,” ”The Grand Plan,” and ”The Golden

Parrot.” These stories were chosen for their diverse content and engaging

narrative structures, making them ideal for investigating speech comprehen-

sion. To ensure consistency and control over the stimuli, the stories were

translated into Chinese and recorded by a male Chinese announcer. The

recording took place in a soundproof room to minimize any external noise

interference.

To maintain appropriate listening durations for each trial, we divided the

three stories into 24 non-repetitive segments. Each segment had a duration

of approximately 60 seconds. The segmentation process was conducted

meticulously while maintaining coherence and continuity within itself. This

approach allowed us to present meaningful and manageable units of speech

to the participants during the experiment, avoiding excessively long listening

periods.

In addition, we included 24 trials where the same story segments were

played in time-reverse. All stimuli were mono-speech with a sampling rate

of 44.1 kHz, and the stimulus amplitudes were normalized to have the same

root mean square (RMS) intensity. The 48 trials, consisting of both forward

and time-reverse segments, were randomly presented to the participants.

Furthermore, all speech segments were modified to truncate silence gaps to

less than 0.5 seconds, ensuring a more streamlined listening experience for

the participants [97].

4.3 Experimental procedure

The experiments were carried out in an electronically and magnetically

shielded soundproof room. Speech sounds were presented to subjects through

Etymotic Research ER-2 insert earphones (Etymotic Research, Elk Grove

Village, IL, USA) at a suitable volume (around 65 dB). As shown in Fig.

4.1, during each trial, subjects were instructed to focus on a crosshair mark
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in the center of the screen to minimize head movements and other bodily

movements. There was a five-second interval between each trial, and the

subjects were given a five-minute break every ten trials.

After each story trial, subjects were asked immediately to answer

multiple-choice questions about the content of the story to ensure that they

focused on the auditory task. For example, during the auditory stimulus, the

participants would hear the following passage:

”The king does not have a queen yet. It’s time for him to have one.

However, this matter must be approached with caution. It would not be good

to hastily marry and regret it later. The king must find a beautiful and elegant

woman because he is the ruler of a nation. But how should he proceed? With

these thoughts in mind, the king summoned a magician—a magician who had

long resided in the forest.”

Following the presented audio stimulus mentioned above, the screen displayed

the following question:

”How does the king plan to find a queen?”

The subjects were then required to choose the correct option from the

provided choices:
1. Launch an attack on another country.

2. Stumble upon someone in an ancient forest.

3. Seek help from a magician.

4. Enlist the assistance of his ministers.

These multiple-choice questions served as a means to assess the subjects’

comprehension of the story content and their engagement in the auditory

task of original natural speech.

For the time-reversed speech, we embedded unique tones in some trials to

draw more of the subjects’ attention to the reversed stimuli. Subjects were

requested to detect the tones and indicate how many times they appeared

after the trial. The EEG data corresponding to the embedded tones was

removed in further analysis.

The accuracy of the answers of these questions were 88.25 ± 4.62%,

indicating that the subjects were attentive and focused on the speech stimuli

during the experiment.
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Figure 4.1: Experimental procedure.

4.4 EEG data acquisition and pre-processing

Scalp EEG signals were recorded with a 128-channel Neuroscan SynAmps

system (Neuroscan, USA) at a sampling rate of 1000 Hz. Six of the channels

were used for recording a vertical electrooculogram (VEOG), a horizontal

electrooculogram (HEOG), and two mastoid signals. The impedance of each

electrode was kept below 5 kΩ during data acquisition. Three subjects’

data were discarded in further analysis because they did not give a proper

answer to the multiple-choice questions or the electrodes detached during

the EEG data recording. The raw EEG data were pre-processed using the

EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/index.php) in MATLAB

(MathWorks) [98]. This involved removing sinusoidal (i.e., line) noise and

bad channels (i.e., low-frequency drifts, noisy channels, short-time bursts)

and repairing the data segments [99, 100]. Then, the EEG data was down-

sampled to 128 Hz, 1-Hz high-pass filtering was performed to remove linear

drift. Adaptive mixture independent component analysis (AMICA) [101]

and ICLabel [102] were used to automatically identify and remove artifact

components.
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Chapter 5

Investigation on speech encod-

ing process

In this chapter, we primarily focused on addressing the first two questions:

identifying the brain regions involved in semantic processing and determining

whether we can find semantic representations within these regions. To

investigate these questions, we initially estimated the encoding functions of

different brain regions using the Linear Time-Invariant (LTI) system. By

identifying the optimal brain regions that differentiate between natural and

time-reversed speech, we were able to pinpoint the regions implicated in

semantic processing. Subsequently, we constructed patterns within these

brain regions that resemble the semantic features extracted by BERT, aiming

to confirm the presence of semantic representations in the brain.

5.1 Identification of key brain regions for speech

processing

5.1.1 Estimated encoding function for natural and time-

reversed speech

According to the proposed methods, this study gets the reconstructed cortex

signals of EEG. Then, the encoding function (TRF) of each brain area is

estimated by the LTI system. To assess the accuracy of the encoding process,

a leave-one-out cross-validation procedure was employed. Specifically, out of

the 24 trials, 23 trials were used for training the encoding function, while the
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remaining trial was used for testing the accuracy of the encoding process.

This cross-validation procedure was repeated 24 times, once for each trial,

for both natural speech and time-reversed speech conditions.

Figure 5.1 show the examples of encoding functions for superiortemporal

sulcus (STS) and middletemporal gyrus (MTG) for natural speech and time-

reversed speech. One can see that the patterns of the peaks and troughs for

STS (Fig. 5.1A) show a significant difference at time lags between 300 and

450 ms of the encoding function (paired t test, p = 5.2×10−5; effect size d =

1). In Fig. 5.1B, the encoding function patterns for MTG show a significant

difference between 150 and 450 ms (paired t test, p = 2.1× 10−14; effect size

d = 2).

0 200 400 600 800
-4

-2

0

2

4

A: Superior Temporal Sulcus

Time (ms)

A
m

p
lit

u
d

e
o

f
T

R
F

0 200 400 600 800
-4

-2

0

2

4

B: Middle Temporal Gyrus

Time (ms)

Natural

Time-reversed

Figure 5.1: Encoding functions for natural and time-reversed speech for STS
(A) and MTG (B).

During the experiment, the intelligibility was evaluated on a numerical

rating scale from 1 to 5 by the subjects, where “very easy to understand”

was scored 5, and “completely incomprehensible” was scored 1. The speech

intelligibility was 4.74 ± 0.45 for the normally played natural story but

was 1.46 ± 0.81 for the time-reversed one. This means that speech was

not comprehended in the time-reversed case since there was little semantic

information. For these reasons, functional brain networks are expected to

be separated into two clusters. One cluster is for semantically driven brain

activation, and the other is for non-semantically driven audio processing.

Since time-reversed speech is not understood, there is a lack of a top-down
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modulation mechanism to assist in encoding the speech. Therefore, we

hypothesize that these differences in the encoding function are attributed

to top-down semantic processing.

To validate this expectation, we then examined these encoding functions

from a brain functional perspective and constructed functional brain net-

works based on them. The strength of the connection between two brain re-

gions was quantified using Pearson correlation, ranging from -1 to 1. A higher

correlation indicated a greater similarity between the two regions, while a

lower correlation indicated less similarity. Then, we employed t-distributed

stochastic neighbor embedding (t-SNE) [103] to visualize the brain networks

in a two-dimensional representation and determine whether semantically-

driven brain activation could be distinguished from non-semantically-driven

activation. Initially, we transformed the connection matrix of size 68 ×
68 into a vector with 2278 dimensions, capturing the pairwise connections

between all brain nodes for each trial. With a resulting matrix size of 48 ×
2278 for 48 trials, t-SNE analysis was applied. We then utilized the k-means

algorithm [32] to cluster the t-SNE results, setting the cluster number to 2

and performing 1000 repetitions with random initial states. Figure 5.2 illus-

trates a scatter plot of the semantically and non-semantically-driven brain

networks in two dimensions. The functional connections displayed distinct

clusters for natural and time-reversed speech. We computed the F1-scores

between the actual groupings and the k-means clusters for all repetitions,

yielding an average F1-score of 0.92 across the 1000 repetitions. These

findings indicate that the differences observed in the encoding functions

between natural speech and time-reversed speech are indeed influenced by

semantic processing.

5.1.2 Key brain regions for natural speech

According to the results of k-means clustering, it was found that the encoding

functions of these brain regions can effectively distinguish between natural

and time-reversed speech. To investigate which brain regions are more

important for this distinction, the importance of these regions was sorted
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Figure 5.2: K-means clustering of t-SNE embedded distributions for natural
and time-reversed speech.

based on the weights of the CSP classification algorithm. Furthermore, using

a one-sample t-test (p < 0.05), 40 brain regions were selected based on their

significant weighted scores, and their spatial locations were plotted. Figure

5.3 displays the weighted score of each brain region. We consider these

regions to be important for semantic processing. From the figure, it can be

observed that the majority of brain regions involved in distinguishing between

natural and time-reversed speech are located in the frontal, temporal, and

cingulate cortex. The results are highly consistent with traditional fMRI

studies [26, 104].
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5.2 Semantic representations in brain cortex

Having identified the crucial brain regions involved in semantic processing,

our next objective was to investigate whether we could find representations of

semantic information within these regions. By inputting the speech text data

into the pre-trained Chinese BERT model, we obtained 768-dimensional word

vectors that captured the underlying semantic content of the speech. These

representations served as a reference for identifying similar patterns in the

brain regions associated with semantic processing. Subsequently, we aimed

to identify patterns in the brain regions that were similar to the extracted

semantic representations. By comparing the patterns of neural activity in

these brain regions with the semantic representations extracted from BERT,

we sought to uncover whether the brain regions exhibited similar patterns

that corresponded to the semantic information encoded in the speech stimuli.

5.2.1 Extracted Semantic information from speech

In our experiment, the dataset comprised 24 natural speech trials, which con-

sisted of three stories, with each story having a complete storyline. Utilizing

the pre-trained Chinese BERT model, we extracted the semantic information

from these 24 natural speech trials and visualized the corresponding semantic

representations. Figure 5.4 illustrates the two-dimensional representation of

the semantic information.

Based on the t-SNE results, we observed distinct clusters in the semantic

information of word vectors that corresponded to the different stories. We

hypothesized that these semantic representations would also be present in

the brain and categorized into three classes. Therefore, our next step was to

explore and identify similar patterns of representation from brain activity.

5.2.2 Extracted semantic representations from brain

To explore this further, we extracted brain signals from these critical brain

regions and examined whether their distribution patterns were similar to

the BERT-extracted semantic information. These regions include the left
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Figure 5.4: T-SNE embedded distributions obtained from semantic informa-
tion based on BERT.

and right posterior cingulate, which have been implicated in various complex

cognitive processes such as memory, navigation, and narrative comprehension

[105]. We utilized the CSP analysis to separate the semantic representations

of the three stories from the brain signals and transformed them into a two-

dimensional representation using t-SNE.

Figure 5.5 displayed the distribution patterns of the brain signals in a

2D space. It was evident that, similar to the BERT-extracted semantic

information, the semantic representations in the brain were also categorized

into three distinct classes corresponding to the different stories. This finding

provides evidence for the existence of semantic representations in these brain

regions, further supporting the validity and consistency of the brain activity-

based representations.
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Since we hypothesized that semantic representations in the brain can be

categorized into three classes that correspond to the different stories, we

initially conducted a three-classification task based on the brain responses

across different EEG frequency ranges in these brain areas. The classification

results, presented in Table 5.1, demonstrate the classification accuracy across

different frequency bands for these semantic representations. To ensure result

stability, the final classification accuracy is based on 100 iterations of random

training processes. In each iteration, 50% of the data is used for training,

while the remaining 50% is used for testing. To account for the varying

number of trials in each story class and maintain data balance, an equal

number of test samples from each class are used in each iteration of the

evaluation process. This approach helps to mitigate potential biases arising

from imbalanced class distributions and provides robust and reliable accuracy

estimates. It is evident that brain oscillations in the delta and gamma

frequency ranges are closely associated with speech semantic processing.

This finding is consistent with previous research reports indicating that brain

oscillations in the delta and gamma range synchronize with the lexical aspects

of spoken sentences [106–108].

frequency bands 1-4 Hz 4-8 Hz 8-12 Hz 12-30 Hz 30-40 Hz

Accuracy (%) 83.98(0.11) 67.96(0.10) 69.61(0.09) 58.01(0.10) 70.17(0.09)
1 The values in parentheses represent the standard deviations of the accuracy.

Table 5.1: Classification accuracy for different semantic categories in the brain.

According to the results, we can conclude that the estimated encoding

functions can provide more detailed insights into the brain’s distinct states

while processing different semantic information. These findings suggest that

the brain network dynamically adapts to process different semantic contexts,

which is reflected in the encoding functions across various frequency bands.

5.3 Summary

In this chapter, our focus lies in addressing two key questions: (1) which brain

regions contribute the most to speech comprehension, and (2) can we find the
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semantic representations in these brain areas. To answer these questions, we

initially employed the proposed functional hyper-alignment method to map

raw EEG electrode data to the source space of the brain through source

reconstruction.

In addressing the first question, we utilized common spatial pattern (CSP)

analysis to identify the key brain regions that contribute the most to speech

comprehension. By differentiating between natural speech and time-reversed

speech, we were able to highlight the significant role of these brain regions

in the comprehension of speech.

For the second question, we successfully extracted representations of

semantic information from brain activity. This allowed us to investigate

how speech stimuli are processed within these brain regions and understand

the underlying mechanisms involved in speech comprehension. In addition

to the classical language processing brain regions located in the temporal

and frontal cortex, our results also indicate the significant involvement of the

cingulate cortex in semantic processing. Interestingly, based on the weighted

score analysis, the activation of the cingulate cortex appears to consistently

exhibit desynchronization patterns with the activation of the temporal and

frontal cortex. This desynchronization observed in the cingulate cortex may

play a critical role in discerning between natural and time-reversed speech,

as well as in processing distinct semantic information.
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Chapter 6

Decode speech from brain sig-

nals

The speech decoding process is the inverse of speech encoding, aiming to

reconstruct the original speech TAEs from brain cortex responses. Neural

signal-based speech prosthetics aim to provide a natural means of commu-

nication for individuals who are unable to listen or speak due to physical or

neurological impairments [109]. By decoding speech directly from measured

neural activity, it is possible to enable natural conversations and improve

the quality of life, particularly for individuals who suffer from neurological

diseases.

The exploration of speech decoding serves three primary purposes.

Firstly, since we have discovered the representations of semantic information

in the brain regions, can we reconstruct the semantic features of the original

speech from the brain signals? Secondly, by examining the decoding results,

we can validate the accuracy of our reconstructed source signals. Lastly,

recent studies have demonstrated the direct recognition or synthesis of speech

from intracranial recordings. However, intracranial electrocorticography is

invasive and not user-friendly. Therefore, this study aims to investigate the

feasibility of reconstructing speech signals from non-invasive EEG, providing

a potentially more accessible and user-friendly approach for speech decoding.
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6.1 Accuracy for decoding TAEs from brain

signals

Can we decode the TAEs from reconstructed source signals of EEG? To

evaluate our decoding accuracy, we employed a leave-one-out cross-validation

procedure. In the training process, we used 23 trials for training and reserved

one trial for testing, allowing us to decode the TAE from neural signals in

each fold. In this study, we measured speech decoding accuracy using the

Pearson correlation coefficient between the predicted speech TAEs and the

original ones. To establish the chance level, we performed a permutation test

where we randomly shuffled the order of neural signals 100 times. We then

applied the speech decoding process to the permuted data.

Neural oscillations subserve a broad range of functions in speech pro-

cessing and language comprehension [110]. In previous research, they have

shown that oscillatory at different frequency bands tracks the different speech

units, such as the delta band for phrase processing and theta band for

syllable processing. In this section, we investigate the decoding accuracy

of speech TAEs across various frequency bands. The EEG signals were

divided into different frequency bands: 1-4 Hz, 4-8 Hz, 8-12 Hz, 12-30 Hz,

and 30-40 Hz. Figure 6.1 illustrates the mean decoding accuracy over 24

trials within each of these frequency bands. To ensure a fair comparison,

we transformed the correlation coefficient into a z-value using Fisher’s z

transformation, satisfying a normal distribution [111]. According to an

analysis-of-variance (ANOVA) of the z values revealed the speech decoding

accuracy was significantly higher than the chance level (F = 177, p < 0.001).

This finding indicates that the TAEs can be decoded from the reconstructed

source signals.

In previous studies, a stable TAE tracking phenomenon has been observed

in brain oscillations within the 1-8 Hz range. In this study, our results

indicate a widespread presence of neural oscillations coupled with speech

TAEs across different frequency bands. Among these bands, the delta

frequency range (1-4 Hz) exhibits the most robust coupling, followed by
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Figure 6.1: TAE decoding accuracies across different frequency ranges of
EEG.

the gamma frequency range (30-40 Hz). These findings are consistent with

previous results that suggest a stronger relationship between these frequency

bands and semantic representation.
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6.2 NVS reconstruction results based on LTI

model

To assess the amount of speech information that can be obtained from the

brain cortex, we employed the NVS to recover speech semantic information

from the brain cortex responses. Firstly, we estimated the TAEs of the speech

from the brain cortex. The decoding accuracy of the TAEs is depicted in Fig.

6.2A. Subsequently, we utilized the predicted TAEs to reconstruct the speech

using NVS. Although our predicted TAEs showed a high correlation with the

TAEs of the original speech, it is essential to note that the intelligibility of

the NVS in this study was not sufficiently high. This limitation may be

attributed to the nonlinearity of the brain, which motivates us to explore the

decoding of speech TAEs from brain activity using non-linear convolutional

neural networks.
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6.3 Reconstruct NVS based on convolutional

neural networks

In this study, we attempted to reconstruct TAEs using a network architecture

based on the Very Large Augmented Auditory Inference (VLAAI) model,

which is shown in Fig. 6.3 [112]. The VLAAI network consists of several

Figure 6.3: Structure of the VLAAI network [112].

blocks, each containing three parts: a convolutional neural network (CNN)

stack, a fully connected layer, and an output context layer. The CNN

stack consists of M = 5 convolutional layers with varying numbers of filters.

Layer normalization, LeakyReLU activation, and zero-padding are applied

after each layer. The fully connected layer recombines the output filters of

the CNN stack, while the output context layer integrates predictions from

previous timesteps to enhance the prediction for the current timestep. This

layer utilizes a convolutional operation to transform the previous samples
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and the current sample. Skip connections are used in each block except the

last, where a linear layer combines the filters of the output context layer

into speech TAEs. Similar to the LTI model, we employed a leave-one-out

cross-validation procedure to decode the TAEs based on the VLAAI model.

In Fig. 6.4, we compare the decoding accuracy of TAEs using both linear

and non-linear VLAAI models. The results of a t-test indicate that there is

no significant difference between the two models (t = 1.556, p = 0.14).
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Figure 6.4: Comparison of TAEs decoding accuracy between linear and
VLAAI model.

Although we replaced the linear model with a non-linear one, the re-

construction accuracy of the TAE using the non-linear model did not show

significant improvement on the test set. Therefore, we shifted our focus to the

training set. It’s possible that during the training phase, we didn’t identify

a model that fits the data on the training set well.

In the training process, it is important to note that the non-linear VLAAI

model exhibits significantly better fitting results for the original speech TAEs

on the training set compared to the linear model. Figure 6.5 displays the
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fitting outcomes for both the LTI and VLAAI models, illustrating that the

VLAAI model achieves substantially higher levels of fitting accuracy (t =

30.5, p < 0.0001). Even though the fitting accuracy of the linear model is

not high enough, both the VLAAI and LTI models capture the dynamic cues

of TAEs in the training data.

In Fig. 6.6, we show the fitting example of the original speech TAE on

the training set using both the linear model and the VLAAI model. It is

evident that the non-linear VLAAI model achieves a much closer fit to the

original speech TAE compared to the linear model. The non-linear model

exhibits a nearly perfect to capture the fine details and dynamics of speech

TAE. In contrast, the linear model falls short in accurately capturing the

complex patterns of the speech TAE. To ensure that the findings are not a

result of overfitting, we reshuffled the EEG segments and their corresponding

speech signals for retraining. However, we found that the shuffled EEG data

were unable to accurately decode the TAE signals. This indicates that the

EEG contains essential information for reconstructing semantic information,

but due to the presence of noise and significant inter-individual differences in

EEG data, perfect reconstruction of NVS on unseen data is not achievable.
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6.4 Evaluation of intelligibility of reconstructed

NVS

To evaluate the intelligibility of the reconstructed NVS using cortical signals,

we recruited 10 healthy Mandarin Chinese speakers (mean ± standard

deviation age, 28 ± 2.1 years; six males) to assess the intelligibility of

the reconstructed NVS. In the NVS perception experiment, four types of

NVS were presented to the participants. These included NVS reconstructed

using original TAEs, NVS derived from the VLAAI model fitted TAEs, NVS

derived from the LTI model fitted TAEs, and NVS from the predicted TAEs

in the test set. The reconstructed NVS were randomly presented to the

participants. After listening to each speech segment, the participants were

asked to rate the intelligibility of the NVS segments. The intelligibility rat-

ings were categorized as very difficult to understand, difficult to understand,

moderate, easy to understand, and very easy to understand, with scores

ranging from 1 to 5. The final intelligibility scores for different NVS are

shown in Table 6.1. Based on the results presented in the table, we observed

that while the reconstructed NVS from the test set and the fitted NVS fitting

from the linear model were challenging to understand, the fitted NVS from

the non-linear VLAAI model exhibited a reasonable level of intelligibility,

with a comprehensibility score of approximately 2.9. This finding provides

evidence that EEG contains crucial information for reconstructing semantic

information.

NVS Type Intelligibility Score

Original TAEs 4.5 (0.72)
VLAAI model fitted TAEs 2.9 (0.87)
LTI model fitted TAEs 1.3 (0.54)
Test set predicted TAEs 1.0 (0.18)
1 The values in parentheses represent the standard deviations of the
accuracy.

Table 6.1: Intelligibility of reconstructed NVS.
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6.5 Encoding accuracy of cortex signals from

predicted TAEs

To assess the validity of the decoding process results, we utilized the predicted

TAEs obtained from the backward decoding process as input to the encoding

model. This allowed us to verify whether we could accurately predict the

original cortex signals. If we can predict it in with high accuracy, it can

show whether our decoding process is reasonable or not.
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Figure 6.7: Encoding accuracy when predicted TAEs as an input.

Encoding accuracy is defined as the Pearson correlation between the

original cortex signals and predicted cortex signals, where the input is the

predicted TAEs. The chance level results are obtained through a permutation
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test, where the cortex signal and TAEs are not matched. ANOVA analysis

reveals that the encoding accuracy of both natural speech and time-reversed

speech are significantly higher than the chance level (F = 113.7, p < 0.001).

Additionally, the encoding accuracy of natural speech is higher than that

of time-reversed speech because more speech information is encoded in the

cerebral cortex (t = 219, p < 0.001).

6.6 Summary

In this chapter, we explored the process of decoding speech from brain

signals, aiming to reconstruct the original TAEs from brain cortex responses.

Speech decoding has significant implications for neural signal-based speech

prosthetics, providing a natural communication channel for individuals with

listening impairments.

We assessed the accuracy of decoding speech TAEs from brain signals

using the Noise-Vocoded Speech (NVS) technique. The TAEs of the speech

were estimated from the brain cortex, and their prediction accuracy was

evaluated. We found that the speech TAEs can be decoded from the

reconstructed source signals with a significantly higher accuracy than chance

level.

Furthermore, we investigated the frequency-specific decoding accuracy

of speech TAEs across different frequency bands. Our results revealed a

widespread presence of neural oscillations coupled with speech TAEs in

various frequency ranges of EEG, with stronger coupling observed in the

delta and gamma frequency bands.

To reconstruct NVS from brain cortex responses, we employed the VLAAI

network, a non-linear convolutional neural network architecture. The VLAAI

model showed superior performance in fitting speech TAEs compared to the

linear model in training data. However, it is important to note that perfect

reconstruction of NVS on unseen data is challenging due to the presence of

noise and inter-individual differences in EEG data.

Overall, our findings highlight the potential of decoding speech from brain

signals and provide insights into the neural mechanisms underlying speech
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processing. This research contributes to the development of speech prosthet-

ics and offers possibilities for improving communication for individuals with

speech-related disabilities.
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Chapter 7

General discussion

In Chapters 5 and 6, we conducted separate research on speech encoding and

speech decoding. A significant departure from our previous studies was the

introduction of spatial information through a hyper-alignment method in the

encoding function. In this chapter, we will discuss the benefits and provide

some analysis of incorporating spatial information at the cortex level in the

encoding/decoding function.

7.1 Scalp level vs. cortex level

In our study, we investigate the benefits of incorporating spatial information

into the encoding and decoding functions. By employing the hyper-alignment

method, we gain a precise understanding of the encoding and decoding

processes at the cortex level.

Figure 7.1 presents the cluster analysis of the encoding function, both

at the scalp level and the cortex level, for natural speech and time-reversed

speech. As depicted in Figure 7.1, we can observe distinct clustering patterns

only when using the cortex level encoding function proposed in our study to

differentiate between brain network states associated with natural speech

and time-reversed speech. Conversely, these clustering patterns were not

evident when examining the scalp level encoding function. Specifically,

the left panel of Fig. 7.1 represents the results at the scalp level, while

the right panel depicts the results at the cortex level. At the cortex

level, clear clusters were observed for natural and time-reversed speech,

indicating distinct functional connections. However, at the scalp level, no

distinct clusters were observed. To evaluate the performance, F1-scores were
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calculated for the actual groupings and the k-means clusters. The average

F1-score was 0.5 for the scalp level (Fig. 7.1A) and 0.93 for the cortex level

(Fig. 7.1B) across 1000 repetitions. These results highlight the advantages of

incorporating spatial information into the encoding and decoding functions,

as they capture more robust and discriminative brain network states related

to different speech stimuli. It is worth noting that at the scalp level, due to

the presence of noise and the mixture of source components, it is challenging

to separate natural and time-reversed speech.

B: Cortex level

First eigenvariate
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Figure 7.1: K-means clustering of t-SNE embedded distributions obtained at
scalp level (A) and cortex level (B).

We also compared the decoding performance between the scalp level and

cortex level. Figure 7.2 illustrates the comparisons of decoding accuracies for

both levels. To ensure a normal distribution, the correlation coefficient was

transformed into a z-value using Fisher’s z transformation. Subsequently,

a t-test was conducted on the z-values, revealing a significant effect on

the decoding accuracies (t = 21.03, p < 0.0001). The results of the t-test

demonstrate that the decoding accuracy at the cortex level is significantly

higher than at the scalp level. This finding indicates that the incorporation of

spatial information in the cortex level encoding and decoding functions leads

to more reliable and informative representations of the speech information

encoded in the brain. Moreover, the decoding accuracy at the cortex level was

significantly higher compared to the scalp level, highlighting the enhanced

performance and effectiveness of the cortex level decoding approach.
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Figure 7.2: Comparison of envelope decoding accuracies between scalp level
and cortex level.

7.2 Dynamic brain network analysis during

semantic processing

Based on the cortex level encoding function, we constructed a dynamic brain

network during semantic processing. MVAR models are capable of analyzing

the encoding function in different brain regions and determining causal

influences and directed propagation of EEG activity [113]. Consequently,

we utilized MVAR models to analyze the encoding function in different

brain regions and constructed a dynamic brain network with directional

connections. The dynamic brain network is shown in the Fig. 7.3.

Between 0-200 ms, the brain does not form complex networks, and the

information flow primarily occurs from the temporal area to the frontal area.

This may indicate that the primary auditory areas are transmitting the
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collected acoustic information to higher-level brain regions responsible for

sound-to-semantic mapping. As time progresses to 200-400 ms, we observe

distinct ventral and dorsal pathways in the brain, supporting the traditional

dual-stream model observed in fMRI studies. By the time 400-600 ms

elapses, we find that the information flow primarily shifts from frontal to

temporal areas. This may suggest that higher-level brain regions involved

in semantic processing predict upcoming semantic information, aiding the

primary auditory cortex in tracking the acoustic information of these speech

signals more effectively. When reaching 600-800 ms, a more complex brain

network emerges. During this process, there is no clear distinction in the

direction of information flow, and the interactions and connections between

the temporal and frontal areas become more intricate.

Figure 7.3: Dynamic brain network for semantic processing.

Then, community detection is employed to partition the nodes of the

brain network into distinct and non-overlapping subnetworks [114]. Commu-

nity detection helps us better understand the subnetworks within the brain

network that serve different functions. In our study, we identified two main

subnetworks, as shown in Fig. 7.4. Subnetwork 1 comprises the primary

auditory cortex, inferior frontal cortex, superior temporal cortex, and middle
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frontal cortex. According to previous fMRI research, these regions are

involved in phrase structure building and lexical selection. Subnetwork

2 primarily consists of Broca area, the middle temporal cortex, fusiform,

superior frontal cortex, supramarginal, and postcentral areas. These regions

play a key role in sentence-level processing, speech comprehension, and

lexical-semantic functions.

Notably, the activity patterns within these two brain subnetworks appear

to exhibit desynchronization. In subnetwork 1, the activity during the

100-200 ms and 300-400 ms intervals is positive, whereas in subnetwork

2, the pattern is opposite. Previous studies have also reported similar

desynchronization between the temporal and frontal areas [28]. Therefore,

this type of desynchronization may be a critical factor in semantic processing.

The brain regions of two subnetworks are shown in Table 7.1.
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7.3 Nature speech vs. time-reversed speech

Based on our network analysis, we believe that the desynchronization pattern

between the temporal and frontal areas is crucial for the process of language

comprehension. Therefore, in natural speech, the activity patterns in the

frontal and temporal areas may differ from those in time-reversed speech.

This is because time-reversed speech involves minimal language comprehen-

sion. Hence, we investigated the frontal and temporal activity patterns for

both natural and time-reversed speech. The results are depicted in Figure

7.5.

The analysis reveals that the frontal area and primary auditory cortex

coupling was stronger for natural speech compared to time-reversed speech.

Specifically, the correlation coefficient was 0.65 for natural speech, while it

was 0.23 for time-reversed speech. Notably, the coupling rapidly decreased

after 400ms for time-reversed speech. This observation suggests that high-

level language areas were not engaged in the auditory processing of time-

reversed speech since it was not comprehended by the subjects. Previous

studies have also reported the coupling between the auditory cortex and

frontal areas, and this coupling tends to increase when speech has higher

intelligibility [50].
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Figure 7.5: Coupling between frontal area (red color) and auditory cortex
(blue color) for natural speech (A) and time-reversed speech (B).

Then, semantic representations in the brain cortex are also investigated
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in time-reversed speech. To ensure the stability of our results, each time

we performed the k-means algorithm, we randomly extracted 20 segments

from the brain responses of the distinct stories, with each segment being

around 10 seconds. This process was repeated 1,000 times, and the average

F1-score of the 1,000 k-means was then computed. For comparison, we

also calculated the average F1-score for 1,000 k-means on time-reversed

speech. As illustrated in Fig. 7.6A, the results revealed an F1-score of 0.81

for natural speech. This suggests that the brain responses, as anticipated,

were grouped into three classes based on the domain of the different stories,

affirming the presence of semantic representations in the cortical responses.

In contrast, the F1-score was only 0.63 for time-reversed speech in Fig. 7.6B,

indicating that since time-reversed speech scarcely contains little linguistic

information, we could not distinguish any significant semantic differentiation

in its corresponding brain activities.

Figure 7.6: K-means clustering of t-SNE embedded distributions for three
stories in time-reversed speech.

Next, we compared natural speech and time-reversed speech from a

decoding perspective. As natural speech is comprehensible, it encodes more

semantic information in brain signals. Consequently, during the decoding

process, we can extract and decode more information from cortex responses

in natural speech compared to time-reversed speech. To assess this, we

compared the accuracy of speech decoding between natural and time-reversed

speech.
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Figure 7.7: Decoding accuracy of TAEs between natural and time-reversed
speech.

In Figure 7.7, we can see how accurately the envelope is decoded across

different EEG frequency bands. To compare natural speech and time-

reversed speech decoding accuracy, Pearson correlation coefficients were

transformed into z-values using Fisher’s z transformation to ensure a normal

distribution. An ANOVA test of the z-values showed significant differences

between natural and time-reversed speech (F = 78.02, p < 0.001). This

indicates that natural speech is decoded more accurately than time-reversed

speech, implying that more semantic information is encoded during the

encoding stage for natural speech. As a result, during the decoding stage,

the TAEs of natural speech can be reconstructed more accurately.
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7.4 Summary

In this chapter, we have provided a comprehensive discussion of our research

findings and their implications. Here is a summary of the key points covered:

Scalp level vs. cortex level: We introduced the concept of incorporating

spatial information using the hyper-alignment method in the speech encod-

ing function. This approach improved the accuracy and reliability of the

encoding function by mitigating noise interference. The cortex level encoding

function revealed new insights, such as a broader frequency range for brain-

speech coupling and enhanced discrimination of brain networks. We also

compared the decoding accuracy of speech TAEs between the scalp level and

the cortex level, demonstrating improved accuracy by removing noise in the

electrode space and achieving more accurate decoding accuracy at the cortex

level.

Dynamic brain network for speech comprehension: We constructed a

dynamic brain network during semantic processing and investigated the in-

formation flow and interactions between different brain regions. The network

analysis revealed a shift in information flow from high level brain areas to

primary brain areas during the N400 and P600 components associated with

language comprehension. This suggests that high-level semantic processing

areas facilitate the extraction of acoustic features by the primary auditory

cortex through a mechanism of predicting upcoming semantic information.

Overall, we synthesized the research findings from Chapters 5 and 6,

highlighting the advantages of estimating encoding/decoding functions at

the cortex level, the accuracy and benefits of source reconstruction and

the dynamic network dynamics during semantic processing. These findings

contribute to our understanding of the neural mechanisms underlying speech

encoding and decoding and have implications for future research in the field.
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Subnetwork 1 Subnetwork 2

caudalanteriorcingulate L bankssts L
caudalanteriorcingulate R bankssts R
caudalmiddlefrontal L entorhinal L

fusiform R fusiform L
insula R isthmuscingulate R

lateraloccipital L lateralorbitofrontal L
medialorbitofrontal R lateralorbitofrontal R
parsopercularis L middletemporal L
parstriangularis L middletemporal R
posteriorcingulate L paracentral L
posteriorcingulate R parsopercularis R

precentral L parsorbitalis L
precuneus L postcentral L
precuneus R postcentral R

rostralmiddlefrontal R rostralanteriorcingulate R
superiortemporal L superiorfrontal L
temporalpole L superiorfrontal R

transversetemporal L superiorparietal L
superiorparietal R
superiortemporal R
supramarginal L
supramarginal R
inferiorparietal L
parsorbitalis R

parstriangularis R
transversetemporal R

entorhinal R
inferiorparietal R

Table 7.1: Key brain regions for semantic processing.
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Chapter 8

Conclusion

8.1 Research conclusion

In this study, we aim to address three questions. Firstly, we investigate

the brain regions that play a crucial role in semantic processing. Based

on the findings presented in section 5.2, in addition to the well-known

language processing regions located in the temporal and frontal cortex, our

results indicate a significant involvement of the cingulate cortex in semantic

processing. Considering recent fMRI studies [105, 115], we speculate that

the activation observed in the cingulate cortex is specifically related to

natural speech paradigms. Furthermore, we discovered that a majority of

the right hemisphere regions are also activated during natural language com-

prehension, suggesting a more widespread bilateral brain activity rather than

the traditionally emphasized left hemisphere lateralization. These findings

shed new light on the neural mechanisms underlying speech comprehension

and challenge the conventional understanding of language processing being

primarily localized in the left hemisphere. These brain areas are listed in

Table 7.1.

The second question focuses on whether we can identify semantic rep-

resentations within these brain regions. Based on the results presented in

section 5.3, we have successfully discovered representational forms that bear

similarity to the original semantic information in brain activity. Moreover,

we have observed a stronger correlation between neural oscillations in the

delta and gamma frequency bands within these brain regions and semantic

processing. This suggests that the delta and gamma frequency bands play
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a significant role in the neural mechanisms underlying semantic processing.

These findings provide further evidence for the involvement of specific neural

oscillations in the encoding and processing of semantic information within the

identified brain regions. Furthermore, when constructing a dynamic brain

network utilizing these regions, we observed an early flow of information

from the primary brain areas to the frontal areas, as indicated in section 7.2.

However, during later stages such as the N400 phase, there is a noticeable

shift in the predominant information flow from high level brain areas to the

primary brain areas. This finding may suggest a top-down regulatory role

in the language processing process, where higher-level brain regions, once

receiving sufficient information, can assist primary brain areas in accelerating

information acquisition and integration. These findings provide valuable

insights into the mechanisms of semantic processing and the interaction

between different brain regions during language comprehension.

The final question explores whether we can decode semantic information

from brain signals, as discussed in section 6.3 and 6.4. The results indicate

that EEG signals contain crucial information that can be used to reconstruct

semantic information. However, it should be noted that the presence of

noise in the EEG data, as well as substantial inter-individual differences,

make it challenging to achieve perfect reconstruction of semantic information

on unseen data. While the EEG signals provide valuable insights into

the underlying semantic processes, the decoding accuracy may vary due to

individual variations and noise present in the data. Therefore, although the

EEG signals carry meaningful information related to semantic processing,

it is important to consider the limitations and complexities involved in

accurately decoding and reconstructing semantic information from brain

signals.

In summary, this study aimed to address three questions. Firstly, it

investigated the brain regions crucial for speech comprehension, revealing the

involvement of the cingulate cortex in addition to the traditional language

processing regions. Secondly, the study successfully identified semantic repre-

sentations within these brain regions and highlighted the correlation between

neural oscillations in the delta and gamma frequency bands and semantic
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processing. Lastly, the study explored decoding semantic information from

brain signals, emphasizing the challenges posed by noise and inter-individual

differences in achieving perfect reconstruction. Overall, these findings pro-

vide valuable insights into the neural mechanisms and complexities involved

in speech comprehension and semantic processing.

8.2 Research contribution

The research contribution of this study can be summarized as follows:

• Simultaneous investigation of temporal and spatial dimensions: Our

research incorporates spatial information by introducing the hyper-

alignment method, allowing for the examination of neurological re-

sponses from both temporal and spatial dimensions using EEG. Al-

though EEG does not provide the same spatial resolution as fMRI,

our research successfully identifies and confirms crucial brain regions

involved in speech comprehension. These findings align with previous

fMRI studies, enhancing our overall understanding of the roles of

different brain regions in the process of understanding spoken language.

This advancement in methodology reduces noise interference, enhances

accuracy, and provides a more comprehensive view of the brain’s

language processing activity.

• Our research suggests that the process of comprehending language

during natural speech processing involves more brain regions than pre-

viously thought. While frontal and temporal cortices have traditionally

been considered the main areas responsible for language comprehen-

sion, we found that the cingulate cortex also plays an important role.

This discovery sheds light on the complex neural network involved

in language comprehension. The desynchronization between different

subnetworks, primarily within frontal and temporal areas, may be a

key mechanism by which the brain processes semantic information.

• Confirmation of the potential for decoding semantic information from

the brain: This study demonstrates the potential to decode semantic
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information from brain activity by decoding TAEs and combining them

with NVS. This significant finding provides a theoretical foundation for

future advancements in neuro-interface-based hearing devices. Such

devices could utilize non-invasive brain signals to synthesize speech

information, thereby enhancing speech perception for individuals with

hearing impairments.

In summary, this study contributes to our understanding of speech

processing by integrating spatial information, exploring the involvement of

brain networks in language comprehension, and demonstrating the potential

for decoding semantic information from the brain. These findings have

implications for improving speech decoding techniques and advancing the

development of neuro-interface-based assistive devices.

8.3 Limitations and Future Directions

While our study has yielded several notable findings, it is important to

acknowledge its limitations. Firstly, the brain is not a strictly linear system,

and our use of linear models to infer the encoding/decoding function may

not fully capture the underlying neural mechanisms of language processing.

Future studies should consider more appropriate non-linear models to to

represent these processes better.

Secondly, our study primarily focused on decoding TAEs of the speech

signal. However, the speech signal also contains additional complex features,

such as phonemes and syllables, which were not included in the current study.

Future studies should aim to apply our method to decode these additional

speech features.

Thirdly, the number of participants in our dataset remains relatively lim-

ited. Future studies with larger sample sizes, encompassing other languages

such as Japanese and English, would yield more definitive outcomes and

further affirm the reliability of our methodology.

Lastly, while our use of cortex level signals allowed us to identify the

brain regions most involved in speech comprehension, further research is
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needed to gain a deeper understanding of the precise mechanisms underlying

these effects. For example, the coupling of brain activity with the speech

signal across different frequency bands suggests the existence of a multi-scale

temporal coding mechanism. Future studies could focus on elucidating these

mechanisms and their functional significance.

8.4 Summary

In this study, we successfully inferred a linear encoding model at the cortex

level by simultaneously considering both temporal and spatial information,

using EEG. This approach overcomes the limitations of traditional research

that cannot capture both spatial and temporal aspects using non-invasive

neuroimaging techniques. Based on our inferred cortex level encoding func-

tion, our findings challenge traditional language comprehension models by

suggesting that a wide range of brain regions, including the right hemisphere,

are involved in the processing of natural speech. This cannot be explained

solely by language models restricted to specific regions in the left hemisphere.

We also identified two distinct and desynchronized subnetworks in the brain,

which may serve as the neural basis for language comprehension. This

discovery suggests the need to investigate and establish new language com-

prehension models from the perspective of network collaboration in future

research.

Furthermore, through the decoding process, we demonstrated the pos-

sibility of reconstructing semantic information from brain activity. This

finding provides a theoretical foundation and has the potential to inspire

future studies in auditory neuroscience and contribute to the development of

more effective speech-brain interfaces.
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“Exploring the temporal dynamics of speech production with eeg and

group ica,” Scientific reports, vol. 10, no. 1, pp. 1–14, 2020.

[70] T. C. Handy, Event-related potentials: A methods handbook. MIT

press, 2005.

[71] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zer-

vakis, P. Xanthopoulos, V. Sakkalis, and B. Vanrumste, “Review

on solving the inverse problem in eeg source analysis,” Journal of

neuroengineering and rehabilitation, vol. 5, no. 1, pp. 1–33, 2008.

[72] E. Pirondini, B. Babadi, G. Obregon-Henao, C. Lamus, W. Q. Malik,
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