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Sketch-Based Velocity Field Design using Latent Diffusion
Model

Hengyuan Chang1 Yichen Peng1 Syuhei Sato2 Haoran Xie1

Abstract: The fusion of velocity field creation and deep learning to enhance the effectiveness of flow simulation is
both widely pursued and intricate. Existing methods are mainly based on generative adversarial networks(GANs) to
generate the target velocity field with the sketch as input. However, the training of GANs, and balancing the generator
and discriminator is an unstable process, which causes generated unstable samples. In this research, we propose an
interactive 2D velocity field design generation framework. In our framework, the streamline sketch is used as a con-
straint condition, maps into the latent space with an encoder, constrains the denoising process and reconstructs the 2D
velocity field by decoder. The results show that our framework generates velocity fields corresponding to the shape
of given sketches, and also allows users to reconstruct velocity fields from hand-drawn sketches. We compared our
results with the GAN-based model. The evaluation shows our framework is more robust than the GAN-based method.

Keywords: Velocity field generation, latent diffusion model, sketch-guided, auto-encoder

1. Introduction
Flow simulation is a foundational topic within computer graph-

ics and holds significant importance in animation content cre-
ation. Presently, the execution of physical fluid simulation heav-
ily relies on commercial applications or tools such as Blender,
Houdini, ANSYS, as well as game engines like Unreal. How-
ever, the operations and processes of these tools are complex,
this necessitates users to possess relevant knowledge and a cer-
tain level of design proficiency. This is unquestionably challeng-
ing for users without a professional background to utilize these
tools to achieve their desired effects. For a majority of people,
sketching offers the most convenient means of representation. By
applying sketches as guidance to formulate the expected velocity
field, the realization of fluid simulation presents a feasible ap-
proach to simplify the fluid simulation process.

Several studies have focused on the generation of velocity
fields through sketches in recent years. Zhu et al.[1] proposed
a numerical-based sketch system to illustrate different fluid sys-
tems through sketch editing. Xing et al. [2] proposed an approach
using energy brushes to drive flow particles, resulting in the gen-
eration of corresponding velocity fields. These numerical-solver-
based approaches generate satisfactory experimental results, but
their complexity necessitates the utilization of multiple compo-
nents and tools to achieve the expected simulations. In recent
years, a growing trend involves integrating deep learning archi-
tectures such as GAN with physical simulation. Hu et al.[3] pre-
sented a sketch system grounded in conditional generative ad-
versarial network (cGAN) to generate 2D velocity fields for 2D
flow design while the sketch comprises merely 3 elements. Yan
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Fig. 1 This work can generate the velocity field from sketch input using dif-
fusion model.

et al. [4] discussed a virtual reality (VR) sketch system utilizing
cGAN to generate 3D velocity fields for 3D liquid splash gen-
eration, with the sketch encompassing a single type of strokes.
Notably, these approaches collected hand-drawn sketches as their
training data. Although the GAN-based method is capable of di-
rectly reconstructing expected velocity fields from input sketches,
their training of GAN can be inherently unstable due to the bal-
ance of the adversary between generator and discriminator. More
recently, the diffusion model (DM) [5] has achieved significant
advancements in generation tasks, surpassing the capabilities of
GAN architecture. The DM structure learns the reverse diffu-
sion process to recover an image mixed with Gaussian noise. Un-
like the generator and discriminator, DM sidesteps the adversar-
ial process, which contributes to the heightened robustness com-
pared to the GAN.

In this paper, we propose a sketch-based 2D velocity field de-
sign utilizing the latent diffusion model (LDM) [6]. The funda-
mental overview of this research is shown in Figure 1. The sketch
data is configured as the input constrain condition, the 2D veloc-
ity field is generated passthrough the proposed framework. The
details of framework is introduced in section 2. The LDM effec-
tively condenses intricate data into a more simplified feature map
or feature vector. This simplifies the analysis process and reduces
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Fig. 2 The framework of the proposed sketch-based velocity field design.

the computational demands while keeping the main features of
the original input. Notably, LDM is remarkably adaptable to con-
strain target generation using diverse input forms as conditions.
We create a 2D velocity field and sketch dataset as there exists no
open-source dataset tailored to our experiment. Additionally, We
formulate two auto-encoders aimed at compressing both velocity
fields and sketches into corresponding feature maps and recon-
structing data from given feature maps. The contributions of this
research are shown as follows: 1. We propose an LDM-based
velocity field generation framework, which is the first attempt
to apply LDM for velocity field generation design by inputting
sketch strokes. 2. We conduct a comparison between the pro-
posed framework and the cGAN structure. Furthermore, we val-
idate the stability of the proposed framework within the context
of 2D velocity field generation tasks.

2. Proposed Methods
In this section, we provide an overview of the proposed frame-

work first. Subsequently, we elucidate approaches adopted for
the generation of 2D velocity field data and corresponding sketch
data. Lastly, we present a comprehensive discussion on the
specifics of auto-encoders and LDM structure.

2.1 Overview
The proposed framework is shown in Figure 2. Inspired by

sketch-guided diffusion models such as human face generation
structure [7], we aim to apply sketches as a control condition for
the generation of 2D flow velocity fields.

2.2 Data Generation
The velocity field data that applied in this research are ex-

tracted from 2D smoke simulation scenarios. In the smoke sim-
ulation, the particles are moved through advection, influenced by
velocity u and pressure p at time step t. Assuming that u and p
are given as initial conditions at time step 0, we can compute the
updated velocity field by giving an inviscid Navier-Stokes model,

which is shown below:

∂ux

∂t
= −u · ∇ux −

1
ρ
∇p,

∂uy
∂t
= −u · ∇uy −

1
ρ
∇p + b,

(1)

∇ · u = 0 (2)

Where ux is the x direction of given velocity, uy is the y direction
of given velocity, b is the buoyancy. Given that the smoke simu-
lation takes place inside a rectangle obstacle domain, where the
boundary is regarded as solid, the boundary condition is defined
as follows:

u · n = 0 (3)

where n is normal vector of the boundary. In this research, the
semi-Lagrangian scheme [8] is applied to update the fluid field
after inputting the velocity field.

The sketch data utilized herein comprises streamlines extracted
from given 2D velocity field data. The streamlines are essentially
curves that are tangential to velocity vectors in the velocity field.
These can be used to describe the trajectory of any fluid parti-
cle in time. This presents a suitable and convenient approach for
describing a complex velocity field. The Runge-Kutta method
is a common approach to calculate the streamlines. The im-
plemented approach in this research is the Fourth-Order Runge-
Kutta method, chosen for its satisfactory in tracing the trajecto-
ries while the computation is in a low complexity with minimal
parameters. The equations are defined as follows:

xn+1 = xn +
h
6

(k1x + 2k2x + 2k3x + k4x)

yn+1 = yn +
h
6

(k1y + 2k2y + 2k3y + k4y)
(4)


k4x, k4y = f (xn + hk3x, yn + hk3y)

k3x, k3y = f (xn +
h
2 k2x, yn +

h
2 k2y)

k2x, k2y = f (xn +
h
2 k1x, yn +

h
2 k1y)

k1x, k1y = f (xn, yn)

(5)
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Fig. 3 The samples of velocity field and extracted sketch. Row (a) is ex-
tracted sketch data, and Row (b) is velocity field shown in vector
field style.

where xn, yn are given as the positions of particle at current status
n, xn+1, yn+1 are the positions of particle at next status n + 1. h
is given the time step, k1x, k1y are the slopes in x and y direction
at start point, k2x, k2y, k3x, k3y are the slopes at the middle points,
k4x, k4y are the slopes at the end point.

Samples of velocity field and sketch data are given as Figure
3 shows: where column (a) is velocity field samples, and column
(b) is extracted sketch samples. Here we use Matplotlib tools
to visualize the velocity field as a vector field. The direction of
vector represents the velocity direction of each grid. The length
and color of vector represent the speed of each grid. The color
distributes from 0 to 1 linearly, the color is lighter, the speed is
faster.

2.3 Velocity field & Sketch Auto-Encoder
With the training data generated, it is necessary to implement

2 auto-encoders for training. Here the widely used auto-encoder
structure is adopted for integration into the proposed framework.
This choice is informed by its ease of control and modification.
Additionally, the auto-encoder exhibits strong performance in
feature learning and data dimensionality reduction. These two
auto-encoders share an identical structure due to the uniform size
of velocity field and sketch. The structures of sketch auto-encoder
and velocity field auto-encoder are shown in Figure 4. The loss
function of sketch auto-encoder and velocity field auto-encoder
are given as follows:

loss = ||Xi − X̂i||
2,

X̂i = D(E(Xi))
(6)

where Xi is input data, X̂i is output recovered data, E is the encode
process,D is the decode process.

2.4 Latent Diffusion Model
Diffusion model (DM) has rapidly evolved in recent periods

and has become one of the most outstanding structures among
current generative models after GAN structure. The essence of
DM is training a parameterized Markov chain to progressively
eliminate Gaussian noise from data mixed with noise. The DM

primarily comprises two processes: the noise addition process
and the denoising process. The noise addition process infuses
Gaussian noise into real data gradually, while the subsequent de-
noising process, as mentioned above, restores real data. The
first process has no learning prerequisite since it follows math-
ematical laws, whereas the denoising process employs a neural
network model for learning. However, DM performs sampling
in high-dimensional data space, resulting in a massive computa-
tional workload. Hence, the LDM is involved in our research for
expediting experiments. The main idea of LDM is to train the
denoising process in a low-dimension latent space. This necessi-
tates an encoder, responsible for compressing data into a feature
map for transmission to the latent space; and a decoder to restore
the feature map back to its original data form.

As Figure2 shows, the velocity field V is given where V ∈
RC×H×W , the encoder E encodes V into feature map z0 where
z0 ∈ R

c×h×w, z0 is mixed with the Gaussian noise through the
diffusion process to get zT . In this research, the sketch y serves
as an input condition, encoder τ encodes y into the middle repre-
sentation τ(y). The τ(y) undergoes the concatenation with zT to
get a new zT where zT ∈ R

(C+c)×h×w. During the reverse diffusion
process, the U-Net is used to decrease the Gaussian noise within
zT , resulting in the derivation of reconstructed z0

′. At last, the
decoder D decodes z0

′ to reconstruct velocity field V ′. The loss
function of LDM is given as follows:

LLDM = EE(x),y,ϵ N(0,1),t[||ϵ − ϵθ(zt, t, τθ(y))||22] (7)

where E(x) is encoded feature map, y is condition, τθ(y) is en-
coded condition, ϵθ(..., t) is neural backbone that usually is imple-
mented as time conditional U-Net[9].

3. Experiments and Results
In this section, we introduce how the data generation process

and network training are implemented. We compare our frame-
work with cGAN model and provide both quantitative and quali-
tative evaluations to validate the quality of our approach.

3.1 Dataset Generation
The dataset generation process is executed on a Windows sys-

tem equipped with an i9-12900K CPU. We implemented 2D
smoke plume simulation scenes with Phiflow [10] which is a sim-
ulation tool prepared for the Python environment. The size of
simulation scene is 256 × 256. The area is surrounded by a solid
boundary, the smoke particle clusters are situated inside the area.
The buoyancy is applied to make smoke ascend in the field. In our
simulation, we randomly configure parameters including initial
buoyancy strength and direction, initial smoke cluster position,
and smoke cluster size to generate diverse smoke patterns. We
simulate 1000 scenes, each span in 150 time steps. Notably, the
representation of smoke field varies at different time steps. There-
fore we extract velocity fields every 10 time steps after the time
step reaches 30. We collect a total of 10000 velocity fields, with
each velocity field being exported as .npy files. These data are or-
ganized in 2 channels with the size of 256 × 256. The 2 channels
represent the x direction and y direction of velocity field. The

© 2023 Information Processing Society of Japan 3

Vol.2023-CG-191 No.8
2023/9/16



IPSJ SIG Technical Report

1282

16

1282

16 32

642

64

642

256

642

512

642

2

642642

512

642

256

642

128

642

64

642

32128

642

Input VF Recovered 

VF

Encode process

Decode process
Input 

sketch
Recovered 

sketch

Fig. 4 The structures of auto-encoders for both velocity fields and sketch inputs.
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(a)

(b)

sketch

Fig. 5 Sketch reconstruction visualization result. Row (a) is real data, row
(b) is reconstructed data.

entire simulation time is about 25 hours. streamline images are
generated as the corresponding sketches aligned with exported
velocity fields. Considering the impracticality of tracing the tra-
jectories for every individual particle, we adopt an approach of
tracing the trajectories of particles inside the top 512 grids of ve-
locity field with the highest velocities. This is achieved through
the application of a filter mask to block unnecessary grids. The
generated sketch data encompasses a single channel with the size
of 256 × 256.

3.2 Auto-Encoder Implementation
The training of auto-encoders for both velocity field and sketch

is conducted on a Linux system equipped with NVIDIA 3090
GPU. First, we focused on the sketch auto-encoder. The model
is trained for 500 epochs with an Adam optimizer, and a batch
size of 16 is adopted. The dataset is split into 8:2, with 8,000 data
allocated for training and 2,000 data for testing. The result of
sketch reconstruction is given in Figure 5. Notably, sketch data is
accurately reconstructed. However, instability exists in the back-
ground color. Next is the velocity field auto-encoder. This model
invokes the same parameters as the previously discussed sketch
auto-encoder. Preceding the training, the normalization operation
is operated on velocity field data to ensure the stability of training.
The sketch reconstruction result is given in Figure 6. In Figure 6,
we can see that velocity field data are reconstructed with a high
degree of accuracy, albeit with minor discrepancies in details.

3.3 Comparison
Regarding the training of the LDM, a total of 250 epochs are

executed using an Adam optimizer. Similar to previous steps, the

28

(a)

(b)

Fig. 6 Velocity field reconstruction visualization result. Row (a) is real vec-
torized velocity field data, row (d) is reconstructed vectorized veloc-
ity field data.

Table 1 MSE Loss comparison

MSE Loss
Ours 0.086
Pix2Pix 26.372

batch size is 16, 8,000 data for training and 2,000 data for test-
ing. We compare the proposed framework with Pix2Pix [11] to
assess the performance of the proposed framework. For training
Pix2Pix, the same dataset is applied, and partitioned into an 8:2
ratio for training and testing. The batch size is adjusted to 8, the
total epoch is 300. Figure 7 illustrates a visual comparison be-
tween the two frameworks. In Figure 7, row (b) demonstrates
that the velocity fields generated by Pix2Pix exist a large amount
of noise. In contrast, our framework generates velocity fields that
match the shape of input sketch conditions even if the strength
of flow is not matched. The generation task is an ill-posed prob-
lem, it is impossible that sketches match the velocity field. In ad-
dition, we input some hand-drawn sketches to generate velocity
fields with the proposed framework, the result is shown in Figure
8. This demonstrates even with sketch patterns not existing in the
dataset, our framework successfully generates velocity fields that
correspond to the shape of sketches. For a quantitative evaluation,
refer to Table 1.

4. Conclusion
In this work, we propose a sketch-guided 2D velocity field

generation framework based on LDM. Our framework success-
fully generates velocity fields that align with provided sketches
while maintaining a satisfactory level of accuracy in capturing
the sketch’s shape. We conducted a comparison against the basic
cGAN architecture. The results revealed that our approach sig-
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Fig. 7 Vectorized velocity field comparison result. The row (a) is real data,
row (b) vectorized real velocity field, row (c) is vectorized velocity
field generated by Pix2Pix, row (d) is vectorized velocity field gen-
erated by the proposed framework.

25

(a)

(b)

Fig. 8 Hand-drawn sketch-guided velocity field generation visualization re-
sult. Row (a) is input hand-drawn sketch, row (b) is generated veloc-
ity fields that shown as vector fields.

nificantly outperforms the compared cGAN architecture in terms
of performance.

The proposed framework still has limitations outlined below.
The flow types within our dataset remain limited. There is poten-
tial for improvement by incorporating additional factors like vor-
tex positioning and rotation to exert influence over smoke simu-
lations. Also, the proposed framework is insensitive to small flow
patterns with vortexes as shown in Figure 9. The representation
of the vortex needs optimization. The current study constitutes a
one-stage model wherein the velocity field is generated directly
from a streamlined sketch image. However, the process of con-
verting a sketch into a velocity field involves multiple sub-steps.
Notably, recent research [12] has proved that training these sub-
steps individually generates better results compared to training as
a single step.

For potential future work, it will be crucial work to reconfigure
the current one-stage structure into a multi-stage framework for
enhancing performance. Furthermore, strengthening the align-
ment between sketch data and velocity field is a pressing issue.
In addition, we intend to enlarge the flow patterns for generating
more velocity field types.

limitation

32

(a)

(b)

Fig. 9 Failed generations. The row (a) is input sketch, row (b) is generated
vectorized velocity field.
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Appendix
A.1 Sketch Auto-Encoder Training and Test-

ing Loss
The training loss chart and testing loss chart are given in Figure

A·1 and Figure A·2. The train loss and test loss begin to converge
in tens of epochs. The minimum of train loss and test loss are
0.0001758 and 0.0003304.
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A.2 Velocity Field Auto-Encoder Training and
Testing Loss

The training and testing loss are given in Figure A·3 and Figure
A·4. The minimum of training and testing loss are 0.008314 and
0.02105.

A.3 LDM Training and Testing Loss
The training loss and testing loss are shown in Figure A·5 and

Figure A·6. The minimum training and testing loss are 0.0836
and 0.08667.

17

100 200 300 400 500

Fig. A·1 Sketch auto-encoder training loss
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Fig. A·2 Sketch auto-encoder testing loss
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Fig. A·3 Velocity field auto-encoder training loss
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Fig. A·4 Velocity field auto-encoder testing loss
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Fig. A·5 LDM training loss
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Fig. A·6 LDM testing loss
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