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High-Throughput Screening and Literature Data Driven Machine 
Learning Assisting Investigation of Multi-component La2O3-based 
Catalysts for Oxidative Coupling of Methane 

Shun Nishimura,*a Son Dinh Le,a Itsuki Miyazato,b Jun Fujima,b Toshiaki Taniike,a Junya Ohyama,c 
and Keisuke Takahashi*b 

Multi-component La2O3-based catalysts for oxidative coupling of methane (OCM) were designed based on high-throughput 

screening (HTS) and literature datasets with multi-output machine learning (ML) approaches including random forest 

regression (RFR), support vector regression (SVR), Gaussian process regression (Bayesian), and Item set mining (LCM). 

Combined use of HTS data and SVR successively assisted the finding of multi-component La2O3-based OCM catalysts of 11 

types in 20 validations with C2 yields appearing at 450°C based on indirect ML assistance. The appropriate multi-component 

predicted from ML contributes to determination of a characteristic feature of the lower onset temperature for a La2O3-based 

OCM catalyst. The LCM application on the SVR extended HTS data area supports spotting of the effective elements in the 

HTS area. However, a challenging subject remains: multi-component La2O3-based catalysts of two types afford effective C2 

yield (>5.0%) at 450°C, as inferred from the 20 selected types of catalyst validation. To predict unique multi-component 

La2O3-based OCM catalysts further, a combination of HTS and literature data was applied for four ML approaches. These 

were helpful to discover 17 additional combinations of multi-component La2O3-based catalysts affording effective C2 yield 

(>5.0%) at 450°C in the 38 selected types of predictions. Completely, 30 multi-component La2O3-based catalysts of new types 

with C2 yield greater than 5.0% at 450°C in CH4/O2 = 2.0 condition were found based on the indirect ML assistance driven by 

HTS and literature data.

1. Introduction 

The recently increased availability of shale gas and methane 

hydrate have cast strong attention on the industrial 

transformation expected to derive from natural gas conversion 

to value-added petrochemicals such as ethylene. Oxidative 

coupling of methane (OCM) discovered in the 1980s1–2 has 

received much attention because of its high potential to afford 

C2 hydrocarbons of C2H4 and C2H6 directly from CH4.3–4 Several 

assumptions must be made of the demand of OCM catalyst 

performance for cost-effective design of industrial plant instead 

of naphtha cracking: these assumed C2 yields are higher than 

18% with C2 selectivity higher than 80%.5–7 Other research 

groups have used modeling and kinetic studies to estimate the 

limit of C2 yield in the OCM reaction as 28–35% at maximum, in 

accordance with thermodynamic investigations.8–10 According 

to these proposals, research targets for OCM catalyst 

development have been carried out to achieve a higher C2 yield 

than 30% and/or significant C2 selectivity of 80% with 

appropriate C2 yield for the past 40 years. Aiming at this target, 

not only catalyst investigation but also reactor design 

concepts11–12 and optimization of reaction conditions13–14 have 

been widely reported.15–18 

 With the intense growth of data analysis and predictions 

intended to reveal hidden trends and undiscovered catalysts, 

machine learning (ML) assisted catalyst chemistry has received 

much attention.19–21 The pursuit has been designated as catalyst 

informatics. Because conventional approaches to overcoming 

industrial demands for OCM have remained challenging,15–18 

the authors believe that an informatics approach has great 

potential as a game changer. Indeed, in just the last a few years, 

the combined uses of tailor-made experimental datasets 

obtained with a high throughput screening (HTS) machine and 

data analytic techniques such as multi-output ML and network 

profiling, which have presented new avenues for the design and 

elucidation of catalysts’ nature and catalysis, in particular 

OCM.22–32 

Several parallel reactor systems for effective data collection 

in a fixed bed catalytic reaction have become commercially 

available33–34 and others have been proposed in research 

reports22, 35–37. Nevertheless, these still require special skills and 

entail high costs for operation and construction similarly to 

conventional modes of catalyst investigation. It will take some 
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time for tailor-made HTS dataset-based ML to become popular. 

Those situations engender common interests among 

experimental scientists to ascertain how those HTS datasets 

obtained by different researchers can assist their own 

discoveries in a laboratory with different reactors. Regarding 

ML engineering in pursuit of the prediction of heterogeneous 

catalysts, selecting adaptive descriptors to follow the target 

catalysis, to develop adequate algorithm refinement, and to 

expand the prediction area to a range beyond the area of 

collected data is an area that is still being investigated.38–40 In 

other words, without ascertaining the hidden layers associated 

to the catalyst performance between the input layer (e.g. 

elemental number) and the output layer (C2 yield, in this study), 

the prediction of catalyst activity derived only from ML 

regression is applicable only in a limited area at present. Barring 

development of a new mode of insight for ML methodology or 

confirmation of the contents of hidden layers, a common 

interest for data scientists and ML engineers is how 

experimental scientists should apply ML methodology to 

advance catalyst chemistry. 

Reportedly, La2O3-based OCM catalysts possess the 

interesting character of OCM activity at lower temperatures. 

These catalysts exhibit a lower onset temperature in OCM. For 

instance, La2O3CO3 nanorods serve OCM activity starting from 

410–420°C.41–42 The crystal shape of La2O3 plays a crucially 

important role on such low onset performance.43 

Nanocomposites of La2O3 and CeO2 exhibit markedly good 

performance starting from 450–600°C.44–47 Since the reaction at 

high temperature lead to opportunities not only to produce C2 

but also to decompose to CO/CO2 and H2O suppressing the 

selectivity of C2 in OCM, such a unique nature derived from 

La2O3-based catalysts has motivated the design of new 

categories of OCM catalysts other than NaMnW/SiO2, which is 

well known as a higher-temperature OCM catalyst operating at 

around 800°C. Various La2O3-based OCM catalysts were 

investigated in earlier studies, but the study on multi-

component La2O3-based catalysts is rare.36 Therefore, in this 

study, the authors specifically examine the discovery of multi-

component La2O3-based OCM catalysts using HTS and literature 

data, combined with the use of multi-output ML approaches 

including random forest regression (RFR), support vector 

regression (SVR), Bayesian inference (Bayes), and itemset miner 

(LCM). This study was conducted based on the assumption that 

the M1-M2-M3 combinations serving high C2 yield predicted by 

ML would be helpful for ascertaining the appropriate 

combination enhancing unique lower-temperature OCM 

performance of La2O3 itself. Such indirect ML-assisted 

investigations (Table 1) have supported research motivations 

particularly addressing multi-component La2O3-based OCM 

catalysts of 75 types for preparation and validation, and then 

multi-component La2O3-based OCM catalysts of 30 types acting 

at lower temperatures. Particularly, C2 yields higher than 5.0%, 

detected at 450°C in CH4/O2 =2.0 condition, were obtained from 

this study. 

2. Experiment 

2.1. Catalyst preparation 

All chemical information is listed in Table S1 of Electronic 

Supplementary Information (ESI). Multi-component La2O3-

based catalysts (M1-M2-M3/La2O3) were prepared using a co-

impregnation method, which was dominant in the resources of 

HTS and literature datasets. First, 1.0 g of La2O3 is dispersed into 

an aqueous solution of mixed element resources (6 mL). They 

were then stirred at 50°C for 6 h (NHP-B077; Nissin Rika) under 

vigorous stirring (AMG-H; ASH Co., Ltd.). The nominal loading 

amount for each metal was fixed as 0.3 wt% in theory according 

to our earlier report.48 Thereafter, the resulting slurry was 

centrifuged and evaporated at 80°C (CVE-3110; EYELA – Tokyo 

Rika Kikai Ltd.), and dried at 110°C for 2 h (ON-300S, ETTAS; As 

One Corp.). After grinding the powder, it is calcined at 600°C for 

3 h at the ramping rate of 10°C min-1 in a furnace (3000 plus; 

KDF – Denken Highdental Co. Ltd.). Finally, the obtained powder 

was ground further and kept in a glass bottle. The bare La2O3 

was also treated using the same protocol without metal 

resources. It was designated as none/La2O3. 

 

2.3. Evaluating OCM reactivity 

The reaction was conducted with a step-jointed quartz tube (4 

mm ID, 235 mm L (top); 2 mm ID, 150 mm L (bottom)). The 

powder catalyst (50 mg) was stabilized at the jointed position of 

the reactor tube using quartz glass wool (<10 mg). It was then 

heated in a furnace (L = 270 mm, ARF-30KC; Asahirika Co. Ltd., 

Japan). The furnace temperature was monitored and controlled 

at the outer space close to the jointed portion using a type R 

Table 1 Schematic illustration of approaches used for this study 

 Validation 1 Validation 2 Validation 3-6 

Data source HTS data of 59 + 300 catalysts HTS data of 300 catalysts HTS data of 300 catalysts and Literature 
data 

Number of data points 40,330 (350 cat.)a 27,622 (291 cat.)a 27,622 (291 cat.)a + 1,802 (1,286 cat) 

ML SVR LCM in SVR RFR, SVR, Bayesian-1 and Bayesian-2 

Number of validationsb top 20 cat. selected 20 cat. top 12, top 12, top 7, and top 7 cat. 

Number of novel catalystsc 11 2 9, 2, 1, and 6d 

a Data points derived from 9 cat. are removed owing to extraordinary trends in selectivity. b When the same component appears in top C2 catalyst, it is 
not counted in each validation. c Definition: C2 yield is higher than 5.0% at 450oC in the CH4/O2 = 2.0 condition.d One catalyst of GaSrYb is double-counted 
between Validation 4 and 6. 
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thermal sensor connected to the control unit (Model SU; Chino, 

Japan). The catalyst was pre-treated at 400°C for 1 h under O2 

flow (2.0 × 10 ml min-1). It was then purged using N2 (2.0 × 10 

ml min-1) for 3 min. After introduction of reaction gas composed 

with CH4/O2/N2 (Total flow: 2.1 × 10 ml min-1 including N2 (3.0 

ml min-1, fixed) as an internal standard) for 5 min, the 

temperature program was started from 400–850°C in 50°C 

intervals. It was held at each temperature for 17 min to analyze 

the product by microGC, followed by 5 min for ramping toward 

the next temperature (Figure S1, in ESI). After passing through 

the catalyst bed (downstream) and a successive ice trap of 

water, the reaction mixture was analyzed for 3 min (1st 

sampling) and 10 min (2nd sampling) at each temperature 

(Micro GC FusionTM; INFICON) with a Rt-Molsieve 5A column 

(0.25 mm × 10 m, Ar carrier gas) and an Rt-U-Bond column (0.25 

mm × 8 m, He carrier gas). Under the present conditions, 

standard Na-Mn-W/SiO2, which is preferred as a higher-

temperature OCM catalyst, gives C2 yields of 24.8%, 17.7%, and 

18.1% at 800°C under CH4/O2 = 2.0, 3.5 and 5.0 conditions, 

respectively, as shown in Figure S2 in ESI. It is noteworthy that 

almost all catalysts show similar C2 yield values between first 

and second samplings (standard deviation is <0.3 as usual, as 

explained in ESI); the discussed OCM performance here can be 

maintained for at least 10 min. The second sampling data are 

discussed mainly in the manuscript if there are no annotations. 

 

2.3. Machine Learning 

The HTS and literature data were collected respectively from 

our earliest reports on 59 + 300 catalysts22,26 and a commonly 

used OCM review15. It is noteworthy that HTS datasets collected 

with our tailor-made machine are distinguished from the data 

obtained by different teams, denoted as “HTS data” in this 

paper. From these datasets, catalyst composition, reaction 

temperature, gas flow, and the corresponding C2 yield value 

were selected for in-put and the target in the ML. ML using 

scikit-learn was implemented.49 Particularly, SVR, RFR, and 

Gaussian process regression were used. Three datasets were 

prepared for machine learning. The first includes 291 and 59 

high throughput catalysts data with various experimental 

conditions resulting total 40,330 HTS data points.22,26 In this 

dataset, SVR is implemented where the radial basis functional 

kernel has C = 50 and gamma = 0.05 for which a cross-validation 

study is shown in Figure S3(a) in ESI. 

The second dataset consists of 291 high-throughput 

catalysts data with various experimental condition resulting 

total 27,622 data points.26 Common physical rule in predicted 

top C2 yield catalysts is explored by item set mining. Item set 

mining is implemented using LCM47 to find common rules for 

elements of catalysts compositions found in SVR analysis for 

which a cross-validation study is shown in Figure S3(b) in ESI. 

Then, the element calcification (actinoid, alkali, etc.) and the 

group of each element are regarded as properties for 

determining items of catalysts. First, items representing 

expressions of inequality are defined for each property p. Here 

the following items are defined: -0.25<=p, p<0.0, 0.0<=p, p<0.25, 

0.25<=p, p<0.5, 0.5<=p, p<0.75, 0.75<=p, p<1.0, 1.0<=p. Next, 

the atomic fractions of classified categories are calculated for 

the respective elements of the respective catalysts. For example, 

Ba-Ca-Y is represented as a list of property values (actinoid: 0, 

alkali: 0, alkaine: 0.666667, ..., metal: 1.0, ..., g_2: 0.666667, 

g_3: 0.333333, ...). Finally, items representing the target 

catalyst are defined. For the case in which Ba-Ca-Y is 

(actinoid<0.25, actinoid>=0.0, chalcogen<0.25, chalcogen>=0.0, 

g_11<0.25, g_11>=0.0, g_13<0.25, g_13>=0.0, g_14<0.25, 

g_14>=0.0, g_15<0.25, g_15>=0.0, g_16<0.25, g_16>=0.0, 

g_17<0.25, g_17>=0.0, g_18<0.25, g_18>=0.0, g_5<0.25, 

g_5>=0.0, g_7<0.25, g_7>=0.0, g_8<0.25, g_8>=0.0, g_9<0.25, 

g_9>=0.0, halogen<0.25, halogen>=0.0, metal<1.25, metal>=1.0, 

metalloid<0.25, metalloid>=0.0, noble_gas<0.25, 

noble_gas>=0.0, post_transition_metal<0.25, 

post_transition_metal>=0.0). In this way, each catalyst is 

converted to list of items. Then LCM is used for extracting 

common rules among catalysts. 

The third dataset is prepared by combining HTP data with 

data obtained from the literature,15 which comprises 1,802 data 

points (1,286 catalysts) obtained under various experiment 

conditions. Also, ML of three types are used: RFR, SVR, and 

Gaussian process regression. The number of trees is set to 100 

within RFR. A radial basis functional kernel with C = 50 and 

gamma = 0.05 is used for SVR. A cross-validation study is shown 

in Figure S3(c-d) in ESI. Constant, radial basis functional and 

white kernels were used for Gaussian process regression. Here, 

Gaussian process regression was performed with two datasets 

where the C2 yields are divided by 100 and 10, respectively, to 

standardize the data. 

Please note that one-hot encoding is applied to represent 

the catalyst composition and support where binary number 1 

and 0 are assigned. Descriptors for all ML are set to catalyst 

composition via one-hot encoding, temperature, PCH4, PO2, and 

Pinert (inert gas), where the total of PCH4, PO2, and Pinert is set 

as 1. Also, in accordance with the experimental scale in a 

conventional reactor for validations, the predicted top C2 yield 

catalyst is selected under the following conditions: the flow rate 

is higher than 20 ml min-1, CH4 + O2 conc. is over 85 vol%, and 

CH4/O2 = 2.0. 

3. Results and Discussions 

3.1. HTS dataset driven ML assistance for investigation of multi-

component La2O3-based OCM catalyst 

Based on SVR of the 40,330 HTS data points, 41 multi-

component La2O3-based catalysts affording C2 yield higher than 

16.01% were predicted, as presented in the Data 1.csv file of ESI. 

The maximum predicted C2 yield was 18.28% in the SVR-

predicted La2O3-based catalyst area. According to our 

assumption, the predicted La2O3-based catalyst possessing high 

score in the predicted C2 yield value is associated to adequate 

matching of multi-component or La2O3 support. That feature is 

expected to enhance the unique lower-temperature OCM 

feature. Then, the top 20 C2 yield scoring catalysts are prepared 

from the list of Data-1.csv, in ESI. Their reactivities were 

validated in CH4/O2 = 2.0. It is better to be noted that this 
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assumption would be contributed to escape the interpolation 

issue on the unvalidated catalyst because the catalyst library for 

300 HTS was constructed based on random selection from 

either Ba, Ca, Ce, Co, Cs, Cu, Eu, Fe, Hf, K, La, Li, Ni, Mg, Mn, Mo, 

Na, Nd, Pd, Sr, Tb, Ti, V, W, Y, Zn, Zr or “none”, with support 

picked up from either γ-Al2O3, BaO, CaO, CeO2, La2O3, MgO, SiO2, 

anatase-TiO2 or ZrO2. The results of validations are presented in 

Table S8 of ESI. As shown in Figure 1A, the trend of lower-

temperature OCM performance presents some interesting 

features. Unfortunately, no catalyst possessing C2 yield 

appeared at 400°C. The bare La2O3 denoted as “none” provides 

a C2 yield (11.2%) from 500°C under this condition, but it is 

inactive at 400°C and 450°C. Among these 20 catalysts, 11 

catalysts provided C2 yield at 450°C: YEuHf (13.1%), CaYHf 

(10.1%), CaYEu (15.1%), CaYLa (15.0%), CaYBa (13.6%), MgNdHf 

(9.5%), CaEuHf (13.2%), CaYNd (10.2%), SrNdHf (9.7%), CaNiY 

(6.1%), and MgEuHf (11.4%). The numbers in parentheses are 

C2 yields at 450°C. Accordingly, the relationships between a high 

C2 yield scoring catalyst in the predicted area and a lower onset 

feature catalyst are non-liner. However, the indirect ML-

assisted discovery of lower-temperature multi-component 

La2O3 is apparently a useful idea. It is particularly interesting 

that the performance of CaNiY/La2O3 gives unique features in 

terms of C2 composition under the present conditions. The C2H6 

is the mother product in the C2 component. The C2H4 yield is 

0.3% at maximum, only in this case, as shown in Figure S4(a) of 

ESI. Moreover, the predicted C2 yield higher than 16% in ML 

(Data 1.csv, in ESI) is scarcely obtained, even for data surveyed 

at high temperatures, as shown in Table S8 of ESI. This point is 

unimportant for the present study because the metal loading, 

calcination temperature, and reactor design differ from those 

of the HTS machine.22,26 

Because the HTS data-derived indirect ML nicely assisted the 

prediction of lower-temperature La2O3-based OCM catalysts 

(11 appearances/20 validations), item set mining with LCM48,50 

is further implemented to ascertain common physical rules 

within highly active catalysts in the SVR space of HTS datasets 

toward new ideas. Using this approach, 300 random catalyst-

based HTS datasets26,‡ were used, excluding 59 catalyst-based 

HTS datasets. The 59 catalyst HTS datasets mainly comprised 

data for Na-Mn-W-related catalysts. Therefore, utilization of 59 

+ 300 catalyst-based HTS data package would provide worse 

results: such bias in the 59 catalyst library guides the mining 

focusing on those areas. Furthermore, the LCM suggested 

multi-component catalyst variations of 165 types in accordance 

with the common role, as presented in Tables S2–S3, in ESI. This 

approach can choose the 11 elements of Cr, Ni, Zn, Y, Zr, Pd, Cs, 

Ce, Sm, Eu, and Hf in the periodic table as the effective 

component for high C2 yield in OCM. However, combinations of 

these M1-M2-M3 are apparently nonsense in their present 

form: i.e., combinations of 3 element selections from 11 

varieties (denoted as 11C3 mathematically) are to be 165 

variations at maximum. This finding might be attributable to the 

fact that the numbers of catalyst variations (300) for 

construction of SVR space is insufficient for LCM identification 

in multi-component M1-M2-M3 categories. From the viewpoint 

of conventional knowledge of catalyst scientists, this proposed 

list produces some strange feelings in some cases. Fore 

examples, the LCM-proposed multi-component OCM catalysts 

for higher C2 yields included Pd and Ni. Actually, combinational 

reports describe that Pd prefers CH4 combustion,52 whereas Ni 

is familiar for CH4 reforming and carbon deposition.53 Indeed, 

in our earlier classifications,22,26,48 these two elements were 

placed in the “worse” element set for OCM. Regarding the 

interesting feeling for such mismatching, the LCM tentatively 

suggested catalysts of 20 kinds including Pd, Ni, and some other 

elements, which were validated for reactivity as listed in Table 

S9, in ESI. Unfortunately, Figure 1B shows that the probability 

of hitting the target of lower-temperature OCM with LCM is 

lower than that with SVR approach, as shown in Figure 1A, 

however multi-component catalysts of two kinds, ZnYZr and 

YZrHf, serve C2 yield at 450°C higher than 5.0%: 5.3% and 7.4% 

are respectively obtained (2 appearances/tentatively selected 

20 validations). 

Among the La2O3-based catalysts with the CH4/O2 = 2.0 

condition, the C2 selectivity is limited to a maximum of approx. 

40% (Figure S5, in ESI), which is much lower than the 70% limit 

of Na-Mn-W/SiO2 (Figure S2(a), in ESI) under the same 

conditions. The bare La2O3 denoted as none/La2O3 also shows 

40% selectivity as maxima (Table S5, in ESI). Therefore, this 

potential is expected to be attributable to the nature of La2O3 

support itself, which serves a high O2 conversion value, even at 

lower temperatures. To overcome this difficulty, the CH4/O2 

 

Figure 1 Plots of C2 yields over multi-component La2O3 of 20 types 
prepared based on (A) SVR of HTS data and (B) ICM approach, 
together with none/La2O3 and blank test in CH4/O2 = 2.0. All raw data 
are presented in Tables S7 and S8 (in ESI). 
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ratio rises to 3.5 to a CH4-rich condition with same CH4 + O2 

conc., which is more difficult situation for CH4 and/or C2 

combustion. The 11 catalysts, including the Top 10 C2 yield value 

(>9.0%) at 450°C in CH4/O2 = 2.0 condition were further 

investigated for their potential usage as an OCM catalyst: YEuHf, 

CaYHf, CaYEu, CaYLa, CaYBa, MgNdHf, CaEuHf, CaYNd, SrNdHf, 

and MgEuHf, and a unique CaNiY. These results are shown in 

Figure 2 and Tables S10, in ESI. Bare La2O3 and blank data are 

presented in the same figure. The onset temperatures of La2O3 

itself rise to 600°C in the CH4/O2 = 3.5 condition. The two 

catalysts of CaYHf (C2 yield: 3.6%) and MgEuHf (3.1%) show 

OCM activity at 450°C even in the CH4/O2 = 3.5 condition. In fact, 

five catalysts are active at 500°C: YEuHf (2.8%), CaYEu (1.2%), 

CaYBa (8.3%), CaEuHf (1.3%), and CaNiY (1.2%). Only one 

catalyst of CaYLa (7.1%) achieves nice performance at 550°C. 

Even though C2 yield becomes very low in the cases of MgNdHf 

(0.1–0.8%), CaYNd (0.7–1.6%), and SrNdHf (0.4–1.4%), these 

have only slight potential at temperatures below 550°C. 

Accordingly, the nature of multi-component catalysts serving 

the lower onset OCM temperatures than bare La2O3 remains in 

all 11 cases in the CH4/O2 = 3.5 condition. The temperature 

dependence of C2 yield becomes greater in the condition of 

CH4/O2 = 3.5. It is expected that because methane is a 

chemically inert compound with high C–H bond strengths, low 

polarizability, and high ionization energy, its activation 

frequently requires higher operating temperatures at such a 

CH4-rich condition. Indeed, increasing the reaction temperature 

increases the C2 yield. The best performance in C2 yield values 

observed at 800°C in almost all cases, except for CaNiY. The best 

C2 yield was 15.2%, with 58.6% selectivity obtained over CaYEu 

at 800°C. Moreover, a further increase of CH4/O2 ratio to 5.0 

strongly influences the increase of C2 selectivity to be approx. 

70%; it also boosts the onset temperature to a higher value, 

close to that of the bare one (Figure S6, in ESI). Finally, the 

catalyst performance of CaYBa affording C2 yield of 13.9% with 

C2 selectivity of 70.3% at 800°C in CH4/O2 = 5.0 condition is 

achieved in the La2O3-based OCM catalyst. Such performance 

discovered using the indirect ML approach is important in 

comparison with results of an earlier study of multi-component 

La2O3-based OCM catalysts.36 The unique performance of CaNiY 

remains in both conditions of CH4/O2 = 3.5 and 5.0. Indeed, C2H6 

is the main C2 product (C2H4 yield <0.6%). However, the C2 yield 

and C2 selectivity do not improve at all (Figures S4(b) and S4(c), 

in ESI). 

 

3.2. HTS and literature dataset driven ML assistance for 

investigation of multi-component La2O3-based OCM catalyst 

To investigate undiscovered multi-component La2O3-based 

OCM catalysts further, datasets including not only the HTS data 

but also data reported from the literature are applied to reveal 

the nice M1-M2-M3 combinations in the case of La2O3 support. 

According to our earlier work,37 literature data might misguide 

the data-driven prediction because of bias derived from 

differences in reactor systems or specific methods, yet the 

authors hold that long historical examinations are helpful to 

inspire new targets for OCM catalyst design.54–55 At the next 

step, two ML regressions of RFR and SVR are examined for 

ascertaining valuable multi-component combinations in the 

HTS and literature datasets. Scores of ML are not so high (Figure 

S3(c–d), in ESI), however, it is noteworthy that, after addition of 

literature data to our HTS datasets, the area of element survey 

becomes much wider, comprising 63 elements of Ag, Al, Au, B, 

Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, 

Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P. Pb. Pd, Pr, 

Pt, Rb, Re, Rh, Ru, Sb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tm, V, 

W, Y, Yb, Zn, Zr, and “none”, and 12 supports of Al2O3, SiO2-Al2O3, 

BaO, CaO, Ca-Si-Ox, CeO2, La2O3, MgO-Al2O3, MgO, SiO2, TiO2, 

and ZrO2. The results of La2O3-based prediction are shown 

respectively in the files of Data-2.csv and Data-3.csv (in ESI). 

The RFR includes 44 variations of C2 yield in the range of 21.01–

21.53%, but the predicted multi-component La2O3 are 

composed mainly of the M-GaHf/La2O3 group. The numbers of 

appearances of Ga and Hf are, respectively, 44 and 37 variations. 

It is apparently in the nature of RFR, which can follow trends 

obediently in original datasets. Indeed, revision of HTS data 

implies that Hf is included in multiple candidates such as 

HfNaW/SiO2 (16.0%), TbHfW/La2O3 (15.2%), TbHfW/La2O3 

(15.2%), MgZrHf/CaO (15.9%), CeNdHf/BaO (15.2%), and 

NaEuHf/MgO (16.6%). All were found to be nice OCM catalysts 

 

Figure 2 Plots of C2 yield (bar) and C2 selectivity (closed sphere) of 
selected catalysts predicted from HTS data-driven ML at CH4/O2 = 3.5. 
Raw data are listed in Table S9 (in ESI). 
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from the HTS data, and all with 21.0% as the maximum C2 yield. 

Moreover, in the data from the literature, extraordinarily high 

C2 yield (37.0%) achieved with BaGa catalyst was listed.15 

These trends might guide the ML feature to these areas as 

highly frequent elements, leading to high scores in one-hot 

encoding identification. For SVR, 410 variations of C2 yield in the 

range of 14.00–19.41% are predicted however same 

components with different C2 values frequently appears. At this 

time, the most frequently appearing elements (Top 12) were 

the following: Sr (183), Yb (138), Nd (97), Na (95), Mg (86), Ba 

(84), Li (82), Ca (66), Zr(48), Ga (39), Eu (38), and La(34). 

Although Sr and/or Yb appearances are somewhat high, SVR is 

apparently constructed with a wider view than RFR. Multi-

component La2O3-based catalysts of each Top 12 component in 

C2 yield value for RFR and SVR were demonstrated for 

preparation and evaluation for the OCM reactivity, respectively, 

from the list of Data-2.csv and Data-3.csv, in ESI. Actually, only 

the MgSrNd/La2O3 in the SVR-predicted catalyst is doubled with 

the catalyst predicted using SVR with HTS data. It is denoted 

with an asterisk in front (*). Figures 3(A) and 3(B) emphasize 

the C2 yield below 600°C in the CH4/O2 = 2.0 condition. It is 

particularly interesting that these two ML assistances also serve 

OCM active multi-component La2O3-based catalysts of 13 types 

at 450°C. They are GaTbHf (C2 yield: 7.5%), ZnGaHf (3.8%), 

GaEuHf (7.5%), GaYEu (5.5%), ZnGaY (7.2%), ZnGaEu (9.3%), 

GaYbHf (6.3%), GaSrEu (7.6%), GaSrY (8.3%), GaSrHf (1.8%), and 

GaEuTb (8.6%) in RFR, whereas MgSrYb (12.1%) and GaSrYb 

(14.9%) are in SVR assistance. Actually, RFR assistance provides 

larger quantities of La2O3-based catalysts (11 catalysts) than 

SVR (2 catalysts) in each of 17 validations. As discussed 

previously, the area in RFR is composed mainly from GaHf 

combinations. These elements are strongly attributable to the 

unique nature of lower-temperature OCM performance. 

For challenging the ML-assisted discovery of La2O3-based 

OCM catalyst, Gaussian process regression (Bayesian) with 

different scales of compression view is further examined, 

denoted as Bayesian-1 and Bayesian-2. The Bayesian results of 

La2O3-based predictions are presented in the files of Data-4.csv 

and Data-5.csv, in ESI. Bayesian-1 gives 102 predictions at C2 

yields of 20.01–24.87%. This prediction includes particularly 

numerous appearances of Li (78 times), Ga (46), Yb (46), and Na 

(33), whereas the Bayesian-2 can suggest 85 predictions among 

20.01%–24.10% with Yb (77 times) and Ga (58). It is apparent 

that major differences exist in the area of elements selected for 

multi-component prediction. The former is composed of 24 

elements of B, Ba, Bi, Ca, Ce, Cs, Er, Eu, Ga, Gd, Hf, K, La, Li, Mg, 

Mn, Na, Nd, Si, Sm, Sr, Tb, W, and Yb, while the latter are from 

49 elements of Ag, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Cr, Cs, Dy, Er, Eu, 

Ga, Gd, Ge, Hf, Ho, In, K, Li, Lu, Mg, Mn, Na, Nd, P, Pd, Pr, Rb, Rh, 

Ru, Sb, Sc, Si, Sm, Sr, Tb, Te, Th, Ti, Tm, V, W, Yb, Zn, and Zr. 

Accordingly, the Bayesian-2 approach possesses a wider view. 

Tentatively, the top 7 multi-component La2O3-based catalysts 

from each prediction are validated. It is noteworthy that LiGaYb 

and LaGaYb from Bayesian-2 are duplications with Bayesian-1 

and SVR of the HTS and literature datasets, respectively. Overall 

results are presented in Tables S14 and S15, in ESI. As shown in 

Figures 4, differences in Bayesian-1 and Bayesian-2 were found 

 

Figure 3 Plots of C2 yields over multi-component La2O3 of 12 types 
prepared based on (A) RFR and (b) SVR of HTS and literature data, 
together with none/La2O3 and blank yield in CH4/O2 = 2.0. All raw data 
are listed in Tables S11–S12 (in ESI). 

 

Figure 4 Plots of C2 yield over each multi-component La2O3 of seven types 
prepared based on (A) Bayesian-1 and (b) Bayesian-2 of HTS and literature 
data, together with none/La2O3 and blank yield in CH4/O2 = 2.0. All raw 
data are listed in Tables S13–S14 (in ESI). 
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to be significant in terms of assistance to discover appropriate 

combinations for lower-temperature OCM activity. Only one 

catalyst of GaYbW provides C2 yield of 9.8% at 450°C in the 

CH4/O2 = 2.0 condition, in Bayesian-1. By contrast six catalysts 

of GaSrYb, CaGaYb, CaEuYb, SiGaYb, GaCeYb, and GaBaYb were 

found to have C2 yields of 14.9%, 10.7%, 6.1%, 10.8%, 7.4%, and 

7.1% at 450°C, respectively, in Bayesian-2. Based on this trend 

in Bayesian-2, GaYb and Yb can be anticipated as positive 

factors, but Li is truly detrimental for lower-temperature OCM. 

In addition to HTS data-driven ML-assisted investigation, 

low C2 selectivity (<44%) at CH4/O2 = 2.0 was also observed in 

the investigation of La2O3-based catalysts with combined use of 

HTS and literature data (Figures S7–S8, in ESI). Therefore, 

selected multi-component La2O3 catalysts of six types with nice 

C2 yield values (>9.0%) at 450°C were found: EuGaZn, MgSrYb, 

SrGaYb, GaWYb, CaGaYb, and SiGaYb. They were investigated 

further for their potential as OCM catalysts at CH4/O2 = 3.5 and 

5.0 conditions as well. It is noteworthy that SrGaYb appeared in 

both cases of SVR and Bayesian-2. As shown in Figure S9, in ESI, 

an increased CH4/O2 ratio supports the improvement of C2 

selectivity while maintaining lower onset nature compared to 

the bare La2O3 were obtained. The C2 yield and C2 selectivity 

were found to depend strongly on the reactor temperature, and 

the best performance on C2 production was observed in MgSrYb 

as approx. 13.0% yield, with approx. 55–60% selectivity at 800°C. 

Although this finding shows similar performance to that of 

none/La2O3, its unique lower onset nature is still beneficial for 

use as a multi-component La2O3-based catalyst. 

Conclusions 

In summary, beyond issues such as the direct ML prediction 

derived from the presence of hidden contributions (designated 

as the hidden layer) between the input layer (element 

component of catalyst) and output layer (OCM reactivity, C2 

yield) and different reactor design concept at each research 

groups, the investigation of multi-component La2O3-based OCM 

catalysts has been conducted at a conventional fixed-bed 

reactor with multi-output ML assistance using HTS and 

literature datasets. By specifically examining the unique 

features derived from La2O3-based OCM catalysts, such as the 

induction of lower onset temperature, a hypothesis is made and 

validated through this study: M1-M2-M3 combinations serving 

high C2 yield predicted by direct ML prediction are expected to 

be helpful for finding familiar multi-components on La2O3 

support, consequently enhancing the unique nature of La2O3 

itself. To support this position, the authors selected multi-

component La2O3-based OCM catalysts of 75 types with indirect 

ML assistance. Results indicated that multi-component La2O3-

based OCM catalysts of more than 30 types work as lower-

temperature OCM catalysts. Particularly, C2 yields higher than 

5.0% were detected at 450°C in a CH4/O2 = 2.0 condition. This 

finding can promote the next study on the role of each element 

and mechanism,§ and the optimization of catalyst preparation 

and reaction condition, as a lower-temperature OCM catalyst 

on these new catalysts. This study represents one successful 

style in the ML assistance of a new heterogeneous catalyst 

discovery.§§ 
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