
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 項書換えのための合成可能な合流性基準

Author(s) 新谷, 喜楽

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/18782

Rights

Description Supervisor:廣川 直, 先端科学技術研究科, 博士

Doctoral Dissertation

Compositional Confluence Criteria for
Term Rewriting

Kiraku Shintani

Supervisor: Nao Hirokawa

Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

[Information science]

September 2023

Abstract

Term rewriting is a computation model for equational reasoning. This model
underlies various fields in computer science, including functional programming,
automated theorem proving, and software verification based on equational spec-
ifications. In rewriting there are two fundamental properties. One is termina-
tion, which ensures finiteness of computation steps. The other is confluence.
It guarantees uniqueness of computation results without relying on any spe-
cific computational strategy. For a computational system with non-determinism,
confluence corresponds to consistency of the system. It plays a key role as well-
definedness of function definitions and correctness of specifications.

In this thesis we present a new approach for analyzing confluence of left-
linear term rewrite systems based on compositional confluence criteria. A com-
positional confluence criterion means a sufficient condition that, given a rewrite
system and its subsystem, confluence of the subsystem implies confluence of the
original system. Since such a subsystem can be analyzed by any other (composi-
tional) confluence criterion, compositional confluence criteria can be applied to
subsystems successively. This method enables us to decompose a rewrite system
into its subsystem for showing confluence of the original one.

In order to obtain compositional confluence criteria, we develop a variant of
decreasing diagrams method. It is known that most of confluence criteria for
left-linear rewrite systems can be shown by the method. Exploiting this fact,
we demonstrate how those confluence criteria can be recast into compositional
criteria by adopting a compositional version of the decreasing diagram method
in their proofs. Furthermore we show how existing confluence criteria based
on decreasing diagrams are generalized to ones composable with other crite-
ria. We also show how such a criterion can be used as a reduction method
to remove rewrite rules unnecessary for confluence analysis. Effectiveness of
these approaches is assessed by experimental data based on our confluence tool
Hakusan. In addition to these contributions, we prove that Toyama’s parallel
closedness result based on parallel critical pairs subsumes his almost parallel
closedness theorem.

keywords: term rewriting, confluence, decreasing diagrams, parallel closedness, au-
tomation.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor Nao Hirokawa. His
wise counsel was indispensable for completing my thesis work. I appreciate
my secondary advisors Hajime Ishihara and Kazuhiro Ogata. Their advice are
also helpful for my work. Mizuhito Ogawa, my minor research advisor, taught
me a stance for research work. I am grateful to Jean-Pierre Jouannaud, Vincent
van Oostrom, and Yoshihito Toyama for their valuable comments on my ear-
lier works of IWC and FSCD papers. I am also grateful to René Thiemann for
spotting and correcting a mistake in the proof of Theorem 4.3.4. I would like to
thank Salvador Lucas and Raúl Gutiérrez for their support on experiments with
the confluence tool CONFident. In addition, I appreciate the examiners Takahito
Aoto and Aart Middeldorp for their insightful comments and suggestions. Fi-
nally, I thank our laboratory members for their helpful comments during group
seminars.

v

Contents

1 Introduction 9
1.1 Term Rewrite Systems and Confluence 9
1.2 Compositional Approach . 11
1.3 Compositional Confluence Criteria 12
1.4 Reduction Methods . 14
1.5 Contribution . 15

2 Preliminaries 17
2.1 Abstract Rewriting . 17
2.2 Terms and Substitutions . 20
2.3 Term Rewrite Systems . 22

3 Parallel Closedness 25
3.1 Parallel Closedness and Variants . 25
3.2 Proof of Toyama’s Parallel Closedness 28
3.3 Comparison . 32

4 Compositional Confluence Criteria 37
4.1 Decreasing Diagrams with Commuting Subsystems 37
4.2 Orthogonality . 39
4.3 Rule Labeling . 42
4.4 Critical Pair Systems . 46

5 Reduction Method 51
5.1 Reduction Methods . 51
5.2 Automation . 56

6 Confluence Tool — Hakusan 57
6.1 Usage . 57
6.2 Features . 62
6.3 Experiments . 65

7 Conclusion 71

Bibliography 79

vii

Chapter 1

Introduction

1.1 Term Rewrite Systems and Confluence

Term rewriting is a computational model for equational reasoning. This model
underlies various fields in computer science, including functional programming,
automated theorem proving, and software verification based on equational spec-
ifications. In term rewriting, terms are rewritten to different terms by using
rewrite rules. This step on terms is called a rewrite step, and computation is rep-
resented by a sequence of rewrite steps.

The following system of rewrite rules (rewrite system) represents arithmetic on
Peano numbers:

1 : x + 0→ x 3 : x× 0→ 0

2 : s(x) + y→ s(x + y) 4 : s(x)× y→ (x× y) + y

One can compute (s(x) + 0)× 0 by the following rewrite sequence:

(s(x) + 0)× 0→{1} s(x)× 0

→{3} 0

Here →{i} denotes a rewrite step with the i-th rule. The first step rewrites the
subterm s(x)+ 0 to the term s(x) by using the 1st rule, and the next step rewrites
s(x)× 0 to 0 by using the 3rd rule. This rewrite sequence is not the only way to
compute (s(x) + 0)× 0. For instance, the next rewrite sequence is another one:

(s(x) + 0)× 0→{2} s(x + 0)× 0

→{1} s(x)× 0

→{3} 0

We write (s(x)+ 0)× 0→∗ 0 if there exists a rewrite sequence from (s(x)+ 0)× 0

to 0.
In rewriting there are two important properties. One is termination and the

other is confluence. The former ensures finiteness of rewrite sequences, while the

9

Chapter 1: Introduction

(s(x) + 0)× 0

0

(s(x + 0))× 0

((x + 0)× 0) + 0

(x + 0)× 0

s(x)× 0

(x× 0) + 0

x× 0 0+ 0

Figure 1.1: All possible rewrite sequences starting from (s(x) + 0)× 0.

latter guarantees uniqueness of computation results without relying on any spe-
cific computation strategy. The introductory example has the confluence prop-
erty. In fact, any maximal rewrite sequence from (s(x) + 0)× 0 ends in 0 (see
Fig. 1.1).

Rewriting is used for proving equality on terms. Given terms t and u, a
question is whether t←→∗ u holds. Here←→∗ is the reflexive transitive closure of
← ∪ →. The question is decidable if the rewrite relation → is terminating and
has the Church–Rosser property (CR). The role of the property guarantees existence
of a term that can be reached from both t and u by rewriting. This property is
equivalent to confluence. In general, confluence is undecidable.

·

· ·

·

confluence

∗ ∗

∗ ∗

· ·

·

⇐⇒ Church–Rosser

∗

∗ ∗

10

1.2 Compositional Approach

confluence criteria

CR(R1) unprovable

transformation methods

CR(R) CR(R′)

decomposition methods

CR(R)
CR(S1) &
CR(S2) &
CR(S3)

CR(R) CR(C1) CR(C2)

compositional methods

Figure 1.2: Classification of confluence analysis techniques.

1.2 Compositional Approach

Over the last half-century, confluence analysis has been investigated and many
proof techniques for confluence analysis have been developed. We recall the
existing three techniques: confluence criteria, transformation methods, and decompo-
sition methods; see Fig. 1.2. In the figure, a circle means a confluence criterion,
and a box means a rewrite system. If a circle covers a box then the corresponding
confluence criterion can prove confluence of the corresponding system.

The most standard method for proving confluence of a system is applying
confluence criteria to the system directly. Today various powerful confluence crite-
ria are known. Many of them rely on one of two properties: termination [KB70]
and orthogonality [Ros73]. The confluence of the introductory example can be
shown by the criterion based on termination but not orthogonality.

A transformation method is a function on rewrite systems. It transforms a
rewrite system R into another rewrite system R′ whose confluence implies con-
fluence ofR. The currying transformation by Kahrs [Kah95] is a typical instance
of this method. Another instance is redundant rule elimination [SH15, NFM15].

In 1987, Toyama proposed modularity [Toy87]. This research originated a
new confluence analysis based on decomposition methods. Given a rewrite system
R, a decomposition method splits R into its subsystems R1, . . . ,Rn such that
R = R1 ∪ · · · ∪ Rn. Then under certain condition, R is confluent if and only
if Ri is confluent for all 1 6 i 6 n. In this situation we can apply different
confluence criteria to individual subsystems R1, . . . ,Rn.

We give an example of a confluence proof based on a decomposition method.

11

Chapter 1: Introduction

Let’s consider the following rewrite system.

1 : x + 0→ x 3 : if(true, x, y)→ x 5 : x ∧ y→ y ∧ x
2 : s(x) + y→ s(x + y) 4 : if(false, x, y)→ y 6 : x ∨ y→ y ∨ x

This can be naturally separated into two subsystems: the subsystem for addition
R1 = {1, 2} and the subsystem for Boolean functions R2 = {3, 4, 5, 6}. Since
these subsystems share no signature, this decomposition satisfies the condition
of modularity. Therefore the confluence of R is equivalent to the confluence of
R1 and R2. In this case, the confluence of R1 and R2 are shown by Knuth–
Bendix criterion [KB70] and orthogonality [Ros73], respectively. Moreover, we
can apply again the decomposition method toR2 because {3, 4} and {5, 6} share
no signature. Note that neither of the confluence criteria can be applied to the
original system R due to the lack of termination and orthogonality.

Confluence analysis based on decomposition methods is effective in vari-
ous rewrite systems that are unions of independent subsystems. However, the
method is hard to apply to a more realistic setting: one subsystem strongly
depends on another. For instance, consider the introductory system:

1 : x + 0→ x 3 : x× 0→ 0

2 : s(x) + y→ s(x + y) 4 : s(x)× y→ (x× y) + y

Intuitively, the system can be separated into two subsystems: {1, 2} for addition
and {3, 4} for multiplication. Unlike the last example, the definition of multi-
plication relies on that of addition. In fact, hierarchical combination [Ohl02] in
the area of modularity guarantees that this hierarchical decomposition is valid
(see [Ohl02, Corollary 8.6.38]). However, the decomposition method strongly
depends on signatures. If we add new multiplication rule 5 which uses addition
on the left-hand side then the method fails:

1 : x + 0→ x 3 : x× 0→ 0

2 : s(x) + y→ s(x + y) 4 : s(x)× y→ (x× y) + y
5 : (0+ y)× z→ y× z

Our idea is to establish a confluence analysis that exploits confluence of sub-
systems.

1.3 Compositional Confluence Criteria

In this thesis we propose a new confluence analysis based on compositional conflu-
ence criteria. Given a rewrite system R and a subsystem C of R, a compositional

12

1.3 Compositional Confluence Criteria

confluence criterion Q(R, C) means a sufficient condition for the following im-
plication:

R is confluent⇐= C is confluent

In other words, compositional confluence criteria are confluence criteria that
exploit confluence of subsystems. For example, by using the compositional cri-
terion Theorem 4.2.4 (denoted by Q) the confluence of the above rewrite system
can be reduced to that of the subsystem addition:

{1, 2, 3, 4, 5} is confluent⇐= {1, 2} is confluent by Q({1, 2, 3, 4, 5}, {1, 2})

Then the confluence of {1, 2, 3, 4, 5} follows from the confluence of {1, 2}.
This method can be composed to a (compositional) confluence criterion. No-

tably, confluence of a rewrite system R can be shown by successive application
of compositional confluence criteria Q1, . . . , Qn+1:

R is confluent⇐= C1 is confluent by Q1(C0, C1)

⇐= C2 is confluent by Q2(C1, C2)

...
⇐= Cn is confluent by Qn(Cn−1, Cn)

⇐= ∅ is confluent by Qn+1(Cn,∅)

Here C0 = R and each Ci+1 is a proper subsystem of Ci (i.e., Ci+1) Ci). Because
the empty system ∅ is trivially confluent, the implications indicate that R is
confluent. For any compositional criterion Q, we can recast it as an ordinary
confluence criterion by taking the empty subsystem, i.e., Q(R,∅).

For developing compositional confluence criteria, we introduce a variant of
decreasing diagrams. The decreasing diagram method [vO94, vO08] is a powerful
confluence criterion for abstract rewriting. It is known that a number of conflu-
ence criteria [KB70, Hue80, Toy81, Toy88, Gra96, vO97, vO08, HM11, ZFM15] for
(left-linear) rewrite systems can be shown by the method. Therefore, a composi-
tional version of a decreasing diagram criterion is used as a uniform framework
that derives compositional confluence criteria from existing confluence criteria
based on decreasing diagrams.

This thesis studies three compositional confluence criteria that originate from
orthogonality, rule labeling [vO08, ZFM15], and critical pair systems [HM11].
When deriving the compositional versions we exploit the notion of parallel critical
pairs.

We demonstrate how compositional methods work. Consider the following
rewrite system:

1 : 0× y→ 0 3 : s(x)× y→ (x× y) + y 5 : (x + y) + z→ x + (y + z)
2 : x× 0→ 0 4 : 0+ x → x 6 : x + (y + z)→ (x + y) + z

13

Chapter 1: Introduction

Let C0 = {1, 2, 3, 4, 5, 6}. First, we take the subsystem C1 = {2, 4, 5, 6}. The
confluence of R can be shown from that of C1 by the compositional version of
orthogonality (Theorem 4.2.4):

R is confluent ⇐= C1 is confluent by Theorem 4.2.4 with C0 and C1

Second, in order to show the confluence of C1 we take the subsystem C2 = {4, 5}.
This is done by the compositional version of rule labeling (Theorem 4.3.4).

C1 is confluent ⇐= C2 is confluent by Theorem 4.3.4 with C1 and C2

Third, the confluence of C2 follows from the compositional version of critical
pair systems (Theorem 4.4.6) with the empty subsystem ∅.

C2 is confluent ⇐= ∅ is confluent by Theorem 4.4.6 with C2 and ∅

Because the empty system is confluent, the confluence of R is concluded.

1.4 Reduction Methods

In order to use a compositional confluence criterion, we need to find a suitable
confluence subsystem from exponentially many subsystems. Therefore, conflu-
ence analysis based on successive application of compositional confluence cri-
teria tend to suffer from a search space problem. If we naively implement it,
search spaces grow super-exponentially with the size of an input system.

Given a rewrite system R and a subsystem C of R, a reduction method
Q(R, C) means a sufficient condition for the following equivalence:

R is confluent ⇐⇒ C is confluent

This method reduces the confluence problem of R to that of the subsystem C.
Due to the equivalence, we do not need to verify confluence of C in advance. In
other words, if C is not confluent thenR is not confluent. Consider the following
TRS R:

1 : 0× y→ 0 3 : s(x)× y→ (x× y) + y 5 : (x + y) + z→ x + (y + z)
2 : x× 0→ 0 4 : 0+ x → x 6 : x + (y + z)→ (x + y) + z

Let C0 = R, C1 = {1, 2, 4, 5, 6}, and C2 = {4, 5, 6}. We can reduce the confluence
of R into that of the subsystem C2 by the reduction method (Corollary 5.1.4):

R is confluent⇐⇒ C1 is confluent by Corollary 5.1.4 with C0 and C1

⇐⇒ C2 is confluent by Corollary 5.1.4 with C1 and C2

14

1.5 Contribution

Thus, the confluence of R and that of C2 are equivalent. Let C3 = {4, 5}. The
confluence proof of C2 is similar to the proof presented in the last section.

C2 is confluent⇐= C3 is confluent by Theorem 4.3.4 with C2 and C3

⇐= ∅ is confluent by Theorem 4.4.6 with C3 and ∅

1.5 Contribution

Our contributions are summarized as follows:

• We propose a new confluence analysis based on compositional confluence
criteria. In Section 4.1 we present a variant of decreasing diagrams for
compositional confluence criteria. By using this, in the subsequent sec-
tions we exemplify this approach by deriving compositional confluence
criteria from orthogonality [Ros73], rule labeling [vO08, ZFM15], and crit-
ical pair systems [HM11]. All of them subsume the original one. Through
these section, we show how existing confluence criteria based on decreas-
ing diagrams are generalized to a compositional form in a systematic way.
In Chapter 6 we evaluate these criteria by our prototype confluence tool
Hakusan.

• We present reduction methods for confluence analysis in Chapter 5. First
we give a easy sufficient condition for reduction methods based on a signa-
ture extension result. This condition ensures the converse of compositional
confluence criteria. Using the sufficient condition, we introduce two reduc-
tion methods. One is a simple reduction method (Corollary 5.1.4) based
on the compositional version of orthogonality introduced from Section 4.2.
This method can be regarded as a transformation method. In Chapter 7 we
show that this generalizes a transformation method [NFM15] for left-linear
rewrite systems. The other reduction method (Corollary 5.1.10) is based on
a compositional criterion for non-left-linear TRSs [KH12].

For automation, we demonstrate how the former reduction method is en-
coded into linear arithmetic constraints.

• In Chapter 3 we elucidate the hierarchy of Huet’s parallel closedness and
its variants by showing that Toyama’s almost parallel closedness [Toy88]
is subsumed by his earlier result based on parallel critical pairs [Toy81].
In summary, the result dated 1981 is more powerful than the more recent
results dated in 1988–1996. It is worth noting that Toyama’s earlier result is
subsumed by rule labeling based on parallel critical pairs (see Section 4.3).

15

Chapter 1: Introduction

The thesis is based on the papers [SH22, SH]. The research results in Chapters 3
and 4 are taken from [SH22], and the results in Chapter 5 are from [SH].

16

Chapter 2

Preliminaries

In this chapter we introduce notions and notations for term rewriting. We as-
sume familiarity with set theory. More details about term rewriting are referred
to books [BN98, Ohl02, Ter03].

2.1 Abstract Rewriting

Binary relation is a fundamental notion for term rewriting. This notion captures
rewrite steps. A pair of a set and a binary relation on the set is called an abstract
rewrite system, and term rewrite systems are considered as their instances. In
this section we introduce properties for abstract rewrite systems, including the
confluence property.

We start with binary relations. For emphasizing the direction of a binary
relation, we denote it by an arrow notation→.

Definition 2.1.1. Let →1 and →2 be binary relations on a set A. The composition
→1 · →2 of →1 and →2 is the binary relation {(x, z) | x →1 y and y→2 z}. Let →
be a relation on A and n a natural number. We inductively define the n-step relation
→n as follows:

→n =

{
idA if n = 0
→ · →n−1 otherwise

Here idA is the identity relation on A, defined as {(x, x) | x ∈ A}.

Definition 2.1.2. We define closure operators for relations. Let→ be a binary relation
on a set A.

• The reflexive closure→= of→ is defined as the union of→ and→0.

• The transitive closure→+ of→ is defined as the union of→i for all i > 1.

• The reflexive transitive closure→∗ of→ is defined as the union of→0 and→+.

• The inverse← of→ is defined as the relation {(y, x) | x → y}.

17

Chapter 2: Preliminaries

·

· ·

·

A
∗

A
∗

A
∗

A
∗

·

· ·

·

A A

A
∗

A
∗

confluence local confluence

Figure 2.1: Confluence on ARSs

• The symmetric closure←→ of→ is defined as the union of→ and←.

Note that the reflexive transitive closure←→∗ of a symmetric relation←→ is an
equivalence relation.

Definition 2.1.3. Let I be a set. An (I-indexed) abstract rewrite system (ARS) A is
a pair (A, {→α}α∈I) consisting of a set A and a family of relations →α on A for all
α ∈ I.

Given a subset J of I, we write x →J y if x →α y for some index α ∈ J. The
relation →I is referred to as →A. Let A and B be ARSs. A conversion of form
b A← a →B c is called a local peak (or simply peak) between A and B. We say
that a peak b A← a →B c is joinable if b →∗B · ∗A← c holds. Then the confluence
property is formalized as follows.

Definition 2.1.4. An ARS A is confluent if ∗A← · →∗A ⊆ →∗A · ∗A← holds. It is
locally confluent if A← · →A ⊆ →∗A · ∗A← holds.

Example 2.1.5. Let A be the set {a, b, c, d}. Consider the two ARSs A1 and A2:

A1 = (A, {(a, b), (a, c), (b, a)})
A2 = (A, {(a, b), (a, c), (b, a), (b, d)}).

The ARS A1 is confluent because x →∗A1
c for all x ∈ A. Hence every x and y with

x ∗
A1
← · →∗A1

y satisfy x →∗A1
c ∗
A1
← y. However, in the case of A2 there is no element

z such that c→∗A2
z ∗
A2
← d. Thus the ARS A2 does not have the confluent property.

a bc a bc d

(a) The confluent ARS A1 (b) The non-confluent ARS A2

18

2.1 Abstract Rewriting

The confluence property is not decidable but many sufficient conditions for
confluence are known. In the remaining part of this section, we introduce two
notions termination and commutation, and indicate confluence criteria based on
them.

Termination is another fundamental property for abstract rewriting. It repre-
sents finiteness of rewrite steps. A binary relation→ is terminating if there exists
no infinite sequence a0 → a1 → · · · .

Definition 2.1.6. An ARS A is terminating if→A is terminating.

By using termination, confluence can be characterized by local confluence.
The next confluence criterion is known as Newman’s Lemma.

Theorem 2.1.7 ([New42]). A terminating ARS is confluent if and only if it is locally
confluent.

This notion can be generalized to a relative termination on two ARSs. We define
the relative rewrite step→A/B as→∗B · →A · →∗B for ARSs A and B.

Definition 2.1.8. Let A and B be ARSs. We say that A is relatively terminating
with respect to B, or simply A/B is terminating, if→A/B is terminating.

Note that if →B ⊆ →∗A holds then →∗A/B = →∗A holds. In the case, ter-
mination of A and that of A/B coincide. Therefore relative termination is a
generalization of termination. Moreover if→A = ∅ then termination of A/B is
trivial because →A/B = ∅. In Section 4.4 we discuss confluence criteria based
on relative termination.

The next property is commutation. Commutation is a property that general-
izes confluence. While confluence is a property on an ARS, commutation is a
property on two ARSs. This property distinguishes the direction of rewriting.

Definition 2.1.9. Let A and B be ARSs.

• We say that A and B commute if ∗A← · →∗B ⊆ →∗B · ∗A←.

• We say that A strongly commutes with B if A← · →B ⊆ →=
B · ∗A←.

• We say that A and B locally commute if A← · →B ⊆ →∗B · ∗A←.

It is easy to see that an ARS A is confluent if and only if it is self-commuting,
that is, A and A commute. This suggests confluence analysis via commutation.
The next commutation criterion is referred in Section 3.2.

Theorem 2.1.10 ([Hin64]). ARSs A and B commute if A strongly commutes with B.

19

Chapter 2: Preliminaries

·

· ·

·

A
∗

B
∗

B
∗

A
∗

·

· ·

·

A B

B

=

A
∗

commutation strong commutation

Figure 2.2: Commutation on ARSs

2.2 Terms and Substitutions

Term rewriting is abstract rewriting whose elements are terms and a relation
is the rewrite relation induced from rewrite rules. In this section, we introduce
notions and notations on terms. Others are presented in the next section.

Terms consist of function symbols and variables. We use symbols F and V for
denoting sets of function symbols and variables, respectively.

Definition 2.2.1. A signature F is a set of function symbols, where each function
symbol f is associated with non-negative integer n, the arity of f . We write f (n) when
we need to indicate the arity of f . If c ∈ F has 0-arity, we call c a constant.

Definition 2.2.2. Let F be a signature and V a countable set of variables such that
F ∩ V = ∅. The set T (F ,V) of terms (over F) is defined as follows:

• x ∈ T (F ,V) if x ∈ V , and

• f (t1, . . . , tn) ∈ T (F ,V) if f (n) ∈ F and t1, . . . , tn ∈ T (F ,V).

We usually use letters s, t, u, . . . for terms and x, y, z, . . . for variables.

Throughout this thesis, we fix a countable set V of variables. We introduce the
notion position, a sequence of positive integers, to represent locations of subterms
on terms. The empty sequence ε is called the root position.

Definition 2.2.3. Let p and q be positions.

• p · q (or simply pq) is the concatenation of p and q.

• p 6 q if p · p′ = q for some position p′.

• p and q are parallel if p
 q and q
 p. A set of positions is called parallel if all
pairs of distinct positions in the set are so.

20

2.2 Terms and Substitutions

Definition 2.2.4. Let t be a term.

• The set of all variables and the set of all function symbols in t are denoted by
Var(t) and Fun(t), respectively.

• The set Pos(t) of all positions in t is defined as follows:

Pos(t) =
{
{ε} if t ∈ V
{ε} ∪ {ip | 16 i 6 n and p ∈ Pos(ti)} if t = f (t1, . . . , tn)

• The set PosF (t) of all function positions and the set PosV (t) of variable positions
in t are defined as follows:

PosF (t) =
{
∅ if t ∈ V
{ε} ∪ {ip | 16 i 6 n and p ∈ PosF (ti)} if t = f (t1, . . . , tn)

PosV (t) = Pos(t) \ PosF (t)

• The subterm t|p of t at position p is defined as follows:

t|p =

{
t if p = ε

ti|p′ if p = i · p′ and t = f (t1, . . . , ti, . . . , tn)

We say that s is a subterm of t if there exists a position p such that s = t|p. A
subterm t|p of t is called a proper subterm if p 6= ε.

• The term t[u]p results from replacing the subterm of t at p by a term u, defined by

t[u]p =

{
u if p = ε

f (t1, . . . , ti[u]p′ , . . . , tn) if p = i · p′ and t = f (t1, . . . , ti, . . . , tn)

• The size of t, denoted by |t|, is the number of occurrences of functions symbols
and variables in t.

• The term t is linear if every variable in t occurs exactly once.

In order to compare terms, we introduce notions of substitution and unifica-
tion on terms.

Definition 2.2.5. A substitution is a mapping σ : V → T (F ,V) whose domain
Dom(σ) is finite. Here Dom(σ) stands for the set {x ∈ V | σ(x) 6= x}. Let t be a
term. The application tσ is defined as follows:

tσ =

{
σ(t) if t ∈ V
f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn)

We write στ for the composition of substitutions σ and τ, defined by t(στ) = (tσ)τ
for all terms t.

21

Chapter 2: Preliminaries

We say that a term u is an instance of a term t if u = tσ for some σ. A
substitution is called a renaming if it is a bijection on variables.

Definition 2.2.6. A unifier σ of an equality s ≈ t is a substitution such that sσ = tσ.
A unifier σ of s and t is a most general unifier if for every unifier σ′ of s and t there is
some substitution τ such that στ = σ′.

2.3 Term Rewrite Systems

Rewrite rules are pairs of terms, and they represent transformation steps for
rewriting. A set of rewrite rules, a term rewrite system, establishes these trans-
formation steps. The relation induced from a rewrite system is called a rewrite
relation.

Definition 2.3.1. A term rewrite system (TRS) over a signature F is a set of rewrite
rules. Here a pair (`, r) of terms over F is a rewrite rule (or simply a rule) if ` /∈ V
and Var(r) ⊆ Var(`). We write `→ r instead of (`, r).

We call subsets of R subsystems. We use symbols R,S , . . . to denote TRSs.

Definition 2.3.2. The rewrite relation→R of a TRS R is defined on terms as follows:
s →R t if s|p = `σ and t = s[rσ]p for some rule ` → r ∈ R, position p, and
substitution σ. We write s p−→R t if the rewrite position p is relevant.

We write Fun(` → r) for Fun(`) ∪ Fun(r), and Fun(R) for the union of
Fun(` → r) for all rules ` → r ∈ R. The set { f | f (`1, . . . , `n) → r ∈ R} is the
set of defined symbols and denoted by DR. A TRS R is left-linear if ` is linear for
all `→ r ∈ R.

Example 2.3.3. Consider the next TRS R over the signature {a(1), b(1), f(2), g(1)}:

a(x)→ b(x) f(x, y)→ g(f(x, y))

The term f(a(x), a(y)) can be rewritten to three different terms by→R as follows.

• f(a(x), a(y)) →R g(f(a(x), a(y))) is obtained by the second rule with the root
position ε, and the substitution σ such that σ(x) = a(x) and σ(y) = a(y).

• f(a(x), a(y)) →R f(b(x), a(y)) is obtained by the first rule with the position 1,
and the identity substitution.

• f(a(x), a(y)) →R f(a(x), b(y)) is obtained by the first rule with the position 2
and the substitution σ such that σ(x) = y.

Definition 2.3.4. Let F be a signature and R a TRS. The ARS induced from R is
defined by (T (F ,V), {→R}).

22

2.3 Term Rewrite Systems

We use notions and notations of ARSs for TRSs. For instance, a TRS R over
F is (locally) confluent if the ARS (T (F ,V), {→R}) is so. Similarly, two TRSs
commute if their corresponding ARSs commute. When F = Fun(R), we omit
the signature F from statements.

Local confluence of TRSs is characterized by the notion of critical pair. We say
that a rule `1 → r1 is a variant of a rule `2 → r2 if `1ρ = `2 and r1ρ = r2 for some
renaming ρ.

Definition 2.3.5. Let R and S be TRSs. Suppose that the following conditions hold:

• `1 → r1 and `2 → r2 are variants of rules in R and in S , respectively,

• `1 → r1 and `2 → r2 have no common variables,

• p ∈ PosF (`2),

• σ is a most general unifier of `1 and `2|p, and

• if p = ε then `1 → r1 is not a variant of `2 → r2.

The triple (`1 → r1, p, `2 → r2) is called an overlap between R and S , and the local
peak (`2σ)[r1σ]p R

p←− `2σ
ε−→S r2σ is called a critical peak between R and S . When

t R
p←− s ε−→S u is a critical peak, the pair (t, u) is called a critical pair. To clarify the

orientation of the pair, we denote it as the binary relation t R
p←−o ε−→S u, see [Der05].

Moreover, we write t R←o
ε−→S u if t R

p←−o ε−→S u for some position p.

Theorem 2.3.6 ([Hue80]). A TRS R is locally confluent if and only if the inclusion

R←−o
ε−→R ⊆ →∗R · ∗R← holds.

Combining it with Newman’s Lemma [New42], we obtain Knuth and Bendix’
criterion [KB70].

Theorem 2.3.7 ([KB70]). A terminating TRSR is confluent if and only if the inclusion

R←−o
ε−→R ⊆ →∗R · ∗R← holds.

We define the parallel step relation, which plays a key role in analysis of local
peaks.

Definition 2.3.8. Let R be a TRS and let P be a set of parallel positions. The parallel

step P−−7 [→R is inductively defined on terms as follows:

• x P−−7 [→R x if x is a variable and P = ∅.

• `σ
P−−7 [→R rσ if `→ r is an R-rule, σ is a substitution, and P = {ε}.

• f (s1, . . . , sn)
P−−7 [→R f (t1, . . . , tn) if f is an n-ary function symbol in F , si

Pi−−7 [→R ti
for all 1 6 i 6 n, and P = {i · p | 1 6 i 6 n and p ∈ Pi}.

23

Chapter 2: Preliminaries

We write s −−7 [→R t if s P−−7 [→R t for some set P of parallel positions.

Note that −−7 [→R is a reflexive relation and →=
R ⊆ −−7 [→R ⊆ →∗R hold. As the

latter entails→∗R = −−7 [→∗R, we obtain the following useful characterizations.

Lemma 2.3.9. A TRS R is confluent if and only if −−7 [→R is confluent. Similarly, TRSs
R and S commute if and only if −−7 [→R and −−7 [→S commute.

Example 2.3.10. In order to demonstrate parallel steps, we consider the following TRS
R over the signature {a(1), b(1), f(2), g(1)}:

a(x)→ b(x) f(a(x), a(y))→ g(f(a(x), a(y)))

By the rewrite step →R, the term f(a(x), a(y)) is rewritten to three different terms
g(f(a(x), a(y))), f(b(x), a(y)), and f(a(x), b(y)):

g(f(a(x), a(y))) f(b(x), a(y)) f(a(x), b(y))

f(a(x), a(y))

ε
1

2

In the case of the parallel step −−7 [→R, we additionally have the term f(b(x), b(y)) by
rewriting subterms a(x) and a(y) at the same time. This step is valid because positions
1 and 2 are parallel.

g(f(a(x), a(y))) f(b(x), a(y)) f(a(x), b(y)) f(b(x), b(y))

f(a(x), a(y))

={ε} ={1} ={2} =

{1, 2}

Moreover we can obtain identical step f(a(x), a(y)) ∅−−7 [→ f(a(x), a(y)). Note that the
next step is invalid as a parallel step because {ε, 1, 2} is not a set of parallel positions.

f(a(x), a(y))
{ε,1,2}−−−7 [−→ g(f(b(x), b(y)))

24

Chapter 3

Parallel Closedness

In this chapter we discuss relationships among confluence criteria: parallel closed-
ness and its variants. The original criterion was introduced by Huet [Hue80], and
it tests confluence by relating critical pairs to parallel steps. Today three variants
of parallel closedness are known: almost parallel closedness [Toy88] , Gramlich’s
criterion [Gra96], and Toyama’s criterion [Toy81]. The last two criteria are based
on parallel critical pairs, which capture parallel local peaks. The subsumption
relationships between three criteria are known except the one between the first
and the last criteria.

In Section 3.1 we recall four existing parallel closedness. For the sake of self-
containedness we give a proof for Toyama’s criterion in Section 3.2. In Section 3.3
we show that Toyama’s criterion subsumes others.

3.1 Parallel Closedness and Variants

Toyama made two variations of Huet’s parallel closedness theorem [Hue80] in
1981 [Toy81] and in 1988 [Toy88], but their relation has not been known. In this
section we recall his and related results, and then show that Toyama’s earlier
result subsumes the later one. For brevity we omit the subscript R from →R,
−−7 [→R, and R←−o

ε−→R when it is clear from the contexts.

Definition 3.1.1 ([Hue80]). A TRS is parallel closed if ←−o ε−→ ⊆ −−7 [→ holds.

Theorem 3.1.2 ([Hue80]). A left-linear TRS is confluent if it is parallel closed.

In 1988, Toyama showed that the closing form for overlay critical pairs, origi-
nating from root overlaps, can be relaxed. We write t >ε←−o ε−→ u if t

p←−o ε−→ u
holds for some p > ε.

Definition 3.1.3 ([Toy88]). A TRS is almost parallel closed if ε←−o ε−→ ⊆ −−7 [→ · ∗←
and >ε←−o ε−→ ⊆ −−7 [→ hold.

Theorem 3.1.4 ([Toy88]). A left-linear TRS is confluent if it is almost parallel closed.

25

Chapter 3: Parallel Closedness

Example 3.1.5. Consider the following left-linear and non-terminating TRS, which is
a variant of the TRS in [Gra96, Example 5.4].

a(x)→ b(x) f(a(x), a(y))→ g(f(a(x), a(y)))
f(b(x), y)→ g(f(a(x), y)) f(x, b(y))→ g(f(x, a(y)))

Out of the three critical pairs, two critical pairs including the next diagram (i) are closed
by single parallel steps. The remaining pair (ii) joins by performing a single parallel step
on each side:

f(a(x), a(y))

f(b(x), a(y))

g(f(a(x), a(y)))

1

ε
=

f(b(x), b(y))

g(f(a(x), b(y)))

g(f(b(x), a(y)))

g(f(b(x), b(y)))

ε

ε

=

=

(i) (ii)

Thus, the TRS is almost parallel closed. Hence, the TRS is confluent.

Inspired by almost parallel closedness, Gramlich [Gra96] developed a conflu-
ence criterion based on parallel critical pairs in 1996. Let t be a term and let P be
a set of parallel positions in t. We write Var(t, P) for the union of Var(t|p) for
all p ∈ P. By t[up]p∈P we denote the term that results from replacing in t the
subterm at p by a term up for all p ∈ P.

Definition 3.1.6. Let R and S be TRSs, ` → r a variant of an S-rule, and {`p →
rp}p∈P a family of variants of R-rules, where P is a set of positions. A local peak

(`σ)[rpσ]p∈P R←−7 [− `σ
ε−→S rσ

is called a parallel critical peak between R and S if the following conditions hold:

• P ⊆ PosF (`) is a non-empty set of parallel positions in `,

• none of rules `→ r and `p → rp for p ∈ P shares a variable with other rules,

• σ is a most general unifier of {`p ≈ (`|p)}p∈P, and

• if P = {ε} then `ε → rε is not a variant of `→ r.

When t R
P←−7 [− s ε−→S u is a parallel critical peak, the pair (t, u) is called a parallel critical

pair, and denoted by t R
P←−7 [−o ε−→S u. In the case of P * {ε} the parallel critical pair is

written as t R
>ε←−7 [−o ε−→S u. Whenever no confusion arises, we abbreviate R←−7 [−o

ε−→R to
←−7 [−o ε−→.

26

3.1 Parallel Closedness and Variants

Consider a local peak t R
P←−7 [− s ε−→S u that employs a rule `p → rp at p ∈ P in

the left step and a rule `→ r in the right step. We say that the peak is orthogonal
if either P∩PosF (`) = ∅, or P = {ε} and `ε → rε is a variant of `→ r.1 A local
peak t R

p←− s ε−→S u is orthogonal if t R
{p}←−7 [− s ε−→S u is.

Theorem 3.1.7 ([Gra96]). A left-linear TRS is confluent if the inclusions ←−o ε−→ ⊆
−−7 [→ · ∗← and >ε←−7 [−o ε−→ ⊆ →∗ hold.

Unfortunately, this criterion by Gramlich does not subsume (almost) parallel
closedness.

Example 3.1.8 (Continued from Example 3.1.5). The TRS admits the parallel critical
peak f(b(x), b(y)) {1,2}←−7 [− f(a(x), a(y)) ε−→ g(f(a(x), a(y))). However, the relation
f(b(x), b(y))→∗ g(f(a(x), a(y))) does not hold.

As noted in the paper [Gra96], Toyama [Toy81] had already obtained in 1981
a closedness result that subsumes Theorem 3.1.7. His idea is to impose variable
conditions on parallel steps −−7 [→.

Theorem 3.1.9 ([Toy81]). A left-linear TRS is confluent if the following conditions
hold:

1. The inclusion ←−o ε−→ ⊆ −−7 [→ · ∗← holds.

2. For every parallel critical peak t P←−7 [− s ε−→ u there exist a term v and a set P′ of
parallel positions such that t→∗ v P′←−7 [− u and Var(v, P′) ⊆ Var(s, P).

In the next section we give a proof of Theorem 3.1.9, introducing a key lemma
for parallel critical peak analysis.

Example 3.1.10 (Continued from Example 3.1.8). The confluence of the TRS in
Example 3.1.5 can be shown by Theorem 3.1.9. Since condition (1) of Theorem 3.1.9
follows from the almost parallel closedness, it is enough to verify condition (2). The
following parallel critical peak, which Theorem 3.1.7 fails to handle, admits the following
diagram:

f(a(x), a(y))

f(b(x), b(y))

g(f(a(x), a(y)))

g(f(a(x), b(y)))

={1, 2}

ε

= {1 · 2}

1As the name suggests, every local peak R
P←−7 [− · ε−→R is orthogonal for orthogonal TRSs, see

Section 4.2.

27

Chapter 3: Parallel Closedness

s

t

u

v

=P

ε

=ε

= P′

s = s0σ

t0σ

t0τ=t

u=u0σ

=P

ε

= P0

= P \ P0

(a) Γ is orthogonal (b) Γ is not orthogonal

Figure 3.1: The claims of Lemma 3.2.1.

Because Var(g(f(a(x), b(y))), {1 · 2}) = {y} ⊆ {x, y} = Var(f(a(x), a(y)), {1, 2})
holds, the parallel critical peak satisfies condition (2) in Theorem 3.1.9. Similarly, we
can find suitable diagrams for the other parallel critical peaks. Hence, (2) holds for the
TRS.

3.2 Proof of Toyama’s Parallel Closedness

For the sake of self-containedness, we give a proof of Theorem 3.1.9 in this
section.2 The first part of the next lemma is a strengthened version of the Par-
allel Moves Lemma [BN98, Lemma 6.4.4]. Here a variable condition like Theo-
rem 3.1.9 is associated. We write σ −−7 [→R τ if xσ −−7 [→R xτ for all variables x.

Lemma 3.2.1. Let R be a TRS and ` → r a left-linear rule. Consider a local peak Γ of
the form t R

P←−7 [− s ε−→{`→r} u.

1. If Γ is orthogonal, t ε−→=
{`→r} v R

P′←−7 [− u and Var(v, P′) ⊆ Var(s, P) for some v
and P′.

2. Otherwise, there exist a parallel critical peak t0 R
P0←−7 [− s0

ε−→{`→r} u0 and substitu-

tions σ and τ such that s = s0σ, t = t0τ, u = u0σ, σ −−7 [→R τ, t0σ
P\P0−−7 [→R t0τ,

and P0 ⊆ P.

See the diagrams in Fig. 3.1.

Proof. 1. Suppose that Γ is orthogonal. If s
{ε}−−7 [→{`′→r′} t holds for some variant

`′ → r′ of ` → r then t = u. Thus, t →= u ∅←−7 [− u. Otherwise, P ∩ PosF (`)
2The report is hardly accessible. In fact I fail to access it.

28

3.2 Proof of Toyama’s Parallel Closedness

is ∅. Since s ε−→{`→r} u holds, there exists a substitution σ with s = `σ and

u = rσ. As `σ
P−−7 [→ t, ` is linear, and P ∩ PosF (`) = ∅, straightforward

induction on ` shows existence of τ such that t = `τ and σ −−7 [→R τ. Take
v = rτ and define P′ the set:

{p′1 · p2 | p1 · p2 ∈ P, p′1 ∈ PosV (r), and `|p1 = r|p′1 for some p1 ∈ PosV (`)}

Clearly, t ε−→{`→r} v holds. So it remains to show u P′−−7 [→R v and Var(v, P′) ⊆
Var(s, P). Let p′ be an arbitrary position in P′. There exist positions p1 ∈
PosV (`), p′1 ∈ PosV (r), and p2 such that p′ = p′1 · p2, p1 · p2 ∈ P, and
`|p1 = r|p′1 . Denoting p1 · p2 by p, we have the identities:

u|p′ = (rσ)|p′1·p2
= (r|p′1σ)|p2 = (`|p1σ)|p2 = (`σ)|p1·p2 = s|p

v|p′ = (rτ)|p′1·p2
= (r|p′1τ)|p2 = (`|p1τ)|p2 = (`τ)|p1·p2 = t|p

From s P−−7 [→R t we obtain s|p
ε−→R t|p and thus u|p′

ε−→R v|p′ . Therefore,

u P′−−7 [→R v is obtained. Moreover, we have Var(v|p′) = Var(t|p) ⊆ Var(s|p) ⊆
Var(s, P). As Var(v, P′) is the union of Var(v|p′) for all p′ ∈ P′, the desired
inclusion Var(v, P′) ⊆ Var(s, P) follows.

2. Suppose that Γ is not orthogonal. By `p → rp we denote the rule employed

at the rewrite position p ∈ P in s P−−7 [→R t. Let P0 = P ∩ PosF (`) and

P1 = P \ P0. Since P is a set of parallel positions, s P−−7 [→ t is split into the two

steps s
P0−−7 [→R v

P1−−7 [→R t, where v = s[t|p]p∈P0 .

First, we show that v
P0←−7 [− s ε−→{`→r} u is an instance of a parallel critical

peak. Let p be an arbitrary position in P0. Because of s ε−→{`→r} u, we have
s = `µ and u = rµ for some µ. Suppose that `′p → r′p is a renamed variant
of `p → rp with fresh variables. There exists a substitution µp such that
s|p = `′pµp and t|p = r′pµp. Note that Dom(µ) ∩ Dom(µp) = ∅. We define
the substitution ν as follows:

ν(x) =

{
xµp if p ∈ P0 and x ∈ Var(`′p)
xµ otherwise

Because every `′p with p ∈ P0 is linear and do not share variables with each
other, ν is well-defined. Since ` neither share variables with `′p, we obtain
the identities:

`′pν = `′pµp = s|p = `|pµ = `|pν

Thus, ν is a unifier of E = {`′p ≈ `|p}p∈P0 . Let V denote the set of all
variables occurring in E. According to [Ede85, Proposition 4.10], there

29

Chapter 3: Parallel Closedness

exists a most general unifier ν′ of E such that Dom(ν′) ⊆ V. Thus, there is a
substitution σ with ν = ν′σ. Let s0 = `ν′, t0 = (`ν′)[r′pν′]p∈P0 , and u0 = rν′.

The peak t0
P0←−7 [− s0

ε−→ u0 is a parallel critical peak, and v
P0←−7 [− s ε−→ u is an

instance of the peak by the substitution σ:

s0σ = `ν′σ = `ν = `µ = s
t0σ = (`ν′σ)[r′pν′σ]p∈P0 = (`ν)[r′pν]p∈P0 = (`µ)[r′pµp]p∈P0 = v

u0σ = rν′σ = rν = rµ = u

Next, we construct a substitution τ so that it satisfies σ −−7 [→R τ and t0σ
P1−−7 [→R

t0τ. Given a variable x ∈ Var(`), we write px for a variable occurrence of
x in `. Due to linearity of `, the position px is uniquely determined. Let
W = Var(`) \ Var(`, P0). Note that W ∩ V = ∅ holds. We define the
substitution τ as follows:

τ(x) =

{
t|px if x ∈W
xσ otherwise

To verify σ −−7 [→R τ, consider an arbitrary variable x. We show xσ −−7 [→R xτ.
If x /∈ W then xσ = xτ, from which the claim follows. Otherwise, the
definitions of V and ν′ yield the implications:

x ∈W =⇒ x /∈ V =⇒ x /∈ Dom(ν′) =⇒ xν′ = x

So s0|px = x follows from the identities:

s0|px = (`ν)|px = `|px ν = xν = x

Let Qx = {q | pxq ∈ P1}. As s
P0−−7 [→R v

P1−−7 [→R t implies s|px = v|px
Qx−−7 [→R t|px ,

we obtain xσ = s0|px σ = (s0σ)|px = s|px
Qx−−7 [→R t|px = xτ. Therefore, the

claim is verified.

The remaining task is to show t0σ
P1−−7 [→R t0τ. Let p ∈ P1. As s0|px = x and

s0
P0−−7 [→R t0 imply x = t0|px , the equation (s0σ)|p = (t0σ)|p follows. By the

definition of τ we have (t0τ)|px = t|px , which leads to (t0τ)|p = t|p. Hence,
we obtain the relations

(t0σ)|p = (s0σ)|p = s|p
{ε}−−7 [→R t|p = (t0τ)|p

which entails the desired parallel step t0σ
P1−−7 [→R t0τ.

30

3.2 Proof of Toyama’s Parallel Closedness

The following lemma taken from [ZFM15] is used for composing parallel
steps. In order to make the thesis self-contained, we give a proof of it.

Lemma 3.2.2 ([ZFM15, Lemma 51(b)]). If s P−−7 [→R t, σ −−7 [→R τ, and xσ = xτ for all
x ∈ Var(t, P) then sσ −−7 [→R tτ.

Proof. We show the claim by induction on derivation of −−7 [→.

1. If P = ∅, s ∈ V , and s = t then sσ −−7 [→R sτ = tτ by assumption.

2. If P = {ε}, and s = `ν and t = rν for some ` → r ∈ R and ν then
Var(t, {ε}) = Var(t). By assumption xσ = xτ holds for all x ∈ Var(t), and
thus tσ = tτ. Because of sσ = (`ν)σ and tσ = (rν)σ, the relation

sσ = `(νσ)
ε−−7 [→R r(νσ) = tσ = tτ

holds.

3. If P 6⊆ {ε} then we have P = {ip | 1 6 i 6 n and p ∈ Pi}, s = f (s1, . . . , sn),

t = f (t1, . . . , tn), and si
Pi−−7 [→ ti for all 1 6 i 6 n. It is enough to show the

claim that every si satisfies siσ −−7 [→ tiτ. Because Var(ti, Pi) ⊆ Var(t, P) holds,
xσ = xτ for all x ∈ Var(ti, Pi). According to the induction hypothesis we
have siσ −−7 [→ tiτ.

Now we give a proof for Theorem 3.1.9. Note that Fig. 3.2 illustrates diagrams
of the proof.

Proof (of Theorem 3.1.9). In order to show confluence, we show that → strongly
commutes with −−7 [→. Let Γ : t P←−7 [− s

q−→ u be a local peak. We perform structural
induction on s. Depending on the shape of Γ, we distinguish six cases.

1. If P is empty then we are done.

2. If q = ε and Γ is orthogonal then we have t →∗ v ←−7 [− u for some v by
Lemma 3.2.1.

3. If P = {ε} and Γ is orthogonal then t ε←− s → u holds. Since s → u
yields t ε←− s −−7 [→ u, we obtain t −−7 [→ · =← u by Lemma 3.2.1(1). Hence
t→∗ · ←−7 [− u follows from→= ⊆ −−7 [→.

4. If q = ε and Γ is not orthogonal then there exists a parallel critical peak

t0
P0←−7 [− s0

ε−→ u0 and substitutions σ and τ such that s = s0σ, t = t0τ, u =

u0σ, σ −−7 [→ τ, t0σ
P\P0−−7 [→ t0τ, and∅ 6= P0 ⊆ P. By assumption t0 →∗ v0

P′0←−7 [− u0

31

Chapter 3: Parallel Closedness

for some v0 and P′0 with Var(v0, P′0) ⊆ Var(s0, P0). Since the rewrite steps
are closed under substitutions, the following relations are obtained:

t = t0τ →∗ v0τ v0σ
P′0←−7 [−u0σ = u

Since t0σ|p = t0τ|p holds for all p ∈ P0, the identity xσ = xτ holds for
all x ∈ Var(s0, P0). Therefore xσ = xτ for all x ∈ Var(s0, P0). Because
u0

P′0−−7 [→ v0, σ −−7 [→ τ, and xσ = xτ for all x ∈ Var(v0, P′0) hold, Lemma 3.2.2
yields u0σ −−7 [→ v0τ. Hence t = t0τ →∗ v0τ ←−7 [− u0σ = u is obtained.

5. If P = {ε} and Γ is not orthogonal then t ε←− s
q−→ u holds. Since the peak

can be regarded as t ε←− s
{q}−−7 [→ u, by Lemma 3.2.1(2) there exist a parallel

critical peak t0
ε←− s0

P0−−7 [→ u0 and substitutions σ and τ such that s = s0σ,

t = t0σ, u = u0τ, σ −−7 [→ τ, u0σ
P\P0−−7 [→ u0τ, and ∅ 6= P0 ⊆ {q}. Then P0 = {q}

and σ = τ hold, and hence t0
ε←− s0

q−→ u0 is a critical peak. By assumption
there exists a term v0 such that t0 →∗ v0 ←−7 [− u0. Because rewrite steps are
closed under substitutions, the desired relation is obtained:

t = t0σ→∗ v0σ←−7 [− u0σ = u0τ = u

6. If P 6⊆ {ε} and q = i · q′ for some i ∈ N then s, t, and u can be written
as f (s1, . . . , si, . . . , sn), f (t1, . . . , ti, . . . , tn), and f (s1, . . . , ui, . . . , un) respec-
tively. We denote the subset {i · p | i · p ∈ P} of P by Pi for each i. Then
ti

Qi←−7 [− si
q′−→ ui holds for some 1 6 i 6 n. Here Qi = {p | i · p ∈ Pi}. By

the induction hypotheses we have ti →∗ vi
Q′i←−7 [− ui for some Q′i and vi. Let

P′ = (P \ Pi)∪ {i · p′ | p′ ∈ Q′i}. Since i is parallel for all positions in P \ Pi,

the set P′ is a set of parallel positions. Hence u = f (s1, . . . , ui, . . . , sn)
P′−−7 [→

f (t1, . . . , vi, . . . , tn) holds. Therefore, we obtain the desired relations:

t = f (t1, . . . , tn)→∗ f (t1, . . . , vi, . . . , tn)←−7 [− f (s1, . . . , ui, . . . , sn) = u

Since→ strongly commutes with −−7 [→, they commute by Theorem 2.1.10. Because
of→∗ = −−7 [→∗, we conclude that→ is self-commuting. Thus→ is confluent.

3.3 Comparison

As we have already seen in Section 3.1, Theorem 3.1.4 subsumes Theorem 3.1.2.
Now we show that Theorem 3.1.9 even subsumes Theorem 3.1.4. The next
lemma is irrelevant here but will be used in the subsequent sections. Note that
the second part corresponds to [ZFM15, Lemma 55].

32

3.3 Comparison

s = s0σ

t0σ

t0τ=t

u=u0σ

v0σ

v0τ

ε

=P0

=P \ P0

∗

=P′0

=

∗

=

Case (4)

s = s0σ

t0σ=t

u=u0σ

v0σ

=
{q}

ε

∗

=

Case (5)

f (s1, . . . , si, . . . , sn)

f (s1, . . . , ti, . . . , sn)

f (t1, . . . , ti, . . . , tn)

f (s1, . . . , ui, . . . , sn)

f (s1, . . . , vi, . . . , sn)

f (t1, . . . , vi, . . . , tn)

=Pi

=P \ Pi

i · q

= P′i

∗

∗

= P \ Pi

=

Case (6)

Figure 3.2: Proof of Theorem 3.1.9.

33

Chapter 3: Parallel Closedness

For almost parallel closed TRSs the above statement is extended to local peaks

←−7 [− · −−7 [→ of parallel steps. In its proof we measure parallel steps s P−−7 [→ t in such
a local peak by the total size of contractums |t|P, namely the sum of |(t|p)| for all
p ∈ P. Note that this measure attributes to [OO97, LJ14].

Lemma 3.3.1. Consider a left-linear almost parallel closed TRS. If t
P1←−7 [− s

P2−−7 [→ u then

• t→∗ v1
P′1←−7 [− u for some v1 and P′1 with Var(v1, P′1) ⊆ Var(s, P1), and

• t
P′2−−7 [→ v2

∗← u for some v2 and P′2 with Var(v2, P′2) ⊆ Var(s, P2).

Proof. Let Γ : t
P1←−7 [− s

P2−−7 [→ u be a local peak. We show the claim by well-founded
induction on (|t|P1 + |u|P2 , s) with respect to �. Here (m, s) � (n, t) if either
m > n, or m = n and t is a proper subterm of s. Depending on the shape of Γ,
we distinguish six cases.

1. If P1 or P2 is empty then the claim follows from the fact: Var(v, P) ⊆
Var(w, P) if w P−−7 [→ v.

2. If P1 or P2 is {ε} and Γ is orthogonal then Lemma 3.2.1(1) applies.

3. If P1 = P2 = {ε} and Γ is not orthogonal then Γ is an instance of a critical

peak. By almost parallel closedness t →∗ v1
Q1←−7 [− u and t

Q2−−7 [→ v2
∗← u for

some v1, v2, Q1, and Q2. For each k ∈ {1, 2} we have s→∗ vk, so Var(vk) ⊆
Var(s) follows. Thus, Var(vk, Qk) ⊆ Var(vk) ⊆ Var(s) = Var(s, {ε}). The
claim holds.

4. If P1 * {ε}, P2 = {ε}, and Γ is not orthogonal then there is p ∈ P1 such

that s′ p←− s ε−→ u is an instance of a critical peak and s′
P1\{p}−−−7 [−→ t follows by

Lemma 3.2.1(2) where P = {p}. By the almost parallel closedness s′ P′2−−7 [→ u
for some P′2. Since P′2 is a set of parallel positions in u, we have |u|{ε} =
|u| > |u|P′2 . As |u|{ε} > |u|P′2 and |t|P1 > |t|P1\{p} yield |t|P1 + |u|{ε} >

|t|P1\{p} + |u|P′2 , we obtain the inequality:

(|t|P1 + |u|P2 , s) � (|t|P1\{p} + |u|P′2 , s′)

Thus, the claim follows by the induction hypothesis for t P1\{p}←−−7 [−− s′ P′2−−7 [→ u
and Var(s′, P1 \ {p}) ⊆ Var(s, P1) and Var(s′, P′2) ⊆ Var(s, {ε}).

5. If P1 = {ε}, P2 * {ε}, and Γ is not orthogonal then the proof is analogous
to the last case.

34

3.3 Comparison

6. If P1 * {ε} and P2 * {ε} then we may assume s = f (s1, . . . , sn), t =

f (t1, . . . , tn), u = f (u1, . . . , un), and ti
Pi

1←−7 [− si
Pi

2−−7 [→ ui for all 1 6 i 6 n.
Here Pi

k denotes the set {p | i · p ∈ Pk}. For each i ∈ {1, . . . , n}, we have
|t|P1 > |ti|Pi

1
and |u|P2 > |ui|Pi

2
, and therefore |t|P1 + |u|P2 > |ti|Pi

1
+ |ui|Pi

2
.

So we deduce the following inequality:

(|t|P1 + |u|P2 , s) � (|ti|Pi
1
+ |ui|Pi

2
, si)

Consider the i-th peak ti
Pi

1←−7 [− si
Pi

2−−7 [→ ui. By the induction hypothesis it

admits valleys of the forms ti →∗ vi
1

Qi
1←−7 [− ui and ti

Qi
2−−7 [→ vi

2
∗← ui such that

Var(vi
k, Qi

k) ⊆ Var(si, Pi
k) for both k ∈ {1, 2}. For each k, define Qk = {i · q |

1 6 i 6 n and q ∈ Qi
k} and vk = f (v1

k, . . . , vn
k). Then we have t→∗ v1

Q1←−7 [− u

and t
Q2−−7 [→ v2

∗← u. Moreover,

Var(vk, Qk) =
n⋃

i=1

Var(vi
k, Qi

k) ⊆
n⋃

i=1

Var(si, Pi
k) = Var(s, Pk)

holds. Hence, the claim follows.

Theorem 3.3.2. Every left-linear and almost parallel closed TRS satisfies conditions (1)
and (2) of Theorem 3.1.9. In other words, Theorem 3.1.9 subsumes Theorem 3.1.4.

Proof. Since (parallel) critical peaks are instances of←−7 [− · −−7 [→, Lemma 3.3.1 entails
the claim.

Note that Theorem 3.1.4 does not subsume Theorem 3.1.9 as witnessed by the
TRS consisting of the four rules

f(a)→ c a→ b f(b)→ b c→ b

Therefore, Theorem 3.1.9 is the most general theorem among parallel closedness
theorems. In Section 4.3 we will see that Theorem 3.1.9 is subsumed by a variant
of rule labeling.

Finally we compare Theorem 3.1.9 with Huet’s another closedness result. The
following criterion is known as strong closedness. We say that a TRS R is linear if
` and r are linear for all `→ r ∈ R.

Theorem 3.3.3 ([Hue80]). A linear TRS is confluent if t→∗ · =← u and t→= · ∗←
u for all t ←−o ε−→ u.

35

Chapter 3: Parallel Closedness

We show that Theorem 3.1.9 and this criterion are not comparable even if only
linear TRSs are considered. To see it, consider the TRS R1:

f(a, y)→ g(y) a→ b f(b, y)→ h(y) g(y)→ h(y)

The only one critical pair of the TRS is f(b, y) ←−o ε−→ g(y), and it is closed
by the sequence f(b, y) ε−→ h(y) ε←− g(y). Thus R1 satisfies the condition of
Theorem 3.3.3. However, because of Var(h(y), {ε}) 6⊆ Var(f(b, y), {1}), this does
not satisfy the condition of Theorem 3.1.9.

Conversely, Theorem 3.3.3 does not subsume Theorem 3.1.9 for even linear
TRSs. Consider the next TRS R2 that contains no variables:

c→ f(a, a) c→ f(b, b) a→ c b→ c

There are two critical pairs: f(a, a) ←−o ε−→ f(b, b) and f(b, b) ←−o ε−→ f(a, a). They
are joinable by not only →2 · 2← but also −−7 [→ · ←−7 [−. The former does not
satisfy the condition of Theorem 3.3.3, whereas the latter satisfies all conditions
of Theorem 3.1.9. Hence the confluence of R2 can be shown by Theorem 3.1.9
but not Theorem 3.3.3.

36

Chapter 4

Compositional Confluence Criteria

In this chapter we discuss our main topic. The first section introduces a vari-
ant of decreasing diagrams that takes commuting ARSs as parameters. The next
section demonstrates how the orthogonality result can be enhanced to a compo-
sitional confluence criterion by the variant. Adopting this approach, we derive
two powerful compositional confluence criteria from the existing confluence cri-
teria based on rule labeling and critical pair systems. These are presented in the
remaining two sections.

4.1 Decreasing Diagrams with Commuting
Subsystems

We make a variant of decreasing diagrams [vO94, vO08], which will be used
in the subsequent sections for deriving compositional confluence criteria for
term rewrite systems. First we recall the commutation version of the tech-
nique [vO08]. Let A = (A, {→1,α}α∈I) and B = (A, {→2,β}β∈J) be I-indexed
and J-indexed ARSs on the same domain, respectively. Let > be a well-founded
order on I ∪ J. By gα we denote the set {β ∈ I ∪ J | α > β}, and by gαβ we
denote (gα) ∪ (gβ). We say that a local peak b 1,α← a→2,β c is decreasing if

b ∗←→
gα
· =−→

2,β
· ∗←−→
gαβ
· =←−

1,α
· ∗←→
gβ

c

holds. Here←→K stands for the union of 1,γ← and→2,γ for all γ ∈ K. The ARSs
A and B are decreasing if every local peak b 1,α← a →2,β c with (α, β) ∈ I × J is
decreasing. In the case of A = B, we simply say that A is decreasing.

Theorem 4.1.1 ([vO08]). If two ARSs are decreasing then they commute.

We present the abstract principle of our compositional criteria. The idea of
using the least index in the decreasing diagram technique is taken from [JL12,
FvO13, DFJL22].

37

Chapter 4: Compositional Confluence Criteria

Theorem 4.1.2. Let A = (A, {→1,α}α∈I) and B = (A, {→2,β}β∈I) be I-indexed
ARSs equipped with a well-founded order > on I. Suppose that ⊥ is the least element
in I and →1,⊥ and →2,⊥ commute. The ARSs A and B commute if every local peak
1,α← · →2,β with (α, β) ∈ I2 \ {(⊥,⊥)} is decreasing.

Proof. We define the two ARSs A′ = (A, {⇒1,α}α∈I) and B′ = (A, {⇒2,α}α∈I) as
follows:

⇒i,α =

{
→∗i,α if α = ⊥
→i,α otherwise

Since →∗A = ⇒∗A and →∗B = ⇒∗B, the commutation of A and B follows from
that of A′ and B′. We show the latter by proving decreasingness of A′ and B′
with respect to the given well-founded order >. Let Γ be a local peak of form
1,α⇐ · ⇒2,β. We distinguish four cases.

• If neither α nor β is ⊥ then decreasingness of Γ follows from the assump-
tion.

• If both α and β are ⊥ then the commutation of →1,⊥ and →2,⊥ yields the
inclusion:

⇐=
1,⊥
· =⇒

2,⊥
⊆ =⇒

2,⊥
· ⇐=

1,⊥

Thus Γ is decreasing.

• If β > α = ⊥ then we have 1,α← · →2,β ⊆ →=
2,β · ←→∗gβ Therefore, easy

induction on n shows the inclusion n
1,α← · →2,β ⊆ →=

2,β · ←→∗gβ for all n ∈
N. Thus,

⇐=
1,α
· =⇒

2,β
=

∗←−
1,α
· −→

2,β
⊆ =−→

2,β
· ∗←→
gβ

=
=
=⇒
2,β
· ∗⇐⇒
gβ

holds, where⇐⇒J stands for 1,J⇐ ∪ ⇒2,J . Hence Γ is decreasing.

• The case that α > β = ⊥ is analogous to the last case.

Because confluence is characterized by self-commutation, we obtain the fol-
lowing corollary from Theorem 4.1.2.

Corollary 4.1.3. Let A = (A, {→α}α∈I) be an I-indexed ARS equipped with a well-
founded order > on I. Suppose that ⊥ is the least element in I and →⊥ is confluent.
The ARS A is confluent if every local peak α← · →β with (α, β) ∈ I2 \ {(⊥,⊥)} is
decreasing.

38

4.2 Orthogonality

4.2 Orthogonality

As a first example of compositional confluence criteria for term rewrite systems,
we pick up a compositional version of Rosen’s confluence criterion by orthog-
onality [Ros73]. Orthogonal TRSs are left-linear TRSs having no critical pairs.
Their confluence property can be shown by decreasingness of parallel steps. We
briefly recall its proof. Left-linear TRSs are mutually orthogonal if R←o

ε−→S = ∅
and S←o

ε−→R = ∅. Note that orthogonality of R and mutual orthogonality of
R and R are equivalent.

Lemma 4.2.1 ([BN98, Theorem 9.3.11]). For mutually orthogonal TRSs R and S the
inclusion R←−7 [− · −−7 [→S ⊆ −−7 [→S · R←−7 [− holds.

Theorem 4.2.2 ([Ros73]). Every orthogonal TRS R is confluent.

Proof. Let A = (T (F ,V), {−−7 [→1}) be the ARS equipped with the empty order
> on the index set {1}, where −−7 [→1= −−7 [→R. According to Lemma 2.3.9 and
Theorem 4.1.1, it is enough to show that A is decreasing. Since Lemma 4.2.1
yields 1←−7 [− · −−7 [→1 ⊆ −−7 [→1 · 1←−7 [−, the decreasingness of A follows.

The theorem can be recast as a compositional criterion that uses a confluent
subsystem C of a given TRS R. For this sake we switch the underlying criterion
from Theorem 4.1.1 to Theorem 4.1.2 and Corollary 4.1.3, setting the relation of
the least index ⊥ to −−7 [→C .

Theorem 4.2.3. A left-linear TRS R is confluent if R and R \ C are mutually orthog-
onal for some confluent TRS C with C ⊆ R.

Proof. Suppose that C ⊆ R and C is confluent. Let A = (T (F ,V), {−−7 [→0,−−7 [→1})
be the ARS equipped with the well-founded order 1 > 0, where −−7 [→0 = −−7 [→C
and −−7 [→1 = −−7 [→R\C . Since C is confluent, C and C commute. So −−7 [→0 and −−7 [→0
commute too. According to Lemma 2.3.9 and Theorem 4.1.2, it is sufficient to
show that all local peak i←−7 [− · −−7 [→j with (i, j) 6= (0, 0) are decreasing. Since R
and R \ C are mutually orthogonal, R \ C and R \ C as well as C and R \ C are
mutually orthogonal. Therefore, Lemma 4.2.1 yields the following inclusions:

R\C←−7 [− · −−7 [→R\C ⊆ −−7 [→R\C · R\C←−7 [− C←−7 [− · −−7 [→R\C ⊆ −−7 [→R\C · C←−7 [−

So k←−7 [− · −−7 [→m ⊆ −−7 [→m · k←−7 [− holds for all (k, m) ∈ {0, 1}2 \ {(0, 0)}, from which
the decreasingness of A follows. Hence, Theorem 4.1.2 applies.

We can derive a more general criterion by exploiting the flexible valley form
of decreasing diagrams. We will adopt parallel critical pairs. It causes no loss of
confluence proving power of Theorem 4.2.3 as R←−7 [−o

ε−→S = ∅ is equivalent to
R←o

ε−→S = ∅.

39

Chapter 4: Compositional Confluence Criteria

Theorem 4.2.4. A left-linear TRS R is confluent if R←−7 [−o
ε−→R ⊆ ←→∗C holds for some

confluent TRS C with C ⊆ R.

Proof. Recall the ARS used in the proof of Theorem 4.2.3. According to Lemma 2.3.9
and Theorem 4.1.2, it is sufficient to show that every local peak

Γ : t P←−7 [−
k

s
Q−−7 [→
m

u

with (k, m) 6= (0, 0) is decreasing. To this end, we show t −−7 [→m · ←−7 [→∗0 · k←−7 [− u
by structural induction on s. Depending on the shape of Γ, we distinguish five
cases.

1. If P or Q is empty then the claim is trivial.

2. If P or Q is {ε} and Γ is orthogonal then Lemma 3.2.1(1) yields t −−7 [→m
· k←−7 [− u.

3. If P 6= ∅, Q = {ε}, and Γ is not orthogonal then by Lemma 3.2.1(2) there
exist a parallel critical peak t0 k←−7 [− s0

ε−→m u0 and substitutions σ and τ such
that s = s0σ, t = t0τ, u = u0σ, and σ −−7 [→k τ. The assumption t0 ←→∗C u0
yields t0τ ←−7 [→∗0 u0τ because→ is closed under substitutions and→ ⊆ −−7 [→.
Therefore, t = t0τ ←−7 [→∗0 u0τ k←−7 [− u0σ = u follows.

4. If P = {ε}, Q 6= ∅, and Γ is not orthogonal then the proof is analogous to
the last case.

5. If P * {ε} and Q * {ε} then s, t, and u can be written as f (s1, . . . , sn),
f (t1, . . . , tn), and f (u1, . . . , un) respectively, and moreover, ti k←−7 [− si −−7 [→m ui
holds for all 1 6 i 6 n. For every i the induction hypothesis yields ti −−7 [→m
vi ←−7 [→∗0 wi k←−7 [− ui for some vi and wi. Therefore, the desired conversion
t −−7 [→m v←−7 [→∗0 w k←−7 [− u holds for v = f (v1, . . . , vn) and w = f (w1, . . . , wn).

From Takahashi’s proposition [Tak93] (see also [Ter03, Proposition 9.3.5]) we
can deduce that R←−7 [−o

ε−→R ⊆ = is equivalent to R←−o
ε−→R ⊆ =. Thus, The-

orem 4.2.4 subsumes Theorem 4.2.3. Note that when C = ∅, Theorem 4.2.4
simulates the weak orthogonality criterion.

40

4.2 Orthogonality

s0σ

t0σ

t = t0τ

u0σ = u

u0τ

= k

= k

=

{ε}
m

= k

=

∗
0

Figure 4.1: Proof of Theorem 4.2.4 (3).

Example 4.2.5. By successive application of Theorem 4.2.4 we show the confluence of
the left-linear TRS R (COPS [HNM18] number 62), taken from [OO03]:

1 : x− 0→ x 10 : gcd(x, 0)→ x
2 : 0− x → 0 11 : gcd(0, x)→ x
3 : s(x)− s(y)→ x− y 12 : gcd(x, y)→ gcd(y,mod(x, y))
4 : x < 0→ false 13 : if(true, x, y)→ x
5 : 0 < s(y)→ true 14 : if(false, x, y)→ y
6 : s(x) < s(y)→ x < y
7 : mod(x, 0)→ x
8 : mod(0, y)→ 0

9 : mod(x, s(y))→ if(x < s(y), x,mod(x− s(y), s(y)))

Let C = {5, 7, 8, 10, 11, 13}. The six non-trivial parallel critical pairs of R are

(x, gcd(0,mod(x, 0))) (0, if(0 < s(y), 0,mod(0− s(y), s(y))))
(y, gcd(y,mod(0, y)))

and their symmetric versions. All of them are joinable by C. So it remains to show that
C is confluent. Because C only admits trivial parallel critical pairs, C←−7 [−o

ε−→C ⊆ ←→∗∅
holds. Therefore, the confluence of C is concluded if we show the confluence of the empty
system. The latter claim is trivial. This completes the proof.

It is worth noting that C is the smallest and confluent suitable subsystem of R. The
other suitable subsystems are supersets of C or non-confluent subsystems. For example,
the subsystem C ′ = {8, 9, 10, 11, 12} satisfies R←−7 [−o

ε−→R ⊆ ←→∗C ′ because all critical
pairs are originated from rules in C ′, but C ′ is not confluent.

41

Chapter 4: Compositional Confluence Criteria

Theorem 4.2.4 is a generalization of Toyama’s unpublished result:

Corollary 4.2.6 ([Toy17]). A left-linear TRS R is confluent if R←−7 [−o
ε−→R ⊆ ←→∗C

holds for some terminating and confluent TRS C with C ⊆ R.

4.3 Rule Labeling

In this section we recast the rule labeling criterion [vO08, ZFM15, DFJL22] in a
compositional form. Rule labeling is a direct application of decreasing diagrams
to confluence proofs for TRSs. It labels rewrite steps by their employed rewrite
rules and compares indexes of them. Among others, we focus on the variant of
rule labeling based on parallel critical pairs, introduced by Zankl et al. [ZFM15].

Definition 4.3.1. Let R be a TRS. A labeling function for R is a function from R
to N. Given a labeling function φ and a number k ∈ N, we define the TRS Rφ,k as
follows:

Rφ,k = {`→ r ∈ R | φ(`→ r) 6 k}
The relations →Rφ,k and −−7 [→Rφ,k are abbreviated to →φ,k and −−7 [→φ,k. Let φ and ψ be

labeling functions for R. We say that a local peak t P←−7 [−
φ,k

s ε−−→
ψ,m

u is (ψ, φ)-decreasing

if
t ∗←→
gk
· −−7 [→

ψ,m
· ∗←−→
gkm

v P′←−7 [−
φ,k
· ∗←→
gm

u

and Var(v, P′) ⊆ Var(s, P) for some set P′ of parallel positions and term v. Here←→K
stands for the union of φ,k← and→ψ,k for all k ∈ K.

The following theorem is a variant of the rule labeling method based on par-
allel critical pairs.

Theorem 4.3.2 ([ZFM15, Theorem 56]). Let R be a left-linear TRS, and φ and ψ

its labeling functions. The TRS R is confluent if the following conditions hold for all
k, m ∈N.

• Every parallel critical peak of form t←−7 [−
φ,k

s ε−−→
ψ,m

u is (ψ, φ)-decreasing.

• Every parallel critical peak of form t←−7 [−
ψ,m

s ε−→
φ,k

u is (φ, ψ)-decreasing.

With a small example we illustrate the usage of rule labeling.

Example 4.3.3. Consider the left-linear TRS R:

(x + y) + z→ x + (y + z) x + (y + z)→ (x + y) + z

We define the labeling functions φ and ψ as follows: φ(` → r) = 0 and ψ(` → r) = 1
for all ` → r ∈ R. All parallel critical peaks can be closed by →φ,0-steps, like the
following diagram:

42

4.3 Rule Labeling

s = ((x + y) + z) + w

(x + (y + z)) + w

(x + y) + (z + w)

(x + y) + (z + w) = v((x + y) + z) + w

={1} φ, 0

ε
ψ, 1

=∅ φ, 0

φ, 0φ, 0

As Var(v,∅) = ∅ ⊆ {x, y, z} = Var(s, {1}), this parallel critical peak is (ψ, φ)-
decreasing. In a similar way the other peaks can also be verified. Hence, the TRS R is
confluent.

We make the rule labeling compositional. The next theorem is a compositional
version of the rule labeling criterion. Note that by taking C := Rφ,0 = Rψ,0 it
can be used as a compositional confluence criterion parameterized by C.

Theorem 4.3.4. LetR be a left-linear TRS, and φ and ψ its labeling functions. Suppose
that Rφ,0 and Rψ,0 commute. The TRS R is confluent if the following conditions hold
for all (k, m) ∈N2 \ {(0, 0)}.

• Every parallel critical peak of form t←−7 [−
φ,k

s ε−−→
ψ,m

u is (ψ, φ)-decreasing.

• Every parallel critical peak of form t←−7 [−
ψ,m

s ε−→
φ,k

u is (φ, ψ)-decreasing.

Proof. Consider the ARSs (T (F ,V), {−−7 [→φ,k}k∈N) and (T (F ,V), {−−7 [→ψ,m}m∈N).
According to Lemma 2.3.9 and Theorem 4.1.2, it is sufficient to show that every
local peak

Γ : t P←−7 [−
φ,k

s
Q−−7 [→

ψ,m
u

with (k, m) 6= (0, 0) is decreasing. To this end, we perform structural induction
on s. Depending on the shape of Γ, we distinguish five cases.

1. If P or Q is empty then the claim is trivial.

2. If P or Q is {ε} and Γ is orthogonal then Lemma 3.2.1(1) yields

t −−7 [→
ψ,m
· ←−7 [−

φ,k
u.

3. If P 6= ∅, Q = {ε}, and Γ is not orthogonal then by Lemma 3.2.1(2) there

exist a parallel critical peak t0
P1←−7 [−

φ,k′
s0

ε−−→
ψ,m

u0 and substitutions σ and τ

such that k′ 6 k, t = t0τ, u = u0σ, σ −−7 [→
φ,k

τ, t0σ
P\P1−−7 [→
φ,k

t0τ, and P1 ⊆ P. We

distinguish two subcases.1 If k′ = 0 and m = 0 then t0
∗←−7 [→
0

u0. As −−7 [→ is

1The preliminary version of this thesis [SH22] lacks this case analysis.

43

Chapter 4: Compositional Confluence Criteria

closed under substitutions, t0τ
∗←−7 [→
0

u0τ follows. The step can be written

as t0τ
∗←−7 [→
gk

u0τ because (k, m) 6= (0, 0) and m = 0 imply k > 0. Summing

them up, we obtain the sequence

t = t0τ
∗←−7 [→
gk

u0τ ←−7 [−
φ,k

u0σ = u

from which we conclude decreasingness of Γ. Otherwise, k′ > 0 or m > 0
holds. The assumption yields

t0
∗←−7 [→
gk′
· −−7 [→

ψ,m
· ∗←−7 [→
gk′m

v0
P′1←−7 [−

φ,k′
w0

∗←−7 [→
gm

u0

and Var(v0, P′1) ⊆ Var(s0, P1) for some v0, w0, and P′1. Since k′ 6 k and
the rewrite steps are closed under substitutions, the following relations are
obtained:

t0τ
∗←−7 [→
gk
· −−7 [→

ψ,m
· ∗←−7 [→
gkm

v0τ w0σ
∗←−7 [→
gm

u0σ

Since t0σ|p = t0τ|p holds for all p ∈ P1, the identity xσ = xτ holds for all
x ∈ Var(s0, P1). Therefore, xσ = xτ holds for all x ∈ Var(v0, P′1). Because
w0

P′1−−7 [→
φ,k

v0, σ −−7 [→
φ,k

τ, and xσ = xτ for all x ∈ Var(v0, P′1) hold, Lemma 3.2.2

yields w0σ −−7 [→
φ,k

v0τ. Hence, the decreasingness of Γ is witnessed by the

following sequence:

t = t0τ
∗←−7 [→
gk
· −−7 [→

ψ,m
· ∗←−7 [→
gkm

v0τ ←−7 [−
φ,k

w0σ
∗←−7 [→
gm

u0σ = u

Note that the construction is depicted in Fig. 4.2.

4. If P = {ε}, Q 6= ∅, and Γ is not orthogonal then the proof is analogous to
the last case.

5. If P * {ε} and Q * {ε} then s, t, and u can be written as f (s1, . . . , sn),
f (t1, . . . , tn), and f (u1, . . . , un) respectively, and moreover, ti ←−7 [−

φ,k
si −−7 [→

ψ,m
ui

holds for all 1 6 i 6 n. By the induction hypotheses we have ti
∗←−7 [→
gk
· −−7 [→

ψ,m

· ∗←−7 [→
gkm

· ←−7 [−
φ,k
· ∗←−7 [→
gm

ui for all 1 6 i 6 n. Therefore, we obtain the desired

relations:

t = f (t1, . . . , tn)
∗←−7 [→
gk
· −−7 [→

ψ,m
· ∗←−7 [→
gkm

· ←−7 [−
φ,k
· ∗←−7 [→
gm

f (u1, . . . , un) = u

Hence Γ is decreasing.

44

4.3 Rule Labeling

s0σ

t0σ

t = t0τ

u0σ = u

· · v0σ

w0σ

· · v0τ

=P1 φ, k

= φ, k
=

{ε}
ψ, m

=
∗

gk

=

ψ, m =

∗
gkm

=
∗
gm

=P′1 φ, k

= φ, k

=

∗
gk

=

ψ, m =

∗
gkm

= φ, k

Figure 4.2: Proof of Theorem 4.3.4(3).

The original version of rule labeling (Theorem 4.3.2) is a special case of Theo-
rem 4.3.4: Suppose that labeling functions φ and ψ for a left-linear TRS R satisfy
the conditions of Theorem 4.3.2. By taking the labeling functions φ′ and ψ′ with

φ′(`→ r) = φ(`→ r) + 1 ψ′(`→ r) = ψ(`→ r) + 1

Theorem 4.3.4 applies for φ′, ψ′, and the empty TRS C.
The next example shows the combination of our rule labeling variant (Theo-

rem 4.3.4) with Knuth–Bendix’ criterion (Theorem 2.3.7).

Example 4.3.5. Consider the left-linear TRS R:

1 : 0+ x → x 2 : (x + y) + z→ x + (y + z) 3 : x + (y + z)→ (x + y) + z

Let C = {1, 2}. We define the labeling functions φ and ψ as follows:

φ(`→ r) = ψ(`→ r) =

{
0 if `→ r ∈ C
1 otherwise

For instance, the parallel critical pairs involving rule 3 admit the following diagrams:

45

Chapter 4: Compositional Confluence Criteria

x + (0+ z)

x + z

(x + 0) + z

x + (0+ z)

={2} φ, 0

ε
ψ, 1

φ, 0

φ, 0

x + (y + (z + w))

x + ((y + z) + w)

(x + y) + (z + w)

x + (y + (z + w))

={2} φ, 1

ε
ψ, 1

φ, 0

=

φ, 1

{2}

They fit for the conditions of Theorem 4.3.4. The other parallel critical pairs also admit
suitable diagrams. Therefore, it remains to show that C is confluent. Since C is terminat-
ing and all its critical pairs are joinable, confluence of C follows by Knuth and Bendix’
criterion (Theorem 2.3.7). Thus, Rφ,0 and Rψ,0 commute because Rφ,0 = Rψ,0 = C.
Hence, by Theorem 4.3.4 we conclude that R is confluent.

While a proof for Theorem 4.2.4 is given in Section 4.2, here we present an
alternative proof based on Theorem 4.3.4.

Proof of Theorem 4.2.4. Define the labeling functions φ and ψ as in Example 4.3.5.
Then Theorem 4.3.4 applies.

We conclude the section by stating that rule labeling based on parallel criti-
cal pairs (Theorem 4.3.2) subsumes parallel closedness based on parallel critical
pairs (Theorem 3.1.9): Suppose that conditions (a) and (b) of Theorem 3.1.9 hold.
We define φ and ψ as the constant rule labeling functions φ(` → r) = 1 and
ψ(` → r) = 0. By using structural induction as well as Lemmata 3.2.1 and 3.2.2
we can prove the implication

t
P1←−7 [−
φ,1

s −−7 [→
ψ,0

u =⇒ t ∗−→
ψ,0

v
P′1←−7 [−
φ,1

u and Var(v, P′1) ⊆ Var(s, P1) for some P′1

Thus, the conditions of Theorem 4.3.2 follow. As a consequence, our composi-
tional version (Theorem 4.3.4) is also a generalization of parallel closedness.

4.4 Critical Pair Systems

The last example of compositional criteria in this thesis is a variant of the conflu-
ence criterion by critical pair systems [HM11]. It is known that the original cri-
terion is a generalization of the orthogonal criterion (Theorem 4.2.2) and Knuth
and Bendix’ criterion (Theorem 2.3.7) for left-linear TRSs.

Definition 4.4.1. The critical pair system CPS(R) of a TRS R is defined as the TRS:

{s→ t, s→ u | t R← s ε−→R u is a critical peak}

46

4.4 Critical Pair Systems

Theorem 4.4.2 ([HM11]). A left-linear and locally confluent TRS R is confluent if
CPS(R)/R is terminating (i.e., CPS(R) is relatively terminating with respect to R).

The theorem is shown by using the decreasing diagram technique (Theo-
rem 4.1.1), see [HM11].

Example 4.4.3. Consider the left-linear and non-terminating TRS R:

s(p(x))→ p(s(x)) p(s(x))→ x ∞→ s(∞)

The TRS R admits two critical pairs and they are joinable:

s(p(s(x)))

s(x) p(s(s(x)))

ε

p(s(p(x)))

p(p(s(x))) p(x)

ε

The critical pair system CPS(R) consists of the four rules:

s(p(s(x)))→ s(x) p(s(p(x)))→ p(p(s(x)))
s(p(s(x)))→ p(s(s(x))) p(s(p(x)))→ p(x)

The termination of CPS(R)/R can be shown by, e.g., the termination tool NaTT (cf.
Section 6.3). Hence the confluence of R follows by Theorem 4.4.2.

We argue about the parallel critical pair version of CPS(R):

PCPS(R) = {s→ t, s→ u | t R←−7 [− s ε−→R u is a parallel critical peak}

Interestingly, replacing CPS(R) by PCPS(R) in Theorem 4.4.2 results in the same
criterion (see [ZFM15]). Since →CPS(R) ⊆ →PCPS(R) ⊆ →CPS(R) · −−7 [→R holds,
→CPS(R)/R =→PCPS(R)/R follows. So the termination of PCPS(R)/R is equiv-
alent to that of CPS(R)/R. However, a compositional form of Theorem 4.4.2
may benefit from the use of parallel critical pairs, as seen in Section 4.2.

Definition 4.4.4. LetR and C be TRSs. The parallel critical pair system ofRmodulo
C, written as PCPS(R, C), is defined as the TRS:

{s→ t, s→ u | t R←−7 [− s ε−→R u is a parallel critical peak but not t←→∗C u}

Note that PCPS(R,∅) ⊆ PCPS(R) holds in general, and PCPS(R,∅) (
PCPS(R) when R admits a trivial critical pair.

The next lemma relates PCPS(R, C) to closing forms of parallel critical peaks.

Lemma 4.4.5. Let R be a left-linear TRS and R1, R2, and C subsets of R, and let
P = PCPS(R, C). Suppose that R←−7 [−o

ε−→R ⊆ →∗R · ∗R← holds. If t R1←−7 [− s −−7 [→R2 u
then

47

Chapter 4: Compositional Confluence Criteria

(i) t −−7 [→R2 · ←→∗C · R1←−7 [− u, or

(ii) t R1←−7 [− t′ P← s→P u′ −−7 [→R2 u and t′ →∗R · ∗R← u′ for some t′ and u′.

Proof. Let Γ : t R1

P←−7 [− s
Q−−7 [→R2 u be a local peak. We use structural induction on s.

Depending on the form of Γ, we distinguish five cases.

1. If P or Q is the empty set then (i) holds trivially.

2. If P or Q is {ε} and Γ is orthogonal then (i) follows by Lemma 3.2.1(1).

3. If P 6= ∅, Q = {ε}, and Γ is not orthogonal then we distinguish two cases.

• If there exist P0, t0, u0, and σ such that “P0 ⊆ P, t R1←−7 [− t0σ R1

P0←−7 [−
s ε−→R2 u0σ = u, and t0 R←−7 [−o

ε−→R u0” but not t0 ←→∗C u0. Take
t′ = t0σ and u′ = u0σ. Then t0τ R1←−7 [− t0σ P← s →P u0σ = u holds
and by the assumption t′ →∗R · ∗R← u′ also holds. Hence (ii) follows.

• Otherwise, whenever P0, t0, u0, and σ satisfy the conditions quoted
in the last item, t0 ←→∗C u0 holds. Because Γ is not orthogonal, by
Lemma 3.2.1(2) there exist P0, t0, u0, σ, and τ such that P0 ⊆ P, t =
t0τ R1←−7 [− t0σ R1

P0←−7 [− s ε−→R2 u0σ = u, and σ −−7 [→R1 τ. Thus t0 ←→∗C u0
follows. Therefore, t = t0τ ←→∗C u0τ R1←−7 [− u0σ = u, and hence (i)
holds.

4. If P = {ε}, Q * {ε}, and Γ is not orthogonal then the proof is analogous
to the last case.

5. If P * {ε} and Q * {ε} then s, t, and u can be written as f (s1, . . . , sn),
f (t1, . . . , tn), and f (u1, . . . , un) respectively, and Γi : ti R1←−7 [− si −−7 [→R2 ui
holds for all 1 6 i 6 n. For every peak Γi the induction hypothesis yields (i)
or (ii). If (i) holds for all Γi then (i) is concluded for Γ. Otherwise, some Γi
satisfies (ii). By taking t′ = f (s1, . . . , ti, . . . , sn) and u′ = f (s1, . . . , ui, . . . , sn)
we have t R1←−7 [− t′ P← s →P u′ −−7 [→P u. From ti →∗R · ∗R← ui we obtain
t′ →∗R · ∗R← u′. Hence Γ satisfies (ii).

The next theorem is a compositional confluence criterion based on parallel
critical pair systems.

Theorem 4.4.6. Let R be a left-linear TRS and C a confluent TRS with C ⊆ R.
The TRS R is confluent if R←−7 [−o

ε−→R ⊆ →∗R · ∗R← and P/R is terminating, where
P = PCPS(R, C).

48

4.4 Critical Pair Systems

Proof. Let ⊥ be a fresh symbol and let I = T (F ,V) ∪ {⊥}. We define the
relation > on I as follows: α > β if α 6= ⊥ = β or α →+

P/R β. Since P/R is
terminating, > is a well-founded order. Let A = (T (F ,V), {−−7 [→α}α∈I) be the
ARS where −−7 [→α is defined as follows: s −−7 [→α t if either α = ⊥ and s −−7 [→C t,
or α 6= ⊥ and α →∗R s −−7 [→R\C t. Since the commutation of C and C follows
from confluence of C, Lemma 2.3.9 yields the commutation of →⊥ and →⊥.
According to Lemma 2.3.9 and Theorem 4.1.2, it is sufficient to show that every
local peak

Γ : t←−7 [−
α

s −−7 [→
β

u

with (α, β) ∈ I2 \ {(⊥,⊥)} is decreasing. By the definition ofAwe have s −−7 [→R1 t
and s −−7 [→R2 u for some TRSs R1,R2 ∈ {R \ C, C}. Using Lemma 4.4.5, we
distinguish two cases.

1. Suppose that Lemma 4.4.5((i)) holds for Γ. Then t −−7 [→R2 t′ ←→∗C u′ R1←−7 [−
u holds for some t′ and u′. If R2 = R \ C then t −−7 [→β t′ follows from
β →∗R s →∗R t −−7 [→R\C t′. Otherwise, R2 = C yields t −−7 [→⊥ t′. In either
case t −−7 [→{β,⊥} t′ is obtained. Similarly, u −−7 [→{α,⊥} u′ is obtained. Moreover,
t′ ←−7 [→∗⊥ u′ follows from t′ ←→∗C u′. Since (α, β) 6= (⊥,⊥) yields ⊥ ∈
gαβ and the reflexivity of −−7 [→⊥ yields −−7 [→{δ,⊥} ⊆ −−7 [→=

δ · −−7 [→⊥ for any δ,

we obtain the desirable conversion t =−−7 [→
β

t′ ∗←−7 [→
gαβ

u′ =←−7 [−
α

u. Hence, Γ is

decreasing.

2. Suppose that Lemma 4.4.5((ii)) holds for Γ. We have t R1←−7 [− t′ P← s →P
u′ −−7 [→R2 u and t′ →∗R v ∗

R← u′ for some t′, u′, and v. As (α, β) 6= (⊥,⊥),
we have α →∗R s →P t′ or β →∗R s →P t′, from which α > t′ or β >
t′ follows. Thus, t′ ∈ gαβ. If R2 = R \ C then t′ −−7 [→t′ t. Otherwise,
R2 = C yields t′ −−7 [→⊥ t. So in either case t′ −−7 [→gαβ t holds. Next, we
show t′ ←−7 [→∗gαβ v. Consider terms w and w′ with t′ →∗R w →R w′ →∗R v.
We have w −−7 [→t′ w′ or w −−7 [→⊥ w′. So w −−7 [→gαβ w′ follows by {t′,⊥} ⊆
gαβ. Summing up, we obtain t ←−7 [−gαβ t′ ←−7 [→∗gαβ v. In a similar way
u ←−7 [−gαβ u′ ←−7 [→∗gαβ v is obtained. Therefore t←−7 [−

gαβ
t′ ∗−−7 [→
gαβ

v ∗←−7 [−
gαβ

u′ −−7 [→
gαβ

u,
and hence Γ is decreasing.

We claim that Theorem 4.4.2 is subsumed by Theorem 4.4.6. Suppose that
C is the empty TRS. Trivially C is confluent. Because PCPS(R, C) is a subset
of PCPS(R), termination of PCPS(R, C)/R follows from that of PCPS(R)/R,
which is equivalent to termination of CPS(R)/R. Finally, any confluent TRS
satisfies the inclusion R←−7 [−o

ε−→R ⊆ →∗R · ∗R←. Thus, whenever Theorem 4.4.2
applies, Theorem 4.4.6 applies.

49

Chapter 4: Compositional Confluence Criteria

Theorem 4.4.6 also subsumes Theorem 4.2.4. Suppose that C is a confluent
subsystem of R. If R←−7 [−o

ε−→R ⊆ ←→∗C then PCPS(R, C) = ∅, which leads to
termination of PCPS(R, C)/R. Hence, Theorem 4.4.6 applies. Note that if C = R
then PCPS(R, C) = ∅.

Example 4.4.7. Consider the left-linear TRS R:

1 : s(p(x))→ x 3 : x + 0→ x 5 : x + s(y)→ s(x + y)
2 : p(s(x))→ x 4 : 0 + x → x + 0 6 : x + p(y)→ p(x + y)

We show the confluence of R by the combination of Theorem 4.4.6 and orthogonality.
Let C = {3}. The TRS PCPS(R, C) consists of the eight rules:

0+ s(x)→ s(0+ x) x + s(p(y))→ s(x + p(y))
0+ s(x)→ s(x) + 0 x + s(p(y))→ x + y
0+ p(x)→ p(0+ x) x + p(s(y))→ p(x + s(y))
0+ p(x)→ p(x) + 0 x + p(s(y))→ x + y

The termination of PCPS(R, C)/R can be shown by, e.g., the termination tool NaTT.
Since C is orthogonal and all parallel critical pairs ofR are joinable byR, Theorem 4.4.6
applies. Note that the confluence of R can neither be shown by Theorem 4.3.2 nor
Theorem 4.4.2. The former theorem fails due to the lack of suitable labeling functions for
the following diagrams:

x + s(p(y))

x + y

s(x + p(y))

s(p(x + y))

={2} 1

ε

5

6

1

x + p(s(y))

x + y

p(x + s(y))

p(s(x + y))

={2} 2

ε

6

5

2

The latter fails due to the non-termination of CPS(R)/R. The culprit is the idempotent
rule 0+ 0→ 0+ 0 in CPS(R), originating from the critical peak 0← 0+ 0→ 0+ 0.
In contrast, the rule does not belong to PCPS(R, C) because the conversion 0←→∗C 0+ 0

holds.

50

Chapter 5

Reduction Method

We present reduction methods for confluence problems. A reduction method is
a compositional confluence criterion that, given a TRS R and its subsystem C,
confluence of R implies that of C. In this situation confluence of R is equivalent
to that of C. In other words, reduction methods can remove rewrite rules from
TRSs, that are redundant for confluence. We introduce two reduction methods
and an automation technique based on SMT solvers.

5.1 Reduction Methods

Compositional confluence criteria address the ‘if’ direction. Our question here
is how to guarantee the reverse direction. First we develop a simple criterion
that exploits the fact that confluence is preserved under signature extensions. In
order to establish the ‘only-if’ direction, we show that if TRSs R and C satisfy
R�C ⊆ →∗C then confluence of R implies confluence of C. Here R�C stands for
the following subsystem of R:

R�C = {`→ r ∈ R | Fun(`) ⊆ Fun(C)}

The following auxiliary lemma explains the role of the condition R�C ⊆ →∗C .
Note that we do not assume C ⊆ R.

Lemma 5.1.1. Suppose R�C ⊆ →∗C .

1. If s→R t and Fun(s) ⊆ Fun(C) then s→∗C t and Fun(t) ⊆ Fun(C).

2. If s→∗R t and s ∈ T (Fun(C),V) then s→∗C t.

Proof. We only show the first claim, because then the second claim is shown by
straightforward induction. Suppose s ∈ T (Fun(C),V) and s→R t. There exist a
rule `→ r ∈ R, a position p ∈ PosF (s), and a substitution σ such that s|p = `σ,
t = s[rσ]p, and Fun(`σ) ⊆ Fun(s) ⊆ Fun(C). Then Fun(xσ) ⊆ Fun(C) for all
x ∈ Var(`). Moreover Fun(xσ) ⊆ Fun(C) holds for all x ∈ Var(r) because `→ r
is a rewrite rule. We distinguish two cases:

51

Chapter 5: Reduction Method

• If ` → r ∈ R�C then Fun(`) ⊆ Fun(C). Since R�C ⊆ →∗C holds, we have
s →∗C t and Fun(r) ⊆ Fun(C). From the latter Fun(rσ) ⊆ Fun(C) holds.
Thus the inclusion Fun(t) = Fun(s[rσ]p) ⊆ Fun(C) is obtained.

• Otherwise, Fun(`) * Fun(C). However, we have Fun(`) ⊆ Fun(s) ⊆
Fun(C), so this case does not happen.

As a consequence of Lemma 5.1.1(2), confluence of R carries over to conflu-
ence of C, when the inclusionR�C ⊆ →∗C holds and the signature of C is Fun(C).
The restriction against the signature of C can be lifted by the fact that confluence
is preserved under signature extensions:

Proposition 5.1.2. A TRS C is confluent if and only if the implication

t ∗C← s→∗C u =⇒ t→∗C · ∗C← u

holds for all terms s, t, u ∈ T (Fun(C),V).

Proof. Toyama [Toy87] showed that the confluence property is modular, i.e., the
union of two TRSs R1 and R2 over signatures F1 and F2 with F1 ∩ F2 = ∅ is
confluent if and only if both R1 and R2 are confluent. Let C be a TRS over a
signature F . The claim follows by taking R1 = C, R2 = ∅, F1 = Fun(C), and
F2 = F \ F1.

Now we are ready to show the main claim.

Theorem 5.1.3. Suppose R�C ⊆ →∗C . If R is confluent then C is confluent.

Proof. Suppose that R is confluent. It is enough to show the implication in
Proposition 5.1.2 for all s, t, u ∈ T (Fun(C),V). Suppose t ∗C← s →∗C u. By con-
fluence of R we have t →∗R v ∗

R← u for some v. By assumption Lemma 5.1.1(2)
yields t→∗C v ∗C← u.

A reduction method can be obtained by combining a compositional confluence
criterion with Theorem 5.1.3. Here we present the combination of Theorem 4.2.4
with Theorem 5.1.3 and its automation technique.

Corollary 5.1.4. Let C be a subsystem of a left-linear TRS R such that R←−7 [−o
ε−→R ⊆

←→∗C and R�C ⊆ →∗C . The TRS R is confluent if and only if C is confluent.

The following example illustrates how Corollary 5.1.4 is used for automating
confluence analysis.

52

5.1 Reduction Methods

Example 5.1.5. We show the confluence of the following left-linear TRS R:

1 : x + 0→ x 3 : 0+ y→ y 5 : s(x) + y→ s(x + y)
2 : x× 0→ 0 4 : s(x)× 0→ 0 6 : s(x)× y→ (x× y) + y

Applying the reduction method of Corollary 5.1.4 repeatedly, we remove rules unneces-
sary for confluence analysis.

1. The TRSR has four non-trivial parallel critical pairs and they admit the following
diagrams:

s(x) + 0

s(x) s(x + 0)

= ε

1

s(x) + 0

s(x + 0) s(x)

= ε

1
s(x)× 0

0 (x× 0) + 0

x× 0

= ε

12

s(x)× 0

(x× 0) + 0 0

x× 0

= ε

1 2

Therefore, R←−7 [−o
ε−→R ⊆ ←→∗C0

holds for C0 = {1, 2}. As Fun(C0) = {0,+,×},
we haveR�C0

= {1, 2, 3}. However,R�C0
⊆ →∗C0

does not hold due to 0+ y 6→∗C0
y. So we extend C0 to C = C0 ∪{3}. ThenR�C = {1, 2, 3} ⊆ →∗C holds. Because
C is a superset of C0, the inclusion R←−7 [−o

ε−→R ⊆ ←→∗C holds too. According to
Corollary 5.1.4, the confluence problem of R is reduced to that of C.

2. Since C only admits a trivial parallel critical pair, it is closed by the empty system
∅. Moreover, the inclusion C�∅ = ∅ ⊆ →∗∅ holds. Hence, by Corollary 5.1.4 the
confluence of C is reduced to the confluence of the empty system ∅.

3. The confluence of the empty system ∅ is trivial.

Hence we conclude that R is confluent. Note that in the first step all subsystems C ′
including C0 or {1, 4, 6} satisfy the inclusion R←−7 [−o

ε−→R ⊆ ←→∗C ′ but some of them
(e.g., {1, 4, 6}) are non-confluent. The additional requirement R�C ′ ⊆ →∗C ′ excludes
such subsystems.

We give another application of Theorem 5.1.3. Because the theorem has no
linearity restriction, we can obtain a reduction method for non-left-linear TRSs
by employing a compositional criterion that supports non-left-linear TRSs. Here
we use the result of [KH12].

53

Chapter 5: Reduction Method

Definition 5.1.6. Given a term t, we write REN(t) for the linear term results from
replacing each variable occurrence by a fresh variable. Given a TRSR, REN(R) denotes
the set {REN(`)→ r | `→ r ∈ R}.

In general REN(R) is not a TRS. In fact, if R contains a rule ` → r that has
at least one variable in r then REN(`) → r is not a rewrite rule, because the
inclusion Var(r) ⊆ Var(REN(`)) does not hold. We call such a rule an extended
rewrite rule. Formally, a pair (`, r) of terms is an extended rewrite rule if ` /∈ V .
A set of extended rewrite rule is called an extended TRS (eTRS).

Definition 5.1.7. Let R1, R2, and E be eTRSs. Suppose that the following conditions
hold:

• `1 → r1 and `2 → r2 are variants of rules in R1 and in R2, respectively,

• `1 → r1 and `2 → r2 have no common variables,

• p ∈ PosF (`2),

• σ is a substitution that satisfies `1σ←→∗E `2|pσ, and

• if p = ε then `1 → r1 is not a variant of `2 → r2.

The triple (`1 → r1, p, `2 → r) is called an E -overlap between R1 and R2, and
the pair ((`2σ)[r1σ]p, r2σ) is called an E -extended critical pair between R1 and R2.
As in the case of ordinary critical pairs, we denote an extended critical pair (t, u) by
t R←−Eo

ε−→R u.

Note that a number of E -extended critical pairs may exist for an E -overlap
in this definition. Moreover we cannot assume finiteness of E -critical pairs. If
E = ∅ then σ is a most general unifier of ` and `2|p.

Definition 5.1.8. Let R and C be a TRSs. We say that R and C are strongly non-
overlapping if there is no ∅-overlap between REN(R) and REN(C), and REN(C) and
REN(R), respectively.

Theorem 5.1.9 ([KH12, Theorem 2]). Let R and S be TRSs. Suppose that S is
confluent, R/S is terminating, and R and S are strongly non-overlapping. The TRS
R∪ S is confluent if and only if R←−So

ε−→R ⊆ →∗R∪S · ∗
R∪S←.

Note that the criterion subsumes Theorem 4.2.2. If R is orthogonal then R
trivially satisfies all conditions by taking S = ∅. Now we give a reduction
method for non-left-linear TRSs.

Corollary 5.1.10. Let C be a subsystem of a TRS R and P = R \ C. Suppose that
P/C is terminating, P and C are strongly non-overlapping, P←−Co

ε−→P ⊆ →∗R · ∗R←,
and R�C = C. The TRS R is confluent if and only if C is confluent.

54

5.1 Reduction Methods

Under the assumption, the conditionsR�C = C andR�C ⊆ →∗C are equivalent.
We briefly describe the reason. Assume to contrary there is ` → r ∈ R�C \ C
such that ` →∗C r. If ` = r then P/C is not terminating. Otherwise, P and C are
strongly non-overlapping because ` → r ∈ P and ` →{`′→r′} · →∗C r for some
`′ → r′ ∈ C. Hence R�C = C.

This reduction method is useful to remove redundant non-left-linear rules
from TRSs. The following proposition helps us to check joinability of E -critical
pairs.

Proposition 5.1.11 ([KH12, Lemma 12 and Theorem 15]). Let R and E be TRSs.
If E is confluent, R and E are strongly non-overlapping, and R←−o

ε−→R ⊆ →∗R · ∗R←
then R←−Co

ε−→R ⊆ →∗R · ∗R←.

Example 5.1.12 ([KH12, Example 10]). Consider the following non-left-linear TRS
R:

1 : eq(n, xs, xs)→ true 3 : nats→ 0 : inc(nats)
2 : eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 4 : inc(x : xs)→ s(x) : inc(xs)

We apply Corollary 5.1.10 to {1, 2, 3, 4} by taking C = {3, 4}. Let P = R\C. Suppose
that REN(R) is the following eTRS:

1 : eq(x1, x2, x3)→ true 3 : nats→ 0 : inc(nats)
2 : eq(s(x1), x2 : x3, x4 : x5)→ eq(x, xs, ys) 4 : inc(x1 : x2)→ s(x) : inc(xs)

If the confluence of C holds then we can show that R and C satisfy conditions of Theo-
rem 5.1.9 as follows:

• The termination of P/C can be shown by, e.g., the termination tool NaTT.

• The TRSs P and C are strongly non-overlapping because C-overlaps (1, ε, 2) and
(2, ε, 1) on REN(R) are overlaps on P .

• Because there are only two overlaps (1, ε, 2) and (2, ε, 1) on P , critical pairs on
P are:

true P←−o
ε−→P eq(n, xs, xs) eq(n, xs, xs) P←−o

ε−→P true

Both are joinable by rule 1. Since the confluence C is assumed, and P and C
strongly non-overlapping, by Proposition 5.1.11 all C-extended critical pairs on P
are joinable.

On the other hand it is easy to show thatR and C satisfy Theorem 5.1.3. In fact we have
R�C = C because eq /∈ Fun(C) holds. Hence R is confluent if and only if C is so.

We again apply Corollary 5.1.10 to C with ∅. Since C is orthogonal, C and ∅ satisfies
Theorem 5.1.9. Because of C�∅ = ∅, by Corollary 5.1.10 the confluence of C and ∅
coincide.

Therefore we conclude that R is confluent.

55

Chapter 5: Reduction Method

5.2 Automation

Corollary 5.1.4 can be automated as follows. Suppose that we have found a
subsystem C0 of a given left-linear TRS R such that R←−7 [−o

ε−→R ⊆ ←→∗C0
. We

extend C0 to C so that (i) C0 ⊆ C (R and (ii) R�C ⊆ →6k
C for a designated

number k ∈ N. This search problem can be reduced to a SAT problem. Let
Sk(`→ r) be the following set of subsystems:

Sk(`→ r) = {{β1, . . . , βn} | `→β1 · · · →βn r and n 6 k}

In our SAT encoding we use two kinds of propositional variables: x`→r and y f .
The former represents ` → r ∈ C, and the latter represents f ∈ Fun(C). With
these variables the search problem for C is encoded as follows:

∧
α∈C0

xα ∧
∨

α∈R
¬xα ∧

∧
α∈R

(
¬xα ∨

∧
f∈Fun(α)

y f

)

∧
∧

α∈R\C0

((∨
S∈Sk(α)

xS
)
∨
(
¬

∧
f∈Fun(`)

y f
))

Here xS = xβ1 ∧ · · · ∧ xβn for S = {β1, . . . , βn}. It is easy to see that the first two
clauses encode condition (i) and the third clause characterizes Fun(C). The last
clause encodes condition (ii).

Example 5.2.1 (Continued from Example 5.1.5). Recall that R←−7 [−o
ε−→R ⊆ ←→∗C0

holds for C0 = {1, 2}. Setting k = 5, we compute Sk(α) for each rule α ∈ R \ C0 =
{3, 4, 5, 6}:

Sk(3) = {{3}} Sk(4) = {{2}, {1, 2, 6}, {2, 3, 6}} Sk(5) = {{5}} Sk(6) = {{6}}

The SAT encoding explained above results in the following formula

(x1 ∧ x2) ∧ (¬x1 ∨ · · · ∨ ¬x6)

∧ (¬x1 ∨ (y0 ∧ y+))
∧ (¬x2 ∨ (y0 ∧ y×))
∧ (¬x3 ∨ (y0 ∧ y+)) ∧ (x3 ∨ ¬(y0 ∧ y+))
∧ (¬x4 ∨ (y0 ∧ ys ∧ y×)) ∧ (X ∨ ¬(ys ∧ y0 ∧ y×))
∧ (¬x5 ∨ (ys ∧ y+)) ∧ (x5 ∨ ¬(ys ∧ y+))
∧ (¬x6 ∨ (ys ∧ y+ ∧ y×)) ∧ (x6 ∨ ¬(ys ∧ y×))

with X = x2 ∨ (x1 ∧ x2 ∧ x6) ∨ (x2 ∧ x3 ∧ x6). The formula is satisfied if we assign
true to x1, x2, x3, y0, y+, and y×, and false to the other variables. This assignment
corresponds to C = {1, 2, 3}. Note that for this formula there is no other solution.

56

Chapter 6

Confluence Tool — Hakusan

In order to evaluate presented approaches in Chapters 4 and 5, we developed a
confluence tool Hakusan. The tool supports the main three compositional con-
fluence criteria (Theorems 4.2.4, 4.3.4, and 4.4.6) and their original versions (The-
orems 4.2.2, 4.3.2, and 4.4.2). Moreover the reduction method (Corollary 5.1.4) is
available.

In the subsequent sections we describe the usage and features of the tool, and
then we report experimental data for these implemented criteria. Note that the
descriptions about the tool of experimental data below are based on version 0.8
of Hakusan.

6.1 Usage

Hakusan is a confluence tool written in Haskell. It automatically solves a con-
fluence problem for a given TRS file. The source code of the tool is available
at:

https://www.jaist.ac.jp/project/saigawa/

The input file is a text file written in the TRS format [MNS21] and the output
is a (non-)confluence proof of the input TRS. The tool runs on a command line
interface with options and an input TRS.

hakusan [configurations] [criterion] <input.trs>

The optional argument [criterion] specifies the (compositional) confluence cri-
terion to be used. Some criteria require external tools, which can be specified by
preceding optional arguments [configurations].

The basic usage of Hakusan is just typing the command:

hakusan <input.trs>

Then Hakusan starts confluence analysis. There are three patterns of outputs.

• YES means that confluence of an input TRS was proved.

57

https://www.jaist.ac.jp/project/saigawa/

Chapter 6: Confluence Tool — Hakusan

(VAR x y z)
(RULES
+(+(x,y),z) -> +(x,+(y,z))
+(x,+(y,z)) -> +(+(x,y),z)
+(0,x) -> x

)

Figure 6.1: The TRS in Example 4.3.5.

• NO means that non-confluence of an input TRS was proved.

• MAYBE means that nothing was concluded.

In addition, the first two statuses are followed by the corresponding proof scripts.
Moreover, MAYBE contains two cases: one is not provable theoretically, and the
other is an inadequacy of the specified method and parameters (see the first
example below).

A short usage is available in help messages by running the tool with no input.

hakusan

More details can be found in the next section. In the subsequent parts, we briefly
show several usages of Hakusan with a few examples of input and output.

Confluence checking by a specified criterion. In order to demonstrate this
feature, we recall the confluence proof of the TRS R in Example 4.3.5. The input
is a text file listed in Fig. 6.1.

Since the confluence of the TRS is shown by the combination of parallel rule
labeling (Theorem 4.3.4 with Knuth–Bendix’s criterion (Theorem 2.3.7), we can
obtain a confluence proof by the following command:

hakusan -prl-pcps 5 <input.trs>

The option -prl-pcps k stands for parallel rule labeling with parallel critical pair
systems. Here the number k is the maximum length of rewrite steps used in
each criterion. When this option is specified, Hakusan tries to find a subsystem
C such that R with C satisfies the condition of parallel rule labeling, and C with
∅ satisfies the condition of parallel critical pair systems.

The result of the command is the status YES and a proof text, see Fig. 6.2.
As mentioned above, the status means that confluence of the input TRS was
successfully proved, and the proof text is a sequence of individual proofs cor-
responding to each applications of compositional confluence criteria. In this
case, the proof text consists of two applications of the compositional confluence
criteria mentioned above.

Note that the command hakusan -prl-pcps 1 <input.trs> outputs MAYBE.
The cause is that k-steps length 1 is too short to find join sequences of (parallel)
critical pairs on the problem.

58

6.1 Usage

YES

Compositional parallel rule labeling (Shintani and Hirokawa 2022).

Consider the left-linear TRS R:

+(+(x,y),z) -> +(x,+(y,z))
+(x,+(y,z)) -> +(+(x,y),z)
+(0(),x) -> x

Let C be the following subset of R:

+(+(x,y),z) -> +(x,+(y,z))
+(0(),x) -> x

All parallel critical peaks (except C’s) are decreasing wrt rule labeling:

phi(+(+(x,y),z) -> +(x,+(y,z))) = 0
phi(+(x,+(y,z)) -> +(+(x,y),z)) = 1
phi(+(0(),x) -> x) = 0

psi(+(+(x,y),z) -> +(x,+(y,z))) = 0
psi(+(x,+(y,z)) -> +(+(x,y),z)) = 1
psi(+(0(),x) -> x) = 0

Therefore, the confluence of R follows from that of C.

Compositional parallel critical pair system (Shintani and Hirokawa 2022).

Consider the left-linear TRS R:

+(+(x,y),z) -> +(x,+(y,z))
+(0(),x) -> x

Let C be the following subset of R:

(empty)

The parallel critical pair system PCPS(R,C) is:

+(+(+(x1_1,x1_2),y2),y3) -> +(+(x1_1,+(x1_2,y2)),y3)
+(+(+(x1_1,x1_2),y2),y3) -> +(+(x1_1,x1_2),+(y2,y3))
+(+(0(),y2),y3) -> +(y2,y3)
+(+(0(),y2),y3) -> +(0(),+(y2,y3))

All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating.
Therefore, the confluence of R follows from that of C.

emptiness

The empty TRS is confluent.

Figure 6.2: The proof of Fig. 6.1.

59

Chapter 6: Confluence Tool — Hakusan

(VAR x y z)
(RULES
+(x,0) -> x

*(x,0) -> 0
+(0,x) -> x

*(s(x),0) -> 0
+(s(x),y) -> s(+(x,y))

(s(x),y) -> +((x,y),y)
)

Figure 6.3: The TRS in Example 5.1.5.

Confluence checking with the reduction method. We use Example 5.1.5 to
demonstrate the reduction method feature. The TRS in the example is formal-
ized as a text file (Fig. 6.3). Identically, we use Corollary 5.1.4 as a reduction
method to prove the confluence of the input TRS. The next command consists of
the configuration for the reduction method and a criterion option:

hakusan -reduce 5 -orthogonal+ 5 <input.trs>

By activating the reduction method with the option -reduce k, the method is
inserted before an application of each (compositional) confluence criterion. The
criterion option -orthogonal+ k orders Hakusan to use successive application
of Theorem 4.2.4 as confluence criterion. Then the reduction method is tested
before each application of Theorem 4.2.4. The common parameter k is the same
as the previous example.

The output proof is available at Fig. 6.4. The proof structure is same as the
last one.

Non-confluence checking. Hakusan also supports a feature for non-confluence
checking. Consider the following TRS:

x · e→ x x · x−1 → e

e · x → x x−1 · x → e

The TRS file Fig. 6.5 is a representation of it. Since the TRS has a non-joinable
peak e← e · e−1 → e−1, it is not confluent.

For non-confluence TRSs, Hakusan may output the status NO with a witness
of non-confluence if the non-confluence feature is activated by the configuration
option -noncr. Here is an example command:

hakusan -noncr <input.trs>

In this case, Hakusan outputs NO, and the non-joinable peak is displayed as a
witness of the non-confluence (Fig. 6.6).

60

6.1 Usage

YES

parallel critical pair closing system (Shintani and Hirokawa 2022, Section 8
in LMCS 2023)

Consider the left-linear TRS R:

+(x,0()) -> x

*(x,0()) -> 0()
+(0(),x) -> x

*(s(x),0()) -> 0()
+(s(x),y) -> s(+(x,y))

(s(x),y) -> +((x,y),y)

Let C be the following subset of R:

*(x,0()) -> 0()
+(x,0()) -> x
+(0(),x) -> x

The TRS R is left-linear and all parallel critical pairs are joinable by C.
Therefore, the confluence of R is equivalent to that of C.

parallel critical pair closing system (Shintani and Hirokawa 2022, Section 8
in LMCS 2023)

Consider the left-linear TRS R:

*(x,0()) -> 0()
+(x,0()) -> x
+(0(),x) -> x

Let C be the following subset of R:

*(x,0()) -> 0()

The TRS R is left-linear and all parallel critical pairs are joinable by C.
Therefore, the confluence of R is equivalent to that of C.

parallel critical pair closing system (Shintani and Hirokawa 2022, Section 8
in LMCS 2023)

Consider the left-linear TRS R:

*(x,0()) -> 0()

Let C be the following subset of R:

(empty)

The TRS R is left-linear and all parallel critical pairs are joinable by C.
Therefore, the confluence of R is equivalent to that of C.

emptiness

The empty TRS is confluent.

Figure 6.4: The proof of Fig. 6.3.

61

Chapter 6: Confluence Tool — Hakusan

(VAR x)
(RULES
.(x,e) -> x
.(e,x) -> x
.(x,-(x)) -> e
.(-(x),x) -> e

)

Figure 6.5: The non-confluent TRS.

NO

peak

e()

*<-
.(-(e()),e())
->*
-(e())

is not joinable

Figure 6.6: The proof of Fig. 6.5

6.2 Features

We explain more detailed features of Hakusan. First, we explain how to spec-
ify external tools and how to enable the reduction method. Next, we describe
detailed descriptions of all criterion options.

Configurations must be placed before criterion options. Here is a configura-
tion example of Hakusan.

hakusan -ttx /path/to/tool -noncr -reduce 5 <input.trs>

External tools. Hakusan requires two external tools for the following criterion
options: -cps, -pcps, -prl, -pcps-X, and -prl-X. The parameter X is explained
later. The following list is instructions on external tools and corresponding cri-
terion options.

• -ttx <path>: This option specifies the path of an external termination tool
for the XML format.1 A passed termination tool is used for testing relative
termination for Theorem 4.4.2 and Theorem 4.4.6 (-cps, -pcps, -pcps-X,
and -prl-pcps options). The default termination tool is NaTT [YKT14], the
default path is NaTT.exe.

1See the web site https://termination-portal.org/wiki/TPDB

62

https://termination-portal.org/wiki/TPDB

6.2 Features

Table 6.1: Main options for configurations.

-ttx <path> use external termination tool <path> with the XML format.
-tt <path> use external termination tool <path> with the WST format.
-smt <path> use external SMT solver <path>.
-reduce <k> enable reduction method with at most k-rewrite steps.

• -tt <path>: This option is same as -ttx, but it specifies the path of an
external termination tool for the WST format. 1 Other descriptions are
equivalent to the option -ttx.

• -smt <path>: This option specifies the path of an external SMT solver for
the SMT-LIB 2 format [BFT17]. This solver is used for solving linear arith-
metic constraints of Theorem 4.3.4 (-prl, -prl-X, and -pcps-prl options).
The default SMT solver is Z3 [dMB08], the default path is z3.

Non-confluence checking. The non-confluence checking feature of Hakusan is
based on the TCAP approximation [ZFM11]. The feature is activated by the
option -noncr. Non-confluence of input TRSs are tested before applications of
a (compositional) confluence criterion. If non-confluence of an input TRS is
proved then the status NO is output with a witness.

Reduction Method. The option -reduce <k> activates the reduction method
(Corollary 5.1.4). If this option is specified then the reduction method is inserted
before each application of confluence criteria. Note that the reduction method is
successively applied similarly to Example 5.1.5. Due to the performance, suitable
subsystems for Theorem 4.2.4 are calculated from rewrite rules that are used in
join sequences for each parallel critical pair on the original system. Joinability
of each parallel critical pair (t, u) is tested by the relation:

t 65−→ · 65←− u

Contrary to compositional confluence criteria described later, this feature only
tests a first candidate of suitable subsystems.

Criterion options. These options enable corresponding (compositional) con-
fluence criteria. If several criterion options are specified at once then the one of
criterion options is used with the internal priority of options. Main options for
(compositional) confluence criteria are listed in Table 6.2.

63

Chapter 6: Confluence Tool — Hakusan

Table 6.2: Main options for confluence criteria.

-orthogonal apply Theorem 4.2.2.
-orthogonal+ <k> successively apply Theorem 4.2.4.
-prl <k> apply Theorem 4.3.2
-prl-<X> <k> consecutively apply Theorem 4.3.4 with <X>.
-cps <k> apply Theorem 4.4.2.
-pcps-<X> <k> consecutively apply Theorem 4.4.6 with <X>.

Here k is the maximal length of rewrite steps and X is one of orthogonal, prl,
pcps, or empty.

We list individual options for the aforementioned (compositional) confluence
criteria in Chapter 4.

• -orthogonal: If the option is specified then Hakusan checks orthogonality
of an input TRS (see Theorem 4.2.2).

• -orthogonal+ <k>: Hakusan applies the confluence criterion that is ob-
tained by successive application of Theorem 4.2.4 (see Example 4.2.5). Join-
ability of each parallel critical pair (t, u) is tested by the relation:

t 6k−→ · 6k←− u

Every subsystem C is searched by enumeration.

• -prl <k> and -prl-<X> <k>: For the former option, Theorem 4.3.2 is ap-
plied. For the latter option, Hakusan applies Theorem 4.3.4 with a corre-
sponding criterion <X>. The decreasingness of each parallel critical peak of
the form t φ,k

P←−7 [− s ε−→ψ,m u is tested by existence of a conversion of the form

t −→
gk

i1 · −−7 [→
ψ,m

i2 · −−→
gkm

i3 · j3←−−
gkm

v j2 P′←−7 [−
φ,k
· j1←−−
gm

u

such that i1, i3, j1, j3 ∈ N, i2, j2 ∈ {0, 1}, i1 + i2 + i3 6 k, j1 + j2 + j3 6 k,
and Var(v, P′) ⊆ Var(s, P) holds. This is encoded into linear arithmetic
constraints [HM11], and they are solved by a configured SMT solver.

For the option -prl-<X>, every subsystem C is searched by enumeration,
and confluence of C is proved by the corresponding criterion <X>.

• -cps <k>: If the option is given then Hakusan applies Theorem 4.4.2. Join-
ability of critical pairs is tested by the same relation of -orthogonal+.

64

6.3 Experiments

• -pcps <k> and -pcps-<X> <k>: If these options are given then Hakusan

applies Theorem 4.4.6. For the first option, the criterion is used as an
ordinary confluence criterion, that is C = ∅. In the latter case, confluence
of subsystem C is proved by the corresponding criterion <X>. Joinability of
each parallel critical pair (t, u) is tested by the relation:

t 6k−→ · 6k←− u

In order to determine termination of R/C, a configured termination tool
is used.

Every subsystem C is searched by enumeration.

In both of -prl-<X> and -pcps-<X>, a confluence criterion X is the one of prl,
pcps, orthogonal, and empty. The first three are equivalent to the corresponding
criterion options. Here empty is a confluence criterion that checks only emptiness
of TRSs.

When no criterion option is specified, Hakusan automatically enables configu-
ration options -noncr and -reduce 5, and the criterion options -prl-pcps 5 and
-pcps-prl 5. These specified criteria are applied sequentially, i.e., -pcps-prl
is enabled when -prl-pcps outputs MAYBE. Hence the result of the command
hakusan <input.trs> is identical to the union of the following results of two
commands:

hakusan -noncr -reduce 5 -prl-pcps 5 <input.trs>

and

hakusan -noncr -reduce 5 -pcps-prl 5 <input.trs>

The comparison of the default parameter k can be found in Fig. 6.8 in Section 6.3.

6.3 Experiments

In order to evaluate the aforementioned techniques, we compare Hakusan (ver-
sion 0.8) with existing methods and tools by experimental results. The experi-
mental data are available at the project page:

https://www.jaist.ac.jp/project/saigawa/

The problem set used in experiments consists of 462 left-linear TRSs taken
from the confluence problems database COPS [HNM18]. Out of the 462 TRSs, at
least 191 are known to be non-confluent. The tests were run on a PC with Intel
Core i7-1165G7 CPU (2.80 GHz) and 16 GB memory of RAM. Table 6.3 summa-
rizes the results. The columns in the table stand for the following confluence
criteria:

65

https://www.jaist.ac.jp/project/saigawa/

Chapter 6: Confluence Tool — Hakusan

Table 6.3: Comparison for individual methods.

O R C OO RC CR rOO rRC rCR

of proved TRSs 20 135 59 88 152 143 91 153 146
timeouts 0 20 9 12 84 34 9 82 43
errors 0 1 1 3 2 2 3 2 2

• O: Orthogonality (Theorem 4.2.2).

• R: Rule labeling (Theorem 4.3.2).

• C: The criterion by critical pair systems (Theorem 4.4.2).

• OO: Successive application of Theorem 4.2.4 (see Example 4.2.5).

• RC: Theorem 4.3.4, where confluence of a subsystem C is shown by Theo-
rem 4.4.6 with the empty subsystem.

• CR: Theorem 4.4.6, where confluence of a subsystem C is shown by Theo-
rem 4.3.4 with the empty subsystem.

• rOO, rRC, and rCR: They are same as OO, RC, and CR but Corollary 5.1.4
is always used repeatedly before a (compositional) confluence criterion is
applied.

In the table, the row “# of proved TRSs” is the number of YES problems. The
row “timeouts” is the number of problems with neither YES, NO, nor MAYBE. The
last row is the number of run-time errors.

We briefly explain configurations of this run. Timeouts are 150 seconds and
the maximal length k of rewrite steps is 5. These numbers are intended to max-
imize the number of proved TRSs (see Figure 6.8 and 6.7). In both charts x-axis
indicates the number of proved TRSs and y-axis indicates timeouts in seconds
and length of rewrite steps, respectively. Relative termination, required by Theo-
rems 4.4.2 and 4.4.6, is checked by employing the termination tool NaTT (version
2.3) [YKT14]. The SMT solver z3 (version 4.8.7) is used for solving SAT problems
for Theorem 4.3.4 and the reduction method (Corollary 5.1.4).

As theoretically expected, in the experiments O, R, and C are subsumed by
their compositional versions OO, RC, and CR, respectively. Moreover, OO is
subsumed by R, RC, and CR. Due to timeouts, CR misses three systems of which
R can prove confluence. While the union of R and C amounts to 145, the union
of RC and CR amounts to 153. Differences between RC and CR are summarized
as follows:

66

6.3 Experiments

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

of proved problems

ti
m

e
(s

ec
on

ds
)

R C
OO RC
CR rOO

rRC rCR

Figure 6.7: The numbers of proved problems in run time.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

of proved problems

le
ng

th
of

m
ax

im
al

re
w

ri
te

st
ep

s R C
OO RC
CR rOO

rRC rCR

Figure 6.8: The number of proved problems in maximal length of rewrite steps.

67

Chapter 6: Confluence Tool — Hakusan

• Three systems (COPS numbers 994, 1001, and 1029) are proved by RC but
not by CR nor R. One of them is the next TRS (COPS number 994). RC uses
the subsystem {2, 4, 6} whose confluence is shown by C.

1 : a(b(x))→ a(c(x)) 3 : c(b(x))→ a(b(x)) 5 : c(c(x))→ c(c(x))
2 : a(c(x))→ c(b(x)) 4 : b(c(x))→ a(c(x)) 6 : c(c(x))→ c(b(x))

7 : c(b(x))→ a(b(x))

• The only TRS where CR is advantageous to RC is COPS number 132:

1 : − (x + y)→ (−x) + (−y) 3 : − (−x)→ x
2 : (x + y) + z→ x + (y + z) 4 : x + y→ y + x

Its confluence is shown by the composition of Theorem 4.4.6 and Theo-
rem 4.3.2, the latter of which proves the subsystem {1, 2, 4} confluent.

The columns rOO, rRC, and rCR in Table 6.3 show that the use of the reduc-
tion method (Corollary 5.1.4) basically improves the power and efficiency of the
underlying compositional confluence criteria. Close inspection of experimental
data reveals the following facts.

• The confluence proving powers of rOO and OO are theoretically equivalent,
because the reduction method as a compositional confluence criterion is an
instance of OO. In the experiments rOO handled three more systems. This
is due to the improvement of efficiency. The same argument holds for the
relation between rRC and RC.

• While the use of the reduction method improves the efficiency in most of
cases, there are a few exceptions (e.g., COPS number 689). The bottleneck
is the reachability test by→C6k .

• The reduction method and C are incomparable with each other. Hence rCR

is more powerful than CR. In the experiments, rCR subsumes CR and it
includes three more systems. As a drawback, rCR has four more timeouts.

• Among rOO, rRC, and rCR, the second criterion is the most powerful. As
in the cases of their underlying criteria, the results of rOO are subsumed
by both rRC and rCR, and COPS number 132 is the only problem where
rCR outperforms rRC.

For the sake of comparison the results of the following confluence tools are
included in Table 6.4. All tools are taken from the TRS category of the annual
confluence competition (CoCo) [MNS21] held in 2022.

68

6.3 Experiments

Table 6.4: Comparison for confluence tools.

Hakusan ACP CoLL CONFident CSI

of proved TRSs 154 198 177 97 215
timeouts 77 49 167 43 3
errors 3 5 4 0 0

• ACP [AYT09] is the first modern automated confluence prover. The main
feature is supporting several divide-and-conquer methods, including mod-
ularity and commutative decompositions. We use version 0.62 which is
participated in CoCo 2022.

• CONFident [GL20] is a confluence prover for context sensitive and condi-
tional term rewrite systems. The tool boils down confluence problems
to corresponding logical problems such as joinability and feasibility. Ex-
ported logical problems are solved by external tools. We use CoCo 2022
version of CONFident. Note that the main targets of CONFident are exten-
sions of ordinary TRSs. So this experimentation unfits the tool.

• CSI is an automated confluence prover employing decomposition meth-
ods [ZFM11] and transformation methods [NFM17]. This tool won the
TRS category of CoCo 2022. We use version 1.25 which is participated in
CoCo 2022.

• CoLL-Saigawa is the predecessor of Hakusan. This tool consists of two dif-
ferent confluence tools: CoLL [SH15] and Saigawa [Hir14]. The former is
used for left-linear problems and the latter is used for other problems. We
abbreviate CoLL-Saigawa to CoLL. We use version 1.6 which is participated
in CoCo 2022.

The result of Hakusan is the union of the results of rRC and rCR. The former
proves 153 problems out of 154 problems. Among them, the three systems COPS
numbers 994, 1001, and 1029 are newly proved by Hakusan. All results of rCR
are subsumed by other tools.

69

Chapter 7

Conclusion

We studied how compositional confluence criteria can be derived from con-
fluence criteria based on the decreasing diagrams technique, and showed that
Toyama’s almost parallel closedness theorem is subsumed by his earlier theorem
based on parallel critical pairs. We conclude this thesis by mentioning related
work and future work.

Commutation version of compositional criteria. In this thesis we presented
several compositional confluence criteria. However, the underlying abstract the-
orem Theorem 4.1.2 of them is a decreasing diagram method based on com-
mutation. So compositional commutation criteria are naturally considered. Re-
casting compositional commutation is straightforward for Theorem 4.2.4 and
Theorem 4.3.4. Other criteria, including reduction methods, need to be investi-
gated.

Simultaneous critical pairs. van Oostrom [vO97] showed the almost devel-
opment closedness theorem: A left-linear TRS is confluent if the inclusions

ε←−o ε−→ ⊆ ∗−→ · ←−◦−− >ε←−o ε−→ ⊆ −−◦−→

hold, where −−◦−→ stands for the multi-step [Ter03, Section 4.7.2]. Okui [Oku98]
showed the simultaneous closedness theorem: A left-linear TRS is confluent if
the inclusion

←−◦−−o−→ ⊆ ∗−→ · ←−◦−−
holds, where ←−◦−−o−→ stands for the set of simultaneous critical pairs [Oku98].
As this inclusion characterizes the inclusion ←−◦−− · → ⊆ →∗ · ←−◦−−, simultane-
ous closedness subsumes almost development closedness. The main result in
Section 3.1 is considered as a counterpart of this relationship in the setting of
parallel critical pairs.

Critical-pair-closing systems. A TRS C is called critical-pair-closing for a TRS
R if

R←−o
ε−→R ⊆ ←→∗C

71

Chapter 7: Conclusion

holds. It is known that a left-linear TRSR is confluent if Cd/R is terminating for
some confluent critical-pair-closing TRS C with C ⊆ R, see [HNvOO19]. Here Cd
denotes the set of all duplicating rules in C. Theorem 4.2.4 imposes closedness
by C on all parallel critical pairs in return to removal of the relative termination
condition. Investigating whether the latter subsumes the former is our future
work.

Rule labeling. Dowek et al. [DFJL22, Theorem 38] extended rule labeling
based on parallel critical pairs [ZFM15] to take higher-order rewrite systems. If
we restrict their method to a first-order setting, it corresponds to the case that a
complete TRS is employed for C in Theorem 4.3.4, and thus, it can be seen as a
generalization of Corollary 4.2.6 by Toyama [Toy17].

Critical pair systems. Hirokawa and Middeldorp [HM13] generalized The-
orem 4.4.2 by replacing CPS(R) by the following subset:

CPS′(R) = {s→ t, s→ u | t R← s ε−→R u is a critical peak but not t −−◦−→R u}

This variant subsumes van Oostrom’s development closedness theorem [vO97].
We anticipate that in a similar way our compositional variant (Theorem 4.4.6) is
extended to subsume the parallel closedness theorem based on parallel critical
pairs (Theorem 3.1.9).

Redundant rules. Redundant rule elimination by Nagele et al. [NFM15, Corol-
lary 9] can be regarded as a compositional confluence criterion. It states that a
TRSR is confluent if there exists a confluent subsystem C such thatR\C ⊆ ←→∗C
holds. When R is left-linear, the criterion is subsumed by Theorem 4.2.4. This is
verified by the following trivial fact:

Fact 7.0.1. Let C be a subsystem of a TRSR. IfR\C ⊆ ←→∗C then R←−7 [−o
ε−→R ⊆ ←→∗C .

The converse does not hold in general. To see it, consider the one-rule TRS
R consisting of a → b. The empty TRS C = ∅ satisfies R←−7 [−o

ε−→R ⊆ ←→∗C but
R \ C ⊆ ←→∗C does not hold as a 6←→ ∗

C b. There is another form of redundant
rule elimination ([NFM15, Corollary 6] and [SH15]). It states that a TRS R is
confluent if and only if R ⊆ →∗C for some confluent C ⊆ R. This criterion is
regarded as a reduction method for confluence analysis. In fact, it is an instance
of Corollary 5.1.4 for left-linear TRSs, since R�C ⊆ R and R←−7 [−o

ε−→R ⊆ ←→∗C
hold. We want to stress that a reduction method is obtained by any combination
of a compositional confluence criterion with Theorem 5.1.3.

72

Certification. Bugs of implementation make tools unreliable. How to verify
the correctness of a proof generated by a tool? One solution is a certified proof.
CeTA [TS09] is a certifier for rewriting, which is based on an Isabelle/HOL li-
brary IsaFoR. It provides a variety of certification interfaces for termination, com-
plexity, confluence, etc. We plan to support CeTA with Hakusan.

Modularity and automation. Last but not least, we discuss relations between
modularity and reduction methods. Organizing compositional criteria as a re-
duction method is a key for effective automation. Therefore, developing a gen-
eralization of Theorem 5.1.3 is our primary future work. Ohlebusch [Ohl02]
showed that if the union of composable TRSs R and C is confluent then both R
and C are confluent. When C is a subsystem of R, this result is rephrased as fol-
lows: If DR\C ∩ Fun(C) = ∅ then confluence of R implies that of C. Therefore,
this can be used as an alternative of Theorem 5.1.3. Unfortunately, R�C ⊆ C
follows from DR\C ∩ Fun(C) = ∅. So composability as a reduction method is
still in the realm of our criterion (Theorem 5.1.3). Similarly, we can argue that
the theorem also subsumes the persistency result [AT97] as a base criterion for
reduction methods. Yet, we anticipate that this work benefits from studies of
more advanced modularity results such as layer systems [FMZvO15].

73

Bibliography

[AT97] T. Aoto and Y. Toyama. Persistency of confluence. Journal of
Universal Computer Science, 3(11):1134–1147, 1997. doi:10.3217/

jucs-003-11-1134.

[AYT09] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term
rewriting systems automatically. In Proc. 20th International Confer-
ence on Rewriting Techniques and Applications, volume 5595 of LNCS,
pages 93–102, 2009. doi:10.1007/978-3-642-02348-4_7.

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB
standard: Version 2.6. Technical report, Department of Computer
Science, The University of Iowa, 2017.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi:10.1017/CBO9781139172752.

[Der05] N. Dershowitz. Open. Closed. Open. In Proc. 16th International
Conference on Rewriting Techniques and Applications, volume 3467 of
LNCS, pages 276–393, 2005. doi:10.1007/978-3-540-32033-3_28.

[DFJL22] G. Dowek, G. Férey, J.-P. Jouannaud, and J. Liu. Confluence of
left-linear higher-order rewrite theories by checking their nested
critical pairs. Mathematical Structures in Computer Science, pages
898–933, 2022. doi:10.1017/S0960129522000044.

[dMB08] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
12th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963 of LNCS, pages 337–340,
2008. The website of Z3 is: https://github.com/Z3Prover/z3.
doi:10.1007/978-3-540-78800-3_24.

[Ede85] E. Eder. Properties of substitutions and unifications. Jour-
nal of Symbolic Computation, pages 31–46, 1985. doi:10.1016/

S0747-7171(85)80027-4.

[FMZvO15] B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom.
Layer systems for proving confluence. ACM Trans. Comput. Logic,
16(2):1–32, 2015. doi:10.1145/2710017.

75

https://doi.org/10.3217/jucs-003-11-1134
https://doi.org/10.3217/jucs-003-11-1134
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-540-32033-3_28
https://doi.org/10.1017/S0960129522000044
https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/S0747-7171(85)80027-4
https://doi.org/10.1016/S0747-7171(85)80027-4
https://doi.org/10.1145/2710017

Bibliography

[FvO13] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing
diagrams. In Proc. 24th International Conference on Rewriting Tech-
niques and Applications, volume 21 of LIPIcs, pages 174–189, 2013.
doi:10.4230/LIPIcs.RTA.2013.174.

[GL20] R. Gutiérrez and S. Lucas. Automatically proving and disproving
feasibility conditions. In Proc. 10th International Joint Conference on
Automated Reasoning, volume 12167 of LNCS, pages 416–435, 2020.
doi:10.1007/978-3-030-51054-1_27.

[Gra96] B. Gramlich. Confluence without termination via parallel critical
pairs. In Proc. 21st International Colloquium on Trees in Algebra and
Programming, volume 1059 of LNCS, pages 211–225, 1996. doi:

10.1007/3-540-61064-2_39.

[Hin64] J. R. Hindley. The Church–Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964.

[Hir14] N. Hirokawa. Saigawa: A confluence tool. In 3rd Confluence Com-
petition, pages 1–1, 2014.

[HM11] N. Hirokawa and A. Middeldorp. Decreasing diagrams and rela-
tive termination. Journal of Automated Reasoning, 47:481–501, 2011.
doi:10.1007/s10817-011-9238-x.

[HM13] N. Hirokawa and A. Middeldorp. Commutation via relative ter-
mination. In Proc. 2nd International Workshop on Confluence, pages
29–34, 2013.

[HNM18] N. Hirokawa, J. Nagele, and A. Middeldorp. Cops and CoCoWeb:
Infrastructure for confluence tools. In Proc. 9th International Joint
Conference on Automated Reasoning, volume 10900 of LNCS (LNAI),
pages 346–353, 2018. The website of COPS is: https://cops.uibk.
ac.at/. doi:10.1007/978-3-319-94205-6_23.

[HNvOO19] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Con-
fluence by critical pair analysis revisited. In Proc. 27th International
Conference on Automated Deduction, volume 11716 of LNCS, pages
319–336, 2019. doi:10.1007/978-3-030-29436-6_19.

[Hue80] G. Huet. Confluent reductions: Abstract properties and applica-
tions to term rewriting systems. Journal of the ACM, 27(4):797–821,
1980. doi:10.1145/322217.322230.

76

https://doi.org/10.4230/LIPIcs.RTA.2013.174
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/3-540-61064-2_39
https://doi.org/10.1007/3-540-61064-2_39
https://doi.org/10.1007/s10817-011-9238-x
https://cops.uibk.ac.at/
https://cops.uibk.ac.at/
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1145/322217.322230

Bibliography

[JL12] J.-P. Jouannaud and J. Liu. From diagrammatic confluence to
modularity. Theoretical Computer Science, 464:20–34, 2012. doi:

10.1016/j.tcs.2012.08.030.

[Kah95] S. Kahrs. Confluence of curried term-rewriting systems. Journal of
Symbolic Computation, 19:601–623, 1995. doi:10.1006/jsco.1995.

1035.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in univer-
sal algebras. In J. Leech, editor, Computational Problems in Ab-
stract Algebra, pages 263–297. Pergamon Press, 1970. doi:10.1016/
B978-0-08-012975-4.50028-X.

[KH12] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via
relative termination. In Proc. 18th International Conference on Logic
Programming and Automated Reasoning, volume 7180 of LNCS, pages
258–273, 2012.

[LJ14] J. Liu and J.-P. Jouannaud. Confluence: The unifying, expressive
power of locality. In Specification, Algebra, and Software, volume 8375
of LNCS, pages 337–358, 2014. doi:10.1007/978-3-642-54624-2_
17.

[MNS21] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. CoCo 2019:
Report on the eighth confluence competition. International Journal
on Software Tools for Technology Transfer, 23(6):905–916, 2021. doi:

10.1007/s10009-021-00620-4.

[New42] M. H. A. Newman. On theories with a combinatorial definition
of "equivalence". Annals of Mathematics, 43(2):223–243, 1942. doi:

10.2307/1968867.

[NFM15] J. Nagele, B. Felgenhauer, and A. Middeldorp. Improving auto-
matic confluence analysis of rewrite systems by redundant rules.
In Proc. 26th International Conference on Rewriting Techniques and Ap-
plications, volume 36 of LIPIcs, pages 257–268, 2015. doi:10.4230/
LIPIcs.RTA.2015.257.

[NFM17] J. Nagele, B. Felgenhauer, and A. Middeldorp. CSI: New evidence
– a progress report. In Proc. 26th International Conference on Au-
tomated Deduction, volume 10395 of LNCS (LNAI), pages 385–397,
2017. doi:10.1007/978-3-319-63046-5_24.

[Ohl02] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
doi:10.1007/978-1-4757-3661-8.

77

https://doi.org/10.1016/j.tcs.2012.08.030
https://doi.org/10.1016/j.tcs.2012.08.030
https://doi.org/10.1006/jsco.1995.1035
https://doi.org/10.1006/jsco.1995.1035
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1007/978-3-642-54624-2_17
https://doi.org/10.1007/978-3-642-54624-2_17
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.2307/1968867
https://doi.org/10.2307/1968867
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-1-4757-3661-8

Bibliography

[Oku98] S. Okui. Simultaneous critical pairs and Church–Rosser prop-
erty. In Proc. 9th International Conference on Rewriting Techniques
and Applications, volume 1379 of LNCS, pages 2–16, 1998. doi:

10.1007/BFb0052357.

[OO97] M. Oyamaguchi and Y. Ohta. A new parallel closed condition
for Church–Rosser of left-linear term rewriting systems. In Proc.
8th International Conference on Rewriting Techniques and Applica-
tions, volume 1232 of LNCS, pages 187–201, 1997. doi:10.1007/

3-540-62950-5_70.

[OO03] M. Oyamaguchi and Y. Ohta. On the Church–Rosser property of
left-linear term rewriting systems. IEICE Transactions on Information
and Systems, E86-D(1):131–135, 2003.

[Ros73] B. Rosen. Tree-manipulating systems and Church–Rosser theo-
rems. Journal of the ACM, pages 160–187, 1973. doi:10.1145/

321738.321750.

[SH] K. Shintani and N. Hirokawa. Compositional confluence criteria.
Logical Methods in Computer Science. Submitted.

[SH15] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-
linear term rewrite systems. In Proc. 25th International Conference on
Automated Deduction, volume 9195 of LNCS (LNAI), pages 127–136,
2015. doi:10.1007/978-3-319-21401-6_8.

[SH22] K. Shintani and N. Hirokawa. Compositional confluence criteria. In
Proc. 7th International Conference on Formal Structures for Computation
and Deduction, volume 228 of LIPIcs, pages 28:1–28:19, 2022. doi:

10.4230/LIPIcs.FSCD.2022.28.

[Tak93] M. Takahashi. λ-calculi with conditional rules. In Proc. International
Conference on Typed Lambda Calculi and Applications, volume 664 of
LNCS, pages 406–417, 1993. doi:10.1007/BFb0037121.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[Toy81] Y. Toyama. On the Church–Rosser property of term rewriting sys-
tems. In NTT ECL Technical Report, volume No. 17672. NTT, 1981.
Japanese.

[Toy87] Y. Toyama. On the Church–Rosser property for the direct sum of
term rewriting systems. Journal of the ACM, 34(1):128–143, 1987.
doi:10.1145/7531.7534.

78

https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/3-540-62950-5_70
https://doi.org/10.1007/3-540-62950-5_70
https://doi.org/10.1145/321738.321750
https://doi.org/10.1145/321738.321750
https://doi.org/10.1007/978-3-319-21401-6_8
https://doi.org/10.4230/LIPIcs.FSCD.2022.28
https://doi.org/10.4230/LIPIcs.FSCD.2022.28
https://doi.org/10.1007/BFb0037121
https://doi.org/10.1145/7531.7534

Bibliography

[Toy88] Y. Toyama. Commutativity of term rewriting systems. In Pro-
gramming of Future Generation Computers II, pages 393–407. North-
Holland, 1988.

[Toy17] Y. Toyama. Confluence criteria based on parallel critical pair clos-
ing, March 2017. in personal communication.

[TS09] R. Thiemann and C. Sternagel. Certification of termination proofs
using CeTA. In Proc. 22nd International Conference on Theorem Prov-
ing in Higher Order Logics, volume 5674 of LNCS, pages 452–468,
2009. doi:10.1007/978-3-642-03359-9_31.

[vO94] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit, Amsterdam, 1994.

[vO97] V. van Oostrom. Developing developments. Theoretical Com-
puter Science, 175(1):159–181, 1997. doi:10.1016/S0304-3975(96)

00173-9.

[vO08] V. van Oostrom. Confluence by decreasing diagrams, converted.
In Proc. 19th International Conference on Rewriting Techniques and
Applications, volume 5117 of LNCS, pages 306–320, 2008. doi:

10.1007/978-3-540-70590-1_21.

[YKT14] A. Yamada, K. Kusakari, and T.Sakabe. Nagoya termination tool.
In Proc. 25th International Conference on Rewriting Techniques and Ap-
plications, volume 8560 of LNCS, pages 446–475, 2014. The web-
site of NaTT is: https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.
doi:10.1007/978-3-319-08918-8_32.

[ZFM11] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI - a confluence
tool. In Proc. 23th International Conference on Automated Deduction,
volume 6803 of LNCS (LNAI), pages 499–505, 2011. doi:10.1007/

978-3-642-22438-6_38.

[ZFM15] H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for de-
creasing diagrams. Journal of Automated Reasoning, 54(2):101–133,
2015. doi:10.1007/s10817-014-9316-y.

79

https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.1007/978-3-540-70590-1_21
https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-642-22438-6_38
https://doi.org/10.1007/978-3-642-22438-6_38
https://doi.org/10.1007/s10817-014-9316-y

Index

(ψ, φ)-decreasing, 42
CPS(R), 46
ε, see root
R

p←−o ε−→S , 23
R

P←−7 [−o ε−→S , 26
PCPS(R, C), 47
REN, 54
|s|, see size
f (n), 20
s|p, see subterm
→R, 22
p−→R, 22
→, 17
←, 17
←→, 18
→=, 17
→+, 17
→∗, 17
→n, 17
→1 · →2, 17
−−7 [→, see parallel step

abstract rewrite system (ARS), 18
induced from TRS, 22

arity, 20

commute, 19
locally, 19
self-, 19
strongly, 19

composable, 73
composition, 17
composition (substitutions), 21

concatenation, 20
confluent, 18

locally, 18
constant, 20
critical pair, 23
E -extended, 54
overlay, 25
parallel, 26

critical pair system, 46
critical peak, 23

parallel, 26

decreasing, 37
decreasing diagram, 37
defined symbol, 22
domain, 21

function symbol, 20

identity, 17
instance, 22
inverse, 17

joinable, 18

labeling function, 42
linear, 21
linear TRS, 35

left-, 22

most general unifier (mgu), 22

orthogonal, 27
mutually, 39

overlap, 23

81

Index

E -overlap, 54

parallel, 20
parallel closed, 25

almost, 25
parallel critical pair system, 47
parallel step, 23
peak, 18

local, 18
position, 20

reduction methods, 51
reflexive closure, 17
reflexive transitive closure, 17
renaming, 22
rewrite relation, 22
rewrite rule, 22

extended, 54
root, 20
rule, see rewrite rule
rule labeling, 42

signature, 20
size, 21
strongly non-overlapping, 54
substitution, 21
subsystem, 22
subterm, 21

proper, 21
symmetric closure, 18

term, 20
term rewrite system (TRS), 22

extended (eTRS), 54
terminating, 19

relatively, 19, 47
transitive closure, 17

unifier, 22

variable, 20
variant, 23

82

	Introduction
	Term Rewrite Systems and Confluence
	Compositional Approach
	Compositional Confluence Criteria
	Reduction Methods
	Contribution

	Preliminaries
	Abstract Rewriting
	Terms and Substitutions
	Term Rewrite Systems

	Parallel Closedness
	Parallel Closedness and Variants
	Proof of Toyama's Parallel Closedness
	Comparison

	Compositional Confluence Criteria
	Decreasing Diagrams with Commuting Subsystems
	Orthogonality
	Rule Labeling
	Critical Pair Systems

	Reduction Method
	Reduction Methods
	Automation

	Confluence Tool — Hakusan
	Usage
	Features
	Experiments

	Conclusion
	Bibliography
	Index

