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On the Generality and Application of Mason’s
Voting Theorem to Center of Mass Estimation for

Pure Translational Motion
Ziyan Gao , Armagan Elibol , and Nak Young Chong , Senior Member, IEEE

Abstract—Object rearrangement is widely demanded in many
of the manipulation tasks performed by industrial and service
robots. Rearranging an object through planar pushing is deemed
energy efficient and safer compared with the pick-and-place
operation. However, due to the unknown physical properties of
the object, re-arranging an object toward the target position
is difficult to accomplish. Even though robots can benefit from
multi-modal sensory data for estimating novel object dynamics,
the exact estimation error bound is still unknown. In this work,
firstly, we demonstrate a way to obtain an error bound on the
center of mass (CoM) estimation for the novel object only using a
position-controlled robot arm and a vision sensor. Specifically, we
extend Mason’s Voting Theorem (MVT) to object CoM estimation
in the absence of accurate information on friction and object
shape. The probable CoM locations are monotonously narrowed
down to a convex region, and the Extended Voting Theorems
(EVT’s) guarantee that the convex region contains the CoM
ground truth in the presence of contact normal estimation error
and pushing execution error. For the object translation task,
existing methods generally assume that the pusher-object sys-
tem’s physical properties and full-state feedback are available, or
utilize iterative pushing executions, which limits the application
of planar pushing to real-world settings. In this work, assuming
a nominal friction coefficient between the pusher and object
through contact normal error bound analysis, we leverage the
estimated convex region and the Zero Moment Two Edge Pushing
(ZMTEP) method [1] to select the contact configurations for
object pure translation. It is ensured that the selected contact
configurations are capable of tolerating the CoM estimation error.
The experimental results show that the object can be accurately
translated to the target position with only two controlled pushes
at most.

Index Terms—Object Physical Property Estimation, Planar
Pushing, Non-Prehensile Manipulation.

I. INTRODUCTION

PUSHING is one of the well-known non-prehensile ma-
nipulation skills that can be deployed in different types

of robotic platforms. Compared with grasping, pushing is
especially useful when the object is ungraspable because
of its geometrical shape, dimension, or physical properties.
Therefore, pushing has been used in various tasks such as
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object rearrangement [2], target acquisition [3], singulation [4],
bin picking [5], in-hand re-grasping [6], and similar others. In
this work, we are looking at ways to translate the novel object
to the target position accurately and efficiently without using a
state feedback controller. Here, the meaning of “novel” has two
aspects; the physical properties are unknown, and the shape
information is not perfectly known. Despite its simplicity,
pushing introduces challenges around object rearrangement.
Our method ensures that the pushed object undergoes pure
translation to the target position with a minimum number of
pushes.

The primary emphasis of this work is placed on the estima-
tion of the CoM of novel objects as it plays an important role
in pushing. To translate the object toward the target, the net
force composited by contact forces must pass through the CoM
and parallel to the target direction. In general, object inertial
parameters identification leverages force and tactile sensing
or multi-modal sensing as summarized in [7]. However, little
research has addressed the estimation error bound, which is
important to guarantee that the selected contact configuration
is robust enough to tolerate the CoM estimation error. Further-
more, if the force measurement is unavailable and the object
shape is partially unknown, the CoM estimation becomes more
difficult. The proposed method, only collecting visual data of
the pushed object, is easily applicable to the case where the
object is neither attached at the end-effector nor graspable.

Inspired by the MVT, if the object is pushed along the
contact normal and the object’s sense of rotation is known,
the CoM lies inside a convex region specified by the half-
plane defined by the ray of the pusher motion. However, the
MVT only determines the instant sense of rotation given a
known contact normal. If the contact normal is imperfectly
known and the pusher slides along the object, the object’s
sense of rotation may not follow the MVT, leading to the
wrong CoM estimation of objects. In this work, the MVT
is extended to facilitate the estimation of the CoM of novel
objects in the presence of contact normal estimation error and
continuous push in a straight line. We present the contact
normal estimation error bound and a CoM region update rule,
ensuring that the estimated CoM region encloses the CoM
ground truth given a series of pushes. Then, to deal with the
sliding between the pusher and the object, we give a sufficient
condition for determining the sense of rotation of polygonal
objects pushed continuously in a straight line.

For selecting a nominal friction coefficient between the
pusher and object given a contact normal error bound, we



modify the ZMTEP [1] for object pure translation. The
sampled contact configurations are capable of tolerating the
CoM estimation error and guaranteed to resist any rotations
during translation. When pushing the object using the sampled
contact configurations, sticking contact between the pusher and
the object is ensured. Therefore, no object state feedback is
needed, as the object pose relative to the pusher remains the
same. When the target position cannot be achieved by any of
the contact configurations, we utilize two contact configura-
tions whose pushing directions can positively span the target
direction. In addition, our proposed method is insensitive to
the pushing speed. We show through real experiments that the
object can be translated to the target position with two pushes
at most no matter how far the distance is from the target to
the object, with a wide range of pushing speed which accounts
for both the quasi-static and dynamic pushing.

In summary, this paper introduces the following theoretical
contributions:
• Generalize and apply the MVT to CoM estimation of

novel objects under unknown friction parameters and
imperfect contact and shape information.

• A sufficient condition for pure translation of novel objects
with the CoM estimation uncertainty.

• A sufficient condition for determining the sense of rota-
tion of novel polygonal objects.

The assumptions are made as follows:
• The object is flat, and it does not tilt or flip during and

after being pushed.
• The pusher, the object, and the support plane are rigid.
• Coulomb’s law of friction applies.
The rest of the paper is organized as follows. In Section II,

we review the related work in object inertial parameter es-
timation and planar pushing. In Section III, we present our
CoM estimation method. In Section IV, based on the CoM
estimation method, we explain the modification of ZMTEP
for object pure translation. In Section V, we clarify the
experimental setting for conducting object CoM estimation
and pure translation. In Section. VI, we offer a comprehensive
explanation of the implementation process for both the pro-
posed method and the baselines. In Section. VII, we describe
the experiments conducted to validate the modified ZMTEP
method for purely translating objects. Finally, conclusions are
drawn in Section VIII.

II. RELATED WORK

A. Object Physical Property Estimation

A comprehensive survey on the estimation of objects’
inertial parameters was performed in [7]. Our proposed method
belongs to “exploratory methods” characterized by the inter-
action between the robot and the object. Here, we further
categorize the exploratory methods as tactile, vision, and
multi-modal sensor-based methods by the type of sensors used.

Among tactile sensor-based methods [8], [9], [10], [11],
[12], [13], for ungraspable objects, Yu et al. [8] defined
Gravity Equi-Effect Plane which contains the center of grav-
ity. The object CoM was determined by the intersection of
multiple Gravity Equi-Effect Planes found by multiple tip

operations. The assumptions made were the rigid polyhedron-
shaped object and sticking line contact between the object and
the ground. For planar objects, Yu et al. [9] used two fingertip
tactile sensors to measure the reactive forces during the inter-
action with the box, and formulated a least-squares problem
based on the equation of motion and the measurement. How-
ever, this method assumed a known object shape and identical
contact normals between two fingers. For graspable objects,
the dynamics of the grasped object was estimated based on
the measured forces from the fingertips [10]. Specifically, the
estimation of friction between the fingertip and the object
was done through a precise control scheme, measuring the
forces when slippage occurs to estimate the boundary of the
friction cone. The estimation of object inertial parameters
was formulated as a factor graph taking the measurement
uncertainty into account. Wang et al. [11] used a vision-based
tactile sensor and encoded the object’s inertial parameters
and friction into a latent space using the deformation at the
contact during object tilting and shaking. In [12], the CoM
of a quadrilaterally-faced hexahedron object was identified
through the cross-correlation between the force signals of two
fingertips. Zhao et al. [13] detected the relative rotation angle
due to slippage when the object was lifted and measured
the gravitational force, and estimated the CoM using static
equilibrium.

For vision sensor-based methods, one earlier work [14]
uniformly sampled a set of hypothesized support points inside
the convex region of the object projected onto the plane,
and the friction parameters were estimated using a linear
programming formulation. However, this method requires a
known object shape and precise object pose tracking. More
recently, in [15], the mass density was estimated using the
impulse response to a striking motion. However, this method
requires a high-rate camera and can not apply to fragile
objects. Song et al. [16] proposed to learn the coupled mass-
friction parameters using a differentiable simulator. However,
the contact normal direction can not be well estimated as the
object is approximated by rigidly connected 2D small grids.
Li et al. [17] used recurrent neural networks to estimate the
object CoM given a history of pushing interactions. Kumar
et al. [18] employed a policy network to interact with an
articulated object, and a predictor network to predict the mass
distribution of an articulated object. Xu et al. [19] proposed a
learning framework to encode the object’s physical properties
implicitly using high-speed pushing and colliding. In our
previous work [1], [20], the object CoM was estimated based
on the MVT, assisted by a prediction model of the pushed
object motion [21].

Among multi-modal sensor-based methods, Tanaka et
al. [22] estimated the visual center of the object and found
pushing forces that can purely translate it. The estimation of
the object mass was based on the measured contact forces
and a known friction coefficient. In [23], the friction co-
efficients of the unknown objects were inferred from the
visual color feature and partial haptic measurements. Veres
et al. [24] proposed to learn the CoM implicitly and predict
the grasp affordance in an end-to-end fashion. Specifically,
several grasping trials were executed to collect the support set



for generating the grasp affordance.
In this work, we extend MVT to estimate the CoM of novel

objects with inaccurate object shape and unknown friction.
We show that the estimation of the CoM can be carried out
accurately only using a vision sensor.

B. Object Rearrangement by Pushing

The previous studies [25], [26] focused on the use of open-
loop pushing to reposition objects with known geometry and
inertial properties using a flat pushing fence. However, this
study aims to address the challenge of manipulating objects
with inaccurate geometry and unknown inertial properties. Un-
der the assumption of quasi-static pushing, an ellipsoid model
was derived in [27] to approximate the limit surface [28],
[29] which relates the applied force with object velocity. The
ellipsoid model was then used for pushing controller design
as in [30], [31], [32]. However, the ellipsoid approximation
needs a known CoM and friction between the pusher and
the slider and it under-fits the real object motion. Recently,
in [33], instead of using an ellipsoid model, the Gaussian
Process (GP) was used to model the dynamics of the object
from experimental data. The authors leveraged GP and model
predictive control to repose the object. The methods proposed
in [30], [31], [32], [33] require accurate full-state feedback,
which is expensive to obtain in the common setting.

The object rearrangement task can also be solved by multi-
step pushing. In [17], [34], end-to-end learning models were
trained to predict object motion. Then, a series of pushing
actions were planned to achieve the goal pose. The authors
in [35] showed the exact step bound for a given object
rearrangement task and a set of known line pushes with known
pushing effects. However, these methods lack efficiency, as the
number of pushes is proportional to the difference between
the initial and target object poses. In contrast, our proposed
method for object translation only requires at most two pushes.

On the other hand, without estimating the object dynamics
or prior knowledge of pushing effects, Lloyd and Lepora [36]
showed that the novel object can be rearranged using tactile
and vision sensor feedback. This method is time-consuming
and computationally intensive as the contact normal needs to
be inferred online through a convolutional neural network. We
show that our method can translate the object efficiently and
accurately with a variable speed range. In [37], the authors
optimized the contact configurations to achieve minimum
effort when pushing a known uniform-density object along the
required trajectory using several mobile robots. In our work,
the contact configuration is chosen to eliminate the uncertainty
of the CoM. In [38], [39], physics engines were leveraged to
plan the pushing action for uniformly distributed objects.

NOMENCLATURE

p A sampled contact position on the object boundary in
the image frame.

n Contact normal direction represented by a unit two-
dimensional vector.

ñ, ñl , ñr Estimated contact normal direction (into the object)
and its left and right limits.

R f l ,R f r Rays delimiting the left and right boundaries of the
friction cone.

Rp Rays specifying the pusher motion.
Rn,Rñ,Rñl ,Rñr Rays starting from p and along n, ñ, ñl , ñr.
Rpl ,Rpr Rays specifying the left or right bound of the dif-

ference between the commanded pushing and the real
pushing.

Cñ Estimated contact normal error cone (bound), speci-
fied by two rays Rñl and Rñr delimiting the left and
right boundaries of the bound.

Cp Pushing execution error cone (bound), specified by
two rays Rpl and Rpr delimiting the left and right
boundaries for pushing execution error.

+Cñ Enlarged Cñ with Rñl and Rñr shifted to the left and
right along the object boundary to minimally wrap Cp.
The shifted Rñl and Rñr are represented by +Rñl and
+Rñr

Cr Rotation uncertainty cone.
ACoM Possible CoM locations represented by a convex re-

gion inside the convex hull of the object mask.
Añl Area of intersection between the half plane (on which

+Rñl has positive moment) and ACoM .
Añr Area of intersection between the half plane (on which

+Rñr has negative moment) and ACoM .
Apl Area of intersection between the half plane (on which

Rpl has positive moment) and ACoM .
Apr Area of intersection between the half plane (on which

Rpr has negative moment) and ACoM .
pCoM CoM ground truth.
p̃CoM Estimated CoM, or the centroid of ACoM .
α Half angle of the friction cone.
δ Half angle of the contact normal error bound Cñ.
θe Half angle of pushing execution error cone Cp.
de Max contact position error between the commanded

and real contact position.

III. COM ESTIMATION

The objective of this study is to estimate the CoM of an
object using vision-guided planar pushing in the presence of
inaccurate shape information and unknown friction. This sec-
tion begins with briefly examining the possibility of applying
the MVT to the estimation of the CoM of an object. Under
realistic conditions of inaccurate contact normal and friction
cone between the pusher and the object, we introduce the
concept of rotation indeterminacy cone with the estimation
error bound on the contact normal. We then present the
first EVT, which specifies the conditions for eliminating the
error caused by inaccurate contact normal. Additionally, we
introduce the second EVT, which specifies the conditions for
eliminating the error introduced by the relative sliding between
the pusher and the object. Next, we provide the update rule for
the CoM region estimation and the selection method for the
pusher motion. Finally, we summarize the proposed method
in Alg. 1.

A. Applying MVT to Object CoM Estimation
In this work, the coordinate system is right-handed with

the positive z-axis pointing out of the page. Given a pusher-



Fig. 1. Probable CoM region given Rp, R f l , R f r , and the object sense of
rotation. In this figure, Rp solely determines the rotation sense.

object system, the CoM of the object is denoted as pCoM .
The two rays delimiting the left and right boundaries of the
friction cone are represented as R f l and R f r, respectively. Rp
specifies the ray of the pusher motion. MVT states that the
spatial relationship among three rays R f l , R f r, Rp, and the
pCoM vote for the slider object’s sense of rotation. For instance,
the object rotates clockwise if at least two rays have negative
moments about pCoM as illustrated in Fig. 1.

Projecting the object to the support plane, the pCoM lies
inside the convex hull of the object boundary. If Rp, R f l , and
R f r are known and the object’s instant sense of rotation is
observed, according to the MVT, pCoM is located in a convex
region enclosed by the convex hull of the object and the middle
of the three rays Rp, R f l , and R f r. We refer to this convex
region as the CoM region denoted by ACoM . By imparting a
series of pusher motions to the object such that the middle
ray of each of the motions passes ACoM , the region can be
monotonously narrowed down. The smaller the region it gets,
the more approximate its centroid is to the CoM.

If Rp is inside the friction cone as an a priori knowledge,
it can determine the CoM region using the sense of rotation
of the object, regardless of the directions of two other rays
or friction cone limits. Under the condition that the friction
between the pusher and the object is unknown but accurate
contact normal is available, the Rp can be kept aligned with
the contact normal. Since the contact normal evenly splits the
friction cone, a minimum of two rays including Rp always vote
for the same rotation sense. Therefore, Rp becomes the right or
left border of the CoM region, depending on the rotation sense,
as shown in Fig. 1. Furthermore, if the object is pushed along
the contact normal passing through the centroid of the CoM
region and rotated, one-half of the CoM region is reduced. If
the object is purely translated, the CoM region degenerates to
a line segment specified by the intersection between the CoM
region and Rp. If we use all pixels inside the CoM region to
approximate the CoM region, ideally, the CoM ground truth
can be bounded within one pixel by pushing the object log2(n)
times, where n is the number of pixels occupying the CoM
region.

In practice, both the accurate contact normal and friction
cone at the contact point are unknown. To apply the MVT
to narrow down the CoM region, at least the contact normal
has to be identified. However, contact normal estimation is

Fig. 2. The object mask is refined using RGB image and segmented object
mask, and the contact normal error bound is estimated based on the refined
mask.

inaccurate due to sensor resolution or noise. Rp outside the
friction cone might cause the CoM region update process to
fail, and the real CoM would fall outside the CoM region.
In addition, if real-time pose tracking of the pushed object is
unavailable, sliding between the pusher and the object may
lead to successive changes in the object’s sense of rotation,
e.g., the object rotates counterclockwise and then clockwise
so that the rotation sense determined by the MVT may be
different from the real observation. All of these imperfections
introduce challenges around the MVT. In order to estimate the
CoM accurately in the presence of such challenges, we present
extensions on the MVT by modeling and taking into account
the contact normal estimation error bounds.

B. Contact Normal Estimation Error Bounds

To estimate the contact normal direction, we employ a
vision sensor to capture images of the object to find the
normal to the lateral surface using a set of pixels on the
object boundary. To better extract the object boundaries and
reduce the estimation error introduced by the sensor noise,
we employ a high-resolution mask segmentation model called
CascadePSP [40], and obtain the refined object mask using
the raw RGB image and segmented object mask as shown in
Fig. 2. Then, the surface normal can be estimated by analyzing
the covariance matrix of a local image patch around a contact
point. The eigenvector associated with the smallest eigenvalue
of the covariance matrix is regarded as the surface normal [41].
The estimated contact normal, however, is inaccurate due to
the sensor noise and errors introduced during conversion from
the real world to the discretized image frame. To deal with this
problem, we introduce an error bound on the contact normal
estimation specified by the left and right limits ñl and ñr,
respectively.

We formulate the contact normal error bound estimation
problem as an optimization problem which will hereinafter be
described. The superscript i denotes the index of a discretized
contact point on the boundary of an object. We estimate
the normal direction ñi at the contact point pi using a set
of k adjacent contact points {p(i+ j)}, j ∈ (− k−1

2 , k−1
2 ) on



Fig. 3. Finding contact normal error bound by solving the optimization
problem in Eq. 1, where ñl and ñr are the left and right boundaries of Cñ.
Local contour pixels are represented by cuboids. The circular dots represent
the optimization results indicating the local curvatures. Ellipses are drawn
using the dots, and the minor axes of the ellipses indicate the estimated contact
normal error bounds.

a two-dimensional object boundary, where j is an integer
and k is an odd number of neighborhood window size.
To find the left limit of the contact normal error bound
ñl , we create k two-dimensional variables represented as
{p(i+ j)

v }, j ∈ (− k−1
2 , k−1

2 ). The ñl can be found by minimizing
the magnitude of the cross product of ñi

l and ñi given by Eq. 1.

min
ñi

l

ñi
l× ñi

s.t. Qv =
1
k

Σ
i+ k−1

2
j=i− k−1

2
(p j

v− p̄v)(p j
v− p̄v)

⊤

Qvñi
l = λ ñi

l

p j− 1
2
≤ p j

v ≤ p j +
1
2

p j
v ≤ (≥)1

2
(p j+1

v +p j−1
v )

(1)

Qv is the covariance matrix calculated based on pi
v, and ñi

l is
the eigenvector of the Qv. p̄v is the mean of k two-dimensional
variables. pi

v is bounded by the sub-pixel accuracy of pi.
In addition, the local curvature is assumed either convex or
concave as stated in the last constraint via ≤ (≥). In practice,
we exclude the estimation of neighboring pixels that do not
exhibit convex or concave behavior. Similarly, the right bound
is found by minimizing the cross product of ñ and ñr. Fig. 3
shows an example of finding ñl and ñr.

After obtaining ñl and ñr, the estimated contact normal ñ
is recalculated to be aligned with the halfway between ñl and
ñr. i.e., ñ = ñl+ñr

2 . Provided that the contact normal estimation
uncertainty can be calculated, in the following, we present
how to utilize this uncertainty within our context of CoM
estimation.

C. Instant Sense of Rotation Indeterminacy Analysis with
Contact Normal Error Bounds

Using ñl and ñr at a contact point, the contact normal
error cone Cñ can be constructed. We assume that the contact
normal ground truth can be positively spanned by Cñ. If the
robot pushes an object along the estimated contact normal,

Fig. 4. Illustration of rotation indeterminacy cone Cr . If object CoM lies
inside Cr as shown in (a) and the object is pushed along ñ, the rotation sense
may be opposite to the case pushed along the contact normal ground truth.
In (b), the presence of a larger friction cone eliminates rotation uncertainty.

which lies outside the actual friction cone, and updates the
CoM region based on the sense of rotation of the object, the
CoM region and the CoM ground truth are mutually exclusive.
In such a case, the ray of pushing direction does not cast a
vote on the object’s sense of rotation. Therefore, to ensure that
the estimated CoM region encompasses the CoM ground truth,
the contact normal estimation error bound must be considered.

In this study, we present the concept of the rotation indeter-
minacy cone Cr as a means to address the issue of exclusivity.
This cone refers to the uncertainty bounds on the rotation
sense, meaning that an update on the CoM region could go
wrong if the CoM ground truth is inside this cone and the
object is pushed along the estimated contact normal. If the Cr
is accurately identified, the exclusivity case can be resolved by
incorporating the region that is shared by Cr and the current
CoM region, regardless of the sense of rotation of the object
in updating the CoM region.

Assuming that the friction coefficient between the pusher
and the object is known, the Cr can be determined via the
following steps:
• Draw contact normal error bounds specified by ñl and ñr

at the contact point.
• Construct friction cones by regarding ñl and ñr as the

contact normal direction.
• The left boundary of Cr is the right boundary of the

friction cone which regards ñl as the contact normal.
• The right boundary of Cr is the left boundary of the

friction cone which regards ñr as the contact normal.
Cr is illustrated in Fig. 4 (a). To enhance the expression of
the idea, let us assume that the true contact normal is aligned
with ñl . In this case, ñ is outside the friction cone. If the CoM
ground truth lies between the right boundary of the friction
cone and ñ, the update on the CoM region goes wrong. This
is because ñ votes for counterclockwise rotation, however, the
object will rotate clockwise according to the MVT.

The definition of the half angle of Cr is given by δ −α ,
where δ specifies the half-angle of the contact normal error
bound, and α represents the friction angle. δ−α is meaningful
only if it is greater than zero. The instant object sense of
rotation error only occurs when the CoM ground truth is inside



Fig. 5. Enlarged contact normal error bound +Cñ which is specified by +Rñl
and +Rñr , and pushing execution error bound specified by Rpl and Rpr .

the Cr. To eliminate this error, the rotation indeterminacy
region represented by Cr∩ACoM must lie in the updated CoM
region, no matter the object’s sense of rotation. This guarantees
that the inclusiveness between the CoM region and the CoM
ground truth.

However, if the friction angle α is greater than the half-
angle of contact normal error bound δ , the rotation inde-
terminacy cone becomes equal to /0 as illustrated in Fig. 4
(b). In this case, the contact normal estimation error does
not introduce any error in the rotation sense. Therefore, the
estimation error due to inaccurate contact normal estimation
can also be eliminated when the friction cone is larger than
the estimated contact normal error bound.

Based on the aforementioned analysis, we introduce the
first EVT stated in Theorem 1.

Extended Voting Theorem (EVT) 1: If the friction angle
is greater than the half-angle of contact normal error bound,
and the object is pushed along the estimated contact normal,
then the instant sense of rotation of the pushed object is solely
determined by Rp.

Proof: If the friction angle is greater than the half-angle of
the contact normal error bound, the contact normal error bound
is fully encompassed by the friction cone. Thus, any ray of
pushing inside the contact normal error bound is also inside the
friction cone. As a result, the estimated contact normal which
evenly splits the contact normal error bound also is inside the
friction cone. Based on the MVT, the ray of pushing Rp is the
middle ray of (R f l ,Rp,R f r) so that Rp solely determines the
object sense of rotation.

In practice, controlling the pusher motion precisely is dif-
ficult due to hand-eye calibration and object pose tracking
errors. The execution error in pushing direction and contact
point are specified by θe and de, where θe defines the max-
imal difference between the commanded and actual pushing
directions, and de defines the maximal distance between the
commanded and actual contact points. Now, the pushing
execution error cone, denoted as Cp, is specified by Rpl and
Rpr, which depend on θe,de as shown in Fig. 5. Any actual
push action represented by Rp can be bounded by Cp. Here
the half angle of Cp is smaller than that of Cñ, which is
considered reasonable if the camera is well calibrated. To
avoid the estimation error introduced by the pushing execution

error, the intersection region between the current CoM region
and pushing execution error cone (ACoM ∩Cp) must lie in the
updated CoM region.

To incorporate both the contact normal estimation error
and pushing execution error in the process of object CoM
estimation, we enlarge the contact normal estimation error
cone Cñ by shifting Rñl and Rñr to minimally enclose the
region ACoM ∩Cp as shown in Fig. 5, denoted as +Cñ.

D. Sliding between Pusher and Object

The preceding sections examined the possibility of using
the MVT to estimate the CoM of an object with the instant
sense of rotation when the contact normal is inaccurate.
However, in real-world conditions, the instant sense of
rotation of an object may not always be available due to
hardware limitations or lack of textures on the object for
pose estimation. To address this issue, we approximate the
instant sense of rotation by performing a short straight-
line push. Based on the difference in object orientation
before and after a push, the instant sense of rotation can
be approximated. Nevertheless, the approximated sense of
rotation of the object may be inaccurate because of the pusher
sliding motion along the object boundary. The object could
initially rotate clockwise and then later counterclockwise
due to the alteration of the contact point. In this study, we
present a condition that is adequate for determining the
object’s sense of rotation using the initial spatial relationship
between Rp and pCoM when the pusher slides along the object.

Extended Voting Theorem (EVT) 2: If the Rp is initially
inside the friction cone of a polygonal object and sliding
occurs continuously between the pusher and the object, the
object’s sense of rotation is uniquely determined by the initial
spatial relationship between Rp and CoM location.

In other words, given a polygonal convex object, if the ray
of the pusher motion Rp lies inside the friction cone and the
contact point stays on the same edge, then the object’s sense
of rotation remains unchanged regardless the sliding motion
between the pusher and the object.

Proof: We prove EVT 2 by contradiction. Let us assume that
Rp is within the friction cone and indicates a clockwise sense
of rotation for the object. The hypothesis is that Rp eventually
changes its indication due to the sliding motion. At first, the
object rotates clockwise based on the MVT, while Rp rotates
counterclockwise with respect to the object frame. Since the
object has a polygonal shape, the directions of R f l and R f r
with respect to the object frame will not change regardless
of the direction of relative sliding motion between the pusher
and the object. Consequently, Rp will move toward R f l . If the
hypothesis holds, the rotation of Rp must rotate in a clockwise
direction w.r.t the object frame, leading it to move closer to
R f r and eventually surpass the boundaries of the friction cone.
However, this outcome is not feasible. Hence, this leads to a
contradiction.

The proof of EVT 2 can also be done by enumerating the
spatial relationships among Rp, R f l , and R f r during the sliding
between the pusher and the object as illustrated in Fig. 6.



Fig. 6. Proof of EVT 2. LS or RS means that the pusher slides to the left or right w.r.t. the object fixed frame depicted in red color. (a) shows the case that
the pushing direction Rp is initially outside the friction cone, while (b) shows the case that Rp is initially inside the friction cone.

We attach an instant frame to the object whose origin is at
the contact point. One axis of the frame is along the contact
normal and the other axis is along the object boundary. Based
on the MVT, if the middle ray among three rays passes through
the object CoM, the object translates along this ray. If the
middle ray is Rp, the object is purely translated and no sliding
occurs between the pusher and the object. If the ray in the
middle is the right boundary of the friction cone as illustrated
in Fig. 6(a-i), the object is translated along R f r, meanwhile the
pusher slides to the right with respect to the object-attached
frame. In the case of continuous straight-line pushing, the
object will then rotate counterclockwise. Therefore, successive
changes in the object’s sense of rotation might happen when
the ray in the middle is the R f l or R f r as shown in Fig. 6(a-i).

Fig. 6 (a) illustrates the case that the Rp lies initially
outside the friction cone. A unique sense of rotation is not
guaranteed due to the unknown sliding direction between the
pusher and the object. Fig. 6(b) shows the case where the Rp is
initially inside the friction cone. In this case, regardless of the
sliding direction, the successive changes in the object’s sense
of rotation will not occur. Therefore, if EVT 2 is satisfied,
regardless of the pushing magnitude, the object’s sense of
rotation is initially determined and will not change.

E. CoM Region Update Rules

Here, we aim to answer the following question: Given a
pusher motion and the resultant sense of rotation of an object,
how can the object CoM region be maximally reduced in
the presence of contact normal estimation error and pushing
execution error?

If the friction cone is not guaranteed to be larger than the
contact normal error bounds, based on the aforementioned
instant object sense of rotation analysis, the intersection region
between the rotation indeterminacy cone Cr and the CoM
region must lie in the updated CoM region. However, the
rotation indeterminacy cone cannot be found precisely if the
friction is unknown. But the rotation indeterminacy cone is

upper bounded by the contact normal error bound. Therefore,
instead of finding an exact Cr, the CoM region is updated in
such a way that it contains the region formed by the contact
normal error bound Cñ and the current CoM region to ensure
the inclusion of the CoM ground truth.

In the presence of both the pushing execution error and
contact normal estimation error, Cñ is replaced by +Cñ to
avoid the potential estimation error caused by the pushing exe-
cution error. Therefore, if the object rotates counterclockwise,
the region of (+Cñ ∩ACoM)∪Añl will be the updated CoM
region. Similarly, if the object rotates clockwise, the region of
(+Cñ∩ACoM)∪Añr will form the updated CoM region. If the
object is purely translated, meaning that Rp passes through
the CoM, the region of Cp∩ACoM is considered the updated
CoM region.

On the other hand, if the friction cone is larger than the con-
tact normal error bound, following EVT 1, the contact normal
estimation error is eliminated. In this case, only the estimation
error introduced by the pushing execution error is taken into
account. Therefore, if the object rotates counterclockwise, the
region Apl ∪ACoM is selected as the updated CoM region.
Similarly, the region Apr ∪ACoM becomes the updated CoM
region if the object rotates clockwise. The CoM region is
Cp∪ACoM if the object is purely translated. In summary, the
updating rule is illustrated in Fig. 7.

F. Pusher Motion Selection

We now select the pusher motion, maximizing the reduction
of the area of the CoM region using the CoM region update
rule. Specifically, the scoring functions (sn,sp,sd) are designed
to quantify the area reduction. We aim to minimize the CoM
region and avoid elongated shapes. In the case that the friction
cone is not guaranteed to be larger than the contact normal
estimation error cone, Eq. 2 is designed.

sn(i) =
2Ai

ñlA
i
ñr

(Ai
ñl)

2 +(Ai
ñr)

2 +(ACoM ∩+Ci
ñ)

2 (2)



Fig. 7. CoM region updating rule: (a) when the friction cone is not guaranteed to be larger than the contact normal error bound, (b) when the contact normal
estimation error is eliminated and only the pushing execution error is considered.

Fig. 8. Areas used for pusher motion selection. VCoM1 and VCoM2 are the
principal axes calculated based on the current CoM region ACoM . The areas
are used to select a pusher motion (a) when both contact normal estimation
error and pushing execution error are present, and (b) when the friction cone
at the contact is larger than the estimated contact normal error bound.

where the subscript n infers the presence of contact normal
error bound. i represents the index of the sample within the
set of sampled pusher motions. Specifically, the boundaries
+Rñl and +Rñr of enlarged contact normal error bound +Cñ
are used to split the current CoM region into at most three
regions: Añl , Añr and +Cñ ∩ACoM , as shown in Fig. 8. It
aims to maximize the product of the size of Añl and Añr and
minimize ACoM ∩+Ci

ñ, since ACoM ∩+Ci
ñ is always included

in the updated CoM region regardless of the object sense
of rotation. Consequently, the pusher motion of the highest
score is determined by Ai

ñl and Ai
ñr of the same size and the

minimum intersection between ACoM and +Ci
ñ.

In the case that the friction cone is larger than the estimated
contact normal error cone, Eq. 3 is used where the subscript
p infers the presence of pushing execution error bound, as
the contact normal estimation error does not cause a CoM
estimation error.

sp(i) =
2Ai

plA
i
pr

(Ai
pl)

2 +(Ai
pr)

2 +(ACoM ∩Ci
p)

2 (3)

Apart from the area of the CoM region, the shape of the CoM
region, which depicts the uncertainty in estimation, should
also be optimized to reduce the estimation error. In the case
where the CoM region is elongated, there is a possibility of
significant estimation errors even if the ground truth CoM is
guaranteed to be within the CoM region. This is particularly
true when the ground truth CoM is far away from the centroid

Fig. 9. CoM estimation process. In each figure, the green area is the CoM
region, the red arrow shows the pushing direction, and dashed lines are the
left and right limits of +Cñ. The CoM ground truth is depicted as a green
dot, and the estimated CoM is depicted as a red dot.

of the CoM region. By controlling the shape of the CoM
region, it is possible to decrease the estimation error in the
worst-case scenario. Therefore, Eq. 4 evaluates the geometric
isotropy of the CoM region based on the direction of pushing
motion indicated by the subscript d. Specifically, VCoM2 is the
second principal eigenvector of the current CoM region. This
cost function evaluates how well the selected pushing action
reduces the uncertainty along the first principal direction of
ACoM . We therefore combine Eq. 2 or Eq. 3 with Eq. 4 in a
weighted-sum fashion.

sd(ñi,VCoM2) = ∥ñ
i⊤VCoM2∥ (4)

G. Pipeline of CoM Estimation

Based on the EVT 1 and EVT 2, we propose the CoM
region update rule and pusher motion selection strategy. By
repeatedly applying the pusher motion and CoM region update
rule, the CoM region can be narrowed down until no further
push can reduce the CoM region or a maximal number of



pushes is achieved. The pipeline of the CoM estimation is
illustrated in Alg. 1, also supported by an example in Fig. 9.

Algorithm 1: CoM Region Narrowing Down Process

Input: agent,{p}i,{ñ}i,{ñl}i,{ñr}i,θe,θPT ,de,w,T
/* θe,de are used to construct Cp and calculate

Apl and Apr. T is the maximal time steps for

interaction. w is a two-dimensional weight

vector. θPT is an angle threshold

determining if the object is purely

translated. */

Output: ACoM
1 Initialize ACoM/* The region inside the convex

hull of the object. */

2 for t = 1 to T do
/* Pusher motion selection */

/* opencv library */

3 VCoM2 ← PCA(ACoM)
4 if include uncertainty then
5 Construct {+Cñ}i,{Cp}i,{Añl}i,{Añr}i based

on {p}i,{ñ}i,{ñl}i,{ñr}i,θe,de

6 i=argmin w⊤
[

sn(i)

sd(ñi,VCoM2)

]
/* Pusher-object contact interaction */

7 ∆θ ← agent.execute(pi, ñi)
/* CoM region update */

8 if ∥∆θ∥> θPT then
9 if ∆θ > 0 then

10 ACoM ← (+Ci
ñ∩ACoM)∪Ai

ñr

11 else
12 ACoM ← (+Ci

ñ∩ACoM)∪Ai
ñl

13 else
14 ACoM ← (Ci

p∩ACoM)

15 else
16 Construct {Cp}i,{Apl}i,{Apr}i based on

{p}i,{ñ}i,θe,de

17 i=argmin w⊤
[

sp(i)

sd(ñi,VCoM2)

]
18 ∆θ ← agent.execute(pi, ñi)
19 if ∥∆θ∥> θPT then
20 if ∆θ > 0 then
21 ACoM ← (Ci

p∩ACoM)∪Ai
pr

22 else
23 ACoM ← (Ci

p∩ACoM)∪Ai
pl

24 else
25 ACoM ← (Ci

p∩ACoM)

IV. OBJECT TRANSLATION BASED ON COM REGION

Our recent work [1] has shown that the ZMTEP can purely
translate novel objects, if two contact normal directions posi-
tively span the pushing direction, and the lines specified by two

contact normals and the pushing direction that passes through
the CoM ground truth intersect at a single point. Specifically,
the pusher needs to touch the object at two different edges,
and the ZMTEP selects a two-edge-contact configuration with
the highest tolerance against the touch position and CoM
estimation errors. The larger the distance between two contact
points, the larger the tolerance on CoM estimation error.

If the exact contact normal and friction cone are known
at the contact point, for a specific two-edge-contact config-
uration, two contact forces are bounded by (Ri

f l ,R
i
f r) and

(R j
f l ,R

j
f r) at each contact point pi and p j, respectively. Given

a target pushing direction and two-edge-contact configuration,
the CoM tolerance range can be found as follows:

• draw line that is parallel to the target pushing direction
and is passing through the intersection of two left bound-
aries of friction cones at two contact positions represented
by Ri

f l ∩R j
f l .

• draw the other line that is parallel to the target pushing
direction and is passing through Ri

f r ∩R j
f r

• find the region encompassed by the intersection of two
lines as well as the convex hull of the object.

It should be noted that the CoM tolerance range is only valid
when the target pushing directions can be positively spanned
by both (Ri

f l ,R
j
f l) and (Ri

f r,R
j
f r). Using the CoM region,

without the CoM ground truth, the following conditions should
be satisfied for pure translation of an object.

• The CoM tolerance range of the two-edge-contact con-
figuration completely encompasses the CoM region.

• The target pushing direction can be positively spanned
by contact forces at two contact positions.

These two conditions are sufficient conditions for object pure
translation with the estimated CoM region.

In this study, we modify the ZMTEP method to accommo-
date the situations where the contact normal, friction cone, and
object CoM are coarsely known. Given the target direction, es-
timated object CoM region, and estimated contact normal error
bounds, our goal is to efficiently find the two-edge-contact
configurations that ensure pure object translation toward the
target position.

Theoretically, if the friction angle is two times greater
than the half-angle of the contact normal error bound given
by Eq. 5, it is ensured that the friction cone includes the
estimated contact normal error bound. In other words, any
contact force inside the contact normal error bound can be
positively spanned by the left and right boundaries of the
friction cone. We refer to Eq. 5 as the friction condition for
pure translation when the object geometry is not perfectly
known. To make Eq. 5 fulfilled, we wrap the pusher with
high-frictional materials. After that, the approximated CoM
tolerance range can be found by utilizing the left and right
limits of contact normal error bounds Rñl and Rñr.

α ≥ 2δ (5)

The computational complexity for finding two-edge-contact
configurations is O(n2), where n represents the number of
distinct points on the object contour, as we iterate through all



Fig. 10. The approximated CoM tolerance range is depicted by the light
yellow colored region. The pushing direction is specified based on the centroid
of the CoM region and the intersection point between Ri

ñ and R j
ñ. The plus

and minus signs in the hatched regions are the moment labels of the two-edge
contact configuration.

possible combinations of two contact points. To efficiently de-
termine the configuration for any target directions, we sample
uniformly a set of two-edge-contact configurations. We then
delineate the pushing direction for each sampled configuration
using the centroid of CoM region and the intersection point
Ri

ñ∩R j
ñ as shown in Fig. 10. We finally check if the sampled

configuration and its corresponding pushing direction satisfy
the sufficient conditions for pure translation or not. The steps
involved in the above pipeline are described below:
• Pair each contour point with another contour

point on different edges, represented by a set of
{pi,p j, ñi, ñ j,Ci

ñ,C
j
ñ,nd}m with m examples. Here, nd

denotes the target pushing direction specified by p̃CoM
and Ri

ñ∩R j
ñ.

• Remove examples whose (Ri
ñl ,R

j
ñl) and (Ri

ñr,R
j
ñr) can

not positively span nd .
• Remove examples whose tolerance range cannot fully

cover the CoM region.
• Remove examples whose distance between two contact

points is larger than the maximum stroke of the gripper.
What remains of the initial m examples are all two-edge-

contact configurations and their corresponding stable transla-
tion directions. As the remained contact configurations satisfy
the sufficient condition of pure translation, the tolerance range
formed by two parallel arrows always encloses the CoM region
and there must be no intersection between the two parallel
arrows and the CoM region.

It is well established that the real vector space Rn can be
spanned positively by a minimum of n+1 vectors. Hence, if
there exist three stable pushing directions that can positively
span R2, any target direction can be achieved. An object can
be translated through a single push if the target direction
is the same as one of the three stable pushing directions.
Alternatively, an object can be translated through a linear
combination of two stable pushes. To determine whether to
use one or two pushes to translate an object, we set a small
threshold and find the set of two-edge-contact configurations
whose cosine distance between the corresponding pushing
directions and the target direction is below the specified

Fig. 11. Experimental setup for CoM estimation and pure translation of
objects with different shapes.

threshold. After that, we remove the configurations which do
not satisfy the sufficient conditions for pure translation from
the set. Finally, if the set is still non-empty, we simply choose
the one whose stroke distance is the largest, because it has the
largest CoM tolerance range.

However, if the set after removal is empty, the target
direction cannot be achieved using only one push. In this case,
we use two configurations in a sequence whose corresponding
pushing directions (referred to as ni

d ,n
j
d) can positively span

the target direction. An optimal combination of two pushing
directions can be found by minimizing the sum of travel
distances. Let dtarget denote the pushing distance and ntarget
denote the pushing direction. The pushing distance of each
configuration can be found by solving Eq. 6.

min
ni

d ,n
j
d

di +d j

s.t. [di,d j]⊤ = dtarget [ni
d ,n

j
d ]
−1ntarget

di ≥ 0

d j ≥ 0

(6)

where di and d j are the corresponding pushing distances to
achieve the target position. To minimize the travel distance to
the target position, we choose two configurations with which
the sum of pushing distances is minimal.

V. EXPERIMENT SETTING

The experimental setup is shown in Fig. 11, where an RGB-
D vision sensor is attached to the end link of the robot arm,
capturing the overhead image of the object. We conducted
two experiments; one was to validate the proposed method
for CoM estimation, and the other one was to purely translate
the object to the target position, leveraging the estimated CoM
region and the modified ZMTEP method.

The experimental setup includes both high-friction and low-
friction pushing. In high friction pushing, we use the pusher
with a rubber wrap, while in low friction pushing, we simply
remove the wrap. We 3D printed ten hollow objects in different
shapes categorized into four groups based on the convexity and
edge curvature as shown in Fig. 11. The hollow space inside
each object is divided into multiple uniform grids where we



insert four lead blocks and change the CoM ground truth.
Fig. 14 illustrates an instance of lead block configurations
for each object. In the high friction setting, the frictional
coefficient between the pusher and the objects is higher than
0.70. In the low friction setting, the frictional coefficient
between the pusher and the objects is lower than 0.18.

We attach a textured surface paper on top of each object
to monitor the change in pose of the pushed object with the
Scale Invariant Feature Transform (SIFT) [42]. Prior to push
initiation, the robotic arm adjusts its joint angles to ensure that
a complete object shape is observable within the camera’s field
of view. Then, we remove the background from the image
and register it that contains solely an object. The camera
captures the pushing execution at the rate of 16.7 Hz. For
each image frame obtained, we extract the keypoints and their
descriptors. The projective transformation matrix is computed
based on the corresponding keypoints between the registered
image and each image frame using a brute force matcher and
Lowe’s test ratio. The difference in object pose from the pose
before the object is pushed can be acquired by decomposing
the projective transformation matrix. We compute the pose
estimation error for object image, capturing multiple images
of an object (whose pose remains unchanged with respect to
the robot base) from different robot poses (or camera angles).
We found that the position estimation error is negligible and
the orientation estimation error is less than one degree.

VI. COM ESTIMATION EXPERIMENT

In this section, we assess the accuracy of our proposed CoM
estimation method detailed in Alg. 1 and compare it with two
baseline methods proposed by Lynch [14] and Li [17]. In [14],
the author used a linear programming formulation to estimate
the normalized magnitude of the friction forces between the
object and the ground.

We discovered that a quadratic objective function yields
more accurate results, and reformulated the problem as a
quadratic programming problem. Therefore, we refer to the
method in [14] as quadratic programming (QP). Additionally,
we combine Alg. 1 and QP to improve the accuracy and
effectiveness of an estimation.

A. Proposed CoM Estimation Experiment

Alg. 1 starts with finding the contact normal and pushing
error bounds. This section explains the methods employed
to compute the contact normal and pushing error bound.
Furthermore, it outlines the process of determining the object
sense of rotation based on the pose change of the pushed
object, and steps for conducting experiments.

1) Contact Normal and Push Execution Error Bound:
Firstly, we use the RGB-D image and deep CascadePSP model
to obtain the object mask and contour points. We then remove
the sharp points and their 10 adjacent pixels to reduce the
estimation error. After that, we leverage 7 adjacent pixels for
each contour point to estimate the contact normal error bound.

To construct the pushing execution error bound, we move
the robot to each corner of the object and measure the position
error. After multiple measurements, we found that the robot

can move to each corner within position error 2mm, and the
difference between the command pushing direction and the
real pushing direction is less than 3°. Therefore, we set de to
2mm and θe to 3° in Alg. 1.

2) Object Sense of Rotation: In the proposed CoM esti-
mation pipeline, we set θPT to 1°, i.e., if the accumulated
change in orientation of the pushed object, denoted as ∆θ ,
is less than 1°, the motion is considered pure translation. If
∥∆θ∥> θPT , we check the sign of ∆θ to identify the object’s
sense of rotation. If we have a high frictional pusher and a
convex polygonal object, the sense of rotation is determined
according to the EVT 2 without the need to continuously track
the object’s pose.

3) Experiment: Striking a balance between outputs of Eq. 2
and Eq. 4 (or similarly Eq. 3 and Eq. 4), we set the weight
vector w to [0.5,0.5]⊤ in Alg. 1. Therefore, the CoM region
does not tend to elongate. To evaluate the CoM estimation
accuracy, we assign each object three different lead block
configurations. For each configuration, we conducted three
experiments in both high-friction and low-friction settings. In
each run of Alg. 1, the object was pushed a total of eight
times, with each push being executed 5cm along the estimated
contact normal direction. After each push, the CoM region
is updated, and the centroid of the updated CoM region is
regarded as the estimated CoM. We refer to this method as
EVT-based CoM Estimation (EVT-CoM). The estimation
procedure may be terminated early if no push contributes to
narrowing the CoM region. We conducted 180 CoM estimation
experiments in total.

B. Quadratic Programming

In [14], a set of hypothesis contact points between the
object and the table should be determined. In our study, we
uniformly selected contact points within the object mask. To
ensure an accurate estimation of frictional distribution, we set
the number of hypothesis contact points to a value greater than
20 based on the findings in [14]. Each hypothesis contact point
has a corresponding non-negative weight, which is analogous
to the normalized magnitude of the frictional forces. If the
weights can be accurately estimated, the CoM of the object
can be determined by summing the weighted positions of all
hypothetical contact points.

Moreover, the contact points between the pusher and the
object are uniformly selected in [14]. Following this idea, we
uniformly sample contact points around the object’s perimeter.
The robot pushes the object 5cm along the estimated contact
normal direction at each contact point. Based on the change in
the pose of the object, the motion of each hypothesis contact
point can be computed so that the direction of the frictional
force at the hypothesis contact point can be estimated.

After synchronizing the pusher and object motion, a
quadratic programming method is employed to minimize the
magnitude of the moment at the contact point between the
pusher and the object. This is based on the principle that
the sum of the moments of frictional forces at the contact
point between the pusher and the object should be zero under
the assumption of quasi-static interaction. Valid solutions on



weights of hypothesis contact points should be non-negative,
and the sum of weights is required to be one to avoid an all-
zero solution. As the exact contact normal and friction cone
at the contact point between the pusher and the object are
unknown, there is no constraint on the direction of the resultant
of all frictional forces applied to the object from the ground.

To evaluate the influence of the number of pushes on
estimation accuracy, the robot pushes the object around its
perimeter 25 times. We then uniformly sample the pushing
instances, which is referred to as QP Uniform Sampling (QP-
uniform).

C. PushNet

PushNet [17] is a recurrent neural network trained in such
a way to capture the object dynamics based on the history of
pushing instances. Specifically, the input is the current object
mask, start and end pusher positions in the image frame, and
the output is two folds; the first one is the object CoM with
respect to the image frame and the other one is an encoded
feature vector for pushing action selection purpose. As we only
compare the CoM estimation accuracy, we use the first output
of the network. To make the pushing sequence for PushNet,
we re-utilize the pushing instances collected in Section VI-B.

D. Combining the CoM region with Quadratic Programming

This study investigates the potential benefits of incorporat-
ing our proposed framework into quadratic programming to
enhance estimation accuracy and efficiency. Instead of uniform
sampling of the pushing instances, we select the pushing action
in a manner that narrows down the CoM region. Additionally,
we integrate the CoM region into the quadratic programming
formulation as linear constraints to find the optimal solution.
Specifically, the weighted sum of hypothesis positions must
fall within the CoM region. To ensure a fair comparison of
method performance, we utilize the previously collected data
from Section VI-A. As each pushing motion is selected based
on the current CoM region in each step, we refer to this method
as QP EVT-based Sampling (QP-EVT).

E. CoM Estimation Result

The estimation error is illustrated in Fig. 12. In general, it
can be observed that the estimation accuracy of PushNet does
not improve as the number of pushes increases. One potential
explanation for this is that PushNet is trained on a simulation
dataset, which introduces a sim-to-reality gap that hinders its
generalization to our experimental settings. Conversely, the
other methods demonstrate a reduction in estimation error
with an increasing number of pushes. EVT-CoM consistently
achieves a lower estimation error after each push, when
compared to the QP-uniform, and ultimately attains a lower
estimation error. However, it is worth noting that QP-EVT
achieves the lowest estimation error or equivalent performance
to the EVT-CoM. Furthermore, our findings suggest that QP-
EVT can achieve comparable or superior results with only two
pushes.

Fig. 13 illustrates the final estimation errors of all methods,
excluding PushNet, for different categorical objects in both

high and low friction scenarios. The mean and standard
deviation of PushNet are found to be 63.1mm and 26.5mm,
respectively, which is incomparably worse than the others.
According to Fig. 13, we found that EVT-CoM has similar
performance in different frictional settings. QP-EVT achieves
a lower estimation error in the high friction scenario. In
addition, comparing two quadratic programming-based meth-
ods, QP-EVT benefits significantly from our push action
selection strategy in reducing estimation errors, regardless of
the frictional setting.

Fig. 14 illustrates the results of the CoM region identifi-
cation for all objects with one location configuration of lead
blocks both in high and low friction settings. Each sub-figure
shows an image overlay of three runs of Algorithm 1. Due to
the pushing execution errors, the three CoM regions are not
exactly identical. However, our proposed algorithm takes the
contact normal and pushing execution errors into account to
ensure that the CoM ground truth is inside the CoM region.
As a result, the CoM ground truth is also contained inside the
intersection of three CoM regions. Notably, it is observed that
the CoM regions estimated in high frictional settings tend to
be smaller than those in low frictional settings. This is because
there is no need to deal with the uncertainty in contact normals
in high frictional settings.

The CoM regions for convex polygonal objects with the
other two lead block location configurations in high frictional
settings are depicted in Fig. 15. This is to confirm the validity
of the EVT 2. It is noticeable that the CoM ground truth
remains within the intersection of three CoM regions even
though the estimation is solely based on the difference between
the initial and final poses of the object.

VII. OBJECT TRANSLATION EXPERIMENT

This study conducts object translation experiments with
high frictional pushing to verify the validity of Eq. 5. Fol-
lowing the completion of the CoM estimation experiments,
three CoM regions are obtained for each object in all three
lead block configurations. The intersected CoM region and
estimated contact normals are then utilized to select two-edge-
contact pushing configurations. The stable pushing directions
can positively span R2 space visualized in Fig. 16, where the
two-edge-contact configurations and corresponding pushing
directions are depicted in the same color. In order to assess
the effectiveness of object pure translation, the robot is tasked
to push each object in nine different directions. The angles
between the pushing direction and the horizontal direction
in the image frame are evenly distributed within the range
of (−180°,180°). To determine the factors that influence the
accuracy of the modified ZMTEP, the object is pushed with
varying distances (100mm and 180mm) and speeds (30mm/s
and 150mm/s). Throughout the pushing process, the rotations
and translations relative to the pusher are recorded. Overall,
the translation experiment is repeated a total of 1080 times.

The mean and standard deviations of translation and rotation
errors for pure translation experiments are presented in Table I.
It can be observed that the pose error is generally small for
all object types, indicating that our ZMTEP method translates



Fig. 12. Error in estimating the CoM of objects after each push. Each sub-figure displays the estimation error for objects within the same category. The mean
estimation error is visually represented by the height of each bar, while the solid black line at the middle of each bar represents the standard deviation.

Fig. 13. Estimation error after the last push under both high and low frictional settings.

Fig. 14. Illustrations of CoM regions for both high and low frictional pushing interactions. Each image shows one lead block configuration and three
overlapping CoM regions.



Fig. 15. Illustrations of CoM regions of the convex polygonal objects with the other two lead-block configurations in the high frictional setting.

Fig. 16. Pushing directions that are available for each test object based on the intersected CoM region. Two-edge-contact pushing configurations are illustrated
on the boundary of the object. The corresponding directions are illustrated on the centroid of the CoM region, using the same color.

Fig. 17. Joint plot of translation and rotation error.

TABLE I
TRANSLATION AND ROTATION ERRORS

Object
Category

Translation
Error(mm)

Rotation
Error(degree)

mean std mean std
Convex Polygonal 0.72 0.84 0.52 0.77

Convex Non-Polygonal 0.72 0.79 0.48 0.57
Concave Polygonal 0.58 0.41 0.48 0.62

Concave Non-Polygonal 1.11 1.02 0.76 0.85

novel objects without changing their orientations to the target
position using the CoM region and contact normal estimates.
However, for concave non-polygonal objects (in particular,
slender objects), the object pose error is relatively larger
compared with other object types. This can be attributed to
the potential slippage of the pusher with a small gripping
force when the target direction significantly deviates from the
pusher’s contact normal directions.

Fig. 17 shows the joint distributions of translation and
rotation errors of the pushed object. It can be seen from
the figure that the performance of the proposed method does
not depend on translation distance and/or pushing speed to
a noticeable degree. To be more specific, the change in
pushing distance and speed has a limited effect on the final
pose of the pushed object. In contrast to almost all previous
work relying on quasi-static pushing, our method enabled to
translate arbitrarily shaped objects with variable speeds up
to 150mm/s under our experimental setup. However, from a
practical point of view, we found difficulties in controlling
two fingers of the parallel-jaw gripper to simultaneously touch
the object’s different edges. Therefore, a slight change in the
object’s pose occurs during the initial touching. We conjecture
that this asynchrony between two fingers of initial touching
could be the main factor that leads to the error.

VIII. CONCLUSION

In this work, extending Mason’s Voting Theorem, we pro-
posed a pusher motion selection strategy and CoM region
update rule to efficiently find a convex region containing the



CoM ground truth given noisy object shape information. With
the nominal friction cone defined for novel objects whose
actual value is not known, we kept the pusher motion at the
contact point aligned with the contact normal. As the exact
contact normal was difficult to extract from the vision sensor,
we found a contact normal error bound acting as an upper
bound of the rotation uncertainty cone and eliminated the CoM
estimation error due to the inaccurate contact normal.

We presented two Extended Voting Theorems widely appli-
cable to real-world settings. The first theorem states that the
uncertainty in the direction of contact normal will not intro-
duce any error in the CoM estimation procedure if the friction
cone at the contact point is larger than the contact normal error
bound. The second theorem states that continuous pushing in
a straight line will not introduce the CoM estimation error if
the object is a polygon and the pushing direction lies initially
inside the friction cone at the contact point. We conducted
a large number of the CoM estimation experiments using a
parallel-jaw gripper as the pusher and ten CoM-controllable
objects in real settings. We compared our CoM estimation
method with two baseline methods. The experimental results
indicated that our method outperformed the baselines in terms
of estimation accuracy. Furthermore, our estimation pipeline
combined with quadratic programming achieved the lowest
estimation error, significantly reducing the required number
of pushes. In addition, we have proven the validity of the
EVT 2 by showcasing the estimated CoM region for polygonal
convex objects in a high frictional setting. It is worth noting
that this estimation does not entail any implementing measures
for object tracking or considering relative sliding between
the pusher and the object. Despite these simplifications, the
estimated CoM region encompassed the true CoM position.

Based on the estimated CoM region and the modified
ZMTEP method, we sampled a set of two-edge contact
configurations that can tolerate the CoM estimation error.
In contrast to existing methods which usually make use of
full state feedback or multiple short-length pushes, we show
that if the stable pushing directions positively span R2, our
proposed method can efficiently translate the object using
at most two pushes regardless of the pushing direction and
pushing magnitude.

Currently, the second EVT does not guarantee the unique
sense of rotation for non-polygonal objects. In the future,
toward extending our method to deal with the CoM estimation
of non-polygonal objects, we will explore different ways of
pushing or integrating the pose estimation of the pushed object.
This work has focused on rearranging the position of the
object. Optimizing the contact configuration for rearranging
both the position and orientation of the object is also a
potential direction.
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