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A B S T R A C T

Speech emotion recognition (SER) is traditionally performed using merely acoustic information. Acoustic
features, commonly are extracted per frame, are mapped into emotion labels using classifiers such as support
vector machines for machine learning or multi-layer perceptron for deep learning. Previous research has shown
that acoustic-only SER suffers from many issues, mostly on low performances. On the other hand, not only
acoustic information can be extracted from speech but also linguistic information. The linguistic features can
be extracted from the transcribed text by an automatic speech recognition system. The fusion of acoustic
and linguistic information could improve the SER performance. This paper presents a survey of the works on
bimodal emotion recognition fusing acoustic and linguistic information. Five components of bimodal SER are
reviewed: emotion models, datasets, features, classifiers, and fusion methods. Some major findings, including
state-of-the-art results and their methods from the commonly used datasets, are also presented to give insights
for the current research and to surpass these results. Finally, this survey proposes the remaining issues in the
bimodal SER research for future research directions.

1. Introduction

Speech is a sensory modality to express and communicate emotions.
In a speech chain, humans convey their messages from the speakers’
brain to the listeners’ brain via speech. By speaking, speakers not only
express their thoughts into speech information but also communicates
their speech information. The information in speech includes emotion.
The speaker wants the listener to be able to perceive their emotions,
for instance, by modulating the intonation into their voice. This speech
chain shows how humans and humans communicate their emotions
through speech.

Speech emotion recognition (SER) is a part of affective comput-
ing – computing that relates to, arises from, or influences emotions
(Picard, 1995) – that focuses on recognizing emotion from humans’
voices. SER is an attempt to make a computer to be able to recognize
the expressed emotions in a given utterance. The earliest reported
research on SER, perhaps, was the work of Dellaert et al. (1996).
The study explored prosodic features with several statistical pattern
recognition techniques to classify the emotional content of utterances.
Under a limited number of data (1000 utterances), the system achieved
a comparable performance close to humans.

Instead of using acoustic information only, one of the key insights
in the two decades of SER development is the fusion of acoustic and
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linguistic information (Schuller, 2018). As predicted in human emotion
perception, the addition of linguistic data enriches the SER system
and helps machines recognize human emotion better. The addition of
linguistic information also means doubling the data (input features),
and more data tends to be more effective. Given the evidence, there is a
shift in recent SER research from unimodal acoustic analysis to bimodal
acoustic–linguistic information fusion. Hence, this introduction will
briefly describe unimodal acoustic analysis for SER and the shift from
unimodal to bimodal information fusion.

1.1. Unimodal acoustic analysis

Utilizing speech to identify humans’ emotions roots from the cor-
relation between voice and emotion. There is strong evidence that
humans can recognize other’s emotions from their voices. For instance,
Mozziconacci (2002) stated ‘‘speech variability [prosody] corresponding
to the expressiveness in the speech is not random and that a better un-
derstanding of this variability would be praiseworthy ’’. For dimensional
emotion (recognizing degree of valence, arousal, and dominance), it
is observed that fundamental frequency correlates with valence while
rhythmic and spectral characteristics of voice correlate with arousal
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(Mairano et al., 2019). A review by Schuller (2018) showed the root
correlation between acoustics and human emotion.

Among multimodal data, speech has been widely chosen for rec-
ognizing emotion since it is less private than other data, e.g., image
and video. We argue that speech is less private than image and video
data since it contains less information than both image and video. For
instance, one can attribute information from images and video (e.g., the
physical appearance of a person in a photo) and search/find related
information about a person using these data easier than using audio
information. Using speech to recognize emotion benefits future im-
plementation of speech-related technologies, e.g., voice assistants and
telephone conversations. A milestone conducted by Petrushin (1999)
proves a pilot study to implement SER for call center applications. This
laboratory-scale study, at that time, showed a potential application for
SER technologies. Nowadays, this SER technology that could recognize
speaker emotions in telephone conversations is available limited in the
commercial market, while its research is still ongoing.

Research on SER has been focused on two main areas: finding
biomarkers that are highly correlated to emotion and building models
based on these biomarkers. The first focus resulted in two main types
of acoustic features commonly adopted in SER community: low-level
descriptor (LLD) and high-level statistical function (HSF). LLDs were
used to evaluate acoustic characteristics related to emotion, mostly by
modeling temporal and spectral information. First, an utterance of the
speech signal is divided into several frames. Second, a window function
is applied on each frame, and the specific acoustic features are extracted
on this frame. The LLDs from all frames are concatenated to obtain
feature representation for a single utterance. If needed, these LLDs are
padded with zeros to produce the same vector size as other utterances.

Instead of concatenating acoustic features from all frames in an
utterance, a global value per acoustic feature can be calculated by
aggregating these acoustic features. The role of this HSF is to model
temporal variations and contour of different LLDs from all frames in an
utterance (Mirsamadi et al., 2017). Among many statistical functions,
mean values and standard deviations were found usefully for (dimen-
sional) speech emotion recognition (Schmitt et al., 2019; Atmaja and
Akagi, 2021). Although El Ayadi et al. (2011) argued that this HSF
suffers from the loss of temporal information and the small size of
features, Atmaja and Akagi (2021) showed that HSF obtained better
results than LLD in the same dataset and model.

Combining local and global features is a way to compromise the ad-
vantages and disadvantages of each feature extraction method.
eGeMAPS (Eyben et al., 2016) is a fusion of GeMAPS (containing 23
LLD) and their functionals resulting in 88 parameters. Vlasenko et al.
(2007) combined frame-level and turn-level information (LLD and HSF)
for robust speech emotion recognition. The results emphasized feature
integration on different levels of feature extraction. However, there
is no study found investigating the trade-off among the use of LLD,
HSF, and hybrid features. Neither a way to accelerate the extraction of
functionals, which requires the calculation of LLD, was proposed.

The progressive research on SER led to practical implementation in
the commercial industry. Nowadays, SER has been implemented in var-
ious applications, both web/cloud-based applications and standalone
applications. Although it is useful to analyze the subject’s affective
states, these emerging affective recognizer technologies have been
criticized by others. Researchers in psychology argued that due to
individuals’ high variability, the emotional categories do not have an
essence; the correlation between particular facial expressions and the
corresponding basic emotions was not strongly supported (Barrett et al.,
2019). While this argument was attributed to categorical emotion, it
may be better to model the emotion in other than categorical form.

To this end, acoustic information is required to extract emotional
knowledge from speech data. However, using acoustic features only
may be insufficient. Since linguistic features also can be derived from
speech, it is reasonable to fuse acoustic with linguistic information to
observe such improvements.

1.2. From unimodal to bimodal information fusion

Among many other issues, multimodal information fusion is a chal-
lenging task in pattern recognition. Recent studies (Poria et al., 2017;
Atmaja and Akagi, 2020; Atmaja et al., 2019) confirm that multimodal
classifiers outperform unimodal classifiers. The multimodal information
employed speech, text, and video data. The unimodal information
utilized only speech data. In SER itself, one of the main issues in
searching for a more predictive feature is whether it suffices to explore
acoustic features only, or it is necessary to combine acoustic features
with other modalities (El Ayadi et al., 2011). For speech, both acoustic
and linguistic features can be extracted. Thus, two pieces of information
can be fused to evaluate the effectiveness of information fusion from a
single speech modality without the need for additional modalities.

Aside from unnecessary additional measurements, the correlation
among acoustic, linguistic, and emotion in human communication is
also predicted in both experimental psychology and neuroscience (Ny-
gaard and Queen, 2008; Liebenthal et al., 2016). The result of experi-
ments suggested that humans used emotional words to strengthen emo-
tional tone. Neuroscience experiments show the neural dynamics and
interaction between verbal (linguistic) and non-verbal (vocalization)
channels. As in this human ability to perceive emotion from acoustic
and linguistic information, machines and computers should be able
to recognize humans’ emotions from bimodal acoustic and linguistic
information fusion more precisely than from unimodal information.

The use of linguistic information for SER is also reasonable from
an affective computing point of view. In natural language processing,
linguistic information is extracted from the text for sentiment analysis.
This textual information was also used to detect emotion in text (Alm
et al., 2005; Mulcrone, 2012; Calvo and Kim, 2013). In these works,
textual information shows encouraging results on both categorical and
dimensional emotion recognition from text. Fusing acoustic and linguis-
tic information may improve the performance of SER more significantly
than other strategies.

Indeed, bimodal emotion recognition by fusing acoustic and lin-
guistic information shows significant performance improvement. Refs.
Schuller et al. (2004, 2005), Eyben et al. (2010), Ye and Fan (2014) and
Tian et al. (2016) show the usefulness of fusing acoustic and linguistic
in different strategies to improve SER performance. Different acoustic
and linguistic features were fused using different classifiers. Different
fusion strategies were evaluated to investigate the effectiveness of the
fusion methods.

Speech delivers messages that go beyond words. In this under-
standing, word meaning is not enough to convey a message; acoustic
information is needed. Acoustic information alone is also not enough to
deliver a message. It is not only how it is said (acoustic) but also what
is said (linguistic). The fusion of acoustic and linguistic information
makes clear the messages from speaker to listener. This concept is
illustrated in Fig. 1.

This survey paper differs from the previous ones (e.g., El Ayadi et al.
(2011) and Akçay and Oguz (2020)) in several ways. In these previous
surveys, the belief for emotional speech is primarily about how it is
said rather than what is said. This paper reviews the studies on com-
bining both pieces of ‘‘how’’ and ‘‘what’’ information. Acoustic features
contain information on how it is being said. Linguistic features contain
information on what is being said. Fusing both pieces of information,
which are extracted from a speech, will improve the clarity of the
message, including the expressed emotion. The perception of emotion
will also be improved by the fusion of this bimodal information. This
process is in line with the data-information-knowledge (DIK) concept
in information science.

The process of recognizing emotion from speech consists of two
main steps. The first is extracting acoustic representation and linguis-
tic information from speech data; the second is extracting emotional
knowledge from acoustic and linguistic information. The output of the
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Fig. 1. A concept of bimodal emotion recognition by combining acoustic and linguistic
information.

first step becomes the input of the second step. Feature extraction ex-
tracts two pieces of information from speech — acoustic and linguistic.
For categorical emotion, the process from information to knowledge is
classification. For dimensional emotion, the process is regression. These
processes are commonly performed within machine learning or deep
learning. The acoustic and linguistic information are fused in this step,
which can be implemented in various ways.

This paper aims to review the current studies of bimodal emotion
recognition by utilizing acoustic and linguistic information. The main
scope of this study includes the datasets, emotion models, features,
classifiers, and fusion methods used in bimodal SER. The main scope
is extended to explore the major findings and highlight the remaining
challenges for bimodal SER.

The rest of this paper can then be organized as follows. Section 2
describes related work and the difference of this work from the previous
surveys. Sections 3–6, and 7 present datasets, emotion models, features,
classifiers, and fusion methods. Section 8 discusses the major findings
and highlights the remaining issues. Finally, Section 9 concludes this
survey paper.

2. Related work

Surveys or reviews on speech emotion recognition have been pre-
sented in many forms (El Ayadi et al., 2011; Anagnostopoulos et al.,
2012; Sailunaz et al., 2018; Akçay and Oguz, 2020; Wu et al., 2014).
However, no survey has been found focusing on the fusion of acoustic
and linguistic information for SER. Most SER surveys only focus on
acoustic information while others focus on the multimodal fusion of
acoustic information with other modalities, including biological signals,
texts (linguistic), and videos (visual).

A survey paper by El Ayadi et al. (2011) thoroughly reviewed
features, classification schemes, and datasets for SER. That survey paper
by El Ayadi et al. has influenced the research of SER in many areas:
the importance of local feature vs. global feature, the effect of such
preprocessing methods, and the necessity to combine speech with other
modalities. That paper by El Ayadi et al. also motivates this survey
paper in which bimodal acoustic–linguistic emotion recognition has
recently become a trend in SER research.

Anagnostopoulos et al. (2012) performed a survey on SER research
conducted between 2000–2011. The survey paper focused on features

and classification schemes used in the SER paper during that period.
The strong point of this survey paper is the discussion about the
different classification schemes used for SER, including their advan-
tages and disadvantages. The authors argued the need for hybrid and
ensemble classifiers since no single classifier has performed consistently
for various tasks and datasets. In addition, the author highlighted the
potency of using linguistic information along with acoustic information.
At that time, the author proposed to utilize salient words to assess emo-
tion. Nowadays, deep learning-based linguistic information has been
adopted widely in bimodal SER instead of dictionary-based lexicon or
keyword spotting mechanism.

Sailunaz et al. (2018) attempted to survey emotion detection from
text and speech. However, instead of fusing acoustic (speech) and
linguistic (text), the authors completed a survey within each modality,
either speech emotion recognition or text emotion recognition. Both
modalities are reviewed independently. The survey paper focused on
the features used in speech and text emotion recognitions. The authors
concluded the necessity for investigating acoustic features related to
specific emotions and the necessity to improve text emotion recognition
for emotionally implicit text.

Recently, Akçay and Oguz (2020) reviewed the advancements in
the main building blocks of SER research: emotion models, datasets,
feature, preprocessing methods, supporting modalities, and classifiers.
The author distinguished between their paper and the previous survey
paper in the availability of these building blocks. Compared to the
previous studies, this survey paper is the complete one covering these
SER building blocks. Hence, a comparison can be made between this
paper and that paper (Akçay and Oguz, 2020).

In addition to the recent survey paper by Akçay and Oguz (2020),
our paper focuses on the addition of linguistic information for im-
proving SER performance. A new topic by the addition of linguistic
information appears: fusion methods to combine acoustic information
and linguistic information. Although the linguistic features and the
fusion block are the only novelties of this survey paper from the SER
building blocks point of view, we expand our coverage to review the
emotion models, datasets, acoustic features, and classifiers employed
by acoustic–linguistic emotion recognition research. This paper surveys
more than 100 papers related to acoustic–linguistic emotion recogni-
tion from the first appearance (Lee et al., 2002) until the recent findings
in 2021 (Santoso et al., 2021; Atmaja and Akagi, 2021). Similar to a
survey paper conducted by Wu et al. (2014) that focused on audiovisual
emotion recognition, we, to the best of our knowledge, do not see
the same topic has been discussed for acoustic–linguistic (audiotextual)
emotion recognition.

3. Datasets

The first main block of the bimodal acoustic–linguistic emotion
recognition system is the dataset. Dataset is the raw (input) for the
emotion recognition process. We introduce the following three datasets
since these are the common ones used in bimodal acoustic–linguistic
emotion recognition. In addition to serving as a starter kit on acoustic–
linguistic SER research, the datasets can be used for benchmarking the
performance of the various proposed SER methods.

1. IEMOCAP
IEMOCAP, which stands for interactive emotional dyadic motion

capture database, contains dyadic conversations with markers on the
face, head, and hands. The recordings thus provide detailed informa-
tion about the actors’ facial expressions and hand movements during
both scripted and spontaneous spoken communication scenarios (Busso
et al., 2008). Both speech data per dialogue and per sentence are avail-
able. The IEMOCAP dataset is freely available upon request, including
its labels for categorical and dimensional emotion. The dataset provides
both categorical and dimensional emotions. For categorical emotion,
there are ten unique categories: neutral, happy, anger, surprise, fear,
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disgust, frustration, excitement, and others. For dimensional emotion,
there are three labels: labels: valence, arousal, dominance. The scores
of the dimensional labels are the average scores of two evaluators. The
dimensional emotion scores for valence, arousal, and dominance (VAD)
are meant to range from 1 to 5 as a result of self-assessment manikin
(SAM) evaluation. It should be noticed for bimodal emotion recognition
researchers to thoroughly inspect the labels since the performance will
depend on the reliability of these labels. For instance, the author stated
that the range of dimensional labels is from 1 to 5, but it has been
found that some labels are below 1 and above 5. These outliers must
be treated before processing these labels in the SER system. It is also
common for dimensional emotion to convert the 5-point scale to a
floating-point value range [−1, 1] when they are fed to a classifier.
The classifier is usually a deep neural network (DNN) system.

The total length of the IEMOCAP dataset is about 12 h, or 10 039
turns/utterances, from ten actors in five dyadic sessions (two actors
each). The speech modality used to extract acoustic features usually
is a set of files in the dataset with a single channel per sentence. The
sampling rate of the speech data was 16 kHz. The manual transcription
in the dataset without additional preprocessing is commonly used for
the text data except for comparing it with automatic speech recognition
(ASR) outputs.

2. MSP-IMPROV
MSP-IMPROV (Busso et al., 2017), developed by the Multimodal

Signal Processing (MSP) Lab at the University of Texas, Dallas, is a mul-
timodal emotional database obtained by applying lexical and emotion
control in the recording process while also promoting naturalness. The
dataset provides audio and visual recordings, while text transcriptions
are obtained via ASR provided by the authors upon request. The
annotation method for the recordings was the same as for IEMOCAP,
i.e., SAM evaluation, with ratings by at least five evaluators.

The MSP-IMPROV dataset contains 8438 turns/utterances, includ-
ing four scenarios: ‘‘Target-improvised’’, ‘‘Target-read’’,
‘‘Other-improvised’’, and ‘‘Natural-interaction’’. For bimodal acoustic–
linguistic fusion, it may be necessary to remove lexical-controlled
target sentences. These sentences are inside ‘‘Target-improvised’’ and
‘‘Target-read’’ scenarios. There are five categorical labels (anger, happy,
neutral, sad, and others) and three-dimensional labels (valence, arousal,
dominance) available in the dataset.

The speech data in the MSP-IMPROV dataset are available per-
sentence audio file. The original sampling rate was 44.1 kHz with a
single channel recording (mono). The audio bit rate was 705 kbps.

3. USOMS-e
Ulm State of Mind in Speech-elderly (USOMS-e) dataset is the

corpus used in the elderly emotion sub-challenge in the INTERSPEECH
2020 computational paralinguistic challenge. The whole dataset subset
is recorded with 87 subjects aged 60–95 years; 55 of the subjects were
male, and the rest 32 were female. The dimensional emotion labels
were given in valence and arousal divided into three categories: low,
medium, and high.

Table 1 shows different properties of the common datasets used for
acoustic–linguistic emotion recognition, including USOMS-e dataset.
For the USOMS-e dataset, labels are given per each story (long utter-
ance). The label on the dataset is given for valence and arousal (VA) on
both alphabetic and numeric symbols, i.e., low (‘L’ or ‘0’), medium (‘M’
or ‘1’), and high (‘H’ or ‘2’). The original baseline paper (Schuller et al.,
2020) chose alphabetic labels between both. Since the duration for
each story is long, the authors provided chunks as smaller segments of
utterances of five seconds. Note that the number of chunks is different
for each story. For instance, there are 34 chunks in the first story and
46 chunks in the second story.

4. Other datasets
Although we only describe the three most common datasets used

in bimodal acoustic–linguistic emotion, there are other datasets that

have been explored for bimodal SER research. Table 2 lists those known
datasets used in acoustic–linguistic emotion recognition. Note that if no
information available in the reference paper, we set it as ‘‘No’’, e.g., the
transcription and the availability of the dataset. The ‘‘Used in’’ column
refers to examples of research papers in which the dataset was used.
The minimum criterion for a dataset to be included in the list is used
in a reference considering linguistic information for SER.

The table shows the domination of certain characteristics of the
dataset over others. First, English language datasets are more available
than any other language due to their nature. This low availability of
non-English datasets raises a necessity to build SER datasets in other
languages, particularly for acoustic–linguistic fusion purposes. Second,
categorical emotion dominated the model of emotion, among other
emotion descriptions. This emotion model’s availability leads to more
research in categorical than other models (which will be shown later).
Finally, most of the dataset is still closed for the public. It means no
access to the dataset or no information is provided to access the dataset.
It is essential to open the dataset for accelerating SER research while
keeping confidential issues (e.g., private data of respondents).

4. Emotion models

The second building block of SER is the emotion model. The choice
of the emotion model is mostly based on the availability of emotion
labels in the dataset. However, it is important to choose an emotion
model beyond the availability of the labels. According to Grandjean
et al. (2008), there are at least three views to model humans’ emotions:
categorical emotion, dimensional emotion, and componential appraisal
emotion. The following description describes these models used ac-
tively in affective computing research. The purpose of introducing
these three models is to provide a unified view of emotion from the
psychological side. Knowing the three models, researchers in speech
communication could understand the current models’ limitations, im-
prove the current models, or incorporate the models into their SER
research.

4.1. Categorical model

Categorical emotions, also known as basic emotions, are discrete
emotions that are independent of each other in their manifestations.
Although the original idea is to organize affective states into their emo-
tion families (rather than discrete emotions); however, most researchers
agree that there are six basic emotions: anger, fear, enjoyment, sadness,
disgust, and surprise. The first five emotions are backed by robust
and consistent evidence, while the evidence for the surprise is not as
firm (Ekman, 1992). Nevertheless, these six basic emotions have been
standard in categorical emotions.

Before Ekman coined the terms of basic emotions, Plutchik and
Kellerman (1980) have defined basic eights bipolar emotions: joy (re-
production), sorrow/sadness (deprivation), acceptance/trust (incorpo-
ration), disgust (rejection), surprise (orientation), anticipation (explo-
ration), anger (destruction), fear (protection). These eight emotions can
be illustrated as a wheel of emotion. Each emotion can mix with other
emotions to make up another emotion, as mixing colors.

Instead of six, recent research suggests that four latent expressive
patterns were commonly observed in facial expressions (Jack et al.,
2016). However, instead of mentioning the name of basic emotions,
the research utilized the term basic ‘‘action unit pattern’’ (AU Pattern),
from one to four. Although backed by scientific evidence, this finding
did not have any practical implementation yet.

Ekman revised the characteristics which distinguish basic emotion
from 9 criteria (Ekman, 1992) to 11 criteria (Ekman, 2005). The
new criteria resulted in 15 emotions: amusement, anger, contempt,
contentment, disgust, embarrassment, excitement, fear, guilt, pride in
achievement, relief, sadness/distress, satisfaction, sensory pleasure, and
shame. Du et al. (2014) shows 21 categories of facial expressions by a
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Table 1
Different properties of the common datasets used in acoustic–linguistic emotion recognition.

IEMOCAP MSP-IMPROV USOMS-e

# samples 10039 8438 261 stories (7778 chunks)
# speakers 10 12 87
# hours ≈12 >9 ≈10.8
Emotion model Categorical + VAD Categorical + VAD VA [L, M, H]
Transcription Manual ASR Manual + ASR
Characteristic Acted Acted, naturalness Naturalness, elderly people

Table 2
Speech datasets for acoustic–linguistic emotion recognition.

Dataset Language Emotion description Transcription Reference (Year) Used in Availability

Fermus III English Categorical No Schuller (2002) Schuller et al. (2004) and Rigoll et al. (2005) No
ITSPOKE English Negative, Neutral, Positive No Litman et al. (2004) Litman and Forbes-Riley (2004, 2006) No
Emo-DB German Categorical No Burkhardt et al. (2005) Schuller et al. (2005, 2008) Publicly available
IEMOCAP English Categorical, Dimensional Yes (Manual) Busso et al. (2008) Atmaja and Akagi (2020) By request
VAM German Categorical, Dimensional No Grimm et al. (2008) Schuller (2011) and Grimm et al. (2007) By request
FAU AIBO German Categorical Yes Steidl (2009) Metze et al. (2009) and Polzehl et al. (2011) No
UAH Corpus Spanish Categorical No Callejas et al. (2011) Griol et al. (2019) No
SEMAINE English Categorical, Dimensional Yes McKeown et al. (2012) Schuller et al. (2012) By registration
EMOV English Valence, Arousal No Karadogan and Larsen (2012) Karadogan and Larsen (2012) No
Image Description Spanish Categorical No Griol and Molina (2015) Griol et al. (2019) No
Let us Go English Categorical Yes Griol et al. (2016) Griol et al. (2019) No
MSP-IMPROV English Categorical, Dimensional Yes (ASR) Busso et al. (2017) Atmaja and Akagi (2021) By request
IDEC Indonesia Categorical No Kurniawati et al. (2017) Kurniawati et al. (2017) No
Call center data English Negative, Neutral, Positive Yes (ASR) Cho et al. (2018) Cho et al. (2018) No
CMU-MOSEI English Categorical Yes (ASR) Zadeh et al. (2018) Khare et al. (2020) Publicly available
MELD English Categorical Yes Poria et al. (2019) Ho et al. (2020) Publicly available
MSP-Podcast English Categorical, Dimensional No Lotfian and Busso (2019) Pepino et al. (2020) By request
SEWA DB Six languages Valence, Arousal, Liking Yes Kossaifi et al. (2019) Tzirakis et al. (2021) By registration
USOMS-e German Valence, Arousal Yes (ASR+Manual) Schuller et al. (2020) Soğancıoğlu et al. (2020) By request

facial action coding system analysis. Furthermore, Cowen and Keltner
(2017) found 27 emotional experiences from facial expression across
self-report methods. The growth of the number of categorical emotions
based on facial expression measurements confirms the high variability
of humans’ expressed emotions. Darwin argued that the biological
category, including the emotion category, does not have an essence;
it is hard to map one-to-one facial expressions to emotional states.

4.2. Dimensional model

Instead of dividing emotion into several categories, a dimensional
emotion views emotion as continuous values/degrees of attributes in
valence-arousal space (2D) or valence-arousal-dominance (3D) space.
Valence is the degree of positive or negative emotion, arousal refers to
the level of activation from sleepiness (low) to awakeness (high), and
dominance is the degree of control over the emotion (Gunes and Pantic,
2010). In this theory, an emotion or affective state is not independent
of one another. Rather, they are related one to another in a systemic
manner (in 2D or 3D space). Russell (1980) argued that the previous
emotion categories could be mapped within 2D valence-arousal space.
An illustration of VA space with several emotion categories is shown in
Fig. 2.

The search for higher dimensions for dimensional emotion is a
worthwhile study. Mehrabian and Russell (1974) developed three nu-
merical dimensions, VAD, to assess environmental perception, expe-
rience, and psychological responses. However, Fontaine et al. (2017)
have found that the world of dimensional emotion is not two or
three dimensions, but four dimensions. The fourth dimension is unpre-
dictability. In order of importance, the order of dimensional emotions is
valence, dominance, arousal, and predictability. Fortunately, five years
before that study was published, an emotion recognition challenge
that involved four-dimensional emotions was held in 2012 (Schuller
et al., 2012). In this challenge, four-dimensional emotions are arousal,
expectancy, power/dominance, and valence. Expectancy, which rep-
resents the predictiveness of the subject’s feeling, is very similar to
predictability/unpredictability in the latter report.

4.3. Appraisal model

The third emotion model, the hybrid model or appraisal model,
can be viewed as an extension of the dimensional model. In this
model, emotion categories are spanned between bipolar dimensions.
For instance, ‘‘impatience’’ is located in the upper part of the arousal
axis (Scherer, 2005). This study of appraisal-based emotion theory
leads to the development of the Geneva emotion wheel (GEW) rating
study. This hybrid model has two similarities with the previous 4D
dimensional emotion model. First, the hybrid model also uses four
attributes/dimensions: valence, dominance/power, arousal, and con-
ducive/obstructive (instead of predictiveness). Second, in version 2.0
of GEW, two axes used to draw emotion terms are valence and domi-
nance/power, which are the two most important emotional attributes
according to Fontaine et al. (2017). In version 3.0, the model used
the simpler words with more degrees for each emotional word (six
degrees instead of five degrees in version 2.0). Nevertheless, the use of
the hybrid model in SER currently is not familiar in the SER research
community, perhaps due to these labels’ availability in the dataset.
On another side, all SER research employed either first, second, or
combination of both views as target emotion.

Aside from three models of emotion, there is a recent study that
suggests that emotion annotation – which represents the emotion model
– is ordinal by nature (Yannakakis et al., 2021). We saw that this ap-
proach is close to the appraisal model, which extends the dimensional
model to a categorical model with different orders. While this approach
is not intended to model the emotion, it is a good way to annotate
emotions for both categorical and dimensional models. We encourage
the future speech emotion dataset builder to follow this approach,
i.e., to use ordinal annotation by asking annotators to rank a preference
of emotion among options (e.g., via SAM evaluation).

5. Features

The input feature to the SER system is the most important issue for
developing bimodal information SER. If the input is not informative for
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Fig. 2. Graphical representation of circumplex model (2D valence-arousal space).

Fig. 3. Classification of acoustic features for SER.

predicting emotion or does not correlate with the predicted emotion,
the prediction results will suffer from the low performance. In princi-
ple: garbage in, garbage out. The following classifications are useful
features for SER from acoustics and linguistics. The classification is
based on the criteria of the extraction process, whether it is conducted
manually via formulation or physical modeling or generated by model
or data-driven learning.

5.1. Acoustic features

The correlation of acoustic features with emotion has been stud-
ied for many years (Scherer, 2005; Mairano et al., 2019). The main
classification of acoustic features for SER is the classical and modern
approaches, i.e., handcrafted features vs. deep learning-based features.
Classical handcrafted features employed acoustic features extracted
per frame. These features are often called local features or low-level
descriptors (LLDs). On the other hand, statistical features computed
from LLDs are new ways to capture the dynamics among frames. The
features generated by this latter feature extraction method are called
global features, suprasegmental features, high-level features, or high-
level statistical functions (HSFs). Fig. 3 shows the classification of
acoustic features for SER.

Eyben et al. (2010) divided LLD and HSF into five groups: sig-
nal energy, fundamental frequency (perception: pitch), voice quality,
cepstral, time signal, and spectral. Prosodic features (𝑓𝑜, duration,
intensity, voice quality) have been known to have a strong corre-
lation with emotion from a psychology point of view (Frick, 1985;
Mozziconacci, 2002; Liebenthal et al., 2016). In acoustics, prosody is
implemented into several acoustic features, including LLD and HSF.
Väyrynen (2014) made a distinction between prosodic and acous-
tic (non-prosodic) features. His study reported that a combination of
prosodic and acoustic features achieved performance comparable to
human reference on basic emotion recognition.

Both Lee et al. (2002) and Schuller et al. (2004) employed 𝑓𝑜 and
energy-based acoustic features for the SER task. The former applied
both LLD and HSF of 𝑓𝑜 and energy features, while the latter only
applied HSF of 𝑓𝑜 and energy features. The latter reference found that
pitch-based features correlated with the performance of SER more than
energy-based features.

As a ‘default’ feature on most ASR systems, MFCC has been explored
for the SER task. Metze et al. (2009) has found that MFCC is the
most informative acoustic feature compared to other evaluated acoustic
features. Tripathi et al. (2019) found that MFCC performed better than
spectrogram features on unimodal acoustic SER.
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The shift from MFCC to mel filterbank (MFB) features in ASR
motivates SER researchers to adopt a similar direction. Aldeneh et al.
(2017) extracted 40 MFB features for dimensional SER tasks on the
IEMOCAP dataset. Zhang et al. (2019) employed a similar MFB with 40-
dimensional with z-normalization on categorical IEMOCAP and MSP-
IMPROV datasets. Both kinds of research showed fair performances
(50%–65% accuracy) of MFB features for the SER task.

Phoneme, the smallest unit of speech, has been investigated to
be useful for the SER task. Zhang et al. (2019) furthermore com-
bined MFB with phoneme for the same SER task. A combination of
phoneme with MFB outperforms MFB-only of phoneme-only input fea-
tures. Yenigalla et al. (2018) combined phoneme embedding with a
spectrogram. The phoneme embedding is generated from the word2vec
model (Mikolov et al., 2013) and IEMOCAP speech data. The combi-
nation of phonemes with spectrogram achieves the highest accuracy
among individual features.

Since most classifiers in modern SER systems have used deep learn-
ing methods, it is reasonable to extract an acoustic representation of
speech in an end-to-end manner via deep learning methods. In INTER-
SPEECH 2020 ComParE challenge, two deep learning-based features
were given in the baseline system, DeepSpectrum and AuDeep. The
provided DeepSpectrum features with ResNet50 network achieved the
highest unweighted average recall (UAR) on the elderly emotion sub-
challenge test set. Although there is a movement to use DNN-based
feature extraction, the majority of SER research still relies heavily on
handcrafted acoustic features.

5.2. Linguistic features

Since this paper surveys fusion of acoustic and linguistic information
for SER, it is necessary to introduce the common linguistic features used
in text processing. Linguistic features are the realization of linguistic
information. It is also called text features, textual features, lexical
features, language features, or semantic features. Aside from different
meanings of linguistic and lexical terms in information processing,
i.e., language vs. word meaning, these terms also have a different
meaning in book/article writing, particularly the term ‘‘text features’’.
In book/article writing, the text features include writing components
such as a glossary, bold typeface, title, headings, captions, and labels.
In information science, text or linguistic features are features extracted
from written or spoken text. Thus, the term linguistic features is a
preferable term to text features to avoid confusion among readers.

Linguistics features used in emotion recognition represent numerical
values related to the emotional states in a word. The simplest way to
build linguistic features for emotion detection is emotional keyword
spotter (Chuang and Wu, 2004). In this framework, every word is
assumed to have a correlation with emotion categories. For instance,
the word ‘‘disappointed’’ can be represented as [(2, 0.2), (3, 0.6)] where
2 represents ‘‘angry’’ emotion and 3 represents ‘‘sadness’’ emotion. Both
0.2 and 0.6 represent degrees of emotion’s intensity. This emotional
keyword spotter can be expanded into an emotional phrase spotter
(Schuller et al., 2004).

The first systematic linguistic representation of a document, per-
haps, is TF–IDF (term-frequency inverse document frequency). TF is
defined as the frequency of a word in a particular document/utterance.
IDF is defined as a logarithm of the total number of documents’ ratio
to the total number containing that word. TF–IDF is the multiplication
of TF with IDF.

Bag-of-Words (BoW) is a numerical feature vector to represent
‘‘words in a bag’’. First, a fixed integer is assigned to each word
occurring in any document, i.e., building a dictionary from a corpus
by assigning a word to integer indices. Second, count the number of
occurrences of each word and store it as the value of feature 𝑗 where
𝑗 is the index of word 𝑤 in the dictionary (Pedregosa et al., 2011).
These BoW features can be expanded for acoustic and visual modalities
(BoAW and BoVW).

Fig. 4. Classification of linguistic features used in SER.

Several lexicon dictionaries have been developed to inform the
‘emotion score’ of emotional words. These dictionaries include DAL
(Whissell, 2009), ANEW (Warriner et al., 2013), VADER (Hutto and
Gilbert, 2014), and NRC (Mohammad, 2018). Using these dictionaries
allows direct measurement of emotional words in the given utterances.
For instance, the word ‘‘arose’’ has values of 2.11, 2.00, and 1.40 for
pleasantness, activation, and imagery. These values are on a 3-point
scale; different dictionaries have different scales.

The search for vector representation from a word led to the research
of word embedding or word vector. In this approach, a deep neural
network is used to train a large corpus (i.e., a Wikipedia corpus) to gen-
erate word vectors based on an algorithm. This approach has resulted
in a new paradigm in the vector representation of linguistic information
of a word. Several models exist, including word2vec, GloVe, FastText,
and BERT.

Fig. 4 shows the classification of linguistic features used in the SER
task. In contrast to acoustic features, there is a tendency to move to
deep learning-based features from handcrafted features. The chosen
linguistic feature is usually based on the complexity of the task and
the size of the data.

5.2.1. Word embedding
A classifier needs a set of input features to model input–output

relation. One of the common features used in text processing is word
embedding (WE). A word embedding is a vector representation of a
word. A numerical value in the form of a vector is used to make
the computer to be able to process text data since it only processes
numerical values. This value is the points (numeric data) in the space
of a dimension, in which the size of the dimension is equal to the
vocabulary size. The word representations embed these points in a
feature space of lower dimension (Goodfellow et al., 2015). A one-hot
vector represents every word; a value of 1 corresponds to this word
and 0 for others. This element with a value of 1 will be converted into
a point in the range of vocabulary size.

To obtain a vector of each word in an utterance, first, this utterance
in the dataset must be tokenized. Tokenization is the process of dividing
an utterance by the number of constituent words. For example, the text
‘‘That’s out of control’’ from the IEMOCAP dataset will be tokenized as
[‘‘That’s’’, ‘‘out’’, ‘‘of’’, ‘‘control’’]. Suppose the number of vocabulary
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is 2182 (number of words in IEMOCAP dataset with six emotion
categories), then the obtained word vector is something similar to

𝑡𝑒𝑥𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 = [42, 44, 11, 471].

An embedding layer will convert those positive fixed integers into
dense vectors of fixed size. For instance, each 1-dimensional word
vector in the utterance will be converted into 2-dimensional dense
vector,

[42, 44, 11, 471] →

[[0.12, 0.3], [0.12, 0.29], [−0.54, 0.2], [0.71, 0.23]].

The higher dimensions are used to obtain a better representation of
a word vector. A number of 50-, 100-, and 300-dimensional vectors
are commonly employed to build pre-trained word vectors from a large
corpus.

A set of zeros can be padded in front of or behind the obtained
vector to obtain the fixed-length vector for all utterances. The size of
this zero-sequence can be obtained from the longest sequence, i.e., an
utterance within the dataset that has the longest words, subtracted by
the length of a vector in the current utterance.

5.2.2. Pre-trained word embeddings
A study to vectorize certain words has been performed by several re-

searchers (Mikolov et al., 2013; Pennington et al., 2014; Mikolov et al.,
2019). The vector of those words can be used to weigh the word vector
obtained previously. The following word embedding techniques are
commonly used in research on speech emotion recognition involving
linguistic information.

word2vec
The classical word embedding paradigm used unsupervised (hand-

crafted) learning algorithms such as LSA, n-gram, and similar methods.
Due to advancements in neural network theory supported by computer
hardware’s speedup, word vector search shifted to deep learning-based
algorithms. Mikolov et al. (2013) developed word representation us-
ing the so-called word2vec (word to vector) using a neural network
language model trained in two steps. First, continuous word vectors
are learned by using a simple model, and then the n-gram neural net
language Model (NNLM) is trained on top of these distributed represen-
tations of words (Mikolov et al., 2013). Two new model architectures
are proposed to obtain a word vector: the Continuous-Bag-of-Word
(CBoW) architecture to predict the current word based on the context
and the skip-gram architecture to predict surrounding words given the
current word.

From those two approaches, skip-gram was founded as an efficient
method for learning high-quality distributed vector representations that
capture precise syntactic and semantic word relationships (Mikolov
et al., 2013). The objective of the skip-gram model is to maximize the
average log probability,

1
𝑇

𝑇
∑

𝑡=1

∑

−𝑐<𝑗<𝑐,𝑐≠0
log 𝑝(𝑤𝑡+𝑗 |𝑤𝑡), (1)

where 𝑇 is the number of words in a sequence and 𝑐 is the size of the
training context (which can be a function of the center word 𝑤𝑡). Larger
𝑐 results in more training examples and can lead to higher accuracy
at the expense of the training time. The basic skip-gram formulation
of 𝑝(𝑤𝑡+𝑗 |𝑤𝑡) can be defined using the softmax function, and computa-
tional efficiency can be approached by a hierarchical softmax (Mikolov
et al., 2013).

GloVe
Pennington et al. (2014) combined global matrix factorization and

local context window methods for learning the space representation
of a word. In the GloVe (Global Vectors) model, the statistics of word
occurrences in a corpus is the primary source of information available

to all unsupervised methods for learning the word representations. Al-
though several methods exist, the question remains as to how meaning
is generated from these statistics and how the resulting word vectors
might represent that meaning. Glove captured the global statistics from
the corpus, for example, a Wikipedia document or a common crawl
document.

In the GloVe model, the cost function is given by
𝑉
∑

𝑖,𝑗=1
𝑓 (𝑋𝑖,𝑗 )(𝑢𝑇𝑖,𝑗𝑣𝑗 + 𝑏𝑖 + 𝑐𝑗 − log𝑋𝑖,𝑗 )2, (2)

where:

• 𝑉 is the size of the vocabulary,
• 𝑋 denotes the word co-occurrence matrix (so 𝑋𝑖,𝑗 is the number

of times that word 𝑗 occurs in the context of word 𝑖)
• the weighting 𝑓 is given by 𝑓 (𝑥) = (𝑥∕𝑥max)𝛼 if 𝑥 < 𝑥max and 1

otherwise,
• 𝑥max = 100 and 𝛼 = 0.75 (determined empirically),
• 𝑢𝑖, 𝑣𝑗 are the two layers of word vectors,
• 𝑏𝑖, 𝑐𝑗 are bias terms.

In a simple way, GloVe is a weighted matrix factorization with the bias
terms.

FastText
Mikolov et al. (2019) improved word2vec CBoW model by using

some strategies, including subsample frequent words technique. This
modification of word2vec is trained on large text corpora such as
news collection, Wikipedia, and web crawl. They named the pre-trained
model with that modification as FastText. The following probability
𝑝𝑑𝑖𝑠𝑐 of discarding a word is used by FastText to subsample the frequent
words:

𝑃𝑑𝑖𝑠𝑐 (𝑤) = 1 −
√

𝑡∕𝑓𝑤, (3)

where 𝑓𝑤 is the frequency of the word 𝑤, and 𝑡 is a parameter > 0.
FastText also counts the classical n-gram word representation by en-

riching the word vector with a bag of character n-gram vectors learned
from a large corpus. In this computation, each word is decomposed into
its character n-grams 𝑁 , and each n-gram 𝑛 is represented by a vector
𝑥𝑛. The new word vector is then simply the sum of both representations,

𝑣𝑤 + 1
|𝑁|

∑

𝑛∈𝑁
𝑥𝑛, (4)

where 𝑣𝑤 is the old word vector. The set of n-grams 𝑁 is limited to 3
to 6 characters in practical implementation.

BERT
The previous aforementioned word embeddings – word2vec, GloVe,

FastText – generates word representations in a context-free model. It
means the same word that appears in a different phrase has the same
word representation, e.g., word ‘‘book’’ in ‘‘mathematics book’’ and
‘‘book a hotel’’. Instead of using a context-free model, BERT (Bidi-
rectional Encoder Representations from Transformers) was built upon
pre-training contextual representation (Devlin et al., 2018).

BERT is different in many ways from its predecessors. Apart from
contextual representation, the main contribution of BERT is to employ
bidirectional pre-training for language representation. Unlike its prede-
cessors, which model languages in a unidirectional way, i.e., from left
to right as a writing/reading system, BERT used two unsupervised tasks
for pre-training models. The first task is the masked language model;
the second task is the next sentence prediction (NSP). The BERT model’s
dimension for each word depends on the number of hidden layers used
in the architecture. This number is either 768-dimensions for the base
model or 1024-dimensions for the large model.

Apart from the pre-trained model, BERT provides a fine-tuning
model. Fine-tuning allows BERT to model several tasks, single or text
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pairs, by swapping out the corresponding inputs and outputs. Fine-
tuning can be seen as adjusting the pre-trained model according to
the context, i.e., the dataset. Hence, fine-tuning can only be done after
obtaining the pre-trained model and is relatively expensive. Fine-tuning
is suitable for a specific task, like SER, rather than general linguistic
tasks.

6. Classifiers

This section reviews the four most used classifiers in speech emo-
tion recognition. One is a machine learning classifier, i.e., a sup-
port vector machine (SVM). Others are three deep learning classi-
fiers, i.e., multilayer perceptron (MLP), convolutional neural networks
(CNN), and long short-term memory (LSTM) neural networks. The brief
descriptions of these classifiers are given below.

6.1. SVM

SVM is a useful machine learning classifier for, generally, small
datasets. For categorical emotion recognition, SVM applies acoustic
or linguistic features for the given labels. This SVM applied to the
classification task is called support vector classification (SVC). For
dimensional emotion recognition, SVM applies regression analysis to
map them to the given scores. This SVM for regression task is called
support vector regression (SVR).

SVM can accept unimodal or multimodal inputs. In bimodal emo-
tion recognition from acoustic and linguistic information, SVM can be
utilized in two-stage scheme for evaluation of the emotion recognition
system from DNNs outputs. In bimodal information fusion, each predic-
tion from the acoustic and text networks is fed into the SVM. From two
values (e.g., valence predictions from the acoustic and text networks),
the SVM learns to generate a final predicted degree (e.g., for valence).

6.2. MLP

MLP is a classical feedforward neural network that projects input
data into linearly separable space using non-linear transformation. A
hidden layer is an intermediate layer between inputs and outputs,
containing many perceptrons (also called units or nodes). An MLP
commonly refers to more than one hidden layer. The MLP used in most
SER tasks is similar to the definition of connectionist learning proposed
by Hinton (1989). A deeper layer MLP usually consists of many layers
to enable deep learning hierarchically. This neural network architecture
is also known as dense networks or fully connected (FC) networks.

MLP is powerful for combining acoustic and linguistic network
for network concatenation. Mathematically, the fusion of acoustic and
linguistic information using MLP could be formulated as in Eq. (5),

𝑓 (𝑦) = 𝑊2 𝑔([𝑊 ⊤
1𝑎𝑥𝑎 + 𝑏1𝑎;𝑊 ⊤

1𝑙 𝑥𝑙 + 𝑏1𝑙]) + 𝑏2. (5)

Here, 𝑓 (𝑦) denotes the output of the corresponding layer; 𝑊1,𝑊2
denote the weights from previous layers (𝑎: acoustic; 𝑙: text), i.e., dense
layer after LSTM for each network, and the current hidden layer,
respectively; 𝑥𝑎 and 𝑥𝑙 are the acoustic features and word embeddings,
respectively; 𝑏 is a bias; and 𝑔 is an activation function.

Schuller et al. (2004) utilized MLP for combining acoustic and
linguistic information. Their evaluation using MLP showed lower errors
than a fusion method by means of logical ‘‘OR’’. Griol et al. (2019)
compared baseline majority-class method to MLP for evaluating the
effect of context on categorical SER task. The result shows that MLP
outperforms the baseline method in six out of eight scenarios. Zhang
et al. (2019) used MLP in all experiments involving acoustic features,
phoneme, and combination of both; MLP showed its effectiveness on
both single-stage and multi-stage SER tasks.

6.3. CNN

CNN is a class of neural networks that contains convolutional layers.
Convolution is a mathematical operation between two functions by
measuring the overlap of both when one function (‘‘input’’) is flipped
and shifted by another function (‘‘kernel’’). The resulting output, which
is the goal of a convolution layer, is a feature map. This convolution
operation is similar to cross-correlation; cross-correlation does not flip
the second function. Convolution is also can be seen as cross-correlation
with a scalar bias. In deep learning literature, the convolution terminol-
ogy views cross-correlation as convolution since many deep learning
frameworks did not take bias into account by default.

The convolutional network is often applied to image-like data.
Time-series data, including acoustic features in vectors, can be fed into
convolutional networks using 1-dimensional (1D) CNN. To take the
most benefit of CNN, spectrogram and MFB features are frequently
used as input to the SER system. For text processing, the main idea for
CNN is to compute vectors for n-grams (e.g., 2-, 3-, and 4-g) and group
them afterward. CNN is commonly used for both speech and language
processing.

Apart from convolutional layers, CNN typically still needs a fully-
connected layer (FC or MLP). The feature map as the output of the
convolution layer is fed into MLP to obtain desired outputs. Although
recently it has been found unnecessary (Springenberg et al., 2014),
a CNN commonly uses pooling layers after convolutional layers for
mitigating and reducing spatial representation (Zhang et al., 2020).

Yenigalla et al. (2018) experimented with CNN for categorical SER
by inputting phoneme, spectrogram, and combination of both. The
combination of both phoneme embeddings and spectrogram achieved
the highest performance. The architecture of each phoneme and spec-
trogram network was convolution layer, max pooling, and FC layer.
Both networks are concatenated with an FC layer to obtain the outputs.

Instead of phoneme and spectrogram, Huang et al. (2018) proposed
to use bag-of-audio-words for the input of the CNN-based SER system.
The architecture was similar to Yenigalla et al. (2018), i.e., convolu-
tion, pooling, and FC layer. The result shows that the use of BoAW
outperforms raw acoustic features.

Cho et al. (2018) combined acoustic and linguistic information for
categorical SER; the acoustic inputs used an LSTM network, while
the linguistic inputs used a multi-resolution CNN. A multi-resolution
CNN is utilized to predict categorical emotion given the utterance
by employing word embedding, convolution layer, and global mean
pooling. The combination of acoustic network with LSTM, linguistic
network with CNN, and emotion vector (e-vector) is fed into SVM and
achieved the highest performance compared to unimodal results.

While most bimodal SER research used CNN for linguistic (due
to image-like data) and LSTM for acoustic (due to time series data),
Sebastian and Pierucci (2019) proposed the opposite, LSTM for text and
CNN for speech. The CNN architecture contains two convolution layers
and two FC layers. The acoustic features are 6373 features extracted
using INTERSPEECH 2013 ComParE feature set (ComParE2013). The
linguistic features are word embeddings pre-trained with FastText em-
beddings. In this case, the performance of CNN-based text emotion
recognition is the lowest among other models, while the combination
of early and late fusions topped the performances.

Cai et al. (2019) combined a CNN architecture with bidirectional
LSTM and attention layer for acoustic emotion recognition. The im-
proved dual-channel architecture was called CNN-Bi-LSTM-Attention
(CBLA) model. On both unimodal and multimodal (with BLSTM for
linguistic emotion recognition), CBLA outperforms an MLP model by
considering both global and temporal information in the data.
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6.4. LSTM

Long Short-Term Memory (LSTM) neural networks is an extension
of a recurrent neural network. The idea of using LSTM networks comes
from an approach that human has the persistence to keep memory
long in a short-term period. Humans do not begin their thought from
scratch every second. When reading a paper, a reader understands each
word based on the understanding of the previous words. Humans do
not throw everything away and begin thinking again from scratch. The
humans’ thoughts have persistence. LSTM has networks in the loop to
allow information to persist as in humans’ thoughts (Olah, 2015).

Three gates are introduced in LSTMs: the input gate (𝐈𝑡), the forget
gate (𝐅𝑡), and the output gate (𝐆𝑡). In addition to that, there are
memory cells that take the same shape as the hidden state. A memory
cell is just a fancy version of a hidden state, custom-engineered to
record additional information.

LSTM has dominated the classifier used in both ASR and SER.
Although the use of LSTM over CNN for emotion recognition task
has been challenged (Schmitt et al., 2019), the opposite also applies
(Macary et al., 2020). Since the data (i.e., input features) are sequence,
a recurrent neural network is a straightforward way to process these
data. In addition, LSTM is able to model long-range context in emo-
tional features to map it with the emotional labels. Tian et al. (2015)
used the LSTM classifier to build hierarchical neural networks.

Instead of unidirectional LSTM, bidirectional LSTM (BLSTM) was
utilized to learn information both from the past and the future inside
the network (unidirectional LSTM only learns from the past). In Cai
et al. (2019), BLSTM is used for the textual network rather than the
acoustic network. This bidirectional LSTM is often combined with an
attention model to boost the performance of the SER task (Atmaja and
Akagi, 2019). However, using BLSTM doubles the model’s complexity,
making the model may not be suitable for real-time applications.

6.5. Other classifiers

While research on speech processing area focuses on the acoustic
features correlated with emotion in speech, the research in machine
learning and artificial intelligence (AI) focuses on the AI architecture
that suits emotion recognition task. As stated previously, there are
debates over the most suitable architecture for the emotion recognition
task. Current results show that recurrent neural network (RNN)-based
architectures, like LSTM and GRU, has dominated and has been used
in production for acoustic–linguistic emotion tasks. However, there is
a trend to use the more advanced architectures like domain adversarial
neural network (DANN) (Lian et al., 2020), generative adversarial
network (GAN) (Chang and Scherer, 2017), conditional adversarial
auto-encoder (CAAE) (Kim et al., 2020) and attention-based neural
network.

Among them, the bimodal SER trend shows more adaptation of
attentive neural networks among other architectures. In the following
sections, the benefit of employing the attention-based neural networks
is highlighted to fuse acoustic and linguistic information at the feature
level (extracted using DNNs). Nevertheless, also in the next section and
in the later section, DANN architecture achieved the state-of-the-art
(SOTA) for the IEMOCAP dataset.

7. Fusion methods

Multimodal fusion in technology is the combination of information
that comes from different sources. This terminology is similar but differ-
ent to human multimodal perception. In human multimodal perception,
the information comes from different sensors (sensory organs); this
requirement is not necessary for technology. Multimodal fusion can
be viewed as multisensor data fusion. In this terminology, the ‘sensor’
is the soft sensor. Acoustic and linguistic feature extractors can be
regarded as soft sensors in bimodal acoustic–linguistic fusion. While

Ref. Poria et al. (2017) defines multimodality as the presence of more
than one modality or channel, we encourage to call the fusion of two
modalities bimodal for the sake of clarity.

Fusing acoustic and linguistic features has been attempted at the
early stage of speech emotion recognition research. The first work
on fusing acoustic with linguistic information has been performed by
Lee et al. (2002) by combining acoustic and language features at the
decision level using logical ‘‘OR’’. If at least one decision corresponds to
a specific emotion, then the result is this specific emotion. This earliest
work only involved negative and non-negative emotion categories.

The linguistic information used for fusion is extracted from the text.
Hence, the feature is also called text/textual features. In the early text
processing research, the linguistic feature is extracted by hand, like
term frequency–inverse document frequency (TF–IDF) or bag-of-word
(BoW). Nowadays, the extraction of linguistic features is done automat-
ically by training large datasets, e.g., Wikipedia. This process resulted
in pre-trained word vectors like word2vec, GloVe, FastText, ELMo, and
BERT, as explained previously. Emotional words or word values from
affective lexicon dictionaries are also often used to represent linguistic
information. These lexicon-based features are commonly utilized when
the fusion of acoustic and linguistic information is aimed at recognizing
dimensional emotion.

Fusing acoustic and linguistic information for SER can be accom-
plished in several ways. Fig. 5 shows the classification. Early fusion
combines acoustic and linguistic information at the feature level; late
fusion combines results from acoustic and linguistic information at the
decision level. Early fusion, furthermore, can be split into three main
categories: feature concatenation, networks/model concatenation, and
hierarchical model. Hierarchical model, as proposed in Majumder et al.
(2018) and Tian et al. (2016), can be regarded as early fusion since the
method fuses features at a different level of layers, not at the decision
level.

7.1. Early fusion approach

7.1.1. Feature concatenation
The simplest fusion of acoustic and linguistic information is by

feature concatenation [Fig. 5(a)]. In this scheme, both acoustic and lin-
guistic features are concatenated and are fed into the same networks; a
single model received two input features (acoustic features and linguis-
tic features). Hazarika et al. (2018) combined acoustic and linguistic
information at feature level with a self-attention mechanism. They
obtained a significant improvement of accuracy from 62.5% to 72.2%
on the IEMOCAP dataset. Similarly, Atmaja et al. (2020) improved
the accuracy of valence prediction from 49% to 56.3% on USOMS-
e dataset using an acoustic–linguistic feature concatenation method.
Recent papers show that instead of concatenating handcrafted features,
an attention-based network is adopted to concatenate hidden represen-
tations (output of hidden layer) extracted from DNNs of acoustic and
linguistic data (Hazarika et al., 2018; Priyasad et al., 2020).

7.1.2. Model/network concatenation
A step further in the early fusion of acoustic and linguistic informa-

tion is by concatenating models or networks [Fig. 5(b)]. In this scheme,
each modality has different models: acoustic network and linguistic
network. For example, LSTM is used for linguistics, while CNN is
used for acoustic. A concatenation layer is then added to the top of
these networks. Atmaja and Akagi (2020) fused acoustic and linguistic
at model level and improved dimensional SER performance from the
highest performance of any single modality. This model concatenation
is also the most used fusion type for fusing bimodal acoustic and
linguistic information found in INTERSPEECH 2020 papers.

A typical model of network or model concatenation is shown in
Fig. 6. LSTM is often used for both acoustic and linguistic classifiers due
to its nature; an utterance is a sequence of (spoken) words. CNN is used
for the speech classifier if the input is spectrogram-like data, including
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Fig. 5. Different schemes of fusing acoustic with linguistic information; (a), (b), (c): early fusion approach; (d): late fusion approach.

Fig. 6. A typical model/network fusion for categorical acoustic–linguistic emotion recognition; the dashed lines shows the flow to obtain automatic transcription.

mel-spectrogram, filterbank, and their variants. FC networks behave as
the concatenation layer, combining outputs of LSTMs and CNNs. The
output layer’s size depends on the number of labels to be predicted.
The loss function is either a categorical cross-entropy for categorical
emotion or a mean squared error (MSE) for dimensional emotion. The
latter is often replaced by concordance correlation coefficient (CCC)
loss since the goal is to maximize CCC.

7.1.3. Hierarchical fusion
Inspired by the human cognitive model that processes multimodal

information at different levels, a hierarchical model [Fig. 5(c)] is
proposed to go beyond the same-level information fusion. Tian et al.
(2016) proposed hierarchical fusion (HL) model for bimodal acoustic–
linguistic information fusion. They argued that HL performs better than
early and late fusions. Majumder et al. (2018) proposed HL with context
modeling to combine multimodal information for sentiment analysis.
They found that a combination of acoustic and linguistic information
achieved the second-highest performance score after a combination of
acoustic, linguistic, and visual information.

7.2. Late fusion approach

Instead of fusing acoustic and linguistic information at the feature
level, both information can be fused at the decision level [Fig. 5 (d)]. In
this scheme, each modality is processed independently until its results
are generated. The results are then processed by the decision function
to obtain the final results (final prediction). A typical decision function
utilizes majority voting or ensemble methods. Chen and Zhao (2020)
fused acoustic and linguistic information at feature level for categorical
SER and used three classifiers to obtain three emotion predictions
separately: acoustic, linguistic, and acoustic+linguistic. The final de-
cision fusion averages the predictions of three classifiers. Using this
technique, they improved accuracy from 70.83% with bimodal feature
concatenation to 71.06% with decision fusion from three classifiers. In
Cho et al. (2018), SVM was employed to combine outputs of acoustic
network with LSTM, text network with CNN, and e-vector. The fusion
of three outperformed any unimodal result. Atmaja et al. (2020) used
two-stage processing by deep learning and SVM for bimodal emotion
recognition; predictions from each modality using deep learning are
fed into SVM to obtain the final degrees of dimensional emotion. They
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improved the CCC from 0.508 with an early fusion to 0.536 with a late
fusion.

In addition to these four types of fusion methods, one can mix two
fusion types at the same time. We called this fusion type hybrid fusion.
As shown in Table 3, there is only two references proposed this idea
(Sebastian and Pierucci, 2019). Using a combination of early fusion
(feature concatenation) and late fusion, they achieved moderate results
on the IEMOCAP dataset. Although this hybrid fusion is more complex
than others, the obtained result is not better than a single early fusion
or a late fusion conducted during the same period of research (∼2019).

It is not clear which fusion scheme performs best. Planet and Iriondo
(2012) found that ‘‘feature-level fusion revealed as the best scheme to
merge the acoustic and the linguistic information’’, while Atmaja and
Akagi (2021) found the opposite. Pepino et al. (2020) confirmed the
previous finding that no significant difference among fusion types.

8. Discussion

8.1. Major findings

In INTERSPEECH 2020, which is one of the most prestigious speech
conferences, at least 49 papers were found accepted in the theme of
speech emotion recognition. Among these papers, 11 papers presented
bimodal emotion recognition from acoustic and linguistic information
fusion. Model (network) fusion at the feature level dominates the fusion
type of bimodal acoustic–linguistic fusion due to its simplicity. This
model fusion is incorporated by six out of these 11 papers. The research
used one of USOMS-e, IEMOCAP, or CMU-MOSEI datasets.

As one of the earliest available speech emotion datasets with its
transcription, IEMOCAP was the most used dataset in SER considering
linguistic information. Table 3 summarizes some bimodal emotion
recognition results on the IEMOCAP dataset by utilizing acoustics and
linguistic information. The results shown in the table show significant
improvements over unimodal acoustic emotion recognition. For in-
stance, the previous review on SER (Akçay and Oguz, 2020) highlighted
accuracies of 54% (2014) and 63.5% (2017). In a recent study, Yeh
et al. (2020) achieved 66% of accuracy using listen, attend, and spell
(LAS) model for multitasking ASR and SER. In contrast, the fusion of
acoustic and linguistic information performed by Lian et al. (2020)
topped 82% of weighted accuracy (WA).

It is interesting to see that all methods achieved SOTA for weighted
accuracy and unweighted accuracy (UA) both employed an attention
module on the top of their classifiers. For UA, the attention model
on the top of multi-scale convolutional layers leads to 81.4% of ac-
curacy (Peng et al., 2021) on cross-validation evaluation. The DANN
method evaluated by Lian et al. (2020), utilized GRU classifiers with
multi-head self-attention layer achieved a high UA with 82.68 for non-
cross-validation evaluation. Similarly, the self-attentive layer added on
both time-synchronous and time-asynchronous models achieved the
highest accuracy for both UA (83.08%) and WA (83.22%) for non-cross-
validation evaluation. Priyasad et al. (2020) also employed an attention
mechanism to fuse acoustic and linguistic data and is achieving SOTA
for WA with cross-validation. Since the data is near balance for each
emotion class, reporting both WA and UA is necessary (WA for balanced
data, UA for unbalanced data). It is not easy to judge which one is better
between the two. Nevertheless, since both methods provided WA, the
method proposed by Lian et al. (2020) is 1.3% more accurate than that
of Peng et al. (2021) in terms of weighted accuracy.

Almost all research reported in Table 3 used similar experimental
settings. All references except (Zhang et al., 2019; Lee et al., 2020;
Ho et al., 2020) used IEMOCAP data from four categories: anger,
happiness/excitement, neutral, and sadness. This data is also known
as ‘IEM4’, containing either 5531, 5530, or 4936 utterances based on
the processing method used by the authors. Both Zhang et al. (2019)
and Ho et al. (2020) focused on improvised speech among scripted (the
result shown in the Table 3 is for mixed/all portion). Lee et al. (2020)

used seven categories with 7486 utterances. Either five or ten folds
cross-validation was evaluated to judge the performance of different
speakers (LOSO, leave one speaker/session out). The last session from
two speakers is left for the test partition in almost all reported papers.
A high score obtained by Lian et al. (2020) employed five folds from
IEM4 dataset (5531 utterances). The transcription used in this DANN-
based fusion, as well as other data in Table 3, is manual transcription
instead of ASR outputs.

At least seven authors in Table 3 reported the performance of
bimodal SER using ASR outputs combined with acoustic information
in addition of manual transcription. Kim and Shin (2019) reported
degradation of WA and UA to 66.6% and 68.7% while Xu et al.
(2019) obtained 70.4% and 69.5% by utilizing the same Google speech
recognition system as the previous report. Yoon et al. (2019) proposed
an attention mechanism for the fusion method and revealed scores of
73.0% (WA) and 73.9% (UA). Peng et al. (2021) evaluated their multi-
scale CNN and attention method on bimodal SER using Google ASR.
They topped with 78.0% (WA) and 79.1% (UA), which is the SOTA
for IEM4 dataset from ASR-processed transcript fused with acoustic
information. In line with these findings, Sahu et al. (2019) reported
a drop of 4% accuracies from manual to automatic transcription for
acoustic–linguistic emotion recognition. Heusser et al. (2019) and Peng
et al. (2021) reported a smaller degradation of 2% for both WA and UA
while Wu et al. (2021) reported 3.7%. These findings show that the
current ASR systems are sufficient for extracting linguistic information
for acoustic–linguistic emotion recognition. There is still room for
improvement in the performance of linguistic-only emotion recognition
since the achieved word error rate (WER) is only about 40% for
emotional speech.

Accelerating bimodal SER research by fusing acoustic and linguistic
information can be triggered by providing both dataset and challenge.
USOMS-e dataset and the elderly emotion sub-challenge (ESC) in IN-
TERSPEECH 2020 contribute to research bimodal acoustic–linguistic
emotion recognition in several ways, mainly on feature extraction
methods, classification models, and fusion types. Table 4 shows re-
search results on USOMS-e dataset with various methodologies. The
distribution of the fusion method is almost equal; early fusion with
feature concatenation is more adopted than late fusion (decision-level
fusion). In this dataset, a fusion type that achieved the best performance
for valence prediction is different from that of arousal prediction. The
requirement of two models (two fusion methods) may not be effective
for future practical implementation on predicting valence and arousal
simultaneously.

In contrast to IEMOCAP data, experiment settings in research papers
reported on the USOMS-e dataset are almost the same. The organizer of
the ESC — computational paralinguistic challenge already provided the
structured dataset (by splitting the data into training, evaluation, and
test sets) along with its baseline code; the authors proposed their meth-
ods in feature extraction, classification, or fusion methods. The SOTA
for this dataset was achieved using an ensemble method (Soğancıoğlu
et al., 2020). For valence prediction, five different features were cho-
sen, including TF–IDF, FastText word embeddings, high-level polarity
features, FastText+Polarity features, and dictionary-based linguistic
features in German and English. The fusion of the classifiers from
these five feature sets utilized an ensemble method with label fusion
strategies. For arousal prediction, the ensemble method based on the
Fisher vector (FV) combines acoustic-based arousal prediction with the
baseline systems (Schuller et al., 2020).

From the dataset point of view, IEMOCAP (particularly IEM4) was
overused. It is necessary to explore other datasets as well as other
emotion models. The cross-corpus evaluation is now a major challenge
in acoustic-only SER; however, there is no work found in cross-corpus
bimodal acoustic–linguistic emotion recognition. The necessity of using
datasets besides English is also important to judge the generalization of
the proposed model.
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Table 3
Weighted and unweighted accuracies (WA & UA) of acoustic–linguistic emotion recognition on IEMOCAP dataset. Linguistic feature is extracted from ground-truth text. Italics
indicate results without cross-validation (CV). Bolds indicate the best results in CV.

Reference Acoustic feature Linguistic feature Fusion type WA % UA %

Jin et al. (2015) ACO (+) Cepstrum (+) Cepstral-BoW Lex-BoW (+) Lex-eVector Decision 69.2 68.4
Cho et al. (2018) eGeMAPS E-vector, WE Decision 64.97 65.9
Hazarika et al. (2018) ComParE2013 WE Feature 72.1 71.9
Sebastian and Pierucci (2019) ComParE2013 FastText Hybrid 61.2 60.2
Sahu et al. (2019) pyAudioAnalysis (34) GloVe Model – 68.18
Cai et al. (2019) pyAudioAnalysis (34) GloVe Model 70.1 71.25
Li and Lee (2019) Emobase2010 GloVe Model – 70.3
Xu et al. (2019) pyAudioAnalysis (34) GloVe Model 72.5 70.9
Zhang et al. (2019) mel filertbank (MFB) phonemes (40) Feature – 73.79
Kim and Shin (2019) BN word2vec + ANEW Model 73.7 75.5
Atmaja et al. (2019) pyAudioAnalysis (34) WE Model 75.49 –
Tripathi et al. (2019) MFCC word2vec Model 76.1 69.5
Heusser et al. (2019) IS09 BERT Model 73.5 71.0
Yoon et al. (2019) MFCC WE Feature 76.5 77.6
Lee et al. (2020) MFCC GloVe Feature 57.9 48.7
Bhosale et al. (2020) mel spectrogram + 𝛥 + 𝛥𝛥 DeepSpeech-1 Model 68.11 63.15
Pepino et al. (2020) GeMAPS (36) BERT Decision – 65.1
Chen and Zhao (2020) Log-mel filterbank ALBERT Decision 71.06 72.05
Shen et al. (2020) MFCC + 𝛥 + 𝛥𝛥 GloVe Feature 75.9 76.4
Feng et al. (2020) Log-mel filterbank WE Model 68.6 69.7
Liu et al. (2020) MFCC GloVe embedding Model 72.39 70.08
Krishna and Patil (2020) Raw waveform GloVe Feature – 72.82
Ho et al. (2020) MFCC BERT Model 73.23 –
Siriwardhana et al. (2020) VQ-word2vec + Speech-BERT GPT-2 tokenizer + RoBERTa Model – 75.45
Kim et al. (2020) LLD+BN word2vec+BoW+ANEW Model 74.37 76.91
Priyasad et al. (2020) SincNet Bi-RNN+CNN Feature 80.51 79.22
Lian et al. (2020) ComParE2013 ELMo Feature 82.68 –
Santoso et al. (2021) MFCC + CQT + 𝑓𝑜 BERT Model 76.1 75.9
Wang et al. (2021) MFCC + 𝛥 + 𝛥𝛥 + Transformer WE (Transformer) Hybrid 76.8 77.1
Wu et al. (2021) Filterbank + 𝑓𝑜 + 𝛥 GLoVe + BERT Model 77.57 78.41
Wu et al. (2021) Filterbank + 𝑓𝑜 + 𝛥 GLoVe + BERT Model 83.08 83.22
Peng et al. (2021) MFCC + 𝛥 + 𝛥𝛥 + X-vector GloVe Model 80.3 81.4

Table 4
Unweighted accuracy results of valence (V) and arousal (A) predictions on the USOMS-e dataset.

Reference Acoustic feature Linguistic feature Fusion type Val Aro

Schuller et al. (2020) ResNet50 BLatt Unimodal 50.4% 49.0%
Juli (2020) ComParE2013 + oXv bert-as-a-service Feature 61.0% 48.8%
Yang et al. (2020) ComParE (+) BoAW (+) ResNet50

(+) AuDeep (+) FV-MFCC
BoW (+) TFIDF (+) Sparse PMI (+) Sparse NGD
(+) PMI-BoW (+) NGD-BoW (+) PMI-TFIDF (+)
NGD-TFIDF

Decision 59.0% 54.3%

Soğancıoğlu et al. (2020) Fisher Vector (FV) TFIDF (+) FastText (+) Polarity (+)
Fastext+Polarity (+) Dictionary

Decision 63.7% 57.5%

Atmaja et al. (2020) ResNet50 BLAtt (Val), Gmax (Aro) Feature 50.4% 56.3%
Viraraghavan et al. (2020) ComParE2013 WE Feature 36.3% –
Boateng and Kowatsch (2020) ResNet50 SBERT Unimodal 57.8 50.4

Although the recent advancements in signal processing enable more
advanced feature extraction strategies, the current trends show hand-
crafted acoustic feature is more meaningful than deep learning-based
features for the SER task. Four of the five highest weighted accura-
cies (WA) in the IEMOCAP dataset (Table 3) obtained their results
using handcrafted features ((Lian et al., 2020; Wu et al., 2021; Peng
et al., 2021)); only (Priyasad et al., 2020) employed SincNet layers
to extract acoustic features. In contrast, all five highest WA used deep
learning-based linguistic features, either WE, GloVe, or ELMo.

One possible reason for that different finding in acoustic and lin-
guistic feature extraction data is the nature of the data itself. Linguistic
data, i.e., text, is available abundantly on the internet. Using deep
learning with more data tends to be more effective, it is reasonable to
model connections among samples in the text data and extract their rep-
resentations. For speech, which is less than text in the number of data,
handcrafted features deriving information related to emotion mathe-
matically or physically are still superior to deep learning-based feature
extraction. Handcrafted acoustic features are also easy to interpret and
usually cost lower in computation than DNN-based features.

The recurrent-based neural network, including LSTM, BLSTM, and
GRU, still dominated classifiers used in the SER task. Besides RNN, CNN
and attention-based networks are the common classifiers in the SER

task. The current trends on these classifiers are to evaluate the con-
sistency among various datasets. Either RNN, CNN, or attention-based
mechanism arguably performs well. Currently, combining different
classifiers also performed best on this SER task (as Lian et al. (2020)
did with GRU and attention layer).

It was found that model concatenation dominates fusion type in
acoustic–linguistic emotion recognition. A number of 12 research re-
ported model fusion in Table 3 for combining acoustic and linguistic
information in the IEMOCAP dataset. Others are feature and hybrid
fusions. FC layer is usually employed to concatenate two or more
models. Half of the model fusion employed FC layers while the rest used
attention models or rule-based system. Interestingly, the SOTA result
achieved by Lian et al. (2020) employed feature fusion with a multi-
head self-attention mechanism. The authors used a single GRU classifier
to receive acoustic and linguistic features with a DANN framework.

Finally, to enable future benchmarks, it is important to stick to
the metrics presented in current papers: overall accuracy (weighted/
unbalanced accuracy, WA) and class accuracy (unweighted/balanced
accuracy, UA). Additional scores can be added, such as the F1 score and
recall. The confusion matrix is also important for categorical emotion
analysis. It enables in which emotions the proposed method performed
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Table 5
Comparison of SER performance on difference multimodal fusions; A: acoustic, L: linguistic, V: visual.

Reference Dataset Metric A+L % A+V % L+V % A+L+V %

Majumder et al. (2018) IEMOCAP WA 76.0 69.6 75.6 76.8
Poria et al. (2018) IEMOCAP WA 70.8 52.2 68.6 71.6
Sebastian and Pierucci (2019) IEMOCAP WA 61.2 – – 60.1

UA 60.2 – – 58.3
F1 61.2 – – 59.9

Delbrouck et al. (2020) IEMOCAP F1 74 – – 71.5
Khare et al. (2020) CMU-MOSEI WA 66.2 60.9 – 67.1

F1 78.4 76.4 – 78.8

good and bad. For dimensional emotion, CCC is the gold-standard
metric, among others.

8.2. Comparison with other multimodal fusions

The fusion methods explained above have been adopted not only
for acoustic–linguistic emotion recognition but also for other multi-
modal fusions. In Table 5, a brief performance comparison of acoustic–
linguistic (A+L) fusion with acoustic–visual (A+V) and acoustic–
linguistic–visual (A+L+V) fusions are presented on different datasets
and metrics. It can be concluded that A+L only suffers from A+L+V. In
other words, A+L fusion outperformed other bimodal fusions in most
cases reported in that table.

Except for a report by Sebastian and Pierucci (2019), all multimodal
evaluations are performed in the same early fusion method. Sebastian
and Pierucci (2019) showed that their late fusions of A+L surpassed
recently proposed methods with A+L+V. This finding is similar to
emotion recognition (IEMOCAP) and binary sentiment classification
(CMU-MOSEI) results reported by Delbrouck et al. (2020). In both
cases, A+L also surpassed A+L+V. Note that although some authors
also reported sentiment classification results [e.g., Poria et al. (2018)],
we do not include it. Sentiment only predicts polarity of expression,
whether it is positive, neutral, or negative. This term is very close, if
not the same, to valence in dimensional emotion. It also has been found
in Poria et al. (2018) that the order of contribution of modalities for the
IEMOCAP and CMU-MOSI datasets is acoustic, visual, and linguistic. In
the MOUD dataset, the order of contribution for predicting sentiment
is linguistic, acoustic, and visual.

Given the competitive results of A+L fusion among other fusions,
it is worth continuing research on acoustic–linguistic emotion recogni-
tion. The problems found in the previous research could be investigated
along with confirming the previous findings. Some related issues be-
low are suggested for future research on bimodal acoustic–linguistic
emotion recognition.

8.3. Future directions

Although it has been researched for almost twenty years, the re-
search of bimodal acoustic–linguistic fusion for SER is not ready well
for implementation. Several issues below are the most fundamental
ones among many.

As shown in Fig. 7, there is a bottleneck between the processing of
acoustic and linguistic data. The acoustic side extracts acoustic features
directly from speech while the linguistic side waits for the output of
ASR. Although the current ASR technology could transcribe speech into
text in a small latency, still, there is a time gap between linguistic and
acoustic processings. Kim and Shin (2019) proposed a bottleneck acous-
tic feature for early acoustic–linguistic fusion; however, this feature is
not intended to tackle the bottleneck issues between both processings.

Since there is a bottleneck between acoustic and linguistic pro-
cessing, there is a chance to accelerate the computation process by
obtaining the linguistic information directly from acoustic information.
This linguistic information may also be embedded in prosodic features
(Fujisaki, 2003). Feng et al. (2020) used acoustic-to-word representa-
tion trained on ASR to fuse with linguistic information. However, their

method still requires transcription for generating linguistic features.
The challenge here is to obtain linguistic information directly without
a need for text or transcription.

The fusion of acoustic and linguistic information has been found
to be effective for both dimensional and categorical speech emotion
recognition. However, no detailed study was found on investigating
when linguistic necessary is needed. In several cases, such as in short ut-
terances, linguistic information may not be necessary. The investigation
to find a threshold for the necessity of adding linguistic information
is worth of study for future research. This research direction can
also be expanded to investigate each modality’s contribution weight,
confirming the previous results.

Fusion of acoustic and linguistic for SER also challenges the ne-
cessity for aligning acoustic features with respected words. Tzirakis
et al. (2021) argued that alignment between acoustic and linguistic
embedding spaces enriches the speech representations. Xu et al. (2019)
found that alignment between original speech and recognized text
helps to improve the performance when both acoustic and linguistic
modalities are fused. Both Lee et al. (2020) and Liu et al. (2020) aligned
acoustic and text features using attention-based BSLSTM networks and
obtained significant improvements over their baselines. These reported
research using aligned techniques are still less superior than context-
based DAN (Lian et al., 2020) on the same IEMOCAP dataset. It is of
interest to see the performance of that technique with alignment (the
reported result is without alignment).

Text-independent is still a difficult task for bimodal SER. Pepino
et al. (2020) showed that the performance of bimodal SER with text-
independent features is not as good as the performance without text-
independent features (split by script). Atmaja and Sasou (2021) re-
ported a similar finding that text-independent is more difficult for
Japanese acoustic-based SER. Their works highlight the necessity to
tackle the limitation of bimodal SER under different scripts for training
and test partitions. One may enlarge the training set to include more
linguistic information in the training phase. One may also focus on the
smaller dataset to train the model in which linguistic information for
the test phase is not available in the training phase.

It is not the only emotion that can be obtained from speech but also
others, such as gender, age, and words. The feature representation used
for emotion recognition may overlap with these other tasks. Instead of
predicting emotion only, predicting multitask output is more beneficial
for future applications. This problem can be approached by multitask
or transfer learning. In this muti-output prediction, one may incorpo-
rate information from other tasks into the SER model. An example is
adding gender and age features to improve SER (e.g., based on Zhao
et al. (2018)) after obtaining these pieces of information. One can also
incorporate a language model from ASR to improve SER since a similar
method was reported to work for sentiment analysis (Shon et al., 2021).

Finally, one model that worked better on one dataset shall work
better on other datasets. In fact, this model generalization is still a
problem in acoustic–linguistic emotion recognition. The contribution
of a language to emotion information may differ from other languages.
An investigation of the effect of linguistic information in different
languages is also necessary to accelerate the implementation of bimodal
acoustic–linguistic emotion recognition for multilingual speech. Also,
training a model with different (cross languages) datasets is a merit
study for the future to find some adjustments for language-specific
emotion recognition.
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Fig. 7. Utilizing ASR outputs for dimensional SER (predicting degree of valence[Val], arousal[Aro], and dominance [Dom]) with model concatenation.

9. Conclusions

In this paper, a comprehensive review of bimodal speech emo-
tion recognition from acoustic and linguistic information fusion is
presented. The study focuses on five main components of SER from
bimodal information: datasets, emotion models, features, classifiers,
and fusion methods. These main blocks must exist in the speech emo-
tion recognition method by fusing acoustic and linguistic information.
There are three emotion models developed in psychological research;
however, most SER research focused on the categorical model. There
is a move to extract acoustic features in the feature extraction step
by using deep learning methods, while deep learning-based linguistic
features already dominated text processing research, including SER
from linguistic information. However, the majority of SER methods,
including those currently achieving state-of-the-art results, still rely on
handcrafted acoustic features. Then, the common classifiers for bimodal
SER are briefly described. Although more advanced DNN architectures
have been developed, bimodal SER still relies heavily on SVM, MLP,
CNN, and LSTM architectures, with recurrent-based neural networks
dominating these classifiers. Some major findings besides these in
the five SER building blocks have also been discussed. Finally, some
raised issues in SER research are highlighted for future research direc-
tions in speech emotion recognition by fusing acoustic and linguistic
information.
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