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Abstract

The rescheduling process is indispensable in actual production environments to adapt sched-

ules when significant disturbances render existing ones suboptimal. Manufacturers often

face the need to rapidly reschedule production tasks. This research presents a methodology

for production rescheduling in flow shop environments with machine failure disturbances,

named PPGA-ANN. The primary objective of the methodology is to minimize makespan

while ensuring sufficient computational time for rescheduling. Prior to production, the

proposed methodology includes a stage of training in which the Perturbation Population

Genetic Algorithm (PPGA) is employed to address generated scenarios of flow shop pro-

duction with machine failure problems. To validate the efficacy of PPGA, its performance

is compared to that of other research and the genetic algorithm by using the same data set

from a widely used scheduling benchmark. In addition, artificial neural networks (ANNs)

are used to store the PPGA-acquired rescheduling knowledge. During the stage of imple-

menting, when a machine failure occurs during production, ANNs provide the rescheduling

solution if the machine failure situation matches the generated scenarios. Otherwise, the

PPGA, incorporating the initial solution obtained from the ANNs, offers the reschedul-

ing solution. Experimental results consistently demonstrate that PPGA-ANN outperforms

benchmark algorithms in terms of makespans, while also providing expedited solutions com-

pared to the genetic algorithm and PPGA used individually. In conclusion, the proposed

PPGA-ANN for flexible manufacturing production rescheduling not only exhibits robust

performance in handling machine failures in scheduling problems but also provides faster

schedules, addressing the limitations of existing state-of-the-art meta-heuristic algorithms

that may have impractical computational times for implementation.

Keywords: production rescheduling, machine failure, flow shop production, genetic

algorithm, artificial neural network



Acknowledgement

I would like to extend my heartfelt appreciation to Professor Van-Nam Huynh, my

esteemed supervisor. His unwavering guidance and persistent assistance have been

instrumental in making this thesis a reality.

I am deeply thankful to Professor Hieu Chi Dam, my second supervisor, for his

generous support and invaluable insights.

I am also sincerely indebted to Associate Professor Warut Pannakkong, who not

only supervised my master’s degree but also served as an external committee member

for my defense. His unwavering support, kind assistance, and insightful suggestions

have been indispensable in the completion of this thesis.

I extend my gratitude to Professor Tsutomu Fujinami for his guidance and unwa-

vering support throughout my minor research project.

I would like to express my sincere appreciation to Professor Takashi Hashimoto

and Associate Professor Eunyoung Kim for their vital roles as committee members

during my defense. Their critical feedback has significantly strengthened the quality

of my research.

I am grateful to my colleagues and friends in the Huynh-Lab for their valuable

assistance and encouragement throughout my research journey.

I extend my thanks to the dedicated staff at JAIST for their exceptional support

and service during my time there.

Last but certainly not least, I want to express my deepest gratitude to my family

for their unwavering love, understanding, and constant support.

i



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Production Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . 10

2.2 Production Rescheduling . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . 12

3 Problem Description 17

3.1 Flow Shop Production . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Machine failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Methodology 24

4.1 Stage of Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Machine failure scenarios . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 PPGA for generating rescheduling solutions . . . . . . . . . . 28

4.1.3 ANNs for storing rescheduling knowledge . . . . . . . . . . . . 39

4.2 Stage of Implementing . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Initial solutions resulted by the ANNs . . . . . . . . . . . . . 50

4.2.2 Utilizing rescheduling knowledge from the ANNs into the PPGA 53

ii



5 Experimentation and Results 55

5.1 Machine Failure Scenarios Generation . . . . . . . . . . . . . . . . . . 56

5.2 Modification of Hyperparameters . . . . . . . . . . . . . . . . . . . . 57

5.3 Evaluation of the Experiments . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 The performance of PPGA in the stage of training . . . . . . 62

5.3.2 Effectiveness of the proposed PPGA-ANN in terms of compu-

tational time . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion 78

6.1 Extending the Scope: Applicability to Structured Problems . . . . . . 78

6.2 The Synergy of ANN and PPGA . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Artificial Neural Networks (ANNs): . . . . . . . . . . . . . . . 79

6.2.2 Perturbation Population Genetic Algorithm (PPGA): . . . . . 79

6.2.3 PPGA-ANN Combination: . . . . . . . . . . . . . . . . . . . . 80

6.3 Realism of Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 The Challenge of Finding Global Optima . . . . . . . . . . . . . . . . 82

6.5 Limitations of the Research . . . . . . . . . . . . . . . . . . . . . . . 82

7 Research Contributions 84

7.1 Methodological Contributions . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Practical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Contribution to Knowledge Science . . . . . . . . . . . . . . . . . . . 88

8 Conclusion and Future Work 90

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix 94

Bibliography 95

Publications 103

iii



List of Figures

3.1 Flow shop production . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Flow shop production with individual processing time . . . . . . . . . 19

3.3 Flow shop production with extended period of processing time . . . . 22

4.1 The proposed PPGA-ANN methodology . . . . . . . . . . . . . . . . 25

4.2 Example of machine failure scenarios . . . . . . . . . . . . . . . . . . 28

4.3 Workflow of the proposed PPGA . . . . . . . . . . . . . . . . . . . . 29

4.4 Chromosome representation . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Two-point crossover operator . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Swapping mutation operator . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Roulette wheel selection operator . . . . . . . . . . . . . . . . . . . . 37

4.8 Example solution generated by PPGA . . . . . . . . . . . . . . . . . 39

4.9 Workflow of the ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Data scaling of the inputs in the ANNs . . . . . . . . . . . . . . . . . 42

4.11 Transformation each solution from PPGA (SScen) into binary repre-

sentation for target outputs. (a) SScen and (b) Target outputs . . . . 43

4.12 Explanation of the ANNs’ architecture. (a) Inputs (processing time),

(b) Target outputs (the best position in the sequence), and (c) The

ANNs’ architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.13 The comprehensive hyperparameter optimization process . . . . . . . 48

4.14 Repetitive positions in the sequence . . . . . . . . . . . . . . . . . . . 51

4.15 Managing repetitive positions in the sequence . . . . . . . . . . . . . 52

5.1 Experiment on population size (P ) . . . . . . . . . . . . . . . . . . . 59

5.2 Result comparison between the GA and the PPGA . . . . . . . . . . 64

iv



5.3 The box plot of makespan: a comparison between GA and PPGA . . 65

5.4 Convergence comparison of the GA, PPGA, and PPGA with initial

solutions from the trained ANNs (PPGA-ANN) . . . . . . . . . . . . 68

5.4 Convergence comparison of the GA, PPGA, and PPGA with initial

solutions from the trained ANNs (PPGA-ANN) (cont.) . . . . . . . . 69

5.4 Convergence comparison of the GA, PPGA, and PPGA with initial

solutions from the trained ANNs (PPGA-ANN) (cont.) . . . . . . . . 70

5.4 Convergence comparison of the GA, PPGA, and PPGA with initial

solutions from the trained ANNs (PPGA-ANN) (cont.) . . . . . . . . 71

5.4 Convergence comparison of the GA, PPGA, and PPGA with initial

solutions from the trained ANNs (PPGA-ANN) (cont.) . . . . . . . . 72

5.5 The observed in the duration of the average makespan (minutes) when

machine failure occurs, comparing un-rescheduled (Un) and resched-

uled (Re) production. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



List of Tables

5.1 The hyperparameters employed by the GA, the PPGA, and the ANNs 58

5.2 The hyperparameters’ range used in the ANNs . . . . . . . . . . . . . 60

5.3 Makespan comparison of PPGA, GA, DWWO, IIGA, DSOMA, and

HGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Comparison of the average makespan (minutes) when machine failure

occurs, comparing un-rescheduled (Un) and rescheduled (Re) production. 75

8.1 The base processing time (pij) from Taillard’s benchmark . . . . . . . 94

vi



Chapter 1

Introduction

In the dynamic landscape of manufacturing, where unforeseen disruptions can

strike at any moment, the ability to swiftly and efficiently reschedule production sys-

tems assumes a pivotal role as a critical decision support function. Its significance

cannot be overstated in ensuring the overall success of manufacturing processes, par-

ticularly in the contemporary fiercely competitive business environment. The effec-

tiveness of production scheduling and rescheduling takes on added importance in the

current competitive landscape [22]. Its objectives extend beyond merely facilitating

the adoption of innovative production processes; they encompass the strategic maxi-

mization of resource utilization, ensuring the sustainable survival of businesses within

an intensely competitive marketplace.

Within the context of today’s fast-paced manufacturing environments, the im-

perative for rapid adaptation to unexpected disruptions looms large. Flow shop

production, distinguished by its linear arrangement of machines, presents distinc-

tive challenges when it comes to rescheduling in response to disruptive events like

machine failures. While traditional optimization techniques remain valuable, their

efficacy is constrained when confronted with the dynamic nature of these disruptions.

Concurrently, the emergence of machine learning algorithms, with a spotlight on arti-

ficial neural networks (ANNs), has opened promising avenues for addressing real-time

rescheduling challenges.

To bridge the divide between traditional optimization methods and the realm of

machine learning, our research has embraced hybrid methodologies. These innovative
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approaches are meticulously crafted to harness the distinct strengths of optimiza-

tion techniques, such as genetic algorithms, and the formidable capabilities of ma-

chine learning. The overarching objective is clear: to realize the swift and effective

rescheduling of production in flow shop environments. The seamless fusion of these

two paradigms holds the promise of expediting rescheduling processes while minimiz-

ing production downtime, thereby augmenting the overall efficiency of manufacturing

operations.

1.1 Problem Statement

Traditionally, pre-defined timetables have been the standard practice in produc-

tion manufacturing for many decades. However, achieving optimum productivity

while adhering to the predetermined timetable has become increasingly challenging

in the current production environment characterized by high uncertainty and com-

plexity. Various studies have explored dynamic scheduling or rescheduling techniques

to minimize the impact of deliberate or accidental disruptions on production opera-

tions. Despite this, it is widely known that very few practical applications have been

implemented in real-world industries [55].

In dynamic manufacturing, where variability often emerges, production reschedul-

ing is typically required to mitigate the consequences of disrupted events while main-

taining optimal performance [58]. Substantial disruptions in production, such as ma-

chine failure, urgent orders, or changes in delivery dates, make it impossible to adhere

to previously established schedules and, thus, are identified as rescheduling factors

[13]. While there are various factors that contribute to uncertainty in manufacturing,

the failure of technological machinery is still considered to be the central problem [45].

The common causes of rescheduling in the manufacturing industry is machine fail-

ure, which frequently results in substandard equipment performance. Consequently,

manufacturers face the significant challenge of rescheduling actions promptly and

effectively to maintain high production levels. In contrast to actual production envi-

ronments, where unreliable machines may delay product launch, many researchers in

production scheduling have presumed that machines will be available throughout the
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planning horizon. [31].

In recent years, the emergence of Industry 4.0 has led to an increased focus on new

perspectives and challenges in the research of dynamic production scheduling [22]. In

light of this, this research proposes a hybridization methodology for rescheduling flow

shop production in the event of machine failure. This methodology combines a meta-

heuristic algorithm, represented by a proposed genetic algorithm, with a supervised

learning technique, represented by an ANN. This methodology’s primary objective is

to quickly generate a new production schedule while minimizing the makespan.

This research first develop the production with machine failure scenarios. The Per-

turbation Population Genetic Algorithm (PPGA) is proposed and utilized to solve

and determine the optimal solution for each scenario of large-scale flow shop produc-

tion with machine failure. The performance of the PPGA is evaluated by adopting

the benchmark from Taillard [51] and comparing the results with the other research

algorithms. Furthermore, ANNs are trained using the information obtained from ma-

chine failure scenarios and their respective solutions. The solutions generated by the

trained ANNs are expected to serve as the best solution for rescheduling, even if they

are suboptimal, and can be used as an initial solution for PPGA. The PPGA-based

knowledge generated by the trained network is expected to provide a near-optimal

solution in a shorter computing time than PPGA without knowledge.

In conclusion, the proposed rescheduling methodology is evaluated based on op-

timality and computing time and compared to traditional genetic algorithm and the

PPGA without knowledge. The results demonstrate the effectiveness of the suggested

hybridization methodology and its ability to minimize the impact of machine failure

in flow shop production. The proposed methodology has significant potential for

practical implementation in real-world manufacturing environments, and it opens up

new avenues for future research in the field of dynamic production scheduling.

1.2 Research Objectives

• Development of an Innovative Rescheduling Methodology: The fore-

most objective of this research is to pioneer the development of a cutting-edge
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production rescheduling methodology tailored explicitly for flow shop environ-

ments plagued by machine failure disturbances. The primary aim is to create

a methodology that not only minimizes the makespan, a pivotal metric in pro-

duction efficiency but also ensures that the computational time required for

rescheduling remains within practical bounds. This objective underscores the

significance of crafting solutions that are not only theoretically sound but also

operationally feasible. By achieving this goal, the research addresses the press-

ing need for agile and efficient rescheduling strategies in contemporary manu-

facturing landscapes.

• Practical Relevance and Efficacy Demonstration: Another crucial re-

search objective is to demonstrate the practical relevance and efficacy of the

proposed methodology in effectively managing and mitigating machine failure

issues within the broader context of scheduling challenges in flexible manufac-

turing environments. This entails conducting extensive numerical experiments

and empirical validations that provide concrete evidence of the methodology’s

real-world applicability. By showcasing its performance in a practical setting,

the research contributes to bridging the gap between theoretical advancements

and industry requirements. It not only provides a theoretical framework but

also serves as a practical guide for manufacturers seeking solutions to address

machine failures and optimize their production schedules.

• Advancement of Meta-Heuristic Algorithms: An overarching research

objective is to contribute significantly to the advancement of current meta-

heuristic algorithms for production rescheduling. This objective encompasses

the introduction of a more efficient and expedient methodology, which stands as

a testament to the relentless pursuit of excellence in optimization techniques.

By combining the PPGA with ANNs, this research showcases the potential

for synergy between different approaches. The aim is to enhance the explo-

ration and exploitation capabilities of algorithms in solving complex production

rescheduling problems. This objective underscores the commitment to pushing

the boundaries of meta-heuristic algorithms and unlocking new horizons in the
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field of production scheduling and rescheduling.

In summary, these research objectives collectively represent a holistic and am-

bitious endeavor aimed at fostering innovation and achieving excellence within the

sphere of production rescheduling. They embody a steadfast commitment not only to

confronting present challenges but also to establishing a solid foundation for prospec-

tive advancements, thereby ensuring that this research constitutes a durable and

invaluable contribution to both the academic and industrial realms.

1.3 Chapter Organization

• Chapter 1: This pivotal chapter serves as the gateway to the dissertation’s

exploration. It expertly introduces the concept of production rescheduling,

emphasizing its significance in addressing dynamic manufacturing challenges.

It succinctly articulates the problem statement and lays out the well-defined

research objectives, providing a clear roadmap for the study’s trajectory. Ad-

ditionally, the chapter offers readers a valuable guide by outlining the disserta-

tion’s organization, making navigation through the forthcoming content seam-

less and comprehensible.

• Chapter 2: In this comprehensive chapter, a thorough and erudite examina-

tion of the pertinent literature is presented. The extensive review encompasses

production scheduling, genetic algorithm applications in the context of produc-

tion scheduling, production rescheduling, and the realm of Artificial Intelligence

(AI)-based methodologies, with a particular emphasis on ANNs. This chapter

serves as the foundational knowledge base upon which the research is built,

showcasing the existing landscape of relevant scholarship and highlighting gaps

and opportunities for innovative contributions.

• Chapter 3: An essential component of the dissertation, this chapter delves

into the intricacies of the flow shop production problem. Its meticulous and

exhaustive exploration encompasses various facets and nuances of this complex
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challenge. By providing a deep understanding of the problem domain, this chap-

ter equips readers with the necessary background to appreciate the complexities

addressed by the proposed methodology.

• Chapter 4: At the heart of the dissertation lies this chapter, where the innova-

tive and comprehensive methodology for generating rapid production reschedul-

ing solutions takes center stage. Painstakingly designed to counteract the dis-

ruptive impact of machine failures in dynamic manufacturing systems, this

methodology represents a significant contribution to the field. It aspires to

enhance production process performance and efficiency, even under challenging

circumstances, making this chapter a cornerstone of the research.

• Chapter 5: This empirical chapter embodies the numerical implementation

and experimental rigor of the proposed methodology. It offers tangible evidence

to validate the effectiveness of the methodology through exhaustive testing and

analysis. By evaluating the methodology’s performance and its practical ap-

plicability, this chapter ensures that the research findings can be confidently

applied in real-world manufacturing scenarios.

• Chapter 6: This chapter offers a comprehensive exploration and in-depth dis-

cussion of critical aspects related to the research findings and methodology.

• Chapter 7: This chapter encapsulates the research’s contributions, which span

methodological implications, practical applicability, and advancements in the

field of Knowledge Science. By articulating the multifaceted ways in which

this research extends the boundaries of knowledge, this chapter underscores the

significance of the study’s outcomes.

• Chapter 8: In this concluding chapter, the research journey culminates in the

presentation of its key findings and their implications. It also humbly acknowl-

edges the limitations encountered along the way, serving as an honest reflection

on the study’s scope. Furthermore, this chapter provides valuable signposts

for future research directions, igniting the torch for continued exploration and

innovation in the field.
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Chapter 2

Literature Review

A thorough review of related research serves as a critical foundation for under-

standing the methodologies and strategies previously deployed in addressing the in-

tricate challenges of production scheduling and rescheduling. It enables us to glean

valuable insights into the landscape of prior research endeavors and discern effective

strategies for the seamless integration of the proposed production rescheduling sys-

tem. This comprehensive review of earlier research not only illuminates the method-

ologies employed but also elucidates the problem domains they aimed to tackle. It

provides a roadmap for engaging in a meaningful discourse, positioning critical issues,

and delineating the underlying purpose that steers the methodology adopted in this

research.

Within the annals of scholarly inquiry, this chapter undertakes the arduous task

of conducting an extensive literature review, focusing intently on the multifaceted

realm of production scheduling and rescheduling, with a specialized emphasis on the

intricate dynamics of flow shop operations. Notably, as of our current understand-

ing, the rescheduling conundrum within the context of flow shop production has not

received the level of scholarly attention commensurate with its complexity. Thus,

the pioneering development of an integrative rescheduling methodology tailor-made

for the unique intricacies of flow shop production stands as a significant and highly

valuable contribution forged by this research.

The review encompasses not only an examination of the limitations inherent in

previous flow shop scheduling methods but also an in-depth discussion of novel per-
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spectives and preexisting research efforts dedicated to the formidable challenge of pro-

duction rescheduling. This meticulous survey of the literature forcefully underscores

the pressing need for innovative approaches to tackle the complexities of production

rescheduling and accentuates the potential advantages that the proposed methodol-

ogy holds in store. Indeed, the proposed methodology, PPGA-ANN, emerges as a

direct response to the limitations identified in prior approaches. By harnessing the

combined strengths of meta-heuristic algorithms and machine learning, PPGA-ANN

offers a beacon of hope in the face of the formidable challenges posed by production

rescheduling, charting a course towards more efficient and effective solutions.

2.1 Production Scheduling

In the realm of academia, production scheduling has captured the interest of

scholars from various disciplines for many decades. Graves [21] provides a succinct yet

comprehensive definition of production scheduling as the intricate task of determining

the most optimal schedule or sequence for a group of activities within a production

line. This definition highlights the fundamental challenge that lies at the heart of

production scheduling—balancing the multitude of factors to achieve efficiency and

effectiveness. Notably, this topic has garnered significant recognition, solidifying its

position as a well-established field of study. Moreover, it is widely acknowledged to be

an NP-hard problem [5], signifying the formidable computational complexities that

underlie this domain.

The approach taken to scheduling is heavily contingent on the specific machine

environment in which it operates. These environments encompass a diverse range,

including the flow shop, job shop, parallel machine, and single machine settings [41].

Among these, the flow shop operation stands out as a prominent and extensively

utilized production configuration. A multitude of industries, ranging from the au-

tomotive and automobile manufacturing sectors [17, 62] to the plastics industry [3]

and the wood industry [16], have embraced the flow shop operation for its applicabil-

ity in streamlining production processes and enhancing efficiency. This widespread

adoption underscores its pivotal role in modern manufacturing.
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The historical trajectory of research in this domain traces back to the 1950s when

scholars began delving into the challenge of minimizing makespan in production se-

quencing problems. Johnson’s seminal work in 1954 [23] marks a significant milestone,

as it introduced a simple yet effective algorithm tailored for two-machine flow shop

scheduling. This pioneering work laid the foundation for the emergence of schedul-

ing as an independent and vibrant field of research, characterized by a diverse array

of approaches and methodologies. The ensuing decades witnessed a proliferation

of research efforts, each contributing to the ever-evolving landscape of production

scheduling.

In the realm of production scheduling, the availability of exact optimization al-

gorithms, as exemplified by studies such as [48], [53], and [20], is indeed noteworthy.

However, while exact solvers possess the theoretical capability to provide optimal solu-

tions, their practical effectiveness diminishes considerably as the scale and complexity

of production scheduling problems increase. In real-world manufacturing scenarios,

the need for optimal solutions for moderate- and large-scale problems is relatively

rare [61]. This practical constraint has led researchers and practitioners to explore

alternative avenues, particularly heuristic algorithms.

Heuristic algorithms, including well-known approaches like those described in [35],

[49], and [66], offer a more pragmatic approach to tackling production scheduling

challenges. These methods, while delivering reasonably good solutions, grapple with

the substantial computational time required for moderately sized problems. Conse-

quently, a notable shift has transpired in recent years, with researchers increasingly

turning to meta-heuristic algorithms as a means of striking a balance between solution

quality and computational efficiency.

Drawing from the extensive body of literature, it becomes evident that various

meta-heuristic algorithms have found utility in addressing the intricacies of flow shop

scheduling. Notable examples encompass tabu search [18], iterated greedy [44], simu-

lated annealing [60], ant colony optimization algorithms [14], genetic algorithms [63],

and the arithmetic optimization algorithm [1]. Among these, genetic algorithms have

emerged as particularly popular and effective tools, garnering attention for their pro-

ficiency in solving operational management problems, including scheduling challenges
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[24]. Genetic algorithms, with their adaptability and applicability to large and con-

tinuous search spaces [25], have carved out a prominent niche within the landscape

of meta-heuristic solutions for production scheduling.

2.1.1 Genetic Algorithm (GA)

The genetic algorithm, a powerful meta-heuristic optimization technique, derives

its inspiration from the intricate mechanisms of natural selection and evolution. It

operates by emulating genetic processes like crossover, mutation, and selection, metic-

ulously navigating the vast solution space in pursuit of optimal or near-optimal so-

lutions to intricate problems. Through the iterative refinement of a population of

potential solutions, the genetic algorithm diligently strives to converge upon solu-

tions that exhibit superior performance.

Its prowess in swiftly generating efficient results within reasonable timeframes has

rendered the genetic algorithm an invaluable tool in the realm of scheduling problems

[42]. Researchers and practitioners have harnessed its capabilities to craft diverse

scheduling strategies tailored to address an array of complex challenges. These en-

deavors encompass optimizing workflow execution costs in cloud computing environ-

ments while adhering to stringent deadlines [32], resolving the intricate routing and

scheduling problems inherent in parcel delivery services [40], tackling the demand-

ing hybrid flow shop scheduling scenarios encountered in production scheduling [63],

and addressing the multifaceted flexible job shop environments replete with sequence-

dependent set-up times and job lag times [59].

However, despite its effectiveness, the genetic algorithm is not without its limita-

tions. One significant challenge lies in its susceptibility to becoming ensnared within

local optima or succumbing to premature convergence during its exploration of the

solution space [4, 56]. This phenomenon, known as getting trapped in local optima,

denotes a scenario where the algorithm becomes entrenched within a suboptimal so-

lution, effectively restricting its search to a confined region of the solution space. In

essence, the algorithm struggles to venture beyond the boundaries of the local op-

timum in pursuit of better or globally optimal solutions. This tendency is often a

consequence of the algorithm’s reliance on local search procedures, which prioritize
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incremental improvements to the current solution, inadvertently limiting the explo-

ration of alternative regions within the expansive solution space. The implications

of getting trapped in local optima can be particularly pronounced in complex opti-

mization problems like scheduling and rescheduling, potentially yielding suboptimal

outcomes.

In response to these challenges, the proposed Perturbation Population Genetic

Algorithm (PPGA) emerges as an evolutionary leap beyond the conventional genetic

algorithm. PPGA is meticulously designed to mitigate the limitations inherent in

its predecessor, offering a more robust and efficient approach to solving complex

scheduling and rescheduling problems.

However, while meta-heuristic algorithms, including genetic algorithms, demon-

strate remarkable prowess in handling large-scale production scheduling challenges,

they may still grapple with computational time constraints when faced with the exi-

gencies of rapid production rescheduling in the wake of unforeseen disruptions. Fur-

thermore, it is worth noting that a substantial portion of scheduling research tends

to overlook the real-world execution nuances that may manifest when implementing

global manufacturing schedules. These studies often make the assumption that the

algorithm will execute the schedule with pinpoint precision. Hence, the core objec-

tive of this research is to enhance the genetic algorithm’s meta-heuristic framework,

transforming it into an adept and well-suited solution for the intricate landscape of

rescheduling challenges, thereby bridging the gap between optimization and real-world

manufacturing execution.

2.2 Production Rescheduling

Unforeseen disruptions in the realm of production operations can introduce de-

lays, especially in environments characterized by high levels of production activity. It

becomes imperative to assess whether a new production schedule is warranted to mit-

igate the repercussions of these delays and uphold commitments to customers. The

concept of ”production rescheduling” encompasses the dynamic adjustment of pro-

duction plans to accommodate the shifts necessitated by flexible working conditions

11



and disruptions encountered on the shop floor. These challenges introduce significant

complexities, resulting in a growing array of factors that must be considered dur-

ing the rescheduling process. The task of updating existing scheduling systems and

swiftly reaching a new optimal solution for pending work orders is a time-intensive

endeavor [61]. Consequently, rescheduling challenges have garnered sustained atten-

tion from various quarters, including academic institutions and corporate enterprises.

Several comprehensive review studies, such as those conducted by Vieira, Herrmann,

and Lin [58], Ouelhadj and Petrovic [38], Cardin et al. [7], Uhlmann and Frazzon [55],

and Larsen and Pranzo [29], have delved into the multifaceted domain of production

rescheduling.

In pursuit of solutions to the intricate challenges intertwined with production

rescheduling, a multitude of research initiatives have been undertaken. Sabuncuoglu

and Goren [43] pioneered the concept of proactive scheduling, an innovative approach

that melds decision theory with rescheduling policies to establish robustness and

stability metrics. Dong and Jang [11] introduced heuristic algorithms and devised

the Wilkerson-Irwin algorithm, grounded in an active schedule generation process,

to mitigate rescheduling tardiness stemming from machine breakdowns. Kundakci

and Kulak [28] unveiled a hybrid genetic algorithm tailored for dynamic scheduling

challenges. This algorithm not only delivers high-quality results expeditiously but

also minimizes computational demands, offering a practical solution for real-world

rescheduling scenarios. These research endeavors collectively exemplify the ceaseless

pursuit of innovative methodologies to navigate the intricate landscape of production

rescheduling.

2.2.1 Artificial Neural Network (ANN)

The realm of Artificial Intelligence (AI) has witnessed a notable surge in atten-

tion within the context of production scheduling and rescheduling. This heightened

interest can be attributed to AI’s remarkable capability to furnish real-time solu-

tions, addressing the evolving challenges of dynamic manufacturing environments.

Evidently, research featured in distinguished journals has consistently advocated for

the strategic integration of AI and machine learning as a means to surmount the
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inherent limitations in these intricate manufacturing landscapes [6, 30, 39, 57].

However, despite the growing recognition of AI’s potential, enlightening insights

gleaned from the study conducted by Usuga et al. [57] cast a revealing light on the ex-

isting research landscape. It emerges that a significant portion, approximately 75%, of

potential research avenues in this domain have scarcely delved into the transformative

capabilities of machine learning for production planning and control. This revelation

underscores the substantial untapped potential awaiting further exploration within

this fertile research territory. The call for deeper investigation echoes throughout aca-

demic circles, urging scholars to embark on journeys of discovery aimed at unlocking

the latent possibilities that lie at the intersection of machine learning and production

management.

The ascendancy of AI-based methodologies has left an indelible mark on diverse

research domains, propelling the exploration of a myriad of alternative optimization

strategies. Within this transformative landscape, machine learning has ascended to

the forefront as a formidable tool for crafting optimization algorithms that harness

the power of experiential learning from problem instances. A noteworthy instance

of this paradigm shift is the introduction of a fuzzy neural network by Zhang et al.

[64]. This innovative approach meticulously tailors a decision model for rescheduling,

drawing inspiration from the principles of fuzzy logic and neural networks. By adapt-

ing to system states and disturbances, this methodology offers a promising avenue for

rescheduling in dynamic environments. However, it’s important to note that while it

demonstrates potential, this approach has yet to be fully implemented or rigorously

tested within the complex terrain of manufacturing systems.

Furthermore, the realm of reinforcement learning has garnered considerable at-

tention in addressing intricate optimization challenges. Nazari et al. [36] harnessed

the power of reinforcement learning to tackle the formidable vehicle routing problem

(VRP). Their approach leverages the computation of rewards and incorporates an at-

tention mechanism to optimize routing decisions. This innovative fusion of machine

learning principles and optimization strategies represents a significant advancement

in the domain of logistics and transportation, where efficient routing is paramount.

Nonetheless, it’s imperative to recognize that the applicability of such reinforcement
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learning approaches extends beyond VRP and holds substantial promise in addressing

various production rescheduling challenges within manufacturing systems.

In the context of the rapidly evolving landscape of Industry 4.0, Li et al. [30] un-

veiled a groundbreaking integrated approach that seamlessly combines the prowess of

machine learning with optimization algorithms. Their innovative methodology aims

to discern rescheduling trends and effectively address the intricate flexible job shop

scheduling problem. By leveraging the capabilities of machine learning, this approach

not only identifies critical rescheduling patterns but also harnesses optimization tech-

niques to craft efficient schedules. This interdisciplinary fusion reflects the increasing

relevance of AI and machine learning in modern manufacturing, where adaptability

and efficiency are paramount.

In response to the unprecedented challenges posed by the COVID-19 pandemic,

Wu et al. [61] pioneered a novel solution rooted in ANNs integrated with reinforce-

ment learning. Their innovative approach focuses on the emergency scheduling of

medical mask production, where timely and efficient scheduling can be a matter of life

and death. While their algorithm has demonstrated remarkable speed in scheduling,

there is a recognition that further refinement, particularly in the realm of reinforce-

ment learning, can elevate its capabilities. This opens up avenues for future research

to fortify the foundation of reinforcement learning within the context of manufactur-

ing rescheduling.

The integration of ANNs with genetic algorithms (GAs) has been a subject of

interest for Takeda-Berger and Frazzon [52]. Their pioneering work introduces an

inventory data-driven predictive-reactive production scheduling model that marries

the predictive strength of ANNs with the optimization prowess of GAs. This innova-

tive model not only generates predictive schedules using the ANN-GA approach but

also incorporates a simulation-based optimization method to craft reactive schedules.

This dual-focused approach, encompassing both predictive and reactive schedules,

highlights the adaptability and versatility of ANNs in addressing dynamic manu-

facturing challenges. It further underscores the potential for hybrid methodologies

to offer comprehensive solutions for production rescheduling in complex, real-world

scenarios.
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The integration of ANNs into the proposed methodology is underpinned by several

compelling reasons, each enhancing the methodology’s effectiveness and adaptability.

First and foremost, ANNs exhibit an impressive capacity for capturing intricate pat-

terns and deciphering complex relationships within large and convoluted datasets. In

the context of production rescheduling, ANNs shine in their ability to comprehend

and represent the multifaceted interconnections among various production parame-

ters and the myriad scenarios of machine failures. This innate capability empowers

ANNs to generate precise and insightful initial solutions, laying a robust foundation

for the rescheduling process.

Secondly, the trained ANN bolsters the proposed methodology’s computational

speed, rendering it exceptionally advantageous in time-critical production environ-

ments that demand rapid decision-making. Leveraging the computational prowess of

ANNs, the proposed methodology excels at swiftly and efficiently producing reschedul-

ing solutions, ensuring timely adaptations in dynamic manufacturing settings. This

accelerated decision-making capability is instrumental in minimizing production dis-

ruptions and their associated costs.

Furthermore, ANNs exhibit a capacity for learning and adaptation, enabling them

to flexibly respond to new and unforeseen instances that may deviate from the train-

ing data. This adaptability makes ANNs well-suited for scenarios in which machine

failures manifest in ways not explicitly encountered during the training phase. The

inherent flexibility and adaptability of ANNs bolster the robustness and applicabil-

ity of the proposed methodology in tackling diverse and ever-evolving production

rescheduling challenges. It’s essential to acknowledge that ANNs, like any tool, have

limitations. In cases where new instances significantly depart from the training data,

the solutions offered by ANNs may fall short of optimality. Hence, the integration of

a meta-heuristic component becomes imperative to ensure the attainment of optimal

or near-optimal solutions. This synergy between ANNs and meta-heuristics further

fortifies the rescheduling methodology’s resilience and computational efficiency.

In recognition of the evolving landscape of production rescheduling, this research

underscores the importance of continued investigation in this domain. By emphasiz-

ing the need for further research, it contributes to the ongoing scholarly discourse and
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advocates for intensified efforts aimed at refining and expanding the applications uti-

lized in production rescheduling. This acknowledgment underscores the significance

of perpetual improvement and the pursuit of innovative scheduling methodologies,

which are essential for staying competitive and adaptable within the dynamic manu-

facturing sector.
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Chapter 3

Problem Description

3.1 Flow Shop Production

In the realm of production and manufacturing processes, the flow shop configura-

tion stands out as a distinctive and well-defined production system [33]. Within this

configuration, a predetermined sequence of machines or workstations is meticulously

arranged in a specific order [34], as visually depicted in Figure 3.1. Within this linear

flow of work, each job or product adheres to an unchanging and predefined sequence

of operations. This sequence is rigorously followed as the job progresses through the

series of workstations. Each machine is dedicated to executing particular tasks, and

once a job reaches the culmination of its processing at one machine, it seamlessly

transitions to the subsequent machine in the predefined sequence.

At the core of flow shop scheduling lies a fundamental objective: the determination

of the most optimal sequence in which jobs should traverse these machines [16]. This

optimization endeavor aims to minimize an array of critical performance metrics.

These metrics may encompass the minimization of the makespan, which signifies the

total time needed to accomplish all jobs, or the reduction of production time and

costs. For the purposes of this research, the central focus within the domain of

flow shop scheduling is the minimization of the time required to complete a specific

job or manufacture a product. This specific metric is commonly referred to as the

”makespan,” and it takes center stage as a pivotal criterion in our investigation.
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Machine 1 Machine 2 Machine 3 Machine …

Figure 3.1: Flow shop production

The flow shop production environment, as encountered in practical, real-world sce-

narios, represents a prevalent and frequently observed manufacturing configuration.

It is characterized by a systematic manufacturing methodology in which a series of

identical production processes or operations are meticulously executed on a predeter-

mined sequence of machines. This setup, exemplified in the illustrative representation

provided in Figure 3.2, features an array of machines, each meticulously engineered

and calibrated to perform a specific and well-defined set of tasks or operations. This

assembly line-like structure emphasizes the efficiency and orderliness of production.

The flow of work within the flow shop follows a precisely orchestrated sequence.

The output generated by one machine seamlessly transitions as the input for the

subsequent machine in the predetermined sequence. This intricate choreography of

tasks continues unabated until the final product, whether it be an assembled product

or a component, is brought to fruition. The hallmark of flow shop production is its

strict adherence to this unvarying sequence of tasks, underscoring the systematic and

highly organized nature of the manufacturing process.

It’s worth emphasizing that tackling the flow shop scheduling problem presents

a formidable computational challenge. This complexity becomes particularly pro-

nounced when dealing with three or more machines, denoted as m ≥ 3. In fact, this

problem is officially classified as strongly NP-hard [19], signifying its position among

the most computationally demanding problems in the realm of optimization.

In the context of flow shop scheduling, the production process commences with all

machines (Mi) and jobs (Jj) simultaneously available and ready to initiate processing

without any delays. Here, it’s essential to clarify the role of the variables: i corre-

sponds to the indices assigned to machines, ranging from 1 tom, while j represents the

indices assigned to jobs, ranging from 1 to n (i = {1, 2, ...,m} and j = {1, 2, ..., n}).
This formulation provides a clear and systematic means of representing the various

machines and jobs involved in the production process.
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Figure 3.2: Flow shop production with individual processing time

The fundamental goal of the flow shop scheduling problem revolves around the

efficient sequencing of n jobs across a sequence of m machines. This sequence entails

a predetermined order that all jobs must follow consistently, commencing with M1,

followed by M2, and so forth until reaching Mm. To effectively manage this process,

the concept of processing time plays a pivotal role. Each task executed on a specific

machine has a unique processing time, denoted as pij, where (i, j) symbolizes the

execution of job j on machine i. In the computation of processing time, it’s crucial

to account for the preparation time associated with each job. This preparation time,

seamlessly integrated into the overall processing duration, ensures a comprehensive

understanding of the time required for each job’s completion on a given machine.

Importantly, within this flow shop context, there exist no constraints on the ca-

pacity of inter-machine buffers. This design feature permits the free buffering of work

between machines without any limits. Nevertheless, it’s imperative to emphasize that

each machine retains the capacity to handle only a single job at any given moment.

This limitation underscores the need for a well-structured scheduling strategy that

optimally sequences the jobs to minimize makespan and enhance production efficiency.

The central aim of the flow shop scheduling methodology employed in this re-

search centers around the minimization of the total job completion time, formally

represented as C. The overarching goal is succinctly expressed through the mathe-

matical formulation:
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min C

In essence, this optimization objective underscores the pursuit of the most effi-

cient sequence for completing all jobs in the flow shop environment. By achieving

this objective, production processes become more streamlined and resource-efficient.

Formulating a Mixed Integer Program (MIP) can address the objective of minimizing

the makespan in a permutation flow shop with any number of machines [41].

To transform this problem into an MIP, several variables need to be defined. The

decision variable xjk takes on the value 1 when job j occupies the k-th position in

the sequence; otherwise, it’s 0. The auxiliary variable Iik represents the idle time

on machine i between processing jobs at positions k and (k + 1), while the auxiliary

variable Wik represents the waiting time for the job in the k-th position between

machines i and i+1. Importantly, there’s a clear connection between the variablesWik

and the variables Iik. It’s worth noting that minimizing the makespan is essentially

equivalent to minimizing the total idle time on the last machine, which is machine

m. Therefore, the MIP formulation is as follows [41].

min
m−1∑
i=1

n∑
j=1

xj1pij +
n−1∑
j=1

Imj

s.t.
n∑

j=1

xjk = 1 k = 1, ..., n

n∑
k=1

xjk = 1 j = 1, ..., n

Iik +
n∑

j=1

xj(k+1)pij +Wi(k+1) −Wik

−
n∑

j=1

xjkp(i+1)j − I(i+1)k = 0 k = 1, ..., n− 1; i = 1, ...,m− 1

Wi1 = 0 i = 1, ...,m− 1

I1k = 0 k = 1, ..., n− 1
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The initial set of constraints dictates that each k-th position must be assigned

exactly one job, ensuring that every position is filled. The subsequent set of con-

straints specifies that each job j must occupy precisely one position. The third set

of constraints establish the connections between the decision variables xjk and the

physical constraints governing the problem. These physical constraints serve to main-

tain the necessary relationships between the idle time variables and the waiting time

variables. Consequently, the makespan minimization problem in an m-machine per-

mutation flow shop is cast as a MIP. In this MIP formulation, the sole integer variables

are the binary decision variables xjk, while the idle time and waiting time variables

are continuous and non-negative.

The flow shop configuration and the scheduling challenges it presents are inte-

gral facets of production and manufacturing systems. It’s crucial to recognize that

solving these problems optimally entails substantial computational complexity. Con-

sequently, this research endeavor aspires to make meaningful contributions by devising

effective methodologies for addressing flow shop scheduling issues, particularly in sce-

narios where machine failures introduce additional complexity. Through innovative

approaches and the integration of ANNs and PPGA, this research seeks to enhance

the efficiency and resilience of flow shop production in the face of disruptions.

3.2 Machine failure

In real manufacturing systems, various unexpected issues can disrupt operations,

and one of the most challenging ones is machine failures [45]. When a machine sud-

denly stops working, it causes problems in the carefully planned production schedule.

This disruption can lead to delays, longer production times, and increased costs.

Trying to find the best solutions for production in large flow shops is a significant

challenge. Rescheduling production operations adds another layer of complexity, espe-

cially when dealing with unexpected events like machine failures, as shown in Figure

3.3. These disruptions, primarily caused by machine failures, make the processing

times longer and make the whole process even more complicated.

The solution to this intricate challenge lies in the practice of production reschedul-
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Figure 3.3: Flow shop production with extended period of processing time

ing, a dynamic process adept at accommodating unanticipated modifications or dis-

turbances within the realm of manufacturing. Fundamentally, production reschedul-

ing entails the complex task of strategically reordering job sequences to mitigate

the adverse consequences of disruptions [55], with particular emphasis on addressing

machine failures. Its primary objective is to ensure the continued achievement of

production targets in the face of unforeseen events. Consequently, the imperative

for expeditious rescheduling assumes paramount importance in the domain of man-

ufacturing management, functioning as a robust defensive mechanism against the

potential issues that these disturbances may engender.

In the special context of flow shops, where machines and jobs are closely con-

nected and work together to achieve production goals, rescheduling when machines

might fail is a very tough task. The intricate coordination of jobs and machines, com-

bined with the constant effort to make production better, makes this task extremely

hard. This problem is complex and difficult for traditional optimization algorithms to

handle. Even methods designed to simplify complex problems encounter challenges

when dealing with this issue.

To navigate the labyrinthine intricacies of production rescheduling in flow shops,

this research boldly ventures into the realm of hybrid methodologies. This innova-

tive approach artfully amalgamates the prowess of meta-heuristic algorithms, with

the genetic algorithm serving as a prime exemplar, and the formidable capabilities of

machine learning algorithms, prominently embodied by ANN. The guiding principle

underpinning these hybrid methodologies is the harmonious fusion of the strengths
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intrinsic to each approach. The result is a rescheduling process that emulates the

precision of a well-oiled machine, swiftly adapting to disruptions and optimizing pro-

duction schedules with finesse. Furthermore, our findings underscore the compelling

need to cultivate methodologies honed specifically for expediting the rescheduling

process within the manufacturing sector, an imperative that resonates resoundingly

in the contemporary industrial landscape.
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Chapter 4

Methodology

This chapter offers a comprehensive overview of the PPGA-ANN designed for

production rescheduling. The methodology is structured into two principal stages,

namely training stage and implementing stage, both visually represented in Figure

4.1. Subsequent to this introduction, the intricacies of each stage in the ensuing

discourse will be proceeded to explain.

In the stage of training, which precedes the production process, the methodology

places significant emphasis on training the ANNs to effectively capture and retain

rescheduling knowledge. This is accomplished by leveraging rescheduling solutions

generated by PPGA based on various machine failure simulation scenarios. By un-

dergoing this rigorous training, ANNs aim to have the capacity of securely store

valuable insights and patterns, thereby enabling the generation of highly effective

rescheduling solutions.

Upon the initiation of the production process and the occurrence of a machine

failure, the stage of implementing is activated. During this stage, the well-trained

ANNs are employed to propose suitable rescheduling solutions depending on the spe-

cific scenarios of machine failure. When an actual machine failure situation matches

the simulation scenarios utilized during training, Case 1, the rescheduled production

sequence can be readily acquired from the solutions derived through the PPGA.

However, in situations where the machine failure scenario deviates from the sim-

ulation scenarios deployed in the trained ANNs, referred to as Case 2, the solution

generated by the ANNs assumes the role of the initial solution into PPGA. By in-
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corporating the valuable knowledge acquired from the ANNs, PPGA commences its

optimization process from an informed starting point. The seamless incorporation

of the PPGA and the ANNs enables a rapid search and optimization procedure, fa-

cilitating the identification of rescheduling solutions that approach optimality in a

significantly decreased computational time.

The subsequent sections meticulously elucidate the proposed PPGA-ANN. Sec-

tion 4.1 comprehensively expounds on the stage of training, encompassing the sim-

ulation of diverse machine failure scenarios, the utilization of PPGA for generating

rescheduling solutions, and the effective storage of rescheduling knowledge by the

ANNs. Additionally, Section 4.2 sheds light on the stage of implementing, which en-

tails the proficient utilization of the initial solutions generated by the ANNs, as well

as the seamless integration of the rescheduling knowledge obtained from the ANNs

into PPGA.

4.1 Stage of Training

The stage of training is executed with the objective of generating valuable knowl-

edge by employing the rescheduling solutions derived from PPGA across a diverse

range of simulation scenarios involving machine failure. This knowledge is subse-

quently preserved within the ANNs through a rigorous training process conducted

prior to the actual commencement of production. Section 4.1.1 elaborates on the

specific details associated with the simulation scenarios. Moreover, Section 4.1.2 pro-

vides an in-depth exposition on the utilization of PPGA for generating the reschedul-

ing solutions. Lastly, Section 4.1.3 offers a comprehensive elucidation of the ANNs

employed for effectively storing the acquired knowledge.

4.1.1 Machine failure scenarios

This research aims to investigate the disruptive occurrence resulting from ma-

chine failure and its consequential influence on manufacturing processing time. Each

machine within the production system is presumed to carry a risk of failure. The pro-

cessing time required for each job denoted by j when processed on machine denoted
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by i during regular production is represented by the variable pij. Here, i ranges from

1 to m, encompassing all machines, while j ranges from 1 to n, encompassing all jobs.

The matrix pij comprises n×m elements and effectively captures the processing times

associated with each job and machine combination.

In the case of machine failure, it is assumed that the processing times will expe-

rience an extension. This prolonged processing time is denoted as pScenij and assumes

that machine overhaul is not required. The set Scen encompasses all potential sce-

narios of machine failure. Each element within Scen represents a distinct scenario

characterized by a set that includes the happening of failed machines, with machine i

represented byMFi. Each scenario can involve the failure of one or multiple machines.

The generation of scenario members in Scen follows the power set of i, excluding the

empty set, denoted as P{i} − ∅. As a result, the total number of possible machine

failure scenarios amounts to 2m − 1, where m signifies the total number of machines.

The structure of Scen can be depicted as {{MF1}, . . . , {MFm}, {MF1,MF2}, . . . ,
{MF1,MFm}, . . . , {MF1,MF2, . . . ,MFm}}. Furthermore, the impact of machine

failure is measured through the parameter qi, which quantifies the tolerance level

for increased processing times based on the acceptance criteria of individual manu-

facturers (Q). The value of Q is a positive real number. The increased processing

times are shown in equation (4.1).

pScenij = qi × pij ; 1 < qi ≤ Q (4.1)

Let us consider the machine failure scenarios illustrated in Figure 4.2 for the pur-

pose of illustration an example. In this specific scenario, there exist two machines rep-

resented as i = {1, 2}, and a total of five jobs represented as j = {1, 2, ..., 5}. Within

this context, the set of feasible machine failure scenarios comprises {MF1}, {MF2},
and {MF1,MF2}. These scenarios are generated by excluding the empty set from

the power set, resulting in a total of three scenarios (22 − 1 = 3).

The extent of machine failure impact is assessed by the parameter qi, which, in this

particular example, assumes a value of two. This value signifies that in the event of

failure, the processing time (pScenij ) will be twice the duration of the normal processing

time (pij). Consequently, if machine 1 experiences failure (MF1), the corresponding
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Figure 4.2: Example of machine failure scenarios

processing time (pMF1
1j ) will be doubled, while the remaining machines continue to

operate at their standard processing times.

4.1.2 PPGA for generating rescheduling solutions

The PPGA serves as an enhanced version of the conventional genetic algorithm.

The genetic algorithm, inspired by biological evolution processes, has proven to be

extraordinarily effectiveness effective at solving problems characterized by extensive

search spaces, including manufacturing scheduling problems. As a widely used meta-

heuristic algorithm for solving NP-hard problems, it consistently produces exceptional
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Figure 4.3: Workflow of the proposed PPGA

and efficient results. Furthermore, its computational efficiency makes it well-suited for

practical manufacturing decision-making. However, it is important to acknowledge

that despite the genetic algorithm’s proficiency in investigating solutions in complex

spaces via global search, it is prone to being trapped in local optima when conducting

local search operations.
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This research introduces the PPGA as a solution to the rescheduling problem

caused by machine failures in flow shop production. The PPGA is utilized during

the stage of training to obtain rescheduling solutions considering various machine

failure scenarios. Figure 4.3 illustrates the overview of the PPGA, visually presenting

its operation and constituent elements. Moreover, the step-by-step procedure and

operations involved in the execution of the PPGA algorithm are outlined in Algorithm

1, which provides the pseudocode for reference. The rescheduling results are initially

generated using in a phase of standard genetic operators. However, this research

proposes the phase of perturbation operator integrating with the phase of standard

genetic operators to avoid the issue of local optimum entrapment during the schedule

search process.

PHASE OF STANDARD GENETIC OPERATORS

The first phase of the PPGA is the phase of standard genetic operators. This phase

encompasses the utilization of well-established genetic operators, namely population

initialization, crossover operator, mutation operator, fitness value calculation, and

selection operator, to create the rescheduling solutions. Subsequent paragraphs in

this section provide an in-depth elucidation of the specific intricacies and complexities

associated with this phase.

Chromosome representation. In a genetic algorithm, a chromosome refers to a

potential solution or candidate solution to a problem. Conventionally, the genetic

algorithm employs a chromosome representation comprising binary genes, with each

gene assuming a value of either 0 or 1. However, such a representation is deemed inad-

equate for scheduling problems [15]. The chromosome representation utilized within

the PPGA is redesigned specifically for flow shop production scheduling. Instead

of binary genes, the chromosome now comprises a sequence of jobs. A population

consists of a collection of individual chromosomes, representing potential scheduling

problem solutions. Each chromosome is characterized by a collection of parameters

referred to as genes.

Figure 4.4 visually shows a population containing four chromosomes. Within this
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Algorithm 1 Pseudocode of the PPGA

Require: Processing time (pij), Population size (P ), Crossover probability (Cr), Mutation
probability (Mu), Number of iterations (Itr), Maximum runtime (Mrun), Percentage of
improvement (γ), Number of compared iterations (β), Number of perturbations (Ptb)

Ensure: Position of jobs in sequence (S)
Iteration = 0
Perturbation = 0
x = 0
while Runtime ≤ Mrun do

while Iteration < Itr do
if x < β then

Population initialization
Crossover operator
Mutation operator
Fitness value calculation
Selection operator
Iteration = Iteration+ 1
if fitness value improves ≤ γ% then

x = x+ 1
else

x = 0
end if

else if Perturbation < Ptb then
Perturb population initialization
Perturbation = Perturbation+ 1
x = 0

else
x = 0

end if
end while

end while

context, a specific chromosome fragment, or gene, is represented as ”5 3 2 4 1.” This

sequence signifies that the first position within the gene corresponds to job number

”5,” followed consecutively by job numbers ”3,” ”2,” ”4,” and ”1.”

Population initialization. The initial process of the phase of standard genetic

operators is characterized by population initialization, where a subset of all possible

solutions is generated to form the initial population. This population, consisting of

chromosomes, plays a pivotal role in determining the algorithm’s effectiveness. Exten-

sive research conducted by Konak et al. [27] underscores the paramount importance
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Figure 4.4: Chromosome representation

of maintaining diversity within the population to achieve an approximate global opti-

mum. The presence of diverse individuals is critical to avoid premature convergence,

which arises when the algorithm converges prematurely without reaching the optimal

solution. To foster diversity and steer the population toward optimality, random ini-

tialization is suggested [2]. As a result, the population used in the PPGA is initialized

with completely random solutions.

Past research indicates that determining the appropriate population size (P ) is

best accomplished through empirical experimentation [37]. It is essential to recognize

that excessively large population sizes may impede the algorithm’s efficiency, while

smaller population sizes may fail to provide an adequate mating pool. Consequently,

identifying the optimal population size necessitates a systematic trial-and-error pro-

cess.

Crossover operator. In genetic algorithm, the crossover operator, also referred

to as recombination, plays a vital in the algorithm. In order to determine whether

the crossover operator should be applied to a given pair of chromosomes, denoted

as pair = {1, 2, ..., P/2}, the algorithm assesses a random probability represented

by ProbCpair against a predefined crossover probability, Cr. If ProbCpair is lower

than Cr, the crossover operator is executed for that specific pair; otherwise, it is

not applied. It is worth emphasizing that the optimal value of Cr depends on the

particular problem being addressed and the characteristics of the population. In the

process of hyperparameter optimization, Cr is assigned a value ranging from 0.5 to

1.0 [47].
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Figure 4.5: Two-point crossover operator

The crossover operator entails combining genes from two parent chromosomes to

generate two new chromosomes called offspring. In the PPGA, it utilizes a two-

point crossover operator. When chromosomes are encoded with numerical values

representing job numbers, exchanging chromosome segments during crossover may

introduce duplicate gene fragments in the offspring chromosomes, as illustrated in

Figure 4.5 (e.g., job 1 and 4). However, in the context of the flow shop production

problem, it is crucial to enforce the constraint that each task position should occur

only once, disallowing duplications.

To resolve this concern, this research adopt a strategy where duplicated genes

in the offspring chromosomes are randomly replaced with the remaining genes after

the selected genes have been swapped. This method is exemplified in the provided

example. As a result, the crossover operation is considered complete once the offspring

are produced.

Mutation operator. This operator in the genetic algorithm serves the purpose

of safeguarding the algorithm against the potential limitation of being trapped in

local optima. By introducing genetic diversity between successive generations of

chromosomes, the mutation operator fosters exploration of alternative solutions. The

specific details of the mutation process within the PPGA are illustrated in Figure 4.6,

providing a visual representation of its application.

Within the workflow of the PPGA, the decision regarding the application of the

mutation operation to a specific chromosome, denoted as c = {1, 2, ..., P}, is con-

tingent upon the comparison between a randomly generated probability (ProbMc)

and the designated mutation probability (Mu). If ProbMc is lower than Mu, the
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Figure 4.6: Swapping mutation operator

mutation operator is implemented on the corresponding chromosome; otherwise, it is

not applied. It is important to acknowledge that while the mutation operator can in-

troduce genetic diversity, it also carries the risk of potentially reducing performance.

As a result, the mutation probability is normally assigned a lower value compared to

the Cr. The optimal range for Mu is generally between 0.001 and 0.05 [47]. Once

a chromosome is chosen for mutation, the swapping mutation technique is utilized,

where genes within the chromosome are exchanged by randomly selecting a pair of

distinct positions.

Despite the fact that the mutation operator has the potential to induce significant

modifications in the structure of a chromosome, there is no assurance that the chro-

mosome’s fitness value will necessarily increase as as a result. However, the mutation

operator plays a valuable role in the algorithm’s overall optimization control [8].

Fitness value calculation. The evaluation of chromosome quality in the PPGA

relies on the fitness function. The fitness value directly influences the probability

of an individual being selected for genetic operations [12]. A meticulously designed

fitness function can expedite convergence and enhance the probability of reaching the

optimal solution.

When considering flow shop scheduling, the fitness value (fc) of chromosome c is

computed by evaluating its makespan (Cc). The calculation is carried out using the

following equation.

fc =
1

Cc

(4.2)

The primary goal of the PPGA is to identify a chromosome c that maximizes the

fitness value fc, which means minimizing the makespan Cc. This optimization goal

corresponds to the minimization of total idle time on the final machine (machinem) in
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the production line [41]. Using the following equation, the makespan of chromosome

c can be determined.

C =
m−1∑
i=1

pi1 +
n−1∑
k=1

Imk +
n∑

j=1

pmj, (4.3)

This equation represents the three components. The first component represents

the idle time of the final machine prior to initiating the first job in the given sequence.

Here, pik refers to the processing time on machine i for the k-th position in the

sequence of jobs, where k = {1, 2, ..., n}. The second component represents the idle

time of the final machine in the sequence between jobs. Iik represents the idle time

on machine i between the execution of the job in the k-th position and the (k + 1)-

th position. The final component represents the total processing time of the final

machine, where pij denotes the processing time of each individual job on machine i.

Nevertheless, because the processing time at the final machine (the final compo-

nent) remains constant regardless of the job sequence. Therefore, the fitness value

calculation can concentrate on optimizing only the first two components in order to

minimize the overall value.

Selection operator. The process of selecting chromosomes for recombination is

a crucial step in determining the individuals chosen for breeding in the subsequent

iteration. In the PPGA, it utilizes the widely recognized and commonly employed

roulette wheel selection method from the field of genetic algorithms [46]. This method

assigns probabilities to chromosomes based on their fitness values, effectively increas-

ing the likelihood of individuals with higher fitness being selected for recombination.

By incorporating roulette wheel selection into the PPGA, it aims to enhance the

propagation of promising genetic material and improve the overall quality of the pop-

ulation.

The roulette wheel selection in the PPGA allocates a segment on the wheel to each

chromosome based on its relative fitness value (refer to Figure 4.7). This mechanism

ensures that chromosomes with higher fitness values have a greater representation

on the wheel, thereby increasing their probability of being chosen for reproduction.

Consequently, chromosomes with larger fitness values occupy larger segments on the
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wheel, emphasizing the selection preference towards individuals with superior fitness.

Once the segments are assigned to each chromosome, the roulette wheel is turned,

and the chromosome corresponding to the segment where the pointer lands is chosen

for reproduction in the subsequent iteration. This selection procedure will proceed

until the intended population size P is attained. The probability of choosing a specific

chromosome (Prob selectc) is determined using the following equation:

Prob selectc = fc/
A∑

c=1

fc, (4.4)

The probability (Prob selectc) of choosing an individual chromosome is deter-

mined by dividing its fitness value (fc) by the sum of fitness values of all chromo-

somes in the population (
∑A

c=1 fc), where A represents the total number of parents

and offspring. The roulette wheel selection process, depicted in Figure 4.7, employs

a population size of four for both parent and offspring populations. In this process,

chromosomes with higher fitness values occupy larger sections on the roulette wheel,

increasing their likelihood of being chosen for reproduction.

Roulette wheel selection is a straightforward and efficient technique that promotes

genetic diversity by giving higher-fitness individuals a greater chance of selection.

However, a potential drawback is the possibility of eliminating all offspring gener-

ated through the crossover operator. When this occurs, only the parent chromosomes

are carried over to the next iteration, which increases the risk of converging to a

local minimum. Insufficient diversity in the population presents challenges in iden-

tifying globally optimal solutions. To address this, introducing perturbations to the

population becomes necessary. These perturbations help maintain genetic diversity,

ultimately enhancing the probability of discovering globally optimal solutions.

PHASE OF PERTURBATION OPERATOR

The phase of perturbation operator is significance in the PPGA by aiming to

enhance the algorithm’s capability to avoid local optimization and exploration of

uncharted search spaces. This research introduces the phase of perturbation operator,

which is activated when the best chromosome from the previous β iterations shows
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Figure 4.7: Roulette wheel selection operator

no improvement of less than γ%. This lack of improvement in the current iteration

indicates a lack of substantial progress, possibly implying stagnation within a local

optimal area.

Once the phase of perturbation operator is activated, this phase will select the top

α% of the population’s chromosomes based on their fitness values in order to preserve

the finest chromosomes for the phase of standard genetic operators. (100 − α)% of

the remaining chromosomes are eliminated from the population. Subsequently, new

chromosomes are generated at random to replace those that have been eliminated,

thereby augmenting population diversity and facilitating exploration of unexplored

search spaces. Furthermore, it is possible to set (100−α) to a value greater than α in

order to enhance genetic diversity even further. If the improvement in fitness values

over the previous β iterations is still less than γ% compared to the best chromosome

obtained from the phase of standard genetic operators, the perturbation operator will

persist until the predefined number of perturbations (Ptb) is achieved.

37



The perturbation operator aims to enhance population diversity, the probability of

attaining a near-optimal solution may increase, as it strengthens the capacity to flee

local optima. As a result, the standard genetic operators, i.e. the crossover operator,

mutation operator, fitness value calculation, and selection operator, are applied to the

new population generated by the phase of perturbation operator in order to enhance

fitness values.

CRITERIA OF TERMINATION

The criteria of termination hold significance in determining the appropriate ces-

sation point for the search process of genetic algorithm. Various criteria can be

employed in a genetic algorithm, with the specific choice depending on the problem

at hand and the available computational resources. When choosing the optimal ter-

mination criterion, it is essential to establish a balance between solution quality and

computation time.

A commonly used termination criterion in genetic algorithms is the maximum

number of iterations. This criterion sets a predetermined defined number of iterations

for the algorithm to execute before termination. Additionally, the maximum runtime

criterion can be utilized to limit the algorithm’s execution within a specified time

frame. These termination criteria are particularly valuable when time constraints

exist or when the algorithm is operating with limited computational resources.

The criteria of termination for the PPGA encompass both the maximum num-

ber of iterations (Itr) and the maximum runtime (Mrun). The determination of a

reasonable maximum number of iterations (Itr) depends on the complexity of the

problem and the efficiency of the PPGA, and is established through experimentation.

As for the maximum runtime (Mrun), it can be defined based on the time constraints

imposed by the user.

SOLUTIONS FROM THE PPGA

The PPGA’s primary goal is to efficiently determine the optimal solution for a

particular rescheduling problem by investigating various search space. In order to

accomplish this, the PPGA enhances the phase of perturbation operator, allowing
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Figure 4.8: Example solution generated by PPGA

the algorithm to navigate the search space more effectively and overcome the local

optima’s challenge.

During the stage of training (Section 4.1), the PPGA is used to produce alternate

scheduling strategies for a wide range of possible machine failures, then each solution

returned by the PPGA reflects a suitable job sequence for that set of specific scenario.

As shown in Figure 4.8, the makespan of solution is assessed. These solutions are

then preserved for future use by the proposed ANNs, allowing them to leverage the

knowledge gained from the PPGA in the subsequent phase of the methodology.

4.1.3 ANNs for storing rescheduling knowledge

The relevant literature indicates that incorporating deep learning techniques into

meta-heuristic algorithms can reduce computational time for rapid rescheduling pro-

cess in actual industry. This research proposes the integration of the PPGA with

ANNs to overcome the limitations of previous publications in the field. The ANNs

are utilized as a means to store the knowledge obtained from the solutions generated

by the PPGA.

Figure 4.9 depicts the process of storing rescheduling knowledge using the pro-

posed ANNs. The architecture of the ANNs is designed to reflect the relationship

between the provided rescheduling problems (inputs) and the PPGA-generated solu-

tions (target outputs). Each ANN is constructed to predict the optimal sequence for

a given job in a specific rescheduling problem. The segmenting ANNs into multiple

models corresponding to various jobs is a strategy employed to enhance specializa-

tion, reduce complexity, and improve the efficiency of neural networks in addressing

multifaceted problems. Its effectiveness depends on the specific characteristics of the

tasks and the availability of sufficient data for each segment. Consequently, the total

number of ANNs is contingent upon the number of jobs. Following steps are involved
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Figure 4.9: Workflow of the ANNs

in preserving rescheduling knowledge in ANNs:

Determine the inputs.

The input layer in ANNs serves as the initial layer responsible for passing the

input data to the subsequent layers. Its primary function is to receive and distribute

the input data throughout the network for further processing and analysis. Each

input layer node represents an input attribute, and the values designated to these

nodes correspond to the input attribute values.

The attributes of the input pertain to the processing times of each individual
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job on each machine. The number of input attributes corresponds to the number

of input nodes in the input layer. Specifically, each input layer in this research

consists of n ×m nodes, where the number of job represented by n and the number

of machine represented by m. Furthermore, the total number of potential machine

failure scenarios corresponds to the number of instances in the input data.

To ensure fairness and eliminate bias stemming from varying data scales across

the input attributes, all values associated with the input attributes undergo data

scaling using a standardization. This data scaling converts each attribute’s values

into a standard normal distribution. Using the following equation, normalized values

for each input attribute can be calculated:

yij =
pij − pij

σij

, (4.5)

σij =

√∑
(pij − pij)2

N
, (4.6)

The equation given by Equation 4.5 demonstrates the process of standardizing the

input values in the proposed ANNs. In this equation, yij denotes the normalized value,

while pij is the primitive input value corresponding to the processing time. The terms

pij refer to the mean and σij refers to the standard deviation of the processing time.

Furthermore, the symbol N refers to the total number of machine failure scenarios.

The indices i and j are used to denote the jobs and machines, respectively, where i

ranges from 1 to m, and j ranges from 1 to n. To provide further clarity, an example

depicting the standardization of input values in the proposed ANNs is presented in

Figure 4.10.

Determine the target outputs.

The output layer in ANNs is the ultimate stage responsible for generating output

predictions. After processing the input data through the ANNs, the predicted outputs

should correspond to the target outputs, which are the PPGA’s solutions. As depicted

in Figure 4.11(a), these solutions are portrayed as sequences of jobs. However, due

to the capability of ANNs to handle only numerical data, it is necessary to transform
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Figure 4.10: Data scaling of the inputs in the ANNs

each solution (SScen) into a binary representation. In this binary format, each binary

digit signifies whether a job is assigned to a particular position within the sequence.

Binary matrices of size n× n are produced to present the target outputs (Figure

4.11(b)), which are formed from the sequences or solutions generated by PPGA (SScen)

in binary format. This is done to highlight the outcomes of the binarization process.

In this context, the number of jobs is denoted by n. These matrices include elements

with the notation sjk. The value of the variable sjk changes between 0 and 1 depending

on whether job j is allocated to position k. For instance, consider a situation with

two machines and five jobs (i = {1, 2} and j = {1, 2, ..., 5}, respectively). Therefore,
in this instance, there are five positions (k = {1, 2, ..., 5}). The possible scenarios in

this instance include the base case, SMF1 , SMF2 , and SMF1,MF2 . The position of each

job is represented in a 5 × 5 matrix, indicating sjk for five jobs and five positions

(i.e., s11, s12, ..., s15, s21, ..., s55). As illustrated in Figure 4.11, arrows are used to

demonstrate the links between the primitive solutions obtained from the PPGA and

the binarized solutions (target outputs) for job 1.
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Figure 4.11: Transformation each solution from PPGA (SScen) into binary represen-
tation for target outputs. (a) SScen and (b) Target outputs
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Determine the architecture of the ANNs.

The ANNs’ architecture comprises three layers: input, hidden, and output layers.

The above paragraphs have already described the input and output layers. The hid-

den layer, which is determined through fine-tuning experiments, can have a positive

integer number of nodes. Figure 4.12 presents an illustration of the ANNs’ architec-

ture for a production scenario involving five jobs and two machines.

In the illustrated example, the ANNs’ input layer comprises ten nodes, repre-

senting the processing times of the five jobs (j = {1, 2, ..., 5}) and two machines

(i = {1, 2}). To predict the positions of the jobs, five distinct ANNs are constructed.

Each network generates output nodes, with a total of five nodes dedicated to each

job. These output nodes signify the possible positions that a job can occupy within

the sequence. In hidden layers, the precise number of nodes is determined through a

series of iterative refinement experiments aimed at optimizing the network’s overall

performance and accuracy.

Determine hyperparameters’ range.

Hyperparameters are used to determine the behavior and performance of a ANN.

Unlike the model’s trainable parameters, hyperparameters are set prior to the train-

ing process and remain fixed throughout. They are determined based on domain

expertise, empirical experimentation, or established guidelines. These carefully cho-

sen hyperparameters guide the network’s architecture, learning rate, regularization

techniques, and other important aspects, influencing its overall effectiveness and gen-

eralization capabilities.

• Hidden layers: They act as intermediary layers between the input and output

layers, performing figuration on the input data to extract pertinent features

before forwarding the results to the subsequent layers.

• Hidden nodes: The number of nodes in each hidden layer and the number of

hidden layers are hyperparameters that determine the network’s capacity and

complexity.
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Figure 4.12: Explanation of the ANNs’ architecture. (a) Inputs (processing time), (b)
Target outputs (the best position in the sequence), and (c) The ANNs’ architecture

• Activation function: It is a mathematical operation applied to the aggregated

input of nodes within the hidden layers and output layer, producing an output

value. Multiple activation functions can be employed in a ANN, enabling the

45



network to capture intricate patterns and relationships within the training data.

• Learning rate: It governs the magnitude of weight and bias adjustments during

the training process. A higher learning rate facilitates faster convergence but

risks overshooting the optimal weights, while a lower learning rate promotes

more precise weights at the expense of longer training time.

• Epochs: The number of epochs specifies how many times the entire training

data set is iterated during training. Insufficient epochs may lead to underfitting,

where the network fails to grasp underlying patterns, while excessive epochs can

result in overfitting, where the network over-adapts to the training data without

generalizing well to new instances. Determining the appropriate number of

epochs depends on the complexity of the problem and the size of the data set.

• Batch size: Based on the weight and bias updates computed and the average er-

ror across each batch within an epoch, the training data is divided into batches.

The batch size influences how many samples are utilized during each update

phase. The smaller batch size may impede convergence but demands less mem-

ory, whereas a larger batch size may expedite convergence but requires more

memory resources. The choice of batch size relies on the specific characteristics

of the data set and the available computational resources.

• Optimizer: It is an algorithm employed to adjust the network’s weights and bi-

ases during training with the aim of minimizing the discrepancy or loss between

target and predicted outputs. Various optimization algorithms exist, each em-

ploying distinct strategies to update the parameters and enhance the network’s

learning process.

The hyperparameters used in the ANNs are tuned systematically to minimize the

loss between the target outputs and the predicted outputs. Through this optimization

process, an enhanced model is attained, capable of effectively capturing and retaining

the knowledge gained from the PPGA, thereby enabling accurate predictions for novel

rescheduling problems.
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For ANNs sharing the same architecture across a particular number of jobs and

machines, two approaches can be employed regarding the hyperparameter values.

Firstly, one may utilize the identical hyperparameter values that have been deter-

mined as optimal for a particular ANN (e.g., the ANN for job 1). Alternately, varia-

tion can be introduced by deviating from the optimal value parameters of the ANN

for job 1. Figure 4.13 elucidates the optimization process of the hyperparameters in

the proposed ANNs.

Train the ANNs.

The training of the ANNs involves utilizing machine failure scenarios, which en-

compass inputs representing the processing times of individual jobs at particular

machines, as well as the corresponding optimal production sequences obtained from

the PPGA, denoted as target outputs. Notably, all data set derived from the solutions

of the PPGA is utilized without partitioning it into separate training, test, and vali-

dation sets. This approach is driven by the ANNs’ primary goal, which is to capture

the intrinsic knowledge embedded within the PPGA-generated data set, rather than

making predictions for unfamiliar instances. Moreover, the decision to not separate

the data set is justified by the broad distribution of simulation scenarios, encompass-

ing a wide array of potential machine failure scenarios and their corresponding impact

on the processing time.

The ANNs employ forward propagation to compute the output of the network for

a given input during the training phase. The output of one layer becomes the input of

the subsequent layer until the final layer, or output layer, produces the prediction or

result of the network. Throughout forward propagation, the input data are multiplied

by weights and passed through an activation function at each neuron in the hidden

layers. This procedure assists the network in discovering the intricate relationships

and patterns within the data.

ANNs then modify the model’s weights and biases to minimize a loss function.

The loss function measures the difference between the predicted output and the actual

target output (ground truth) for a given set of input data, directing the optimiza-

tion procedure by designating the quantity that the ANNs must minimize to ensure
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Figure 4.13: The comprehensive hyperparameter optimization process
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accurate predictions for the given inputs.

In this research, the BinaryCrossentropy loss function is commonly used for op-

timization during the training procedure in ANN, especially for binary classification

tasks. This function quantifies the dissimilarity between the predicted probability

distribution and the actual binary labels. It computes the binary cross-entropy loss,

which is a measure of how well the model’s predictions align with the true binary

values. This mechanism effectively steers the ANNs towards making accurate pre-

dictions and enhancing the accuracy of binary classification problems, including the

specific problem investigated in this research.

Evaluate the ANNs’ performance.

The performance evaluation of the trained ANNs relies on the utilization of the

Accuracy metric. This metric serves as a direct means to assess the prediction capa-

bility of the ANN by comparing the target outputs and the predicted outputs of the

training data, thereby determining the number of samples that are precisely classified.

The performance of the ANNs in relation to the overall classification accuracy can be

evaluated by considering the value of this metric.

4.2 Stage of Implementing

The stage of implementing is a significant phase in the proposed PPGA-ANN

(Figure 4.1), as it involves implementing the knowledge acquired during the stage of

training to make informed decisions regarding rescheduling due to machine failures in

the production process. Upon detecting a machine failure during production, which

can be classified as either Case 1 or Case 2, this stage is initiated. In Case 1,

the new schedule can be derived directly from the solutions generated by the PPGA

because the machine failure exactly corresponds to the proposed simulation scenarios.

In the event that the machine failure situation differs from the inputs used during

the training of the ANNs (i.e., a new instance), denoted as Case 2, generating a

new schedule involves incorporating the solutions obtained from the trained ANNs as

initial solutions within the population of the PPGA.
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In Section 4.2.1, the procedure of predicting solutions using trained ANNs is

explained in detail. Section 4.2.2 elucidates the implementation of the initial solutions

derived from the trained ANNs within the PPGA to generate a new schedule.

4.2.1 Initial solutions resulted by the ANNs

In Case 2, where the machine failure situations encountered during production

deviate from the inputs utilized during the training phase, the ANNs serve the purpose

of generating initial solutions for the PPGA. The processing times of the jobs assigned

to each machine from new instance are fed into the corresponding ANNs to acquire

these initial solutions for a specific machine failure situation, as depicted in Figure

4.14.

For each specific job (j) and position (k) in the sequence, the ANNs generate

confidence values, denoted as ŝjk, which indicate the suitability of assigning the job to

that particular position. Nevertheless, this process may give rise to a situation where

multiple jobs exhibit the highest confidence for the same position. Consequently,

repetitive positions can emerge in the sequence, thereby violating the fundamental

requirement of flow shop production is that each job should be assigned a unique

position.

In the provided example, introducing a new instance of machine failure that differs

from the training data into the trained ANNs leads to the assignment of multiple jobs

(i.e., job 1, job 2, job 3, and job 4) to position 1. Consequently, repetitive positions

are observed for multiple jobs in the sequence.

To tackle the repetitive positions, a systematic approach for managing this issue

is proposed, as illustrated in Figure 4.15. The process consists of two steps. In Step

1, the jobs’ confidences for each position are arranged in a descending order, ensuring

a understanding of the job preferences for each position. In Step 2, starting from

the first position and moving sequentially towards the last position, the job with the

highest confidence is filled to that respective position. However, certain conditions

must be satisfied during this assignment process. Firstly, jobs that have already

been filled to other positions are excluded from consideration. Additionally, if the

difference between the confidences (ŝjk) of selected jobs is below a threshold value,
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Figure 4.15: Managing repetitive positions in the sequence

denoted as δ that is empirically set as 0.03 in this particular research, these jobs are

judged to have equal priority for position assignment. As a result, multiple potential

solutions may emerge due to this consideration of equal priority among jobs.

The integration of solutions generated by the ANNs into the initial population of

the PPGA is a pivotal step in enhancing the effectiveness of the rescheduling process.

This integration serves as a bridge between the machine learning-driven insights of

ANNs and the optimization capabilities of PPGA, creating a cohesive and powerful

approach to tackling machine failure scenarios in production scheduling.
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To maintain diversity and prevent premature convergence within the PPGA’s

search space, a critical constraint is imposed on the number of initial solutions that

can be derived from the ANNs. Specifically, this constraint is set to a maximum value

equal to half of the population size (P/2). By limiting the number of ANNs-derived

solutions in this manner, the methodology ensures that the genetic algorithm retains

a degree of randomness and exploration capability during the optimization process.

This diversity is crucial for avoiding the entrapment in local optima and promoting

the exploration of various solution trajectories.

In cases where the number of solutions obtained from the ANNs exceeds this

predefined maximum limit, which can occur when there are repetitive positions in

the solutions, an alternative selection criterion based on their makespan (C) is ap-

plied. This criterion serves as a pragmatic approach to filter and prioritize the most

promising solutions among the surplus provided by the ANNs. By considering the

makespan, the methodology focuses on solutions that exhibit the potential for im-

proved production efficiency, aligning with the overarching objective of minimizing

makespan during the rescheduling process.

In essence, the constraint and selection criteria implemented in the integration of

ANNs into PPGA’s initial population strike a delicate balance between preserving

diversity and prioritizing solutions with the potential for optimization. This thought-

ful approach ensures that the methodology combines the strengths of both machine

learning and optimization techniques to navigate the complex landscape of produc-

tion rescheduling, ultimately leading to the attainment of high-quality solutions in a

computationally effective manner.

4.2.2 Utilizing rescheduling knowledge from the ANNs into

the PPGA

The incorporation of the PPGA into the implementing stage represents a strategic

response to the challenge of handling unforeseen instances in production rescheduling.

As production environments are inherently dynamic and prone to various disruptions,

it is essential to equip the methodology with adaptability and problem-solving capa-

bilities beyond its initial training data.
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In this phase, PPGA takes on a dual role: it leverages the foundational knowl-

edge extracted from ANNs while maintaining its inherent optimization capabilities.

This synergistic approach ensures that the methodology is not confined to predefined

scenarios but can dynamically respond to real-world machine failure situations that

may deviate from the norm.

By commencing the optimization process with initial solutions provided by ANNs,

the proposed methodology not only benefits from the ANN’s insight but also jump-

starts the search for optimal or near-optimal rescheduling solutions. This approach

significantly narrows down the solution space and expedites the convergence process,

particularly when dealing with unexpected machine failures.

Moreover, the combination of ANNs and PPGA fosters adaptability, a crucial

trait in addressing the ever-evolving challenges of manufacturing. As new machine

failure scenarios emerge, the methodology can swiftly adapt and evolve, continu-

ally improving its performance and effectiveness. This adaptability ensures that the

methodology remains a robust and reliable tool for production rescheduling, even in

the face of changing operational conditions and unforeseen disruptions.

In summary, the integration of PPGA into the implementing stage, guided by

the knowledge acquired from ANNs, epitomizes the methodology’s ability to combine

machine learning capabilities with optimization prowess. This harmonious fusion

not only expedites the rescheduling process but also positions the methodology as a

dynamic and adaptable solution for the intricate challenges of modern manufacturing

environments.
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Chapter 5

Experimentation and Results

The culmination of this research effort is the development of the PPGA-ANN

methodology, meticulously designed to address the formidable challenge of rapid

rescheduling within the complex landscape of large-scale flow shop production, par-

ticularly in the presence of machine failures. As illustrated in Figure 4.1, PPGA-ANN

represents a synthesis of machine learning and optimization, harnessing the strengths

of both paradigms to expedite rescheduling while striving for optimality. This inno-

vative methodology promises to be a valuable asset for manufacturers operating in

dynamic and demanding production environments.

To facilitate the rigorous evaluation of the proposed PPGA-ANN, all experimen-

tal procedures have been meticulously orchestrated using the Anaconda platform and

implemented through the Python programming language. The choice of this com-

putational environment ensures robustness in the experimentation process, critical

considerations when assessing the performance of novel methodologies. Notably, the

experiments have been executed on a computer equipped with a 11th Gen Intel(R)

Core(TM) i5 CPU running at 2.4 GHz and boasting a substantial 16 GB of RAM,

ensuring that computational resources are not a limiting factor in the evaluation of

PPGA-ANN’s capabilities.

The subsequent sections of this dissertation delve into a comprehensive explo-

ration of the proposed PPGA-ANN, offering a detailed account of the experimental

demonstrations and evaluations conducted to validate its effectiveness. Section 5.1

provides a meticulous overview of the process involved in generating machine failure
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scenarios within the context of flow shop production. This section illuminates the in-

tricacies of simulating machine failures, a crucial aspect of evaluating PPGA-ANN’s

resilience in real-world manufacturing settings.

Section 5.2 delves into the nuanced domain of hyperparameter tuning. It meticu-

lously outlines the adjustments made to the hyperparameters governing the operation

of the genetic algorithm (GA), the PPGA, and the ANNs. This meticulous hyperpa-

rameter tuning process aims to fine-tune the behavior of each component, optimizing

their interactions within the PPGA-ANN framework.

Finally, in Section 5.3, the performance of the proposed PPGA-ANN undergoes

rigorous scrutiny through a comparative analysis with alternative approaches. This

evaluation is accompanied by a presentation of the results gleaned from extensive

experimentation and a meticulous analysis thereof. The ensuing insights shed light on

the efficacy of PPGA-ANN in addressing production rescheduling challenges, offering

valuable contributions to the realm of manufacturing optimization and scheduling

methodologies.

5.1 Machine Failure Scenarios Generation

The scenarios of the machine failure in this research are evaluated using the bench-

mark developed by Taillard [51], which has been extensively utilized in various studies,

particularly in the context of scheduling problems across various scales. This research

focuses on the first data set of the benchmark, which involves a large-scale flow shop

production comprising 20 jobs (n = 20) and 10 machines (m = 10). The processing

time (pij) follows a uniform distribution in the range of U [1, 99].

To simulate machine failures during production, the scenarios are generated ac-

cording to (4.1). Initially, it begins with a instance from the benchmark data set,

where the processing time of all jobs follows a uniform distribution between 1 and 99

minutes. This experiment sets qi to four different values: 1.5, 2, 2.5, and 3. These

values are chosen based on the assumption that the acceptable limit (Q) for changing

the processing time, as determined by individual manufacturers, is less than or equal

to 3.
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With the parameter configuration described above, the total number of scenarios

amounts to 4× (210 − 1) plus one additional case representing the ordinary situation

without any failure of machine. Consequently, there are a total of 4,093 scenarios.

Each scenario is solved using the proposed PPGA. Subsequently, the ANNs are trained

by the scenarios with disrupted processing times as inputs and the corresponding

results obtained from PPGA as target outputs. The performance of the ANNs is

evaluated based on their ability to generate high-quality solutions when presented

with training instances that accurately simulate the perturbed production conditions.

5.2 Modification of Hyperparameters

This research determines the hyperparameters required to resolve the reschedul-

ing challenges in the 20-job, 10-machine flow shop production problem. Extensive

experimental research is conducted to determine the optimal values for these hy-

perparameters. In Table 5.1, the specific hyperparameters utilized by the GA, the

proposed PPGA, and the ANNs are enumerated in detail.

The experimental findings demonstrate that, for the proposed PPGA, a population

size (P ) of 300 chromosomes proves to be suitable for the given scheduling problem.

Figure 5.1 illustrates the outcomes obtained in the base case scenario, wherein the

PPGA achieves a relatively shorter runtime when employing a population size below

300 chromosomes, albeit resulting in a longer makespan (C). Conversely, for pop-

ulation sizes exceeding 300 chromosomes, both runtime and makespan (C) tend to

increase.

Moreover, based on review of the relevant literature reveals, the high crossover

probability (Cr) expedites convergence towards a solution, but at the expense of

population diversity [47]. Conversely, a high mutation probability (Mu) facilitates

exploration of the search space but increases the likelihood of convergence to subop-

timal solutions [47]. Therefore, the proposed PPGA uses a crossover probability of

0.80 and a mutation probability of 0.001 based on a trial-and-error method.

Furthermore, termination criteria for the PPGA include the maximum number

of iterations (Itr) and the maximum runtime (Mrun). Through experimentation, it
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Table 5.1: The hyperparameters employed by the GA, the PPGA, and the ANNs

Algorithms Hyperparameters Values

GA

Population size (P ) 300 chromosomes
Crossover probability (Cr) 0.8
Mutation probability (Mu) 0.01
Number of iterations (Itr) 500 iterations
Maximum runtime (Mrun) 10 minutes

PPGA

Population size (P ) 300 chromosomes
Crossover probability (Cr) 0.8
Mutation probability (Mu) 0.01
Number of iterations (Itr) 500 iterations
Maximum runtime (Mrun) 10 minutes
Percentage of improvement (γ) 0.1
Number of compared iterations (β) 50 iterations
Percentage of selection the best chromosomes
(α) and randomly creating new chromosomes
(100− α)

25 and 75

Number of perturbations (Ptb) 5 perturbations

ANNs

Hidden layers 5 layers
Hidden nodes 1st layer: 70 nodes

2nd layer: 60 nodes
3rd layer: 50 nodes
4th layer: 40 nodes
5th layer: 30 nodes

Activation function of hidden layers ReLU activation
Activation function of output layer Sigmoid activation
Learning rate 0.001
Epochs 2000, 3000, 4000, 5000
Batch size 32
Optimizer Adam

has been observed that a value of 500 iterations is appropriate, as the PPGA tends

to converge prematurely with fewer iterations and fails to reach the optimal solution.

On the other hand, exceeding 500 iterations leads to a longer computational time,

even when the optimal solution has already been identified. As for the maximum

runtime (Mrun), a duration exceeding 10 minutes is considered incompatible with

the requirement for rapid rescheduling.

The phase of perturbation operator of the PPGA is activated when the fitness

value of the best chromosome in the current iteration shows no improvement exceed-

ing 0.1% (γ) compared to the fitness value of the best chromosome observed in the
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Figure 5.1: Experiment on population size (P )

previous 50 iterations (β = 50). The specific values for the improvement threshold (γ)

and the number of previous iterations considered (β) should be determined according

to the user’s or manufacturer’s preferences. It is worth noting that the improvement

threshold (γ) can be expressed in units other than percentages, such as minutes of

the makespan or any other unit that individual manufacturers deem appropriate.

In order to preserve the best-performing chromosomes from the phase of standard

genetic operators, the top 25 percent of the population size in the present iteration (α)

are selected based on their fitness values. The remaining 75 percent of the population

(100 − α) is generated at random to increase population diversity and investigate

unexplored search spaces.

The PPGA applies the perturbation operator up to five times, as determined by

the defined maximum number of perturbations (Ptb). However, in certain situations,

the maximum number of iterations (Itr) may be achieved before the maximum num-

ber of perturbations (Ptb) is achieved. The specific value for the maximum number

of perturbations is determined experimentally, taking into consideration factors such

as the complexity of the problem and the available computational resources.

The hyperparameters’ range used in the ANNs are carefully chosen from a range

of values to identify the combination of optimal hyperparameters that can reach high

performance, enhance the accuracy, and robustness of the networks. The hyperpa-

rameters used in the ANNs remain consistent across all ANNs. Table 5.2 outlines the
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Table 5.2: The hyperparameters’ range used in the ANNs

Hyperparameters Min Max Step

Hidden layers 1 7 6
Hidden nodes 20 200 18
Learning rate 0.001 0.1 2
Epochs 1000 5000 4
Batch size 32 64 1
Optimizer Adam, SGD

range of values considered for each hyperparameter.

The number of hidden layers is tested within the range of 1 to 7 layers, and the

number of nodes in each hidden layer is specified between n and n × m, where n

represents the number of output nodes (corresponding to the number of jobs), m

represents the number of machines, and n×m represents the number of input nodes.

Various learning rates are examined, including 0.001, 0.01, and 0.1, to identify the

most effective value. Additionally, the number of epochs is varied between 1000 and

5000 to assess its impact on the ANN’s performance. Two options for batch size

are considered: 32 and 64. Furthermore, the efficacy of two optimization algorithms,

Adam and stochastic gradient descent (SGD), in enhancing the performance of ANNs,

is evaluated.

This research extensively investigates the components of ANNs through a system-

atic exploration of various hyperparameters, such as the learning rate, batch size,

and optimizer, employing a trial and error approach. Furthermore, a comprehensive

ablation study is conducted to assess the impact of various configurations of hidden

layers. The initial experimentation focuses on determining the optimal number of

hidden layers, starting with a baseline of two layers for job 1 and training it for a

total of one thousand epochs. In subsequent analyses, the influence of the number

of nodes in each hidden layer is investigated. Notably, once the accuracy of job 1’s

ANN exceeds 99%, the configuration of the number of hidden layers and nodes in each

hidden layer is defined. Variations in the number of epochs are used to optimize the

remaining jobs. This meticulous ablation study provides invaluable insights into the

optimal hyperparameter settings and configuration of ANNs, facilitating the genera-

tion of precise and efficient rescheduling solutions within the production environment.
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However, it is essential to recognize that the applicability of this particular ablation

study to other problems or data sets may be limited, as the efficacy of hyperparame-

ter configurations depends heavily on the unique characteristics and complexities of

specific problem domains and data sets.

The ANNs involve the construction of 20 separate networks, each corresponding

to the processing time data for 20 jobs (n = 20) and 10 machines (m = 10). These

networks consist of 200 input nodes and 20 output nodes. Through experimentation,

it has been determined that achieving favorable results involves employing 5 hidden

layers with varying numbers of nodes: 70, 60, 50, 40, and 30. The Rectified Linear

Unit (ReLU) activation function is utilized in the hidden layers, while the output

layer adopts a sigmoid function to map outputs between 0 and 1, facilitating the

interpretation of binary values as probabilities.

To achieve high accuracy, the learning rate is set to 0.001, and the number of

epochs ranges from 2000 to 5000, depending on the specific ANN for each job, in

order to attain high accuracy. Notably, optimal epoch values have been determined,

with the ANNs for jobs 1, 2, 4, 5, and 16 achieving high accuracy within 2000 epochs,

while the ANNs for jobs 3, 6, 7, 9, 10, 12, 13, 17, and 18 necessitate 3000 epochs.

Additionally, the ANNs for jobs 8, 11, 14, and 19 require 4000 epochs, while the

ANNs for jobs 15 and 20 employ 5000 epochs. The batch size utilized by the ANNs

is 32.

Furthermore, the Adam optimizer, a well-known variant of stochastic gradient

descent optimization, has been selected as the optimizer for the ANNs. The Adam

optimizer uses moving averages of parameters to estimate gradients, promoting stable

learning rates and reducing oscillations. It is computationally effective and ideally

adapted for solving massive problems [26].

The values presented in Table 5.1 correspond to essential hyperparameters that

play a vital role in governing the learning process. Generally, these values are de-

termined through a trial-and-error iterative search process. While the same set of

hyperparameter values may be relevant to other problems, it is crucial to periodically

explore alternative values to enhance the algorithm’s performance.
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5.3 Evaluation of the Experiments

This section evaluates the proposed PPGA-ANN, highlighting on the capabilities

of its two primary components: the PPGA and the ANNs. In order to evaluate

the efficacy of the PPGA, its results are compared to those of existing algorithms.

A comparison of scheduling solutions between the PPGA and the genetic algorithm

(GA) allows for the unveiling of the benefits of the phase of perturbation operator

in mitigating local optima. Furthermore, the efficacy of utilizing the knowledge held

in ANNs for rapid rescheduling is evaluated by comparing the convergence of the

proposed PPGA-based initial solutions, derived from the trained ANNs, with those

of the PPGA and the standard GA.

5.3.1 The performance of PPGA in the stage of training

During the stage of training of the proposed PPGA-ANN, a novel methodology

called PPGA is developed to enhance the conventional GA for production scheduling.

The proposed PPGA incorporates a phase of perturbation operator with the aim of

optimizing production scheduling performance by minimizing the makespan criterion.

This research employs the exhaustive benchmark data set established by Tail-

lard [51], which includes instances of varying dimensions, to evaluate the efficacy

of the PPGA in terms of makespan. The PPGA is executed five times, and the

best makespan values are recorded for comparison with the GA, discrete water wave

optimization algorithm (DWWO) [65], improved iterated greedy algorithm (IIGA)

[10], discrete variant of self-organising migrating algorithm (DSOMA) [9], and hybrid

genetic algorithm (HGA) [54].

Table 5.3 presents the makespan results obtained from various approaches using

the same benchmark dataset. It is important to note that the PPGA, employed to

solve problems of varying sizes, does not integrate the maximal runtime criterion

(Mrun) since the objective is to obtain the optimal solution for comparison with

existing methods. Consequently, the PPGA iterates until reaching the predefined

number of iterations (Itr). The results indicate that the proposed PPGA consis-

tently outperforms other algorithms, leading to superior makespan values. In certain
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Table 5.3: Makespan comparison of PPGA, GA, DWWO, IIGA, DSOMA, and HGA

Problem n × m PPGA GA DWWO IIGA DSOMA HGA

Ta011 20x10 1625 1655 2044 2011 1698 1955
Ta021 20x20 2399 2405 2973 2973 2436 2912
Ta031 50x5 2740 2774 3170 3161 3033 3127
Ta041 50x10 3251 3256 4274 4274 3638 4251
Ta051 50x20 4253 4253 6129 6129 4511 6138
Ta061 100x5 5685 5685 6433 6397 6151 6492
Ta071 100x10 6113 6156 8093 8077 7042 8115
Ta081 100x20 6971 7046 10727 10700 7854 10745
Ta091 200x10 11328 11423 15418 15319 13507 15739
Ta101 200x20 12489 12684 19724 19681 15027 20148

instances, the GA achieves a near-optimal solution comparable to the PPGA, sug-

gesting its proficiency in avoiding local optima. It’s noteworthy that the GA used

in this research originates from our PPGA, excluding the perturbation operation.

Therefore, the performance of both the PPGA and GA relies on the same set of

hyperparameters.

In addition, the effectiveness of the phase of perturbation operator in the PPGA is

assessed to ascertain its ability to improve population diversity and enhance the like-

lihood of discovering optimal solutions. This phase ensures the preservation of the

best-performing chromosomes from the preceding iteration while introducing ran-

domly generated new chromosomes. The evaluation compares the convergence per-

formance of the PPGA and the GA, both of which utilize the same random seed,

for solving flow shop scheduling problems involving machine failure scenarios. The

evaluation outcomes are presented in Figure 5.2.

The figure depicted four distinct machine failure scenarios, each representing an

extreme case: (a) Machines 1, 5, and 9 (i = {1, 5, 9}) experience concurrent failures

with qi = 3, (b) Machines 2, 4, 6, 8, and 10 (i = {2, 4, 6, 8, 10}) experience concurrent
failures with qi = 3, (c) Machines 3, 4, 5, 6, 7, 8, and 9 (i = {3, 4,..., 9}) experience
concurrent failures with qi = 3, and (d) Machines 1, 2, 3, 4, 5, 6, 7, 8, and 9 (i

= {1, 2,..., 9}) experience concurrent failures with qi = 3. The red points on the

graph depict the number of perturbations (Ptb) executed during during the phase of

perturbation operator. The outcomes demonstrate that the PPGA, which combines
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(a) Machine 1, 5, and 9 fail with 3

GA
PPGA
Perturbation

(b) Machine 2, 4, 6, 8, and 10 fail with 3

GA
PPGA
Perturbation

(c) Machine 3, 4, 5, 6, 7, 8, and 9 fail with 3

GA
PPGA
Perturbation

(d) Machine 1, 2, 3, 4, 5, 6, 7, 8, and 9 fail with 3

GA
PPGA
Perturbation

1 1
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Figure 5.2: Result comparison between the GA and the PPGA

the phase of perturbation operator with the phase of standard genetic operators,

achieves lower makespan (C) values than the GA, indicating superior near-optimal

solutions. Notably, the PPGA convergence curves exhibit consistent improvements

even in extreme cases, highlighting the efficacy of the phase of perturbation operator

in exploring unexplored search spaces.

Furthermore, the comparison between the GA and PPGA in terms of makespan is

visually depicted in the box plot (Figure 5.3) using the Ta011 data set from Tailard’s

benchmark. The box plot provides a concise summary of the distribution of makespan

values derived from twenty experimental runs. In the plot, the box represents the

interquartile range (IQR), spanning from the lower quartile (Q1) to the upper quar-

tile (Q3). The horizontal line inside the box represents the median value. The

whiskers extend from the box to indicate the minimum and maximum values within

the range. After a thorough examination of the box plot, it becomes evident that
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Figure 5.3: The box plot of makespan: a comparison between GA and PPGA

the GA exhibits a median makespan of 1652 minutes, while the PPGA shows a me-

dian makespan of 1631 minutes. These median values offer valuable insights into the

central tendency of each algorithm’s performance. Notably, the PPGA outperforms

the GA by demonstrating a lower median makespan, providing compelling evidence

of its superior results in terms of makespan. It’s worth noting that both the PPGA

and GA strive to find the optimal solution, so even a slight change in the median

holds significance, as it can influence the lower bound of the near-optimal solution.

This discovery underscores the effectiveness of the proposed PPGA in the realm of

production scheduling, emphasizing its potential to enhance production efficiency and

optimize resource utilization.
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5.3.2 Effectiveness of the proposed PPGA-ANN in terms of

computational time

The proposed PPGA-ANN introduces the utilization of ANNs during the stage

of training to store knowledge obtained from the PPGA. In the subsequent stage of

implementing, these ANNs are employed to offer direct solutions or initial solutions for

the PPGA, addressing the challenge of machine failures that could lead to suboptimal

primary sequence execution.

To assess the performance of the ANNs, loss and accuracy metrics are employed.

The numerical results showcase the ANNs’ robust memory capabilities and profound

comprehension of network relationships, as evidenced by their high accuracy scores

and low loss values. The ANNs exhibit an average accuracy score of 99.85% and

an average loss of 0.37%, indicating their significant potential in mitigating machine

failures and enhancing the PPGA’s performance.

The primary objective of the ANNs is to generate initial solutions that expedite

the PPGA’s search for optimal solutions and enable swift production rescheduling,

even when confronted with varying machine failure scenarios not encountered during

training.

To evaluate the effectiveness of the initial solutions produced by the ANNs within

the PPGA-ANN, new instances are introduced to undergo processing through the

ANNs. These instances deviate from the machine failure scenarios encountered during

training by introducing a variation in the processing time of the inputs. The extent

of this variation is quantified using a percentage change formulation, as depicted by

the following equation:

Percentage change =
|qinew − qi|

qi
× 100 (5.1)

In this equation, qi signifies the impact of machine failure on the processing time

observed in the training scenarios, qinew denotes the new impact of machine failure on

the processing time, which has not been employed in the training process. The ab-

solute value operation guarantees that the resulting percentage change value remains

positive, regardless of the direction of the change.
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The resulting percentage change value serves as an indicator of the extent to which

the processing time has increased or decreased in the new instance compared to the

inputs utilized during the training phase. This assessment enables us to measure the

effectiveness of the initial solutions and their potential to expedite the rescheduling

process in a wider range of scenarios, extending beyond the machine failure scenarios

incorporated in the training data.

The evaluation of the PPGA-ANN encompasses the examination of fifteen in-

stances, as illustrated in Figure 5.4. These instances consist of the following cat-

egories: (a) three instances that replicate the inputs employed during the training

phase (with a percentage change of 0%). Additionally, (b) three instances are gener-

ated with a 10% increase in the percentage change of the new instances (qinew = 3.3)

relative to the inputs (qi = 3). Furthermore, (c) three instances are generated with

a 30% increase in the percentage change of the new instances (qinew = 3.9) relative

to the inputs (qi = 3). Another set of (d) three instances are created with a 50%

increase in the percentage change of the new instances (qinew = 4.5) relative to the

inputs (qi = 3). Lastly, (e) three instances are generated with a 100% increase in

the percentage change of the new instances (qinew = 6) relative to the inputs (qi =

3). The processing times of the testing instances are normalized using the mean (pij)

and standard deviation (σij) derived from the training set to ensure consistency in

the evaluation process.

Figure 5.4 illustrates the convergence patterns of the GA, the PPGA, and the

PPGA-ANN concerning the percentage change in the new instances. Analyzing these

comparisons among instances offers valuable insights into the potential advantages of

integrating initial solutions generated by the ANNs in enhancing overall performance.

The results demonstrate that the GA fails to attain optimal solutions for all new

instances. Notably, for instances with 0% deviation from the inputs, denoted as (a1),

(a2), and (a3), the initial solutions provided by the trained ANNs greatly facilitate the

PPGA, resulting in the PPGA-ANN achieving optimal solutions in the first iteration.

Furthermore, the PPGA-ANN exhibits improved convergence speed compared to

the PPGA for instances with 10% and 30% deviation from the inputs. Instances (b1),

(b2), and (c1), where finding optimal solutions is relatively straightforward, allow the
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(a) The percentage change between the new instances and the inputs is 0%

(a1) Machine 1 fails with = 3

(a2) Machine 2, 6, and 8 fail with = 3

(a3) Machine 1, 3, 5, 7, and 9 fail with = 3

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

Figure 5.4: Convergence comparison of the GA, PPGA, and PPGA with initial solu-
tions from the trained ANNs (PPGA-ANN)
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(b) The percentage change between the new instances and the inputs is 10%

(b1) Machine 1 fails with = 3.3

(b2) Machine 2, 6, and 8 fail with = 3.3

(b3) Machine 1, 3, 5, 7, and 9 fail with = 3.3

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

Figure 5.4: Convergence comparison of the GA, PPGA, and PPGA with initial solu-
tions from the trained ANNs (PPGA-ANN) (cont.)
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(c) The percentage change between the new instances and the inputs is 30%

(c1) Machine 1 fails with = 3.9

(c2) Machine 2, 6, and 8 fail with = 3.9

(c3) Machine 1, 3, 5, 7, and 9 fail with = 3.9

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

Figure 5.4: Convergence comparison of the GA, PPGA, and PPGA with initial solu-
tions from the trained ANNs (PPGA-ANN) (cont.)
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(d) The percentage change between the new instances and the inputs is 50%

(d1) Machine 1 fails with = 4.5

(d2) Machine 2, 6, and 8 fail with = 4.5

(d3) Machine 1, 3, 5, 7, and 9 fail with = 4.5

1

GA

PPGA

PPGA-ANN

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

1

Figure 5.4: Convergence comparison of the GA, PPGA, and PPGA with initial solu-
tions from the trained ANNs (PPGA-ANN) (cont.)
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(e) The percentage change between the new instances and the inputs is 100%

(e1) Machine 1 fails with = 6

(e2) Machine 2, 6, and 8 fail with = 6

(e3) Machine 1, 3, 5, 7, and 9 fail with = 6

1

GA

PPGA

PPGA-ANN

1

GA

PPGA

PPGA-ANN

GA

PPGA

PPGA-ANN

1

Figure 5.4: Convergence comparison of the GA, PPGA, and PPGA with initial solu-
tions from the trained ANNs (PPGA-ANN) (cont.)
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PPGA-ANN to swiftly reach the optimal solutions with only a few iterations. Addi-

tionally, for instances (b3), (c2), and (c3), characterized by a more complex search

space for optimal solutions, the PPGA-ANN outperforms the PPGA by achieving the

optimal solutions at a faster pace.

However, for instances with a deviation exceeding 50% from the inputs, the initial

solutions provided by the trained ANNs prove ineffective. In the case of instances

(d1) and (e1), the solutions obtained from the GA, PPGA, and PPGA-ANN are iden-

tical since rearranging the job sequence has minimal impact when the new machine

failure impact on processing time (qinew) is significant and involves only one machine.

Instances (d2), (d3), (e2), and (e3) pose challenges in determining the runtime of the

PPGA-ANN, even when utilizing initial solutions from the trained ANNs. Neverthe-

less, the PPGA-ANN can still achieve superior optimal solutions compared to the

GA.

The findings suggest that the trained ANNs effectively provide initial solutions

for new instances with a deviation of 30% or less. As discussed in Section 4.1.1, this

research restricts the acceptable impact on processing time (qi) within a range that

avoids production halt. Consequently, the initial solutions derived from the ANNs can

be employed in the PPGA to reschedule previous schedules when the processing time

deviation falls within this acceptable range, resulting in faster outcomes compared to

the PPGA.

Nevertheless, it is imperative to acknowledge the limitations in generalizing the

trained ANNs to entirely novel and unfamiliar instances. The performance of the

ANNs may suffer when confronted with instances that exhibit substantial deviations

from the training data set. In this research, the initial solutions generated by the

ANNs are adopted as the population for the first iteration of PPGA. These initial

solutions, depicted by the green line in the first iteration (PPGA-ANN), represent

the solutions specifically focused on the makespan aspect of the problem.

In the first iteration of each green line, it is observed that when a new instance

exactly aligns with the given inputs (labeled as (a)), the ANNs demonstrate their

capability to accurately predict outcomes and yield optimal solutions. However, when

the new instance deviates from the given inputs (labeled as (b), (c), (d), and (e)),

73



it is important to acknowledge that the initial solution generated by the ANNs may

occasionally fall short of achieving optimality. Nevertheless, even in these cases, the

initial solution remains a valuable starting point for the optimization process. In

such cases, the complementary of the PPGA becomes evident. The incorporating

the PPGA-ANN can effectively leverage the strengths of both algorithms to attain

solutions within a reduced computational time.

In practical applications, it is recommended to concurrently execute the PPGA

and the PPGA-ANN. This parallel processing strategy is advocated to address the

inherent uncertainty associated with the deviation or percentage change in the new

impact of machine failure on processing time (qinew) in relation to the provided in-

puts. By running both algorithms simultaneously, it ensures the generation of optimal

solutions that outperform the performance of the GA.

The choice between utilizing PPGA or PPGA-ANN to achieve optimal solutions

within a reduced computational time relies on the specific instance being consid-

ered, taking into account factors such as the complexity of the problem, the unique

characteristics of the production environment, and the attributes of the encountered

disruption. By executing both algorithms in parallel, manufacturers can leverage the

distinct strengths of each approach, enabling them to obtain the most advantageous

rescheduling solutions.

Moreover, in order to evaluate the significance of rescheduling, a comparative

study was carried out to analyze the makespan (C) of a production process with

and without rescheduling using the PPGA-ANN. This investigation encompassed a

range of machine failure scenarios, varying from the failure of a single machine to

the failure of all ten machines. For each scenario, three sets of failed machines were

randomly selected from the entire pool of potential machine failures corresponding

to the specific number of failures. The makespans resulting from these three sets of

failed machines were subsequently averaged for analysis.

The results presented in Table 5.4 clearly indicate that the introduction of resched-

uled production (denoted as Re) leads to significantly shorter average makespans

compared to the un-rescheduled production (denoted as Un) in all examined scenar-

ios. Additionally, the runtime for the rescheduling process ranged from 214 to 377
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Figure 5.5: The observed in the duration of the average makespan (minutes) when
machine failure occurs, comparing un-rescheduled (Un) and rescheduled (Re) pro-
duction.

seconds, which amounts to less than 6 minutes. These findings underscore the crucial

role of rescheduling in enhancing production efficiency by reducing makespans within

a limited computational time frame.

The results depicted in Figure 5.5, derived from the data in Table 5.4, further re-

inforce the effectiveness of rescheduling in improving makespans across the majority

of scenarios. In instances where one or two machines experience failure, the enhance-

ment in makespans remains consistent regardless of the impact of processing time (qi)

when a machine fails. However, when three to nine machines encounter failure, there

is a notable improvement in makespans, particularly evident in scenarios involving

six failed machines and higher values of qi.

Conversely, when all ten machines fail, the improvement in makespan is observed

to be insignificant. This outcome arises due to the uniform distribution of ma-

chine failure impact (qi) among all machines, resulting in an absence of substantial

makespan improvement through rescheduling. Although the experiment highlights
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the criticality of rescheduling when six machines fail, this observation may not nec-

essarily hold true for other data sets.
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Chapter 6

Discussion

In this important chapter, a comprehensive analysis is conducted on the results

and significant implications arising from this pioneering research. The wider range

of applications for the PPGA-ANN methodology is meticulously examined. Addi-

tionally, a detailed exploration is undertaken to understand the reasons behind the

integration of ANN and PPGA, elucidating their synergistic forces in driving this

innovative approach. Simultaneously, the chapter addresses the challenges and limi-

tations encountered during the research journey, highlighting the substantial contri-

butions of this research to the field of study.

6.1 Extending the Scope: Applicability to Struc-

tured Problems

A significant insight arising from this research centers on the impressive versatility

of the PPGA-ANN methodology. While the primary research focus has been on the

complex domain of flow shop production scheduling, it’s crucial to recognize that this

methodology possesses a natural adaptability that goes beyond its initial purpose. It

can easily be reutilized to tackle a wide range of optimization challenges that share a

similar structural foundation, especially those that can be formulated as Mixed Integer

Programs (MIPs) such as Vehicle Routing Problem (VRP). This inherent flexibility

greatly broadens the horizons of the methodology, opening up exciting possibilities
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for future research efforts. The capacity to repurpose and tailor the approach for

structured problems highlights its multifaceted utility, thereby promoting innovation

across various domains in the field of operations research and decision-making.

6.2 The Synergy of ANN and PPGA

The use of ANNs, the PPGA, and their combination, PPGA-ANN, in research

and problem-solving is driven by their unique strengths and the potential synergies

they offer:

6.2.1 Artificial Neural Networks (ANNs):

• Pattern Recognition: ANNs excel in recognizing intricate patterns and relation-

ships within complex datasets. They are particularly valuable in tasks where

the underlying patterns are difficult for humans to discern.

• Initial Solutions: ANNs can provide accurate and insightful initial solutions to

complex problems. In the context of production scheduling, they can suggest

schedules based on historical data and patterns.

6.2.2 Perturbation Population Genetic Algorithm (PPGA):

• The perturbation operator in the PPGA aims to enhance population diversity,

the probability of attaining a near-optimal solution may increase, as it strength-

ens the capacity to flee local optima.

• Meta-Heuristic Optimization: PPGA is a meta-heuristic algorithm, which means

it is adept at efficiently exploring solution spaces. It can find near-optimal so-

lutions to complex optimization problems.

• Speed and Adaptability: PPGA can swiftly generate solutions, making it suit-

able for time-critical manufacturing environments. It adapts well to various

problem domains.
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6.2.3 PPGA-ANN Combination:

• Complementary Strengths: By integrating ANNs and PPGA, the strengths of

both approaches are leveraged. ANNs provide precise initial solutions, while

PPGA explores solution spaces efficiently.

• Enhanced Performance: The synergy between ANN’s accuracy and PPGA’s

speed results in a powerful approach for tackling complex production reschedul-

ing challenges.

The use of ANNs, PPGA, and PPGA-ANN is based on their individual capabilities

and how they complement each other. ANNs are used for their pattern recognition

and initial solution capabilities, PPGA for its optimization and speed, and the com-

bination of both for enhanced performance in production scheduling and rescheduling

tasks. This multi-faceted approach is designed to address the complexities and time

constraints often found in manufacturing environments.

Central to this research is the harmonious integration of ANNs and the PPGA.

This fusion holds profound significance within the domain of production scheduling

and rescheduling. ANNs inherently possess the capability to decipher intricate pat-

terns and discern relationships within complex datasets, thus enabling the provision

of initial solutions distinguished by their accuracy and insightfulness, particularly

within the context of rescheduling. Nevertheless, it is essential to duly acknowledge

the limitation of ANNs—their time-intensive training process during the training

stage.

The PPGA, a meta-heuristic algorithm, exhibits its complementary strength in

this context. It employs meta-heuristic algorithms skillfully to explore solution spaces

and produce nearly optimal results within reasonable timeframes. This ability of the

PPGA effectively overcomes the time constraint associated with ANNs, providing an

efficient way to generate solutions, particularly in time-sensitive manufacturing set-

tings. The coordinated interaction between ANN and PPGA combines the accuracy of

machine learning with the flexibility and adaptability of meta-heuristic optimization,

resulting in a powerful approach ready to tackle the diverse challenges of production

rescheduling.
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6.3 Realism of Scenarios

In light of these valuable insights, it is essential to acknowledge the inherent limita-

tions of our meticulously designed scenarios. While these scenarios have been crafted

with precision to simulate real-world manufacturing challenges, they inherently fall

short in capturing the full spectrum of complexity and unpredictability that charac-

terizes actual production environments. Real-world manufacturing systems operate

within dynamic settings replete with variables, uncertainties, and unforeseen events

that defy faithful replication in controlled simulations. Thus, there is a resounding

call for future research that bridges the gap between simulated environments and the

intricate realities of production. The overarching goal is to fortify the applicability

and robustness of our methodology.

Furthermore, when considering well-trained ANNs in the context of rescheduling,

intriguing insights surface. In the scenario referred to as Case 2 (see Figure 4.1),

where the manufacturing environment operates with firmly established ANN models,

the need for the PPGA may potentially decrease. Well-trained ANNs, bolstered by

their inherent ability to discern intricate patterns and relationships within complex

datasets, might suffice independently for rescheduling tasks. This scenario empha-

sizes the crucial role of ANNs as a self-sufficient solution, particularly when time

constraints allow. It presents a compelling alternative to the combination of ANNs

and PPGA. Consequently, the context and urgency of rescheduling decisions emerge

as pivotal factors in determining the most suitable methodology, underscoring the

dynamic nature of this approach.

In summary, while navigating the intricate landscapes of production scheduling,

it is crucial to acknowledge the limitations discovered during this journey with hu-

mility. These limitations, rather than hindrances, act as catalysts for innovation and

growth. By advocating for bridging the gap between simulated environments and the

multifaceted complexities of real-world production, alongside recognizing the poten-

tial of well-trained ANNs, an invitation arises for further exploration in the field of

production optimization. The mission endures: to reshape the manufacturing land-

scape, infusing it with efficiency, adaptability, and a profound understanding of the
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real-world intricacies that characterize modern production environments.

6.4 The Challenge of Finding Global Optima

Throughout this research, a significant challenge emerged in the pursuit of global

optima within the extensive domain of large-scale flow shop production problems.

The intrinsic computational complexity of these challenges renders the identification

of global optima a demanding task within practical time constraints. In recognition

of this challenge, the adoption of a structured approach is proposed for forthcoming

research endeavors.

The recommended approach involves commencing with small- to moderate-scale

problems, where the identification of global optima is more attainable. This initial

phase will facilitate the establishment of benchmark solutions for these scenarios, a

deeper comprehension of the core issues, and a comprehensive assessment of the per-

formance of the PPGA-ANN methodology. Once a solid foundation and benchmark

dataset are established, the research can confidently expand to address larger-scale

problems. Essentially, future research will follow a series of progressions, beginning

with scenarios where finding global optima is reasonably attainable. This methodical

approach will not only aid in benchmarking and validating the methodology but also

guarantee its robustness as it expands into the vast domain of large-scale scenarios

and understanding the root of the problem.

6.5 Limitations of the Research

While this research represents a significant stride in addressing production reschedul-

ing issues, it’s important to acknowledge certain limitations. Chief among these is

the time required for training ANNs in the training stage. While ANNs excel in pro-

viding accurate solutions, they demand extensive training, especially when dealing

with large-scale problems. Therefore, mitigating this limitation necessitates further

research and advancements in neural network training techniques, particularly in the

context of requiring well-represented training datasets when confronted with new in-
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stances.

Furthermore, the careful design of the scenarios is acknowledged. These scenarios

were crafted to simulate real-world manufacturing challenges, but it is evident that

they may not fully encompass the complexity and unpredictability found in actual

production environments. Real-world manufacturing systems contend with dynamic

variables, uncertainties, and unforeseen events that are challenging to replicate in con-

trolled scenarios. This recognition emphasizes the necessity for future research dedi-

cated to bridging the gap between simulated environments and the intricate realities

of production, thereby enhancing the practicality and reliability of the methodology.

Moreover, to augment the authenticity and statistical significance of this research,

the proposal is extended to encompass a broader range of data sources and bench-

mark datasets in future work. While the primary reliance in this research has been

on the Tailard benchmark dataset to validate the methodology, forthcoming investi-

gations should encompass data derived from diverse sources and encompass a variety

of benchmark datasets. This approach will yield a more comprehensive evaluation of

the methodology’s performance across a spectrum of manufacturing scenarios, fur-

ther substantiating its applicability and reliability. Additionally, the exploration

of alternative algorithms to solve the dataset and subsequent comparisons of the

methodology’s performance with these alternatives can yield valuable insights into

its competitiveness and effectiveness.

In conclusion, the research has unveiled the potential of the PPGA-ANN method-

ology to revolutionize production scheduling and rescheduling. This transformative

capacity extends not only to flow shop environments but also to structured optimiza-

tion problems across various domains. The confluence of ANNs and PPGA adeptly

addresses the limitations intrinsic to each approach, rendering it a compelling choice

for addressing dynamic manufacturing challenges. Nevertheless, it is duly recognized

that ongoing research is imperative to address the limitations identified and to further

bridge the gap between simulated scenarios and real-world manufacturing conditions.

This journey toward enhanced production scheduling methodologies holds promise in

reshaping the landscape of modern manufacturing.
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Chapter 7

Research Contributions

The PPGA-ANN methodology introduced in this research offers a multitude of

benefits that collectively distinguish it as a significant contribution to the field of man-

ufacturing scheduling. These advantages encompass enhanced optimization capabili-

ties, effective knowledge implementation, and superior overall performance, setting it

apart from prior research efforts.

To address the challenge of production rescheduling, it is imperative to apply ac-

curate meta-heuristic algorithms and machine learning techniques within the dynamic

context of manufacturing. This research endeavors to provide a substantial contribu-

tion by developing an integrated rescheduling methodology tailored explicitly for flow

shop production environments. The objective is to bridge the gap between traditional

optimization and machine learning methodologies to create a holistic solution.

The core accomplishment of this research lies in the creation of the PPGA-ANN, a

groundbreaking integration of the PPGA with ANNs. This innovative approach em-

powers rapid production rescheduling in flow shop settings, especially in the presence

of machine failures. Notably, this methodology offers several distinctive advantages

over existing literature. Firstly, the incorporation of the PPGA addresses the limita-

tions of conventional GAs by effectively mitigating the risk of being trapped in local

optima, thereby significantly enhancing scheduling performance. Secondly, the seam-

less integration of ANNs introduces a new dimension to rescheduling by substantially

reducing computational time requirements. These elements synergize to deliver an

efficient, effective, and adaptable methodology for production rescheduling.
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7.1 Methodological Contributions

1. Integration of ANNs and PPGA: This research pioneers a novel method-

ology by seamlessly integrating ANNs with the PPGA in the domain of pro-

duction rescheduling. This innovative fusion brings together the capabilities of

machine learning and meta-heuristic optimization techniques, marking a sig-

nificant advancement in solving complex scheduling problems. The resulting

synergy not only improves the efficiency of rescheduling processes but also lays

the groundwork for future developments at the intersection of these two power-

ful paradigms.

2. Comprehensive Understanding of Flow Shop Production with Ma-

chine Failure Disturbances: Through meticulous investigation and empiri-

cal analysis, this research contributes to a deeper comprehension of the intricate

challenges posed by the flow shop production problem in the presence of machine

failure disturbances. By shedding light on the complexities inherent in dynamic

manufacturing environments, this work addresses critical knowledge gaps. This

newfound understanding serves as a valuable resource for both researchers and

practitioners seeking to navigate and optimize production processes in the face

of unexpected disruptions.

3. Advancement in Meta-heuristic Algorithms: The proposed PPGA rep-

resents a notable leap forward in the realm of meta-heuristic algorithms. It

stands out as a pioneering hybridization of genetic algorithms with the inno-

vative perturbation process. This fusion leverages the strengths of each con-

stituent element to deliver enhanced exploration and exploitation capabilities,

greatly improving the algorithm’s ability to efficiently tackle the intricate chal-

lenges of production rescheduling. The PPGA thus contributes to the continued

evolution of meta-heuristic approaches.

4. Knowledge Advancement in ANN Applicability: This research extends

the boundaries of knowledge concerning the practical applicability and effec-

tiveness of ANNs in the context of production scheduling and rescheduling. By
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capturing complex patterns and relationships within production data, ANNs are

shown to be versatile tools for addressing real-world scheduling challenges. This

insight into their capabilities contributes to the foundational understanding of

employing machine learning techniques to enhance production processes.

5. Exploration of ANN Limitations and Constraints: While highlighting

the strengths of ANNs, this research also critically examines their limitations

and constraints in the rescheduling process. This comprehensive exploration

offers valuable insights into the trade-offs and considerations involved in inte-

grating machine learning and optimization approaches. Understanding these

limitations is essential for making informed decisions about the applicability of

ANNs in specific manufacturing scenarios.

6. Enhancement of Rescheduling Methodologies: The research goes beyond

theoretical developments and offers practical enhancements to existing method-

ologies and frameworks for production rescheduling. These enhancements pro-

vide fresh insights and perspectives on how to improve the efficiency, effective-

ness, and adaptability of rescheduling strategies in real-world manufacturing

settings. By addressing the complexities of dynamic production environments,

this work contributes to the ongoing evolution of rescheduling practices, ulti-

mately benefiting industries striving for optimal production management.

7.2 Practical Contributions

1. Development of a Tailored Rapid Rescheduling Methodology: This

research pioneers a rapid production rescheduling methodology meticulously

designed to cater specifically to the intricacies of flow shop environments grap-

pling with machine failure disturbances. This tailored approach represents a

practical solution that directly addresses the challenges prevalent in dynamic

manufacturing systems. By streamlining the rescheduling process, manufactur-

ers gain a powerful tool for swiftly adapting to unforeseen disruptions while

ensuring production efficiency remains uncompromised.
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2. Implementation and Empirical Validation: The proposed methodology

isn’t confined to theory; it has been implemented and rigorously validated

through extensive numerical experiments and empirical testing. These real-

world experiments provide tangible evidence of the methodology’s effectiveness

and efficiency in generating rescheduling solutions. The empirical results not

only validate its theoretical foundations but also demonstrate its practical ap-

plicability in diverse manufacturing scenarios.

3. Practical Applicability of ANN-PPGA Integration: This research goes

beyond theoretical proposals and demonstrates the practical applicability of in-

tegrating ANNs and the PPGA in the realm of production rescheduling. This

integration offers a viable approach that marries the strengths of machine learn-

ing and optimization techniques. Manufacturers and decision-makers can now

leverage this approach to significantly enhance the efficiency and effectiveness

of their rescheduling processes, thereby ensuring operational continuity in the

face of disruptions.

4. Insights and Guidelines for Implementation: The research provides in-

valuable insights and practical recommendations for the seamless implementa-

tion and deployment of the proposed methodology in real-world manufacturing

settings. It offers guidelines for model training, solution generation, and the

overall integration of the methodology into existing production systems. This

practical guidance empowers practitioners with a roadmap for harnessing the

methodology’s capabilities to their fullest extent.

5. Practical Implications and Benefits: Beyond the theoretical realm, the

study identifies and thoroughly discusses the practical implications and ben-

efits of adopting the proposed methodology. These benefits include reduced

makespan, a critical metric for production efficiency, and improved schedul-

ing performance, particularly in terms of computational time. Understanding

these tangible advantages equips manufacturers with the knowledge needed to

make informed decisions about implementing the methodology to enhance their

production processes.
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6. Enriching Practical Knowledge: The research makes a substantial and

noteworthy contribution to the body of practical knowledge within the field

of production scheduling and rescheduling. It offers valuable insights and rec-

ommendations tailored to the needs of practitioners and decision-makers in the

manufacturing industry. By bridging the gap between theory and practice, this

work empowers industry professionals to navigate the complexities of dynamic

manufacturing environments, fostering more agile and efficient production man-

agement practices.

7.3 Contribution to Knowledge Science

1. Introduction of a Novel Hybrid Methodology: The findings of this re-

search constitute a significant advancement in the field of production reschedul-

ing by introducing a pioneering hybrid methodology. This innovative approach,

which integrates the PPGA with ANNs, stands as a testament to the ever-

evolving landscape of knowledge science. It not only pushes the boundaries of

existing methodologies but also ushers in a new era of problem-solving in pro-

duction scheduling. This contribution extends the repertoire of tools available

to researchers and practitioners in the domain, opening doors to novel strategies

and solutions.

2. Enriching Existing Knowledge: In addition to introducing a novel method-

ology, this research enriches the existing knowledge base within the field of

production rescheduling. It delves deep into the complexities and nuances of

rescheduling challenges, shedding light on previously uncharted territories. By

conducting a comprehensive exploration of the synergistic effects of combining

meta-heuristic optimization (PPGA) with machine learning (ANNs), this work

not only expands the theoretical foundations but also enriches the practical in-

sights available to researchers and industry professionals. It paves the way for

a more nuanced and informed approach to addressing production rescheduling

challenges.
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3. Promising Avenues for Future Research: The results of this research not

only contribute to the present state of knowledge but also illuminate promising

avenues for future research in the field of production rescheduling. The suc-

cess of the PPGA-ANN methodology in reducing makespan and computational

time opens doors to further investigations and refinements. Researchers can

explore variations of this hybrid approach, adapt it to different manufacturing

scenarios, and fine-tune its parameters for optimal performance. Additionally,

the practical applications of this methodology beckon further exploration, po-

tentially leading to its integration into diverse manufacturing systems. In this

sense, this research acts as a catalyst for ongoing inquiries and developments,

underscoring the dynamic and evolving nature of knowledge science in the realm

of production rescheduling.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In the contemporary landscape of highly competitive manufacturing, character-

ized by a relentless pursuit of agility and responsiveness, the development of efficient

production scheduling and rescheduling strategies has assumed a paramount role.

The ability to rapidly adapt and make well-informed decisions in the face of unfore-

seen disruptions has become an imperative for organizations striving to maintain a

competitive edge. This research rises to meet this challenge by introducing a novel

methodology that seamlessly integrates two powerful paradigms: the PPGA and

ANNs.

The PPGA-ANN methodology proposed herein represents a significant advance-

ment in the domain of production rescheduling, particularly within the intricate con-

text of flow shop environments marked by machine failure disturbances. Its distin-

guishing feature lies in its exceptional proficiency in reducing makespan, a pivotal

metric in gauging production efficiency, while concurrently curtailing the computa-

tional time required for rescheduling. This noteworthy accomplishment finds its roots

in the methodology’s two foundational components.

First and foremost, the PPGA assumes a central role in the phase of training. As a

meta-heuristic optimization algorithm, it excels in traversing vast solution spaces, dili-

gently seeking near-optimal schedules that hold the potential to minimize production

90



downtime. Through the adept application of the PPGA, this methodology ensures

that the resultant schedules are not only operationally efficient but also eminently

suited for real-world manufacturing scenarios.

Secondly, the strategic incorporation of ANNs into the methodology introduces

an innovative dimension to the rescheduling process. These neural networks serve as

invaluable instruments for rapid knowledge implementation. By harnessing ANNs,

the methodology taps into the predictive capabilities of machine learning, enabling the

swift generation of high-quality initial solutions. These initial solutions function as a

robust foundation upon which the PPGA can further refine and optimize schedules,

ultimately leading to substantial time savings.

In summation, this research delivers a substantial and well-timed contribution to

the realm of rapid production rescheduling. Through the introduction of the PPGA-

ANN methodology, manufacturers are presented with a dependable solution that not

only elevates production efficiency by curtailing makespan but also achieves this feat

within an exceptionally abbreviated computational timeframe. The potential advan-

tages of this methodology reverberate across diverse industries, particularly in scenar-

ios characterized by multiple machine failures. Embracing this innovative approach

equips manufacturing processes with the requisite tools to excel in an environment

where adaptability and efficiency reign supreme. Looking ahead, the PPGA-ANN

methodology holds the promise of revolutionizing manufacturers’ responses to unfore-

seen disruptions, ushering in an era characterized by agile and resilient production

management.

8.2 Future Work

To enhance the authenticity and applicability of the research problem while open-

ing doors for future investigations, several promising avenues for extension are worth

exploring. Expanding the scope of the problem domain to encompass additional

complexities can significantly contribute to a more realistic representation of manu-

facturing scenarios.

One avenue is to consider augmenting the number of jobs and machines involved
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in the flow shop production, thus creating a more intricate and demanding schedul-

ing environment. By increasing and decreasing the scale of the problem, researchers

can simulate production scenarios that mirror real-world manufacturing facilities more

closely, where numerous machines and jobs coexist, generating more complex schedul-

ing challenges. Additionally, the consideration of various processing times, i.e., chang-

ing qi values to non-uniform values, adds an addition of realism to the dataset for

training ANNs. This move towards non-uniform values will better represent the vari-

able nature of processing times in actual manufacturing processes, where different

jobs may have distinct time requirements for processing on each machine.

Furthermore, broadening the analysis to incorporate diverse production settings,

such as job shop production, adds another layer of complexity and can lead to valuable

insights into the adaptability of the proposed PPGA-ANN methodology in various

manufacturing contexts. Job shop production introduces the concept of routing flex-

ibility, where each job can follow its unique sequence of machines. Exploring how the

PPGA-ANN performs in such a flexible environment can provide valuable data on its

versatility and effectiveness in handling diverse manufacturing scenarios.

Moreover, to further optimize the computational efficiency of the proposed PPGA-

ANN methodology, it may be beneficial to introduce a termination criterion. Im-

plementing a criterion that halts the PPGA when it fails to improve the solution

within a predefined number of iterations, for example, after 100 iterations, could

prevent unnecessary prolongation of computations. This addition would expedite the

rescheduling process without compromising the quality of solutions, particularly when

searching for near-optimal schedules in complex scenarios.

Additionally, for real-world manufacturing scenarios, it’s often known which ma-

chines are more prone to failures or disruptions. Researchers can explore the inte-

gration of weighted factors into the methodology, giving higher priority or weight to

machines with a history of frequent failures. This adjustment can lead to more tai-

lored and efficient rescheduling solutions that account for the specific vulnerabilities

of certain machines.

It is imperative to acknowledge that the performance of the proposed PPGA-

ANN methodology hinges on the selection of scenarios used to simulate disrupted
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situations. To address this inherent limitation and enhance the methodology’s ap-

plicability to unforeseen disruptions, integrating reinforcement learning techniques,

such as Q-learning [50], is recommended. This augmentation would empower the al-

gorithm to acquire and adapt to new knowledge as it encounters unforeseen instances

that significantly deviate from the initial scenarios. By doing so, the methodology’s

adaptability and effectiveness in addressing a wide array of rescheduling scenarios can

be significantly bolstered, making it a more robust and versatile tool for real-world

manufacturing challenges.

In conclusion, the future of this research promises a more comprehensive and

adaptable approach to production rescheduling, addressing real-world complexities

and uncertainties with innovative methodologies. By delving into these promising

avenues, researchers can contribute to the ongoing evolution of manufacturing opti-

mization and its application in various domains.
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Appendix

Table 8.1: The base processing time (pij) from Taillard’s benchmark

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 74 28 89 60 54 92 9 4 25 15
J2 21 3 52 88 66 11 8 18 15 84
J3 58 27 56 26 12 54 88 25 91 8
J4 4 61 13 58 57 97 72 28 49 30
J5 21 34 7 76 70 57 27 95 56 95
J6 28 76 32 98 82 53 22 51 10 79
J7 58 64 32 29 99 65 50 84 62 9
J8 83 87 98 47 84 77 2 18 70 91
J9 31 54 46 79 16 51 49 6 76 76
J10 61 98 60 26 41 36 82 90 99 26
J11 94 76 23 19 23 53 93 69 58 42
J12 44 41 87 48 11 19 96 61 83 66
J13 97 70 7 95 68 54 43 57 84 70
J14 94 43 36 78 58 86 13 5 64 91
J15 66 42 26 77 30 40 60 75 74 67
J16 6 79 85 90 5 56 11 4 14 3
J17 37 88 7 24 5 79 37 38 18 98
J18 22 15 34 10 39 74 91 28 48 4
J19 99 49 36 85 58 24 84 4 96 71
J20 83 72 48 55 31 3 67 80 86 62
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