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Abstract

In the explosion of information, the need for exploration and understanding the seman-
tic features is more and more important and necessary. The long documents, however,
contain so much redundant information, which takes our less concentration on the crucial
topics. Summarization is the task of catching the critical information from the input doc-
uments to create the short and meaningful summary. In common, summarization task
is classified into extraction and abstraction. In the reason that the extractive summary
created by selecting the original sentences still contains the redundancy, we choose the
main topic in this thesis on Abstractive Summarization task, which is more difficult and
significant in practice.

Abstractive summarization is the task of interpreting the meaning of the input docu-
ments to generate or rephrase the concise and worthwhile summary. However, text un-
derstanding is still the obvious challenge in Natural Language Processing. The difficulty
comes from the variety and complexity of human language. In the sense of computational
processing, the length of the text is also the huge problem. In spite of these difficulties,
it is the motivation to design the automatic summarization system which is extremely
useful in practice. Thanks to the summarization system’s strength, we can save the time
and cost of information processing and storage. Even, it is also used in the social text
processing to reduce the length of text in many applications.

With the observation of the drawbacks in text understanding and the previous latest
solutions, we propose the novel model with the combination of the different networks and
techniques. First of all, we present the most popular approach is used in Abstractive
Summarization. It is the Sequence to Sequence model based on the development and
success of Deep Learning networks. In these models, they use one kind of network like
Convolution Neural Network (ConvNet), Recurrent Neural Network (RNN) and so on to
embed the content of input document. After, they use another network to generate the
summary sequence in the decoding phase. The quality of these model is based on the
strength of the internal integrated networks.

This thesis presents our research on Abstractive Summarization and our contributions
in this topic: (1) we propose the combination of ConvNet and RNN-based network to
extract both the global and local features of sequence from the input; (2) we integrate
the bilinear attention mechanism into our decoding phase which reduces the redundancy
and replication in the input and the output in generating step; (3) we apply Reinforced
Mechanism into our encoder-decoder model with my proposed modification on reward
score which is proved its effectiveness in the experiments.

First of all, we propose the novel encoder model by combining two different kinds of
neural networks in the same part. With the local features extraction’s strength of Con-
vNet, we add the essential global meaning of sequence to create the high representation
of the input. In the experiment results, this combination proved its importance to map
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the input sequence into the meaningful vector space.

Secondly, we apply and implement bilinear attention scoring functions in our model. To
overcome the drawback of the long documents, we use the intra-temporal attention which
is to eliminate the redundancy and emphasize the importance in the input sequence. Si-
multaneously, we use the intra-decoder attention scoring function to evaluate the effect of
the previous words in the generated summary into the current predicting step. It helps
us to avoid the replication of words in the summary.

The last but not least, we apply Reinforced Mechanism into our model to get it closer
and closer to the real-world object. By adding the environment’s feedback through the
reward function, our model gets more robustness and practical ability. In this sense, we
also propose the new reward function for Abstractive Summarization problem as the av-
erage of three different scores in the evaluation.

In the experiment, the dataset we use is CNN/Daily Mail. The characteristics of this
dataset are the massive volume of samples and the considerable length of input and output
sequences for each sample. With many experiments, we prove that our proposed model
is extremely effective and useful. In this sense, it also outperforms the previous works by
1% increment of ROUGE-1 and 0.4% of ROUGE-2 in Abstractive Summarization. It is
a positive signal to show the strength of our proposed model in practice.

Keywords: abstractive summarization, reinforced mechanism, bilinear attention, neu-
ral encoder-decoder model, combined objective
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Chapter 1

Introduction

In this chapter, I will give a fundamental background in summarization to show the
motivation in this thesis and our contribution to this topic.

1.1 Background

In the explosion of information, the volume of data we need to process is to grow up
rapidly, which leads to the demand of human beings with the meaningful and concise
paragraph covering the most information in the long documents. This mechanism is so
popular in the newspaper as the title and headlines. To take less time, we only need to
read through this essential information instead of reading the whole documents as our
habitat in the daily life. For this purpose, the need for tools which can extract the crit-
ical parts for the extended source datum automatically is more and more necessary and
practical.

Summarization is one of the novel and fascinating fields in Natural Language Processing
(NLP), which has the great significance in both industry and scientific research. Based
on the way of summary’s creation, the task is divided into two kinds: extraction and
abstraction. In Extractive Summarization, the important sentences are selected and used
directly as the expecting summary whose drawback is the massive redundancy among
sentences. The second type, Abstractive Summarization, which is our primary concerns
in this thesis, is to generate or rephrase the summary through the input’s understanding.
This mechanism can eliminate the redundancy of information’s replication among the
selected sentences in extraction mechanism.

In the early days, the previous works focus on rephrasing from the extractive sum-
marization to eliminate the redundant information. In the sense of generation, these
techniques are just considered as the improvement of extraction. In recent, most of the
approaches are divided into two categories: structured-based and semantic-based meth-
ods. With the structure based techniques, the input documents are represented as the
new and meaningful organization, which consists of tree-based [2], template-based [5],
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rule-based [7], graph-based [6, 24] and so on. Based on these structures, the meaningful
words are selected and connected by the templates, rules and the scoring function which
are often based on the expert’s knowledge. However, the drawback of these systems is
that they use a lot of prior expertise and their summary elements only come from the
source documents, which leads to the variety and robustness of the practical systems.

Recently, semantic-based approaches based on Natural Language Generation (NLG)
mechanism become more and more popular in Abstractive Summarization. The main idea
of these techniques is to represent the input documents in the meaningful space which
is fed into the generator to get the sequence of words in the summary [15]. The critical
problem for text understanding is the length and language’s complexity of sequences
which leads to the weakness of prior knowledge. With the development of Deep Learning,
the recurrent models prove the effectiveness in linguistic processing. In this sense, these
systems often include two phases: encoder and decoder phase which are based on the
Neural Network models. The role of the encoder phase is to embed the whole sentences
into the meaningful space to get the semantic and relational features. This representation
is fed into the decoder model to generate the new sentence that covers the content of the
source inputs. There are a lot of models used in recent like Recurrent Neural Network
(RNN), Convolution Neural Network (CNN), Long Short-term Memory (LSTM) which
will be presented in Chapter 2.

1.2 Motivation

Although RNN-based sequence to sequence model and attention-based score for the
input has achieved the good result recently, the RNN-based model also exists some im-
portant drawbacks where we do not concern the traditional disadvantages which were
improved by the variants like Gated Recurrent Unit (GRU), LSTM, and so on. Among
the other Neural Network models, Recurrent Neural Network is so suitable for the se-
quence learning of sentences or documents. However, with their variants, the RNN-based
model just embed the short and average length-sized sequence that is not suitable for this
problem where the input is so long and comes from a lot of sources. The length of the
input documents makes the RNN-based model ineffective to capture the meaning of the
remote words. To deal with this problem, we use two techniques. The first technique,
bidirectional network, is so prevalent in NLG problem based on RNN model. Its idea is
to apply the RNN model from the start to end of sentence and vice versa. However, with
the long documents, its improvement is not extremely significant. Therefore, we propose
to combine CNN and RNN for the encoder. The primary goal of this combination is to
take advantages of CNN to capture the local features of inputs through convolution and
max-pooling operation.

The second problem in Summarization problem based on the learning model is the
difference of the measurement in the learning and evaluating systems. In the learning
process, the loss function is commonly chosen as the log-likelihood of words in the vocab-
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ulary. However, the evaluation measurement is Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) [11]. Therefore, we want to apply ROUGE into learning process
through Reinforced Mechanism. It is so innovative and novel in Abstractive Summa-
rization. Despite that ROUGE is discrete and is not capable of derivation, Reinforced
Mechanism is able to combine it with the traditional loss function.

In the previous works, to improve the quality of encoder, the attention mechanism is
often applied to the input’s sequence. However, the goal of the systems is the quality
of the generated summary. The key question is to improve the fluency and elimination
of words in the sequence. Therefore, I apply the Bilinear Attention Mechanism to both
input and previous output to improve the current state.

1.3 Contributions

Our main contributions in this paper are:

• Proposal of the automatically abstractive summarization system with the significant
performance.

• Combination of two different kinds of neural networks into encoder model to improve
the text understanding.

• Integration of bilinear attention mechanism into the input and predicted output to
enhance the quality of summary.

• Exploration of the reinforced mechanism for abstractive summarization model which
plays an important role in the issues of fluency.

Our thesis is structured as follows. Chapter 2 will describe some background, while our
chapter 3 will concentrate on our approaches. Chapter 4 will present our experiments and
results, followed by the conclusion in chapter 5.
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Chapter 2

Literature Review

2.1 Sequence to Sequence Model

The sequence to Sequence (Seq2Seq) model is the advanced improvement in Deep Learn-
ing model in Natural Language Processing (NLP). It is first introduced in Cho et al. [4]
and becomes popular in text learning. The key problem in text processing is the length’s
variation of sentences or documents. With the word representation, Deep Learning model
proves the robustness and effectiveness in vector space. However, sentence representation
and generation is the huge challenge in NLP.

Figure 2.1: The Process of Sequence to Sequence Model

In the technical sense, the Sequence to Sequence model is the combination of two re-
lated models which is able to learn the variable length-sized input, which is illustrated
in Figure 2.1. Two components are often chosen in Recurrent Neural Networks models
and its variants. With the integration of RNN models, Seq2Seq is able to capture the
meaning of a sentence or documents into the state which is fed into the decoding phase
for sequence generation. With its characteristics, Seq2Seq model is extremely suitable for
NLP problem especially in sequence generation task like Statistical Machine Translation
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(SMT), Abstractive Summarization, Question Answering (QA) and so on.

The goal of sentence representation is not only to map it into the vector space but also
to capture the semantic features in the sequence. With the meaningful representation,
the system is able to generate the target sequence in the purpose of the problem. In this
sense, the critical issue is to concatenate two phases into a single learning model. It helps
the learning process to spread the loss of target goal in two stages and improve them
simultaneously.

Another advantage of Seq2Seq model is its flexibility. For both phases: encoder and
decoder, we can install them with a lot of models like RNN, CNN, LSTM, and so on. By
taking advantages of the different networks, Seq2Seq model is easy to adapt to the variety
of domains and areas.

2.2 Recurrent Neural Network

In this section, we will present the overview of Recurrent Neural Network that is so
popular in NLP problem. Besides, among a lot of its variants, we focus on Long Short-
term Memory network which is the part of our encoder.

2.2.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) are a powerful and robust type of neural networks
which are inspired by the recursive process. The unique characteristics of RNN are their
connections between units constructing a directed graph along a sequence. It allows us
to learn the features in the time series of inputs simultaneously.

Figure 2.2: The Illustration of Recurrent Neural Network in two forms: rolled (left) and
unrolled (right) version. Source: Towards Data Science Blog

Like many Deep Learning models, RNN is relatively old. It has initially appeared in
the 1980s without any significance. However, in recent year, with the development of
computational power, RNN and its variant prove their effectiveness in text processing.
Unlike Feed-forward Neural Network (FFNN), it assumes that all inputs (and outputs)
are independent of each other. However, in lots of tasks, this assumption is not good
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enough for the learning process. To get the relation among the inputs, RNN is the best
choice in recent.

Why the model is called the recurrent model. This question reflects the critical char-
acteristic of RNN. In RNN, the computational operation is performed equally to every
element in the input. In this operation, the output for each time step is depended on
the previous computation, which is presented in the Figure 2.2. It is the reason that it
is considered as the memory which captures the information in the previous states. In
the theory of RNN, it can make use of arbitrarily long sequences, yet in the practical
viewpoint, the length of prior states we want to store is limited in a few time steps.

With their internal memory, RNN is able to remember the feature of the previous in-
puts to enable it to be precise in predicting the next state. It is the important reason
that RNN is so popular in sequential data like time series, speech, text, and even financial
data, audio, weather and so on. However, how the model is able to capture the content of
previous steps. In Figure 2.2, it is easy to observe that each state hi is the computational
combination of the current input xi and previous state hi−1. In this sense, the information
cycles through a loop. To learn the current representation, it takes into consideration the
current input and also what it has learned from the inputs it received previously. Obvi-
ously, a Recurrent Neural Network required two different inputs: the present information
and the recent past states.

To illustrate its process in computational aspect, we assume that the input sequence is
X = {x1, x2, ..., xn} and xt ∈ Rd is a input vector of time step t with d-dimension. In the
recurrent mechanism, Equation 2.1 is apply n times for each input vector of X.

ht = σ (Whht−1 +Wxxt + bh) (2.1)

ot = f(ht) (2.2)

In Equation 2.1, to calculate the state of time step t, RNN requires two inputs: the
input vector of time step t xt and the previous state from the last time step ht−1. If
the dimension of the hidden state ht is Rr, the dimension of the parameter Wh is Rr×r,
Wx is Rr×d, and the bias bh is Rr. To make the learning function flexible, we apply its
combination with the non-linear transformation σ like sigmoid function, tanh, ReLU, and
so on. Finally, we apply the function f to ht to get the output for time step t. The pa-
rameter Wh and Wx is learned to capture the effect of inputs and previous state through
the model’s target.

As we present above in both practical and theoretical aspects, RNN can capture the
information from the previous states. However, in the Equation 2.1, we can observe that
the target state ht is based on one previous state ht−1, so the traditional Recurrent Neural
Network model is considered as the short-term memory network. In practice, RNN meet a
critical problem considered as the vanishing gradient [3] which make vanilla RNN can not
learn the long-term dependencies. It is the reason that despite its early appearance, RNN
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only becomes the interest in recent. The reason for this trend is due to RNN’s variants
like Long Short-term Memory (LSTM), Gated Recurrent Unit (GRU), and so on.

2.2.2 Long Short-term Memory

To overcome the vanishing gradient descent, Long Short-term Memory (LSTM) pro-
posed by Hochreiter et al. in 1997 [9] is capable of learning long-term dependencies. It
works tremendously well on a large variety of task and is so popular in recent in sequence
problem. It is considered as the variant of the RNN model, so its mechanism is similar
to RNN for repeating the operation in the chains of the input sequence. However, in the
RNN model, the operation is effortless with non-linear transformation σ. With LSTM,
instead of having a single neural network layer, there are four components for each unit.
Their organization gains the huge improvement of LSTM with vanilla RNN.

Figure 2.3: The operation of Long Short-term Memory. For each unit of LSTM, there
are four non-linear transformation based on the interaction between the input and the
previous state. The above flow in the picture is the cell state transmission and the below
one is the hidden state. The note of operator and symbols is presented by Figure 2.4
Source: Colah’s Blog

Figure 2.4: The symbols illustration of Long Short-term Memory model Source: Colah’s
Blog

The main idea behind LSTM architecture is the gating mechanism. Through these
gates, the model is able to control which information should be kept and transmitted to
the next state. Gates are a way to control the information flow in the learning process.
In this sense, there are three kinds of the gate in LSTM. It consists of input, forget and
output gate. Another difference in LSTM is the cell state. Instead of the hidden state
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reflecting the previous information, cell state is the new concept in LSTM which is kind of
like a conveyor belt. It runs straight down the entire chain, with only some minor linear
interactions, which is easy for information to flow along it unchanged.

The first step in LSTM is to determine which information is not important and should
be thrown away, which is done by forget gate. This decision is made by sigmoid function
in the combination of the previous state ht−1 and the current input xt in Equation 2.3.
The output of this gate is the probability of information we need to keep.

ft = σ (Wf [ht−1, xt] + bf ) (2.3)

Where [.] is the concatenating operation in vector space.
The next step is to determine which input’s information we want to store in the cell

state. Firstly, we calculate the chance to store the candidate information by the input
gate controller via Equation 2.4.

it = σ (Wi [ht−1, xt] + bi) (2.4)

Then we define the information we want to learn as the mechanism of RNN model with
tanh transformation via Equation 2.5

C̃t = tanh (WC [ht−1, xt] + bC) (2.5)

Accordingly, the new value of state is the combination of candidate information and
the remaining information from the previous state via Equation 2.6

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.6)

Finally, we have to calculate the output for each cell and the hidden state for spreading
to the next computation. We note that this output is just the internal cell which is not
similar to the output of one step. This output is the product of probability function
(Equation 2.7) and the non-linear transformation of cell state information (Equation 2.6).

ot = σ (Wo [ht−1, xt] + bo) (2.7)

ht = ot ∗ tanh(Ct) (2.8)

Through these gating mechanisms, gradients related to memory Ct is maintained for a
long time, which based on the learning parameter Wt, Wi and the non-linear transforma-
tion. The key idea in this mechanism is the selective learning and remaining. Through
the learning process, LSTM can make a decision on selecting the important information
which needs keeping. In this sense, it can solve the problem of vanishing gradient in
vanilla RNN. Although there are a lot of variants of the LSTM model, we only present it
briefly instead of all variants which are unrelated to my proposed model in Chapter 3.
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2.2.3 Bidirectional Long Short-term Memory

Although LSTM is better than vanilla RNN, it is still less effective in the long sequences.
Especially, in Natural Language Processing, not only is the length of the sequence so long
but also the relation of internal elements is extremely complicated. In the traditional
LSTM, for each time step, the hidden state is depended on the previous state on the left
as Equation 2.7 and 2.6. It means that the features of the current state are just based
on its input information and its relation with the previous states. However, in the sense
of NLP, the meaning of one state such as word and sentence is depended on its content
which is the surrounding states on both the left and right sides. Therefore, to meet this
requirement, the bidirectional RNN model proposed by Schuster et al. [21] is considered
as the inspiration of bidirectional trend in sequence learning.

Figure 2.5: The bidirectional Long Short-term Memory model. In this model, the node
LSTM is the representation of one unit which is specifically presented in Section 2.2.2. In
common sense, the final hidden state of BiLSTM is just the concatenation of forwarding
and backward ones. The direction of cell state flow reflects the side of the previous
information in the learning process. In this figure, the output layer is eliminated for the
simplicity’s illustration

To take advantages of Bidirectional techniques and LSTM, Bidirectional LSTM (BiL-
STM) is proposed to overcome the challenge in sequence learning. The detail of BiLSTM
is presented in Figure 2.5. In the common sense, it is the combination of two LSTM layer
with the concatenating operator. The computational operation is presented in Equation
2.9, 2.10, 2.11.

ht = [hf
t , h

b
t ] (2.9)
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hf
t = LSTM(hf

t−1, xt) (2.10)

hb
t = LSTM(hb

t−1, xt) (2.11)

BiLSTM model takes advantages of the strength of LSTM in bidirectional learning. It
is extremely powerful in text understanding where the representation of words is tightly
dependent on their content. It means that BiLSTMmodel is able to get the global features
of words in the creation of sentence representation.

2.3 Convolution Neural Network

Unlike Recurrent Neural Network which is so popular in text processing, the network
I want to present in this Section is often applied into Image Processing. Inspired by the
visual cortex of mammals which help them perceive the world in their brain, Convolution
Neural Network (CNN or ConvNet) is proposed in the 1980s as ”neocognitron”. They
are also known as shift invariant or space invariant Artificial Neural Networks (SIANN),
which is based on their shared-weights architecture and translation invariance character-
istics.

ConvNet is the hierarchical neural network with one or more convolutional layers fol-
lowed by one or more fully connected layers as FFNN. With the convolution operation,
the information is twisted and integrated into the new state. The key question is how
the convolution operation works. In the mathematical sense, convolution is the mapping
function f which is defined by Equation 2.12.
Given f, g: R2 → R and the set A = {(a, b)|g(a, b) ̸= 0}

(g ∗ f)(x, y) = (f ∗ g)(x, y) =
∑

(a,b)∈A

g(a, b)f(x− a, y − b) (2.12)

This operation is the integral measuring how much two functions overlap as one passes
over the other. In the simple sense, two functions are considered as being ”rolled or
twisted together”. Thanks to this characteristic, convolution operation is often used for
image smoothness, edge detection, and so on. It is one of the reasons we consider CNN
as space invariant.

The strength of ConvNet is to take advantages of the geometric relation. Its assumption
is that the points in the local area have the semantic association. The role of convolution
operation is to catch the local features, emphasize them, and eliminate the unnecessary
points, which is extremely suitable for Image Processing.

Specifically, ConvNets consists of two components: the feature extraction and classi-
fication. In this section, we just focus on the first component - feature extraction. To
extract the feature, ConvNets have three main definitions: Local Receptive Field, Shared
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Weight, and Pooling.

Local Receptive Fields (LRFs) are the special definition of ConvNet. It is defined as
the fix-sized region in the input space where the convolution operation is applied. The
size and duplication of these regions are based on the step and filter in ConvNet. It means
the input space is partitioned into the different parts where the information is integrated
to form the hidden state in the next step of learning as Figure 2.6.

Figure 2.6: ConvNet: Local Receptive Fields: The left matrix is the input space with the
size of 28x28. The Local Receptive Fields is the bold black region with the size of 5x5.
This region is transformed into the respective state of the hidden layer in the right matrix

Another component in ConvNet is shared weights. As we mentioned above, the con-
volution operation is the key mapping function in ConvNet which requires two elements.
The first one is the input and the second is called the filter or kernel. For each Local Re-
ceptive Field, the filter is applied to get the expected features in this region through the
convolution transformation. The value of filter is called the weights or the parameters of
ConvNet. Unlike the other neural network, in ConvNet, the weights of each filter is used
for all LRFs. It is the reason we consider it as shared weights. This technique helps us
to discover the non-observable features in the input space. Another advantage is the save
for the computational cost. Instead of the huge parameters in the other neural network,
in ConvNet, the model just needs to find the weight for each filter whose size is the same
as LRFs. It is extremely significant in practice especially for the huge volume of data in
text and image processing.

The main reason that ConvNet is considered as the shift invariant is the effect of
pooling operator. Pooling is the family of functions used to aggregate the information
in the specific regions. In image processing, the small changes like pixels’ difference are
often useless to recognize. Therefore, pooling in the small area is the way to emphasize
the hidden features and maintain them to spread to the next layer. Besides, pooling
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operator is to progressively scale the spatial size of the next layer’s representation which
means that the number of parameters and computational cost are reduced significantly.
It also helps us to control overfitting phenomena in learning problem. There is a variety
of pooling operation such as Max, Mean pooling and so on. For example, in Max Pooling,
the new state is created by the max value in the region as the Figure 2.7

Figure 2.7: ConvNet: Max Pooling Example: In two-sided figure, each local region is
colored by the different colors. The max pooling is applied in the left one to create the
right one

In the above, we talk some techniques in ConvNet through the sense of Image Pro-
cessing. In this part, we focus on ConvNet in Natural Language Processing. The main
difference between the two areas is that the relationship of components in the input space.
In NLP, the input is the text sequence whose elements are words. In common, those words
are mapped into the vector space by Word2Vec [14] or Glove [19]. In this sense, the input
space is the combination of word representations in the sequence like Figure 2.8

Figure 2.8: The input space of NLP task: For example, with each word wi, we present it
in the 4-dimension vector and the length of sequence is 5

In the term of visuals, the representation of the sequence in Figure 2.8 is similar to the
image. In the image, the pixels are independently meaningful. It means that each pixel
contains its content. However, in the sequence, the value of elements in the same row is
dependent and has no ability to consider independently like the pixels. Therefore, in NLP
task, we only use 1-dimension convolution operator. It means that the kernel or filter is
chosen by the size of the multiplication between the dimension of the word vector and the
number of words in Figure 2.9
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Figure 2.9: The example of ConvNet for sentence classfication task: This is the model
proposed by Yoon Kim [10]. In this model, 1-d convolution is applied into the word
representation matrix to get the local features in the sentence.

In NLP, the sentence is often considered in n-grams which is similar to the filter’s
mechanism in ConvNet. It proves that ConvNet is capable of applying in the NLP task,
especially for sentence representation. The main advantage of ConvNet in NLP is its
ability to explore the local features in the sequence. Its local features are the combination
of word’s meaning and its content with surrounding information.

2.4 Attention Mechanism

In the text processing, the huge problem is the length of the sequence. If the sequence
is too long, we do not know which words or phrases are important, even in the human
processing. The previous model we mention above just treats equally among the com-
ponents. It means all words in the sentence are crucial or rather, no word is important.
In fact, this treatment is not good for the long sequence where it always exists the main
words or phrases affecting the meaning of sequence. Especially, in Summarization task,
the goal of the expected solution is to find the key sentences or phrases in the documents
for the summary.

To overcome this problem, Attention Mechanism is used as the important score of each
element. In this sense, the components which have a lot of contribution to the sentence
representation is a higher attention-score and vice versa. In practice, attention is simply a
vector whose outputs often is the result of the dense layer using softmax function. For this
purpose of introduction of Attention Mechanism, we focus on Neural Machine Translation
(NMT) model as the specific example.

Machine Translation (MT) task is also the sequence to sequence problem. The goal of
this task is to translate the source sentence into the target one in the different language.
Without Attention Mechanism, the translator treats all words equally, which is not suit-
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able in practice. For translating, attention allows machine translator to look over all the
information to zoom in or out the features which affect the meaning of the target sentence.

In the NMT model proposed by Bahdanau, 2014 [1], they use LSTM-based Sequence to
Sequence model in two phases: encoder and decoder. They use the final hidden state in
the encoding phase to generate the new sequence step by step. The detail of their system
without attention is presented in Figure 2.10

Figure 2.10: LSTM-based Sequence to Sequence Model for Neural Machine Translation:
This figure is inspired from the Bahdanau’s work [1]. In this model, the input is integrated
gradually into the final hidden state he which is fed into the LSTM model in decoder

In the above model, the importance of all words is equal to create the representation
of he. In Attention Mechanism, for each hidden state of LSTM encoder, the importance’s
score is calculated by Equation 2.13 and si (Equation 2.14) is the hidden state of LSTM
decoder in time step i.

αij = softmax(eij) =
exp eij∑Tx

k=1 exp eij
(2.13)

where
eij = f(si−1, hj) (2.14)

After that, the content of input sequence is defined by the sum of all hidden state and its
weight in the LSTM encoder like Equation 2.15. This context vector is fed into LSTM
model to predict the word in the output in each time step i.

he =
Tx∑
j=1

αijhj (2.15)

In short, Attention Mechanism is the way to determine the weight of components.
These importance scores reflect the contribution of these elements into the context vector
which is used for the next step. There are a lot of attention techniques based on the
scoring function f where two favorite kinds of the mechanism are additive attention [1]
and multiplicative one [12]. In our proposed model, we use the bilinear multiplicative
attention which is presented specifically in Chapter 3.

14



2.5 Reinforcement Learning

In recent years, Reinforcement Learning is considered as the new and promising tech-
nique to get the computer closer to a human being. In this sense, the computer can
interact with the impact of the real world. Especially, the success of AlphaGo system [23]
in the real competition is the milestone in the trend of Machine Learning.

Figure 2.11: The correspondence between Reinforcement Learning and Sequence to Se-
quence model

One of the main question in my research is how to integrate Reinforcement Learning in
Abstractive Summarization problem. As the Figure 2.11, the response of Reinforcement
Learning to the environment and the learning process of Sequence to Sequence model is
quite similar. If we consider the generation as the action of the agent and the evaluating
score of output as the reward, the integration capability is absolutely possible. However,
the key question in learning process is how to combine the reward function into the back-
propagation. The difficulty is that the loss function is smooth and derivable, yet the
reward function is often discrete and irreducible.

In this part, we focus on the self-critical policy gradient training algorithm [20]. It is
one of the techniques to integrate the reward function into the gradient descent training.
In this technique, the reward score is multiplied with the original gradient in Equation
2.16. The idea of this technique is to add the difference between the expected output ŵ
and the sample output ws from your system. The detail is presented in Figure 2.12.

∂L(θ)

∂st
= (r(ws)− r(ŵ)) (pθ(wt|ht)− 1ws) (2.16)

Where st is the input to the softmax function and 1ws is the 1-vector with the same
dimension of ws.
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Figure 2.12: The self-critical mechanism in Reinforcement Learning: The visualization in
self-critical learning where ws is the direct result of softmax layer for the prediction in a
time step t and ŷ is the result of argmax operator

2.6 Related Works in Abstractive Summarization

With the purpose to prove the robustness of our proposed model, this section presents
the previous works that related to our study. Firstly, we want to talk about our inspiration
for my search. It is the work of Romain Paulus et al. [18]. The architecture of their model
is shown in Figure 2.13. In the quick observation, this model and our model are quite
similar. However, the main difference between the two models is the encoder model. In
their work, they only use BiLSTM to embed the document while we combine two kinds of
the network for encoding phase. It is considered the first work of Reinforced Mechanism
in Abstractive Summarization. With their pioneering, we develop the reward function for
this problem as the combination of different score that is more effective to control the
quality of the generation.

Figure 2.13: A Deep Reinforced Model of Romain Paulus et al. [18]: In their model, they
use BiLSTM and LSTM for encoding and decoding phase. They apply Bilinear Attention
and Reinforced Mechanism into the generating phase.

The next system we want to discuss is the SummaRuNNer [16] system whose special
advantages is the new problem representation. For Extractive Summarization task, they
consider it as the sentence binary classification problem. The structure of their model
is shown in Figure 2.14. In this model, they use the bidirectional Gated-Recurrent Unit
model to encode the sentences. The document vector is created by the sum of all final
hidden states in the sentence encoding phase with the tanh activation. The combination
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of document information, current sentence state, and the previous decision are fed into
the binary classifier to decide whether this sentence should be chosen or not. The strength
of this work is the formation of document representation. After the learning process, they
can produce the document vector that is very necessary for some other tasks. The second
advantage of this model is its flexibility. Although this model is designed for Extractive
Summarization, it is able to change for Abstractive Summarization. In SummaRuNNer-
abs, with the document representation in the previous step, they use it to feed into the
RNN-decoder model to generate the abstractive summary. In their sense, they also use
GRU model for decoding phase. In the experiment, they propose to use the Lead-3 model
which simply produces the summary from top-3 sentences of the document based on the
probability of decision in the classifier.

Figure 2.14: The architecture of SummaRuNNer in Extractive Summarization task: In
the word level layer, the sentence is encoded by bidirection GRU model. After, this
representation combined with the document one is fed into the classifier to make a decision
on choosing for the summary.

The final system we want to talk in this section is Pointer-Generator Network whose
ROUGE-2 is significantly high. The structure of this model is given in detail by Figure
2.15. In this model, they use the traditional encoder-decoder model by BiLSTM-LSTM
network for the main architecture. Their novelty is the integration of the pointer mech-
anism in the decoding phase. In each time step, the probability of generation pgen is
calculated by the context vector of the encoder, the previous decoder states, and the
current one. The new word in the summary is decided from the copying from the input
and generating from the vocabulary options by pgen. It helps the generator to solve the
problem of the vocabulary’s limitation by copying the word in the input.
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Figure 2.15: In this model, they use the BiLSTM-LSTM model for encoding and decoding
phase. For attention mechanism, they apply the multiplicative one in the input to get the
important score of these words. In the decoding phase, the new word is formed by the
decision either copying the input or generating through pointer mechanism.
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Chapter 3

Our approaches

In this chapter, we focus on the detail of our proposed models in our study. Besides,
some techniques in the implementation’s sense are also presented to make clear the oper-
ating process of our model.

3.1 Encoder model

Among many previous approaches in Abstractive Summarization, we choose Sequence
to Sequence model as the main flow of our model. The key advantages of its model are
its robustness and scalability. In this sense, we can integrate any models for the sequence
understanding and generating phases. Besides, with the strength of Deep Learning model,
the model does no requirement of hand-crafted features which is the barrier to put it into
practice. In this section, we present the encoder model that is the combination of LSTM
and ConvNet to embed the sentence.

In the early of our study, our encoder model only consists of Long Short-term Memory
with bidirectional technique to capture the meaning of the sentence. In this model, we
consider the input document as the sequence of words. The role of the sentence in the
document is eliminated by the sequence representation. After, we use the word embedding
matrix to map each word into the vector space. The final hidden state of our encoding
phase is the concatenating of forward and backward learning as Equation 2.9. All com-
ponents of this process are illustrated in Figure 3.1.

However, as we mention in Chapter 2, BiLSTM is just able to capture the global
features of the sequence. Especially, in Summarization task, the length of documents is
so long that the meaning of words and phrases in the remote position in the sequence
is significantly blurred. To overcome this problem, we propose to take advantages of
ConvNet to capture the unique local features of the n-gram in the sequence. However,
in text understanding, each composition of words has the different content. Hence we
propose to use multi-channel of ConvNet in the encoding phase. The reason for this
technique is that each channel is corresponding to the n-gram phrase which represents
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Figure 3.1: BiLSTM model for encoding phase: Firstly, each word is vectorized by the
word embedding matrix. After, these vectors are fed into LSTM unit in bi-direction to
get the final hidden state he as Equation 2.9

the important and necessary regions in the document. In this sense, we combine two kinds
of networks: BiLSTM and Multi-channel ConvNet to get both local and global features
in the sequence which is presented in Figure 3.2.
In multi-channel ConvNet, we also use the 1-d convolution operator sliding through

the sequence from left to right. After the filtering, the result of convolution and max-
pooling operator is flattened and fed into the Feed-forward Neural Network. The purpose
of FFNN is to scale the feature vector by the dimension of hbilstm and make it flexible by
non-linear transformation. The final hidden state of encoding phase is the combination
of hbilstm and hmcnn as Equation 3.1.

he = hbilstm ⊕ hmcnn (3.1)

Where ⊕ is the vector addition operator.

The novelty of our encoder model is the combination of two different networks: BiLSTM
and ConvNet. It helps us to capture both global and local features in the sequence.
Therefore, the representation of the sequence is more meaningful and flexible. Another
advantage of this expansion is the computational cost. As we mentioned above, the time
processing of ConvNet is faster than LSTM-based networks, hence we only pay a small
extra cost in exchange for the apparent advantages of ConvNet.

3.2 Decoder model

After encoding the documents, the context vector of the sequence needs feeding into the
decoder model to generate the expected sequence as the summary. Unlike the encoding
phase where we combine two different networks, in the decoding phase, CNN-based mod-
els are not suitable, so we focus on the RNN-based models. Specifically, we use LSTM
model and Feed-forward Neural Network with softmax layer to generate the words in the
time series. The initial state of LSTM for decoder model is the hidden state of encoding
phase he. Based on the previous state and the context of the input sequence, the de-
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Figure 3.2: The illustration of encoder model: The sequence of word vector is fed into two
models: BiLSTM and Multi-channel ConvNet to embed them into hbilstm and hmcnn. The
final hidden state of encoding phase is the combination of two hidden states via Equation
3.1

coder works step by step to generate the hidden state hd
t . These states are fed into the

Feed-forward Neural Network to determine the probability distribution of words in the
vocabulary. The detail of this model is presented in Figure 3.3.

In the computational sense, the output in each time step t is determined by softmax
layer as Equation 3.2, 3.3.

at = WV h
d
t + bV (3.2)

yjt = softmax(at)j =
ea

j
t∑V

k=1 e
ajt

(3.3)

3.3 Bilinear Attention Mechanism

As we mentioned above, the length of the sequence is the key problem of text under-
standing. As the sentence is too long, the traditional networks are useless to capture all
the information into the limited space. Despite our combination in the encoding phase,
it seems no enough in Abstractive Summarization. The inside reason is that most of
our concern is the encoding phase. We make an effort to represent the input sequence
into the meaningful space. Therefore, to overcome this problem, we apply the Attention
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Figure 3.3: The illustration of decoder model: The encoder state he is fed into the LSTM
model as the initial state. Each decoding state hd

t is applied by FFNN and softmax layer
to the output yt as the word probability distribution in the vocabulary.

Mechanism into our proposed model.

In our model, instead of additive attention, we use bilinear multiplicative one. In this
technique, the scoring function of attention is based on the interaction of two components,
and the linear function is the multiplication. In our model, we use two different kinds of
bilinear attention. The first one is the intra-temporal attention on the input sequence.
For each time step, the generator considers the contribution of each word in the input
sequence and the hidden state to make a decision on the word prediction. With the long
source sequence, this attention helps us to focus on the important local regions in the input
instead of the equal treatment in the previous version, which reduces the redundancy in
the document. The mathematical viewpoint of this attention is presented in Equation 3.4,
3.5, 3.6. Finally, the context vector of the input sequence is the sum of all multiplication
of the hidden state and the corresponding attention score as Equation 3.7.

eti = f(hd
t , h

e
i ) = hd

t

T
W e

attnh
e
i (3.4)

e
′

ti =

{
exp(eti) if t = 1

exp(eti)∑t−1
j=1 exp(eji)

otherwise (3.5)

αe
ti =

e
′
ti∑n

j=1 exp(e
′
tj)

(3.6)

cet =
n∑

i=1

αe
tih

e
i (3.7)

Obviously, we also put our concern on the effect of input sequence on the output pre-
diction. However, the internal relation of output has not been exploited yet. It means
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that the current predicting decision depends on the previous states in the output. Espe-
cially, the problem of repetition in the summary which leads to the weakness of language’s
fluency is prevalent and difficult in Abstractive Summarization. In the second attention
score, we focus on the interaction between the predicting decision and its history in the
decoding process. It is called as intra-decoder attention.

This attention is the result of bilinear multiplication of the current state hd
t and the

previous ones hd
j . Firstly, we define the scoring function between two hidden states as

Equation 3.8 which is normalized by Equation 3.9. Finally, the context vector of the
previous decoding states is calculated by Equation 3.10. By considering the effect of the
previous decoding output, the generator can avoid the repetition in the prediction, hence
our summary is less redundant and more fluent.

ed
tt′

= hd
t

T
W e

attnh
d
t′

(3.8)

αd
tt′

=
ed
tt′∑t−1

j=1 exp(e
d
tj)

(3.9)

cdt =
t−1∑
j=1

αd
tjh

d
j (3.10)

The next question in our research is how to integrate these attention mechanisms into
our model. For a solution, we concatenate two context vectors which reflect the effect of
input and previous outputs with the current predicting decision and put them into the
generator layer - softmax layer. It means the probability of words in the vocabulary is
defined by the softmax of three components: the hidden states of the decoder model and
two context vectors from the attention mechanism as Equation 3.11.

p(yt) = softmax(WV [h
d
t ; c

e
t ; c

d
t ] + bV ) (3.11)

Where [.] is the vector concatenation operator.

In short, my proposed model is the combination of three different components: encoder,
decoder, and attention mechanism. With the powerful encoding representation, the de-
coder generates the words in the sequence with the constraint of two attention scoring
function. The structure of our final model is illustrated in Figure 3.4. Although we com-
bine many components in our model, each one is the solution of the different problem in
Abstractive Summarization. Besides, the strength of our model is the reasonable com-
plexity. Instead of increasing the size of LSTM model, we narrow and compensate it with
the lighter load model – ConvNet. It makes our model more compact and easier to put
it into practice.
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Figure 3.4: Our proposed model with attention mechanism: Our complete model is the
combination of three components. In the left-hand side, the encoder model embeds the
input sequence into the hidden state he which are fed into the decoder as the initial states.
The context vectors and the hidden state in decoding phase are put into FFNN to get
the probability distribution of words in the vocabulary in each time step

3.4 Reinforced Mechanism

The last and the most crucial technique we use in our proposed model is Reinforce Mech-
anism. As we mentioned above, in the success of AlphaGo [23], Reinforcement Learning
becomes the new trend in Machine Learning. Especially, with the problem where the loss
function and evaluation’s measurement is different, Reinforced Mechanism is extremely
reasonable.

In Abstractive Summarization, we use Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) [11] for evaluation. However, in the learning process, our model is trained
to minimize the loss function based on the conditional log-likelihood of output yt. This
work comes from the assumption that the more accurately we predict, the more ROUGE-
score we get. Apparently, our expected and trained systems are flowing in two different
directions. To get two systems closer and closer, we apply Reinforced Mechanism into
our system. Our goal is to integrate ROUGE score into loss function. Among a lot of
techniques, we use self-critical policy gradient training which is presented in Chapter 2.
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Firstly, we define the reward function of the predicted sequence by ROUGE score. In
summarization, the quality of the system is often evaluated by three different ROUGE
scores which include ROUGE-1, ROUGE-2, and ROUGE-L. The characteristics of ROUGE-
1 and ROUGE-2 is the same as conditional log-likelihood loss function because they con-
sider the overlap of unigram and bigram between the predicted and target words, which
ensures the correctness of the generation in each time step. In the other hands, ROUGE-L
focus on the length of common subsequence between two sequences. Obviously, this score
measures the semantics of the predicted sentence. If the generation is effective, the length
of subsequence overlapping with the target is large. To take advantages of these scores,
we combine them into the reward function as Equation 3.12.

r(s, t) =
ROUGE − 1(s, t) +ROUGE − 2(s, t) +ROUGE − L(s, t)

3
(3.12)

To optimize our model, we combine two different kinds of the loss function. Firstly, as
the previous works in sequence generation problem, we minimize the maximum-likelihood
loss in each decoding step. The loss of one-time step is the negative probability of the
output in Equation 3.13. This function makes our model more accurate in prediction for
each word in the sequence.

Lml = −
m∑
t=1

log (yt|y1, y2, ..., yn, x) (3.13)

However, as I mentioned above, this loss function Lml is often not able to produce the
best result corresponding to the discrete measurement like ROUGE score. The remedy in
our model is to use a self-critical policy gradient learning algorithm [20]. In the training
process, we create two output sequences instead of only one in the previous system. The
first output ys is also the probability distribution of words in the vocabulary which is the
main result we want to learn. The second one ŷ is produced by maximizing the probability
distribution of words in the first one. For each output, we take the reward score with
the target y∗ via Equation 3.12. Finally, we integrate these reward scores into the loss
function for training in Equation 3.14.

Lrl = (r(ŷ, y∗)− r(ys, y∗))
m∑
t=1

log (yst |ys1, ys2, ..., ysn, x) (3.14)

To integrate the strength of two functions, we define the final loss function for training
through the linear combination of two components in Equation 3.15.

Lmixed = γLrl + (1− γ)Lml (3.15)

Where γ is the trade-off hyper-parameter of model.

The drawback of the reinforced loss function is that it does not consider the readability
and fluency of the prediction. It means that ROUGE is just based on the separate n-
gram and phrase and not concerns the previous steps. In the other hands, the traditional
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objective function Lml works in the same way as the language modeling based on the
states of the sequence. In this sense, the order of words in the generating step contributes
to the learning objective. Therefore, we combine it into the final loss function to increase
the balance of two goals consisting of precision and fluency in the summary.
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Chapter 4

Evaluation

4.1 Dataset and Preprocessing

The dataset we used in this study is CNN/Daily Mail1 [8]. In the previous dataset like
DUC 2 and Gigaword 3 whose summary is so short with one sentence for each sample.
With the purpose to prove the robustness of our approach in the long-text understanding,
we choose CNN/Daily Mail as the main dataset for all experimental models.

In the first appearance, CNN/Daily Mail dataset is used for the passage-based Question
Answering task [8]. In the original form, this dataset is collected from the articles in CNN
and Daily Mail. Each article consists of the long document and some corresponding
highlights which are considered as the main idea of the above passage. Based on these
documents, they eliminate some entities and generate the questions whose answer’s type
is the fill-in-the-blank. For Abstractive Summarization, we use the modified version based
on the preprocessing of Nallapati et al. [17]. In this sense, they consider the highlights as
the multi-sentence summary of the input document. The detail of the dataset is presented
in Table 4.1.

Train Validation Test
Doc Sum Doc Sum Doc Sum

Number of samples 287226 13367 11489
No. Word/sample 792 55 770 62 779 58

Table 4.1: The detail of CNN/Daily Mail dataset.

As we can see in Table 4.1, the number of the document is so large and various with
about three hundred thousand samples for training and fifteen thousand ones for testing
and validation. It means if the model is too complex, the training time is too long to put
into practice. Besides, the number of token per document in this dataset is around eight

1https://github.com/abisee/cnn-dailymail
2https://duc.nist.gov/data.html
3https://github.com/facebookarchive/NAMAS
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hundred. Its length is the huge problem for text understanding in sequence encoding
phase. Another problem for Abstractive Summarization in this dataset comes from the
length of the target summary, which requires our decoder to ensure the correctness and
fluency in the generating sequence. These above characteristics are the reason that we
choose it as the main dataset in our experiments.

4.2 Experiment Settings

To prove the effectiveness of our proposed model, we do the experiments on the following
models:

• RConvBiLSTM (Reinforced Convolution - Bidirectional Long Short-term Memory):
In this model, the encoder model is the combination of ConvNet and LSTM like
the Figure 3.2. In the decoding phase, we use intra-temporal and intra-decoder
attention in Chapter 3.3). For the training process, the loss function is based on
the Reinforcement Learning via Equation 3.14.

• ConvBiLSTM (Convolution - Bidirectional Long Short-term Memory): This model
is similar to RConvBiLSTM in the encoder and decoder components. The difference
between the two systems is the loss function for training. In this model, we only use
the function based on the conditional log-likelihood of sequence in Equation 3.13.

• COConvBiLSTM (Combined Objective for Convolution - Bidirectional Long Short-
term Memory): This model is applied by all the proposed mechanism in my study.
The learning model is similar to Figure 3.4. The loss function in this model is the
combination of reinforced and conditional log-likelihood mechanism like Equation
3.15.

The reason for this division is to focus on our effort to prove the effectiveness and ro-
bustness of our proposed mechanisms and models for Abstractive Summarization. With
this experiment’s design, we can evaluate the effect of Reinforced Mechanism into the
learning process. In the other hands, the strength of our proposed encoder is proved by
the comparison with the previous works.

In Sequence to Sequence model, we consider the input document as the sequence of
words d = {w1, w2, ..., wn}. In our experiment, each word is mapped into the vector space
by Word2Vec model [14]. The Word2Vec embedding matrix4 we use is pre-trained on
Google News dataset with about one hundred billion words. The dimension of each word
vector is three hundred. With the words which have no appearance in the pre-trained
matrix, they are randomly calculated by the normal distribution with mean = 0 and
standard deviation =

√
0.25. In the other hands, the size of vocabulary is 20000.

4https://code.google.com/archive/p/word2vec/
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The next part in our model is the setting for encoding and decoding phase. In our
model, the encoder is the combination of ConvNet and BiLSTM. With the CNN-based
encoder, we use three different channels to capture three kinds of phrases in the input
sequence which includes bigram, 6-gram, and 12-gram. For each channel, there are 25
filters, and the sliding step (strides) is 1. For pooling operation, we use the max function
with the size of the region is 3. After, the final state of ConvNet encoder is the concate-
nation of three channels which are fed into the Feed-forward Neural Network with ReLU
as the activation function. The dimension of output in this network is 100. With the bidi-
rectional LSTM encoder, the dimension of each LSTM unit is 50, hence the dimension
of the final hidden state computed in Equation 2.9 is 100. Finally, the encoding hidden
state is the addition of ConvNet and BiLSTM one like 3.1. In the decoding phase, we
use LSTM model with the initial state as the encoding hidden one, so the dimension of
LSTM unit is 100.

To adapt with CNN/Daily Mail, the limitation of the length of the document and sum-
mary is 800 and 100 tokens. If the sequence is longer than the upper bound, it is cut
from the start of the sequence. In the case that the sequence is so short, we pad it by
zero at the end of the sequence. With these constraints, the dimension of intra-temporal
and intra-decoder attention matrix is (800, 100) and (100, 100). Therefore, the size of
context vector which is the combination of the hidden state in the decoder and two kinds
of attention in each time step t is 300. This vector is fed into the Feed-forward Neural
Network to get the probability distribution of word in the vocabulary. The detail of these
above settings in the form of our proposed model is presented in Table 4.2.

For the training process, each model in the experiment has the different loss function
based on the goal of these evaluations. However, the following settings are used for all
models. We use RMSProp with the learning rate is 0.001, and its decay is 0 for the
optimization process. The number of samples in each batch is 80. After training process,
the size of Beam Search5 [13] in predicting is chosen by 3. All above information is
presented in Table 4.3.

4.3 Measurements

To evaluate the Summarization system, we use the ROUGE measurement which is the
most popular one in this topic. The main idea of ROUGE is based on the overlapping
ratio between the generated and the target summary. In our study, we focus on ROUGE-
1, ROUGE-2, and ROUGE-L as the main measurement for the system which reflects two
aspects of the expected summary. Firstly, with ROUGE-N score, we want to evaluate
the correctness of our system through n-gram overlap. In the other side, ROUGE-L is
to evaluate the fluency of the generated summary. It comes from the assumption that
if the length of common subsequence between two kinds of the summary is large, the

5https://en.wikipedia.org/wiki/Beam_search
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Size/dimension/Quantity
Input Doc 800 tokens
Summary 100 tokens
ConvNet
Channel

3 (2 - 6 - 12)

ConvNet
Filter

25/channel

ConvNet
Hidden State

100

BiLSTM
Hidden State

100

Encoder
Final State

100

Decoder
LSTM Unit

100

Intra-temporal
Attention Matrix

(800, 100)

Intra-decoder
Attention Matrix

(100, 100)

Word vector 300

Table 4.2: The detail of our proposed model’s settings

generated one is more smooth and fluent. If the summary only consists the duplication of
the separated n-grams without the semantic relation, ROUGE-N score is also high, but
it is not useful for practice. In the experiment, we use the tool6 developed by Chin-Yew
LIN in 2005 with the same hyper-parameters7 in the previous works.

4.4 Results

Firstly, we compare the results among three of our models which is shown in Table 4.4.
In these evaluations, we can see that the quality of RConvBiLSTM is better than the
others in ROUGE-1 and ROUGE-L scores while the combined system - COConvBiLSTM
gets the best result on ROUGE-2 score. The reason for this phenomena is that the loss
function of RConvBiLSTM is designed to focus on the ROUGE-L, which makes the result
in this score so high. With the significant value of ROUGE-1, we can conclude that
reinforced objective function is also effective for the generation in unigram. When we
combine two loss functions in COConvBiLSTM, the result of ROUGE-1 and ROUGE-
L becomes a bit bad. The reason is that the model has to optimize two targets of
learning. In this sense, the model has no ability to entirely focus on the reward function

6https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
7-c 95 -2 4 -U -r 1000 -n 2 -w 1.2 -m -s
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Settings
Optimizer RMSProp
Learning rate 0.001
Learning rate decay 0.0
Batch size 80
Beam Search 3

Table 4.3: The detail of our training and predicting process

like RConvBiLSTM. However, as we mentioned above on the strength of condition log-
likelihood loss function, it is useful to increase the probability of sequence in the same way
as language modeling solutions. These properties help our model with the improvement
in ROUGE-2 score which is based on the bigram overlap. Therefore, the rise and the fall
of those systems is the common trade-off in objective learning.

ROUGE-1 ROUGE-2 ROUGE-L
RConvBiLSTM 42.45 16.02 39.09
ConvBiLSTM 39.17 15.06 35.62
COConvBiLSTM 42.30 16.25 37.07

Table 4.4: The result of our proposed models

Next important part is to prove the robustness and effectiveness of our proposed model
with the previous words in this topic. The comparison is shown in Table 4.5. The top part
in this table is the Extractive Summarization model and the second one is on Abstractive
task. In both of two kinds of previous works, our model is proved to be more effective
in ROUGE-1 and ROUGE-L score. Especially, RConvBiLSTM model has a significant
improvement in ROUGE-L. However, in ROUGE-2, our models do not outperform with
Pointer-Generator Network. It comes from the effect of pointer mechanism that maybe
our next inspiration.

ROUGE-1 ROUGE-2 ROUGE-L

Lead-3[16] 39.20 15.70 35.50
SummaRuNNer[16] 39.60 16.20 35.30

SummaRuNNer-abs[16] 37.50 14.50 33.40
Pointer-Generator Net [22] 39.53 17.28 36.38
DReinforcedModel [18] 41.16 15.75 39.08

RConvBiLSTM 42.45 16.02 39.09
COConvBiLSTM 42.30 16.25 37.07

Table 4.5: The comparison of our models and the previous works in Summarization
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4.5 Discussion

In this section, we discuss some samples in testing to reflect the effectiveness of our
model. Firstly, in the case of the short summary, RConvNet and COConvNet almost
produce correctly the summary. With ConvBiLSTM, in some cases, despite the high
ROUGE score, the fluency is not guaranteed as Table 4.6. The short target summary is
quite simple and possible to catch by the Deep Learning systems.

Input Document (ID: 10316 - Test set)
johnny depp has one of the most distinctive faces in hollywood , but he ’s almost
unrecognizable in the first trailer for his latest film black mass .
in the long-awaited trailer for the film to be released this september , depp plays
james white ’ bulger - the notorious boston gangster who topped the fbi ’s most
wanted list for 16 years before he was finally arrested in 2011 ...
Ground Truth
black mass is set to be released in september 2015 .
RConvBiLSTM (ROUGE-1: 90.9)
black mass is set to be released this september
COConvBiLSTM (ROUGE-1: 90.9)
black mass is set to be released this september
ConvBiLSTM (ROUGE-1: 66.67)
latest film black mass to be released this september

Table 4.6: The example for the short target summary

However, in the case of long target summary, the automatic summarization is too
difficult. The reason is that the semantic meaning of the ground truth sequence is not
concerned. This sequence is just divided into the word’s elements and use for the training
process as the label. However, in this case, the quality of our generated summary is also
acceptable like the example in Table 4.7. The common error we observe is the duplication
of information in the summary in unigram and bigram which leads to the lack of space
for prediction because of our upper bound of the summary is 100 tokens.
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Input Document (ID: 869 - Test set)
sao paulo , brazil throngs of protesters packed the streets of major brazilian cities on
sunday , pushing for the impeachment of president dilma rousseff .
fueled by mounting anger over a corruption scandal that has implicated politicians
in rousseff ’s party , demonstrators chanted out with dilma and time for change .
” police estimated that 275,000 demonstrators marched in sao paulo .
a sea of protesters dressed in the green and yellow of the brazilian flag used
decades-old rallying cries to fire up their ranks , singing rock songs that date back to
protests of the country ’s one-time military dictatorship .
some protesters said they ’d rather see rousseff step down than push for
impeachment , which could be difficult to push through without evidence tying the
president directly to the corruption scandal .
but janaina said impeachment remained a realistic option .
’ yes , it has to be ’ she said .
’ it ’s our last hope . ’
Ground Truth
police say 275,000 demonstrators marched in sao paulo .
many want president dilma rousseff to be impeached .
a corruption scandal has implicated politicians in her party .
RConvBiLSTM (ROUGE-1: 64.7)
a corruption scandal in rousself’s party pushing for the impeachment of president .
police estimated that NUMBER demonstrators marched in sao paulo . rousseff step
down than push for impeachment
COConvBiLSTM (ROUGE-1: 57.89)
police estimated NUMBER demonstrators marched in sao paulo . some protesters
said rather see rousseff step down than push for impeachment pushing for the
impeachment of president dilma rousseff fueled by mounting anger over a corruption
scandal
ConvBiLSTM (ROUGE-1: 45.16)
president dilma roussef to be impeached roussef step down than push for impeachment
impeachment police estimated that NUMBER demonstrators in sao paulo

Table 4.7: The example for the long target summary
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Chapter 5

Conclusion and Future Works

In the inspiration of Reinforced Mechanism in Abstractive Summarization, we propose
a lot of combination of techniques to solve some central problems in this task. From
many experiments we have done, we consider that RConvBiLSTM obtains the best re-
sults in ROUGE-1 and ROUGE-L measurement. In the other hands, with the complexity
of our experimental proposed model, these models are possible to apply into practice,
which is proved in Chapter 4 with more than two hundred thousands of samples for train-
ing. Experimental results demonstrate that the combination of ConvNet and BiLSTM
is more meaningful and useful than the previous encoder model for Abstractive Summa-
rization. Generally, our model outperforms the current state-of-the-art model by 1.3% for
ROUGE-1 and 0.4% in ROUGE-2. It comes from our contribution on designing the novel
architecture based on the smooth combination of the different networks and mechanism.
Simultaneously, these integrations are also inspired by the latest technology in text un-
derstanding problem.

To prove the effectiveness of our model in Abstractive Summarization, we will take more
experiments in the other datasets. Those results and observation is the good instruction
in our future work to improve the internal problem in our system. For example, through
the discussion part in Chapter 4, we observe that the role of the target summary in both
our models and the previous works is still quite limited in the treatment of labels for
prediction. Therefore, in the next step, we will take into account to modify its role in the
learning process. It should be considered as the semantic constraints for learning.
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