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Sketch-Guided Two-Stage Text-to-Image Generation with
Spatial Control

Tianyu Zhang1,a) Haoran Xie1,b)

Abstract: Recent text-to-image diffusion models can produce high-quality images based only on textual prompts.
However, it is difficult to correctly interpret instructions specifying the layout of a compositional space using only text.
We propose a sketch-based method to control the spatial relationship of corresponding objects in image generation
and solve the issue of object loss in diffusion models. Our proposed method uses a pre-trained text-to-image diffusion
model as the image generator and employs sketches as spatial guidance. Specifically, we divide the proposed model
into two stages. In the feature extraction stage, sketches are segmented into individual objects using the image seg-
mentation approach, and the obtained bounding boxes and labels are then used as spatial-guided inputs to the attention
layers of the diffusion models. In the image generation stage, the proposed model utilizes a pre-trained text-to-image
diffusion model as the generator to generate corresponding images. We evaluate the proposed method quantitatively
and qualitatively with several experiments, validating the spatial control of the proposed method. In addition, we
further demonstrate its versatility by changing the position relationships and relative scales in sketches.

Keywords: Image generation, Sketch-guided, Two-stage model, Diffusion model

1. Introduction
Image generation is currently in a stage of rapid development

with new methods constantly emerging. The development of

deep learning-based approaches, particularly Variational Autoen-

coders (VAE), autoregressive models, and Generative Adversarial

Networks (GAN), has advanced and improved image generation

approaches. In addition, conditional generative models allow ad-

ditional conditions to be specified during image generation to in-

crease the control and flexibility of the generation process, such

as providing sketches or text descriptions to control the features

of generated images.

The diffusion model is undoubtedly one of the most revolution-

ary technologies that have surfaced in the past few years. Such as

Denoising Diffusion Probabilistic Models (DDPM)[5], Denois-

ing Diffusion Implicit Models (DDIM)[12], and Stable Diffusion

(SD)[10]. These models have disrupted the long-standing dom-

inance of GANs in the demanding field of image synthesis and

have demonstrated promise across various domains, such as com-

puter vision, multi-modal modeling, and natural language pro-

cessing. In addition, diffusion models can amplify the productiv-

ity of professional artists greatly and have attracted widespread

interest from the general public in practical applications such as

art design and creation.

Despite the successes, the powerful pre-trained diffusion mod-

els still lack a high level of control that can guide the spatial

properties of complex images. Lengthy and intricate text descrip-
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Fig. 1 Based on the diffusion model, the proposed method is guided by the

sketch’s segmentation. The proposed method does not necessitate

any further training of the pre-trained text-to-image diffusion model.

tions are often required for complex images, involving complex

semantic relationships and multiple objects. Generating models

struggle to maintain consistency and coherence when faced with

long textual descriptions, resulting in issues of blurry or inac-

curate generated results and object loss. In fact, in Stable Dif-

fusion[10], current state-of-the-art image generators struggle to

effectively comprehend straightforward layout instructions speci-

fied in text form. This is mainly because diffusion models belong

to the category of probabilistic generative models, where the core

idea is to iteratively generate real images from noisy images. At

each step, the model focuses on updating the image’s pixel values

without considering the pixels’ positional information.

As mentioned above, the current diffusion models face the fol-

lowing issues: 1) the text prompts are difficult to describe the

semantic information, especially in complex images; 2) text-to-
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image generation models lack spatial control of generated re-

sults; 3) diffusion models may lose the objects that depicted in

text prompts. To solve these issues, we propose the sketch-based

image generation method with two-stage latent diffusion model.

As shown in Figure 1, we try to intervene in the image gener-

ation process by adding sketches as new control conditions and

altering the attention layers in the diffusion process. In the first

stage, we utilize instance segmentation to extract object locations

and labels from sketches and encode them as spatial guidance of

the generation process. In the second stage, the pre-trained LDM

generates images according to the input text prompts, where the

objects’ positions and scales will follow the spatial guidance of

the sketches. Our proposed method gets reliable layout control

without the need for additional training, while still maintaining

the quality of the generated images.

The main contributions of this work are listed as follows:

• We propose a sketch-based image generation model, which

intervenes with the spatial properties in attention layers of

diffusion models to control the spatial relationship in gener-

ated objects.

• The proposed model can effectively improve the object loss

issue that occurs in the diffusion models.

2. Related Works
2.1 Conditional Image Generation

Compared with traditional unconditional generation methods,

conditional image generation introduces additional input condi-

tions, enabling the generator to generate images with specific

properties based on conditional information. In previous stud-

ies, conditional image generation based on GANs is a common

method. AniFaceDrawing[6] adopted a latent space exploration

method of StyleGAN with shadow guidance to generate high-

quality anime portraits. Unlike the mature conditional image gen-

eration of GANs, the conditional image generation of diffusion

models is still under exploration. ControlNet[14] puts forward a

neural network structure designed to control pre-trained diffusion

models, facilitating the integration of supplementary input con-

ditions. Another approach encodes conditional information into

latent embeddings, which are then mapped to intermediate lay-

ers of U-Net via cross-attention layers. In this way, GLIGEN[8]

implements bounding boxes, reference images, and keypoints as

conditional information to control image generation based on the

latent diffusion model.

The advantage of conditional image generation is that it pro-

vides greater control, enabling users to generate images with spe-

cific properties as desired. However, conditional image genera-

tion also faces some challenges, such as the accuracy and com-

pleteness of conditional information, the diversity, and scale of

training data, etc.

2.2 Diffusion Model
Diffusion models first introduced by Sohl-Dickstein et al.[11]

and later advanced by Song et al.[13] and Ho et al.[5]. In re-

cent times, numerous text-image models of significant scale have

surfaced, such as Stable Diffusion[10], demonstrating unprece-

dented semantic generation.

Diffusion models mainly consist of two processes: the forward

diffusion process and the reverse denoising process (inference

process). In the forward diffusion process, a random image is

sampled from the data distribution, and Gaussian random noise is

gradually added to the image through a fixed process until it be-

comes pure noise. In reverse denoising, starting from pure noise,

the process gradually restores it to a real image. Specifically, the

generation process starts with a random noisy image, and the im-

age is updated based on the current image state and the known

noise at every time step. The diffusion model gradually restores

the image to its original state through multiple iterations and grad-

ually reduces the noise intensity.

Diffusion models can well preserve the texture and details of

the image, and the generated results have good visual effects.

However, diffusion models require multiple diffusion steps and

sampling iterations, resulting in a long training time.

3. Conditional Generation with Latent Diffu-
sion Model

In this section, we first introduce the preliminaries of the latent

diffusion model (LDM) in Section 3.1 and the attention mecha-

nism in Section 3.2. Our framework and implementation details

will be discussed in Section 4.

3.1 Latent Diffusion Model
The difference between LDM and the DDPM is that LDM

does not directly operate on the images but operates in the latent

space. LDM calls this method perceptual compression. LDM

reduces the dimensionality of the data by projecting it into a low-

dimensional, efficient latent space, in that high-frequency, im-

perceptible details are abstracted away. Perceptual compression

is typically employed to reduce computational complexity, save

storage space, and improve the efficiency of model training and

inference.

LDM trained an AutoEncoder, including an encoder E and a

decoder D. After the image x is compressed by the encoder E to

latent representation z, the diffusion process is performed on the

latent representation space. Given a latent sample z0, the Gaus-

sian noise is progressively Increased to the data sample during

T steps in the forward process, producing the noisy samples zt,

where the timestep t = {1, . . . ,T }. As t increases, the distinguish-

able features of x0 gradually diminish. Eventually when T → ∞,

xT is equivalent to a Gaussian distribution with isotropic covari-

ance. Finally, LDM infers the data sample z from the noise zT

and D restores the data z to the original pixel space and gets the

result images x̃.

Specifically, given an image x ∈ RH×W×3 with height H, width

W in RGB space , LDM first utilizes an encoder E to encode the

image x into a latent representation space:

z = E(x) (1)

where z ∈ Rh×w×c with height h and width w, the constant c rep-

resents the number of channels. The encoder E downsamples the

image by a factor f = H/h = W/w. Then D recover the image

from the latent representation space:
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Fig. 2 The framework of our model. The model first extracted the sketch’s features and introduced them

into the attention layers with caption tokens to generate the images.

x̃ = D(z) = D(E(x)) (2)

3.2 Attention Mechanism
LDM can be used to explore conditional image generation,

which is mainly obtained by expanding the conditional denois-

ing autoencoder εθ (zt, t, y). y is the conditional information that

controls the process of image generation.

Specifically, LDM implements εθ (zt, t, y) by adding a cross-

attention mechanism to the U-Net backbone network. To eas-

ily introduce various types of conditioning y (such as text, lay-

out, sketch, etc.), LDM introduces a domain-specific encoder τθ,

which is used to map y to an intermediate representation τθ(y).

Finally, LDM integrates the conditional information into the

middle layer of U-Net through cross-attention layers mapping.

The implementation of the cross-attention layer is as follows:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
· V (3)

, with Q = W (i)
Q ·ϕi (zt) ,K = W (i)

K ·τθ(y),V = W (i)
V ·τθ(y) of dimen-

sion d . where ϕi (zt) is an intermediate representation of U-Net,

N is the latent’s index dimension. WQ, WK , and WV are learnable

projection matrice in LDM.

In this case, the attention maps M can be calculated as follows,

M = softmax

(
QKT

√
d

)
(4)

The attention map M controls the spatial distribution of values V ,

which contains rich semantic information.

The spatial arrangement and shapes of objects in the generated

image are contingent on the cross-attention maps[3]. Interest-

ingly, The image’s structure is established during the initial stages

of the diffusion process. Most importantly, the degree to which at-

tention is injected into the diffusion process affects the quality of

the generated results. However, applying the injection throughout

all diffusion steps does not necessarily achieve the optimal result.

4. Sketch-Guided Image Generation
We discuss the detailed composition of our proposed two-stage

image generation model with spatial control in this section. We

first give an overview of our proposed model in Section 4.1. We

also introduce the two stages in our proposed model. In the fea-

ture extraction stage, we utilize instance segmentation to extract

object locations and labels from sketches and encode them as

spatial guidance of the generation process (introduced in Sec-

tion 4.2). In the image generation stage, the pre-trained LDM

generates images according to the input text prompts, where the

objects’ positions and scales will follow the spatial guidance of

the sketches (introduced in Section 4.3).

4.1 Framework Overview
Our goal is to generate high-quality images with the spatial

guidance of human-drawn sketches. In the proposed two-stage

model, the feature extraction stage constrains a set of constraints

(position, label, etc.) extracted from the sketch and introduces

them into LDM to influence the position and shape generation.

The image generation stage leverages the generative capabilities

of the latent diffusion model to generate images following the

spatial guidance from the feature extraction stage.

As shown in Figure 2, we use both a sketch and a text prompt

as inputs. The text prompt is encoded into text embeddings by

the encoder of CLIP, while sketch serves as a conditional input

and undergoes instance segmentation. We employ the pre-trained

DeepLab-V2 model to obtain corresponding labels and bounding

boxes. The labels are encoded into temporary text tokens by the

encoder of CLIP and combined with the upper left and lower right

coordinates of the bounding boxes to form the final grounding to-

kens. Finally, the grounding tokens are inputted into the attention

layers of the LDM to provide spatial guidance for image genera-

tion.

4.2 Feature Extraction Stage
In the feature extraction stage, we focus on extracting spatial

information from the sketch for spatial control in the conditional

generation. Inspired by SketchyScene[15], We employ the seg-

mentation model based on DeepLab-v2 as the segmenter S to
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Fig. 3 The visualized results of feature extraction stage. We divide the

sketches into labels and bounding boxes and capture the coordinates

of the top-left and bottom-right corners of the bounding boxes.

complete the instance segmentation, which is customized for seg-

menting sketches. Therefore, for the input sketch xs, it can be

expressed as S(xs).

As shown in Figure 3, after segmentation, the correspond-

ing bounding boxes and labels of the objects can be obtained.

The labels l represent the corresponding names, such as “cow”,

“tree”, and “airplane”. The bounding boxes b represent the

coordinates[x1, y1, x2, y2], where (x1, y1) represents the top-left

coordinate and (x2, y2) represents the bottom-right coordinate.

The segmentation can be expressed as

(l, b) = S(xs) (5)

The labels will be encoded by the CLIP text encoder as the

text tokens. The text tokens will be combined with coordinates as

grounding tokens and inputted to LDM for conditional control.

Thus, We define our model as a composition of the caption and

grounding tokens:

I = (c, e) (6)

e = S(xs) = (l, b) (7)

where I is the generated image, c is the caption tokens and e is

the grounding tokens.

4.3 Image Generation Stage
In the image generation stage, the pre-trained LDM generates

images according to the input text prompts with spatial guidance

from the feature extraction stage. Therefore, during the image

generation stage, we use spatial guidance to influence the spatial

generation of objects on the attention maps in the initial stages of

the inference process. Subsequently, we employ LDM to gener-

ate images only based on text prompts.

4.3.1 Cross-Attention
As shown in Equation 3, LDM integrates the conditional in-

formation into the middle layer of U-Net through cross-attention

layers mapping. In the original latent diffusion model, Q comes

from visual tokens generated from latent seeds, and both K and

V come from caption tokens in the text.

In our model, we kept K and V unchanged and still included the

feature information in the caption. Inspired by the GLIGEN[8],

We fuse the obtained grounding tokens and visual tokens as Q to

query in the attention layers. Thus the Q can be expressed as

Q = v + β × tanh(γ) × e (8)

where v is the visual tokens from the latent seeds, β is a gated pa-

rameter that will be introduced in Section 4.3.2 and γ is a learn-

able scalar.

4.3.2 Gated Parameter β
For a diffusion process with T time steps, we can set a fixed

time step αT to divide the inference process, where α is a con-

stant. When time steps t ≤ αT , this indicates that the diffusion

process is early, at which point we condition the control via set

β = 1. At this time, the Q of attention layers will be composed of

grounding tokens e and original visual tokens v:

Q = v + tanh(γ) × e (9)

When t ≥ αT , the model set β = 0. In this situation, we use the

original generation ability of LDM for image generation. Thus,

the Q of attention layers will be the original visual tokens v:

Q = v (10)

Note that the model in this situation has nothing to do with the

additional input conditions, and the model maintains the original

generation ability.

In summary, since the degree to which attention is injected into

the diffusion process affects the quality of the generated results,

we divided the image generation stage into two steps by β:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β = 1, t ≤ αT spatial guidance

β = 0, t>αT Standard inference
(11)

We explored the impact of different α on generation in the sec-

tion 5.2.

5. Experiment and Results
We conduct qualitative and quantitative experiments to verify

the image quality and sketch input consistency of our model’s

generated images. In Section 5.1 we introduce the implemen-

tation details of our experiment. We present the results of our

qualitative evaluations (Section 5.2) and quantitative experiments

(Section 5.3).

5.1 Implementation Details
Both stages of our model are implemented on the Ubuntu sys-

tem, i7-13700KF CPU, and a single NVIDIA RTX4090 GPU. In

the conducted experiments, we use the pre-trained LDM-V1.4 as

the proposed image generator. All of our sketch images from the

SketchyCOCO dataset[2], which include 14 categories of objects

and 3 categories of background freehand sketches.

In quantitative comparison with LDM, we use the 300 ran-

domly sampled sketches in the SketchyCOCO dataset to generate

300 images for evaluation. We provided the corresponding text

prompts manually. In quantitative comparison with GANs, we

utilize the 200 randomly sampled sketches with a single object in

the SketchyCOCO dataset for evaluation.

5.2 Qualitative Evaluation
As shown in Figure 4, the state-of-the-art mainstream text-to-

image method cannot further control the position information of

the generated image. Our model uses the sketch as additional
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Fig. 4 The generated results of typical text-to-image generative models. Most text-to-image models can

not comprehend the corresponding spatial relationships in the text prompt. However, we finish

spatial guidance for the objects of generated images by the cross-attention maps.

Text Sketch � � 0

An elephant 

grazes on 

grass.

A zebra is on 

the left of 

another 

zebra.

� � 0.2 � � 0.5 � � 1

Fig. 5 The generated images with different α values. In the first and second

rows, we consider the condition with a single object and two objects.

In the third row, we verified situations that are unreasonable in real-

ity.

supplementary information to control the position generation of

the image. It is verified that our image has achieved a relatively

good effect in terms of spatial control, and all desired objects can

appear in the corresponding position.

We tried to explore the influences of different α value settings

in our model. As shown in Figure 5, the position is only con-

trolled in the early stage of the diffusion process, and the image

can also be generated according to the bounding boxes and la-

bels of the sketches. Objects in the generated images can already

appear in the correct position.

We conducted further exploratory experiments to verify that

our model can help to improve the object loss issue. As shown

in Figure 6, When there are multiple objects in the semantics, the

pre-trained text-to-image LDM model will have situations of se-

mantic loss and disordered positions. After adding our sketch as

an auxiliary, the generated image can contain the correct number

of objects and have the corresponding position information.

As illustrated in the top of Figure 7, under the given text

prompt, we deliberately alter the positions of objects in the

sketches to contradict the positional information described in the

text. The generated images consistently depict objects positioned

according to our sketches, even if it contradicts the text. As shown

in the bottom of Figure 7, we change the scale of the objects in

Text Sketch LDM Our model

A bicycle is 

on the left of 

the car.

A fire hydrant

is on the grass 

to the left of a 

dog.

Fig. 6 Our model can effectively improve the object loss issue that occurs

in the original LDM model.

the sketches with the text prompt constant, the corresponding ob-

jects in the generated image will change accordingly, even if the

generated image does not conform to realistic logic at all.

5.3 Quantitative Comparsions
We compare our model with the state-of-the-art methods on the

sketch-to-image task (pix2pix[7], SketchyGAN[1], and Sketchy-

COCO[2]). We also conduct a comparison study between our

model with the LDM to demonstrate the usefulness of our model

for spatial control. Since prior text-to-image methods do not sup-

port taking sketches as input, it is not fair to compare with them

on this metric. Thus, we only report metrics for the LDM as a

reference. We employ Fréchet Inception Distance[4] (FID) as a

metric to assess the quality of the generated images. We use the

YOLO score[9] to evaluate grounding accuracy (the correspon-

dence between the input bounding box and generated entity).

As shown in Table 1, our model (27.34 FID value) performs

less favorably in terms of FID score compared to LDM (21.42

FID value). This is largely due to the influence of the sketches’

spatial control on the model’s generation capability. However,

our model has succeeded in terms of YOLO scores (21.6, 42.0,

21.7 scores are better than 0.5, 2.4, and 0.4 scores of LDM), in-

dicating that our model can generate corresponding objects at the

desired positions.

We also conduct the comparison experiment between our pro-
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Results

Prompt: A motorcycle is to the left of a dog.

source sketch motorcycle(enlarge),dog(shrink) motorcycle(shrink),dog(enlarge)

Prompt: A bicycle is on the left of the car.

Fig. 7 We verified that the generated image will follow the spatial guidance of our sketch even if it con-

tradicts the input text.

FID(↓) YOLO score( mAP / AP50 / AP75 )(↑)
LDM 21.42 0.5 / 2.4 / 0.4

Our model 27.34 21.6 / 42.0 / 21.7

Table 1 Comparison between the pre-trained LDM[10] and our model.

Model FID(↓)
pix2pix 143.1

SketchyGAN 141.5

SketchyCOCO 87.6

Our model 21.04
Table 2 We compare the proposed method with sketch-to-image generation

methods in image quality.

posed and several image generation methods in FID value. Since

the sketchyGAN and pix2pix are not models for complex images,

we just utilize the single object sketches in this situation. As

shown in Table 2, our proposed model gets the best result (21.04

FID value) in image quality than previous work, due to the strong

generative ability of the diffusion model.

6. Conclusion
In this work, we proposed sketch-based spatial control by the

pre-trained latent diffusion model without fine-tuning or train-

ing. Our proposed model has two stages, the feature extraction

stage and the image generation stage. In the feature extraction

stage, the sketches are segmented by the pre-trained segmentation

model to obtain the labels and bounding boxes for spatial guid-

ance. In the image generation stage, the model use pre-trained

LDM to generate images. Our method can obtain the generated

image, whose objects’ spatial information (position and scale) are

consistent with the sketches’, and effectively solve the object loss

issue of the original LDM.

Our model still has many limitations. First, our current model

is limited to using the sketch to control spatial information and

does not fully use all the advantages of sketches. Moreover, the

proposed model utilizes the freehand sketch as additional condi-

tional information, the semantics and intentions of sketches may

not be unambiguous and are limited by the user’s drawing level.
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