JAIST Repository

https://dspace.jaist.ac.jp/

On Distributed Cooperativpep Mobile

Title Robotics: Decomposition of| Basic Prol
Study of a Self-stabilizipg Circle |
Al gorithm

Author(s) Souissi, Samia

Citation

Issue Date 2004-09

Type Thesis or Dissertation

Text version

aut hor

URL http://hdl.handle.net/ 101019/ 1887
Rights
Description Supervisor: Takuya Katayamp, oooooono,

AIST

JAPAN
ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

On Distributed Cooper ative Mobile Robotics: Decomposition
of Basic Problems and Study of a Self-stabilizing Circle
Formation Algorithm

By Samia SOUISSI

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in the partial fulfillment of the
degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of

Professor Takuya Katayama

September, 2004

Master thesis

On Distributed Cooper ative Mobile Robotics: Decomposition
of Basic Problems and Study of a Self-stabilizing Circle
Formation Algorithm

By Samia SOUISSI (210207)

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfilment of the
degree of
Master of Information Science

Written under the direction of

Professor Takuya Katayama

and approved by
Professor Koichiro Ochimizu
Professor Takuya Katayama
Associate Professor Xavier Défago

August, 2004 (Submitted)

Copyright (© 2004 by Samia SOUISSI

Abstract

Enabling mobile robots to work in cooperating teams holds great promises as an efficient and
reliable way to solving tasks autonomously. However, addressing the coordination and control
of autonomous mobile robots within a team remains a difficult task. Many people have ad-
dressed this issue by studying how a complex global behavior can emerge from the interactions
of many robots exhibiting a simple local behavior. This approach, called behavior-based, can
provide us with an interesting insight on these issues, but it also gives the wrong impression
that they are solved. Thisis however very far fromreality, since these heuristics can provide no
assurance that a given problemwill actually be solved, |et alone any proof of correctness.

In contrast, we look at the problem from a computational standpoint, in the sense that we try
to determine the local behavior of robots, given a desired global behavior. In particular, our
work focuses on basic recurring problems of cooperation.

The main contributions of this dissertation are as follows. First, we outline a specification
framework to define basic problems for cooperative autonomous mobile robots. The framework
consists of four generic properties that can be combined to define various different problems,
including many surveyed in the literature. e see this as a necessary step toward a better un-
derstanding of the problems and their relationships. Second, we take a closer ook at a specific
coordination problem whereby robots must coordinate themselves to forma circle. More specif-
ically, we study the convergence of a self-stabilizing circle formation algorithm using computer
simulation. Thisleads usto propose a simpler algorithm, also self-stabilizing, that has a faster
convergence.

Key words : Cooperative Mobile Robots, Basic Recurring Problems, Circle Formation, Self-
Stabilizing Algorithm, Simulations Results

....to my parents, my brothers and my sisters for their everlasting love.

Acknowledgments

Thiswork has been supported by the Japanese government scholarship (MONBUKAGAKUSHO).

| first of all wish to express my sincere gratitude to my principa advisor Professor Takuya
Katayamafor his support, kind supervision and encouragements during my work.

| also want to extend my gratitude and appreciation to my advisor Associate Professor Xavier
Défago for his kind guidance, support and for his helpful discussions and valuable suggestions
which kept me on the right track.

| am very grateful to Dr. Adel Cherif who recommended for me JAIST for his advices and
kind assistance before and after my entering to JAIST.

| gratefully recognize all of my colleagues in the laboratory and the secretary officer Misato
Morita for their continuous help and sympathy. In particular, | am grateful to Rami Yared and
Péter Urban for their insightful comments to my work.

Very specia thanks to my dear friend Ahlem Ben Hassine, with whom | very much enjoyed
living and discovering Japan.

| am very grateful to my friend Nebil Achour for being an excellent brother to me, amazingly
helpful and always trying to create Tunisian atmosphere in Japan and his wife Caroline for her
hospitality and lovely acquaintance.

| would like also to thank Dr. Yasser Kotb for all his advices and support during my first days
at JAIST.

| am grateful to my friend Dr. Shafique Ansari and his wife Dr. Zubaida Ansari for their
hospitality and their nice friendship. Similarly, | wish to thank my friend Mohamed Mustapha
Azim and hiswife Mahafor hosting me several times.

| also want to devote my thanks to my previous professors and friendsin Tunisia.

Last and by no means least, I'm forever grateful and in dept to my dear parents, my brothers
and their wives, my sisters and their husbands, my nephews, my nieces and all my relatives for
al the love, support and encouragements.

Contents

Context and Motivation

11 Motivation o e e

1.2 Approach

1.3 Contribution

14 Relatedwork e
141 Multi-robot Motion Coordination
14.2 Survey of Fundamental Problems L.

15 Structure. e

System Model and Definitions

21 SystemMode
22 BasicDefinitions
221 SmalestEnclosingCircle
222 VNoronoi Diagram e e
2.3 Défago and KonagayaAlgorithm
2.3.1 Algorithml: CircleFormation
2.3.2 Algorithm2: Uniform Transformation

Implementation of the Circle Formation Algorithm

3.1 Overview Implementation
3.2 ActivationSchedule
3.3 CircleFormation Algorithm
3.4 Uniform Transformation Algorithm

© ©O© 00 o

10
10
11
13

14
14
15
15
15
15
17
18

Simulation of the Circle Formation Algorithm

4.1 Experimental Setup e
411 Terminology e
412 Paramelerso e

4.2 Circle Formation: Experimental Performance
4.2.1 Trace of the Relative Positions of the Farthest Robot From the Boundary
4.2.2 Percentage of the PopulationonBoundary
4.2.3 Distribution and Progress of Robots Towards the Boundary of the Circle
424 Termination for Different Populations

4.3 Uniform Transformation: Experimental Performance
4.3.1 Algorithm Convergence v i i i
4.3.2 Convergence for Different Values of Probability
4.3.3 Convergence for Different Populationsof Robots

New Circle Formation Algorithm

51 AlgorithmDescription
5.2 Algorithm: Formation of aUniform Circle
53 Correctness e

Decomposition of Basic Problems for Cooper ative M obile Robots

6.1 BasicProperties.
6.1.1 Livenessproperties
6.1.2 Safetyproperties

6.2 Decomposition of Problemsinto Basic Properties

Conclusion and Future Work
7.1 Conclusion
7.2 FutureWork

Source Code

A.1 Program: Generation of Initial Configurations
A.2 Program: Generation of ActivationSchedules
A.3 Program: Implementation of the Circle Formation Algorithm
A.4 Program: Implementation of the Uniform Transformation Algorithm

31
31
31
32
33
33
33
35
35
36
37
37
38

41
41
42

48
48
48
49
50

52
52
53

List of Figures

21
2.2

2.3
24

31
3.2
3.3
34

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

5.1
5.2

AVoronoi diagram. e e
[lustration of Algorithm 3, as executed by one robot (in each case, r; moves

Overview implementation.
Anexampleof activationschedule(p = 0.5).
Activationschedule (p = 0). o o
Activationschedule(p=1). e

Terminology.
Trace of the relative positions of the farthest robot from the boundary.
Percentage of the population on boundary of thecircle.
Distribution of robots according to theboundary.
Termination for different populations (p =1).
O maz 1S monotonically decreasing and 6,,,;,, is monotonically increasing (n =

16,0 = 0.75) © o v e e
The rapidity of the convergence increases with the probability of activation. . .
The rapidity of convergence decreases with the number of robots forming the

The unpredictability of the activation schedule has impact on the convergence. .

Robot r; computes and movesto anew target position.
The case when robots are collinear is reduced to the genera case when any of
theextremerobotsmove.

34

37
38

List of Tables

4.1 Simulation parameters

6.1 Decomposition of common problemsinto the basic properties

Chapter 1
Context and M otivation

The more cooperative the group, the greater is the fitnessfor survival which extends
to all of its members. (Ashley Montague).

1.1 Motivation

The continuous advances in technology have facilitated the use of large number of robotsin
order to carry out a large variety of cooperative tasks. In fact, recently the interest has shifted
from the design and deployment of few, rather complex and expensive robots towards the design
and use of a large number of robots, which are ssimple, relatively inexpensive, but capable
together of performing rather complex tasks. Severa reasons motivate this shift, including
reduced costs, faster computation, fault tolerance capabilities, the possibility of expendability
of the system and the reusability of the robots in different applications. Hence, the motivation
for using distributed teams of multiple robots.

The main motivation behind this work is to address the large number of tasks arising from
real-life which are too dangerous or difficult for humans. For instance, travelling in the space, in
the depth of the oceans, inside volcanoes, into burning buildings and others. The participation
of distributed teams of robots in such tasks may evade human risks.

One of the most challenging and difficult aspect in cooperating mobile robots is the control
and coordination of robots motion. This aspect still remains a difficult task. Thisis alikely
consequence of the fact that basic problems of coordination between robots has not been clearly
identified and expressed in arigorous way. Moreover, thereis alack of algorithmic solutions to
these problems.

1.2 Approach

We approach the problem of cooperating mobile robots from a computational standpoint, in
the sense that we try to determine the local behavior of robots, given a desired global behavior.
Suppose for instance, that we want to gather robots at some location on the plane. Then, how
should we program such a team so its members can cooperate to gather at the same location?

Among other things, it is essential to properly identify and specify the problems that are
central to the field. To draw a paralel, problems such as Leader Election and Consensus are
central to parallel and distributed systems. In contrast, currently no agreement has been reached
on the exact definition of fundamental problemsin cooperative mobile robotics. Thisisalikely
consequence of the fact that problems such as gathering® or flocking,? are notably expressed in
away that depends on details of the system model, or restrict their implementation to specific
solutions. For instance, the definition of the flocking problem, as proposed by Prencipe [19],
requires the existence of a single leader robot to determine the path that the group must follow.
Hence, fully symmetrical or fault-tolerant solutions of the problem are unfortunately ruled out
by their definition. In addition, recurring problemsin cooperative mobile robotics have not been
defined in a consistent way. This makes it particularly difficult to study their relationships and
develop algorithmic solutions to these problems.

1.3 Contribution

The major contributions of thiswork are:

1. First, we study the convergence of a self-stabilizing circle formation algorithm using
computer simulation (Chapter 3, Chapter 4).

2. Second, we propose a novel and arguably more simple algorithm for circle formation
problem, which is self-stabilizing. The agorithm deterministically forms a circle and
converges toward a configuration wherein all robots are located evenly on the boundary
of the circle (Chapter 5).

3. Third, we propose a consistent specification framework, whereby several fundamental
problems in cooperative mobile robotics can be expressed. More specificaly, we define

1Gathering: al robots must eventually be at the same location.
2Flocking: all robots must move in such away that their respective locations always forms a given shape.

9

two safety properties and two liveness properties, which can be combined in several ways
to define different problems. We discuss some problems presented informally in the liter-
ature, and express their specification in terms of the four proposed properties (Chapter 6).

1.4 Reated work
1.4.1 Multi-robot M otion Coordination

A vast amount of researches have been conducted in the field of cooperative mobile robotics
(see [5] for asurvey). One of the topics with particular interest was multi-robot motion coor-
dination. There are severa approaches to multi-robot motion coordination and control reported
in the literature including centralized and decentralized ones.

Totally decentralized ones are in general behavior-based [17, 4]. In behavior-based ap-
proaches (also known as artificial intelligence approaches) some behavior are prescribed for
each agent and the final control is derived by weighting the importance for each behavior. With
this methodology, the goal is to predict what complex global behavior can emerge from the
interaction of many agents exhibiting a very simple local one. We call it as a”bottom-up” ap-
proach. In a behavior-based approach, algorithms are designed using mainly heuristics. The
main problem with this approach is the lack of formal proofs of correctness and guarantees of
completion and stability.

Recently the complexity of coordinating multi-robot teams and the desire to deal with real
world applications such as Mars's ground preparation [20], multi-robot mapping and survell-
lance [15], cooperative search and rescue missions, cooperating autonomous vehicles [3], etc.
have motivated algorithmic contributions or computational approaches, in which we find our
interest. With this approach, the question can be as follows. given a desired global behavior,
what local control behavior shall we give to robots so that they can coordinate their actions.
Typically, we start from the application requirements, we decompose into sub-problems and
then we try to find agorithmic solutions that fulfill these requirements. This approach (that we
call a”top-down” approach) is based on algorithms, which enables proof and guarantee results
for controller design.

Unfortunately, only few studies address the problem from a computational standpoint (e.g.,
[10, 22]), which means that much remains to be done to develop its theoretical foundations.
We aim at improving the current situation by providing a consistent specification framework

10

for problems involving mobility among cooperative autonomous robots. We think that this will
contribute to a better understanding of the problems, and pave the ground for further devel op-
ments. We believe that the field will reach its maturity only once its theoretical foundations
have been clearly established; similar to the progress of conventional distributed systems over
the last three decades or so.

1.4.2 Survey of Fundamental Problems

In this section, we survey the most recurring problems found in the literature on cooperative
mobile robotics. For each problem, we give a brief description and present important known
results. Whenever possible, wetry to illustrate the problem with a concrete example.

Gathering

With the gathering problem, the robots, initially located at arbitrary positions, are required to
gather in anot predetermined point. This problem has been studied extensively in the literature,
among which only few addresses the problem from a computational standpoint.

Notable exceptions are studied by Suzuki and Yamashita [22] where, along with the defini-
tion of their model (see Sect. 2.1), they propose an algorithm to solve the gathering problem
deterministically, in the case where robots have unlimited visibility. Ando et al. [1] propose an
algorithm to address the gathering problem in systems wherein robots have limited visibility.
Their algorithm converges toward a solution to the problem, but it does not solve it determinis-
tically.

Prencipe [19] study similar issuesin his CORDA model. Among other things, one feature the
robots must have in order to solve this problem, isthe ability to detect multiplicity. The gather-
ing in the case of limited visibility is also discussed by Flocchini et a.[11], and by Cielibak and
Prencipe [6]. In the limited visibility setting, the proposed algorithm requires that the robots
agree on the direction and orientation of both x and y axis.

Shape formation

The shape formation problem, also known as geometric pattern formation problem, is a gener-
alization of the gathering problem mentioned earlier. It is defined as follows:. given a group of
n robots {ry,rs,... ,r,} with distinct positions and located arbitrarily on the plane, the robots
are required to form a specific geometric shape, where the shape is a set of points (given by

11

Cartesian coordinates) in the plane. The target shape is known beforehand by all the robots in
the system, and it can be for instance a point, acircle, aregular polygon, or some other arbitrary
pattern. However, the location of the shape, aswell asits size and orientation are not specified.

This problem has been investigated extensively in the cooperative robotics literature, with
many ad hoc solutions being proposed. From a computational point of view, this problem has
only been studied by afew authors.

Suzuki and Yamashita [22] studied the formation of geometric patterns in the plane. They
propose an non-oblivious algorithm for gathering, as well as circle formation. They show that
asymmetric patterns cannot be formed as they consider that robots are anonymous.

In the same model, Défago and Konagaya [7] propose a self-stabilizing algorithm for the
circle formation problem. With that algorithm, robots deterministically make a circle, abeit
not uniformly. The algorithm converges asymptotically toward a solution whereby robots are
uniformly distributed along the circle boundary.

Flocchini et al. [9] discuss the problem of arbitrary pattern formation, of which they give an
informal definition. They show several important results about this problem, depending on what
common knowledge the robots are assumed to share about the coordinate system. The authors
give amore formal definition of the problem in their later work [11].

Flocking

Flocking is the problem where robots are required to move in formation like a flock of birds.
More rigorously, given set of n robots {ry,rs,... ,r,}, the robots are required to keep a given
shape while moving.

In the literature, the flocking problem is generally expressed in a ”leader-followers’ model
[19, 12, 13]. One robot (the leader) is chased by the other robots (the followers). The motion of
the leader is not constrained by the problem. In contrast, the followers must follow the leader
in such away that the relative positions of the robots always form a given shape.

To the best of our knowledge, the flocking problem has been studied computationally only
in the COrRDA model [19, 12, 13]. The authors presented an oblivious algorithm that allow the
robots to keep formations that are symmetric with respect to the direction of movement of the
leader. Gervasi and Prencipe [13] simulate their algorithm and present interesting results.

Solutions to the flocking problem are useful primitives for larger tasks. For instance box
pushing or cooperative manipulation, where robots can be asked to move heavy loads.

12

Motion planning

Motion planning problem refers to the computational process of moving from one place to
another in the presence of obstacles. In other words, motion planning must be performed taking
into consideration other robots and the global environment; this multiple-robot path planning is
an intrinsically geometric problem in configuration space-time. It is also known as multi-robot
path planning. Motion planning has a historical importance in the literature. A noteworthy
distributed approach is the one of Yeung and Bekey [23], where each robot initially attempts
a straight-line path to the goal; if an interfering obstacle is seen, then the robot will scan the
visible vertices of the obstacle and movetowardsthe closest one. Dynamically varying priorities
are given to each robot to resolve path intersection conflicts. Conflicting robots can either
negotiate among themselves or alow a global blackboard manager to perform this function.
Some recent works have addressed some non traditional planning problems. For example, Hert
and Lumelsky [14] propose an algorithm for path planning in tethered robots, and Ota et al [18]
consider the problem of moving while grasping large objects.

1.5 Structure
Thisthesisis organized in seven chapters (including this one) and two appendices.

e Chapter 2 presents the system model, some basic definitions and describes an existing
distributed algorithm for forming a circle by a set of mobile robots.

e Chapter 3 describes the implementation of the algorithm presented in chapter 2.
e Chapter 4 evaluates the algorithm presented in chapter 2.
e Chapter 5 proposes a new distributed circle formation agorithm for mobile robots.

e Chapter 6 outlines a specification framework for defining recurrent coordination problems
for cooperative mobile robotics.

e Chapter 7 concludes and discusses future work.

13

Chapter 2

System Model and Definitions

This chapter presents first a short review of the system model and basic definitions used in
this thesis and then describes a self-stabilizing distributed algorithm proposed by Défago and
Konagaya[7], whereby a group of mobile robots eventually form a uniform circle.

2.1 System Modd

The system model we consider is defined by Suzuki and Yamashita[22] in which a collection
of autonomous mobile robots evolve asynchronously in two-dimensional space. They interact
indirectly through their actions on the environment. The robots are anonymous in the sense that
they are unable to uniquely identify themselves, neither with a unique identification number
nor with some external distinctive mark (e.g., color, flag). They share no common sense of
direction, unit distance, or location of the origin of their coordinate system.

Each robot is modelled as a mobile processor with infinite memory and a sensor to detect
the instantaneous position of all robots. Each robot has its own local = — y coordinate system
(origin, orientation, distance) and has no knowledge neither of the local coordinate system of
the other robots, nor of aglobal coordinate system.

It is assumed that the robots are mathematical points never collide, and that two or more
robots may simultaneously occupy the same physical location. Robots are oblivious in the
sense that they are unable to remember any past actions or observations. Besides that, al the
robots execute the same deterministic algorithm. In addition, there is no central control and no
direct communication between them.

Time is represented as an infinite sequence of time instants during which each robots can

14

be either active or inactive. Each time instant during which a robot becomes active, the robot
observesits environment, computes a new position, and movestoward that position. The activa-
tion of robotsis unpredictable and unknown to robots, with the guarantees that (1) every robot
becomes active at infinitely many time instants, and (2) at least one robot is active during each
time instant.

Depending on the context, the model can be further restricted by assuming limited visibility,
or that robots are oblivious (i.e., keep no memory of past actions).

2.2 Basic Definitions
221 Smallest Enclosing Circle

The Smallest Enclosing Circle also called Minimal Enclosing Circle, isthe problem of finding
the smallest circle that completely contains a set of points. More formally, given aset S of n
points in the plane, find the circle C' of smallest radius with the property that all pointsin S are
contained in C or its boundary.

The Smallest Enclosing Circle is defined by two opposite points or at last three different
points. It can be computed in O(n) time by a simple algorithm but with big constant or in
O(nlogn) (e.g. Skyum [21]).

2.2.2 Voronoi Diagram

Let S aset of n sites on the plane. For each site p of S, the Voronoi cell V' (p) of p isthe set
of points that are closer to p than to other sites of S. The Voronoi diagram V' (S) is the space
partition introduced by Voronoi cells (see Figure 2.1).

Formally, for any point p of the plane let close(p) be the set of sites that realize the closest
distance between p and the sitesin S, i.e.,, s € close(p) if dist(s,p) < dist(t,p) foralt e S.

The complexity of computing Voronoi diagram is O(n). Voronoi diagrams have a variety of
uses such as nearest neighbor search, facility location, motion planning, etc. More details about
Voronoi diagrams, their properties and their use are discussed by Aurenhammer [2].

2.3 Défago and Konagaya Algorithm

The algorithm proposed by Défago and Konagaya[7] solves the problem of circle formation
in two steps, each of which issolved by adifferent algorithm. Thefirst algorithm takes a config-

15

Figure 2.1. A Voronoi diagram.

uration where in the robots are spread arbitrarily on the plane, deterministically arranges them
to form a non degenerate circle (circle formation). The second agorithm, takes a configuration
where the robots are already located on the boundary, eventually converges toward a situation
wherein al robots are uniformly distributed on the circumference of the circle (uniform trans-
formation). The system model considered is defined by Suzuki and Yamashita[22] as described
in Section 2.1.

Each algorithm consists of a deterministic function ¢ that is executed by every robot r; each
time it becomes active. ¢.;.«. IS the algorithm that solves the circle formation problem and
uniform 1Stheagorithm that solves the uniform transformation problem.

The arguments of ¢ consist of the current position of the robot (p;), and a multiset of points
(P) containing the observed position of all robots at the corresponding time instant (all positions
are of course expressed in terms of the local coordinate system of ;). The value returned by ¢
isthe new position for r;.

Restrictions on movements In order to solve the given problems, the authors impose some
restrictions on the movements of robotsin addition to those inherent to the system model. Doing
so ensures that (1) no two robots occupy the same position simultaneously (Restr. 1), and that
(2) the smallest circle enclosing all robots remains invariant (Restr. 2-4).

Restriction 1. A robot always moves toward a point that isinside its Voronoi cell.

16

e
r
(a) The smallest enclosing cir- (b) Thesmallest enclosing cir- (c) Symmetry isbroken by us-
cleisreachable. cleisunreachable. ing the local coordinate sys-

tem.

Figure 2.2. lllustration of Algorithm 3, as executed by one robot (in each case, r5; moves
toward 77%).

Restriction 2. No robot ever moves beyond the boundary of the smallest circle enclosing all
robots.

Restriction 3. All robots located on the boundary of the smallest enclosing circle remain on
that boundary.

Restriction 4. Robotslocated on the circumference of the smallest enclosing circle do not move
unless there are at least three such robots with distinct positions.

2.3.1 Algorithml: Circle Formation

The algorithm presented in this section solves the circle formation problem. It takes a con-
figuration in which all robots have distinct positions and regardless of the activation schedule,
eventually bringsthe system toward aconfiguration in which all robots are located on the bound-
ary of the circle.

The principle of the algorithm is as follows. as mentioned earlier, the smallest enclosing
circleiskept asan invariant. So, all robots are made to move toward the boundary of thiscircle.
In other words, robots that are already on the boundary do not move, and robots that are in the
interior of the circle are made to move toward the boundary of the circle.

A robot located in the interior of the circle can find itself in either one of three types of
situations. First, asillustrated for robot r5; on Figure 2.2(a), the simplest situation occurs when

17

the circle intersects the Voronoi cell of the robot. In this case, the robot selects a point on the
intersection of the circle and the Voronoi cell, and moves toward it (% on Fig. 2.2(a)).

The second situation arises when the Voronoi cell of the robot and the smallest enclosing
circle do not intersect (Fig. 2.2(b)). In this case, the robot selects a point in its Voronoi cell,
such it isthe nearest point to the boundary of the circle (or farthest its center).

The third situation arises when, due to symmetry, there exist several such points (Fig. 2.2(c)).
In this case, all solutions being the same, one is selected arbitrarily. Thisis done, for instance,
by selecting the solution with the highest x-coordinate (and then y-coordinate) according to the
local coordinate system of the robot.

Algorithm 1 Formation of an (arbitrary) circle (code executed by robot r;)

fUnCtion Peircle (P,pz)
1. if p; € SEC(P) then {r; already on the boundary.}
2. dtay till.
. dseif Veell,, (P) N SEC(P) # 0 then

3
4: {cf. Fig. 2.2(a)}

5: target := Vcell,, (P) N SEC(P) N Voronoi(P — {p;})
6: movetoward target. (€g., vl in Fig. 2.2(a))
7

8

9

. else {Voronoi cell of p; inside circle}
{c.f. Fig. 22(b)}
compute pointsin Vcell, (P) closest to SEC(P).
10: if exactly one candidate exists then
11: move toward that point. (e.g., 5 in Fig. 2.2(b))
12: else{Severd candidates exist}
13: {c.f. Fig. 22(c)}

14: select candidate with greatest x-coordinate, and then y-coordinate (i.e., first in lexical order).
15: move toward that point. (e.g., r§ in Fig. 2.2(c))

16: endif

17: end if

2.3.2 Algorithm2: Uniform Transformation

The agorithm presented in this section solves the uniform transformation problem. It takes
a configuration in which all robots are located on the circumference of a circle and regardless
of the activation schedule, eventually converges the system toward a configuration in which all
robots are spread evenly on the boundary of the circle.

Asillustrated on Figure 2.3, whenever arobot r; becomes active, it considers its two direct

18

Figure 2.3. Robot 7; moves halfway Figure 2.4. Moving to the midpoint
toward the midpoint (Algo. 2). can result in oscillations.

neighbors prev(r;) and nezt(r;), and computes the midpoint between them, midpoint. Then,
r; moves halfway toward midpoint, as permitted by the restrictions on the movement of robots.

The reason for moving halfway toward the midpoint rather than toward the midpoint itself
is to prevent situations such as the one illustrated in Figure 2.4, where the system oscillates
endlessly between two different configurationsif robots are perfectly synchronized. The system
would get stuck into an infinite cycle, and hence be unable to progress toward an acceptable
solution.

Algorithm 2 Convergence toward a uniform configuration
function Puniform (P, pz)

1. {Assumes all robots are on the boundary of SEC(P).}
: prev(p;) := direct neighbor of p; counterclockwise.

: next(p;) := direct neighbor of p; clockwise.

: midpoint := midpoint of arc prev(p;), pi, next(p;).

: target := midpoint of arc midpoint, p;.

S R N

: move toward target

The algorithm is memoryless (oblivious) in the sense that the next position of a robot is
determined based only on the current positions of the other robotsindependently on the previous
history of the system.

In their SYm model, Suzuki and Yamashita [22] have observed that any oblivious algorithm
developed in their model has the desirable property of self-stabilization. Self-stabilization is
the property of a system which, started in an arbitrary state, always converges toward a desired

19

behavior [8]. In particular, a self-stabilizing system is able to tolerate any number of transient
faults and the state immediately after the occurrence of an error can be regarded asinitial state.

The algorithm proposed by Défago and Konagaya[7] solves the problem of circle formation
inthe SYm model, where robots are oblivious. Although they have proven the correctness of the
algorithm, they did not study the actual rate at which the convergence occurs. Among our work,
we have implemented and simulated their algorithm. In this chapter, we describe the mecha-
nisms of the algorithm. In Chapters 3 and 4, we respectively present the actual implementation
of the algorithm and the results of the simulations.

20

Chapter 3

| mplementation of the Circle For mation
Algorithm

In this chapter, we describe the implementation of the two algorithms; circle formation and
uniform transformation presented in the previous chapter.

3.1 Overview | mplementation

Figure 3.1 describes the programs devel oped for the implementation of both algorithms; cir-
cle formation and uniform transformation.

e Programl (Initial configuration): generatesarandom configuration of theinitial positions
of the robots (Appendix A.1). The implementation of the algorithm is done using the
programming language Ruby.

e Program2 (Activation schedule): generates a set of different activation schedules based
on the probability of activation of robots (Appendix A.2).

e Program3 (Circle formation): is the implementation of the circle formation algorithm.
The program takes as input an initial configuration file generated by Programl and an
activation schedul efile generated by Program2 and generates a history file of the positions
of the robots at each activation step.

The implementation of the algorithm is done using the programming language C++ and
the geometric library LEDA Library of Efficient Data algorithms (Appendix A.3).

21

Programl: Generation of Program2: Generation of

initial configuration activation schedules
// \\ // \\
S A L oo den oo -
| file :

|
 file 1 file | | file |
| | configuration n | | schedulel ! - |
|

Program4: Implementation of the
uniform transformation algorithm

Program3: Implementation of the
circle formation agorithm

/ \ 7 A}

/ \ / \

/ \ / \
F___Z____l r———\——— I P T T T ‘I F_.__\ _____ ll
| history of | I history of | | history of ;i history of
: positions1 1 : positionsn | | positions 1 : | positionsn :
L] e ! L __l L !

Program5: Scripts for data Program6: Scripts for data

analysis analysis
KEY:
[program
i__7 filegenerated

— fileinput
-—»> fileoutput

Figure 3.1. Overview implementation.

22

Robots

Figure 3.2. An example of activation schedule (p = 0.9).

e Programd (Uniform Transformation): is the implementation of the uniform transforma-
tion agorithm. Theimplementation isdone on the same manner asfor theimplementation
of the circle formation algorithm (Appendix A.4).

e Program5 and 6: are program scripts that takes as input the history files generated by
program3 and 4 and generates data filesto analyze.

3.2 Activation Schedule

Aswe mentioned in the system model, the activation of robotsis determined by an activation
schedule which is unpredictable and unknown to robots with the guarantees that:

1. Each robot becomes active at infinitely many instants.

2. At least onerobot is active during each time instant.

Theidea of theimplementation of the activation scheduleis basically, the robots are activated
in around-robin manner which means that at each time instant, only one robot is active.

In addition, thereisa probability p for each robot that it gets activated even though itisnot its
turn. This probability introduces some simultaneity of activation between robots. Figure 4.1.1
shows an activation schedule with p = 0.5. The black color characterizes the robot activated by

the round robin and the grey color represents the subset of robots activated simultaneously in
addition to the one activated by the round robin.

23

Robots

. -
gm —
d = _m

Time

Figure 3.3. Activation schedule (p = 0).
Robots
; |
- 1
: .
“ o
S |
gl N
4 I B
t1 ot t, _
Time

Figure 3.4. Activation schedule (p = 1).

There are also two specia cases; if p = 0, then robots are activated in mutual exclusion and
according to a round-robin fashion; if p = 1, then all robots are always activated together and

we say that they are synchronized. It isimportant to understand that the activation schedule and
its parameters are unknown to the algorithm.

e if p = 0, only the robot activated by the round- robin is active; none of the other robotsin
the team is active (Figure 3.3).

e if p = 0.5, a each time instant, in addition to the robot activated in the round robin, a

subset of robots are activated; each other robot has probability p = 0.5 to be activated
(Figure4.1.1).

24

It is noteworthy that it is not possible to generate all possible activation schedules pro-
grammatically. The method described here generates a smaller subset of the activation
schedules that are allowed by the model.

e if p =1, inaddition to the robot activated by the round robin, each other robot has a prob-
ability equal to 1 to be activated. Thus, all the robots are activated together. (Figure 3.4)

With this implementation, we guarantee that each robot becomes active at infinitely many
instants (due to round robin) and at least one robot is active during each time instant (according
to the probability of activation). However, the activation schedules generated by our imple-
mentation are a strict subset of those allowed by the model in the case when the probability of
activation is not equal to 1.

The program code of the implementation of the activation schedule is presented in Ap-
pendix A.2.

3.3 Circle Formation Algorithm

Thecircleformation agorithm is based on the manipulation of several non trivial geometrical
notions, including Voronoi diagram and the smallest enclosing circle. In our implementation
of the algorithm, in addition to the programming langauge C++, we included the library of
computational geometry LEDA (Library of Efficient Data Algorithms) to alleviate the task of
programming of the algorithm. Nevertheless, it remains a huge programming work.

One of the most difficult parts to implement is how to identify the Voronoi cell of each robot
knowing only its position. One solution that we proposed to this problem, consists on finding the
nodes (robots) which are neighborsto the active robot by computing the Delaunay triangulation
1 of thelist of the robots positions of and then determining the adjacent edges to the robot that
formsits Voronoi cell.

The adjacent edges of the robot are the edgesin Voronoi diagram which are perpendicular to
the edges formed by the robot itself and its node neighbors. After identifying the different edges
forming the Voronoi cell of the robot, we need to check if these edges intersect with the SEC. If
among the edges there are ray, then obviously these rays intersect with the SEC. Therefore, in
this case, the Voronoi cell of the robot is not inside the SEC, but intersect with it. If the edges

1The Delaunay triangulation is the geometric dual of the Voronoi diagram. If one draws aline between any two
points whose Voronoi domains touch, a set of trianglesis obtained, known as the Delaunay triangul ation.

25

are all segments and at least one of the segments intersect with the SEC, then the Voronoi cell
of the robot intersect with the SEC. In the other case, the Voronoi cell of the robot does not
intersect with SEC.

For computing the new position in which an active robot will move, we proposed the follow-
ing solution; in the case when the Voronoi cell of the robot isinside the SEC, we compute the
distance between the current position of the robot and all the sites of the Vornoi diagram which
belong to its cell and then we take the maximum distance (maximum point inside the robot’s
cell). In the case, when the Voronoi cell of the robot intersect with the SEC, we calculate the
next position of the robot as follows; we exclude the active robot from the list of robots, we
compute a new Voronoi diagram, and then we find the intersection of the SEC with the new
Voronoi diagram. However, we will have as aresult alot of pointsincluding useless ones, i.e.
points not inside the Voronoi cell of the robot. For filtering useful solutions, we need to take
points which have minimal distance to the position of the robot.

The complete program code describing the implementation of this algorithm is presented in
Appendix A.3. A simplified C++ version of the program code is depicted as follows: First, we
illustrate the function main, which include the handling of several experiments (runs) and then
the function main_processing, which represents the main implementation of the algorithm.

Function main

1: int main (int argc, charxargvl])

2: /I Iteration of the different configurations (samples)
3: for (int k = 0;k < samples;k + +) do

4. /[Iteration of the different schedules (runs)
5 for (int run = 0; run < n_runs; run + +) do
6 /I Call function read_file_con figuration to get initial positions of the robots
7. positions = read_file_con figuration(file_con fig, n_robs);
8 /I Call function activation_schedule to read file activation schedule
9 activation_schedule(sched);
10: /I Write parametersin history file: call function produce_headers_file_history
11 produce_headers_file_history(hist);
12: /I Writeinitial configuration in history file: call function produce_history_file
13: produce_history_file(0, hist);
14: /I Call function main_processing which represents the main implementation of the algorithm circle
formation
15: main_processing(file_schedule, file_history);
16: end for

26

17: end for
18: return O;
19: // end main

Function main_processing

L. int main_processing(char x sched, char * hist)

2: /I Compute the Smallest Enclosing Circle
3 SEC=SMALLEST_ENCLOSING_CIRCLE(ist_points);
4: /I Cal function VORON O1 to compute Voronoi diagram
5: VORONOI (list_points,VD);
6: // Call function Draw_V oronoi to draw Voronoi diagram
7. Draw_V oronoi(VD);
8: // Cdl function all_on_boundary to check if all robots are on the boundary
9: if (all_on_boundary(table_points)) then
10: cout< <" All on the boundary”;
11: ese
12: // Iteration of the different generations in an activation schedule
13: for (counter_-g=0; counter_-g < n_gens;counter_g++) do
14: /I Iteration of the active robots by generation
15: while (activation [counter_g][counter _rob] && counter_rob j= n_robs) do
16: Il Check if the active robot is on the boundary
17 [/ Call function test_boundary
18: if (test_boundary ==1) then
19: /I'lf the rabot on the boundary do no thing: Just write in history file
20: /I Call function produce_history_file
21: produce_history_file(counter_g, hist);
22: else {not on the boundary}
23 /I Compute anew position
24: /I Cdll function node_neighbors to compute the robot’s neighbors
25: node_neighb = node_neighbors(list_points, pos_active);
26: /I Determine the edges forming the VVoronoi cell of the active robot
27: list_adj_edges = DT.adj_edges(v);
28: /I Check if the Voronoi cell of the robot intersect or not with the SEC
29: /I Cdll function rays_on_cell to check if the robot’s Voronoi cell containsrays
30: res_r = rays_on_cell(pos_active);
3L /I'if the Voronoi cell contains rays then obviously it intersects with the SEC
32: if (res_r ==1) then
33 /I Determine a new position for the robot in the case when its Voronoi cell intersects with SEC.

27

34. /I Call the function Robot_next_position

35: new_pos = Robot_next_position(list_points, pos_active);

36: else

37 /I Check if the Voronoi cell of the robot contains segments that intersect with the SEC
38: I/ Call function segments_on_cell

39: res_s = segments_on_cell(pos_active);

40: if (res_s ==1) then

41. /I Compute a new position for the robot in the case when its Voronoi cell intersect with SEC.
42 /I Call the function Robot_next_position

43 new_pos = Robot_next_position(list_points, pos_active);

44: else {the Voronoi cell of the robot does not intersect with the SEC}
45 /I Compute a new position for the robot in the case when its Voronoi cell isinside the SEC.
46: /I Call the function Robot _inside_next_position

47. new_pos = Robot_inside_next_position(list_points, pos_active);
48: end if

49; end if

50: /I Update of the new position of the robot.

51: table_points[id_active-1] = new_pos;

52: /I Writein file history

53 /I Cal function produce_history_file

54: produce_history_file(counter_g, hist);

55: /I Check if al on the boundary

56: if (all_on_boundary(table_points)) then

57: cout<<” All on the boundary ”;

58: return 1;

59: end if

60: end if

61: counter_rob++;

62: end while

63: end for

64: end if

65: return 1;

66: //End function main_processing

28

3.4 Uniform Transformation Algorithm

The implementation of the uniform transformation algorithm is less complicated than the

implementation of the circle formation algorithm. It is based on the computation of the angles.

The complete program code describing the implementation of the this algorithm is given in

Appendix A.4. A simplified C++ version of the program code isillustrated as follows:

Function main

1
2.
3

»

16:
17:
18:
19:
20:

int main (int argc, charxargul])
/I Iteration of the different configurations (samples)
for (intk = 0;k < samples;k + +) do
/I 1teration of the different schedules (runs)
for (int run = 0; run < n_runs; run + +) do
/I Get the history of positions of the robots produced by the the algorithm circle formation
Il Call function readyile.on figuration_all_on_boundary
positions_in_circle = readyile.on figuration_all_on_boundary(”history”);
/I Call function activation_schedule to read file activation schedule
activation_schedule(sched);
/I Write parametersin history file: call function produce_headers_file_history
produce_headers_file_history(hist);
/I Writeinitial configuration in history file: call function produce_history_file
produce_history_file(0, hist);
/I Cal function uni f orm_trans f ormation which represents the main implementation of the algorithm
uniform transformation
uni form_trans formation();
end for
end for
return O;
/l endmain

Function uni form_trans formation

=

N o gk w N

void uni form_trans formation()

/I Compute the list of angles in which the robots are positioned

[l Call function computation_list_angles
computation_list_angles(list loc);

/I Check if all robots are uniformly spread on the boundary of the circle
Call function uni form_spread()

if (uniform_spread() == 1)) then

29

8: cout<<"ll the robots are uniformly spread on the circle”;
9: dse
10: // Iteration of the different generations in an activation schedule
11: for (intg = 0;9 < n_gens; g + +) do
12: /I Iteration of the active robots by generation
13: while (activation|[g][rob&&rob <= n_robs) do
14: /I Check if the angle previous and next to the robot are equal
15: /I Call function previous_next_equal
16: if (previous_next_equal(id_active) == 1) then
17 // Do no thing
18: else {previous and next angles not equal }
19: /I Compute anew position
20: /[Compute mid point of previous and next angle and its mid point
21: /I Cdll function hal f - way_mid_point_previous_next
22: next_pos = hal f _way_mid_point_previous_next(id_active, str_count);
23 /I Update of the new position of the robot.
24: table_loc[id_active-1] = next_pos;
25: end if
26: [Writein file history
27 /I Call function produce_history_file
28: produce_history_file((g, "history”));
29: /I Cal function computation_list_angles to compute the list of the new angles in which robots are
located
30: Il computation_ list_angles(list_loc);
31 Il Check if al robots are uniformly spread on the circle
32: /I Cadll function uni form_spread()
33: if (uniform_spread()) then
34. cout< <™ All the robots are uniformly spread on the circle ”;
35: return ;
36: end if
37: rob++;
38: end while
39: endfor
40: end if
41: return;

42: //End function uni form_trans formation

30

Chapter 4

Simulation of the Circle Formation
Algorithm

This chapter presents an evaluation of both algorithms circle formation and uniform transfor-
mation by computer simulations using different metrics and different parameters of the system.
The results show the convergence of these algorithms and how the convergence is affected by
the parameters of the system. The objective of this analysisisto predict the performance of the
algorithms when it isimplemented on physical robots.

4.1 Experimental Setup
4.1.1 Terminology
In the experiments, we used the following terminologies (see Figure 4.1):

e Generation: It isthe sub-population (or population) of robots activated at atime instant ¢
according to an activation schedule (gen,, gen,, ...gen,, in Figure 4.1).

e Activation step: It corresponds to the activation of a single robot r; in a generation (a
colored box in acolumnin Figure 4.1).

e Round Robin: The robots are activated in turn and only a single robot is activated in each
generation (see black boxesin Figure 4.1).

31

Robots

L]
=
-]

|
L
s IIII
" N
w L
gl e
g |

gen, gen; gen,

Time
e i

Activation schedule

Figure 4.1. Terminology.
4.1.2 Parameters

To analyze the convergence of both algorithms, we have simulated them under various pa-
rameters. These parameters are summarized in the Table 4.1.

The system is composed of n robots. These robots are activated according to a probability of
activation p in addition to the robots activated by the round-robin. n_gens stand for the number
of generations of their activations and n_runs correspond to the number of runs performed for
thesameinitial configuration by different activation schedules. There aretwo parametersrelated
to the distancein the circle formation problem; r;(¢) denotes the radius of arobot at time instant
t,i.e. the distance from its current position to the center of the smallest enclosing circle at time
t and R denotes the radius of the smallest enclosing circle. There are two parameters related
to the angles when the robots are on the boundary of the circle; 6,,;, represents the minimum
angular distance between any two consecutive robotsand 6, represents the maximum angular
distance between any two consecutive robots at each time instant .

32

Table 4.1. Simulation parameters

Parameters Description
n the number of robotsin the team
p the probability of activation of other robots in addition to the one activated by the round robin
r;(t) the position of r; according to the center of the SEC (radius of r;)
R the radius of the SEC
Omin the minimum angular distance between any two consecutive robots at each time instant
Omaz the maximum angular distance between any two consecutive robots at each time instant
n_gens the number of generationsin an activation schedule
n_runs the number of runs performed

4.2 Circle Formation: Experimental Performance

Termination criteria: The termination criteria of a team of robots P to form acircle is de-
fined as;

Vs € P(1), ”—g) _ (4.1)

In order to examine the behavior of the circle formation algorithm, we carried out the follow-
ing metrics:

4.2.1 Trace of the Relative Positions of the Farthest Robot From the Boundary

The purpose of this metric isto measure the number of generations required by the algorithm
to reach the termination state; state where al the robots are on the boundary of the circle.

Figure 4.2 shows the relative positions of the farthest robot from the boundary of the circle.
The team is composed of a population of 16 robots and the probability of their activation is
equal to 0.25. As can be seen, the quotient L}? isincreasing or stable after each generation until
itisequalsto 1. The algorithm terminatesin finite time after 10 generations of activation of the
robots. Each robot is activated ailmost 1 or 2 times (% :

4.2.2 Percentage of the Population on Boundary

The goal of this metric is to show the percentage of the robots located on the boundary after
each generation.

Figure 4.3 presents the percentage of the population on boundary after each activation step.
As can be seen, the percentage of the robots on the boundary is increasing or stable with the
generations. The algorithm terminates when the population on the boundary is equal to 100%

33

(n=32, p=0.75)

1 . "~
0.8 |- i
0.6 |- i
2
=
e
S
0.4 .
0.2 - i
0 1 1 1 1 1
0 2 4 6 8 10

Generation number

Figure 4.2. Trace of the relative positions of the farthest robot from the boundary.

(n=32, p=0.75)

100 T

80 - -

60 - -

% Population on boundary

20 | y

0 L L L L L
0 2 4 6 8 10

Generation number
Percentage of population on boundary =23

Figure 4.3. Percentage of the population on boundary of the circle.

(n=8, p=0.25)

T 4 ® 5 * . 4
O il ARy SETTRITRY! SIPAPRFIAPHC SHPRITTRE Y CRATRITRIRY St Pl Sty
0.8]
a | a
0.6 ; i
x
= @ g @ rrrrinnnnins L)
N
S
04 - .
0.2 E
0 1 1 1 1 1 1 1
Activation time
rObOt] e robot3 v+ robot5 robot7 s uern
robot2 robot4 g robot6 *++ @+

robotg e

Figure 4.4. Distribution of robots according to the boundary.

according to the criteria mentioned before. The termination time is same asin Figure 4.2 since
the parameters applied are same.

4.2.3 Distribution and Progress of Robots Towards the Boundary of the Circle

The purpose of this experiment is to show that no robots move to any position backward
closer to the center of the circle.

Figure 4.4 reveal the progress of each robot in the team toward the boundary. The team is
composed of 8 robots and their probability of activationisequal to 0.25. Initially, the two robots
labelled 1 and 3 are already on the boundary and remains there. The 6 other curves represents
the progress and termination time of the robots labelled 2, 4, 6, 7 and 8.

We can notice that the quotient %) is always increasing or stable for all robots after each

activation step. This proves experimentally that robots move always to positions closer to the
boundary and no robot moves backward to any position closer to the center of the circle.

4.2.4 Termination for Different Populations

In order to be able to compare the termination rate for different populations of robots, in Fig-
ure 4.5 we show the termination rate expressed in terms of number of generations for different

35

el

18 —

20 —————

16 E

14 B

12 —

10 E

Generations

. 10 — .100
Population (log scale)

Generation termination —|—

Figure 4.5. Termination for different populations (p = 1).

populations of robots. In each team, we consider that all the robots are activated simultaneously
(p = 1). Inthis case, we can give the exact termination rate since the activation of the robots
IS not sengitive to the randomness of the activation schedule because al robots are activated
together.

In Figure 4.5, the x — axis represents the number of robots in each team expressed in log
scale and the y — axis represents the number of generations. As can be seen in the figure, the
number of generationsis proportional to the log of robots. Hence, the termination rate isin the
order of log n.

4.3 Uniform Transformation: Experimental Performance

To examine the behavior of the uniform transformation algorithm, we performed the three
metrics as given below based on the following criteria:

Convergence criteria: The convergence of the algorithm uniform transformation is defined
by:

36

(n=16, p=0.75)

'Il'heta MIN +—+—
Theta MAX #--x---

14 F _

1.2 .:‘E' .

Theta min/ Theta max

0.4 - | ieinc]
Hﬁfﬂﬂuw

0.2

0 1 1 1 1
0 20 40 60 80 100

Generation number

Figure 4.6. 0,,,, is monotonically decreasing and 6,,;, is monotonically increasing (n =
16,p = 0.75).

emin - emax - (42)
n
4.3.1 Algorithm Convergence

The purpose of this metric is to show the convergence of the algorithm. The algorithm con-
verges when the difference between 6,,,,,, and 6,,,;,, is closer to zero. It has been proved in [7]
that 6,,., 1S monotonically decreasing and 6,,;,, is monotonically increasing and as depicted in
Figure 4.6, we can see similar results by simulation.

4.3.2 Convergencefor Different Values of Probability

The goal of this metric is to observe the effect of the probability of activation of robots on
the convergence of the algorithm. In Figure 4.7, we plotted the median of 50 runs for different
probability of activation of robots. The 4 curves represents respectively the convergence for the
probability equal to 0, 0.25, 0.5 and 1. The obtained results show that, when the probability of

37

(n=16, p={0, 0.25, 0.5, 1})
100 T T T T

% Diff theta Max/ Min

0 20 40 60 80 100
Generation number

p=0 —— p=0.25 p=0.5 ---%--- p=1 g

Figure 4.7. The rapidity of the convergence increases with the probability of activation.

activation of robotsis high, the convergence is faster and when the probability of activation of
robotsis small, the convergence is slower. For instance, when p = 0, after 100 activation steps,
the algorithm does not converge. Whereas, when p = 1 after aimost 60 activation steps, the
algorithm converge.

4.3.3 Convergence for Different Populations of Robots

The purpose of this metric is to evaluate the impact of the number of robots on the conver-
gence of the algorithm.

In Figure 4.8, we plotted the convergence of different populations (16, 32, 64, 128) using the
same probability of activation (0.25). The results in Figure 4.8 show that if the population of
robots is big for instance 128, the convergence toward the uniform configuration is slower and
if the population issmall for instance 16, the convergenceis faster.

It is noteworthy that Figure 4.9 present an interesting phenomena; the curve which represents
the 128 robots is below the curve which represents the 64 robots in the first 120 generations.
Afterward the curve which characterizes the 64 robots is below and the curve which character-
izesthe 128 robotsis above. The behavior in thefirst 120 generationsisjustified by the random
generation of the initial positions of the robots. Initially, with the population of 128 robots the

38

(n={16, 32, 64, 128}, p=0.25)
100 T T T T T

% Diff theta Max/ Min

0 200 400 600 800 1000
Generation number

n=16 —+— n=32 ---x--- n=64 - n=128 ---4---

Figure 4.8. The rapidity of convergence decreases with the number of robots forming the
team.

(n=({16, 32, 64, 128}, p=0.5)

% Diff theta Max/ Min

0 50 100 150 200 250
Generation number

n=16 —+— n=32 ---x--- n=64 - n=128 ---@---

Figure 4.9. The unpredictability of the activation schedule has impact on the convergence.

39

difference between 6,,,,.. and 0,,,;,, is greater than the difference between 0,,... and 6,,,;, for the
population of 64 robots. The normal behavior of the system is restored after 120 generations.
Therefore, we can claim that theinitial configuration (positions) of the robots has also an impact
on the speed of convergence of the algorithm.

40

Chapter 5
New Circle Formation Algorithm

In this chapter, we propose a new algorithm for forming a uniform circlein the plane by ateam
of mobile robots. This algorithm actually builds upon the work of Défago and Konagaya [7]
and function under the hypothesis that robots (1) are oblivious in the sense that they are unable
to recall past actions and observations, (2) share no common sense of direction, and (3) have no
direct communication only through observing each others position.

The algorithm is self-stabilizing since starting from any arbitrary state always converges to-
wards the formation of acircle.

5.1 Algorithm Description

The proposed algorithm is based on the Suzuki and Yamashita model described in Chapter 2.
It takes an arbitrary configuration in which all robots have distinct positions and regardless of
their activation, eventually brings the system toward a configuration in which al robots are
uniformly located on the boundary of the circle.

The agorithm consists of a deterministic function ¢ that is executed by every robot r; each
time it becomes active. The arguments to ¢ consist of the current position of the robot, and
a multiset of points containing the observed position of al robots at the corresponding time
instant. All positions are of course expressed in terms of the local coordinate system of r;. The
value returned by ¢ isthe new position for r;.

The agorithm relies on the fact that the environment observed by all robots is the same
and makes sure that the Smallest Circle Enclosing all robots remains invariant and use it as
a common reference. The invariance is ensured by imposing the following restrictions on the

41

movements of robots:

Restriction 5. No robot ever moves beyond the boundary of the smallest circle enclosing all
robots.

Restriction 6. All robots located on the boundary of the smallest enclosing circle remain on
that boundary.

Restriction 7. Robotslocated on the circumference of the smallest enclosing circle do not move
unless there are at least three such robots with distinct positions.

5.2 Algorithm: Formation of a Uniform Circle

Notations:

e p;(t): denotesthe position of arobot r; at time ¢ according to some global = —y coordinate
system.

e P(t) = {pi(t)|1 < i < n}: denotesthe multiset of the positions of all robots at time ¢.

e [(P): represents a circular list of al robots, thus uniquely defining previous and next
neighbors for each robot.

e <: denotes previous neighbor.

The principle of the algorithm is described as follows. Each time a robot becomes active, it
executes the following steps of the algorithm:

e Computes the Smallest Enclosing Circle (SEC) of the observed positions of all robotsin
the team. The SEC is unique and common between robots. The robots must keep the
SEC invariant. Thisis satisfied by the restrictions on the movements of robots described
in Section 5.1.

e Computes a circular list, describing for each robot its previous most neighbor and its
next most neighbor. The ordering of the robots is based on the angles they are located
according to some global x — y coordinate system in counterclockwise orientation of the
circle. In the case, when some robots are collinear (their angles are equal), the ordering
is done based on their positions according to the center of the Smallest Enclosing Circle.
The robot with small radiusis considered as previous to the one with bigger radius.

42

Algorithm 3 Formation of a uniform circle (code executed by robot r;)

function Peircle (P,pz)
1. Compute SEC(P)
2: Orientation of SEC(P):= counterclockwise
3: ORIGIN := o0 of SEC
4: §; :=theangle Zox,0p;
5: if p;/== o then {robot in the center of SEC}
6:
7
8
9

Moveto any free position
: else
p; < pi & (8; (6 V ((8; =6) A || ap; || (1| o7)
: Compute L(P) according to <
10: Sort L(P) according to <
11: if (pj < p; < p) and (6, = 6; = 6;) then {collinear with prev and next neighbors}

12: stays still

13: ese

14: prev(p;):= previous direct most neighbor of p; in L(P)
15: next(p;):= next direct most neighbor of p; in L(P)

16: bisect ;.. (p;):= bisector of the angle Zop;,oprev(p;)
17: bisect ...+ (p;):= bisector of the angle Zop;,onext(p;)
18: bisect (p;):= bisector of the angle formed by bisect .., (p;) and bisect ,,¢.+(p;)
19: target (p;) := bisect(p;) N SEC(P)

20: Move toward target(p;)

21: endif

22: end if

e Considersitstwo direct neighbors and computes first the bisector of the angle formed by
the center of the circle, the robot itself, the center of the circle and its previous neighbor
bisect,,., and then the bisector of the angle formed by the center of the circle, the robot
itself, the center of the circle and its next neighbor bisect,..; (See Figure 5.1(b)). The
movement of arobot is delimited by bisect,,., and bisect,,.;.

e Computes its target position on the boundary of the circle which corresponds to the
intersection of the SEC with the bisector of the two bisectors bisect,,., and bisect,,..;
(target(r;) in Figure 5.1(b)).

e Movesgradually toward its target position (target(r;)). The target position of the robot is
aways inside its reachable area (area delimited by bisect,,., and bisect,.,;). Therefore,
the target position of the robot is aways reachable. The robot can progress to its target
by moving along the path defined by its current position and the target on the boundary.

The algorithm presents two very simple and special cases. The first one is when there is
arobot which is located in the center of the circle. In this case, the robot cannot identify its

43

bisect(r) /bisect
bisect e, target(rj)/

next

next(r;)

prev(rj)

(a) The movement of arobot r; is delimited by (b) Robot 7; computes its target position.
its previous and next bisectors.

Figure 5.1. Robot 7; computes and moves to a new target position.

previous and next neighbor. One solution to this problem is to let this robot moves initialy to
any unoccupied position. Afterward, the problem is reduced to the general case.

The second case is when the active robot is collinear with its direct neighbors previous and
next as illustrated in Figure 5.2(a). In this case, it cannot compute bisect,,., and bisect,,.. .
Nevertheless, this problem is reduced to the general case from the time when one of the two
robots in the extreme of the line moves. See Figure 5.2(c).

5.3 Correctness

Lemma 1. Under thisagorithm, no two robots ever end up at the same position.

Proof. The current position of arobot r; and its computed target target(r;) is always a point
in the area delimited by the two bisectors bisect,,.; and bisect,,., oOf the robot (points on the
borders are not included). Let’s denote this area by area(r;). Then, al possible movements of
the robot will be aswell in area(r;).

Assume by contradiction that robot r; and r; can moveto the same position. Then, there must
be an overlap of area(r;) and area(r;). However, if wetake 3 tangent sectors with common ori-
gin and we draw the bisector in each angle. Then, the area delimited by the first two consecutive
bisectors is tangent to the area delimited by the second two consecutive bisectors. Therefore,
there is no overlap between the two areas. It followsthat area(r;) and area(r;) cannot overlap

44

target(rj)

) //bisectpre\/
T prev(r)
(a) Robot r; is collinear (b) r; moves toward atarget position. (c) The situation is re-
with its previous and duced to the genera
next neighbors. case after r; moves.

Figure 5.2. The case when robots are collinear is reduced to the general case when any of
the extreme robots move.

which isin contradiction with the assumption. Thus, no two robots can ever move to the same
position W

Theorem 1. Under restrictions 2-4, the smallest enclosing circle of al robots is invariant.

Proof. The theorem has been proved in [7]H

Lemma 2. No robot moves backward to a position closer to the center of the circle.

Proof. Eachtimearobot r; becomes active, it will find itself in one of the three cases:

e 7; iscollinear with its previous and next neighbors: In this case, r; will not move, it will
stay still, then, obviously r; does not move toward the center.

e 7; isinthe center of the SEC, in this case, r; will move away from the center of the circle.
Then obvioudly, it does not move toward the center.

e 7, is not collinear with its previous and next neighbors. In this case, r; will move to a
position which is farther away from its current position and closer to the target position
which is on boundary. Therefore, the radius of the robot is monotonically increasing. So,
robot r; actually progress away from the center.

45

Therabot r; is unable to move backward in any of the three cases, thus proving the lemma il

Lemma 3. Thetarget position (on boundary) of any robot r; is always reachable

Proof. The target position of any robot r; and its current position are in the same sector
sect(r;) (the sector delimited by its previous and next bisectors). In addition, sect(r;) is private
to r;, then none of the other robots can block r; to movetoward itstarget position. Consequently,
the target of r; isaways reachable

Lemma4. All robots located in the interior of the SEC(P) reach its boundary after a finite
number of activation steps.

Proof. By Lemma 3, the target position of any robot r; is reachable. By Lemma 2 no robot
ever moves backward. Therefore, any robot r; can reach SEC(P) in finite number of steps.
Since there is afinite number of robotsin P, there exists some finite time after which all robots
are located on the boundary of the smallest enclosing circle SEC (P) B

Lemma5. Under thisalgorithm, for al r;,r; € SEC(P) is stable

Proof. Let usdenoteby C.;,.., the set of al configurations with robots on the boundary. The
proof is by induction, which consists on showing that if C; isaconfiguration in C.;,.., then by
the algorithm, C;.1 € Cjpee B

Lemma 6. Any configuration in which robots are uniformly spread on the circleis stable under
the algorithm.

Proof. The proof is by induction on the set of targets T. Assume a configuration C; in which
all robots are equally spaced on the circle, then C; € T. When robots are in this configuration,
each time a robot becomes active, it computes the same target position. Therefore, C;,; € T.
Hence, C,,; = C;. Consequently, given a configuration in which robots are uniform spread on
the circle, they stay still. This proving thelemma il

Theorem 2. The algorithm deterministically solves the problem of circle formation.

46

Proof. By Lemma4 and Lemma 3, there is a time after which all robots are located on the
smallest enclosing circle, and from lemma5, for each robot ; which is on boundary it will stay
on boundary. Thus, the algorithm solves the problem of circle formation in finite number of
steps

Theorem 3. The agorithm converges towards a configuration wherein all robots are located
evenly on the boundary of thecircle.

Proof. By lemma 6, all the configurations wherein all robots are uniformly spread over the
circle are stable. The proof consists in showing that the angular distance between any two
consecutive robotsisidentical for all robots, that is 27” [|

Algorithm convergence The algorithm solves the circle formation problem in finite time and
converges toward a uniform distribution of the robots over the circle. The advantages of the
algorithm are its simplicity and its low cost computation.

47

Chapter 6

Decomposition of Basic Problems for
Cooper ative Mobile Robots

In this chapter, our objective is to outline a specification framework to define recurring basic
problems for cooperative autonomous mobile robots. First, we propose four properties into
which these problems can be decomposed. The advantage of this approach is that problems are
expressed in a more consistent framework, thus making it easier to understand problems and
study their relationships. Second, we give alist of eight problems and describe them according
to a combination of the four properties. Note that, the definitions of the problems are model-
independent.

6.1 Basic Properties

Among the four properties, thefirst two properties can be characterized as liveness properties,
whereas the other two are safety properties. Roughly speaking, a safety property of a system
is one which specifies what the system should never do (i.e. "bad things never happen”). Con-
versely, aliveness property is one which specifies that the system must eventually do something
(i.e. "good things eventually happen”) [16].

6.1.1 Livenessproperties

Property 1 (Forming shape). Given some shape X, there is a time after which the shape de-
fined by the location of all robotsis homomorphicto X .

Informally, the desired shape is formed eventualy. In other words, after a finite number

48

of moves, the final positions of the robots coincide with the points forming the input shape.
Forming shape is a liveness property since while testing for violation of this property requires
looking at infinite executions.

Property 2 (Reaching goal). Given some point p, there is a time after which the center of
gravity of all robotsis co-located with p.

Reaching goal property is the ability of a team of robots to reach a predetermined goal lo-
cation. At the end of their computation process, the robots reach to the destination point at
the same time or at different time. In the case when the robots are asked to attain a goal and
preserving a shape at that destination, the property goa is satisfied when the center of gravity
of the shape forming the robots superpose with the destination point.

6.1.2 Safety properties

Property 3 (Keeping shape). Given some shape X, there is a time since which the shape de-
fined by the location of all robotsis always homomorphic to X.

Roughly speaking, since the robots form the shape, they are required to keep the same shape
in movement. Keeping shape is a safety property since the violation of this property can be
observed in finite time (time in which the shape is modified).

Property 4 (Following path). Given some oriented path p(u), thefollowing two predicates are
satisfied.
1. At any time, the center of gravity of the location of all robotsis a point on the path p(u).

2. The center of gravity of the location of all robots progresses monotonically on the path

p(u).

It is the ability of the robots to follow some given path while moving without getting out of
that path. This property is satisfied when the center of gravity of the new positions of robots
in each movement is a point in the specified path and the coordinates of the center of gravity
increases according to the oriented path.

49

Table 6.1. Decomposition of common problems into the basic properties

forming shape | keeping shape | following path | reaching goal
(liveness) (safety) (safety) (liveness)

Shape formation O
Flocking O
Path-constrained flocking O O
Goal reaching O
Cooperative handling (“ box-pushing”) O O
Path-constrained coop. handling O O O
Shape formation w/goal O O
Path-constr. shape formation w/goal O O O

6.2 Decomposition of Problemsinto Basic Properties

Table 6.1 summarizes the decomposition of problems into a combination of the four proper-
ties mentioned above. The problems surveyed in Chapter 1 are decomposed into the properties.
In addition, several other combinations, that yield meaningful problems, are also presented in
the table and discussed in the text.

Shape formation The shape formation problem encompasses the two problems of gathering
and arbitrary pattern formation. This problem is simply defined by Property 1 (forming shape).
In the literature, gathering and pattern formation are treated differently, probably because the
former is easier to solve than the latter. Nevertheless, there is no reason to give a completely
different definition, and so we combine these two problems as specia cases of shape forma-
tion. In particular, the robots must eventually form the desired shape, which can be a point
(i.e., gathering problem), a circle, a polygon, etc.

Flocking Intheliterature, theflocking problem has been defined according to aleader-followers
approach [19, 13]. In that model, one of the robotsis designated as the leader, and the others are
followers. The problem requires that the followers follow the path of the leader in such a way
that their relative positions maintains a given shape. However, we believe that this definition
unnecessarily restricts the problem. In particular, the definition precludes fully symmetrical
algorithms. For this reason, we try to provide an aternate definition which does not impose a

leader-follower model, thus leaving this as an implementation issue.

Path-constrained flocking In the path-constrained variant of the flocking problem, the path

that the robots must follow is given. Thisresultsin two safety properties; keeping the shape and

50

following the path.

Goal reaching Inthegoal reaching problem, the robots are required to move towards a given
destination point and reach in afinite number of moves. Hence, this problem is expressed by the
liveness property reaching goal. The goal reaching problem is related to the problem of motion
planning, except that there are no restrictions set on the path of the robots.

Cooperative handling (box-pushing) A problem known as " box-pushing” has been studied
in the literature on robotics. In that problem, apair of small robots are required to collaborate in
order to move alarge box from one location to another. We can easily expressasimilar problem
by combining flocking and goal reaching. Hence, the cooperative handling problem is defined
in terms of one safety property (keeping shape) and one liveness property (reaching goal).

Other problems Severa problems can be derived from those discussed above: for instance
path-constrained cooperative handling is a combination of the problems path-constrained flock-
ing and goal reaching. Therefore, the problem is defined by the two safety properties presented
earlier and the the liveness property reaching goal. The problem of shape formation with goal
(i.e., where the robots are asked to form a shape in a specific location known in advance) is
also a combination of the shape forming problem and the goa reaching problem. When the
property following path is added to this problem, it is called path-constrained shape formation
with goal and in which the two liveness properties and the safety property following path must
be fulfilled.

51

Chapter 7
Conclusion and Future Work

We first summarize our contributions and discuss the results of the thesisin Section 7.1. Then,
we present our plans for future work.

7.1 Conclusion

First, we have surveyed some of the most important work in the field of distributed coopera-
tive mobile robotics and more specifically, the basic recurring problems of coordination among
robots . Asaresult of our survey, we found that in the literature there was alack of specification
of these problems and that they were expressed in a way that depends on the details of the sys-
tem model in which they are studied. Hence, the motivation to propose a consistent framework
of specification of recurring problems of cooperation between robots.

Second, we focused on a particular coordination problem; the problem of forming acircle by
a team of mobile robots. In particular, we studied the convergence of a self-stabilizing circle
formation algorithm proposed by Défago and Konagaya [7] using computer simulation. This
algorithm solves the problem in two steps by different algorithms. The first algorithm solves
the circle formation problem and the second one solves the uniform transformation problem.
As aresult of simulating the circle formation algorithm, we observed that the percentage of the
population of robots on the boundary of the circleisincreasing after each generation of robots
activation and the algorithm terminates in finite time. Moreover, we found that the number of
generations required for termination (termination rate) is proportional to the log of robots.

In the uniform transformation algorithm, our results show how the convergence of the algo-
rithm is affected by the parameters of the system. For instance, the speed of the convergence

52

increases with the probability of activation of robots, and in contrast decreases with the size of
the population. In addition, we noticed that the initial distribution of the robots over the circle
has an impact on the speed of convergence of the algorithm.

Third, We proposed a new algorithm for forming a circle by a set of mobile robots. The
algorithm solves the problem of uniform circle formation in one phase and by one algorithm. It
solves the circle formation problem in finite time and it converges toward a uniform distribution
of the robots over the circle.

The agorithmissimplein principleand it is based on the computation of bisectors of angles.
It guarantees that no collision between robots would happen since each robot has its own ex-
clusive zone in which it can move and there is no overlap between their zones. In addition, it
guarantees that the target position of arobot is always reachable given that it is always inside
the robot preserved zone.

The main advantages of the algorithm are its smplicity and its lower computation cost and
we conjecture that it has fast convergence.

Finally, we have proposed a consistent specification framework of basic problems of cooper-
ation expressed in terms of four properties (two safety and two liveness properties) along which
these problems can be decomposed. Other combinations of the properties also yield meaningful
problems, and variants thereof, that we did not see discussed in the literature yet. The main ben-
efit of our approach isto make the study of inter-problemsrelationships easier. Aswe outlined a
consistent framework for the definition of problems, it will be easier to generalize future results
to classes of problems rather than individual ones.

7.2 Future Work

Thereis anumber of issues that needs to be addressed in our future work:

e Inour framework of specification of problems, the work we presented is still in progress,
and many interesting research issuesremain to be addressed. In particular, we areworking
on aformal definition of the properties, and hence the problems. We will also need to
make sure that our specifications rule out trivial (and useless) solutions to the problems.
At last, we will try to extend the framework with additional ” model-dependent” safety
properties, such as preventing collisions with obstacles or other robots.

In the longer run, we will use our framework to determine the minimal system require-
ments for solving each problem. We will hence investigate the relationship between the

53

capabilities of robots and their ability to solve the different problems. From a practical
standpoint, it is important to know what minimal set of functionalities is necessary to
solve a given problem, as away to reduce development and fabrication costs.

In the new proposed algorithm, we will complete the proofs of correctness, study its
convergence using simulations and then implement it on real robots.

Defining more realistic system model. In our work, we considered the SY m model which
is a well established model, however, it is simple because it models robots as mathe-
matical points. We would like to propose a model which closer to reality. For instance,
considering the volume of the robot, its direction, different speed for robots, etc.

Finally, we want to investigate the issue of communication between robots. For instance,
robots might need to exchange information on their states (positions, trajectories, ori-
entation, etc.) to construct a complete configuration of the team in order to coordinate
their actions and cooperate. The communication can be either implicit or explicit. We
have studied a model with only implicit communication. Among our future work also,
we want to study the role of explicit communication for solving similar problems. The
question is what kind of communication is suitable for what problem and what kind of
communication is effective for certain environment conditions? and how robots must
maintain communication?

Bibliography

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]
[9]

H. Ando, Y. Oasa, |. Suzuki, and M. Yamashita. Distributed memoryless point conver-
gence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and
Automation, 15(5):818-828, October 1999.

F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3):345-405, September 1991.

M. G. LewisB. R. Bellur and F. L. Templin. An ad-hoc network for teams of autonomous
vehicles. In Proc. of IEEE Symposium on Autonomous I ntelligence Networ ks and Systems,
2002.

T. Blach and R. C. Arkin. Behavior-based formation control for multi-robot teams. |EEE
Trans. on Robotics and Automation, 14(6):926-939, December 1998.

Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics: Antecedents
and directions. Autonomous Robots, (4):1-23, 1997.

M. Cieliebak and G. Prencipe. Gathering autonomous mobile robots. In Proc. 9th Col-
loguium on Structural Information and Communication Complexity (SROCCO’02), An-
dros, Greece, June 2002.

X Défago and A. Konagaya. Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In Proc. 2nd ACM Intl. Workshop on Principles of
Mobile Computing (POMC’ 02), pages 97-104, Toulouse, France, October 2002.

S. Dolev. SAf-Sabilization. MIT Press, 2000.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard tasks for weak robots: The
role of common knowledge in pattern formation by autonomous mobile robots. In Proc.

55

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

10th Intl. Symp. on Algorithms and Computation (ISAAC' 99), volume 1741 of LNCS
pages 93-102, Chennai, India, December 1999. Springer.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous obliv-
ious robots with limited visibility. In Proc. 18th Annual Symp. on Theoretical Aspects
of Computer Science (STACS 2001), volume 2010 of LNCS, pages 247-258, Dresden,
Germany, February 2001. Springer.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Pattern formation by autonomous
robots without chirality. In Proc. VIII Intl. Colloquium on Sructural Information and
Communication Complexity (SROCCO 2001), pages 147-162, Val de Nunia, Spain, June
2001.

V. Gervasi and G. Prencipe. Flocking by a set of autonomous mobile robots. Technical
Report TR-01-24, Dipartimento di Informatica, Universitadi Pisa, Italy, October 2001.

V. Gervas and G. Prencipe. Need afleet? use the force! In Fun With Algorithms 2 (FUN
2001), pages 149-164, Elba, Italy, May 2001.

S. Hert and V. Lumelsky. Moving multiple tethered robots between arbitrary configura-
tions. In IEEE/RSJ IROS, pages 280285, 1995.

K. Konolige, C. Ortiz, R. Vincent, A. Agno, M. Eriksen, B. Limketkai, M. Lewis,
L. Briesemeister, E. Ruspini, D. Fox, J. Ko, B. Stewart, and L. Guibas. Centibots: Large-
scale robot teams. In Multi-Robot Systems: From Svarms to Intelligent Autonoma, 2003.

L. Lamport. Proving the correctness of multiprocess programs. |IEEE Trans. on Software
Engineering, 3(2):125-143, March 1977.

M. J. Matari€. Designing emergent behaviors: From local interactions to collective intel-
ligence. In Proc. Intl. Conf. on Smulation of Adaptive Behavior, pages 423441, 1993.

J. Ota, N. Miyata, T. Arai, E. Yoshida, D. Kurabayashi, and J. Sasaki. Transferring and
regrasping a large object by cooperation of multiple mobile robots. In IEEE/RSJ IROS,
pages 543-548, 1995.

56

[19] G. Prencipe. CORDA: Distributed coordination of a set of autonomous mobile robots. In
Proc. 4th European Research Seminar on Advancesin Distributed Systems (ERSADS 01),
pages 185-190, Bertinoro, Italy, May 2001.

[20] K. Schreiner. Nasa's jpl nanorover outposts project develops colony of solar-powered
nanorovers. In IEEE DSOnline, 2(3), 2001.

[21] S. Skyum. A simple agorithm for computing the smallest enclosing circle. Information
Processing Letters, 37(3):121-125, 1991.

[22] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geo-
metric patterns. SAM Journal of Computing, 28(4):1347-1363, 1999.

[23] D. Yeung and G. Bekey. A decentralized approach to motion planning problem for multi-
ple mobile robots. In IEEE ICRA, pages 1779-1784, 1987.

57

Publications

1. S Souissi, X.Défago, T.Katayama. ” Convergence of a Uniform Circle Formation Algo-
rithm for Distributed Autonomous Mobile Robots’. In Proc. Joint Japan-Tunisia Work-
shop on Computer Systems and Information Technology (JT-CS T 04), July 2004 Tokyo,
Japan.

2. S. Souissi, X.Défago, T.Katayama. " Decomposition of Fundamental Problems for Co-
operative Autonomous Mobile Systems’. In Proc. of 2nd International Workshop on
Mobile Distributed Computing, pp. 554-560, Mar. 2004, |EEE Computer Society Press.

3. S. Souiss, X.Défago, T.Katayama. ” Specification of Recurrent Problems in Distributed
Cooperative Mobile Robotics’. In Proc. Scientific French-speaking Workshops (JS-’ 03),
November 2003, Tokyo, Japan.

58

Appendix A

Source Code

A.1 Program: Generation of Initial Configurations

#!/local/pkg/all/bin/ruby

##This program allow to generate random initial positions
of robots (Initial configuration).

##Last update: 16/04/2004....

BEGIN {
NUMBER_OF RUNS = 10
[8, 16, 32, 64]

NUMBER_OF ROBOTS

WIDTH = 100
HEIGHT = 100
NAME CONFIG = "configuration"

ROBOT ID = 0

srand

FHEFH#H R R R

class Robot

FH#ESHFH R R R R R R
attr_ accessor :id

attr accessor :x_coord

59

attr_accessor :y coord

def initialize(id, x=rand(WIDTH) *rand , y=rand (HEIGHT) *rand)
set id
@id = id
set coordinates
@x _coord = x

@y_coord

Y
end

end #end class

Hrkkkkkkkkkkkkkkkkkkkrkx* End class RODOL **kxkkkkkkkkkkkkkkkk /*

FHFHHHH T R R
class RobotTeam
FHEFH#H R R R
def initialize(n_robs=0)
@list = Array.new(n_robs)
if (n_robs>0)
@list.each index {|i|
@list[i] = Robot.new(i+1)
}
@list.sort! { |a,b| a.id <=> b.id }
end

end

def << rob

if ! @list.include? (rob)
do not accept duplicates and keep the list sorted by increasing id
@list << rob
@list.sort! {|a,b| a.id <=> b.id}

else
p rob
fail "element already in team"

end

self

end

def size

@list.size

60

end

def to_array

long = @list.size

lst robot = [] long.times {lst robot << [] }

@list.each index{|i]
id = elist([i].id
x = @list[i] .x_coord

y = @list[i] .y coord

1st _robot[i] = [id, x, Yyl

}

lst robot

end

end

Hrrkkkkkkkkkkkkkkkxkkrkkxk*x* End class RobotTeam **r*rkkkkkkkkkkkkkx /%

HHHGSHH A H RS RS R S R R R R R
HHHHHHEHAHEHEHEHR Create configuration
FHHAHHHHAFHH AR R R R R R R A R

def create config(n_runs, n_robs)
dir path = ("run " + String(n_ runs) + A\
" rob " + String(n_robs))
if File::exist?(dir_path)
puts "#{dir path} skipped (exists)"
return
end
current dir = Dir::pwd
begin

Dir::mkdir (dir path)
Dir::chdir (dir path)

61

n runs.times{|run|

print "\n ----%kkkkERD punkkkkkk - - - \n"
File::open (NAME CONFIG+".r"+String(run), "w") {|f config]
init team = RobotTeam.new(n_robs)

print initial positions
(init team.to array()) .each() {|rob|
x= rob[1]

y= rob.last

print "\n The result is: \n"
print "#{x}\t#{y}"

f config.print "#{x}\t#{y}"
f config.puts

} # end run

rescue
puts "Error when making #{dir path}"
raise

ensure
Dir::chdir (current dir)

end

end

def main

print "\n Please wait, currently creating initial configuration !!\n \n"

NUMBER OF ROBOTS.each {|n_robs|
create config (NUMBER OF RUNS, n_robs)

62

end main

####Desired output: n runs initial configuration ##Each file

configuration.rn has the following format:

x position \t y position (robot that has the id =1)
##x position \t y position (robot that has the id =n) ##

A.2 Program: Generation of Activation Schedules
#!/local/pkg/all/bin/ruby
##This program permits to generate the activation schedules.
##Last update: 30/03/2004....
BEGIN

NUMBER OF RUNS = 10
NUMBER OF GENERATIONS = 50

NUMBER_OF ROBOTS - [8, 16, 32, 64]
ACTIVATION PROB = [0.00, 0.50, 0.75, 1.00]
ACTIVATION RANDOM = true

do not change below this line
NAME SCHEDULE = "schedule"
ROBOT_ID = O

srand

FH#ESHFH A R R R R R

class Robot

FHEFHHH R R R
attr_ accessor :id

def initialize(id)

set id
@id = id
end

63

end #end class

FHEFH#H R R
class RobotTeam
FHFHHH R R R
def initialize(n_robs=0)
@list = Array.new(n_robs)
if (n_robs>0)
@list.each index {|i]
@list [i] = Robot.new(i+1)
}
end

end

def << rob
if ! @list.include? (rob)
do not accept duplicates

@list << rob

else

p rob

fail "element already in team"
end
self

end

def size
@list.size

end

def next generation (activated)
new_gen = RobotTeam.new
@list.each index{|i|

current = @list[i] .clone

new_gen << current

}

new gen

end

end

FHAFHAFHAHHAHAFHASH AT HAH A H AT HES S R A A AR
class ScheduleFactory
FHAFHAHHAHHFH A H S H S R
def initialize (size, prob=0, shuffle = true)

@size = size

@prob = prob

@fixed = []

@shuffle = shuffle

self.fixed initialize

end # initialize

def next
fixed = self.fixed pop
sched = (1..(@size)).to_a
sched.delete if{|a| rand>eprob and a!=fixed}
sched

end # next

#private

def fixed pop
self.fixed initialize if @fixed.empty?
@fixed.shift

end # fixed pop

def fixed initialize

@fixed = (0..(@size-1)) .to a

random shuffle

if @shuffle

@size.times(

pt = rand(@size)
1ft = @fixed[0. .pt]
rgt = @fixed([pt+l.. (@size-1)]

if ! 1ft.empty?

1ft.reverse! if rand < 0.5

65

rand (1ft.size) .times{
1ft << (lft.shift)
}
end
if ! rgt.empty?
rgt.reverse! if rand < 0.5
rand (rgt.size) .times{
rgt << (rgt.shift)
}
end
@fixed = rgt + 1lft
}
end
end # fixed initialize

end # class ScheduleFactory

HEAHHSFHHH SR HBHEHH B A HH#HEE end schedule #####HHHFHHBHAHHBREH
FHHSHFHHAF HH A R R R R R R A
HHHHHHAHAHAHEHEHR Run simulation

FHAFHAHHAHHFHAFHASH AT HAH A HAF AT H A SR S A A R A

def run simulation(n_runs, n gens, n _robs, act prob, act shuffle)

init team = RobotTeam.new(n_robs)

dir path = ("run " + String(n_ runs) + A\
" gen " + String(n_gens) + A\
" rob " + String(n_robs) + \
" prob_" + String(act_prob) + \

(act_shuffle ? " shuf.dat" : " noshuf.dat"))

if File::exist? (dir path)
puts "#{dir path} skipped (exists)"
return

end

current_dir = Dir::pwd

begin
Dir::mkdir (dir path)

66

Dir::chdir (dir_path)

simulation

n_runs.times{|run|

File: :open (NAME SCHEDULE+".r"+String(run), "w") {|f sched]|

cur_team init_team
sched = ScheduleFactory.new(cur_team.size, \
act_prob, \
act _shuffle)
n gens.times{|gen|
cur_act = sched.next()
print "\n current act \n"

print cur_ act

cur_team = cur_ team.next generation(cur_act)

dump schedule

f sched.print String(gen+1)
cur_act.each() {|elt| f sched.print "#{elt}\t"}
f sched.puts

rescue
puts "Error when making #{dir path}"
raise

ensure
Dir::chdir (current dir)

end

end
def main
print "\n Please wait, currently processing activation schedules !!\n \n"

NUMBER OF ROBOTS.each {|n robs|
ACTIVATION PROB.each {|act prob|

67

run_simulation (NUMBER OF RUNS, NUMBER OF GENERATIONS, \
n _robs, act prob, ACTIVATION_ RANDOM)

}

end main
Desired output: n runs activation schedules

Each activation schedule file has the following format:

#id activated robot \t id activated robot....

(a line correspond to one generation) # the id of Robots are

numbered from 1 to n..

A.3 Program: Implementation of the Circle Formation Algorithm

/**/

J]R*R[xx[x [k [k [k [k [[*[*[*[x RemarKks: */*/*k/*/x[%x[%[*[*[%[%[%[%[%[%x[%[*%/

/*---The number of robots is a parameter
<=9999 - - - - */ /*--The coordinates are double
with 15 numbers after the comma.-------- *x/ /*--This program

generates the history of all the positions of robots--*/

/*============please do delete schedule factory*/
#include<stdio.h> #include<iostream.h> #include<stdlib.h>

#include<string.h> #include<math.h>
#include<LEDA/window.h> #include<LEDA/graphwin.h>
#include<LEDA/rat kernel.h> #include<LEDA/rat kernel types.h>

#include<LEDA/geo alg.h>

#include<LEDA/array.h> #include<LEDA/list.h>
#include<LEDA/graph.h> #include<LEDA/map.h>

68

#include<LEDA/rational .h> #include<LEDA/integer.h>

#include<LEDA/rat circle.h> #include<LEDA/rat line.h>
#include<LEDA/rat segment.h> #include<LEDA/rat ray.hs>
#include<LEDA/rat point.hs>

#define n _robs 32 #define n gens 50 #define n runs 10 #define

samples 1 #define prob 0.75

[*================= (Global variables =========================%*/
struct coord{

double x;

double vy;

}i
coord tab pos[n robs]; int activation|[n gens] [n_robs]; rat circle

SEC; rat point table points[n robs]; double tab angles[n robs];

list<rat point>list points; list<double> list angles;

GRAPH<rat circle,rat point> VD; GRAPH<rat point,int> DT; const
float ratio = 0.99; const float pi = 3.14; const double range =
0.000000001; coord *positions; window W (600,600, "Simulation of

the algorithm uniform circle formation for mobile robots") ;

int current directory (char *); int read temp file(const char *,
char *); coord *read file configuration(char *, int); double
read x(coord *, int); double read y(coord *, int); int

activation_ schedule(char *); int schedule factory(char *); void

display matrix(int [n_gens] [n_robs]); int all on_ boundary

rat point [n_robs]); list<node> node neighbors (list<rat points> ,
rat _point); list<rat point> list neighbors(list<rat points>,

rat point); void Draw_Voronoi (GRAPH<rat circle,rat point>&); int
segments_on cell (rat _point); int rays on cell (rat point) ;

rat point Robot next position(list<rat points>,rat point) ;
rat _point Robot inside next position(list<rat point>, rat point) ;

int main processing(char *, char*); int produce history file(int,

69

char *); int produce headers file history(char *); char*

concat_string(char*, char*);

int main(int argc, char *argv[]) { char *str run, *str gen,
*str rob, *str prob, *str s, *str r, *currentl, *current2,
*current3; char *path schedule, *path config, *file schedule,
*file config, *path history, *file history, *str_directory,
*create dir, *str_history, *new_directory, *rm directory,

*path _history2;

currentl = (char *)malloc(800); current2 = (char *)malloc(800) ;

current3 = (char *)malloc(800); str history = (char *)malloc(800) ;

file config = new char[2000]; file schedule = new char[2000];

path history = new char[2000];

path history2 new char[2000]; file history = new char[2000];

path schedule = new char[2000]; path config = new char[2000];
str_directory = new char [2000]; create dir = new char [2000];
new_directory = new char [2000]; rm directory = new char [2000];

str run = new char[100]; str_gen = new char[100]; str rob = new
char[100] ; str prob = new char[100]; str_s = new char[500]; str r

= new char[500] ;

W.display(window: :center, window: :center) ;
sprintf (str_run, "%d",n_runs) ;
sprintf (str_gen, "%d",n_gens) ;
sprintf (str rob,"%d",n robs) ;
sprintf (str prob,"$1.2f",prob); // to modify

current directory(current2); path schedule =

strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (current2,
"/run "),str _run)," gen "),str gen)," rob "), str rob

)," _prob "),str prob)," shuf.dat"); path schedule =

strcat (path_schedule, "/schedule.r");

70

current directory(current3); path config =
strcat (strcat (strcat (strcat (current3,"/run "),str run),
" rob "),str rob); path config =

concat_string(path config, "/configuration.r");

/**/

//iteration of the different configurations (samples)
for (int k=0;k<samples;k++)
{
cout<<"\n e#eHei#e#eHeHe#e#t Sample eHef#e#eHeHefeteH@ \n"<<k+1;
printf ("\n Initial configuration:\n");
sprintf (str_s,"%d", k) ;
file config = concat_ string(path config, str_s);

cout<<"\n ==== file config ==== \t"<<file config<<endl;

str_directory = strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (st:
tory "), "run "),str run)," gen "),str gen)," rob "), str _rob)," prob "),str prob), " sam-
ple "), str_s);

cout<<"\n str directory: "<<str directory;

sprintf (create dir," mkdir %s",str_directory) ;

sprintf (new_directory, "ls %s", str directory);
sprintf (rm directory, "rm -rf %s", str directory); // be carful in modify-

ing this function

if (!system(new directory)) {
cout<<"\n"<<str directory<<"exists (Skipped) "<<endl;

return 0;

// system (rm directory) ;

// cout<<"\n Suppression of old history directory done";}

system (create dir);

current directory(currentl) ;

path history = strcat(strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (strcat (st
tory "), "run "),str run)," gen "),str gen)," rob "), str rob)," prob "),str prob), " sam

ple "),str_s);

path history2 = concat string(path history,"/history.r");

71

//iteration of the different schedules (runs)

for (int run=0; run<n runs; run++)

{

positions = read file configuration(file config, n_robs) ;
sprintf (str_r,"%d",run) ;
file schedule = concat string(path schedule, str r);

cout<<"\n ==== file schedule ==== \t"<<file schedule<<endl;

file history = concat_ string(path history2, str r);

cout<<"\n ==== file history ==== \t"<<file history<<endl;

main processing(file schedule, file history);

} // for 1

return 0;

} //end main

/***/

rat _point Robot next position(list<rat point>list p, rat point
act rob) { rat point p bye, next pos, rob;

list<point>list intersect tmp, list intersect_ seg,

list intersect ray, list candidates; list<rat point>list robots;;
edge e; segment segm; int n, i, j, m, test; point qg;

GRAPH<rat circle,rat point> VD new; double min dist; node v;

list_robots = list_p;

forall (p bye, list p){ if (p bye == act rob) {

72

list p.remove (act_rob) ;
//cout<<"\n list p"<<list p;
break; }}

VORONOI (list p, VD _new); n=0; m=0;
forall edges(e,VD new) {
node u = source(e);

node v = target (e);

list intersect tmp.clear();

if (VD_new.outdeg(u) == 1 && VD new.outdeg(v) == 1) {
continue;
} else
if (VD new.outdeg(u) == 1 && VD new.outdeg(v)>=1)
rat vector vec = VD new[u] .point3() - VD newl[u] .pointl () ;

rat point cv = VD new[v].center() + vec.rotate90();

rat _ray r (VD _new[v].center().to point(), cv.to point());

list intersect tmp = SEC.to float () .intersection(r.to float());
// cout<<"\n list tmp"<<list intersect tmp<<"size\t"<<list intersect tmp.size()<<endl;

if (list intersect tmp.size() != 0) { // one segment in voronoi can in-

tersect SEC only in 0 or 1 point

double dl = p _bye.to float() .distance(list intersect tmp.front()) ;
double d2 = p_bye.to float() .distance(list intersect tmp.back()) ;
if (dl<d2)

list intersect ray.append(list intersect tmp.front());

else
list intersect ray.append(list intersect tmp.back()) ;

n++;

}

}else

if (VD new.outdeg(u) >=1 && VD new.outdeg(v)==1)

rat _vector vec = VD new([v] .point3() - VD newl[v].pointl() ;

73

rat point cv = VD new(u] .center() + vec.rotate90();

rat _ray r (VD _new[u] .center().to point(), cv.to point());
list intersect tmp = SEC.to float () .intersection(r.to float());
if (list intersect tmp.size() == 1) {
double dl = p_bye.to float() .distance(list intersect tmp.front()) ;
double d2 = p _bye.to float() .distance(list intersect tmp.back()) ;
if (dl<d2)

list intersect ray.append(list intersect tmp.front()) ;
else

list intersect ray.append(list intersect tmp.back()) ;

n++;
}
} else {
segment segm (VD _new[u] .center () .to point(), VD new[v].center().to point());
list intersect tmp = SEC.to float () .intersection(segm) ;
if (list intersect tmp.size() != 0) { // one segment in voronoi can in-

tersect SEC only in 0 or 1 point

double dl1 = p bye.to float() .distance(list intersect tmp.front()) ;
double d2 = p _bye.to float() .distance(list intersect tmp.back()) ;
if (dl<d2)

list intersect seg.append(list intersect tmp.front()) ;
else
list intersect seg.append(list intersect tmp.back()) ;

m++;

}

list intersect ray.merge(list intersect seg);

//cout<<"list intersect ray size"<<list intersect ray.size();
forall(g,list_intersect ray) { test = 1; forall (rob, list robots)

{

if (g.distance(rob.to float())<g.distance(p bye.to float()) && rob != p bye) {

74

test = 0; break;} }

if (test == 1) list candidates.append(q) ;

list candidates.sort() ;

//cout<<"\n list Candidates"<<list candidates;

forall (q, list_candidates){ W.draw_circle(q,1,blue);
//leda_wait (2.2);

}

next pos = rat point(list candidates.front()); //to modify
//cout <<"\n Next position"<<next pos<<endl;
W.draw_point (next _pos.to float(),red); return next pos; |}

/* __ */

rat _point Robot inside next position(list<rat point>list p,

rat point act rob) {

rat _point target point; point gq; list<point> list verts,
list candidates; edge e; int i, j; double x1,x2,yl,y2, dis,x,y,

theta; node u,v;

rat _point o = SEC.center(); forall_edges(e,VD){
if (VD[e]l==act rob) {
node u = source (e) ;

node v = target (e);

segment segm (VD[u] .center().to point(),

VD [v] .center () .to_point()) ;

point pl = VD[u] .center() .to point(); point p2 =
VD [v] .center () .to_point () ;

75

if ((o.to _float()) .distance(pl)<= (SEC.to float()) .radius())
list verts.append(pl) ;

if ((o.to _float()) .distance(p2)<= (SEC.to float()) .radius())
list verts.append(p2); }

list verts.sort(); list verts.unique(); /* forall(g,list verts) {

cout<<"\n list vertices after erasing duplicat: \t"<<g<<endl;

box/

target point = rat point(list verts.front()); double max dist =

(o.to_float()) .distance(target point.to_ float()) ;

cout<<"\n max distance, target

point:"<<max dist<<target point.to float ()<<endl;

forall(g,list verts) {
if(((o.to_float()) .distance(q) >= max dist) && (g!= list verts.front())) {
if ((o.to _float()) .distance(qg) == max dist)
list candidates.append(q) ;
else(
max_dist = (o.to_float()) .distance(q) ;

target point = rat point(q) ;}

//cout<<"\n max distance, target point:"<<max dist<<target point.to float ()<<endl;

//determine the point in which the robot will move in the segment.

if (!list candidates.empty()) { list candidates.sort();
///----- cout<<"\n !!!!1!1!list candidates!!!!\t"<<list candidates<<endl;
target point = rat point(list candidates.front()); }

//determine the point the robot will move with respect to the ratio.

/* x1= act_rob.xcoord(); x2= act_rob.ycoord(); yl=

76

target point.xcoord(); y2= target point.ycoord(); theta =

atan((y2-yl)/(x2-x1)); dis = sqgrt(((y2-y1)*(y2-y1l)) +
((x2-x1)*(x2-x1))) * ratio; x = dis * cos(theta) + x1;
//---cout<<"\n x:\t"<<x;

y = dis * sin(theta) + y1;
////---cout<<"\n y:\t"<<y;
point next pos((dis * cos(theta) + x1), (dis * sin(theta) + yl1));

cout <<"\n Next position robot inside"<<next pos<<endl;

*/ cout <<"\n Max distance robot inside:"<<max dist; cout<<"\n
next position robot inside:"<<target point.to_ float(); point
p_draw = target point.to float(); W.draw point (p draw,red) ;
//leda_wait(1.1);

return target point;

//return next pos;

int main processing(char *sched, char*hist) {

int counter g, id active, test boundary, res r, res_ s, res; double
dis_to circle, rad reduce, dis reduce; rat point new pos,it,

pos_active; rat point table positions[n_robs];

list<rat point>list positions; FILE *fp hist; list<rat points>
list neighb; list<node> node neighb; node v; edge e;
list<edge>list adj edges; int i; char str[10]; GRAPH<rat circle,
rat _point>VD temp; GRAPH<rat point,int> DT temp; char

*path _history, *str rad, *str dis; W.display(window::center,
window: :center); cout<<"\n shed"<<sched;

// read the x and y coordinates

i = 1; while (i <= n robs) {
double x coord = read x(positions, 1i);
double y coord = read y(positions, 1i);

point p (x_coord, y_ coord);

7

table points[i-1] = rat point(p);
W.draw_point (p, red);
sprintf (str, "%d",1) ;

W.draw_text (p,str) ;

list points.append(rat_point(p));

i++;

SEC = SMALLEST ENCLOSING CIRCLE(list points); rat point o =
SEC.center(); cout<<"\n Center: \t"<<o.to float(); double rad =
(SEC.to_float()) .radius() ;

printf ("\n Radius: \t %4.151f \n", rad);

W.draw_circle(o.to_float (), rad,blue);
if (produce headers file history(hist)==0) // write parameters in
history file return 0; if (produce history file(0, hist)==0) //

write init configuration in history return O0;

VORONOI (list points,VD); DELAUNAY TRIANG(list points,DT) ;
Draw_Voronoi (VD) ;

//leda wait (1.20);

////schedule factory (sched) ;

activation schedule(sched); display matrix(activation) ;

//check if all on the boundary
if (all_on boundary (table points)) {
cout<<"\n All on the boundary \n";}
else { //if not on the boundary

for (counter g=0; counter g <n _gens;counter g++) { cout<<"
[*/*/%/*/*/*/*/ Counter gen */*/*/*/*\n "<<counter g;
//W.draw_text (500, 10, "new generation") ;

int counter rob = 1;

while (activation[counter g] [counter rob] != 0 &&

counter rob<=n_robs)

{

78

// check if on the boundary

int id _active = activation[counter g] [counter rob];
pos_active = table points[id active-1];
W.draw_circle(pos_active.to float (), 2,red);

leda wait(1.1);

printf ("\n @eee@ Active e@eee@:\t %d", id_ active);
cout<<"\t"<<pos_ active.to float();

// test boundary

dis_to_circle = o.to _float () .distance(pos_active.to float());
double value = fabs(1l-(dis to circle/rad)) ;

test boundary = (value<= range);

cout<<"\n test boundary!!" <<test boundary;

if (test boundary ==1) // if the robot on the boundary do no

thing:Just write in history

produce_history file(counter g, hist);

else{ //not on the boundary

node_neighb = node neighbors(list points, pos_active) ;

list neighb = list neighbors(list points, pos_active);
// cout<<"\n list neighbors: "<<list neighb<<"\n";
forall nodes (v, DT) { if (pos_active == DT[v]) {

list adj edges = DT.adj_ edges (V) ;
break; }
}
// check if cell inside circle
res_r = rays_on_cell(pos_active);
if (res r != 0) {
cout <<"\n"<< pos_active.to float()<<"\t «case 1l: intersect with SEC!!!!\n"<<el

new_pos = Robot next position(list points, pos_active);

else {

res s = segments on cell (pos_active) ;

79

if (res_ s == 1){
cout <<"\n"<< pos_active.to float()<<"\t case 2 :intersect with SEC!!!!\n"<<en
new pos = Robot next position(list points, pos active);}
elsef
cout <<"\n'"<< pos_active.to float()<<"\t case 3 :does not inter-
sect with SEC: inside circle\n"<<endl;

new pos = Robot inside next position(list points, pos_active);}

//leda_wait (1.2);
W.clear(); table points[id active-1] = new pos; cout<<"\n

new _pos...."<<new pos; list points.clear();

// MAJ Matrix result

int i = 0; while (i < n robs) ({
rat point p = table points([i];
// cout<<"\n" <<p.to float();
W.draw_point(p.to_float(), red);
sprintf (str,"%d",i+1) ;
W.draw_text (p.to_float(),str);
list points.append(p) ;

i++;

produce _history file(counter g, hist);

rat _point o = SEC.center(); double rad =

(SEC.to_float()) .radius(); W.draw circle(o.to float(),rad,blue);
W.draw_point (o.to _float (), blue);

W.draw_text (o.to_float(),"o",blue);

VORONOI (list points,VD); Draw Voronoi (VD) ;
DELAUNAY TRIANG (list points,DT) ;
//leda_wait (1.5);
}
//check if all on the boundary
if (all_on boundary (table points)) {
cout<<"\n All on the boundary \n";

return 1;

80

counter_ rob++;

} //end while iteration of robot....

} //end for // iteration generations... }

return 1;

//W.close() ;

} //end funct.

coord *read file configuration(char *filename, int robs)
FILE *fc; double position; int valtest, j,k; char *str file,
str current; /

sprintf (str file, "cd %s", path config);

system(str file); cout<<"\n str file \t"<<str file; */

fc = fopen (filename, "xr");
if (fc == NULL) { printf("\n File configuration is not available
\n"); exit(1); }

// Save the positions in tab_pos
j=0; k=0;
while ((valtest = fscanf (fc, "%1f", &position)) == 1)

if (jJ $ 2 != 0) // even number (pair)

printf (" The position x is: %4.15f", position);
tab pos[k] .x = position;
} else {
printf ("\t y: %4.15f \n", position);
tab pos[k] .y = position;

81

k++;

fclose(fc); /*
sprintf (str_ current, "cd %s", current);
system(str_current); cout<<"\n str_ current \t"<<str_current; */

return tab_pos; }

int segments on cell(rat point act rob) { edge e;
map<int,rat segment>tab segm; rat ray r; int n, i, res;

list<point>list intersect points;
forall edges (e, VD) {
if (VD[e] == act_rob) {

node u = source(e) ;

node v = target (e);

if (VD.outdeg(u) == 1 && VD.outdeg(v) == 1){
continue;
} else

if (VD.outdeg(u) == 1 && VD.outdeg(v)>=1) {
rat vector vec = VD[u] .point3() - VD[u].pointl() ;

rat point cv = VD[v].center() + vec.rotate90();

rat ray r (VD[v].center().to point(), cv.to point());

}else

if (VD.outdeg(u) >=1 && VD.outdeg(v)==1) {
rat vector vec = VD[v].point3() - VD[v].pointl();
rat point cv = VD[u] .center() + vec.rotate90();

rat _ray r (VD[u].center().to point(), cv.to point());

} else

82

segment segm (VD[u] .center().to point(), VD[v].center().to point());

tab segm[n] = segm;
n++; }
// cout<<"\n Segment: "<<segm<<"\n";

res = 0; if (n!=0) forall defined(i, tab segm) ({

list intersect points = (SEC.to_float()) .intersection((tab_segm[i]) .to float());
if (list intersect points.size()!= 0) {

// cout<<"\n Segment \t"<<(tab segm([i]).to float()<<"\t intersect with the cir-
cle 1111im;

res = 1;

break;

}
}
return res; // 1f res == 0 then no intersection with the circle

then cell is inside circle. }

int rays on cell(rat point act rob) ({

map<int,rat raystab ray; rat ray r; edge e; int n, i; n=0;

forall edges (e, VD) {
if (VD[e] == act_rob) {
node u = source(e) ;

node v = target (e) ;

if (VD.outdeg(u) == 1 && VD.outdeg(v) == 1) {
continue;
} else
if (VD.outdeg(u) == 1 && VD.outdeg(v)>=1) {
rat vector vec = VD[u] .point3() - VD[u] .pointl() ;

83

rat point cv = VD[v].center() + vec.rotate90();

rat ray r (VD[v].center().to point(), cv.to point());
tab rayl[n] = r;
n++;

// cout<<"\n ray: "<<r<<"\t"<<n<<"\n";

}else
if (VD.outdeg(u) >=1 && VD.outdeg(v)==1)
rat vector vec = VD[v].point3() - VD[v].pointl();

rat point cv = VD[u] .center() + vec.rotate90();

rat ray r (VD[u] .center().to point (), cv.to point());
tab ray[n] = r;
n++;
// cout<<"\n ray**: "<<r<<"\t"<<n<<"\n";
} else
segment segm (VD[u] .center().to point(), VD[v].center().to point());

}

} /* cout<<"\n Rays:"<<endl; forall defined (i, tab ray) {
cout<<tab ray[i]l<<"\t"<<endl;

} */ return n; }

double read x(coord *pos, int robot id) { int i; double x_var;

i = 0; do {
if ((robot_ id - 1) == i)
{

// vy = *(&(pos+ (1)) ->x);

X var = (*(pos+i)) .x;
}
i++;
}
while (i != robot id);

return (x_var);

A e Function read y-coordinate------ * /

84

double read y(coord *posit, int id) { int j; double y var;

//y = *(&(pos+ (1)) ->x);
y_var = (*(posit+j)).y;

J++;

} while(j != id);

return (y_var);

void display matrix(int matrice[n gens] [n robs]) {
int i,3j; printf ("\n");

for(i=0;1i<n _gens;i++)

{

for(j=0;j<n_robs;j++)

{

printf ("$d\t", matriceli] []]);

}

printf ("\n") ;

int all on boundary(rat point table p[n robs])
{ int i=0, result=1;

double rad = (SEC.to float()) .radius(); rat point o =

SEC.center(); int test boundary=1;

85

while (i < n robs) ({

rat _point p = table pl[il];

double dis to circle = o.to float() .distance(p.to float());

double value = fabs(1l-(dis_to_circle/rad));

if (value > range)
{
result = 0;
cout<<"\n still not yet on the boundary of the circle!!\n";
printf (" (i=%d,value=%4.151f,range=%4.151f)\n", i, value, range);
break;

}

i++; } return result; }

AR T node neighbors -------------------—--~--- */
list<node> node neighbors (const list<rat point> list p, rat point

active rob) {

list<node>list nodes; node v; forall nodes(v, DT)
{
if (active _rob == DT[v])

break;

list nodes = DT.adj_nodes (V) ;

return list nodes;

A list neighbors ---------------------~---~-~—- * /
list<rat point> list neighbors(const list<rat point> list p,
rat_point active rob) { list<rat point>list neighb;

list<node>list nodes; node v, w;
forall nodes (v, DT){

if (active_rob == DT[v])

break;

86

list _nodes = DT.adj_nodes (V) ;

forall (w, list nodes) {
rat_point p = DT[w];
list neighb.push back(p) ;

}

return list neighb;

void Draw_ Voronoi (GRAPH<rat circle,rat point>& VD)

{ node v;edge e; map<edge, bool> drawn (false);

W.display(window: :center, window: :center) ;

forall nodes (v, VD) {

if (VD.outdeg(v) < 2) continue;
rat point p = VD[v].center();

W.draw_circle(p.to _point(), 1 ,green);

forall edges (e, VD) {
if (drawn[e]) continue;
drawn[e] = drawn[VD.reverse(e)] = true;
node u = source(e) ;

node v = target (e);

if (VD.outdeg(u) == 1 && VD.outdeg(v) == 1){

rat line 1 = p bisector (VD[u] .pointl (), VD[ul] .point3());
W.draw_line(l.to line(), green);

} else

87

if (VD.outdeg(u) == 1 && VD.outdeg (v)>=1)
rat vector vec = VD[u] .point3() - VD[u] .pointl() ;

rat point cv = VD[v].center() + vec.rotate90();

W.draw_ray(VD[v] .center() .to_point (), cv.to point (), blue);
}else
if (VD.outdeg(u) >=1 && VD.outdeg(v)==1)
rat vector vec = VD[v].point3() - VD[v].pointl () ;

rat point cv = VD[u] .center() + vec.rotate90();

W.draw_ray (VD[u] .center() .to_point(), cv.to point(), blue);
} else
W.draw_segment (VD [u] .center () .to _point (), VD[v].center().to point(), blue);
!
!
YA e read temp file---------------------- */
int read temp file(const char *nom, char *s)
FILE *fp;
int k=0;
char ch;
if ((fp = fopen(nom,"r")) == NULL)

{

printf ("\n Problem in read file: (open) \n");

exit;

while ((ch =fgetc (fp)) !=EOF)

{
if(ch!="\n")

* (g + k)=ch;

k++;

else

88

if (feof (fp))

break;

}//while

*(s + k)="\0";

return 1;

int current directory (char *str) ({
system ("pwd>tmp.dat") ;
read temp file("tmp.dat", str);
system("rm tmp.dat") ;

return 1;

int schedule factory(char *filename) ({
FILE *fp;
char *str, ch;
int i, j, k;

int mx lines, mx_cols;

for(j=1; j<=n _gens; j++) {
for(i=1; i<= n_robs; i++)
{

activation([i] [j]= O;

cout<<"\n file name, argument in Schedule factory:"<<filename; if
((fp = fopen (filename,"r")) == NULL) {

printf ("\n Problem in open\n") ;

exit (1) ;

}

89

i=1; j=1; k=0; mx_lines =1; mx cols
str = (char *)malloc(200) ;
while ((ch =fgetc(fp)) !=EOF) {
if((ch!="\t’) && (ch!='\n"))
{
* (str + k)=ch;
k++;
else

if (ch=="\t")

*(str + k)="\0"';

activation[i] [j]= atoi(str);

1;

printf ("$d\t", activationl[i] [j]);

if (i> mx_lines)
mx_lines =i;
if (j> mx_cols)

mx_cols =J;

k=0;

J++;

if (ch=="\n")

if (feof (fp))

break;

*(str + k)="\0"';

activation[i] [j]= atoi(str);

printf ("$d\n", activationl[i] [J]);

if (1> mx_lines)
mx_lines =i;
if (j> mx_cols)

mx_cols =J;

90

}//while

return 1; }

int produce headers_ file history(char *filename) {
FILE *fp hist;
if ((fp_hist = fopen(filename,"a")) == NULL) {

cout<<"\n !!!! Can’'t write headers in file history !!!! \n";

return 0;}

else {
fprintf (fp hist,"======================== Headers ===================\n");
fprintf (fp _hist,"n runs=%d\tn gens=%d\tn_robs=%d\tprob=%1.2f", n runs, n gens, n _robs, p:
fprintf (fp _hist, "\nCenter SEC:x= %4.151f\ty=%4.151f\tRadius=%5.151f", (SEC.center().to_ f
fprintf (fp hist, "\n====================== Fin Headers ===============");
(

fprintf (fp _hist, "\nBegin Data\n") ;

fclose(fp _hist); return 1; } //end func

int produce_history file(int gen num, char *filename)

{ int i; FILE *fp hist;

91

if ((fp_hist = fopen(filename,"a")) == NULL) {
cout<<"\n !!!! Can’'t write in file history !!!! \n";
return 0;} else {

fprintf (fp_hist, "%d\t",gen num) ;
i = 0;

while (i < n_robs)

{

rat point p = table points[i];

double x = (p.to_float()) .xcoord() ;
double y = (p.to_float()) .ycoord() ;

if (1 != n robs-1)
fprintf (fp hist,"%4.151f\t%4.151£\t",x,v);
else
fprintf (fp hist,"%$4.151£\t%4.151f",x,y);
i++4;
}
fprintf (fp_hist, "\n"); }

fclose (fp hist);

return 1; } //end func

char* concat_ string(char*strl, char*str2)

{ char *str3;

str3 = (char *)malloc(strlen(strl)+ strlen(str2)+10) ;

for (int i=0;i<strlen(strl) ;i++)

str3[i] = strl[i];

for (int i=0;i<strlen(str2) ;i++)

str3[i + strlen(strl)] = str2[i];

92

str3[strlen(strl) + strlen(str2)] = ’\0’; return str3;

[*======================= Activation Schedule ===============%/

int activation schedule (char *filename) {

FILE *fp; char str[10], ch; int wvalue, i, j, k, n;

fp = fopen (filename, "xr");

// check file existance

if (fp == NULL)
{
printf ("\n

File schedule not available \n");

exit (1) ;

}

// Matrix initialization
i=0; j=0; while (i <= n_gens)
{
while (j <= n_robs)
{
activation([i] [j]=0;

J++i

//Browse the file
i=0;
j=0;
k=0;

for (n=0;n<=8;n++)

str[n]= " ’;
str[9]="\0";
while ((ch=fgetc(fp))!=EOF) { if ((ch ==’\n’) || (ch == "\t’))

93

value = atoi(str);
activation[i] [j] = wvalue;
for (n=0;n<=8;n++)
str[n]= " ’;
str[9]="\0";
k=0;

J++;

else

value = atoi(str);
activation[i] [j] = value;
for (n=0;n<=8;n++)

strn]l= " ’;
str[9]="\0";
k=0;
14+

j=0;
if (feof (fp))

break;

else {
str[k] = ch;

k++;

fclose (fp) ;

return 1;

int inside convex hull (const list<rat point> list p, rat point

active rob) {

list<rat point> list convex; rat point it; int res;

list convex = CONVEX HULL(list p); cout<<list convex; res =1;

forall (it, list_ convex)

{

if ((it.xcoord() == active rob.xcoord()) && (it.ycoord() == active rob.ycoord()))
{
res = 0;
cout<<"\n On the convex hull!!! \n";
break;

}

return res; }

/* The number of robots in file configuration must equal in file
schedule*/ /*the number of generations in schedule must equal the

number of generations in program main*/

/* int

*active by generation(int gen) {
int j, k;
int *table;

// table = (int *) malloc(n_robs * sizeof (int)) ;

for(j=0;j<n_robs;j++)

* (table +j)= activationl[gen] [j+1];

95

return table; } */

A.4 Program: Implementation of the Uniform Transfor mation Algorithm

JRE KK R KKk kR k kR kk kR kk kR k Kk hkhh kA kkhkkkhkkkhkhkkkkkkkxkkkx k% /
[/ R*R[xx[x [k [k [k [k [*[*[*[%x[*x RemarKks: */*/*/*x/x[*[*[*[%[%[%[%[%[%/
/*---The number of robots is a parameter <=9999------------—---- */

/*--The coordinates are double with 15 numbers after the comma.*/

#include<stdio.h> #include<iostream.h> #include<stdlib.hs>
#include<string.h> #include<math.h> #include<LEDA/window.h>
#include<LEDA/graphwin.h> #include<LEDA/rat kernel.hs
#include<LEDA/rat kernel types.h> #include<LEDA/geo _alg.hs>
#include<LEDA/array.h> #include<LEDA/list.h>
#include<LEDA/graph.h> #include<LEDA/map.h>
#include<LEDA/rational.h> #include<LEDA/integer.h>
#include<LEDA/rat circle.h> #include<LEDA/rat line.h>
#include<LEDA/rat segment.h> #include<LEDA/rat ray.hs>
#include<LEDA/rat point.h> #define n robs 16 #define n gens 100
#define n _runs 10 #define prob 0.5

/*¥=================—=============—=—=—=—=—=—=—========—===============%/
struct coord{

double x;

double vy;

coord table positions[n robs]; coord *positions_in circle; int
activation[n gens] [n_robs]; double tab angles[n robs];

list<double> list_ angles;

list<point>list loc; point table loc[n robs]; //table of positions

rat _circle SEC;

96

const double pi = 3.14159; const double range = 0.1;

coord *read file configuration all on boundary(char *filename) ;
double read x(coord *, int); double read y(coord *, int); int
activation_ schedule(char *); int schedule factory(char *); void

computation list angles(list<point>); point

half way mid point previous_next (int); int uniform spread(); void
uniform transformation(); double compute angle (double, double,
double, double); int previous next equal (int); char*

concat_ string(char*, char*); int produce history file(int, char

*); void draw_sector (double, double, double); void new display () ;

void display matrix(int [n gens] [n _robs]) ;

window W (600,600, "Simulation of the algorithm uniform circle

formation for mobile robots") ;

/¥===%/
int main() { char str[10]; W.display(window::center,
window: :center); point p; coord *positions_in circle;

positions_in circle =

read file configuration all on boundary("history demo") ;

int i = 1; while (i <= n robs) ({
double x coord = read x(table positions, 1);
double y coord = read y(table positions, 1i);

point p (x coord, y coord);

table loc[i-1] = p;
W.draw point (p, red);
sprintf (str, "%d",1i) ;
W.draw_text (p, str) ;
list loc.append(p) ;

14+

SEC = SMALLEST ENCLOSING CIRCLE (list_ loc) ;

97

W.screenshot ("/home/12009/ssouissi/circle sim/circle sim first part/demo uniform/demo initI

point o = SEC.to float () .center(); cout<<"\n SEC center:'"<<o;

W.draw_point (o,blue) ;

new_display () ;

uniform transformation(); cout<<"\n Treatment finished

succesfully.\n";
//leda_wait (1.1);

W.close() ;

return 1;

A R e T computation list angles

void computation list angles(list<point> list posit) {
double theta; point g; point o = SEC.to float() .center();
int i =0;
list angles.clear(); forall(qg,list posit) {
theta = compute angle(o.xcoord(), o.ycoord(), g.xcoord(), g.ycoord()); //func-
tion to compute angle
cout<<"\n Theta "<<i<<"\t:"<<theta<<endl;
list angles.append(theta) ;

tab_angles[i]= theta;

i++;

98

point half way mid point previous next (int id active) {

double ang active, next pos_ang, mid ang; list item it,

previous_ang, next ang;

list angles.sort(); list angles.unique() ;

double r = SEC.to float () .radius(); point o =
SEC.to_float () .center();

ang active = tab_angles[id active-1]; cout<<"\n angle

active\t"<<ang active;

forall items(it,list angles) {
if (list_angles[it] == ang active) {
previous ang = list angles.cyclic pred(it);
next ang = 1list angles.cyclic succ(it);

break;

cout<<"\n previous angle:"<<list angles.contents (previous_ang) ;
cout<<"\n next angle:"<<list angles.contents (next ang) ;
double previous = list angles.contents (previous_ang) ;

double next = list angles.contents (next ang) ;

// draw_sectors

draw_sector (ang_active,previous, next);

if (previous>ang active)

previous = previous -2*pi;

if (next<ang active)

next = next +2*pi;

mid ang = (previous + next)/2;
cout<<"\n mid angle:" <<mid_ang;
next pos _ang = (ang_active+mid ang)/2;

99

cout<<"\n next position angle:" <<next pos_ang;

point p = table loc[id active-1];

double r pos = sqgrt((p.ycoord()-o.ycoord())*(p.ycoord()-o.ycoord()) + (p.xcoord()-
o.xcoord ()) * (p.xcoord () -o.xcoord())) ;

cout <<"\n cos angle is :"<<cos(next pos_ang) ;

cout <<"\n sin angle is :"<<sin(next pos_ang) ;
double x = r pos*cos (next pos_ang) ;

double y = r pos*sin(next pos_ang) ;

point p tar (x+o.xcoord(),y+o.ycoord()) ;

cout <<"\n The coordinates x and y:"<<x+0.xcoord()<<"\t"<<y+o.ycoord() ;

ray rr (o,p_tar);

list<point> 1 = SEC.to_float () .intersection(rr); // to get the point exactly on the circ

point g (l.back() .xcoord(), l.back().ycoord()) ;

W.draw_point (q, red) ;

W.draw_circle(q,2,red);

return g;

uniform spread() {
double ang active; list item it, previous_ang, next ang;
computation list angles(list loc); list angles.sort () ;

list angles.unique() ;

int i=0, result=1;

int nbr uni = 1;

while (i < n _robs) { ang active = tab_angles[i];

forall items(it,list angles) {

if (list angles[it] == ang active) {

100

previous_ang = list angles.cyclic pred(it);

next ang = 1list angles.cyclic succ(it);
break;
}
}
double previous = list angles.contents(previous_ang) ;
double next = list angles.contents (next ang) ;

if (previous>ang_ active)
previous = previous -2*pi;
if (next<ang active)

next = next +2*pi;

cout<<"%%%%%%%%%%% convergence range %%%%%%%%%% "<<fabs((n_robs* (next-

ang_active)/(2*pi))-1);

if (fabs((n_robs* (next-ang active)/(2*pi))-1) srange) {
result =0;

cout<<"\n Not uniformly spread on the boundary of the circle!!\n";

break;

}

else
nbr uni++;
cout<<"\n nbr uniform\t"<<nbr uni;
}
i++; } //end while

if (nbr uni == n_robs) result = 1;

return result; }

void uniform transformation()

point pos_active, next pos; int id active; char *str g, *str demo,

*str_r;

str_demo = new char[500]; str g = new char[10]; str r = new

101

char([10];
computation list angles(list loc) ;
activation_schedule ("schedule_demo") ;
display matrix (activation) ;

//check if all uniformly spread

W.screenshot (" /home/12009/ssouissi/circle sim/circle sim first part/demo uniform/ademo_init

if (uniform spread() ==1)
cout<<"\n !!!!! All the robots are uniformly spread on the circle !!!\n";
else {

for (int g=0; g<n_gens;g++)
{
cout<<"\n Generation:\t "<<g;
int rob = 0;
while (activation[g] [rob] != 0 && rob<n robs)

{

id active = activationl[g] [rob];

pos_active = table loc([id active-1];

cout<<"\n pos active:\t"<<pos active;

W.draw_circle(pos_active, 2,green);

// Take a screen shot...
sprintf (str g, "%d",qg);
sprintf (str r,"%d", rob) ;
str demo = concat_ string(concat string(concat string("demo first",str g),str r),
str demo = concat string("/home/i2009/ssouissi/circle sim/circle sim first part/de

W.screenshot (str_demo) ;

//-- leda wait(1.1);
printf (" \n &8 &&&E&EEEESESSE ACctiVve &&&&&&&EESEEESES 1d:%d", id_active) ;

cout<<"\n position active:"<<pos active;
if (previous next equal (id _active) ==0) {

// compute next position

next pos = half way mid point previous next (id active) ;

102

//MAJ table positions;

table loc([id active-1] = next pos;

produce history file(g, "history uniform demo") ;

list loc.assign(list loc.get item(id_active-1), next pos);

computation list angles(list loc);

// leda wait(1.1);
new_display () ;

} //end if

// check if uniformly spread
if (uniform spread()) {
cout<<"\n !!!!! All the robots are uniformly spread on the circle !!!\n";

return;

}

rob++;
} //while
}//for
}//else
W.close(); return; }//end funct.
o m m e e e */
int activation_schedule (char *filename) {

FILE *fp; char str[10], ch; int wvalue, i, j, k, n;
fp = fopen (filename, "r");

// check file existance

if (fp == NULL)

103

{
printf ("\n
File schedule not available \n");

exit (1) ;

}

// Matrix initialization
i=0; j=0; while (i <= n_gens)

{

while (j <= n_robs)

{
activation[i] [§]1=0;

J++i

//Browse the file

1=0;
j=0;
k=0;
for (n=0;n<=8;n++)
str[n]l= " ’;
str[9]="\0";
while ((ch=fgetc(fp))!=EOF) { if ((ch =='\n")
{
if (ch == "\t’)

{

value = atoi(str);
activation[i] [j] = wvalue;
for (n=0;n<=8;n++)
str[n]= " ’;
str[9]="\0";
k=0;

J++;

104

(ch ==

"\t"))

else

{

if (feof (fp))
break;
value = atoi(str);
activation[i] [j] = wvalue;
for (n=0;n<=8;n++)

str[n]l= " ’;

str[9]="\0";
k=0;

i++;

j=0;

else
str[k] = ch;

k++;

fclose (fp) ;

return 1;

} //end

void new display () {

char str[10]; point p; leda wait(1l.1); W.clear();

point o = SEC.to_float() .center(); double rad =
SEC.to_float () .radius() ;

W.draw _circle(o,rad, blue); W.draw point (o,blue);

105

int i = 0; while (i < n_robs)

{
point p = table locli];
W.draw_point (p, red);
sprintf (str, "%d",i+1) ;
W.draw_text (p, str) ;
W.draw_segment (o,p, blue);
i++;

}

}

/* __

double compute angle (double x1, double yl, double x2, double y2)

double theta, deltax, deltay;

deltay = y2-yl; deltax = x2-x1;

theta = atan(deltay/deltax) ;
if (deltax<0)
theta = theta + pi;
if (deltax>0)
if (deltay<0)
theta = theta + 2*pi;
if (deltax==0)
{
if (deltay >0)
theta = pi/2;
if (deltay<0)
theta = -pi/2;
if (deltay==0)
theta = 0;

return theta; }

{

coord *read file configuration_all on boundary(char *filename)

FILE *fc; double position; int valtest, j,k; char *str file,

*str_ current;

fc = fopen (filename, "r"); if (fc == NULL) { printf ("\n File

configuration all on boundary is not available \n"); exit(1); }
// Save the positions in tab pos

j=0; k=0;

while ((valtest = fscanf (fc, "%1f", &position)) == 1)

if (J $ 2 !'= 0) // even number (pair)
printf (" The position x is: %4.15f", position);
table positions[k].x = position;

} else {
printf ("\t y: %4.15f \n", position);

table positions[k].y = position;

k++;

fclose (fe) ;

return table positions; }

double read x(coord *pos, int robot id)

{ int i; double x var;
i =0; do {

if ((robot_ id - 1) == i)

{

107

x var = (*(pos+i)) .x;
i++;
}

while (i != robot_ id);

return (x_var);

double read y(coord *posit, int id)

{ int j; double y var;

y_var = (*(posit+])) .y;
}

J++;

} while(§ != id);

return (y_var);

int previous next equal (int id active) ({

double ang active; list item it, previous_ang, next ang;

list angles.sort(); list angles.unique(); ang active =

tab_angles[id active-1];
forall items(it,list angles) {

if (list angles[it] == ang active) {

previous ang = list angles.cyclic pred(it);

108

next ang = 1list angles.cyclic_succ(it) ;

break;
}
}
double previous = list angles.contents(previous_ang) ;
double next = list angles.contents (next ang) ;

if (previous>ang_ active)

previous = previous -2*pi;

if (next<ang_ active)

next = next +2*pi;
double diff = fabs(((ang active-previous)/(next-ang active))-1);
cout<<"\n ======Range difference: "<<diff;
if (fabs(((ang_active-previous)/(next-ang active))-1) >range)
return 0;

else

return 1;

}//end

void draw_sector (double ang active, double ang previous, double

ang next) {
point p active, p previous, p next, o; int 1i,j;

for (i=0;i<n robs;i++) {
if (tab_angles[i] == ang active) {
for (j=0;j<n_robs;j++)
if (§==1) {
p_active = table loc[j];
break; }

109

} cout <<"\n Point active:"<<p_ active;

for (i=0;i<n robs;i++) {
if (tab_angles[i] == ang previous) {
for (j=0;j<n robs;j++) {
if (§==1) {
p_previous = table loc[j];

break; }

}

} cout <<"\n previous:"<<p previous;
for (i=0;i<n robs;i++) {
if (tab angles[i] == ang next) {
for (j=0;j<n _robs;j++) {
if (j==1) {
p_next = table loc[j];
break; }

}

} cout <<"\n next:"<<p next;
= SEC.center () .to_float();
.draw_segment (o,p_active, green);

.draw_segment (o,p_next, red);

o
W
W
W.draw_text (p_next, " next",red) ;
W.draw_segment (o,p previous, red);

W

.draw_text (p_previous, " prev",red) ;

leda wait(1.1);

return; }

int produce history file(int gen num, char *filename)

110

{ int i; FILE *fp hist;

if ((fp _hist = fopen(filename,"a")) == NULL) {
cout<<"\n !!!! Can’t write in file history !!!! \n";
return 0;} else {

fprintf (fp_hist,"%d\t",gen num) ;

i = 0;
while (i < n_robs)

{

point p

table loc[il];

double x = p.xcoord() ;

double y = p.ycoord() ;

fprintf (fp hist,"%$4.151£\t%4.151f\t",x,y);
14+
}

fprintf (fp hist,"\n"); }

fclose (fp hist);

return 1; } //end func

void display matrix(int matrice[n gens] [n robs]) {

int i,j; printf ("\n");

for(i=0;1i<n _gens;i++)

{

for(j=0;j<n_robs;j++)

{

printf ("$d\t", matricel[i] []]);

}

printf ("\n") ;

111

concat_string(char*strl, char*str2)

{ char *str3;

str3 = (char *)malloc(strlen(strl)+ strlen(str2)+10) ;

for (int i=0;i<strlen(strl) ;i++)

str3[i] = strl[i];

for (int i=0;i<strlen(str2) ;i++)

str3[i + strlen(strl)] = str2[i];

str3[strlen(strl) + strlen(str2)] = ’'\0’; return str3;

112

