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Abstract

The utilization of sparse matrix storage formats is widespread across vari-
ous fields, including scientific computing, machine learning, and statistics.
Within these domains, there is a need to perform Sparse Matrix-Vector Mul-
tiplication (SpMV) and Sparse Matrix-Transpose-Vector Multiplication (Sp-
MVT) iteratively within a single application. However, executing SpMV
and SpMVT on GPUs using existing sparse matrix storage formats presents
challenges related to memory usage, load balancing, and memory access ef-
ficiency.

In our research, we propose a novel sparse matrix storage format named
GCSB, specifically designed for efficient SpMV and SpMVT operations on
GPUs, leveraging high memory compression. Initially, we adapt CSB, a
sparse matrix storage format compatible with CPU-based SpMV and Sp-
MVT, for GPU use in a straightforward manner, referred to as CSB-baseline.
Subsequently, we extend the CSB-baseline to propose GCSB, which enables
faster execution of SpMV and SpMVT than CSR through load balancing and
efficient utilization of L1 cache, while maintaining theoretical memory usage
equivalent to that of CSR.

Through experiments, we demonstrate that GCSB achieves SpMV and
SpMVT with theoretical memory usage equivalent to CSR while outperform-
ing CSR in terms of execution speed on several matrices from the University
of Florida Sparse Matrix Collection. GCSB achieves up to 1.47× speedup
on TITAN RTX and 2.75× on A100. Additionally, we show that GCSB
reduces L1 cache miss counts compared to CSB-baseline. Furthermore, we
qualitatively evaluate that GCSB demonstrates its superior performance un-
der conditions where non-zero elements are broadly distributed throughout
the matrix, the matrix size is considerable, and the proportion of non-zero
elements within the matrix is relatively high.
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Chapter 1

Introduction

1.1 Problem setting
Matrix and vector multiplication is a fundamental operation widely employed
in various fields, including data analysis, graph analytics, machine learning,
and scientific computing. Among these matrix and vector multiplications,
matrices with a substantial number of zero elements are referred to as sparse
matrices. The multiplication of a sparse matrix by a dense vector is termed
Sparse Matrix-Vector Multiplication (SpMV). Given a sparse matrix A of
dimensions m × n and a dense vector x of size n, SpMV computes a dense
vector y of size m as y = Ax.

When performing SpMV on a large sparse matrix A of dimensions m×n
with nnz non-zero elements, the memory usage required for reading matrix
A can become a limiting factor in the performance of SpMV. Consequently,
many algorithms store the sparse matrix A in a compressed format before
computing SpMV. In order to minimize the memory usage of SpMV, several
compressed formats have been developed, including the Coordinate (COO),
Compressed Sparse Rows (CSR), and ELLPACK (ELL)[21]. Utilizing these
compression techniques, numerous approaches have been investigated to effi-
ciently and rapidly compute SpMV while optimizing memory usage [15, 24]
on CPUs.

Graphic Processing Units (GPUs) are extensively employed in a wide
range of high-performance applications, providing remarkably elevated through-
put. GPUs are engineered with a substantial quantity of compact processing
units, facilitating a notable level of parallelism. Additionally, GPUs incorpo-
rate an extensive memory hierarchy and possess a high memory bandwidth.
Leveraging these distinctive attributes of GPUs, recent works have been con-
ducted to optimize SpMV on GPUs [2, 9, 10, 13, 25].
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There are applications that involve not only SpMV but also Sparse Matrix-
Transpose-Vector Multiplication (SpMVT), which computes y = ATx, where
AT denotes the transpose of a sparse matrix A. Algorithms such as the
Bi-Conjugate Gradient Algorithm (BCG) and Quasi-Minimal Residual Al-
gorithm [21] iterate over SpMV and SpMVT computations. Deep Neural
Networks (DNN), which have been achieving results in various fields such
as image processing and natural language processing, are also dealing with
sparse matrices to improve processing speed or accuracy [11, 8, 17]. In DNN,
both sparse matrices and their transposes are handled within an application
[9, 12, 26]. Compression techniques such as CSR and ELL are oriented to-
wards compression in the row direction, thus not inherently suited for trans-
posed matrices. While using the Compressed Sparse Columns (CSC), which
compresses in the column direction, is an option, it results in storing the
matrix in two different formats, demanding more memory usage and thereby
becoming less efficient.

Algorithm 1 Bi-Conjugate Gradient Algorithm [21]
1: Compute r0 := b−Ax0. Choose r∗0 such that (r0, r

∗
0) 6= 0.

2: Set p0 := r0, p∗0 := r∗0;
3: for j = 0, 1, . . . until convergence do
4: αj := (rj , r

∗
j )/(Apj , p

∗
j );

5: xj+1 := xj + αjpj ;
6: rj+1 := rj − αjApj ; // SpMV
7: r∗j := r∗j − αjA

T p∗j ; // SpMVT
8: βj := (rj+1, r

∗
j+1)/(rj , r

∗
j );

9: pj+1 := rj+1 + βjpj ;
10: p∗j+1 := r∗j+1 + βjp

∗
j ;

11: end for

To address these challenges, Compressed Sparse Blocks (CSB) [4] is pro-
posed as a format suitable for such operations. However, CSB was originally
designed for CPUs, and directly porting it to GPUs presents challenges re-
lated to achieving coalesced memory access and load balancing.

An adapted GPU version of CSB called eCSB [23] has been proposed.
However, eCSB suffers from the following limitations:

• The theoretical memory usage required by eCSB is either equal to or
larger than that of the COO, failing to achieve the same level of memory
compression as the CSR.

• The criteria used to select containment methods in eCSB are deter-
mined heuristically, leading to suboptimal load balancing.
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1.2 Contributions
In this study, we present our contributions through the proposal of a sparse
matrix format named Grouped Compressed Sparse Blocks (GCSB), designed
specifically for GPUs. GCSB is compatible with SpMV and SpMVT opera-
tions in an application, offering exceptional load balancing and efficient L1
cache usage, all while maintaining a theoretical memory usage equivalent to
that of the CSR. Our main contributions are as follows:

• We redefine CSB for GPU, introducing a single and straightforward
format that achieves theoretical memory usage equivalence to CSR.

• We introduce a novel load balancing technique named block swizzle load
balancing, which assigns blocks to Streaming Multiprocessors (SMs)
based on the distribution of non-zero elements.

• We present a method named grouped block element reordering, which
rearranges the non-zero elements within a group of blocks assigned to
a SMs, thereby achieving efficient L1 cache usage.

1.3 Outline
The organization of this thesis is as follows: Chapter 2 provides an overview
by examining related works to establish the foundational knowledge required
for this paper, including an exploration of GPUs and sparse matrix storage
formats. In Chapter 3, we provide a detailed explanation of our proposed
method, which handles both SpMV and SpMVT execution on GPUs. Chap-
ter 4 presents the setup and results of our experiments, and Chapter 5 offers
concluding remarks.
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Chapter 2

Background

2.1 Introduction
In this chapter, we begin by introducing fundamental sparse matrix storage
formats that are designed to support SpMV or SpMVT operations. We
provide an explanation of these formats, namely COO, CSR, ELL, and CSB,
focusing on the arrays or vectors used for storage and the associated memory
usage required for storing matrices.

Additionally, we provide insights into the fundamental architecture of
GPUs, including their memory structures and considerations when perform-
ing computations on these devices.

Subsequently, we discuss the challenges associated with executing both
SpMV and SpMVT within the same program on a GPU. This discussion
encompasses the difficulties of implementing these operations using existing
sparse matrix storage formats such as COO, CSR, and ELL. We also address
the complexities involved in adapting CPU-based CSB implementations for
GPU execution and highlight remaining issues in eCSB, a proposed method
for executing SpMV and SpMVT within the same GPU program.

Following that, we describe the kernels for SpMV and SpMVT on GPUs
using each of the sparse matrix storage formats, including COO, CSR, and
ELL.

Finally, we present existing research on optimization techniques for SpMV
using existing sparse matrix storage formats executed on GPUs.

2.2 Sparse matrix storage formats
A sparse matrix refers to a matrix of size m × n that contains a relatively
small number of non-zero elements (nnz). Various methods of representing
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sparse matrices exist, each with distinct storage requirements, computational
attributes, and techniques for accessing and manipulating matrix elements.

2.2.1 COO
COO is a straightforward sparse matrix storage format. Figure 2.1 illustrates
the representation of COO for a 4 × 4 matrix example. COO consists of
arrays: values storing the values of non-zero elements, row_indices storing
row indices of non-zero elements within the matrix, and column_indices
storing column indices of non-zero elements.

Figure 2.1: COO format.

values, row_indices and column_indices each consist of nnz elements.
Therefore, required memory usage for COO is as follows:

MemoryUsageCOO = nnz · sizeof(value)
+ 2nnz · sizeof(index)

(2.1)

2.2.2 CSR
CSR is a widely employed sparse matrix representation across various appli-
cations. Figure 2.2 illustrates the CSR representation using a 4 × 4 matrix
example. CSR consists of arrays such as values for storing the values of non-
zero elements and columns_indices for holding column indices of non-zero
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elements within the matrix. Moreover, CSR is characterized by the presence
of the row_ptr array. The value of row_ptr[i] represents the offset, indi-
cating the position of the first non-zero element in the i-th row among all
non-zero elements.

Figure 2.2: CSR format.

Considering the size of row_ptr is m+1, the memory usage required for
CSR is as follows:

MemoryUsageCSR = nnz · sizeof(value)
+ nnz · sizeof(index)
+ (m+ 1) · sizeof(index)

(2.2)

2.2.3 ELL
The ELL stores only the non-zero elements of each row in a data array, along
with their corresponding column indices. Figure 2.3 provides an illustrative
example of the ELL representation. The length of each row in the data
array is determined by the maximum number of non-zero elements in a row,
denoted as k. Rows with fewer non-zero elements than k are zero-padded
accordingly.

6



Figure 2.3: ELL format.

The memory usage required for ELL is as follows:

MemoryUsageELL = mk · sizeof(value)
+mk · sizeof(index)

(2.3)

Storing matrices in the ELL becomes efficient when there is low variance
in the number of non-zero elements per row, as this leads to reduced zero-
padding.

2.2.4 CSB
The previously mentioned COO, CSR, and ELL are typically compressed
using row-major order. Consequently, when performing SpMVT computa-
tions, discontinuous accesses arise, leading to inefficiencies. To address this
issue, CSB [4] has been proposed as a compression method for handling both
SpMV and SpMVT within the same application.

CSB divides matrix A into blocks, denoted as Aij, with a block size of
β × β. A matrix A of size m× n is represented as follows.

7



A =


A0,0 A0,1 · · · A0,n_block_cols

A1,0 A1,1 · · · A1,n_block_cols
... ... . . . ...

An_block_rows,0 An_block_rows,1 · · · An_block_rows,n_block_cols


(2.4)

where Aij represents the partitioned blocks of A, n_block_rows denotes
the number of blocks in the row direction, which is equal to (m+ β − 1)/β,
and n_block_cols represents the number of blocks in the column direction,
which is equal to (n+ β − 1)/β.

A Block Aij can be represented as follows:

Aij =


a0,0 a0,1 · · · a0,β−1

a1,0 a1,1 · · · a1,β−1
... ... . . . ...

aβ−1,0 aβ−1,1 · · · aβ−1,β−1

 (2.5)

where a denotes the values of each non-zero element within the block Aij.
Figure 2.4 shows the representation of CSB with a matrix example.

CSB includes an array values to store the non-zero elements, an array
comb_row_col_indices to store the row and column indices of non-zero
elements within block Aij, and an array block_offset to hold the offset in-
dicating the position of the first non-zero element within block Aij relative
to all non-zero elements. The value of comb_row_col_indices[i × m + j]
encodes the row index in the upper bits and the column index in the lower
bits for the (i×m+ j)-th block.

8



Figure 2.4: CSB format.

The block size β is determined, for instance, as β = min(
√
n,

√
m). The

number of blocks is n_blocks = (m+β− 1)/β× (n+β− 1)/β. The order of
non-zero elements within a block follows either Z-ordering or Morton order
[19]. As shown in Figure 2.5, in Morton order, the initial elements located in
the upper-left quadrant are stored first, followed by the elements in the upper-
right, lower-left, and finally lower-right quadrants. This recursive pattern is
consistently utilized for the layout.

9



Figure 2.5: Morton order

The required memory usage for CSB is as follows:

MemoryUsageCSB = nnz · sizeof(value)
+ nnz · sizeof(index)
+ (n_blocks+ 1) · sizeof(index)

(2.6)

When n_blocks = m, MemoryUsageCSB is equivalent to MemoryUsageCSR.

2.3 GPUs
GPUs are originally designed to efficiently handle graphics processing tasks
within computer hardware. They excel at tasks involving visual data, like
rendering 2D and 3D images, processing videos, and delivering real-time
visuals in games.

In the past few years, the strong ability of GPUs to process tasks in par-
allel has been used for a wider range of computing needs. They’ve been put
to use in many different areas like scientific calculations, machine learning,
deep learning, virtual simulations, and even mining cryptocurrencies.

In our study, we employ NVIDIA GPUs and CUDA programming model,
which is the integrated development environment of NVIDIA GPUs.

2.3.1 GPU architecture
GPUs are equipped with multiple Streaming Multiprocessors (SMs), with
each SM containing numerous CUDA cores. These CUDA cores manage
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individual tasks and have the capability to execute multiple threads concur-
rently, facilitating parallel processing. Threads serve as the smallest units of
execution within a program and are organized into groups known as warps.
Typically, a warp consists of 32 threads running the same program simulta-
neously, executing the same instructions at the same time. Warps operate
on CUDA cores within an SM and adhere to the Single Instruction Multiple
Data (SIMD) architecture.

Figure 2.6 provides an overview of data transfer between the GPU and
CPU, as well as memory allocation. GPUs feature global memory, character-
ized by its high bandwidth but also significant latency. During computations,
data is initially read from CPU memory into global memory, processed, and
then written back to global memory before being transferred to CPU mem-
ory. Additionally, GPUs are equipped with texture memory and constant
memory. The GPU memory incorporates two cache levels: the L2 cache,
which is shared among SMs, and caches data during read and write oper-
ations to global memory, and each SM has its dedicated L1 cache, shared
among the threads within the SM.

Figure 2.6: GPU architecture, data transfer and memory allocation.

To achieve high computational performance on GPUs, various optimiza-
tions are required. In this context, we discuss the reduction of memory usage,
the achievement of high cache hit rates, the avoidance of warp divergence,
the maintenance of high occupancy, and load balancing.

11



When memory usage becomes problematic, the exchange of data between
CPU memory and GPU global memory becomes imperative, resulting in
frequent data transfers. Reducing memory usage is essential for optimization
and acceleration.

Efficient utilization of the memory hierarchy, including L1 and L2 caches,
and ensuring aligned memory access and coalesced memory access are nec-
essary. Aligned memory access is achieved when the initial address of a
memory transaction is a multiple of the cache line granularity, which is 128
bytes for L1 cache and 32 bytes for L2 cache. Coalesced memory access
is achieved when all 32 threads within a warp access contiguous memory
chunks. Figure 2.7 illustrates cases within the L1 cache where aligned and
coalesced memory access is achieved and cases where it is not. In case (a),
the requested addresses by the threads within the warp fit within a 128-byte
cache line, achieving both aligned and coalesced memory access, resulting in
a single transaction. In case (b), the threads within the warp request ad-
dresses randomly scattered in the global memory, spanning multiple cache
lines, potentially leading to up to 32 transactions in the worst case.

(a) Align and coalesced memory access.

(b) Miss-align and un-coalesce memory access.

Figure 2.7: GPU L1 cache access [5].

Warp divergence happens when conditional branches or data accesses
differ. While threads following one branch path remain active, threads not
taking that path become inactive, leading to a loss of parallelism and resulting
in decreased performance.

Occupancy refers to the ratio of active warps to the maximum number
of warps per SM. Increasing occupancy allows each SM to maintain a state
in which as many warps as possible are consistently executed, reducing idle
periods and minimizing wasteful consumption of computational resources.
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Additionally, load imbalance can occur not only between different SMs
but also among warps or threads. When tasks assigned to a particular SM are
smaller than those in other SMs, that SM might become idle in comparison
to active SMs. Similarly, when tasks allocated to warps or threads within
an SM are limited, certain warps or threads might remain inactive and in a
waiting state.

GPUs exhibit significant computational performance, but optimizing mem-
ory access and thread management is pivotal. When utilizing the CUDA
programming model for parallel computing, paying attention to these factors
is essential.

2.3.2 CUDA programming model
CUDA programming is a framework developed by NVIDIA that enables de-
velopers to harness the immense computational power of GPUs for parallel
computing tasks. It provides a programming model and API for writing
high-performance code that can execute efficiently on GPUs.

In CUDA programming, the concepts of grid, block, and thread are em-
ployed to control the computation on the GPU. Figure 2.8 illustrates the
configuration of parallel threads. The grid represents the entire computa-
tional domain and contains multiple blocks. A block represents a smaller
region within the grid and is executed on a single SM within the GPU. Each
block comprises multiple threads, with each thread executing its own task.
Grid and Block can be specified with dimensions of up to three dimensions
each.
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Figure 2.8: Grid, Blocks and Threads.

The central computational unit in CUDA programming is the kernel. A
kernel is a function written in C/C++ with specific CUDA syntax that is
executed by multiple threads in parallel. Kernels are launched from the host
(CPU), and executed on the device (GPU). As shown in Figure 2.9, the
kernel labeled as SomeKernel with the __global__ attribute is invoked
from the host side. <<< GridDim,BlockDim >>> notation specifies the
dimensions of the grid and block dimensions, determining the hierarchical
structure for thread execution.

1 __global__ void SomeKernel(float *x, float *y)
2 {
3 ...
4 }
5
6 int main() {
7 ...
8 SomeKernel<<<GridDim, BlockDim>>>(x, y);
9 }

Figure 2.9: Sample CUDA Kernel

14



2.4 The challenges of executing SpMV and
SpMVT within an application on GPUs

In this section, we discuss the challenges related to executing SpMV and
SpMVT on GPUs. There are primarily three approaches for performing
SpMV and SpMVT using the existing sparse matrix storage formats. The
first approach involves utilizing sparse matrix storage formats such as COO,
CSR, and ELL. The second approach involves implementing the CSB format
specifically designed for GPUs. The third approach extends the CSB format
to the eCSB format [23].

2.4.1 SpMV and SpMVT with existing sparse matrix
storage formats

Conventional sparse matrix storage formats, such as COO, CSR, and ELL,
as shown in Figures 2.1, 2.2, and 2.3, store values along the row directions.
Consequently, achieving efficient memory access in both row and column
directions is challenging. Although the Compressed Sparse Columns (CSC)
storage format exists for sparse matrices, where values are stored along the
column direction of CSR, using two storage formats results in redundant
memory usage.

In the following section, we present CUDA Kernels for SpMV and SpMVT
utilizing COO, CSR, and ELL. In the case of SpMVT, computations are
conducted by accessing data in the row direction while disregarding memory
access in the column direction. However, due to frequent memory accesses
to the output vector y for each row, efficient cache utilization cannot be
guaranteed.

2.4.2 SpMV and SpMVT with CSB
CSB [4] is a sparse matrix storage format originally designed for performing
SpMV and SpMVT on multi-core CPUs. CSB maintains a memory usage
equivalent to CSR while enabling efficient computation of SpMV and Sp-
MVT. However, directly applying this this methodology directly on GPUs
presents challenges.

CSB includes a process involving recursive block partitioning based on
the number of non-zero elements within blocks. GPUs are built on the prin-
ciple of SIMD execution, where all threads must execute the same program.
Consequently, adapting processing based on the number of non-zero elements
within blocks introduces branching and results in warp divergence, which is
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problematic in SIMD execution. Replicating the intricate recursive process
becomes challenging.

When porting CSB directly to GPUs, a naive implementation arises where
each thread handles the multiplication of non-zero elements within a single
block. In this scenario, each thread accesses non-adjacent addresses, po-
tentially spanning multiple cache lines. In such cases, achieving coalesced
memory access becomes difficult, hindering efficient memory transactions.

Furthermore, since CSB operates on a block level, blocks with a low num-
ber of non-zero elements lead to inefficient utilization of the allocated compu-
tational resources. Thus, careful attention is required for thread scheduling
to achieve load balancing.

2.4.3 SpMV and SpMVT with eCSB
There is a technique known as Expanded Compressed Sparse Blocks (eCSB)
[23], which redefines CSB for GPU implementation. The storage format of
eCSB is illustrated in Figure 2.10. In eCSB, in addition to the array of
non-zero elements values and the array of row indices and column indices of
non-zero elements within the blocks referred to as comb_row_col_indices,
it also includes a block index array for each non-zero element labeled as
block_indices and the array of the pointer to the first non-zero element in
each block row known as block_row_ptr.
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Figure 2.10: eCSB format.

The memory usage of eCSB is given by nnz · sizeof(value) + 2nnz ·
sizeof(index)+n_block_rows · sizeof(index), where n_block_rows repre-
sents the number of block rows. Depending on the distribution of non-zero
elements in the matrix, eCSB dynamically switches between sparse matrix
formats such as ELL, COO, or a combination of the two (HYBRID).

When conducting SpMV and SpMVT using eCSB, the initial step involves
utilizing the Bell and Garland procedure [3] to determine two parameters:
the number of non-zero elements within each block row and the remaining
number of block rows after thinning out those block rows with fewer non-zero
elements. Based on these parameters, it is heuristically decided whether to
store data in ELL, COO, or a HYBRID of ELL and COO. The fundamental
concept underlying this approach is to use COO when non-zero elements are
distributed in a highly random manner, and to resort to HYBRID or ELL
otherwise.

However, eCSB encounters challenges in the following aspects. Initially,
in both ELL and COO formats, the memory usage required for SpMV and
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SpMVT is equal to or greater than that of COO, which results in an insuffi-
cient memory compression effect. Additionally, the choice of storage methods
is heuristic, and the distribution of loads among SMs or warps/threads is not
optimized.

2.5 CUDA kernels for SpMV and SpMVT
In this section, we outline the implementation of SpMV and SpMVT on
GPUs through CUDA kernels for each sparse matrix storage format. It is
important to note that eCSB, a CUDA-based CSB, varies from the CPU-
based CSB discussed earlier. In Chapter 3, we delve into the details of the
baseline CSB implementation on GPUs, which is the focus of our research.
In this section, we provide CUDA kernels for COO, CSR, and ELL.

2.5.1 COO kernel
The CUDA kernel for COO involves a straightforward computation where
each thread handles a single non-zero element of the matrix. Figure 2.11
illustrates the CUDA kernel for COO-based SpMV. Each thread is responsi-
ble for multiplying a single non-zero element. In line 11, we ensure that the
thread id does not exceed the number of non-zero elements. In line 12, we
perform the multiplication of non-zero elements and store the values in vector
y. When storing the results in the output vector y, atomicAdd is employed
to accumulate the individual computations. atomicAdd is an instruction de-
signed to prevent race conditions when multiple threads concurrently access
a specific memory location to perform addition operations. This ensures that
simultaneous writes to the same memory location are avoided, thereby en-
abling accurate results. Figure 2.12 shows the CUDA kernel for SpMVT. The
distinction from the SpMV CUDA kernel lies in the swapping of columns[i]
and rows[i] when performing atomicAdd.

18



1 __global__ void KernelSpMVCOO(const int nnz,
2 const float* values,
3 const int* rows,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 if (i < nnz) {
12 atomicAdd(&y[rows[i]], values[i] * x[columns[i]]);
13 }
14 }

Figure 2.11: SpMV CUDA kernel for COO.

1 __global__ void KernelSpMVTCOO(const int nnz,
2 const float* values,
3 const int* rows,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 if (i < nnz) {
12 atomicAdd(&y[columns[i]], values[i] * x[rows[i]]);
13 }
14 }

Figure 2.12: SpMVT CUDA kernel for COO.

2.5.2 CSR kernel
In the CSR CUDA Kernel, a notable characteristic is that each thread is
assigned to a single row. Figure 2.13 represents the CUDA Kernel for CSR-
based SpMV. Since each thread handles non-zero elements in a row, we ensure
that the thread ID does not exceed the number of non-zero elements in line
12. In lines 13 and 14, the i-th thread extracts the starting and ending indices
of non-zero elements for row i from row_ptr. In lines 15 and 16, we perform
value multiplication for each non-zero element and sum up those results in
the temporary variable temp_sum. We store the result in the output vector
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y[i]. As a result, each thread accesses a specific address in the output vector
y.

In contrast, in the case of SpMVT, each thread is responsible for a single
row of the original matrix, leading to access of multiple addresses in the out-
put vector y. Figure 2.14 illustrates the CUDA Kernel for SpMVT. The use
of ’atomicAddatomicAdd is necessary to circumvent memory conflicts in line
15. In cases where multiple threads access the same memory in atomicAdd,
each thread needs to wait for the others to complete their operations. This
can lead to reduced parallelism and performance bottlenecks, which contra-
dicts the expected high parallelism capabilities of GPUs.

1 __global__ void KernelSpMVCSR(const int n_rows,
2 const float* values,
3 const int* row_ptr,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 float temp_sum = 0.0;
12 if (i < n_rows) {
13 int row_start = row_ptr[i];
14 int row_end = row_ptr[i+1];
15 for (int j = row_start; j < row_end; j++) {
16 temp_sum += values[j] * x[columns[j]];
17 }
18 y[i] = temp_sum;
19 }
20 }

Figure 2.13: SpMV CUDA kernel for CSR.
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1 __global__ void KernelSpMVTCSR(const int n_rows,
2 const float* values,
3 const int* row_ptr,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 if (i < n_rows) {
12 int row_start = row_ptr[i];
13 int row_end = row_ptr[i+1];
14 for (int j = row_start; j < row_end; j++) {
15 atomicAdd(&y[columns[j]], values[j] * x[i]);
16 }
17 }
18 }

Figure 2.14: SpMVT CUDA kernel for CSR.

2.5.3 ELL kernel
Similar to CSR, the CUDA Kernel for ELL also assigns each thread to handle
one row. Figure 2.15 shows the CUDA Kernel for ELL-based SpMV. In
line 13, we calculate the index of the first non-zero element in the row. In
ELL, the multiplication is performed max_columns times, representing the
maximum number of non-zero elements per row, as shown in line 15. As
a result, the number of multiplications assigned to threads is consistent.
However, unnecessary multiplications may arise due to zero-padding.

Figure 2.16 illustrates the CUDA Kernel for ELL-based SpMVT. In line
15, atomicAdd is used to accumulate the multiplication results of the trans-
posed sparse matrix, and the final result is stored in the output vector y.
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1 __global__ void KernelSpMVELL(const int n_rows,
2 const int max_columns,
3 const float* values,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 float temp_sum = 0.0;
12 if (i < n_rows) {
13 int row_offset = max_columns * i;
14 for (int j = 0; j < max_columns; j++) {
15 temp_sum += values[row_offset + j] * x[columns

[row_offset + j]];
16 }
17 y[i] = temp_sum;
18 }
19 }

Figure 2.15: SpMV CUDA kernel for ELL.

1 __global__ void KernelSpMVTELL(const int n_rows,
2 const int max_columns,
3 const float* values,
4 const int* columns,
5 const float* x,
6 float* y) {
7 int idx = blockDim.x * blockIdx.x + threadIdx.x;
8 int idy = blockDim.y * blockIdx.y + threadIdx.y;
9 int offset = gridDim.x * blockDim.x;

10 int i = idx + idy * offset;
11 if (i < n_rows) {
12 int row_offset = max_columns * i;
13 for (int j = 0; j < max_columns; j++) {
14 atomicAdd(&y[col[row_offset + j]], values[

row_offset + j] * x[i];
15 }
16 }
17 }

Figure 2.16: SpMVT CUDA kernel for ELL.
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2.6 Related works
Implementing existing sparse matrix storage formats straightforwardly poses
challenges in terms of memory access and load balancing. For instance, in
the case of CSR, when each thread processes all non-zero elements within a
single row, memory accesses for each thread do not achieve coalesced access.
Additionally, load imbalance can occur due to variations in non-zero elements
per row. Many studies have been conducted to enhance existing sparse matrix
storage formats in these aspects.

In the research by Anzt et al., they address these issues specifically for
COO [1]. They achieve load balancing by partitioning non-zero elements into
chunks of the same size and assigning these chunks to warps. Furthermore,
they ensure full coalesced access in all memory accesses by processing the
assigned non-zero elements for each thread using a warp-sized stride.

Koza et al. proposed Compressed Multi-Row Storage (CMRS), which
achieves load balancing and coalesced memory access by assigning a fixed
number of rows, referred to as a ’strip’, to a single thread block [14]. How-
ever, CMRS compromises load balancing when the number of non-zero ele-
ments per row varies significantly, due to its fixed-size row to thread block
partitioning. CSR-Adaptive, proposed by Greathouse et al., addresses this
issue by statically fixing the number of non-zero elements per thread block
and dynamically calculating the number of rows each thread block handles
[10]. This approach allows multiple rows with a small number of non-zero
elements to be assigned to a single thread block, while rows with a large
number of non-zero elements are assigned to their respective thread blocks,
ensuring load balance even when the number of non-zero elements per row
varies significantly. However, it does not handle load balancing for matrices
with rows containing an extremely large number of non-zero elements. Daga
et al. extended CSR-Adaptive to address matrices with rows containing an
extremely large number of non-zero elements by introducing a strategy to
process such rows using multiple thread blocks [6].

CSR5 uniformly divides non-zero elements into predetermined-sized 2D
tiles and assigns them to all threads, achieving load balance regardless of
the sparse or dense structure of the matrix [16]. In HOLA, each thread
block is assigned the same number of non-zero elements [22]. The number
of non-zero elements to be processed per thread block is predetermined. To
facilitate this, a buffer is prepared in advance to store row index in which non-
zero elements processed by the thread block exist. Additionally, the number
of non-zero elements to be processed by each thread within a thread block
is also made equal. To handle cases where there are no non-zero elements
within a row, a flag indicating the absence of non-zero elements in that row
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is maintained to avoid thread divergence. Merrill et al. propose a method
for load balancing using the merge-path technique [18]. With merge-path,
each thread is assigned work in such a way that they have the same number
of non-zero elements plus row_ptr elements.

VCSR is an approach primarily focused on achieving L1 cache coalesced
access [13]. It rearranges rows in order of the number of non-zero elements
and bundles a L1 cache line sized set of rows together. By vertically aligning
the non-zero elements, it ensures that a single memory access accommodates
all non-zero elements within a L1 cache line.

Gale et al. reorganize rows in descending order of the number of non-zero
elements to achieve load balance both among SMs and among threads [9].
They reverse-engineered the thread block scheduler using an approach which
Pai proposes [20], ensuring that blocks are assigned to SMs in the order of
their block indices and, consequently, that rows with a higher number of
non-zero elements are allocated to SMs in a sequential manner.

2.7 Summary
In this chapter, we introduced various fundamental sparse matrix storage
formats such as COO, CSR, and ELL, as well as the CSB, which is a storage
format for sparse matrices compatible with SpMV and SpMVT. We also
explained GPU architecture and considerations during computation.

We discussed the challenges of running SpMV and SpMVT within an
application on GPUs, including the difficulties in executing them with basic
sparse matrix storage formats, applying CSB to the GPU, and the remaining
issues with eCSB. Basic sparse matrix storage formats often result in ineffi-
cient memory access to the output vector y when transposing because they
primarily store values and indices in row-major order. Applying CSB directly
to the GPU involves recursive processing based on the number of non-zero
elements within a block, leading to warp divergence. It also suffers from non-
contiguous memory access during warp execution and load imbalance due to
differences in the number of non-zero elements between blocks. Furthermore,
existing techniques like eCSB, which redefine CSB on the GPU, require more
memory than CSR or COO and may not achieve sufficient load balancing.

In the next chapter, considering these challenges, we propose a sparse
matrix storage format for efficient execution of SpMV and SpMVT within
an application on GPUs.
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Chapter 3

Proposed Method

3.1 Introduction
In this chapter, we introduce CSB implemented naively on GPUs as CSB-
baseline, as well as GCSB, which is defined to optimize CSB-baseline in terms
of load balancing and reducing L1 cache miss count.

eCSB, a redefined version of CSB for GPUs, requires more memory com-
pared to CSR, resulting in less compression efficiency compared to the origi-
nal CSB. Therefore, CSB-baseline is introduced to redefine CSB on GPUs in
a way that it requires memory usage almost equivalent to CSR, similar to the
original implementation. In the introduction of CSB-baseline, we explain the
vectors used for storage, the required memory usage, and the CUDA Kernels
for both SpMV and SpMVT. Additionally, we describe the trade-off between
memory access efficiency and the required memory usage based on the block
size β × β.

Regarding the introduction of GCSB, we first explain the arrays used for
storage and the required memory usage. Next, we introduce techniques that
constitute GCSB, such as block-swizzle load balancing and grouped block
element reordering. Finally, we describe the CUDA Kernels for SpMV and
SpMVT when using GCSB.

3.2 CSB on GPU
As demonstrated in Chapter 2, CSB is originally developed for CPU imple-
mentations. While eCSB efficiently computes SpMV and SpMVT on GPUs,
it incurs a larger memory overhead compared to COO and does not achieve
compression efficiency equivalent to CSR.
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Hence, we first redefine CSB for GPU environments with compression
efficiency equivalent to CSR, referring to it as CSB-baseline.

3.2.1 CSB-baseline
Similar to CPU-based CSB, CSB-baseline divides the matrix into blocks
and reorders the non-zero elements in the order of blocks. Figure 3.1 il-
lustrates the storage method of CSB-baseline for an 8 × 8 matrix exam-
ple. In this example, the block size is 2 × 2, resulting in a total of 16
blocks arranged in row-major order. CSB-baseline employs arrays values,
comb_row_col_indices, and block_offset. values contains the values of
non-zero elements. comb_row_col_indices holds the row and column in-
dices within the block for non-zero elements, with the upper and lower bits
representing the row and column indices, respectively. block_offset holds
the indices within values or comb_row_col_indices of the first non-zero
element in each block. The order of non-zero elements within a block fol-
lows Morton order, while the order of blocks follows row-major order. Al-
ternatively, other orders of blocks are possible, but in that case, an array
block_indices indicating the position of each block in row-major order is
required.
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(a) The matrix divided into 2×2 blocks.

(b) Arrays for CSB-baseline. The black-bordered boxes represent each block.

Figure 3.1: CSB-baseline format.

The required memory usage for CSB-baseline is as follows:

MemoryUsageCSB−baseline = nnz · sizeof(value)
+ nnz · sizeof(index)
+ (n_blocks+ 1) · sizeof(index)

(3.1)

Next, we explain the CUDA Kernels for SpMV and SpMVT in the CSB-
baseline. Figure 3.2 represents the SpMV kernel, and Figure 3.3 shows the
SpMVT kernel. We provide an explanation assuming that blocks are ar-
ranged in row-major order. In the GPU Kernel for SpMV with CSB-baseline,
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shown in Figure 3.2, each thread, indexed as thread i, processes non-zero ele-
ments in the block i. In line 17, the condition is set to ensure that the thread
index does not exceed the number of blocks. In lines 18 and 19, the indices
within values or comb_row_col_indices for the first and last+1 non-zero
elements within each block are obtained. Line 20 contains a loop that iter-
ates to process non-zero elements within the block sequentially. Lines 21 to
23 are responsible for calculating the row and column indices of the non-zero
element within the block. The higher-order bits of digit_column_per_block
within comb_row_column_indices represent the row index, while the lower
bits represent the column index. In lines 24 and 25, the row and column
indices for the block are computed. In line 26, the multiplication of the non-
zero element with the corresponding value from vector x is calculated, and
the result is stored in the output vector y using atomicAdd.
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1 __global__ void KernelSpMVCSB(const int n_blocks,
2 const int n_block_rows,
3 const int n_block_columns,
4 const int n_rows_per_block,
5 const int n_columns_per_block,
6 const int digit_column_per_block,
7 const float* values,
8 const int* comb_row_col_indices,
9 const int* block_offset,

10 const int* block_indices,
11 const float* x,
12 float* y) {
13 int idx = blockDim.x * blockIdx.x + threadIdx.x;
14 int idy = blockDim.y * blockIdx.y + threadIdx.y;
15 int offset = gridDim.x * blockDim.x;
16 int i = idx + idy * offset;
17 if (i < n_blocks) {
18 int start_block = block_offset[i];
19 int end_block = block_offset[i + 1];
20 for (int j = start_block; j < end_block; j++) {
21 int comb_row_col_index = comb_row_col_indices[

j];
22 int row_index_in_block = comb_row_col_index >>

digit_column_per_block;
23 int column_index_in_block = comb_row_col_index

& ((1 << digit_column_per_block) - 1);
24 int block_row_index = i / n_block_columns;
25 int block_column_index = i % n_block_rows;
26 atomicAdd(&y[block_row_index *

n_rows_per_block + row_index_in_block],
values[j] * x[block_column_index *
n_columns_per_block + column_index_in_block
]);

27 }
28 }
29 }

Figure 3.2: SpMV CUDA kernel for CSB-baseline.

The difference between SpMV and SpMVT lies solely in the indexing
during the write operation to the output vector y, where the indices of vectors
y and x are reversed in line 26 in Figure 3.3.
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1 __global__ void KernelSpMVTCSB(const int n_blocks,
2 const int n_block_rows,
3 const int n_block_columns,
4 const int n_rows_per_block,
5 const int n_columns_per_block,
6 const int digit_column_per_block,
7 const float* values,
8 const int* comb_row_col_indices,
9 const int* block_offset,

10 const int* block_indices,
11 const float* x,
12 float* y) {
13 int idx = blockDim.x * blockIdx.x + threadIdx.x;
14 int idy = blockDim.y * blockIdx.y + threadIdx.y;
15 int offset = gridDim.x * blockDim.x;
16 int i = idx + idy * offset;
17 if (i < n_blocks) {
18 int start_block = block_offset[i];
19 int end_block = block_offset[i + 1];
20 for (int j = start_block; j < end_block; j++) {
21 int comb_row_col_index = comb_row_col_indices[

j];
22 int row_index_in_block = comb_row_col_index >>

digit_column_per_block;
23 int column_index_in_block = comb_row_col_index

& ((1 << digit_column_per_block) - 1);
24 int block_row_index = i / n_block_columns;
25 int block_column_index = i % n_block_rows;
26 atomicAdd(&y[block_column_index *

n_columns_per_block + column_index_in_block
], value[j] * x[block_row_index *
n_rows_per_block + row_index_in_block]);

27 }
28 }
29 }

Figure 3.3: SpMVT CUDA kernel for CSB-baseline.

By setting the the block size β = min(
√
m,

√
n), it is possible to achieve

memory usage nearly equivalent to CSR. However, caution is advised when β
becomes excessively large. A larger β can result in increased address locations
of the output vector y accessed by each thread, leading to cache contention
among threads and resulting in a bottleneck. On the other hand, reducing
β increases the number of blocks n_blocks, thereby expanding the required
memory capacity. In the extreme case, when β = 1, n_blocks = m× n.
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3.3 GCSB
Through CSB-baseline, sparse matrices can be compressed with memory us-
age equivalent to CSR when n_blocks equals to n_rows. However, CSB-
baseline faces challenges, as observed in Section 2.4, including the inability to
achieve coalesced memory access due to each thread being assigned a single
block, and the issue of load imbalance among SMs and Warp/Thread units
stemming from varying numbers of non-zero elements per block. To address
these challenges, we introduce Grouped Compressed Sparse Blocks (GCSB)
as our proposed solution. The features of GCSB include: (1) Compression of
sparse matrices with memory usage equivalent to CSR and CSB-baseline, (2)
simultaneous achievement of load balancing among SMs and within warps
using block-swizzle load balancing, (3) attainment of coalesced memory ac-
cess through grouped block element reordering, achieved by grouping several
blocks and rearranging non-zero elements within the group based on the
number of elements that fit in an L1 cache line. The storage procedure for
sparse matrices using GCSB is described in detail in Section 3.3.1. Block-
swizzle load balancing is explained in Section 3.3.3. Grouped block element
reordering is covered in Section 3.3.4. GPU Kernels for SpMV and SpMVT
using GCSB are explained in Section 3.3.5.

3.3.1 GCSB format
The sparse matrix storage procedure of GCSB consists of the following four
steps:

(1) Divide the matrix into blocks of β × β.

(2) Reorder the blocks in descending order of the number of non-zero ele-
ments within each block.

(3) Group the blocks in group_size, starting with those having the most
non-zero elements.

(4) Reorder the non-zero elements within each group and applying zero-
padding.

These steps are illustrated in Figure 3.4 using an example of an 8 × 8
matrix. Steps (1) to (4) correspond to (a) to (d) in Figure 3.4. The block size
β×β is a variable parameter. In this example, it is set to 2×2. Additionally,
group_size is set to 4 in this example, while it is also a variable parameter.

First, as illustrated in Figure 3.4 (a), the matrix is divided into 2 ×
2 blocks. In this step, each block is assigned a block index in row-major
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order, and the row and column indices of each element within the blocks are
provided.

Next, as shown in Figure 3.4 (b), the blocks are reordered in the order
of having a higher number of non-zero elements within each block. This
technique is referred to as block-swizzle load balancing, and its detailed effects
is discussed in Section 3.3.3.

Subsequently, as presented in Figure 3.4 (c), the blocks with a higher
number of non-zero elements are grouped in chunks of group_size. In this
example, one group consists of four blocks, and a total of four groups, labeled
as groupA to groupD, are generated.

Finally, as depicted in Figure 3.4 (d), the non-zero elements within each
group are rearranged. Non-zero elements are sequentially stored in the array
with non-zero elements, starting from the group consisting of blocks with a
larger number of non-zero elements. Within each group, non-zero elements
are stored in the order of the first non-zero element in each block, followed
by the second non-zero element in each block, and so on until all non-zero
elements from all blocks are stored. The non-zero elements within each block
in GCSB are stored in Morton order. In cases where there is variability in
the number of non-zero elements within blocks in a group, zero-padding is
applied, as indicated by ∗ in Figure 3.4 (d), to align the storage order. This
reordering method is referred to as grouped block element reordering, and
further details are explained in Section 3.3.4.

32



(a) Divide the matrix into blocks of β × β.

(b) Reorder the blocks in descending order of the number of non-zero elements
within each block.

(c) Group the blocks in group_size, starting with those having the most non-zero
elements.

(d) Reorder the non-zero elements within each group and applying zero-padding.

Figure 3.4: The procedure for creating the GCSB format.
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Figure 3.5 illustrates the arrays that compose GCSB. values is an array
that stores the values of non-zero elements by repeating the procedure shown
in Figure 3.4 (d) in order, starting from groups with a larger number of non-
zero elements. comb_row_col_indices is an array that stores the indices of
rows and columns of the non-zero elements within the blocks, following the
same procedure as values. The row and column indices within the blocks
are composed similarly to CSB-baseline, with the upper bits representing the
row indices within a block and the lower bits representing the column indices
within a block. The elements of values and comb_row_col_indices also
include the zero-padding introduced in Figure 3.4 (c). block_indices is an
array designed to keep track of where each block, reordered in the order of a
larger number of non-zero elements, is positioned within the original matrix.
The values stored in block_indices represent the indices of the blocks in row
major order within the matrix. The original row index within the matrix is
calculated as block_indices[i] / n_block_rows, while the column index is
determined as block_indices[i] % n_block_columns. group_offset serves
as a pointer indicating the location of the first non-zero element within a
group in either values or comb_row_col_indices.

Figure 3.5: GCSB format in the example of Figure 3.4. The boxes distin-
guished by color and line type are corresponding to the groups in Figure
3.4 (c). The ∗ symbol indicates locations that have been zero-padded in the
process shown in Figure 3.4 (d). The upper bits of comb_row_col_indices
value represent row indices of the non-zero elements within the block, while
the lower bits represent column indices of the non-zero elements within the
block. group_offset maintains pointers to the first index of each group
within the array containing both non-zero elements and zero-padding.

Denoting the number of groups as n_groups and supposing that there
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is no zero-padding, the theoretical memory usage required for GCSB is as
follows:

MemoryUsageGCSB = (nnz) · sizeof(value)
+ (nnz) · sizeof(index)
+ n_blocks · sizeof(index)
+ (n_groups+ 1) · sizeof(index)

(3.2)

Considering that nnz >> n_blocks and n_blocks > n_groups, GCSB
achieves higher memory compression efficiency compared to eCSB, allowing
for the compression of sparse matrices with memory usage nearly equivalent
to CSR or CSB-baseline.

3.3.2 Determining β and group_size
The block size β × β of GCSB is an arbitrary parameter. Considering that
each thread performs multiplication for one block in SpMV and SpMVT with
GCSB, we decide the following to optimize the utilization of L1 cache during
memory access to the output vector y for each thread:

β ≤ L1CacheLineSize

sizeof(value)
(3.3)

where L1CacheLineSize is in bytes, and sizeof(value) is also in bytes. In
the examples seen in Figure 3.4 and 3.5, L1CacheLineSize is set to 16 bytes,
and sizeof(value) is set to 4 bytes, resulting in β = 2 ≤ 16/4 = 4. It is im-
portant to note the trade-off of increased memory usage in block_indices due
to the increased number of blocks as the β decreases, despite the increased
parallelism.

The group_size is also an arbitrary parameter; however, to optimize the
utilization of the L1 cache during memory access to values and comb_row_column_indices,
we decide the following:

group_size =
L1CacheLineSize

sizeof(value)
. (3.4)

In the examples seen in Figure 3.4 and 3.5, with L1CacheLineSize set to
16 bytes and sizeof(value) set to 4 bytes, we have group_size = 4 = 16/4.
The efficiency of L1 cache utilization by setting group_size to the number
of elements that fit in an L1 cache line is explained in Section 3.3.4.
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3.3.3 Block-swizzle load balancing
As discussed in Section 2.4, achieving load balancing is a key technique for
improving the efficiency of GPU computations. Load imbalance can primar-
ily occur in two ways [9]:

• Load imbalance among SMs.

• Load imbalance within a warp.

Addressing these issues is challenging since GPU scheduling algorithms
are not publicly disclosed, making the implementation of load balancing com-
plex.

To tackle this problem, Gale et al. [9] reverse-engineered [20] and gained
insights into the mechanism of load imbalance through a heuristic experi-
ment. From this experiment, it is determined that the mapping of thread
blocks to SMs is conducted in a round-robin manner. After the initial wave,
thread blocks are scheduled on SMs in the order of block_index as resources
become available. Based on this heuristic experiment, Gale et al. propose
row-swizzle load balancing as a solution to address the imbalance in load
distribution. This approach involves reordering rows based on the number
of non-zero elements within each row, arranging them in descending order
of non-zero elements. In the context of GCSB, we extend this technique to
blocks, introducing block-swizzle load balancing. Block-swizzle load balanc-
ing is a technique that achieves load balancing by reordering blocks based
on the number of non-zero elements within each block in descending order.
Figures 3.6 (a) and (b) respectively illustrate the mechanisms of load bal-
ancing among SMs and load balancing among threads through block-swizzle
load balancing. Concerning load balancing among SMs, rearranging blocks
in order of a higher number of non-zero elements leads to a round-robin
assignment of thread blocks with more non-zero elements, ensuring load bal-
ance among SMs. In the example in Figure 3.6 (a), it is assumed that one
group corresponds to one thread block. In the first round, thread blocks
with a higher number of non-zero elements, such as groupA and groupB, are
assigned to each SM, and in the next round, the next blocks with a higher
number of non-zero elements, such as groupC and groupD, are assigned.
Within the same thread block, blocks with a similar number of non-zero ele-
ments are processed by individual threads, achieving load balancing among
threads. In the example in Figure 3.6 (b), blocks with a similar number of
non-zero elements are assigned to threads with thread IDs ranging from 0 to
3, and computations are performed accordingly.
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(a) SM level load balancing.

(b) Thread level load balancing.

Figure 3.6: Block-swizzle load balancing.

3.3.4 Grouped block element reordering
As seen in Section 2.3, minimizing L1 cache misses is one of the methods to
optimize computations on the GPU.

Memory operations on the GPU are performed per warp. The GPU
cache line size is 128 bytes, and when 32 threads within a warp each request
a 4-byte value, 128 bytes of data are allocated for each request.

In CSB-baseline, each thread is assigned one block, and the computation
of the first element within each block is executed simultaneously. Therefore,
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when each thread accesses the memory of the first element, the addresses of
these elements are non-contiguous, resulting in one transaction per thread.
Subsequently, when each thread accesses the memory of the second element,
if the number of threads exceeds the number of L1 cache lines, another set
of transactions occurs. Repeating this worst case scenario for each non-
zero element results in a transaction for each non-zero element, becoming a
bottleneck in SpMV and SpMVT.

To address a similar issue in SpMV with CSR, VCSR, which is a method
to prevent cache misses by rearranging the values of CSR vertically, has been
proposed [13]. We have redefined this method for CSB and propose it as
a technique to enhance CSB-baseline, referred to as grouped block element
reordering.

Grouped block element reordering is a technique that involves grouping
multiple blocks together and rearranging the non-zero elements within the
blocks, as illustrated in Figure 3.4 (b), to enable coalesced memory access
within the SM. The size of a group of blocks is designed to match the number
of element that fit in an L1 cache line. By accessing memory in units of an
L1 cache line, coalesced memory access is achieved.

Figures 3.7 (a) and (b) respectively illustrate examples of L1 cache misses
before and after the application of grouped block element reordering. In this
example, the L1 cache has 2 cache lines, each with a size of 4, and the
group size is set to 4. It is assumed that no zero-padding is applied in the
pattern before the application of grouped block element reordering. The
Loop represents the loop in the kernel where each thread accesses non-zero
elements within a block. Orange arrows represent L1 cache misses, while
gray arrows represent L1 cache hits.

As shown in Figure 3.7 (a), before the application of grouped block el-
ement reordering, in the first loop, each thread incurs a total of three L1
cache misses when accessing the initial element of the block. Thread ID 3
experiences an L1 cache hit as there are already non-zero elements in L1
cache line 0. In the second loop, each thread incurs a total of three cache
misses when accessing the second element of the block. In Loop 3, a total
of four cache misses occur, and in Loop 4, a total of two cache misses occur.
Before the application of grouped block element reordering, a total of 12 L1
cache misses are incurred.

On the other hand, as shown in Figure 3.7 (b), after the application of
grouped block element reordering, there is only one L1 cache miss in each
loop, resulting in a total of four L1 cache misses. This represents a reduction
in L1 cache misses compared to the scenario before the application of grouped
block element reordering.
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(a) L1 cache misses without grouped block element reordering.

(b) L1 cache misses with grouped block element reordering.

Figure 3.7: Comparison of L1 cache misses between before and after appli-
cation of grouped block element reordering.

More generally, the naive CSB approach, which could potentially result
in nnz L1 cache misses in the worst case scenario, i.e., when the number of
L1 cache lines is much lesser than the number of blocks allocated to a single
SM. On the other hand, our method significantly reduces L1 cache misses
to

∑n
l
i=1max(bi), where nnz (number of non-zero elements in the matrix),

n_blocks (number of blocks), l (the number of elements that fit in an L1
cache line), nl (number of cache lines), and max(bi) (maximum number of
non-zero elements in a block within the group).

One important consideration in grouped block element reordering is the
potential for a significant increase in memory usage due to zero-padding.
When there is variation in the number of non-zero elements in each block
within a group, the other blocks are zero-padded to match the block with the
maximum number of non-zero elements. Assuming nnz � blocks and mem-
ory usage for block_indices and group_offset are negligible, the required
memory usage for GCSB is represented by the following equation:
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MemoryUsageGCSB ≈
n_groups∑

i=1

max(bi)l · (sizeof(value) + sizeof(index))

(3.5)

where max(b′i) represents the maximum number of non-zero elements in
each block within the group. If there is a substantial difference between the
maximum number of non-zero elements in the blocks within the group and
the number of zero elements in other blocks, the required memory usage can
significantly increase.

3.3.5 CUDA kernel for GCSB
Figures 3.8 and 3.9 show the CUDA Kernels for SpMV and SpMVT in GCSB,
respectively.

In GPU Kernel for SpMV, each thread performs multiplication within a
single block. To ensure that thread IDs do not exceed the number of blocks,
the thread ID remains within the block count in line 18. The original position
of thread i within the processing block in line 19. This position is used to
calculate the row and column indices of that block within the original matrix
in lines 29 and 30, respectively. In Lines 20 and 21, the index of the group
to which the block belongs and its position within that group are calculated.
In lines 22 and 23, the start and the end + 1 index of non-zero elements of
that group are obtained. In line 24, there’s a loop that iterates over non-zero
elements to be processed by thread i within the block. In line 25, the index
of the non-zero element to be processed in that loop is calculated. In lines 26
to 28, we extract the row and column indices of the non-zero element within
the block. In line 31, we perform the multiplication with an element of vector
x and store the result in the output vector y using atomicAdd.
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1 __global__ void KernelSpMVGCSB(const int n_blocks,
2 const int n_block_rows,
3 const int n_block_columns,
4 const int n_rows_per_block,
5 const int n_columns_per_block,
6 const int

digit_column_per_block,
7 const int group_size,
8 const float* values,
9 const int* comb_row_col_indices

,
10 const int* group_offset,
11 const int* block_indices,
12 const float* x,
13 float* y) {
14 int idx = blockDim.x * blockIdx.x + threadIdx.x;
15 int idy = blockDim.y * blockIdx.y + threadIdx.y;
16 int offset = gridDim.x * blockDim.x;
17 int i = idx + idy * offset;
18 if (i < n_blocks) {
19 int block_index = block_indices[i];
20 int group_index = i / group_size;
21 int offset_in_group = i % group_size;
22 int group_start = group_offset[group_index];
23 int group_end = group_offset[group_index + 1];
24 for (int j = group_start; j < group_end; j++) {
25 int k = j * group_size + offset_in_group
26 int comb_row_col_index = comb_row_col_indices[

k];
27 int row_index_in_block = comb_row_col_index >>

digit_column_per_block;
28 int column_index_in_block = comb_row_col_index

& ((1 << digit_column_per_block) - 1);
29 int block_row_index = block_index /

n_block_columns;
30 int block_column_index = block_index %

n_block_rows;
31 atomicAdd(&y[block_row_index *

n_rows_per_block + row_index_in_block],
values[k] * x[block_column_index *
n_columns_per_block + column_index_in_block
]);

32 }
33 }
34 }

Figure 3.8: SpMV CUDA kernel for GCSB.
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Regarding SpMVT, apart from the exchange of row index and column
index at line 31, it undergoes similar execution.
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1 __global__ void KernelSpMVTGCSB(const int n_blocks,
2 const int n_block_rows,
3 const int n_block_columns,
4 const int n_rows_per_block,
5 const int n_columns_per_block,
6 const int

digit_column_per_block,
7 const int group_size,
8 const float* values,
9 const int* comb_row_col_indices

,
10 const int* group_offset,
11 const int* block_indices,
12 const float* x,
13 float* y) {
14 int idx = blockDim.x * blockIdx.x + threadIdx.x;
15 int idy = blockDim.y * blockIdx.y + threadIdx.y;
16 int offset = gridDim.x * blockDim.x;
17 int i = idx + idy * offset;
18 if (i < n_blocks) {
19 int block_index = block_indices[i];
20 int group_index = i / group_size;
21 int offset_in_group = i % group_size;
22 int group_start = group_offset[group_index];
23 int group_end = group_offset[group_index + 1];
24 for (int j = group_start; j < group_end; j++) {
25 int k = j * group_size + offset_in_group
26 int comb_row_col_index = comb_row_col_indices[

k];
27 int row_index_in_block = comb_row_col_index >>

digit_column_per_block;
28 int column_index_in_block = comb_row_col_index

& ((1 << digit_column_per_block) - 1);
29 int block_row_index = block_index /

n_block_columns;
30 int block_column_index = block_index %

n_block_rows;
31 atomicAdd(&y[block_column_index *

n_columns_per_block + column_index_in_block
], values[k] * x[block_row_index *
n_rows_per_block + row_index_in_block]);

32 }
33 }
34 }

Figure 3.9: SpMVT CUDA kernel for GCSB.

43



3.4 Summary
In this chapter, we introduced our proposed methods: CSB-baseline, which
redefines CSB for GPUs, and GCSB, which further optimizes CSB-baseline
in terms of load balancing and L1 cache miss count.

Both CSB-baseline and GCSB are expected to achieve memory usage
almost equivalent to CSR, compared to COO or eCSB. Furthermore, GCSB
is expected to outperform CSB-baseline in SpMV or SpMVT due to the
improvements in load balancing through block-swizzle load balancing and
cache miss count reduction through grouped block element reordering.

However, both CSB-baseline and GCSB involve a trade-off between mem-
ory access and memory usage depending on the block size β × β. Therefore,
it is necessary to configure an appropriate β based on the platform and ma-
trix size. In the case of GCSB, there is a challenge when there is significant
variability in the number of non-zero elements within a group, as it can lead
to excessive memory usage allocation due to increased zero-padding.
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Chapter 4

Evaluation

4.1 Introduction
In this chapter, we evaluate the performance of GCSB in SpMV and SpMVT
through experiments. Firstly, we provide an overview of the platforms, sparse
matrices used in the experiments, and the sparse matrix storage formats
compared with GCSB. Next, we explain several metrics used to evaluate the
performance of GCSB. We then describe the results of the GCSB experi-
ments. The experiments include evaluations with matrices considered ideal
for GCSB, evaluations using the University of Florida Sparse Matrix Collec-
tion, and evaluations with matrices where non-zero elements are randomly
distributed. All matrices used in the experiments are square matrices with
equal row and column sizes, i.e., m = n.

In the experiments with matrices considered ideal for GCSB, we experi-
mentally determine the block size for GCSB and evaluate its performance in
terms of execution time, theoretical memory usage, and L1 cache miss counts
to evaluate if GCSB is functioning as intended.

For the experiments using the University of Florida Sparse Matrix Col-
lection, we evaluate whether GCSB can achieve theoretical memory usage
equivalent to CSR, if it is faster than CSR and CSB-baseline, and identify
specific characteristics of sparse matrices that allow GCSB to excel.

In the experiments with matrices where non-zero elements are randomly
distributed, we investigate how the experimental results vary based on the
proportion of non-zero elements and discuss the conditions under which
GCSB performs well.
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4.2 Evaluation conditions
We begin by describing the experimental setup and evaluation criteria. Next,
we conduct experiments using ideal matrices for GCSB to assess whether
each technique of GCSB functions effectively. Finally, we compare the per-
formance of SpMV and SpMVT with GCSB and other matrix storage formats
using various sparse matrices.

4.2.1 Experimental setup
All our experiments are conducted on NVIDIA TITAN RTX and NVIDIA
A100 GPUs. Table 4.1 presents the system specifications for these two GPUs.
The matrices used for SpMV and SpMVT calculations include intentionally
created sparse matrix that is ideal for GCSB, as well as several sparse ma-
trices selected from the University of Florida Sparse Matrix Collection, and
sparse matrices with uniformly random distributions of non-zero elements.
Table 4.2, 4.3 and 4.4 respectively provide the row and column counts, the
number of non-zero elements, and the percentage of non-zero elements in
each of these sparse matrices. Figure 4.1 shows the plot of space matrices
from the University of Florida Sparse Matrix Collection [7]. The performance
of GCSB is compared to COO, CSR, eCSB, and CSB-baseline. It is worth
noting that the results of SpMV and SpMVT calculations with eCSB are
based on COO-based methods.
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Table 4.1: System Specifications.

Parameter TITAN RTX A100
Architecture NVIDIA Turing NVIDIA Ampere
SMs 72 108
FP32 Cores / SM 64 64
FP64 Cores / SM - 32
FP32 Cores / GPU 4,608 6,912
FP64 Cores / GPU - 3,456
Compute capability 7.5 8.0
Number of cores 4,608 6,912
Peak FP32 16.3 TFLOPS 19.5 TFLOPS
Peak FP64 - 9.7 TFLOPS
Memory size 24GB 40 GB
L1 size 64 KB 192 KB
L1 line size 128 B 128 B
L2 size 6,144 KB 40,960 KB
L2 line size 32 B 64 B

Table 4.2: Ideal sparse matrix for GCSB.

Name Row/column Non-zeros Ratio of non-zeros (%)
ideal_matrix 8.19K/8.19K 3,406.20K 5.00
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Table 4.3: Benchmark matrices from the University of Florida Sparse Matrix
Collection.

Name Row/column Non-zeros Ratio of non-zeros (%)
msc00726 0.73K/0.73K 17.62K 3.34
spaceStation_4 0.95K/0.95K 7.1K 0.78
CAG_mat1916 1.92K/1.92K 195.99K 5.34
heart2 2.34K/2.34K 682.80K 12.48
psmigr_3 3.14K/3.14K 543.16K 5.51
raefsky6 3.40K/3.40K 137.85K 1.19
heart1 3.56K/3.56K 1,387.77K 10.97
exdata_1 6.00K/6.00K 1,137.75K 3.16
TSC_OPF_1047 8.14K/8.14K 1,012.52K 1.53
nemeth26 9.51K/9.51K 760.63K 0.84
sme3Da 12.50K/12.50K 874.89K 0.56
appu 14.00K/14.00K 1,853.10K 0.95
human_gene2 14.34K/14.34K 9,041.36K 4.40
olafu 16.15K/16.15K 515.65K 0.20
nd6k 18.00K/18.00K 3,457.66K 1.07
human_gene1 22.28K/22.28K 12,345.96K 2.49
nd12k 36.00K/36.00K 7,128.47K 0.55
mouse_gene 45.10K/45.10K 14,506.20K 0.71

Table 4.4: Uniformly random sparse matrices.

Name Row/column Non-zeros Ratio of non-zeros (%)
random_0.0001 8.19K/8.19K 6.71K 0.01
random_0.0005 8.19K/8.19K 33.55K 0.05
random_0.001 8.19K/8.19K 67.11K 0.10
random_0.005 8.19K/8.19K 335.55K 0.50
random_0.01 8.19K/8.19K 671.09K 1.00
random_0.05 8.19K/8.19K 3,355.44K 5.00
random_0.1 8.19K/8.19K 6,710.89K 10.00
random_0.2 8.19K/8.19K 13,421.77K 20.00
random_0.3 8.19K/8.19K 20,132.66K 30.00
random_0.4 8.19K/8.19K 26,843.55K 40.00
random_0.5 8.19K/8.19K 33,554.43K 50.00
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(a) msc00726 (b) spaceStation_4 (c) CAG_mat1916 (d) heart2

(e) psmigr_3 (f) raefsky6 (g) heart1 (h) exdata_1

(i) TSC_OPF_1047 (j) nemeth26 (k) sme3Da (l) appu

(m) human_gene2 (n) olafu (o) nd6k (p) human_gene1

(q) nd12k (r) mouse_gene

Figure 4.1: Plot of sparce matrices from the University of Florida sparse
matrices [7].
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For both TITAN RTX and A100, β and group_size in GCSB are set as
follows, using (3.3), (3.4) and L1 cache line size of both platforms in Table
4.1:

β ≤ L1CacheLineSize

sizeof(value)
=

128B
4B = 32

group_size =
L1CacheLineSize

sizeof(value)
=

128B
4B = 32

(4.1)

Regarding β, there is a trade-off between the level of parallelism and the
theoretical memory usage depending on its size. Therefore, based on the
results of experimenting with β in various patterns in Section 4.3, we seek
an appropriate β.

4.2.2 Evaluation aspects
We evaluate GCSB in terms of the execution times of SpMV and SpMVT,
the required theoretical memory usage, and L1 cache miss counts.

First, we perform a comparison between GCSB and other sparse matrix
storage formats using what we consider an ideal sparse matrix for GCSB. In
this comparison, we assess GCSB in terms of the execution times of SpMV
and SpMVT, required theoretical memory usage, and L1 cache miss counts.
Initially, we vary β of GCSB and CSB-baseline, comparing the execution
times and required theoretical memory usage with those of other sparse ma-
trix storage formats to determine suitable β for GCSB and CSB-baseline.
Subsequently, we compare the L1 cache miss counts between GCSB and
CSB-baseline to verify the effectiveness of GCSB.

Next, we compare GCSB with other sparse matrix storage formats using
the sparce matrices from the University of Florida Sparse Matrix Collection
for SpMV and SpMVT calculations. In this comparison, we evaluate them
based on the total speedup and the memory usage relative to CSR. Speedup
is calculated using Eq.(4.2) [13]. The execution time is defined as the sum of
the execution times for SpMV and SpMVT. The theoretical memory usage
ratio is calculated using Eq.(4.3).

SpeedUp =
ExecutionT imeCSR

ExecutionT imeSparseMatrixStorageFormat

(4.2)

MemoryUsageRatio =
MemoryUsageSparseMatrixStorageFormat

MemoryUsageCSR

(4.3)

Furthermore, we vary the proportion of non-zero elements within matri-
ces with uniformly random distributions of non-zero elements and evaluate
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GCSB. We compare the speedup and the memory usage of SpMV and Sp-
MVT relative to CSR. This allows us to observe how the performance of
GCSB changes depending on the ratio of non-zero elements.

4.3 GCSB evaluation
In this section, we evaluate the effectiveness of GCSB using a matrix that
is ideal for GCSB through a comparison with COO, eCSB, CSR and CSB-
baseline. Figure 4.2 illustrates an ideal matrix for GCSB. This matrix has
dimensions of 8192×8192 and contains 3,406,208 non-zero elements, which is
approximately 5% of total non-zero elements in the entire matrix. An ideal
matrix for GCSB is one in which the number of non-zero elements within
each block is the same across blocks in the row direction of the matrix.
Each color represents the magnitude of non-zero elements. Warm colors
represent a higher number of non-zero elements, while cool colors represent
a lower number of non-zero elements. Each row represents a block row,
indicating that blocks within the same block row have the same number of
non-zero elements. When such a matrix is transformed into GCSB, SpMV
and SpMVT calculations achieve thread-level load balance as the number of
non-zero elements in each block within a group becomes equal. Additionally,
the addresses for the dense vector x and output vector y, accessed by a single
thread block, are contiguous. This results in fewer cache misses, minimizing
the bottleneck associated with accessing dense vector x and output vector y.

Figure 4.2: Ideal matrix for GCSB.
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4.3.1 Evaluation on an ideal sparse matrix
We compare the results when the block sizes of CSB-baseline and GCSB are
varied. CSB-baseline and GCSB assign each thread to handle one block,
resulting in access to the output vector y for a number of rows in the case
of SpMV and a number of columns in the case of SpMVT. If the block size
is too large, the number of addresses accessed within the output vector y
increases. Conversely, if the block size is too small, the number of blocks
increases, leading to increased memory usage for block_indices. This trade-
off necessitates setting an appropriate block size. In this comparison, the
group size of GCSB is set to 32. This is because, in single-precision floating-
point, one value is 4 bits, and the L1 cache line size of TITAN RTX is 128
bits, as is the L1 cache line size of NVIDIA A100, allowing for the storage of
16 elements in each cache line on either platform.

Table 4.5 and 4.6 show the kernel execution times for SpMV and SpMVT,
respectively, for COO, eCSB, CSR, CSB-baseline, and GCSB when the block
size is varied from 8 to 128 in powers of 2 for both TITAN RTX and A100.
The execution times for COO and CSR remain constant as it is independent
of the block size. The execution time of eCSB also remains unchanged, as β
of eCSB is fixed at β = min(

√
n,

√
m). The results highlight that reducing

the block size from 128 to 16 leads to shorter execution times for both SpMV
and SpMVT in both CSB-baseline and GCSB. Both CSB-baseline and GCSB
achieve a smaller total execution time for SpMV and SpMVT than CSR when
reducing the block size to 32.

Table 4.5: Execution times of SpMV and SpMVT with an ideal matrix for
GCSB when block size varied on TITAN RTX (msec).

COO eCSB CSR CSB-baseline GCSB

Block size SpMV SpMVT SpMV SpMVT SpMV SpMVT SpMV SpMVT SpMV SpMVT

128 0.48 0.23 0.12 0.12 0.21 0.75 0.91 0.82 0.93 0.93
64 0.48 0.23 0.12 0.12 0.21 0.75 0.83 0.81 0.34 0.32
32 0.48 0.23 0.12 0.12 0.21 0.75 0.75 0.73 0.22 0.24
16 0.48 0.23 0.12 0.12 0.21 0.75 0.60 0.43 0.20 0.23
8 0.48 0.23 0.12 0.12 0.21 0.75 0.47 0.26 0.23 0.26
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Table 4.6: Execution times of SpMV and SpMVT with an ideal matrix for
GCSB when block size varied on A100 (msec).

COO eCSB CSR CSB-baseline GCSB

Block size SpMV SpMVT SpMV SpMVT SpMV SpMVT SpMV SpMVT SpMV SpMVT

128 0.50 0.21 0.12 0.11 0.15 0.50 0.87 0.88 0.91 0.90
64 0.50 0.21 0.12 0.11 0.15 0.50 0.51 0.55 0.38 0.41
32 0.50 0.21 0.12 0.11 0.15 0.50 0.18 0.28 0.17 0.27
16 0.50 0.21 0.12 0.11 0.15 0.50 0.15 0.25 0.14 0.25
8 0.50 0.21 0.12 0.11 0.15 0.50 0.26 0.24 0.13 0.25

Table 4.7 provides the required memory usage for COO, eCSB, CSR,
CSB-baseline, and GCSB at each block size. The required memory usage
for those sparse matrix storage formats are the same on both TITAN RTX
and A100. The kernels for SpMV and SpMVT using each sparse matrix
storage format only reverse the matrix indices during write operations, and
they utilize the same arrays. Therefore, the required memory usage is the
same for both SpMV and SpMVT. The memory usage for COO, eCSB and
CSR remains unchanged as it is not influenced by the block sizes of CSB-
baseline and GCSB. CSB-baseline and GCSB have memory footprints similar
to CSR, compared to COO and eCSB. For block sizes of 16 or lower, the
required memory usage of CSB-baseline and GCSB exceeds that of CSR by
more than 4 MB.

Table 4.7: Required memory usage with an ideal matrix for GCSB when
block size varied (MB).

Block size COO eCSB CSR CSB-baseline GCSB
128 163.50 163.50 109.13 109.06 109.07
64 163.50 163.50 109.13 109.26 109.50
32 163.50 163.50 109.13 110.05 110.15
16 163.50 163.50 109.13 113.19 113.35
8 163.50 163.50 109.13 125.78 126.13

We compare the L1 cache miss counts for CSB-baseline and GCSB with a
block size of 32, using an ideal matrix for GCSB. L1 cache miss counts refer
to cache misses at the sector level. A sector represents a 32-byte chunk within
an L1 cache line, and a 128-byte L1 cache line is divided into four sectors.
Access to a sector is considered a miss when sector data is not present within
the cache line. The counts of L1 cache misses are obtained using NVIDIA
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profiler. Table 4.8 presents the L1 cache miss counts for SpMV and SpMVT
on each platform. The L1 cache miss counts include cache misses resulting
from accessing the vector values, comb_row_col_indices, block_indices,
block_offset or group_offset, as well as accesses to vectors x and the out-
put vector y. Many of these cache misses are primarily attributed to accesses
to values and comb_row_col_indices, which constitute a significant portion
of the memory required for Kernel execution. From these results, it can be
observed that in both the TITAN RTX and A100, the L1 cache miss counts
for SpMV and SpMVT are lower for GCSB compared to CSB-baseline.

Table 4.8: Comparison of L1 cache miss counts between CSB-baseline and
GCSB.

CSB-baseline GCSB
Platform SpMV SpMVT SpMV SpMVT
TITAN RTX 4,846K 2307K 961K 897K
A100 1,521K 1,148K 964K 898K

4.4 Comparison of GCSB with various other
sparse matrix storage formats across dif-
ferent matrices

In this section, we evaluate the performance of GCSB using various matrices
selected from the University of Florida Sparse Matrix Collection and sparse
matrices with uniformly random non-zero elements. The comparison includes
COO, eCSB, CSR, and CSB-baseline as reference storage formats. For eval-
uation, we compare the speedup and the memory usage relative to those of
CSR.

4.4.1 Performance evaluation of GCSB on the Univer-
sity of Florida Sparse Matrix Collection

First, we compare the speedup and memory usage of other sparse matrix
storage formats relative to CSR using various matrices selected from the
University of Florida Sparse Matrix Collection.

Figures 4.3 and 4.4 show the speedup of COO, eCSB, CSB-baseline, and
GCSB relative to CSR on TITAN RTX and A100, respectively. The x-
axis of the figures displays matrices sorted in ascending order of their sizes
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from left to right. GCSB is 1.45×, 1.47×, 1.27×, and 1.23× faster than
CSR for the matrices appu, human_gene2, human_gene1, and mouse_gene,
respectively on TITAN RTX. Furthermore, GCSB outperforms CSB-baseline
for these matrices. GCSB is 1.08×, 1.41×, 1.41×, 2.10×, and 2.75× faster
than CSR for the matrices sm3Da, appu, human_gene2, human_gene1, and
mouse_gene, respectively on A100. Additionally, GCSB is faster than CSB-
baseline for the matrices appu, human_gene1, and mouse_gene. GCSB
outperforms COO for appu, human_gene1, and mouse_gene matrices in
both TITAN RTX and A100. GCSB is slower than eCSB for all matrices.

Figure 4.3: Speedup of the total execution time of SpMV and SpMVT for
COO, eCSB, CSB-baseline, and GCSB on the University of Florida Sparse
Matrix Collection compared to CSR on TITAN RTX.
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Figure 4.4: Speedup of the total execution time of SpMV and SpMVT for
COO, eCSB, CSB-baseline, and GCSB on the University of Florida Sparse
Matrix Collection compared to CSR on A100.

Based on these results and Figure 4.1, GCSB achieves a speedup over
CSR in sparse matrices where non-zero elements are distributed across the
entire matrix, unlike the other sparse matrices. Although psmigr_3 and
CAG_mat1916 also exhibit a relatively even distribution of non-zero ele-
ments across the matrix, these matrices are smaller in size compared to the
sparse matrices where GCSB achieves a speedup over CSR.

Figures 4.5 shows the memory usage of COO, eCSB, CSB-baseline, and
GCSB relative to CSR on TITAN RTX and A100. The memory usage of
SpMV or SpMVT is consistent across both TITAN RTX and A100 platforms.
The x-axis in Figures 4.5 displays matrices sorted in ascending order based
on their sizes. For matrices where GCSB achieves a speedup of more than
1.0 against CSR on both TITAN RTX or A100, the memory usage of GCSB
relative to CSR is 1.09× for sm3Da, 1.05× for appu, 1.01× for human_gene2,
1.02× for human_gene1, and 1.07× for mouse_gene. This indicates that
GCSB has a smaller memory footprint compared to eCSB and consumes
memory similar to CSR.
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Figure 4.5: Memory usage of SpMV or SpMVT for COO, eCSB, CSB-
baseline, and GCSB on the University of Florida Sparse Matrix Collection
compared to CSR.

4.4.2 Performance evaluation of GCSB on random sparse
matrices

Next, we compare the speedup and memory usage of CSR, COO, eCSB, CSB-
baseline, and GCSB based on the proportion of non-zero elements distributed
uniformly at random across the entire matrix. Figure 4.6 and 4.7 show
the speedup of various sparse matrix storage formats (COO, eCSB, CSB-
baseline, and GCSB) with respect to CSR on each of TITAN RTX and
A100, using the matrices listed in Table 4.4. The x-axis of Figures 4.6 and
4.7 is arranged in ascending order of the proportion of non-zero elements
in the sparse matrices. On TITIAN RTX, GCSB outperforms CSR when
the proportion of non-zero elements across the entire matrix is above 0.5%.
On A100, GCSB surpasses CSR when the proportion of non-zero elements
across the entire matrix is above 0.1%. The maximum speedup of GCSB over
CSR is 1.59× for random_0.2 on TITAN RTX and 2.8× on A100. When
comparing GCSB to CSB-baseline, GCSB performs better in matrices where
the proportion of non-zero elements across the entire matrix is higher than
CSR. In comparison to eCSB, GCSB is faster on TITAN RTX when the
proportion of non-zero elements across the entire matrix is above 5% and on
A100 when the proportion is above 20%. It is evident that GCSB exhibits
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improved performance when the proportion of non-zero elements across the
entire matrix is relatively large, compared to other sparse matrix storage
formats.

Figure 4.6: Speedup of the total execution time of SpMV and SpMVT for
COO, eCSB, CSB-baseline, and GCSB on random sparse matrices compared
to CSR on TITAN RTX.
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Figure 4.7: Speedup of the total execution time of SpMV and SpMVT for
COO, eCSB, CSB-baseline, and GCSB on random sparse matrices compared
to CSR on A100.

Figure 4.8 illustrates the proportion of memory usage for COO, eCSB,
CSB-baseline, and GCSB with respect to CSR in each sparse matrix for
SpMV or SpMVT. When the proportion of non-zero elements in the entire
matrix is 0.1% or less, the memory usage of GCSB and CSB-baseline exceeds
that of CSR. Even when compared to COO and eCSB, the memory usage
of GCSB and CSB-baseline is either greater or similar. This is due to the
small number of non-zero elements (nnz) compared to the number of blocks
(n_blocks). When the proportion of non-zero elements in the entire matrix is
0.5% or more, the memory usage of GCSB and CSB-baseline becomes smaller
than that of COO and eCSB. The proportion of memory usage of GCSB
with respect to CSR is 1.09× when the proportion of non-zero elements in
the entire matrix is 0.5%, and in matrices with a proportion of non-zero
elements greater than 1%, the proportion of memory usage with respect to
CSR becomes even smaller. For COO and eCSB, the proportion of memory
usage with respect to CSR is 1.48× when the proportion of non-zero elements
in the entire matrix is 0.5%, and in matrices with a proportion of non-zero
elements greater than 0.5%, the proportion of memory usage with respect to
CSR increases further.
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Figure 4.8: Memory usage of SpMV or SpMVT for COO, eCSB, CSB-
baseline, and GCSB on random sparse matrices compared to CSR.

From the results of speedup and memory usage relative to CSR in these
matrices, it is evident that when the proportion of non-zero elements in the
entire matrix is high, GCSB maintains memory usage similar to CSR while
achieving higher speedup than CSR. Furthermore, compared to eCSB, it is
observed that GCSB exhibits approximately 2/3 of the memory usage while
also being faster.

4.5 Summary
In this chapter, we evaluated the performance of GCSB through experiments.
In experiments with matrices considered ideal for GCSB, we demonstrated
that when the block size of GCSB is 32, it achieves faster execution times for
the total SpMV and SpMVT while maintaining memory usage equivalent to
CSR. Furthermore, under this configuration, GCSB was shown to be faster
than CSB-baseline and exhibited reduced L1 cache miss counts.

In experiments utilizing the University of Florida Sparse Matrix Collec-
tion, GCSB outperformed CSR in terms of total execution time for SpMV
and SpMVT while maintaining memory usage equivalent to CSR for several
sparse matrices. It was explained that these sparse matrices share common
characteristics, including relatively large matrix sizes and a distribution of
non-zero elements throughout the entire matrix.
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In experiments using matrices with randomly distributed non-zero ele-
ments, it was shown that for matrices where the number of blocks exceeds
the number of non-zero elements, the total execution time for SpMV and Sp-
MVT of GCSB can increase, and the required memory usage can exceed not
only CSR but also COO and eCSB. On the other hand, for matrices where
the number of non-zero elements is sufficiently high compared to the number
of blocks, GCSB maintains memory usage similar to CSR while achieving
a maximum speedup of up to 2.8× compared to CSR, and it is faster than
eCSB, which requires approximately 1.5× the memory usage of GCSB, de-
pending on the matrix.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions
Executing SpMV and SpMVT within the same application with basic sparse
matrix storage formats on a GPU poses challenges in terms of memory access
efficiency, and an existing method aiming to support both SpMV and SpMVT
on GPU lacks sufficient compression.

To tackle these challenges, we redefine CSB for GPU, referred to as CSB-
baseline, and introduce GCSB as an extension of CSB-baseline. Our goal
with GCSB is to execute SpMV and SpMVT faster than CSR by achiev-
ing load balancing and minimizing L1 cache miss counts, while maintaining
theoretical memory usage equivalent to that of CSR.

Our experimental results demonstrate that GCSB achieves a significant
speedup compared to CSR, with a maximum improvement of 1.47× on TI-
TAN RTX and 2.75× on A100. Remarkably, GCSB accomplishes this while
maintaining theoretical memory usage equivalent to CSR for specific matri-
ces from the University of Florida Sparse Matrix Collection. Additionally,
GCSB exhibits the ability to reduce L1 cache miss counts compared to CSB-
baseline. Furthermore, our qualitative evaluation indicates that GCSB out-
performs COO, CSR, and eCSB in scenarios where non-zero elements within
a matrix are widely distributed across the entire matrix, the matrix size is
sufficiently large, and the proportion of non-zero elements within the matrix
is relatively high.

5.2 Future works
There are several potential directions to further enhance the performance of
GCSB. Firstly, reducing the zero-padding in GCSB is one direction. Varia-
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tion in the number of non-zero elements within each block in groups of GCSB
result in additional zero-padding, increasing the required memory usage. In-
troducing methods to minimize zero-padding, similar to the approach used
in VCSR [13], may address this challenge effectively.

Secondly, optimizing memory accesses for vectors x and y in y = Ax or
y = ATx is also crucial. Strategies for achieving coalesced memory access
to matrix B in Spare Matrix-Matrix Multiplication (SpMM) C = AB have
been proposed [25]. Insights from these approaches may offer valuable direc-
tions for improving memory access for vectors x and y in GCSB, potentially
reducing L1 cache miss counts and achieving coalesced memory access.

Furthermore, investigating methods for efficiently implementing GCSB
in scenarios involving SpMM and Spare Matrix-Transpose-Matrix Multipli-
cation (SpMMT) is an intriguing area of research. Sparse matrices encoun-
tered in DNNs often exhibit characteristics align with the strengths of GCSB,
deviating from the sparse matrices commonly encountered in scientific com-
putations. Specifically, DNN-related sparse matrices tend to have a higher
proportion of non-zero elements within the matrix [9]. Additionally, these
non-zero elements are distributed in a non-structured manner throughout the
matrix. These unique characteristics suggest that GCSB has the potential
to excel in terms of performance when dealing with such matrices.
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