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Estimating the Center of Mass of an Object with Non-uniform Density
via High-speed Pushing

Ziyan Gao, Armagan Elibol, and Nak Young Chong

Abstract— An object’s inertial parameters, such as the mass,
the Center of Mass (CoM), and the moment of inertia, affect
the response to the external forces exerted on it. It is important
to estimate these parameters as accurately as possible in
order to facilitate robot-led automation including grasping
and manipulation. Traditionally, the estimation is conducted
by employing special equipment in a controlled environment,
which may not be always available for a small batch production
system dealing with unknown objects. We propose an efficient
exploratory type framework for estimating an object’s CoM
via force sensor-less high-speed robotic pushing, which only
requires the use of a vision system for detecting the change
in the object’s pose. Accurately estimating an object’s CoM
aids robotic grasping and expands manipulation scenarios. We
conducted intensive simulation and real robot experiments to
show the accuracy of the estimation, robustness to friction
variation, and generalization capability to novel objects, that
the framework ensures only with a limited number of pushes.

I. INTRODUCTION

The inertial parameters of an object affect its response
to robot actions performed on the object. These param-
eters are usually obtained using special equipment in a
controlled environment, which may not be suitable for in-
dustrial settings. Accurate identification of object inertial
parameters is essential to infer efficient robot grasping and
manipulation [1]. Therefore, a simple yet accurate method
for inertial parameter identification with minimal equipment
is of wide interest to the robotic manipulation community.
Among the inertial parameters, we focus on the CoM as it
helps understand the object’s behavior being manipulated.
For instance, the robot needs to slide a thin object on a table
beyond the table edge to pinch grasp it. The motion of the
robot should ensure that the object CoM always lies inside
the table top to prevent it from falling to the floor. When
pushing a planar object on a uniform surface, the CoM helps
infer the object’s sense of rotation given the frictional contact
forces [2]. Likewise, our previous work [3] has shown that
the robot can robustly translate unknown planar objects if
their CoMs are well estimated.

In this work, we aim to estimate the CoM of novel objects
via planar pushing using only a position-controlled robot arm
and an off-the-shelf vision system. The projection of object
CoM to the horizontal plane will have the same location
as the center of friction if all the supported contacts have
the same frictional coefficient. Rooted back to the work
by Lynch [4] and our previous works [3][5], the object
center of friction can be estimated by choosing a set of
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test pushes to constrain the center of friction to a convex
region (hereinafter referred to as the CoM region) inside the
convex hull of the object following Mason’s Voting Theorem
(VT) [2]. We propose a new framework based on a recurrent
neural network (RNN) trained by a simulation dataset and
VT [2] to acquire an accurate estimation on the object’s
CoM, taking the advantages from the RNN and CoM region.
The estimation is conducted using a sequence of pushing
interactions. To minimize the number of pushing interactions
and improve the performance of RNN, we propose an
evaluation function to select a sequence of pushing actions
considering how much the CoM region can be narrowed
down and how the region can be shaped. The simulation and
real experimental results show the significant generalization
capability and robustness of the framework.

In our previous work [3][5], we estimated the object’s
CoM through a motion prediction model which relies on a set
of pushing priors, and only considered quasi-static pushing.
In this work, without using pushing priors for the prediction
of motion, the proposed framework can accurately estimate
the object’s CoM with fewer pushes. We conduct a series
of simulation and real robot experiments to compare the
impact of pushing speed and floor surface friction on the
estimation accuracy and evaluate the proposed framework
in real settings. We found that both higher speed pushing
and lower frictional settings contribute to improving the
estimation accuracy. In summary, this letter introduces the
following contributions:
• A novel object CoM estimation method only uses a

position-controlled robotic pusher and vision system.
• The estimation framework incorporating the voting the-

orem and deep learning model improves the estimation
efficiency and accuracy.

• Quantitative evaluation of the effect of pushing speed
and friction on the estimation accuracy.

The assumptions are made as follows:
• The pushed object is flat, and it does not tilt or flip

during and after being pushed.
• The pusher, the object, and the support plane are rigid.
• Coulomb’s law of friction applies.
• The contact normal is extracted from the vision system.

II. RELATED WORK

Following the taxonomy in [1], inertial parameter esti-
mation methods can be classified as purely visual methods,
fixed-object methods, and exploratory methods. The purely
visual methods employ vision sensors to measure the volume



of an object, assuming uniform mass density. Leveraging
the large-scale labeled dataset, Trevor et al. [6] proposed
a deep learning model to estimate both the volume and
density of the object using an RGB-D image. In the fixed-
object methods [7], the object is firmly attached to the robot’s
end-effector, and the rigid body dynamics is analyzed with
object shape information. The focus of this work lies on the
exploratory methods that require the robot to interact with
objects, as detailed below.

Yu et al. [8] used a two-finger pushing in a trial-and-
error approach making the line of CoM pass between the
fingers. This method might be inefficient when dealing with
an arbitrarily shaped object. Tsuneo et al. [9] uniformly
sampled a set of hypothesized support points based on
the object shape obtained from the vision sensor, and the
support frictional forces were solved by unconstrained least-
squares. However, this method may result in unrealistic
friction distribution as reported in [4]. On the other hand,
Lynch [4] formulated the estimation of the center of friction
as a linear programming problem, and a set of support points
were hypothesized. However, the number of data points was
required to be much larger than the number of hypothesized
support points in order to obtain an accurate estimation.
On the other hand, with an ellipsoid force-model model
presented in [10], Kloss et al. [11] used an Extended Kalman
Filter to iteratively estimate object inertial parameters based
on the applied pushing action and resultant object motion.
In addition, Song et al. [12] proposed to learn the coupled
mass-friction parameters using a differentiable simulator, and
obtain the friction distribution minimizing the simulation-
reality gap. This method requires a set of hypothesized mass
and friction models and the object coarsely approximated by
rigidly-connected 2D small grids.

Recently, learning-based methods have been employed for
estimating inertial parameters. McGovern et al. [13] utilize
reinforcement learning for CoM estimation by placing the
object to the border of the table to check whether the object
is balanced or not. However, in a real setting, this method
lacks the efficiency and stability as the robot should precisely
pick and place the object to the desired pose. Li et al. [14]
used RNNs to sample actions for pushing objects toward the
desired pose, and the object CoM is predicted on the fly
taking into account the interaction history as input. Kumar
et al. [15] employed a policy network to interact with an
articulated object, and a predictor network to predict the
mass distribution of the object. Different from these works,
we sample pushing actions based on the CoM region in such
a way as to reduce the CoM uncertainty as much as possible.
Xu et al. [16] proposed a learning framework to encode
the object’s physical properties implicitly using high-speed
pushing and colliding. It is worth mentioning that pushing the
object at high speed makes the object’s physical properties
more distinguishable than pushing at low speed. This is
consistent with our experimental results. Incorporating the
learning model and physics engine, Allevato et al. [17], [18]
used a neural network to tune the inertial parameters of
the physics engine based on the difference in observation

from the real object motion. However, it was limited to
known objects. Instead of using a physics engine, Wu et
al. [19] fed explicitly estimated physical parameters as input
to an analytical model of a physical system to estimate
object motion. Veres et al. [20] proposed to learn the CoM
implicitly and predict the grasp affordance in an end-to-end
fashion. Specifically, several grasping trials were executed to
collect the support set for generating the grasp affordance.

In this work, we aim to improve the estimation efficiency,
leveraging the CoM region and RNN, and obtain more
accurate CoM estimates using high speed pushing under
varying conditions of surface friction.

NOMENCLATURE

MCoM CoM region in matrix form comprising all pixel
coordinates within it. It has m rows and two columns,
where m specifies the number of pixel coordinates.
MCoM j is a pixel coordinate at the jth row.

t The leading superscript t refers to the time step.
Pct Matrix representation with n rows and 2 columns of

all sampled pixel coordinates on the object outline,
where n specifies the number of sampled contact
positions. Pct j is a pixel coordinate at the jth row.

Nct Matrix representation of all sampled normal direc-
tions associated with Pct . Nct has the same dimen-
sion as Pct . Nct j is an unit vector indicating the nor-
mal direction at the jth contact position calculated
based on the adjacent pixels at Pct j .

pCoM CoM ground truth. p̂CoM represents CoM estimates.
pcntr Centroid of the CoM region.
p̂rnn CoM estimates using RNN.
a A 4-dimensional vector specifying a pushing direc-

tion that consists of Pct j and Nct j .
∆o A 3-dimensional vector specifying the object’s trans-

lation (∆x, ∆y) and rotation (∆θ ) in a plane.
Cbw a threshold distance between a pixel and the pushing

direction.
θT a threshold angle of the object’s rotation in radians.

III. METHOD

We introduce a new framework for estimating an object’s
CoM that requires a robot to interact with the object, as
illustrated in Fig. 1. This framework estimates the object’s
CoM iteratively until the uncertainty measured by the CoM
region is smaller than a prespecified area threshold or the
number of interactions reaches the maximum allowed limit.
The framework consists of five modules, among which is
the CoM region updater playing a core role in both the
robot-object interaction loop and the CoM estimation phase.
In the interaction loop, the CoM region updater passes the
CoM region to the contact selector in order to guide the
action selection procedure. In the CoM estimation phase, the
CoM region updater updates the CoM region, allowing the
combine module to examine the spatial relation between the
CoM region and the output of RNN and further improves
the estimation accuracy. We will introduce each module in
the following parts.



Fig. 1. Proposed framework for CoM estimation. The CoM region updater
takes the object mask as input to construct the CoM region t−1MCoM . In the
pushing interaction loop shown in blue, the CoM updater passes t−1MCoM
to the contact selector to sample a pushing action t a. The robot-object
interaction module exerts a push on the object using t a and observes the
pose change t ∆o. In the CoM estimation phase shown in red, employing t a
and t ∆o, the CoM region updater updates the CoM region t MCoM , and the
RNN predicts the CoM t P̂rnn. The combine module produces a compromise
between t MCoM and t P̂rnn for the CoM in the next time step.

Fig. 2. CoM region: Red arrow at the contact normal represents the pushing
direction within the friction cone delimited by black dashed lines. Counter-
clockwise (CCW) or clockwise (CW) rotation separates the CoM region
colored yellow from the non-CoM region colored dark green.

A. CoM Region Updater

The CoM region updater specifies a candidate region that
may contain the CoM. The CoM region is initially equal to
the convex hull of an object image mask as the CoM must
lie within an object. The CoM region is represented by a
set of pixel coordinates MCoM w.r.t. a fixed frame. The CoM
region updater narrows down the CoM region using the VT
according to the result of the pushing interaction module.

VT states that three rays at the contact point, the left and
right limits of the friction cone denoted by RL and RR, and
the pushing direction RP, vote for the sense of rotation. The
vote is conducted by examining the sign of moment (positive
or negative) of each ray about the CoM of an object. If two
or more rays vote for clockwise rotation, then the object will
rotate clockwise. Based on VT, the CoM region of a known
object can be narrowed down by applying a series of arbitrary
pushes. For each push and the corresponding object rotation,
a CoM region can be found without any ambiguity using the
ray in the middle as the boundary between the CoM region
and the non-CoM region. For unknown objects, however, in

the case that the object rotation center and contact normal
are on the different side of RP, the CoM region cannot be
updated, since RL and RR at the contact point are unknown.

Therefore, instead of allowing pushing in arbitrary di-
rections, we constrain the pushing direction to the contact
normal to ensure that RP lies in the middle of the two limits
of the friction cone. By pushing the object along the contact
normal and observing the resultant object sense of rotation,
the CoM region can be separated without ambiguity from
the non-CoM region. In practice, if the distance between
the CoM and the line of pushing is small, the object will
rotate a small amount that cannot be easily detected by a
vision sensor due to sensor limitations. For dealing with such
cases, we define two empirical parameters θT and Cbw for
narrowing down the CoM region; if the amount of rotations
is less than θT , the region whose inner pixel locations to RP
is less than Cbw is regarded as the CoM region. Choosing a
small θT and relatively large Cbw can secure that the CoM
ground is always inside the CoM region. Fig. 2 illustrates
the selection rules for the proposed method.

B. Contact Selector

The contact selector chooses a set of sampled pushing ac-
tions specified by Pct and Nct . Initially, the sampled pushing
actions are uniformly distributed around the object perimeter.
As the CoM region gets smaller, the contact selector removes
the actions whose lines of pushing do not pass through the
current CoM region.

The pushing action is selected as follows. Given the CoM
region, we carry out a principal component analysis to find
its centroid c and principal components V. Then, we compute
the distance vector d of 1× n representing the distances
between c and each line of pushing specified by Pct j and
Nct j . We then use a linear cost function to score all sampled
pushing actions given by Eq. 1

s = w⊤
(

d⊤

(1−∥NctV2∥)⊤

)
,d j = ∥Nct j × (c−Pct j)∥ (1)

where s is a 1× n vector representing the evaluated scores
for all sampled pushing actions. w is a 2×1 weight vector
and V2 is the second main principal vector represented by a
2× 1 vector. As both Nct and V2 are normalized, ∥NctV2∥
represents the absolute value of cosine similarity between
Nct and V2. By minimizing the term (1−∥NctV2∥)⊤, we
are able to avoid a prolate-shaped CoM region.

The smaller d j is, the more likely the area of updated CoM
region is the half of the current CoM region. The larger the
absolute value of cosine similarity between Nct j and V2, the
more regularly shaped the updated CoM region. Using this
cost function, the pushing action that has a close distance to
c and small cosine distance with V2 can be selected.

C. Robot-Object Interaction

In quasi-static pushing, an object’s motion is opposed by
the frictional force exerted by the floor, and tends to be
translational especially when the support pressure distribu-
tion is decentralized. This is one of the main causes of



Fig. 3. CoM estimates of a rectangular object pushed 5 times. The top row visualizes the pushing action selected and the bottom row shows the centroid
of the CoM region (green dot), the CoM estimates by RNN (blue sqaure) and the Combine module (orange triangle), and CoM ground truth (red dot).

Fig. 4. Data flow in RNN. In each time step, a push t a and the motion of
the pushed object t ∆o are fed into RNN as the current input. RNN predicts
t prnn using the previous hidden state t−1h and the current input.

difficulty in detecting the object’s sense of rotation, leading
to error in the CoM estimation. In contrast, the inertial
force is exerted on the object with high-speed pushing which
results in larger translational and rotational motion. Notably,
high-speed pushing is expected to be beneficial even in a
plane with anisotropic friction which will be shown in the
Experiment Section. Therefore, in this work, we use high-
speed pushing to interact with the object. Given a pushing
action, this module produces high speed linear end-effector
velocity to push the object a short distance.

D. Recurrent Neural Network

A single push is not sufficient to accurately estimate
an object’s CoM due to the unknown pressure distribution
between the object and support plane and frictional prop-
erties. Therefore, previous pushing interactions need to be
considered to improve the estimation. We employ an RNN to
predict an object’s CoM using historical pushing interactions
[14], [15]. One of the main focuses is how to improve the
performance of RNN using the pushing interactions selected
by our proposed framework. Unlike the CoM region updater
which only examines the spatial relation among the line of
pushing, the CoM region and the sense of rotation, RNN
employs the pushing action ta, the resulting object motion
t∆o as well as the history of pushing interactions encoded
by the hidden state t−1h to produce the CoM estimate ˆtprnn.
The data flow is shown in Fig. 4.

E. Combine

This module takes tMCoM and t p̂rnn as input to produce
a unified estimate t p̂CoM by examining the spatial relation
between them. Even though tMCoM guarantees that the CoM
lies inside the CoM region, the CoM cannot be localized ex-
actly. One plausible method is to choose CoM region centroid

Fig. 5. Possible spatial relation between the CoM estimates for a polygonal
CoM region. In Eq. 2, C0 and C1 are proportional to d0 and d1.

tpcntr. However, the centroid approximation is not accurate
especially when the CoM region is large. A common failure
occurs when the CoM lies on (or close to) the boundary of
the CoM region. On the other hand, we observed in our
experiments that estimating the CoM by RNN converges
faster than finding the centroid of the CoM region in earlier
time steps. However, there is no guarantee that t p̂rnn remains
inside the CoM region. In this work, tpCoM is determined by
Eq. 2.

t p̂CoM =

 ˆtprnn if t p̂rnn lies inside tMCoM
t p̂rnn·e−C0+t pcntr ·e−C1

e−C0+e−C1
if t p̂rnn lies outside tMCoM

(2)
t p̂CoM will be equal to t p̂rnn if t p̂rnn lies inside the CoM
region. When t p̂rnn lies outside the CoM region, Eq. 2 applies
per Fig. 5. C0 and C1 are weight coefficients proportional to
d0 and d1, respectively. In the case that t p̂rnn lies outside
tMCoM , if t p̂rnn is far away from the CoM region, the
associated weight e−C0 is much smaller so that t p̂CoM is much
closer to tpcntr. Otherwise, t p̂CoM will be biased from tpcntr
to the CoM region boundary.

Eq. 2 utilizes the CoM region to examine how much an
RNN estimate can be trusted. p̂rnn should be considered less
accurate if it is far from the CoM region. On the other
hand, when p̂rnn is inside or close to the CoM region, it
can be considered a good estimate for the CoM ground truth
and tpcntr should be less weighted. Making a compromise
between the CoM region and an RNN estimate, Eq. 2 can
achieve small error especially when the CoM region is
large or the CoM ground truth is close to the CoM region
boundary. Fig. 3 illustrates the proposed CoM estimation
process for a rectangular object. A detailed sequence of steps



is given in Alg. 1.

Algorithm 1: CoM Region Decision Process
Input: agent,Mch,Pct ,Nct ,w,θT ,Cbw,T
/* Mch, which consists of a set of pixel

locations, represents the region inside

the convex hull of the object. T is the

maximum number of pushing interactions

that we set. */

Output: t p̂CoM
1 0MCoM ←Mch // Object CoM Estimation

Procedure

2 for t = 1 to T do
/* Pushing action selection */

/* opencv library */

3 c, V, x ← PCA(t−1MCoM)
/* shapely library */

4 Pct , Nct ← valid(Pct ,Nct ,
t−1MCoM)

5 Calculate s/* Eq. 1 */

6 j = argmin s
/* Robot-object pushing interaction */

7 ∆x,∆y,∆θ ← agent.execute(Pct j ,Nct j)
/* CoM region update */

8 if ∥∆θ∥> θT then
9 for t−1MCoMi in t−1MCoM do

10 if ∆θ(Nct j × (t−1MCoMi −Pct j))≤ 0 then
11 t−1MCoM .delete( t−1PCoMi )

12 else
13 for t−1MCoMi in t−1MCoM do
14 d←∥(t−1MCoMi −Pct j)×Nct j∥
15 if d ≥Cbw then
16 t−1MCoM .delete( t−1MCoMi )

17 tMCoM ← t−1MCoM
/* RNN inference */

18 ˆtprnn = RNN(Pct j ,Nct j ,∆x,∆y,∆θ )
/* Combine module is abstracted as a

function G */

19 ˆtpCoM ← G(t p̂rnn,
tMCoM)

IV. EXPERIMENTS
We conducted two simulation experiments and one real

robot experiment for estimating the CoMs of different
objects. Employing CoppeliaSim and Vortex physics en-
gine [21] under the conditions in Table I, we investigated
the following aspects:
• how friction affects CoM estimation.
• how pushing speed affects CoM estimation.
• how pushing action sampling affects the CoM estima-

tion of the RNN.
• how the framework generalizes to novel objects.

Furthermore, we performed a case study of applying the
proposed CoM estimation method to aid robotic grasping.

TABLE I
FIRST SIMULATION EXPERIMENT

Flooring surface frictional coefficient Isotropic:0.1,1
Anisotropic:(0.1,1)

Pusher friction coefficient 0.1, 0.5, 1
Object friction coefficient 0.5
Pushing speed(cm/s) 4,10,20,...,100
Number of objects 20
Number of CoM locations per object 10
Mass(kg) Range(0.2,1)
Maximum number of pushes per object 5

Fig. 6. Simulation objects for CoM estimation.

A. First Simulation Experiment

The first simulation experiment aims to evaluate the influ-
ence of friction and pushing speed. We create seven different
frictional settings changing the friction coefficients for the
pusher and floor surface. We consider both the isotropic
and anisotropic frictional surfaces. We select eleven different
speeds ranging from 4cm/s to 100cm/s. There are 20 objects
with different shapes and sizes as shown in Fig. 6. For each
object, we randomly assign 10 different CoM locations inside
the object’s convex hull. We set the mass of the objects in the
range of (0.2kg,1kg). For each shape, we conducted around
1,500 experiments, and in each run of CoM estimation, the
robot pushes the object 3cm a maximum of 5 times. A total
of approximately 30,000 experiments are conducted. The
object mask is obtained by a depth camera of 224× 224
pixels aligned perpendicular to the flat square floor with an
area of 0.36m2. We obtain the surface normal vector at the
contact point from the simulator and the inherent errors due
to the scale of the surface triangulation is assumed to be
negligible. For simplicity’s sake, the centroid of CoM region
pcntr is used to estimate the CoM. We set w to [1,0.5]⊤. The
rotation threshold θT and confidence bandwidth Cbw are set
to 1° and 1.5cm, respectively.

We use a scale-invariant metric in [3] to calculate the
estimation error. First, we define the object representative
size (RS) by the distance between the object’s centroid to
the farthest point on its perimeter. Then, the estimation
error is multiplied by the reciprocal of RS. The result
of the first simulation experiment is given in Fig. 7. The
left figure shows that the estimation error and the pushing
speed correlate. Although there is no obvious difference
between the results of 4cm/s and 10cm/s, the estimation
error decreases drastically from 10cm/s to 20cm/s. From
20cm/s to 100cm/s, the estimation error first reduces slightly
(until 40cm/s) and then continues at the same level. Based
on this result, high-speed pushing is considered to be useful
for CoM estimation.



Fig. 7. Result of the first simulation experiment. The left and right figures show the CoM estimation error in percentage w.r.t. the object RS for different
pushing speeds and frictional settings, respectively. Different values for the coefficient of friction are assigned to the floor and pusher. The two coefficients
inside the parenthesis are the friction coefficients along the horizontal and vertical directions, respectively, in the anistropic frictional plane.

Fig. 8. Estimation error of all methods in the second simulation experiment.

The plot on the right in Fig. 7 shows that the estimation
accuracy is affected by friction. Overall, the performance
on the isotropic frictional surfaces is better than that on the
anisotropic frictional surfaces. The estimation error becomes
larger especially when employing low-speed pushing. In
the isotropic friction case, we found that the higher the
friction coefficients of the pusher and floor surface, the
larger the estimation error. It was observed that high-speed
pushing exhibits good performance even on the anisotropic
frictional surfaces. Compared with the isotropic friction case,
the estimation error does not increase much. In summary,
high-speed pushing across low frictional surfaces with low
frictional pushers improve the accuracy of CoM estimates.

B. Second Simulation Experiment

In the second simulation experiment, we create a simula-
tion dataset and developed an RNN. Then, we evaluate the
influence of the sampled pushing actions to the estimation
accuracy of the RNN and the generalization capability of
the proposed framework to novel objects through comparison
with a series of ablation methods.

1) Simulation Dataset: we create a planar pushing dataset
using 40 objects with different shapes and sizes to train the
RNN. The same objects in the first simulation experiment
are used for testing. Using a lesson learned from the first
simulation experiment, we set the pushing speed to 50cm/s,
keeping the frictional setting the same. For each object,
multiple contact locations are uniformly sampled around the
object perimeter depending on the object size. For each
contact location, the robot pushes the object along the contact
normal 3cm and the change in object pose ∆o is recorded
after being pushed. To create a sequential dataset, given
an object with multiple pairs of push and resultant object
motion, we randomly select 8 pairs as one sequential data
and repeat this random selection procedure multiple times.
In the end, we collect 140,306 sequential data for training
and 68,079 sequential data for testing.

2) Training the RNN: Our RNN consists of 2 fully con-
nected (FC) layers to map the sequential data to the feature
space, an LSTM [22] layer to encode the history of pushing
interactions, and 3 FC layers to output t p̂rnn. All layers have
64 dimensions. We use the ReLU activation function in each
layer except the output layer. We set the batch size to 128 and
the learning rate is set to 0.001. The mean squared error loss
function and Adam optimizer [23] are adopted for training.
After the training phase, we evaluate the framework on the
same set of objects as in the first simulation experiment.

3) Methods Comparison: We compare our proposed
method combine to the following baseline CoM estimates:
• random a randomly selected pixel in the CoM region.
• random rnn the output of the RNN taking the randomly

sampled pushing actions and their object motions.
• progressive the centroid of the CoM region tpcntr.
• rnn the output of the RNN leveraging the CoM region

updator and contact selector.
To remove the effect of the threshold parameters θT and Cbw,
we assume that there is no measurement issue for object pose
so that θT is set to 0.



The result of the second simulation experiment is shown
in Fig. 8. Overall, in the first five time steps, the estimation
errors by all methods decrease rapidly, and random performs
worst; in the last three time steps, random rnn performs
worst. progressive achieves a reasonably low mean and
standard deviation if a certain number of pushes are allowed.
rnn achieves its minimum estimation error in the fifth time
step and then no obvious improvement can be observed
with more pushes. Compared with rnn, combine has similar
performance in terms of the mean and standard deviation
of the estimation error in the first three time steps, but it
achieves smaller estimation error in the latter time steps.

Compared with random rnn, rnn achieves lower mean
and standard deviation in each time step, which leads to
the conclusion that the way of pushing influences the es-
timation accuracy of the RNN. The estimation accuracy
can be improved by choosing the pushing actions which
minimize the object CoM uncertainty measured by the CoM
region. In the first five-time steps, compared with random
and progressive, the CoM estimates by rnn and combine
converge to the CoM ground truth faster. After the fifth
time step, combine continued to improve the accuracy with
the increase in the number of pushes, but the standard
deviation slightly becomes higher due to the fact that rnn
stops reducing the estimation error. We found through the
second experiment that our framework is able to perform
well on novel objects. Our method takes advantage of rnn
and progressive, allowing fast convergence to the ground
truth in the early time steps and achieving similar accuracy
as progressive in the latter time steps.

C. Real Robot Experiment

We evaluate the proposed framework in real settings in
Fig. 9, where a grid box of size 14cm× 8cm is pushed by
a robot arm on a plastic surface. We insert lead blocks into
different grids to change the CoM. The edge of the parallel-
jaw gripper is regarded as a pusher making contact with the
grid box. During the pushing interaction, the object pose
is recorded with the ArUco Markers [24] attached to the
top cover of the object. We employ two pushing speeds,
4cm/s and 50cm/s, and θT and Cbw are set to 1° and
1.5cm, respectively, as in the first simulation experiment.
The framework enables the robot to iteratively interacts with
the grid box a maximum of five times until the area of the
CoM region is smaller than 4% of the area of the object
mask. We conducted nine experiments in total and the grid
box has different CoM locations for each experiment. Each
experiment is repeated two times using two different pushing
speeds as already mentioned. The result is shown in Fig. 10.

Here we report the estimation errors of progressive for the
4cm/s case and those of progressive, rnn, combine for the
50cm/s case. Overall, progressive (low-speed), progressive
with high-speed pushing have similar performance while
progressive with high-speed pushing achieves a smaller
mean error in each time step except the first time step.
One failure case of low-speed pushing occurs when the
amount of object rotation is smaller than θT , even though the

Fig. 9. Real experimental setting.

Fig. 10. Estimation error of the compared methods in the real experiment.

distance between the CoM ground truth and line of pushing
is still large, which will exempt the CoM ground truth from
the CoM region by the CoM region update rule. rnn and
combine have similar performance in each time step and
achieve the smallest estimation error compared with other
methods. When transforming the estimation error quantified
by the scale-invariant metric to mm, both rnn and combine
have the mean estimation error around 4mm. However, the
pushing after the third time step does not contribute to
improving the estimation accuracy. This might be because
the estimation error is already small until the third time step.

D. Case Study on Robotic Grasping

We show that our CoM estimates can be used in realizing
stable robotic grasping. Recently, deep learning has been
used to deal with grasp synthesis in which the gripper pose is
constrained to be perpendicular to the horizontal plane, and
the gripper configuration is parameterized using an oriented
bounding box as shown in Fig. 11. Encouragingly, deep
learning models have been shown to achieve decent accuracy
in finding the grasping configurations without considering
the physical properties of the object. However, the problem
still remains challenging when the object’s CoM is extremely
biased from its geometrical center. The object may slip out
of the gripper as a result of the fact that the grasping force
cannot balance the external force and moment exerted on it.



Fig. 11. Case study of incorporating the proposed CoM estimation method
to robotic grasping. The figures on the left show our estimated CoMs (yellow
triangle) and the grasping candidates predicted by GGCNN [25] (oriented
bounding box) on the object. The green and red candidates turned out to
be grasp successes (right) and failures (center), respectively.

We choose the two irregularly shaped objects with non-
uniform mass density shown in Fig. 11. The grasping can-
didates are selected by GGCNN [25], and tested whether
the robot can lift the object to a certain height using the
candidates. We also estimate the object’s CoMs employing
our proposed framework and show how the estimates con-
tribute to lifting and holding the object. It can be found that
successful grasps should be configured close to the CoM.
Therefore, our framework is one possible way to endow
robots with the capability of lifting and holding novel objects.

V. CONCLUSION
We proposed an exploratory type framework for estimat-

ing the CoM of an object with non-uniform density. Our
interaction system comprises only a robot arm equipped
with a vision system directly pushing the object, without
requiring the use of a force sensor and/or special equipment.
The proposed framework is structured in five modules,
among which the RNN purely trained using our simulation
dataset can generalize to real novel objects. Furthermore,
we demonstrated that high-speed pushing increases the ac-
curacy of estimates compared to low-speed pushing, and the
framework provides robustness to surface friction variation
in anisotropic frictional surfaces.
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[24] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
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