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Abstract

We aim to formalize abstraction as a model transformation tailored to
the reasoning abilities of agents. The characteristic of our work is to capture
the epistemological aspect of the abstraction of a model. It is motivated not
to develop the formal theory of knowledge but to develop the formal theory
of modeling because the motivation is an issue of how to share models rep-
resenting the same situation among people with different reasoning abilities.
For this motivation, Awareness Logic as the Logic of Abstraction is given.
Since traditional research for awareness logic does not aim at developing a
formal theory of modeling, we aim to get a good foundation of the basics of
a formal theory of modeling in awareness logic.

This thesis consists of two parts. The first part introduces Awareness
Logic with Global Propositional Awareness(ALGP). ALGP is the
logic with global awareness(an agent’s awareness is the same in all possible
worlds) and propositional awareness(an agent is only aware of formulas con-
taining occurrences of a subset of all atomic propositions). In addition, a
sound and complete axiomatization of ALGP is shown.

The second part investigates Awareness Logic as the Logic of Abstrac-
tion. We compare among three abstractions: “atoms-based abstraction”,
“filtration-based abstraction”, and “bisimulation-based abstraction”.

The second part also introducesAwareness Logic of Filtration(ALF).
ALF is given by adding an implicit abstraction operator to ALGP. Non-
compactness in the semantics of ALF is shown.

Common awareness and distributed awareness are given to ALGP as a
macro. A quotient model with common awareness and a nested quotient
model are considered different approaches for obtaining a comprehensible
model among agents with different reasoning abilities. This thesis obtains
semantics of nested abstraction introducing common awareness and nested
quotient model.
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Chapter 1

Introduction

1.1 Background and Motivation

Epistemic Logic(EL) is a subfield of Modal Logic that is intended reason-
ing about knowledge, belief, and related notions. EL what we know today
was established by Hintikka(1962). In EL, the necessity operator □i is inter-
preted as the knowledge operator such that □iφ stands for “agent i knows φ
holds”. The knowledge operator satisfies the following rules:

• (Nec): ⊢ φ implies ⊢ □iφ,

• (K): ⊢ □iφ ∧□i(φ→ ψ) → □iψ.

The first one represents that if a formula φ is a tautology, then agent i
knows φ is true. The second one makes the knowledge closed under logical
consequence, meaning that if agent i knows φ and φ → ψ are true, then
the agent i automatically knows ψ is true. Then, the agent knows all the
tautologies. The abilities are not actual human reasoning abilities. The
problem is called the Problem of Logical Omniscience.

Awareness Logic(AL) is a subfield of EL that limits the reasoning
abilities of agents for solving the problem of logical omniscience. AL was
established by Fagin and Halpern in 1987 [3]. They introduced the notion
called awareness as a filter for knowledge. Awareness splits knowledge into
implicit knowledge and explicit knowledge. Implicit Knowledge represents
the ideal knowledge presented in traditional epistemic logic. On the other
hand, explicit knowledge represents the knowledge of an agent whose rea-
soning abilities are limited by awareness. In other words, an agent’s explicit
knowledge is an implicit knowledge of which the agent is aware.
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In this way, we can syntactically consider limited reasoning by introduc-
ing an awareness operator to EL. On the other hand, we cannot syntactically
consider limited modeling in AL. There are two cases where we need limited
modeling. First, we will need limited modeling when we want to share a
model with others. There are many possibilities hidden in the real world.
But, it is difficult to model all of them because we are not aware of all of
them. We have no choice but to disregard what we are unaware of when
modeling them. Further, we have to impose different limitations on model-
ing because different agents have different reasoning abilities. Then, we may
not share the same model. We need to give a limited model tailored to oth-
ers’ reasoning abilities if we want to share a model with them. Second, we
will need limited modeling when we cannot understand the requirements of a
program. For example, it may be impossible to debug a large-scale program
because it is complex and may be difficult to understand. We will rely on the
automatic detection of specifications because computers can perform calcu-
lations on a larger scale than humans. However, even if the specifications of
the entire program were given, humans would not be able to understand it.
We want a limited model tailored to our abilities and representing a part of
a specification of a large-scale program.

With such motivations, we would like to develop Awareness Logic of Ab-
straction. In this thesis, Abstraction is a non-technical term considering the
above motivations and the following two requirements. First, abstraction is
required to be a model transformation that gives a simpler model. Second,
it is required that abstraction preserves the truth of formulas attracting at-
tention. Logic of Abstraction [1] is a prior research on an abstraction
of a model. Logic of Abstraction is propositional dynamic logic including a
dynamic abstraction operator as a transformation to tailor a model to the
relevant issues under discussion.

Semantical approaches to modeling unawareness(e.g. [7]) give abstraction
another point of view. Comparison with modeling unawareness would be a
future work.

There are three main ways to formalize abstraction. In this thesis, each
formalized abstraction is called as follows.:

1. filtration-based abstraction

2. bisimulation-based abstraction

3. atoms-based abstraction

Our choice is a filtration-based abstraction. Filtration-based abstraction
is a formalized abstraction by logical equivalence. There are several possi-
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bilities for filtration-based abstractions because there are several filtrations
of a Kripke model ([8] p.78-p.81). Bisimulation-based abstraction is a for-
malized abstraction by observational equivalence. Research on speculative
knowledge[11] gives us a point of view for semantics applying bisimulation.
Atoms-based abstraction is a formalized abstraction preserving the truth of
atomic propositions attracting attention. Awareness Logic with Par-
tition(ALP) [6] gives us a point of view for an atoms-based abstraction
operator.

1.2 Our Proposals

There are several restrictions on awareness [3] [6]. First, we consider aware-
ness that an agent is only aware of formulas containing occurrences of a subset
of all atomic propositions. Such awareness and the restriction on awareness
are called propositional awareness and awareness generated by prim-
itive propositions(gpp), respectively. gpp is a restriction on awareness
considered in [3]. Second, similar to [6], we also consider awareness that
an agent’s awareness is the same in all possible worlds. Such awareness is
called global awareness in this thesis. Global and propositional awareness
is called global propositional awareness.

This thesis consisting of two parts introduces two logics. Part I and II in-
troduceAwareness Logic with Global Propositional Awareness(ALGP)
and Awareness Logic of Filtration(ALF), respectively. ALGP is given
adding restriction of global propositional awareness to AL. Note ALGP is
not Awareness Logic of Abstraction. ALF is given by extending ALGP to
Awareness Logic of Abstraction. Awareness of ALF is also global proposi-
tional awareness.

As described in Section 1.1, it is motivated to give a model regarding
what agents are commonly aware of. With such motivations, we introduce
common awareness. Common awareness is formalized by introducing a
finite sequence of symbols called agent expressions. On the other hand,
abstraction by chaining abstractions with different awareness can also be
considered another approach to obtaining mutually comprehensible models
among agents with different reasoning abilities. A chain of abstractions with
different awareness is called nested abstraction through this thesis. Now,
we explain an example showing how nested abstractions are a natural way to
obtain mutually comprehensible models with agents with different reasoning
abilities.
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First, we give a Kripke model shaped perspective view of a cube as Figure
1.1(Now, some accessibility relations are abbreviated, but any possible world
can be reachable to all possible worlds.). Suppose there are two agents i and
j. The Kripke model represents “agent i do not know the truth of p1, p2 and
p3, respectively”. Suppose agent i is only aware of p1 and p2 and agent j is
only aware of p1 and p3. Then, Figure 1.2 shaped like a projection of a cube is
a model tailored to our awareness. At this time, the only atomic proposition
agent j is aware of in Figure 1.2 is p1. Hence, abstraction tailored to j’s
awareness that agent i can understand is abstraction preserving the truth of
all formulas only containing p1. Agent i can obtain Figure 1.3 by such an
abstraction. Since Figure 1.3 is a mutually comprehensible model for agents
i and j, the nested abstraction in the above example can provide a mutually
comprehensible model.

w0 p1, p2, p3

w1

p1, p2,¬p3

w2

¬p1, p2, p3
w3

p1,¬p2, p3

w4

¬p1, p2,¬p3

w5

p1,¬p2,¬p3
w6

¬p1,¬p2, p3

w7 ¬p1,¬p2,¬p3

Figure 1.1: Example of Kripke Model(A Perspective View of A Cube)
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w1p1, p2 w5 p1,¬p2

w4¬p1, p2 w7 ¬p1,¬p2

Figure 1.2: Example of Kripke Model(A Projection of Figure 1.1)

w5 p1

w7 ¬p1

Figure 1.3: Example of Kripke Model Shared by The Others
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Programmers are not always able to observe the logical control of a pro-
gram because there are programs with unobservable behavior from outside.
Assume that two programmers i and j know observable logical control of a
program on each awareness. i and j have to check the correctness of a speci-
fication of a program. When i and j say “as far as I can observe, the program
works as a specification”, how validated was the program? At the least, it
will be possible to verify more specifications than i could verify. We inves-
tigate the composition of an observation as a product of two models based
on our graphical intention.: We represent “agent i don’t know the truth of
p1 and p2, respectively” like the Figure 1.4, which looks like a square (Now,
some accessibility relations are abbreviated, but any possible world can be
reachable to all possible worlds.).:

w1p1, p2 w2 p1,¬p2

w3¬p1, p2 w4 ¬p1,¬p2

Figure 1.4: Example of Kripke Model(i’s Perspective)

Suppose that there is a fact “agent i don’t know the truth of p3”. We
represent it like the Figure 1.5, which looks like a line (Now, some accessibility
relations are abbreviated, but any possible world can be reachable to itself,
too.).:

Figure 1.6, which looks like a perspective view of a cube captures two
perspectives “We don’t know the truth of p1 and p2, respectively” and “We
don’t know the truth of p3” at the same time (Now, some accessibility rela-
tions are abbreviated, but any possible world can be reachable to all possible
worlds.).:

In this way, the product of models represents a composition of individual
perspectives. We also introduce distributed awareness as a mutual com-
plement among different reasoning abilities. We will show the differences
between a mutual complement and a composition of awareness by a product
of models.
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v p3

v′ ¬p3

Figure 1.5: Example of Kripke Model(j’s Perspective)

(w1, v) p1, p2, p3

(w1, v
′)

p1, p2,¬p3

(w3, v)

¬p1, p2, p3

(w2, v)

p1,¬p2, p3

(w3, v
′)

¬p1, p2,¬p3

(w2, v
′)

p1,¬p2,¬p3

(w4, v)

¬p1,¬p2, p3

(w4, v
′) ¬p1,¬p2,¬p3

Figure 1.6: Example of Kripke Model Capturing Two Perspectives
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Global propositional awareness gives ALGP and ALF three main limita-
tions. First, there is a set of formulas without compactness in the semantics
of ALF. Then, it is difficult to prove the completeness theorem. Second,
ALF cannot represent “the agent is aware of p and does not know whether
others are aware of p or not” by restriction to global awareness. Third,
K : Kiφ ∧Ki(φ → ψ) → Kiψ is valid for explicit knowledge by restriction
to propositional awareness. Instead of introducing K for explicit knowledge,
a condition in which an agent is aware of a formula and unaware of its sub-
formula, and a neighborhood model[4] are used as substitutes.

At the cost of these limitations, we obtain several results. ALF can
be introduced in the standard Kripke semantics without ternary or more
relations by restriction to global and propositional awareness. Although tra-
ditional filtration gives a contracted model from a given model by globally
applying the equivalence of truth of formulas, we can define an abstraction
operator from traditional filtration by restriction to global awareness. Fur-
ther, the compatibility of filtration-based abstraction to bisimulation-based
abstraction on image-finite models by restriction to propositional awareness
is shown.

A quotient model with agent expressions is introduced as filtration
of a Kripke model. Further, a nested quotient model and a product
quotient model are also introduced. The result for an image-finite model
that a nested quotient model corresponds to a quotient model with common
awareness is obtained. The result for an image-finite model that a product
quotient model does not necessarily correspond to a quotient model with
distributed awareness is obtained.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Part I shows a sound and
complete axiomatization for existing logic and Awareness Logic with Global
Propositional Awareness, respectively. Part II investigates Awareness Logic
of Abstraction.

Part I consists of chapters 2, 3, and 4. Chapters 2 and 3 introduce the
background needed in the rest of the thesis. Note that these chapters do
not contain an original work. Chapter 4 adds global awareness to Awareness
Logic with gpp and shows a sound and complete axiomatization in ALGP.

Part II consists of chapters 5, 6, 7, 8, and 9. Chapter 5 introduces the

8



syntax and semantics of Awareness Logic of Filtration and shows the prop-
erties of the filtration-based abstraction presented in this thesis. Chapter 6
compares three abstractions called filtration-based, bisimulation-based, and
atoms-based abstraction. Chapter 7 investigates the non-compactness in
ALF and the condition of a reduction from ALF to ALGP. Chapter 8 in-
troduces a quotient model with an agent expression, a nested quotient model,
and a product quotient model. Chapter 9 aims at reductions from a nested
abstraction and concretization to an abstraction with an agent expression,
respectively.

9



Part I

Soundness and Completeness
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Notational Convention

In this thesis, the following symbols and brackets () are used to construct
formulas:

• (The propositional constants) : ⊤,⊥;

• (Atomic propositions): p, q, r;

• (Boolean connectives): ∧,∨,→,¬;

• (Agents): i, j, k;

• (Agent expressions): a, b, c;

• (Connectives for agent expressions): +, ·;

• (Modal operators): □,♢,□i,♢i, Aa, [≈]a, Ki, A
α
a , [≈]αa , K

α
i (where α

is a finite sequence of agent expressions).

Also, we use the following letters to represent possible worlds.

• (Possible worlds): w, v, u, s, t, x, y;

φ ≡ ψ represents that φ is a formula that has the same form as ψ. φ := ψ
represents that ψ is an abbreviations for φ. M ∼= M ′ represents that there
is an isomorphism between two models M and M ′.

11



Chapter 2

Modal Logic

This section reviews the basic modal logic.

2.1 Language and Semantics

Definition 2.1.1. (Language LML)
Let P be countable set of atomic propositions. The language of the basic
modal logic LML is defined by the following:

LML ∋ φ ::= p | ¬φ | φ ∧ φ | □φ

where p ∈ P .

In addition, we introduce abbreviations for the truth ⊤, the falsity ⊥, the
disjunction ∨, the implication →, the logical equivalence ↔, and the dual
operator ♢ of □ as follows:

• ⊤ := p→ p

• ⊥ := ¬⊤;

• φ ∨ ψ := ¬(¬φ ∧ ¬ψ);

• φ→ ψ := ¬(φ ∧ ¬ψ);

• φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);

• ♢φ := ¬ □¬φ;

The following are the informal senses of □ and ♢:

• □φ stands for ‘it is necessary that φ holds’.

12



• ♢φ stands for ‘it is possible that φ holds’.

Next, we explain the semantics of Modal Logic.

Definition 2.1.2. (Kripke frame)
A pair F = ⟨W,∼⟩ is called a Kripke frame consist of

1. W is a non-empty set;

2. ∼ is a relation on W .

W and ∼ are called a set of possible worlds and an accessibility
relation of Kripke frame ⟨W,∼⟩, respectively.

Definition 2.1.3. (Kripke model)
Let P be a countable set of atomic propositions. Let V : P −→ 2W be a
function. Suppose that F = ⟨W,∼⟩ is a Kripke frame. A Kripke model based
on F is a tuple M = ⟨F, V ⟩. V is called a valuation function of ⟨W,∼, V ⟩.

Definition 2.1.4. (Satisfaction Relation of LML)
Let P be a countable set of atomic propositions. Given any Kripke model
M = ⟨W,∼, V ⟩ and any possible world w ∈ W . Then, a binary relation |=
is defined as follows:

(M,w) |= p ⇐⇒ w ∈ V (p)

(M,w) |= ¬φ ⇐⇒ (M,w) ̸|= φ

(M,w) |= (φ ∧ ψ) ⇐⇒ (M,w) |= φ and (M,w) |= ψ;

(M,w) |= □φ ⇐⇒ for all v ∈ W,w ∼ v implies (M, v) |= φ;

Then, |= is called a satisfaction relation of LML.
A set of formulas Γ ⊆ LML is satisfiable if there is some model M =

⟨W,∼, V ⟩ and a possible world w ∈ W such that (M,w) |= φ for all φ ∈ Γ.
A formula φ ∈ LML is satisfiable when {φ} is satisfiable.

By the definition, the satisfaction relation for ⊤,⊥,∨,→,♢ is derived as
follows: Given any (M,w) with M = ⟨W,∼, V ⟩ and w ∈ W .

(M,w) |= ⊤ ;

(M,w) ̸|= ⊥ ;

(M,w) |= φ ∨ ψ ⇐⇒ (M,w) |= φ or (M,w) |= ψ;

(M,w) |= φ→ ψ ⇐⇒ (M,w) |= φ implies (M,w) |= ψ;

(M,w) |= ♢φ ⇐⇒ for some v ∈ W,w ∼ v and (M, v) |= φ;

13



Definition 2.1.5. (Validity)
The notion of validity is defined over the various levels of semantical struc-
ture as follows:

• A formula φ ∈ LML is valid on a Kripke model M if (M,w) |= φ for
all w ∈ W . It is denoted M |= φ.

• A formula φ ∈ LML is valid on a Kripke frame F if (F, V ) |= φ for all
valuation V for F . It is denoted F |= φ.

• A formula φ ∈ LML is valid on a class F of Kripke frames if F |= φ
for all F ∈ F. It is denoted F |= φ.

In modal logic, we can consider the correspondences between formulas and
conditions on an accessibility relation for a given frame (See Table 2.1). Given
a frame F = ⟨W,∼⟩. For example, ∼ is reflexive if and only if F |= □φ→ φ
for all φ ∈ LML. ∼ is called serial if for all w ∈ W there is a v ∈ W
such that w ∼ v, i.e., a given frame does not have a possible world that is
not reachable to any possible world. If ∼ is reflexive, then ∼ is serial. ∼
is called euclidean if w ∼ v and w ∼ u imply v ∼ u for all w, v, u ∈ W ,
i.e., for all w ∈ W , every reachable possible world from w is reachable to all
reachable possible world from w. ∼ is reflexive and euclidean if and only if
∼ is equivalence.

Formula Name Frame Condition

T ⊢ □φ→ φ Reflexive ∀w ∈ W (w ∼ w)

B ⊢ φ→ □♢φ Symmetric ∀w, v ∈ W (w ∼ v → v ∼ w)

4 ⊢ □φ→ □□φ Transitive ∀w, v, u ∈ W (w ∼ v ∧ v ∼ u→ w ∼ u)

D ⊢ □φ→ ♢φ Serial ∀w ∈ W∃v ∈ W (w ∼ v)

5 ⊢ ♢φ→ □♢φ Euclidean ∀w, v, u ∈ W (w ∼ v ∧ w ∼ u→ v ∼ u)

Table 2.1: Correspondence between Frame Conditions and Formulas

Definition 2.1.6. (The Class of Frames)
Given a Kripke frame F = ⟨W,∼⟩.

• Every Kripke frames is called K frame. The class of K frames is
denoted FK .

• If ∼ is an equivalence relation, then F is called S5 frame. The class
of S5 frames is denoted FS5.
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2.2 Axiomatization and Soundness

This section introduces the complete axiomatization for FS5 because the se-
mantics of the classical logic of knowledge is given by the S5 frames. The
proof system associated with a class of K frames is called the system K,
and with S5 frames is called the system S5, respectively. The axiom K of
□ is valid on all Kripke models and is also called “distribution axiom”. The
system S5 includes the axioms T and 5. However, We may not admit the
axioms B and 4 because φ → □♢φ and □φ → □□φ are deduced by using
the following axioms of S5 and inference rules of modal logic. The K system
is obtained by excluding the axioms T and 5 from the S5 system.

axiom

TAUT All propositional tautologies

K ⊢S5 □φ ∧□(φ→ ψ) → □ψ

T ⊢S5 □φ→ φ

5 ⊢S5 ¬□φ→ □¬□φ

Table 2.2: Axioms of S5

System S5 has two inference rules called modus ponens(MP ) and necessitation(Nec),
respectively. Note that φ and φ→ ψ in the inference rules (MP ) and (Nec)
must be formulas deduced without assumption.

φ φ→ ψ

ψ
(MP )

φ
□φ (Nec)

Now, we define the formal proof in the system S5.

Definition 2.2.1. (Proof of The System S5)
A proof of the system S5 from Γ to φ is a finite sequence of formulas
ψ1, ψ2, ...ψn in LML such that φ ≡ ψn and every formula ψi in the sequence
is the axiom of S5, a formula in Γ, or formula deduced from ψj(j < i) by
applying an inference rule.

Further, φ is provable from Γ in the system S5 if there is a proof of the
system S5 from Γ to φ. It is denoted Γ ⊢S5 φ. If Γ = ∅, then it is denoted
⊢S5 φ.

Theorem 2.2.2. (The Soundness Theorem)
Let FS5 be the class S5 of Kripke frames. For every φ ∈ LML,

⊢S5 φ implies FS5 |= φ.
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2.3 Completeness

The proof via the canonical model for the completeness theorem is frequently
cited in text [2]. Also, text [10] focuses on the completeness theorem of S5.
In this section, the procedure for the proof follows the steps outlined in text
[10].

Definition 2.3.1. (Consistent)
A set Γ of formulas is called consistent if Γ ⊬ ⊥.

Definition 2.3.2. (Maximally Consistent)
A set Γ is called maximally consistent if

1. Γ is consistent: Γ ⊬ ⊥;

2. Γ is maximal: there is no Γ′ such that Γ ⊊ Γ′ and Γ′ ⊬ ⊥.

Every maximally consistent set is closed under implication and determines
the truth of all formulas. Then, we can consider Γ ⊢ φ if and only if φ ∈ Γ
for any formulas φ and any maximally consistent set Γ. In particular, φ is in
all maximally consistent sets if and only if φ is derivable without assumption
formulas. So, we will show the truth lemma(See Lemma 2.3.10) to prove the
completeness theorem.

Lemma 2.3.3. Let Γ and φ be a finite consistent set and a formula, re-
spectively. If Γ ∪ {φ} is inconsistent, then Γ ∪ {¬φ} is a finite consistent
set.

Lemma 2.3.4. Γ is consistent if and only if any finite subset ∆ ⊆ Γ is
consistent.

Without considering compactness, we cannot establish the proof that Γ
is satisfiable if and only if every finite subset ∆ ⊆ Γ is also satisfiable. How-
ever, we can prove the lemma 2.3.4 without consideration of the compactness
because Γ ⊢ ⊥ means that ⊥ is deduced by using finite formulas in Γ as as-
sumption formulas and applying the axioms and the inference rules at most
finite(See Definition 2.2.1).

Lemma 2.3.5. The set of all finite sequences of members of a countable set
is also countable.

The proof of the lemma 2.3.5 is referenced from the text [13] p.4-5. This
lemma 2.3.5 shows the language LML is a countably infinite set of formulas
because every formula is a finite sequence of symbols. If the language LML

is countable, then we can consider an enumeration of all formulas in LML.
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Lemma 2.3.6. (Lindenbaum’s Lemma)
If Γ is consistent, there is a maximally consistent set ∆ such as Γ ⊆ ∆.

Lindenbaum’s lemma demonstrates that any consistent set can be ex-
tended to form a maximally consistent set. There are two proofs for Linden-
baum’s lemma. The proof by an enumeration of all formulas is frequently
cited. We refer to the proof in [10] p.179. On the other hand, we can prove
Lindenbaum’s lemma by an application of Zorn’s Lemma without an enu-
meration of all formulas.

Now, we review the notion of “validity”. The truth of every formula
is determined in any possible world and any Kripke model. In particular,
all valid formulas always hold in all possible worlds and all Kripke models.
Although validity and a maximally consistent set are defined by satisfiabil-
ity and provability, respectively, we can make a correspondence between all
possible worlds and all maximally consistent sets. Hence, we prove “every
formula in all maximally consistent sets is valid” and “every valid formula is
in all maximally consistent sets” by introducing the Kripke model covering
all maximally consistent sets called “the canonical model”.

Definition 2.3.7. (Canonical Model)
The canonical model MC = ⟨WC ,∼C , V C⟩ is defined as follows:

1. WC = {Γ | Γ is maximal consistent};

2. Γ ∼C ∆ iff {φ | □φ ∈ Γ} ⊆ ∆;

3. V C(p) = {Γ ∈ WC | p ∈ Γ}.

The definition of the canonical model above is the same as the definition
of the canonical model for proof system K. Since maximally consistent sets of
the system S5 do not contain ¬(□iφ→ φ) and ¬(¬□iφ→ □i¬□iφ) for every
formula φ ∈ LML, we may define Γ ∼C ∆ iff {φ | □φ ∈ Γ} = {φ | □φ ∈ ∆},
too.

Lemma 2.3.8.
If Γ and ∆ are maximal consistent sets, then

1. If φ ∈ Γ and φ→ ψ ∈ Γ, then ψ ∈ Γ;

2. φ ∈ Γ iff ¬φ /∈ Γ;

3. φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ;

4. Γ ∼C ∆ iff {φ | □φ ∈ Γ} = {φ | □φ ∈ ∆};
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5. {□φ | □φ ∈ Γ} ⊢ ψ iff {□φ | □φ ∈ Γ} ⊢ □ψ;

The proof of the lemma 2.3.8 is referenced from the text [10] p179-180.
The proof of item 4 needs the axioms (T ) and (5). The proof of item 5 needs
the axiom (K) and the inference rule (Nec).

Lemma 2.3.9. (Canonicity)
∼C is equivalence relations for all maximally consistent sets Γ,∆ ∈ WC .

It is clear by item 4 of the lemma 2.3.8 because = is an equivalence
relation. The lemma 2.3.9 shows the canonical model is S5 frame. It is
needed to prove the following lemma called Truth Lemma.

Lemma 2.3.10. (Truth Lemma)
For every φ ∈ LML and every maximally consistent set Γ ∈ WC :

φ ∈ Γ iff (MC ,Γ) |= φ.

Truth Lemma shows “every formula in all maximally consistent sets is
valid” and “every valid formula is in all maximally consistent sets”. The
proof by the induction on the structure of φ ∈ LML is referenced from text
[10] p.180-p.181.

Theorem 2.3.11. (The Completeness Theorem)
For every φ ∈ LML,

FS5 |= φ implies ⊢S5 φ.

By the contraposition, Lindenbaum’s Lemma, and Truth Lemma. The
proof is referenced from text [10] p.181.
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Chapter 3

Awareness Logic

This section reviews Awareness Logic.

3.1 Language and Semantics

Definition 3.1.1. (Language LAL)
Let P be a countable set of atomic formulas and G be a finite set of agents,
where these sets are mutually disjoint. The language LAL is defined by the
following:

LAL ∋ φ ::= p | ¬φ | φ ∧ φ | □iφ | Aiφ

where p ∈ P and i ∈ G.

In addition, we introduce abbreviations for the truth ⊤, the falsity ⊥,
the disjunction ∨, the implication →, the logical equivalence ↔, the dual
operator ♢i of □i for each i ∈ G, and the explicit knowledge operator Ki for
each i ∈ G as follows:

• ⊤ := p→ p;

• ⊥ := ¬⊤;

• φ ∨ ψ := ¬(¬φ ∧ ¬ψ);

• φ→ ψ := ¬(φ ∧ ¬ψ);

• φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);

• ♢iφ := ¬□i¬φ;

• Kiφ := Aiφ ∧□iφ;
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The following are the informal senses of □i, Ai and Ki:

• □iφ stands for ‘agent i knows φ holds implicitly’.

• Aiφ stands for ‘agent i is aware of φ’.

• Kiφ stands for ‘agent i knows φ holds explicitly’.

Next, we explain the semantics of Awareness Logic.
Now, we assume the following conditions of awareness for all agents:

“agent i is aware of φ if and only if agent i is aware of all atomic propo-
sitions contained in φ”. This condition has been considered in [3] and is
called “awareness is generated from primitive propositions, as gpp for abbre-
viation.

Definition 3.1.2. (Epistemic Awareness Model)
Given a countable set of atomic propositions P and a finite set of agents G,
where these sets are mutually disjoint. An epistemic awareness model is
a tuple M = ⟨W,∼,A , V ⟩ consisting of:

1. W is a non-empty set of possible worlds;

2. ∼: G −→ 2W×W is a function assigning to each agent i ∈ G an equiva-
lence relation ∼i;

3. A : G ×W −→ 2P is a function.

4. V : P −→ 2W is a function.

Then, ∼,A , V is called accessibility function, awareness function and
valuation function of M , respectively. Also, ∼i returned by the accessibil-
ity function is called accessibility relation of agent i.

Definition 3.1.3. At : LAL −→ 2P is defined inductively in the followings:

1. At(⊤) = ∅;

2. for all p ∈ P , At(p) = {p};

3. for all φ ∈ LAL, At(¬φ) = At(φ);

4. for all φ, ψ ∈ LAL, At(φ ∧ ψ) = At(φ) ∪ At(ψ);

5. for all φ ∈ LAL, At(□iφ) = At(φ);

6. for all φ ∈ LAL, At(Aiφ) = At(φ);
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Definition 3.1.4. (Satisfaction Relation of LAL)
Let P be a set of atomic propositions. Given any Kripke model M = ⟨W,∼
,A , V ⟩ and any possible world w ∈ W . Then, a binary relation |= is defined
as follows:

(M,w) |=AL p ⇐⇒ w ∈ V (p)

(M,w) |=AL ¬φ ⇐⇒ (M,w) ̸|=AL φ

(M,w) |=AL (φ ∧ ψ) ⇐⇒ (M,w) |=AL φ and (M,w) |=AL ψ;

(M,w) |=AL Aiφ ⇐⇒ At(φ) ⊆ A (i, w);

(M,w) |=AL □iφ ⇐⇒ for all v ∈ W,w ∼i v implies (M, v) |=AL φ;

Then, |=AL is called a satisfaction relation of LAL.
A set of formulas Γ ⊆ LAL is satisfiable if there is some model M =

⟨W,∼,A , V ⟩ and a possible world w ∈ W such that (M,w) |=AL φ for all
φ ∈ Γ. A formula φ ∈ LAL is satisfiable when {φ} is satisfiable.

By the definition, the satisfaction relation for ⊤,⊥,∨,→,♢i, Ki is derived
as follows: Given any (M,w) with M = ⟨W,∼,A , V ⟩ and w ∈ W .

(M,w) |=AL ⊤ ;

(M,w) ̸|=AL ⊥ ;

(M,w) |=AL φ ∨ ψ ⇐⇒ (M,w) |=AL φ or (M,w) |=AL ψ;

(M,w) |=AL φ→ ψ ⇐⇒ (M,w) |=AL φ implies (M,w) |=AL ψ;

(M,w) |=AL ♢iφ ⇐⇒ for some v ∈ W,w ∼i v and (M, v) |=AL φ;

(M,w) |=AL Kiφ ⇐⇒ (M,w) |=AL □iφ and (M,w) |=AL Aiφ;

Definition 3.1.5. (Validity)
The notion of validity is defined over the various levels of semantical struc-
ture as follows:

• A formula φ ∈ LAL is valid on an epistemic awareness model M if
(M,w) |=AL φ for all w ∈ W . It is denoted M |=AL φ.

• A formula φ ∈ LAL is valid if (M,w) |=AL φ for all w ∈ W and all
epistemic awareness models M . It is denoted |=AL φ.

3.2 Axiomatization and Soundness

This section introduces the complete axiomatization for Awareness Logic
with gpp. In the thesis, the axioms A1, A2, and A5 in [3] p.43 are called
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TAUT, K, and 5, respectively. Further, the inference rules R1 and R2 in
[3] p.43 are called MP and Nec, respectively. It is the same as that of the
system S5.

The axioms regarding the condition gpp are referenced from [3] p.56. In
this thesis, the axioms Aiφ↔ Ai¬φ, Ai(φ∧ψ) ↔ Aiφ∧Aiψ, Aiφ↔ AiAjφ,
and Aiφ↔ Ai□jφ are called AN, ACN, AA, and A□, respectively.

The axiom K stands for “Implicit knowledge is closed under implication”.
The axiom T stands for “If an agent implicitly knows φ holds, then φ holds”,
i.e., implicit knowledge is always correct. Doxastic Logic regarding reasoning
about false information does not admit the axiom T . The axiom 5 stands
for “If an agent does not implicitly know φ holds, then he implicitly knows
that he does not implicitly know φ holds”. If we admit the axioms of the
system S5, then 4 : □iφ → □i□iφ must be admitted as the theorem. The
theorem 4 stands for “If an agent implicitly knows φ holds, then he implicitly
knows that he implicitly knows φ holds”. Then, each agent knows what he
implicitly knows and does not know by axiom 5 and theorem 4.

axiom

TAUT All propositional tautologies

K ⊢AL □iφ ∧□i(φ→ ψ) → □iψ Closed under Implication

T ⊢AL □iφ→ φ Knowledge implies truth

5 ⊢AL ¬□iφ→ □i¬□iφ Negative Introspection

AN ⊢AL Aiφ↔ Ai¬φ gpp

ACN ⊢AL Ai(φ ∧ ψ) ↔ Aiφ ∧ Aiψ gpp

AA ⊢AL Aiφ↔ AiAjφ gpp

A□ ⊢AL Aiφ↔ Ai□jφ gpp

Table 3.1: Axioms of AL with gpp

The following are the inference rules of AL. Note that φ and φ → ψ
in the inference rules (MP ) and (Nec) must be formulas deduced without
assumption.

φ φ→ ψ

ψ
(MP )

φ
□iφ

(Nec)

Now, we call a proof system S5 is extended by adding the axioms (AN), (ACN), (AA),
and (A□) the system AL. Next, we define the formal proof in the system
AL.

22



Definition 3.2.1. (Proof of The System AL)
A proof of the system AL from Γ to φ is a finite sequence of formulas
ψ1, ψ2, ...ψn in LAL such that φ ≡ ψn and every formula ψi in the sequence
is the axiom of AL, a formula in Γ, or formula deduced from ψj(j < i) by
applying an inference rule.

Further, φ is provable from Γ in the system AL if there is a proof of the
system AL from Γ to φ. It is denoted Γ ⊢AL φ. If Γ = ∅, then it is denoted
⊢AL φ.

Theorem 3.2.2. (The Soundness Theorem)
For every φ ∈ LAL,

⊢AL φ implies |=AL φ.

3.3 Completeness

The definition of maximally consistent sets and the proof of Lindenbaum’s
Lemma are similar to them in Section 2.3.

The definition of the canonical model of the system S5 (See Definition
2.3.7) is extended to that of the canonical model of the system AL by adding
A C(i,Γ) = {p | Aip ∈ Γ}. The definition of the canonical model of the
system AL containing the axioms regarding the condition gpp is referenced
from Definition 67 in [11] p.59.

Definition 3.3.1. (Canonical Model)
The canonical model MC = ⟨WC ,∼C ,A C , V C⟩ is defined as follows:

1. WC = {Γ | Γ is maximal consistent};

2. Γ ∼C
i ∆ iff {φ | □iφ ∈ Γ} ⊆ ∆;

3. A C(i,Γ) = {p | Aip ∈ Γ};

4. V C(p) = {Γ ∈ WC | p ∈ Γ}.

The following lemma 3.3.2 is the same as the lemma 2.3.8. Similarly, the
proof is referenced from Lemma 7.4 in text [10] p.179-p.180.

Lemma 3.3.2. If Γ and ∆ are maximal consistent sets, then

1. If φ ∈ Γ and φ→ ψ ∈ Γ, then ψ ∈ Γ;

2. φ ∈ Γ iff ¬φ /∈ Γ,

3. φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ,
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4. Γ ∼C
i ∆ iff {φ | □iφ ∈ Γ} = {φ | □iφ ∈ ∆},

5. {□iφ | □iφ ∈ Γ} ⊢AL ψ iff {□iφ | □iφ ∈ Γ} ⊢AL □iψ.

Item 1 of the following lemma is the same as the lemma 2.3.7. Similarly,
it is clear because = is an equivalence relation. The proof of item 2 of the
following lemma is referenced from Lemma 68 in [11] p.59.

Lemma 3.3.3. (Canonicity)
For all maximally consistent sets Γ,∆,

1. ∼C
i is equivalence relations for all i ∈ G.

2. gpp: Aiφ ∈ Γ iff At(φ) ⊆ A C(i,Γ) for all i ∈ G.

In the following lemma, the proof of the case for Aiφ follows directly from
lemma 3.3.3. The proofs of other cases are similar to lemma 2.3.10.

Lemma 3.3.4. (Truth Lemma)
For every φ ∈ LAL and every maximally consistent set Γ ∈ WC :

φ ∈ Γ iff (MC ,Γ) |=AL φ.

The proof of the completeness theorem is similar to that in Section 2.3.

Theorem 3.3.5. (The Completeness Theorem)
For every φ ∈ LAL,

|=AL φ implies ⊢AL φ.
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Chapter 4

Awareness Logic with Global
Propositional Awareness

This chapter introduces Awareness Logic with Global Propositional Aware-
ness in preparation for introducing Awareness Logic of Abstraction.

4.1 Restrictions on Awareness

Several restrictions on awareness are considered in [3] p.54. First, we list the
names of these conditions below.:

• Awareness is generated by primitive propositions;

• Awareness is closed under subformulas;

• An agent knows which formulas he is aware of.

Further, we consider two restrictions of awareness set called the global
definition and the local definition. These definitions of an awareness set
are referenced from [6] p.210.

Awareness is generated by primitive propositions

This condition is often abbreviated as gpp. Definition 3.1.2 imposes the
condition gpp. On the other hand, a traditional awareness set A is a set
of formulas, and the satisfiability for awareness operator Ai is defined as
(M,w) |= Aiφ⇔ φ ∈ A (i, w). gpp is described as the following.:

For all i ∈ G and w ∈ W,φ ∈ A (i, w) if and only if At(φ) ⊆ A (i, w).
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Traditionally, the case of φ ∧ ψ ∈ A (i, w) and φ /∈ A (i, w) is possible.
Further, the case of ¬φ ∈ A (i, w) and φ /∈ A (i, w) is possible. However,
some people consider that their cases are not natural. For example, if we are
aware of “It is Monday and sunny today”, then we are also aware of “It is
sunny and Monday today”.

If gpp holds, then the following restriction called “awareness is closed
under subformulas” holds.

Awareness is closed under subformulas

“Awareness is closed under subformulas” is described as the following.:

For all i ∈ G, If φ ∈ A (i, w) and ψ is a subformula of φ, then ψ ∈ A (i, w).

However, if we explicitly know the truth of φ, then we may explicitly know
the truth of φ∨ψ even if we are not aware of ψ. When we are reasoning about
a computer program, we may know φ∨ψ is true without needing to compute
the truth of ψ. In this regard, this restriction is considered inappropriate as
a computational notion of awareness. On the other hand, we consider that
this restriction is compatible with filtration because Theorem 2.39 in text [8]
p.79 holds for every set of formulas closed under subformulas.

The restriction allows the axiom K for explicit knowledge (⊢ Kiφ ∧
Ki(φ → ψ) → Kiψ). So, gpp also allows the axiom K for explicit knowl-
edge.

An agent knows which formulas he is aware of

This condition is often abbreviated as ka.

For all i ∈ G and w, v ∈ W, if w ∼i v implies A (i, w) = A (i, v).

By [3] p.54, ka corresponds to “Aiφ → □iAiφ and ¬Aiφ → □i¬Aiφ
are valid” for all i ∈ G. If we admit ka and “awareness is closed under
subformulas”, then an agent explicitly knows he is aware of.

Global Definition of An Awareness Set

Traditionally, the agent’s awareness in some possible world may be different
from that in different possible worlds. This traditional definition is called
the local definition of awareness set. On the other hand, The restriction
that each agent’s awareness is the same in all worlds is called the global
definition of awareness set. if we allow the global definition of awareness set,
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then ♢iAjφ∧♢i¬Ajφ is always false for all i, j ∈ G. Further, if we allow the
global definition of awareness set, then we must allow ka, too.

ALGP allows gpp and the global definition of an awareness set, i.e., ALGP
allows all of the above restrictions without the local definition of an awareness
set.

4.2 Language and Semantics

Definition 4.2.1. (Language LALGP )
Let P be a countable set of atomic propositions and G be a finite set of agents.
Suppose e ∈ G. We assume they are mutually disjoint. The language LALGP
is defined by the following:

LALGP ∋ φ ::= ⊤ | p | ¬φ | φ ∧ φ | □iφ | Aiφ

where p ∈ P and i ∈ G.

We introduce the constant symbol ⊤ as a primitive for consideration of
the model tailored to the awareness of those who are not aware of anything.
If ⊤ is an abbreviation for p → p, then the satisfiability of ⊤ will not be
defined in the model.

In addition, we introduce abbreviations for the falsity ⊥, the disjunction
∨, the implication →, the logical equivalence ↔, the dual operator ♢i of □i

for each i ∈ G, and the explicit knowledge operator Ki for each i ∈ G as
follows:

• ⊥ := ¬⊤;

• φ ∨ ψ := ¬(¬φ ∧ ¬ψ);

• φ→ ψ := ¬(φ ∧ ¬ψ);

• φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);

• ♢iφ := ¬□i¬φ;

• Kiφ := Aiφ ∧□iφ;

The following are the informal senses of □i, Ai, and Ki.

• □iφ stands for ‘agent i knows φ holds, implicitly’.

• Aiφ stands for ‘agent i is aware of φ’.
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• Kiφ stands for ‘agent i knows φ holds, explicitly’.

The modalities □e and ♢e are called the global box and the global
diamond, respectively in text [8] p.54.1 The global diamond is needed to
give the reduction axiom for abstraction operators introduced in the paper
[1]. In this thesis, the global definition of awareness needs global modalities.
But, the modalities □e and ♢e cannot be expressed in the basic modal logic
[8]. So, we have to introduce □e or ♢e as a primitive in this thesis.

Next, we introduce the semantics ALGP.
The following model is the same as the Kripke model with awareness

function and restriction that ∼i is an equivalence relation for each i ∈ G.

Definition 4.2.2. (Epistemic Awareness Model)
Let P be a countable set of atomic propositions and G be a finite set of
agents. Suppose e ∈ G. We assume they are mutually disjoint. M is called
Epistemic awareness model if it is a tuple ⟨W,∼,A , V ⟩ consisting of:

1. W is a non-empty set of possible worlds ;

2. ∼: G −→ 2W×W is a function assigning to each agent i ∈ G an equiva-
lence relation ∼i ,and w ∼e v for all w, v ∈ W ;

3. A : G −→ 2P , where A (e) = P ;

4. V : P −→ 2W .

Then, ∼,A , and V are called accessibility function, awareness func-
tion and valuation function of M respectively. Also, ∼i returned by the
accessibility function is called accessibility relation of agent i.

Definition 4.2.3. At : LALGP −→ 2P is defined inductively in the followings:

1. At(⊤) = ∅;

2. for all p ∈ P , At(p) = {p};

3. for all φ ∈ LALGP , At(¬φ) = At(φ);

4. for all φ, ψ ∈ LALGP , At(φ ∧ ψ) = At(φ) ∪ At(ψ);

5. for all φ ∈ LALGP , At(□iφ) = At(φ);

1In the text [8], the symbols the global box and the global diamond are used A and
E, respectively. But, in this thesis, the symbol of the global box is □e because it is easily
misunderstood that A is the awareness operator.
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6. for all φ ∈ LALGP , At(Aiφ) = At(φ);

Definition 4.2.4. (Satisfaction Relation of LALGP )
Given (M,w) with M = ⟨W,∼,A , V ⟩ and w ∈ W .

(M,w) |=ALGP ⊤ ;

(M,w) |=ALGP p ⇐⇒ w ∈ V (p);

(M,w) |=ALGP ¬φ ⇐⇒ (M,w) ̸|=ALGP φ;

(M,w) |=ALGP φ ∧ ψ ⇐⇒ (M,w) |=ALGP φ and (M,w) |=ALGP ψ;

(M,w) |=ALGP Aiφ ⇐⇒ At(φ) ⊆ A (i);

(M,w) |=ALGP □iφ ⇐⇒ for all v ∈ W,w ∼i v implies (M, v) |=ALGP φ;

Then, |=ALGP is called a satisfaction relation of LALGP .
A set of formulas Γ ⊆ LALGP is satisfiable if there is some model M =

⟨W,∼,A , V ⟩ and a possible world w ∈ W such that (M,w) |= φ for all
φ ∈ Γ. A formula φ ∈ LALGP is satisfiable when {φ} is satisfiable.

By the definition, the satisfaction relation for ⊥,∨,→,♢i, Ki are derived
as follows: Given (M,w) with M = ⟨W,∼,A , V ⟩ and w ∈ W .

(M,w) ̸|=ALGP ⊥ ;

(M,w) |=ALGP φ ∨ ψ ⇐⇒ (M,w) |=ALGP φ or (M,w) |=ALGP ψ;

(M,w) |=ALGP φ→ ψ ⇐⇒ (M,w) |=ALGP φ implies (M,w) |=ALGP ψ;

(M,w) |=ALGP ♢iφ ⇐⇒ for some v ∈ W,w ∼i v and (M, v) |=ALGP φ;

(M,w) |=ALGP Kiφ ⇐⇒ (M,w) |=ALGP □iφ and (M,w) |=ALGP Aiφ;

Definition 4.2.5. (Validity)
The notion of validity is defined over the various levels of semantical struc-
ture as follows:

• A formula φ ∈ LALGP is valid on an epistemic awareness model M if
(M,w) |= φ for all w ∈ W . It is denoted M |=ALGP φ.

• A formula φ ∈ LALGP is valid if (M,w) |= φ for all w ∈ W and all
epistemic awareness models M . It is denoted |=ALGP φ.

4.3 Axiomatization and Soundness

This section introduces the complete axiomatization for ALGP. In the thesis,
the axiom inc is referenced from the axiom inclusion in [8] p.417. By e ∈ G,
the axioms K,T , and 5 hold for the global modalities. The axioms from
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TAUT to A□ in Table 4.1 are the same as those in Section 3.2. The axioms
eA and eUA are for the global definition of awareness sets. Without global
modalities, we cannot represent that the same awareness holds for all possible
worlds of each model. Although these axioms are not introduced in [6], they
are natural as axioms of the global definition of awareness sets. The axiom
Ae represents that the global modalities □e and ♢e are the same as the
global modalities of modal logic in [8] p.54. ALGP needs axiom A⊤ because
we introduced the constant symbol ⊤ as a primitive for consideration of the
model tailored to the awareness of those who are not aware of anything.

axiom

TAUT All propositional tautologies

K ⊢ □iφ ∧□i(φ→ ψ) → □iψ Closed under Implication

T ⊢ □iφ→ φ Knowledge implies truth

5 ⊢ ¬□iφ→ □i¬□iφ Negative Introspection

AN ⊢ Aiφ↔ Ai¬φ gpp

ACN ⊢ Ai(φ ∧ ψ) ↔ Aiφ ∧ Aiψ gpp

AA ⊢ Aiφ↔ AiAjφ gpp

A□ ⊢ Aiφ↔ Ai□jφ gpp

inc ⊢ □eφ→ □iφ ∼e includes ∼i

eA ⊢ Aiφ→ □eAiφ Global Definition

eUA ⊢ ¬Aiφ→ □e¬Aiφ Global Definition

A⊤ ⊢ Ai⊤ All agents aware of ⊤

Ae ⊢ Aeφ The agent e aware of all

Table 4.1: Axioms of ALGP

The inference rules are the same as that of ALGP. Note that φ and φ→ ψ
in the inference rules (MP ) and (Nec) must be formulas deduced without
assumption.

φ φ→ ψ

ψ
(MP )

φ
□iφ

(Nec)

Now, we call a proof system AL is extended by adding the axioms (inc), (eA), (eUA), (A⊤),
and (Ae) the system ALGP. Next, we define the formal proof in the system
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ALGP.

Definition 4.3.1. (Proof of The System ALGP)
A proof of the system ALGP from Γ to φ is a finite sequence of formulas
ψ1, ψ2, ...ψn in LALGP such that φ ≡ ψn and every formula ψi in the sequence
is the axiom of AL, a formula in Γ, or formula deduced from ψj(j < i) by
applying an inference rule.

Further, φ is provable from Γ in the system AL if there is a proof of
the system ALGP from Γ to φ. It is denoted Γ ⊢AL φ. If Γ = ∅, then it is
denoted ⊢ALGP φ.

Theorem 4.3.2. (The Soundness Theorem)
For every φ ∈ LALGP ,

⊢ALGP φ implies |=ALGP φ.

Proof. Take an arbitrary epistemic awareness model M = ⟨W,∼,A , V ⟩ and
w ∈ W .

• (A⊤): Take an arbitrary i ∈ G. By the definition of the function At,
At(⊤) ⊆ A (i). By the semantics, (M,w) |=ALGP Ai⊤. Since i ∈ G is
an arbitrary agent, (M,w) |=ALGP Ai⊤ for all i ∈ G.

• (Ae): By the definition of A , A (e) = P . Then, At(φ) ⊆ A (e) for all
φ ∈ LALGP . Therefore, (M,w) |=ALGP Aeφ.

• (eA), (eUA): By the definition of the awareness set, (M,w) |=ALGP

Aiφ is equivalent to (M, v) |=ALGP Aiφ for all v ∈ W and all i ∈ G. By
the definition of ∼e, (M,w) |=ALGP Aiφ is equivalent to (M,w) |=ALGP

□eAiφ.

• (inc): Suppose that (M,w) |=ALGP □eφ. Then, (M, v) |=ALGP φ for all
v ∈ W . Since ∼i is the relation onW for all i ∈ G, (M, v′) |=ALGP φ for
all v′ ∈ W such that w ∼i v

′ for all i ∈ G. Therefore, (M,w) |=ALGP

□iφ.

□

4.4 Completeness

The definition of maximally consistent sets, the proof of Lindenbaum’s Lemma,
and the definition of the canonical model are similar to them in Section 3.3.
The following lemma 4.4.1 shows that a model of ALGP can be constructed
from the canonical model.
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Lemma 4.4.1. Given the canonical model MC = ⟨WC ,∼C ,A C , V C⟩. For
all i ∈ G and all Γ,∆ ∈ WC ,

• inclusion: if Γ ∼C
i ∆, then Γ ∼C

e ∆.

• the global definition: if Γ ∼C
e ∆, then A C(i,Γ) = A C(i,∆).

Proof. Given the canonical model MC = ⟨WC ,∼C ,A C , V C⟩. Take an arbi-
trary agent i ∈ G and two arbitrary maximally consistent sets Γ,∆ ∈ WC .

• inclusion: Suppose Γ ∼C
i ∆. By the lemma 3.3.2, {φ | □iφ ∈ Γ} =

{φ | □iφ ∈ ∆}. Take an arbitrary formula ψ ∈ {φ | □iφ ∈ Γ}. Then,
□iψ ∈ Γ. By the axiom (inc), {φ | □eφ ∈ Γ} ⊆ {φ | □iφ ∈ Γ}. Then,
{φ | □eφ ∈ Γ} ⊆ ∆. Therefore, Γ ∼C

e ∆.

• the global definition: Suppose Γ ∼C
e ∆. Take an arbitrary p ∈

A C(i,Γ). Then, Aip ∈ Γ. By applying (eA), □eAip ∈ Γ. By the
assumption, Aip ∈ ∆. Since p ∈ A C(i,Γ) is an arbitrary atomic
proposition, A C(i,Γ) ⊆ A C(i,∆). Take an arbitrary q /∈ A C(i,Γ).
Then, Aiq /∈ Γ, i.e., ¬Aiq ∈ Γ. By applying (eUA), □e¬Aiq ∈ Γ.
By the assumption, ¬Aiq ∈ ∆, i.e., Aiq /∈ ∆. Since q /∈ A C(i,Γ)
is an arbitrary atomic proposition, A C(i,∆) ⊆ A C(i,Γ). Therefore,
A C(i,Γ) = A C(i,∆).

□

By the properties of maximally consistent sets, φ is in all maximally
consistent sets if and only if φ is derivable without assumption formulas. So,
we may show that “every formula in all maximally consistent sets is valid”
and “every valid formula is in all maximally consistent sets”(Truth Lemma).
By proving Truth Lemma, we introduce models such that the disjoint union
of these models covers all maximally consistent sets.

Definition 4.4.2. (Submodel of Canonical Model)
Let We be the set of the equivalence classes of maximally consistent sets
with respect to ∼C

e . A submodel of canonical model MC′
= ⟨WC′

,∼C

,A C′
, V C′⟩ is given for each the equivalence class of a maximally consistent

set with respect to ∼C
e as follows:

1. WC′ ∈ We;

2. Γ ∼C′
i ∆ iff Γ ∼C

i ∆ for all maximally consistent set Γ,∆ ∈ WC′
;

3. A C′
(i) = A C(i,Γ) for all maximally consistent set Γ ∈ WC′

;
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4. V C′
(p) = V C(p) for all p ∈ P .

Lemma 4.4.3. Given a submodel of the canonical model MC′
= ⟨WC′

,∼C′

,A C′
, V C′⟩. For all maximally consistent sets Γ,∆ ∈ WC′

,

1. ⊤ ∈ Γ,

2. for the agent e ∈ G, Aeφ ∈ Γ,

3. gpp: Aiφ ∈ Γ iff At(φ) ⊆ A C′
(i) for all i ∈ G.

Proof. Take two arbitrary maximally consistent sets Γ,∆.

1. Since Γ is consistent, Γ ∪ {⊤} is also consistent. Since Γ is maximally
consistent, ⊤ ∈ Γ.

2. By the axiom (Ae), Aeφ ∈ Γ for all φ ∈ LALGP because φ ∈ Γ and
φ→ ψ ∈ Γ implies ψ ∈ Γ for all φ, ψ ∈ LALGP .

3. The proof is similar to the lemma 3.3.3.

□

Every submodel is mutually disjoint to the other submodels, and the
union of all submodels covers all maximally consistent sets. Therefore, if the
truth lemma is valid on every submodel, then all valid formulas are in all
maximally consistent sets and every formula is in all maximally consistent
sets is valid.

Lemma 4.4.4. (Truth Lemma)
For every φ ∈ LALGP , every submodel of the canonical modelMC′

, and every
maximally consistent set Γ ∈ WC′

:

φ ∈ Γ iff (MC′
,Γ) |= φ.

Proof. By the induction on the structure of φ ∈ LALGP .

• (Base Case):

– (the case for ⊤): By the lemma 4.4.3, ⊤ ∈ Γ. By the semantics,
(MC′

,Γ) |= ⊤. Therefore, ⊤ ∈ Γ is equialent to (MC′
,Γ) |= ⊤.

– (the case for p ∈ P ): The proof of the case is the same as the
lemma 3.3.4.

• (Induction Hypothesis): For every maximally consistent set Γ ad
for given φ and ψ it is the case that φ ∈ Γ iff (MC′

,Γ) |= φ and ψ ∈ Γ
iff (MC′

,Γ) |= ψ.

33



• (Induction Step):

– (the case for ¬φ, φ ∧ ψ and □iφ): The proofs of the cases are
the same as the lemma 3.3.4.

– (the case for Aiφ):

∗ Aiφ ≡ Aeφ : By the lemma 4.4.3, Aeφ ∈ Γ for all formu-
las φ ∈ LALGP . By the semantics, (MC′

,Γ) |= Aeφ for all
formulas φ ∈ LALGP . Therefore, Aeφ ∈ Γ is equivalent to
(MC′

,Γ) |= Aeφ.

∗ Aiφ ̸≡ Aeφ: The proof is similar to the lemma 3.3.4.

□

Theorem 4.4.5. (The Completeness Theorem)
For every φ ∈ LALGP ,

|= φ implies ⊢ φ.

Proof. By the contraposition. Take an arbitrary φ ∈ LALGP . Suppose ⊬ φ.
Then, {¬φ} is a consistent. By Lindenbaum’s Lemma, there is a maximally
consistent set Γ such that {¬φ} ⊆ Γ. By the Truth Lemma, (MC′

,Γ) |= ¬φ.
Therefore, ̸|= φ. □
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Part II

Awareness Logic of Abstraction
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Chapter 5

Awareness Logic of Filtration

In part II, we assume P is a finite set of atomic propositions. Further, we
introduce “Awareness Logic of Abstraction” by adding the filtration-based
equivalence relation to epistemic awareness models.

There are two reasons why filtration is a natural concept as an abstrac-
tion. First, a model obtained through filtration is simpler than the original
model. Second, a model obtained through filtration preserves the truth of
some formulas.

5.1 Agent Expression

We consider awareness of the group of agents for common awareness and
distributed awareness. Common awareness and distributed awareness cor-
respond to nested abstraction and mutually complementary concretization,
respectively. In this thesis, expression means a finite sequence of symbols.

Definition 5.1.1. (Agent expression A)
Let G be a finite set of agents with the special agent e.

A ∋ a ::= i | a+ a | a · a

where i ∈ G. Then, a is called an agent expression of G.

a + b’s awareness means agent a’s awareness or agent b’s awareness. In
other words, a+ b’s awareness is the distributed awareness of a and b. a · b’s
awareness means agent a’s awareness and agent b’s awareness. In other words,
a · b’s awareness is the common awareness of a and b.

We introduce Aa+b and Aa·b as macro to ALGP.
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• Distributed Awareness: Aa+bφ :=
∧
p∈At(φ)(Aap ∨ Abp);

• Common Awareness: Aa·bφ := Aaφ ∧ Abφ,

Lemma 5.1.2. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. For
all φ ∈ LALGP and all a ∈ A, At(Aaφ) = At(φ).

Proof. By the induction of the structure of an agent expression. Given
an epistemic awareness model M = ⟨W,∼,A , V ⟩. Take an arbitrary φ ∈
LALGP .

• (Base Case): By the definition of At : LALGP −→ 2P , At(Aiφ) =
At(φ) for all φ ∈ LALGP and i ∈ G.

• (Induction Hypothesis): At(Aaφ) = At(φ) and At(Abφ) = At(φ)
for all φ ∈ LALGP .

• (Induction Step):

– (The case for Aa+bφ):

Since Aa+bφ :=
∧
p∈At(φ)(Aap∨Abp), At(Aa+bφ) = At(

∧
p∈At(φ)(Aap∨

Abp)). By the definition of At : LALGP −→ 2P , At(
∧
p∈At(φ)(Aap∨

Abp)) =
∪
p∈At(φ)(At(Aap)∪At(Abp)). By the induction hypothe-

sis,
∪
p∈At(φ)(At(Aap)∪At(Abp)) = At(φ). Therefore, At(Aa+bφ) =

At(φ).

– (The case for Aa·bφ):

Since Aa·bφ := Aaφ ∧ Abφ, At(Aa·bφ) = At(Aaφ ∧ Abφ). By the
definition of At : LALGP −→ 2P , At(Aaφ ∧ Abφ) = At(Aaφ) ∪
At(Abφ). By the induction hypothesis, At(Aaφ) ∪ At(Abφ) =
At(φ). Therefore, At(Aa·bφ) = At(φ).

Therefore, At(Aaφ) = At(φ) for all φ ∈ LALGP and all a ∈ A. □

Also, We extend the awareness function to that with agent expressions.

Definition 5.1.3. (Extension of Awareness Function)
Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩, a finite set of agents
G and the set of agent expression A of G. Then, A : A −→ 2P is defined
inductively:

1. for all a1, a2 ∈ A,
if a = (a1 + a2), then A (a) = A (a1) ∪ A (a2);
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2. for all a1, a2 ∈ A,
if a = (a1 · a2), then A (a) = A (a1) ∩ A (a2);

Theorem 5.1.4. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
For all φ ∈ LALGP and all a ∈ A,

(M,w) |=ALGP Aaφ ⇐⇒ At(φ) ⊆ A (a).

Proof. By the induction of the structure of an agent expression. Given an
epistemic awareness model M = ⟨W,∼,A , V ⟩ and an w ∈ W . Take an
arbitrary φ ∈ LALGP and two arbitrary agent expressions a, b ∈ A.

• (Base Case): By the semantics, (M,w) |=ALGP Aiφ is equivalent to
At(φ) ⊆ A (i) for all i ∈ G.

• (Induction Hypothesis): (M,w) |=ALGP Aaφ is equivalent to At(φ) ⊆
A (a) and (M,w) |=ALGP Abφ is equivalent to At(φ) ⊆ A (b) for all
φ ∈ LALGP .

• (Induction Step):

– (The case for Aa+bφ):

Since Aa+bφ :=
∧
p∈At(φ)(Aap ∨ Abp), (M,w) |=ALGP Aa+bφ is

equivalent to (M,w) |=ALGP

∧
p∈At(φ)(Aap ∨ Abp).

By the semantics, this is equivalent to (M,w) |=ALGP Aap or
(M,w) |=ALGP Abp for all p ∈ At(φ). By the induction hypothesis,
this is equivalent to At(p) ⊆ A (a) or At(p) ⊆ A (b) for all p ∈
At(φ). Since At(p) ⊆ A (a) or At(p) ⊆ A (b) for all p ∈ At(φ)
is equivalent to At(φ) ⊆ A (a) ∪ A (b), (M,w) |=ALGP Aa+bφ is
equivalent to At(φ) ⊆ A (a+ b) by the lemma 5.1.2.

– (The case for Aa·bφ):

Since Aa·bφ := Aaφ ∧ Abφ, (M,w) |=ALGP Aa·bφ is equivalent
to (M,w) |=ALGP Aaφ and (M,w) |=ALGP Abφ. By the induc-
tion hypothesis, (M,w) |=ALGP Aaφ and (M,w) |=ALGP Abφ is
equivalent to At(φ) ⊆ A (a) and At(φ) ⊆ A (b). Since At(φ) ⊆
A (a) and At(φ) ⊆ A (b) is equivalent to At(φ) ⊆ A (a) ∩ A (b),
(M,w) |=ALGP Aa·bφ is equivalent to At(φ) ⊆ A (a · b) by the
lemma 5.1.2.

Therefore, (M,w) |=ALGP Aaφ ⇐⇒ At(φ) ⊆ A (a) for all φ ∈ LALGP and
all a ∈ A. □
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5.2 Language and Semantics

Definition 5.2.1. (Language LALF )
Let P and G be finite sets of atomic formulas and agents, respectively. Sup-
pose e ∈ G. We assume they are mutually disjoint. Let A be the set of agent
expressions of G. The language LALF is defined by the following:

LALF ∋ φ ::= ⊤ | p | ¬φ | φ ∧ φ | □iφ | Aiφ | [≈]aφ

where p ∈ P , i ∈ G, and a ∈ A.

Clearly, LALGP ⊂ LALF if P and G is fixed.
In addition, we introduce abbreviations for the falsity ⊥, the disjunction

∨, the implication →, the logical equivalence ↔, the dual operator ♢i of
□i for each i ∈ G, the explicit knowledge operator Ki for each i ∈ G, the
distributed awareness operator Aa+b, the common awareness operator Aa·b,
and the dual operator ⟨≈⟩a of [≈]a for each a ∈ A as follows:

• ⊥ := ¬⊤;

• φ ∨ ψ := ¬(¬φ ∧ ¬ψ);

• φ→ ψ := ¬(φ ∧ ¬ψ);

• φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);

• ♢iφ := ¬□i¬φ;

• Kiφ := Aiφ ∧□iφ;

• Aa+bφ :=
∧
p∈At(φ)(Aap ∨ Abp);

• Aa·bφ := Aaφ ∧ Abφ;

• ⟨≈⟩aφ := ¬[≈]a¬φ;

[≈]a is called the implicit abstraction modality of a. The following
are the informal senses of □i, [≈]a, and Ki.

• □iφ stands for “agent i knows φ holds, implicitly”.

• [≈]aφ stands for “φ holds after the abstraction tailored to a’s aware-
ness”.

• Kiφ stands for “agent i knows φ holds, explicitly”.

39



An abstracted model called a quotient model is specified for each agent ex-
pression when an epistemic awareness model is given. We do not need to
define a model regarding dynamic operators like an action model before the
definition of the language. Next, we introduce the semantics of ALF.

Definition 5.2.2. At : LALF −→ 2P is defined inductively in the followings:

1. At(⊤) = ∅;

2. for all p ∈ P , At(p) = {p};

3. for all φ ∈ LALF , At(¬φ) = At(φ);

4. for all φ, ψ ∈ LALF , At(φ ∧ ψ) = At(φ) ∪ At(ψ);

5. for all φ ∈ LALF , At(□iφ) = At(φ);

6. for all φ ∈ LALF , At(Aaφ) = At(φ);

7. for all φ ∈ LALF , At([≈]aφ) = At(φ).

Next, we define a filtration-based equivalence relation on W by modal
equivalence. Let LALGP |Q mean the language LALGP with the set of atomic
propositions restricted to Q ⊆ P .

Definition 5.2.3. (a-Equivalent)1

Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. The
agent expression a induces an equivalence relation ≈a onW : for all w, v ∈ W ,

w ≈a v iff for all φ ∈ LALGP |A (a) ((M,w) |=ALGP φ iff (M, v) |=ALGP φ).

In other words, two worlds are a-equivalent if and only if they satisfy the
same formulas φ ∈ LALGP |A (a).

Definition 5.2.4. (Satisfaction Relation of LALF )
Given epistemic state (M,w) with M = ⟨W,∼,A , V ⟩ and w ∈ W .

(M,w) |=ALF ⊤ ;

(M,w) |=ALF p ⇐⇒ w ∈ V (p);

(M,w) |=ALF ¬φ ⇐⇒ (M,w) ̸|=ALF φ;

(M,w) |=ALF φ ∧ ψ ⇐⇒ (M,w) |=ALF φ and (M,w) |=ALF ψ;

(M,w) |=ALF Aiφ ⇐⇒ At(φ) ⊆ A (i);

(M,w) |=ALF □iφ ⇐⇒ for all v ∈ W,w ∼i v implies (M, v) |=ALF φ;

(M,w) |=ALF [≈]aφ ⇐⇒ for all v ∈ W,w ≈a v implies (M, v) |=ALF φ;
1This term is given according to [1].
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Then, |=ALF is called a satisfaction relation of LALF .
A set of formulas Γ ⊆ LALF is satisfiable if there is some model M =

⟨W,∼,A , V ⟩ and a possible world w ∈ W such that (M,w) |= φ for all
φ ∈ Γ. A formula φ ∈ LALF is satisfiable when {φ} is satisfiable.

By the definition, the satisfaction relation for ⊥,∨,→,♢i, Ki, Aa, ⟨≈⟩a
are derived as follows: Given epistemic state (M,w) with M = ⟨W,∼,A , V ⟩
and w ∈ W .

(M,w) ̸|=ALF ⊥ ;

(M,w) |=ALF φ ∨ ψ ⇐⇒ (M,w) |=ALF φ or (M,w) |=ALF ψ;

(M,w) |=ALF φ→ ψ ⇐⇒ (M,w) |=ALF φ implies (M,w) |=ALF ψ;

(M,w) |=ALF ♢iφ ⇐⇒ for some v ∈ W,w ∼i v and (M, v) |=ALF φ;

(M,w) |=ALF Kiφ ⇐⇒ (M,w) |=ALF □iφ and (M,w) |=ALF Aiφ;

(M,w) |=ALF Aaφ ⇐⇒ At(φ) ⊆ A (a);

(M,w) |=ALF ⟨≈⟩aφ ⇐⇒ for some v ∈ W,w ≈a v and (M, v) |=ALF φ;

5.3 Implicit Abstraction as Filtration

Lemma 5.3.1.
Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For all a, b ∈ A
such that A (a) ⊆ A (b). and all w, v ∈ W ,

w ≈b v ⇒ w ≈a v.

w ≈a v or w ≈b v ⇔ w ≈a·b v.

w ≈a+b v ⇔ w ≈a v and w ≈b v.

Lemma 5.3.2.
Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For all a, b ∈ A
and all w, v ∈ W ,

w ≈a v or w ≈b v ⇒ w ≈a·b v.

Example 5.3.3. There is an epistemic awareness model M = ⟨W,∼,A , V ⟩
such that for some w, v ∈ W and some a, b ∈ A,

w ≈a·b v ̸⇒ w ≈a v or w ≈b v.

Let G = {e, i, j} and P = {p, q}. Given an epistemic awareness model
M = ⟨W,∼,A , V ⟩ consisting of:
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1. W = {w, v};

2. ∼i= {(u, u) | u ∈ W} for all i ∈ G\{e} and ∼e= {(u, x) | u, x ∈ W}.

3. A (i) = {p} and A (j) = {q}.

4. V (p) = {w} and V (q) = {v}.

Then, w ̸≈i v, w ̸≈j v, and w ≈i·j v because A (i · j) = ∅ (See Figure 5.1).

w v

p,¬q ¬p, q

Figure 5.1: w ≈a·b v ̸⇒ w ≈a v or w ≈b v

Lemma 5.3.4.
Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For all a, b ∈ A
and all w, v ∈ W ,

w ≈a+b v ⇒ w ≈a v and w ≈b v.

Example 5.3.5. There is an epistemic awareness model M = ⟨W,∼,A , V ⟩
such that for some w, v ∈ W and some a, b ∈ A,

w ≈a v and w ≈b v ̸⇒ w ≈a+b v.

Let G = {e, i, j} and P = {p, q}. Given an epistemic awareness model
M = ⟨W,∼,A , V ⟩ consisting of:

1. W = {w, v, x, y, z};

2. ∼i= {(u, u′) | u, u′ ∈ {w, v, x}} ∪ {(u, u′) | u, u′ ∈ {y, z}},
∼j= {(u, u) | u ∈ W}, and ∼e= {(u, u′) | u, u′ ∈ W}.

3. A (i) = {p} and A (j) = {q}.

4. V (p) = {v, z} and V (q) = {w, v, y}.

Then, w ≈i y, w ≈j y, and w ̸≈i+j y because (M,w) |= ♢i(p ∧ q) and
(M, y) |= ¬♢i(p ∧ q) (See Figure 5.2).
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i
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Figure 5.2: w ≈a v and w ≈b v ̸⇒ w ≈a+b v

Proposition 5.3.6.
Given any epistemic awareness model M = ⟨W,∼,A , V ⟩ and any w ∈ W .
For all a, b ∈ A such that A (a) ⊆ A (b),

|= ⟨≈⟩bφ→ ⟨≈⟩aφ

(M,w) |= ⟨≈⟩a⟨≈⟩bφ ⇔ (M,w) |= ⟨≈⟩aφ.

(M,w) |= ⟨≈⟩a⟨≈⟩bφ ⇔ (M,w) |= ⟨≈⟩b⟨≈⟩aφ ⇔ (M,w) |= ⟨≈⟩a·bφ

Proposition 5.3.7.
For all a, b ∈ A and all φ ∈ LALF ,

|= ⟨≈⟩a+bφ→ ⟨≈⟩aφ ∧ ⟨≈⟩bφ

|= ⟨≈⟩aφ ∨ ⟨≈⟩bφ→ ⟨≈⟩a·bφ

Proposition 5.3.8.
For all a, b ∈ A and all φ ∈ LALF ,

|= [≈]a·bφ→ [≈]a[≈]bφ.

Example 5.3.9.
There is an epistemic awareness modelM = ⟨W,∼,A , V ⟩ such that for some
w ∈ W , some φ ∈ LALF and some a, b ∈ A,

(M,w) ̸|= ⟨≈⟩a⟨≈⟩bφ→ ⟨≈⟩b⟨≈⟩aφ.

Let G = {e, i, j} and P = {p, q}. Given an epistemic awareness model
M = ⟨W,∼,A , V ⟩ consisting of:

1. W = {w, v, x};
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2. ∼i=∼j= {(u, u) | u ∈ W} and ∼e= {(u, u′) | u, u′ ∈ W}.

3. A (i) = {p} and A (j) = {q}.

4. V (p) = {v, z} and V (q) = {w, v, y}.

Then, (M,w) |= ⟨≈⟩i⟨≈⟩j(¬p ∧ ¬q) because w ≈i v, v ≈j x, and (M,x) |=
¬p ∧ ¬q. But, (M,w) ̸|= ⟨≈⟩j⟨≈⟩i(¬p ∧ ¬q) because there is no u ∈ W such
that w ≈j u and u ≈i x. Therefore, (M,w) ̸|= ⟨≈⟩i⟨≈⟩j(¬p ∧ ¬q) → ⟨≈⟩j⟨≈
⟩i(¬p ∧ ¬q) (See Figure 5.3).

w v

x

p, q p,¬q

¬p,¬q

Figure 5.3: (M,w) ̸|= ⟨≈⟩a⟨≈⟩bφ→ ⟨≈⟩b⟨≈⟩aφ
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Chapter 6

Comparison among
Abstractions

Chapter 5 introduced a logical equivalence relation called a-equivalent for
the semantics of abstraction. However, we can consider other semantics of
abstraction by atoms-based equivalence relations or observational equivalence
relations. This chapter compares a logical equivalence relation to an atoms-
based equivalence relation and a observational equivalence relation.

6.1 Awareness Logic with Partition

First, a filtration-based equivalence relation of ALF is compared to an atoms-
based equivalence relation of Awareness Logic with Partition(ALP)[6] called
“indistinguishable relation”. ALP could not be intended for Awareness Logic
of Abstraction, but ALF is similar to ALP.

ALP is introduced for the formalization of the knowledge of others in
thought. In ALP, an agent’s awareness is different for each agent’s thought.
For example, i’s awareness in j1’s thought are i’s awareness in j2’s thought
are different. However, it is not possible to say which one is the actual i’s
awareness. An agent’s awareness in the other agent’s thoughts is similar to
an agent’s awareness believed by the other agent.

Definition 6.1.1. (Language LALP [6])
Let P be a countable set of atomic propositions and G be a finite set of agents.
We assume they are mutually disjoint. The language LALP is defined by the
following:

LALP ∋ φ ::= p | ¬φ | φ ∧ φ | Aijφ | □iφ | [≈]ijφ | C i
jφ

where p ∈ P and i, j ∈ G.
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In addition, we introduce abbreviations for the truth ⊤, the falsity ⊥,
the disjunction ∨, the implication →, the logical equivalence ↔, the dual
operator ♢i of □i for each i ∈ G, the explicit knowledge operator Ki

j for each
i ∈ G, and the dual operator ⟨≈⟩ij of [≈]ij for each i, j ∈ G as follows:

• ⊤ := φ→ φ;

• ⊥ := ¬⊤;

• φ ∨ ψ := ¬(¬φ ∧ ¬ψ);

• φ→ ψ := ¬(φ ∧ ¬ψ);

• φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);

• ♢iφ := ¬□i¬φ;

• Ki
jφ := Aijφ ∧ C i

jφ;

• ⟨≈⟩ijφ := ¬[≈]ij¬φ;

The following are the informal senses of □i, A
i
j, [≈]ij C

i
j ,and K

i
j.[6]:

• □iφ stands for “φ is j’s implicit knowledge”.

• Aijφ stands for “φ is information that j is aware of from i’s viewpoint”

• [≈]ijφ stands for “φ is information that is true at j’s state of awareness
from i’s viewpoint”.

• C i
jφ stands for “φ is a kind of j’s implicit knowledge from agent i’s

viewpoint”.

• Ki
jφ stands for “φ is j’s explicit knowledge from agent i’s viewpoint”.

Definition 6.1.2. (Epistemic Model with Awareness[6])
Let P be a countable set of atomic propositions and G be a finite set of
agents. We assume they are mutually disjoint. An epistemic model with
awareness M is a tuple ⟨W, {∼i}i∈G, {A i

j }i,j∈G, V, {≈i
j}i,j∈G⟩ consisting of:

1. W is a non-empty finite set of possible worlds;

2. ∼i⊆ W ×W is an equivalence relation on W for each i ∈ G;

3. A i
j is a non-empty set of atomic propositions satisfying A i

j ⊆ A i
i for

each i, j ∈ G;

46



4. V : P −→ 2W ;

5. w ≈i
j v iff (w ∈ V (p) iff v ∈ V (p) for all p ∈ A i

j ).

Then, ∼i,A i
j , V , and ≈i

j are called accessibility relation, awareness set,
valuation function, and indistinguishable relation of M , respectively.

Definition 6.1.3. At : LALP −→ 2P is defined inductively in the followings
[6]:

1. At(⊤) = ∅;

2. for all p ∈ P , At(p) = {p};

3. for all φ ∈ LALP , At(¬φ) = At(φ);

4. for all φ, ψ ∈ LALP , At(φ ∧ ψ) = At(φ) ∪ At(ψ);

5. for all φ ∈ LALP , At(□iφ) = At(φ);

6. for all φ ∈ LALP , At(Aijφ) = At(φ);

7. for all φ ∈ LALP , At([≈]ijφ) = At(φ);

8. for all φ ∈ LALP , At(C i
jφ) = At(φ);

Let R be a relation on W . Then, R+ represents the transitive closure of
R, i.e. R+ is the smallest set such that R ⊆ R+ and for all x, y, z ∈ W , if
(x, y) ∈ R+ and (y, z) ∈ R+, then (x, z) ∈ R+.

Definition 6.1.4. (Satisfaction Relation of LALP [6])
Given (M,w) with M = ⟨W, {∼i}i∈G, {A i

j }i,j∈G, V, {≈i
j}i,j∈G⟩ and w ∈ W .

(M,w) |= p ⇐⇒ w ∈ V (p);

(M,w) |= ¬φ ⇐⇒ (M,w) ̸|= φ;

(M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ;

(M,w) |= Aijφ ⇐⇒ At(φ) ⊆ A i
j ;

(M,w) |= □iφ ⇐⇒ for all v ∈ W,w ∼i v implies (M, v) |= φ;

(M,w) |= [≈]ijφ ⇐⇒ for all v ∈ W,w ≈i
j v implies (M, v) |= φ;

(M,w) |= C i
jφ ⇐⇒ for all v ∈ W, (w, v) ∈ (∼j ◦ ≈i

j)
+ implies (M, v) |= φ;
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Then, |= is called a satisfaction relation of LALP .
A set of formulas Γ ⊆ LALP is satisfiable if there is some model M =

⟨W, {∼i}i∈G, {A i
j }i,j∈G, V, {≈i

j}i,j∈G⟩ and a possible world w ∈ W such that
(M,w) |= φ for all φ ∈ Γ. A formula φ ∈ LALP is satisfiable when {φ} is
satisfiable.

By the definition, the satisfaction relation for ⊤,⊥,∨,→,♢i, ⟨≈⟩ij, andKi
j

are derived as follows: Given (M,w) withM = ⟨W, {∼i}i∈G, {A i
j }i,j∈G, V, {≈i

j

}i,j∈G⟩ and w ∈ W .

(M,w) |= ⊤ ;

(M,w) ̸|= ⊥ ;

(M,w) |= φ ∨ ψ ⇐⇒ (M,w) |= φ or (M,w) |= ψ;

(M,w) |= φ→ ψ ⇐⇒ (M,w) |= φ implies (M,w) |= ψ;

(M,w) |= ♢iφ ⇐⇒ for some v ∈ W,w ∼i v and (M, v) |= φ;

(M,w) |= ⟨≈⟩ijφ ⇐⇒ for some v ∈ W,w ≈i
j v and (M, v) |= φ;

(M,w) |= Ki
jφ ⇐⇒ (M,w) |= Aijφ and (M,w) |= C i

jφ;

Example 6.1.5. Given finite sets of atomic propositions P = {p, q} and
agents G = {i, e}, respectively. Assume they are mutually disjoint. Given
an epistemic awareness model of ALF M = ⟨W,∼,A , V ⟩ consisting of (See
Figure 6.1. Shapes drawn with dashed lines represent equivalence classes.):

• W = {w,w′, v, v′};

• ∼i= {(x, y) | x, y ∈ {w,w′}} ∪ {(x, y) | x, y ∈ {v, v′}}
and ∼e= W ×W ;

• A (i) = {p} and A (e) = P ;

• V (p) = {w,w′, v} and V (q) = {w, v′};

Then, ≈i= {(w,w′), (w′, w)} ∪ {(x, x) | x ∈ W} and ≈e= {(x, x) | x ∈ W}.
Given an epistemic model with awareness of ALP
M ′ = ⟨W ′, {∼′

i}i∈G, {A i
j }i,j∈G, V ′, {≈i

j}i,j∈G⟩ consisting of (See Figure 6.2.
Shapes drawn with dashed lines represent equivalence classes.):

1. W ′ = {w,w′, v, v′};

2. ∼′
i= {(x, y) | x, y ∈ {w,w′}} ∪ {(x, y) | x, y ∈ {v, v′}}

and ∼′
e= W ×W ;

3. A i
i = A i

e = A e
i = {p} and A e

e = P ;
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w

w′

v

v′

i i

p, q,□ip p,¬q,¬□ip

¬p, q,¬□ipp,¬q,□ip

Figure 6.1: Equivalence Class in ALF

4. V (p) = {w,w′, v} and V (q) = {w, v′};

5. ≈i
i=≈i

e=≈e
i= {(x, y) | x, y ∈ {w,w′, v}} ∪ {(v′, v′)}

and ≈e
e= {(x, x) | x ∈ W}.

w

w′

v

v′

i i

p, q,□ip p,¬q,¬□ip

¬p, q,¬□ipp,¬q,□ip

Figure 6.2: Equivalence Class in ALP

In ALP, p ∧Aijp→ [≈]ijp and ¬p ∧Aij¬p→ [≈]ij¬p is valid for all p ∈ P ,
but □jp ∧ Aij□jp → [≈]ij□jp is not valid. In ALF, φ ∧ Aiφ → [≈]iφ is valid
for all φ ∈ LALGP .

Now, we redefine a-equivalent as an atoms-based equivalence relation like
an indistinguishable relation of ALP.

Definition 6.1.6. (Atoms-based a-Equivalent)
Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. The
agent expression a ∈ A induces an equivalence relation ≈a on W : for all
w, v ∈ W and all p ∈ A (a),

w ≈a v iff (w ∈ V (p) iff v ∈ V (p)).

In other words, two worlds are atoms-based a-equivalent if and only if they
satisfy the same formulas p if p ∈ A (a).
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We consider atoms-based a-equivalent in this section, only. Recall that
P is a finite set of atomic propositions. Then, Σa =

∪
P ′⊆P{

∧
AaP

′ ∧∧
¬Aa(P\P ′)∧

∧
Q∧

∧
¬(P ′\Q) | Q ⊆ P ′} is finite and

∨
ψ∈Σa(ψ∧♢e(ψ∧φ))

is a formula.

Theorem 6.1.7. Fix a ∈ A. Let ≈a be atoms-based a-equivalent. Then,
for all φ ∈ LALF ,

|= ⟨≈⟩aφ↔
∨
ψ∈Σa

(ψ ∧ ♢e(ψ ∧ φ)).

where Σa =
∪
P ′⊆P{

∧
AaP

′ ∧
∧

¬Aa(P\P ′) ∧
∧
Q ∧

∧
¬(P ′\Q) | Q ⊆ P ′}.

Proof. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
for ALGP and w ∈ W . Take an arbitrary φ ∈ LALF . By the semantics,
(M,w) |=ALF

∧
AaA (a) ∧

∧
¬Aa(P\A (a)) ∧

∧
Q ∧

∧
¬(A (a)\Q) where

Q = {p ∈ A (a) | w ∈ V (p)}. Let ψ ≡
∧
AaA (a)∧

∧
¬Aa(P\A (a))∧

∧
Q∧∧

¬(A (a)\Q). Then, ψ ∈ Σa.

• (|=ALF ⟨≈⟩aφ→
∨
ψ∈Σa(ψ ∧ ♢e(ψ ∧ φ)).):

Suppose (M,w) |=ALF ⟨≈⟩aφ. By the semantics, (M, v) |=ALF φ for
some v ∈ W such that w ≈a v. By the definition of ≈a, (M, v) |=ALF ψ.
Then, (M,w) |=ALF ♢e(ψ ∧ φ).
By ψ ∈ Σa, (M,w) |=ALF

∨
ψ∈Σa(ψ ∧ ♢e(ψ ∧ φ)).

• (|=ALF

∨
ψ∈Σa(ψ ∧ ♢e(ψ ∧ φ)) → ⟨≈⟩aφ.):

By the contraposition. Suppose (M,w) ̸|=ALF ⟨≈⟩aφ. By the seman-
tics, (M, v) ̸|=ALF φ for all v ∈ W such that w ≈a v.

Take an arbitrary ψ′ ∈ Σa such that ψ ̸≡ ψ′. If there is a p ∈ P such
that |=ALF ψ → Aap ̸⇔|=ALF ψ

′ → Aap, then (M,w) ̸|=ALF ψ
′ by the

global definition of awareness. Otherwise, |=ALF ψ → p ̸⇔ ψ′ → p for
some p ∈ A (a). Then, |=ALF ψ ↔ ¬

∨
Σa\{ψ}.

Since |=ALF ψ ↔ ¬
∨

Σa\{ψ}, there is no u ∈ W such that (M,u) |=ALF

ψ and w ̸≈a u. Since (M,w) |=ALF ψ and (M, v) ̸|=ALF φ for all v ∈ W
such that w ≈a v, (M,w) ̸|=ALF ♢e(φ ∧ ψ).
Therefore, (M,w) ̸|=ALF

∨
ψ∈Σa(ψ ∧ ♢e(ψ ∧ φ)).

Thus, the theorem is valid. □

By atoms-based equivalence relations, any formula of ALF can be trans-
formed into some formula of ALGP.
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6.2 Filtration and Bisimulation

This thesis investigates the abstraction of filtration to deal directly with
modal equivalence. Although filtration is given by the logical equivalence of
some formulas, it is difficult to show the logical equivalence. Generally, we
need to explore the whole model to show an equivalence class concerning ≈a.
On the other hand, bisimulation is a method that shows logical equivalence
by exploring only the worlds that are reachable from a certain possible world.
In computer science, bisimulation shows equivalent behavior between two la-
beled transition systems. When an automaton evaluates logical equivalence,
it can only work at the current and neighbor states. Bisimulation shows log-
ical equivalence while exploring like an automaton that evaluates the truth
of formulas. Although bisimulation does not correspond unconditionally to
filtration, it is a natural concept in computer science.

Definition 6.2.1. (a-Restricted Bisimulation)
Let P,Q and G be a finite set of atomic propositions, a subset of P , and
agents, respectively. Let A be the set of agent expressions of G.

Fix a ∈ A. Given two awareness epistemic models M = ⟨W,∼,A , V ⟩
and M ′ = ⟨W ′,∼′,A ′, V ′⟩. A a-restricted bisimulation between M and
M ′ is a relation Ra ⊆ W ×W such that for every (w,w′) ∈ Ra and for every
agent i ∈ G:

• atoms: w ∈ V (p) iff w′ ∈ V (p) for every p ∈ A (a) ∩ A ′(a);

• aware: A (a) = A ′(a) and A (i) ∩ A (a) = A ′(i) ∩ A (a);

• forth: if v ∈ W and w ∼i v, then there is a v′ ∈ W ′ such that w′ ∼′
i v

′

and (v, v′) ∈ Ra;

• back: if v′ ∈ W ′ and w′ ∼′
i v

′, then there is a v ∈ W such that w ∼i v
and (v, v′) ∈ Ra.

We say that (M,w) and (M ′, w′) are a-restricted bisimilar, notation (M,w) ≃a

(M ′, w′), if there is a a-restricted bisimulation between M and M ′ that con-
tains (w,w′).

Definition 6.2.2. (Image Finite)
Given an epistemic awareness model M ⟨W,∼,A , V ⟩. M is image-finite if
{v ∈ W | w ∼i v} is finite for all agents i ∈ G and all worlds w ∈ W .
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Definition 6.2.3. Fix a ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩ and w,w′ ∈ W . SupposeM is image-finite and w ≈a w

′. Define
the following relation Za on W :

(w,w′) ∈ Za iff w ≈a w
′.

We prove Z is a bisimulation.

Lemma 6.2.4. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩ and two arbitrary worlds w,w′ ∈ W . Suppose M is image-finite.
Then,

(M,w) ≃A (a) (M,w′) implies (w,w′) ∈ Za.

Proof. Given an arbitrary epistemic awareness model M = ⟨W,∼,A , V ⟩,
two arbitrary worlds w,w′ ∈ W and an agent expression a ∈ A. It is shown
by the induction on the structure of φ ∈ LALGP |A (a).

• Base Case : Suppose (M,w) ≃A (a) (M,w′). By atoms of the defi-

nition 6.2.1, it must be (M,w) |= p if and only if (M,w′) |= p for all

p ∈ A (a).

• Induction Hypothesis : (M,w) ≃A (a) (M,w′) implies (M,w) |=
φ⇔ (M,w′) |= φ and At(φ) ⊆ A (a).

• Induction Step : Suppose (M,w) ≃A (a) (M,w′). Take two arbi-

trary formulas φ, ψ ∈ LALGP such that (M,w) |= φ ⇔ (M,w′) |= φ,

(M,w) |= ψ ⇔ (M,w′) |= ψ, and At(φ), At(ψ) ⊆ A (a).

– The case for φ ∧ ψ:
By the induction hypothesis, (M,w) |= φ⇔ (M,w′) |= φ, (M,w) |=
ψ ⇔ (M,w′) |= ψ, and At(φ), At(ψ) ⊆ A (a). By the semantics,

(M,w) |= φ ∧ ψ ⇔ (M,w′) |= φ ∧ ψ and At(φ ∧ ψ) ⊆ A (a).

– The case for ¬φ:
By the induction hypothesis, (M,w) |= φ ⇔ (M,w′) |= φ and

At(φ) ⊆ A (a). By the semantics, (M,w) |= ¬φ⇔ (M,w′) |= ¬φ
and At(¬φ) ⊆ A (a).

– The case for Abφ:
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By the induction hypothesis, At(φ) ⊆ A (a). By the semantics,

At(Abφ) ⊆ A (a) for all b ∈ A. By the global definition of aware-

ness, (M,w) |= Abφ ⇔ (M,w′) |= Abφ. Then, (M,w) |= Abφ ⇔
(M,w′) |= Abφ and At(Abφ) ⊆ A (a) for all b ∈ A.

– The case for □iφ:

Take an arbitrary agent i ∈ G.

∗ back: Suppose (M,w) |= □iφ. Take an arbitrary v′ ∈ W

such that w′ ∼i v
′. By forth of the definition 6.2.1, there is

a v ∈ W such that w ∼i v and (M, v) ≃A (a) (M, v′). By the

induction hypothesis, (M, v) |= φ ⇔ (M, v′) |= φ. Since v′ is

an arbitrary worlds, (M,w′) |= □iφ.

∗ forth: The proof of forth is similar to that of back.

Then, (M,w) |= □iφ ⇔ (M,w′) |= □iφ. Also, At(□iφ) ⊆ A (a)

by the semantics and the induction hypothesis.

Therefore, (M,w) ≃A (a) (M,w′) implies (M,w) |= φ ⇔ (M,w′) |= φ

for all φ ∈ LALGP such that At(φ) ⊆ A (a). Thus, w ≈a v. Since M is

image-finite, (w,w′) ∈ Za.

□

Lemma 6.2.5. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩ and two arbitrary worlds w,w′ ∈ W . Suppose M is image-finite.
Then,

(w,w′) ∈ Za implies (M,w) ≃A (a) (M,w′).

Proof. Given an arbitrary epistemic awareness model M = ⟨W,∼,A , V ⟩,
two arbitrary worlds w,w′ ∈ W and an agent expression a ∈ A. Suppose
that M is image-finite and (w,w′) ∈ Za. By the definition, w ≈a w

′.

• atoms:

By w ≈a w
′, w ∈ V (p) if and only if w′ ∈ V (p) for all atomic proposi-

tions p ∈ A (a).

• aware:

It holds by the global definition of awareness.
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• forth:

By the Hennessy–Milner style contradiction. Take an arbitrary agent
i ∈ G and an arbitrary v ∈ W such that w ∼i v. Suppose there is no
v′ ∈ W such that w′ ∼i v

′ and v ≈a v
′.

Let n be a positive integer such that n = #{v′ | w′ ∼i v
′} and v′k ∈ W

be a possible world such that w′ ∼i v
′
k for each positive integer k ≤ n.

Since v ̸≈a v
′
k for all v

′
k ∈ W , there is a φk ∈ LALGP such that At(φ) ⊆

A (a), (M, v) |= φk and (M, v′k) ̸|= φk for every positive integer k ≤ n.
Since M is image-finite, ♢i(φ1 ∧ φ2 ∧ ... ∧ φn) is a formula. Then,
(M,w) |= ♢i(φ1 ∧ φ2 ∧ ... ∧ φn) and (M,w′) ̸|= ♢i(φ1 ∧ φ2 ∧ ... ∧ φn).
This is a contradiction. Therefore, there is a v′ ∈ W such that w′ ∼i v

′

and v ≈a v
′.

back:

The proof of back is similar to that of forth.

Therefore, there is a A (a)-standard bisimular for ALF between (M,w) and
(M,w′), i.e., (M,w) ≃A (a) (M,w′). □

Theorem 6.2.6. Fix a ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩ and two arbitrary worlds w,w′ ∈ W . On image-finite models:

(M,w) ≃A (a) (M,w′) iff w ≈a w
′.

Proof. Given an arbitrary epistemic awareness model M = ⟨W,∼,A , V ⟩,
two arbitrary worlds w,w′ ∈ W and an arbitrary agent expression a ∈ A.
Suppose that M is image-finite.

This theorem is valid by the lemma 6.2.4 and the lemma 6.2.5. □
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Chapter 7

Non-Compactness

This chapter shows an example of non-compactness in the semantics of ALF
and investigates a condition of a reduction from ALF to ALGP. The sections
regarding non-compactness are the section 7.1 and the section 7.2. The sec-
tion regarding the reduction from ALF to ALGP is the section 7.3. However,
there are conditions for the reduction from ALF to ALGP, and this thesis
does not show the completeness theorem of ALF.

7.1 Example of Model with Infinite Equiva-

lence Classes

This example is given in [10] p.32. φ ≡ ψ means that φ is a formula that has
the same form as ψ. (KiKj)

n is the abbreviation for 2n knowledge operator
Ki and Kj in alternation, starting with Ki.

Example 7.1.1. (Byzantine generals)
Imagine two allied generals, i and j, standing on two mountain summits,
with their enemy in the valley between them. It is generally known that i
and j together can easily defeat the enemy, but if only one of them attacks,
he will certainly lose the battle.

General i sends a messenger to j with the message p (= “I propose that we
attack the first day of the next month at 8 PM sharp”). It is not guaranteed,
however, that the messenger will arrive.

First, p ∧Kip holds because p is general i’s proposal. But, ¬Kjp holds.
Suppose that the messenger does reach the other summit and delivers the

message to j. Then Kjp and KjKip hold.
But i wants to know that j will attack as well because ¬KiKjp holds.

Thus, j sends the messenger back with an ‘okay’. Suppose the messenger
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survives again. Then, KiKjp and KiKjKip hold.
But j wants to know that i will attack as well because ¬KjKiKjp holds.

Thus, i sends the messenger back with an ‘okay’. Suppose the messenger
survives again. Then, KjKiKjp and KjKiKjKip hold.

But i wants to know that j will attack as well because ¬KiKjKiKjp holds.
Thus, i sends the messenger back with an ‘okay’. Suppose the messenger
survives again. Then, KiKjKiKjp and KiKjKiKjKip hold.

Number of times Proposition that

the message was sent holds then.

0(initial state) ψ0 ∧ ¬Kjp ψ0 ≡ p ∧Kip

1(From i to j) ψ1 ∧ ¬KiKjp ψ1 ≡ ψ0 ∧Kjψ0

2(From j to i) ψ2 ∧ ¬KjKiKjp ψ2 ≡ ψ1 ∧KiKjψ0

3(From i to j) ψ3 ∧ ¬KiKjKiKjp ψ3 ≡ ψ2 ∧KjKiKjψ0

2n(From j to i) ψ2n ∧ ¬Kj(KiKj)
np ψ2n ≡ ψ2n−1 ∧ (KiKj)

nψ0

2n+ 1(From i to j) ψ2n+1 ∧ ¬(KiKj)
n+1p ψ2n+1 ≡ ψ2n ∧Kj(KiKj)

nψ0

Table 7.1: Byzantine generals

Suppose that general i and j are aware of p. By this example(Byzantine
generals), the epistemic awareness model such that the set of equivalence
classes for ≈i is infinite is shown. Let Φ be the set of formulas such that

Φ := {¬Kjp ∧ p ∧Kip,

¬Kj(KiKj)
np ∧

∧
0≤k≤n

(KiKj)
k(p ∧Kip) ∧

∧
0≤k≤n−1

Kj(KiKj)
k(p ∧Kip),

¬(KiKj)
np ∧

∧
0≤k≤n−1

(KiKj)
k(p ∧Kip) ∧

∧
0≤k≤n−1

Kj(KiKj)
k(p ∧Kip),

| n ∈ N and 1 ≤ n}.

Lemma 7.1.2. ̸|= φ ∧ φ′ for all φ, φ′ ∈ Φ such that φ ̸≡ φ′.

Proof. Take two arbitrary formulas φ, φ′ ∈ Φ such that φ ̸≡ φ′.

• Suppose that φ ≡ ¬Kjp∧p∧Kip. Then, |= φ′ → Kjp because φ and φ′

are different formulas from each other. Since |= φ→ ¬Kjp, ̸|= φ ∧ φ′.
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• Take two arbitrary natural numbers n,m ∈ N with n,m ≥ 1.
Suppose that φ ≡

¬(KiKj)
np ∧

∧
0≤k≤n−1

(KiKj)
k(p ∧Kip) ∧

∧
0≤k≤n−1

Kj(KiKj)
k(p ∧Kip).

If n ≤ m, then |= φ → ¬(KiKj)
np and |= φ′ → (KiKj)

np. Therefore,
̸|= φ ∧ φ′.

If m < n and φ′ ≡

¬(KiKj)
mp∧

∧
0≤k≤m−1

(KiKj)
k(p∧Kip)∧

∧
0≤k≤m−1

Kj(KiKj)
k(p∧Kip),

then |= φ→ (KiKj)
mp and |= φ′ → ¬(KiKj)

mp. Therefore, ̸|= φ ∧ φ′.

If m < n and φ′ ≡

¬Kj(KiKj)
mp∧

∧
0≤k≤m

(KiKj)
k(p∧Kip)∧

∧
0≤k≤m−1

Kj(KiKj)
k(p∧Kip),

then |= φ → Kj(KiKj)
mp and |= φ′ → ¬Kj(KiKj)

mp. Therefore,
̸|= φ ∧ φ′.

• Take two arbitrary natural numbers n,m ∈ N with n > m ≥ 1. Sup-
pose that φ ≡

¬Kj(KiKj)
np ∧

∧
0≤k≤n

(KiKj)
k(p ∧Kip) ∧

∧
0≤k≤n−1

Kj(KiKj)
k(p ∧Kip),

and φ′ ≡

¬Kj(KiKj)
mp∧

∧
0≤k≤m

(KiKj)
k(p∧Kip)∧

∧
0≤k≤m−1

Kj(KiKj)
k(p∧Kip).

Then, |= φ → Kj(KiKj)
mp and |= φ′ → ¬Kj(KiKj)

mp. Therefore,
̸|= φ ∧ φ′.

Thus, ̸|= φ ∧ φ′ for all φ, φ′ ∈ Φ such that φ ̸≡ φ′. □

Lemma 7.1.3. For all φ ∈ Φ, there is a (M,w) such that (M,w) |= φ.

Proof. Let P = {p} and G = {e, i, j} be the finite sets of propositions and
agents, respectively. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
consisting of (See Figure 7.1):

1. W = {wk | k ∈ N\{0}};
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2. ∼i= {(w,w) | w ∈ W} ∪ {(w2k, w2k+1), (w2k+1, w2k) | k ∈ N\{0}},
∼j= {(w,w) | w ∈ W} ∪ {(w2k, w2k−1), (w2k−1, w2k) | k ∈ N\{0}},
∼e= {(w, v) | w, v ∈ W},

3. A (i) = A (j) = A (e) = P .

4. V (p) = W\{w1}.

w1

¬p

w2

p

w3

p

w4

p

w5

p

w6

p
jijij

Figure 7.1: Kripke Model Represented Byzantine Generals

Then,

• (M,w2) |= ¬Kjp ∧ p ∧Kip.

• for each n ∈ N,
(M,w2n+2) |= ¬Kj(KiKj)

np ∧
∧

0≤k≤n(KiKj)
k(p ∧Kip)

∧
∧

0≤k≤n−1Kj(KiKj)
k(p ∧Kip)

• for each n ∈ N,
(M,w2n+1) |= ¬(KiKj)

np ∧
∧

0≤k≤n−1(KiKj)
k(p ∧Kip)

∧
∧

0≤k≤n−1Kj(KiKj)
k(p ∧Kip)

□

Therefore, if (M,w) |= φ and (M, v) |= φ′ for any φ, φ′ ∈ Φ such that
φ ̸≡ φ′ and At(φ) ∪At(φ′) ⊆ A (i), then w ̸≈i v. Since Φ is infinite, there is
a model such that the set of equivalence classes for ≈i is infinite.

7.2 Example of Non-Compactness

Let P = {p, q} and G = {i, j, e} be the finite set of atomic propositions
and agents, respectively. Suppose P and G are mutually disjoint. Given an
epistemic awareness model M = ⟨W,∼,A , V ⟩ consisting of (See Figure 7.2):

1. W = {wk | k ∈ N\{0}},

58



2. ∼i= {(w,w) | w ∈ W} ∪ {(w2k, w2k+1), (w2k+1, w2k) | k ∈ N\{0}},
∼j= {(w,w) | w ∈ W} ∪ {(w2k, w2k−1), (w2k−1, w2k) | k ∈ N\{0}},
∼e= {(w,w′) | w,w′ ∈ W},

3. A (i) = A (j) = {p}, A (e) = {p, q},

4. V (p) = W\{w1}, V (q) = W .

w1

¬p
q

w2

p
q

w3

p
q

w4

p
q

w5

p
q

w6

p
q

jijij

Figure 7.2: φk is satisfiable for each k ∈ N\{0, 1}.

For each k ∈ N\{0, 1}, let φk be a formula such that

• φ2 ≡ p ∧Kip.

• for each n ∈ N\{0},
φ2n+1 ≡

∧
0≤k≤n−1(KiKj)

k(p ∧Kip) ∧
∧

0≤k≤n−1Kj(KiKj)
k(p ∧Kip)

• for each n ∈ N\{0},
φ2n+2 ≡

∧
0≤k≤n(KiKj)

k(p ∧Kip) ∧
∧

0≤k≤n−1Kj(KiKj)
k(p ∧Kip).

Then, (M,wk′) |= φk for all k′ ∈ N such that k ≤ k′ for each k ∈ N\{0, 1}
(e.g., Figure 7.3).

w1

¬p
q

w2

p
q

w3

p
q

w4

p
q

w5

p
q

w6

p
q

jijij

¬φ4¬φ4¬φ4φ4φ4φ4

Figure 7.3: φ4 is true a certain point onwards.

Let Ψn be the finite set of formulas such that for each n ∈ N\{0, 1},

Ψn = {Aip ∧ ¬Aiq ∧ [≈]iq ∧ φn ∧ ♢e(¬[≈]iq ∧ φn)}.
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Lemma 7.2.1. Let n ∈ N\{0, 1}. Then, Ψn is finite satisfiable.

Proof.

• (The case for n is an even number): Let n be an even number such
that 2 ≤ n. Given an epistemic awareness model M = ⟨W,∼, V,A ⟩
consisting of (See Figure 7.4):

1. W = {wk | k ∈ N, 1 ≤ k ≤ n+ 1}.
2. ∼i= {(w,w) | w ∈ W} ∪ {(w2k, w2k+1), (w2k+1, w2k) | k ∈ N, 1 ≤
k ≤ n/2},
∼j= {(w,w) | w ∈ W} ∪ {(w2k, w2k−1), (w2k−1, w2k) | k ∈ N, , 1 ≤
k ≤ n/2},
∼e= {(w,w′) | w,w′ ∈ W},

3. A (i) = A (j) = {p} and A (e) = P .

4. V (p) = W\{w1} and V (q) = W\{wn+1}.

w1

¬p
q

w2

p
q

w3

p
q

wn

p
q

wn+1

p
¬q

jii

¬φn¬φn¬φnφnφn

Figure 7.4: Ψn is finite satisfiable(n is even).

Since w ̸≈i w
′ for all w,w′ ∈ W such that w ̸= w′ by the lemma 7.1.2,

(M,wn) |= [≈]iq∧φn and (M,wn) |= ¬[≈]iq∧φn. Then, (M,wn) |= Ψn.

• (The case for n is an odd number): Let n be an odd number such
that 3 ≤ n. Given an epistemic awareness model M = ⟨W,∼, V,A ⟩
consisting of (See Figure 7.5):

1. W = {wk | k ∈ N, 1 ≤ k ≤ n+ 1}.
2. ∼i= {(w,w) | w ∈ W} ∪ {(w2k, w2k+1), (w2k+1, w2k) | k ∈ N, 1 ≤
k ≤ (n− 1)/2},
∼j= {(w,w) | w ∈ W} ∪ {(w2k, w2k−1), (w2k−1, w2k) | k ∈ N, , 1 ≤
k ≤ (n+ 1)/2},
∼e= {(w,w′) | w,w′ ∈ W},
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3. A (i) = A (j) = {p} and A (e) = P .

4. V (p) = W\{w1} and V (q) = W\{wn+1}.

w1

¬p
q

w2

p
q

w3

p
q

wn

p
q

wn+1

p
¬q

jij

¬φn¬φn¬φnφnφn

Figure 7.5: Ψn is finite satisfiable(n is odd).

Since w ̸≈i w
′ for all w,w′ ∈ W such that w ̸= w′ by the lemma 7.1.2,

(M,wn) |= [≈]iq∧φn and (M,wn) |= ¬[≈]iq∧φn. Then, (M,wn) |= Ψn.

Therefore, Ψn is finite satisfiable for each n ∈ N\{0, 1}. □

Lemma 7.2.2. Let n,m ∈ N\{0, 1} such that n ≤ m. Given any epistemic
awareness model M = ⟨W,∼,A , V ⟩ and any w ∈ W . Then,

(M,w) |= Ψm implies (M,w) |= Ψn.

Proof. Given any epistemic awareness model M = ⟨W,∼,A , V ⟩ and any
w ∈ W . Since |= φm → φn, if (M,w) |= φm, then (M,w) |= φn. Therefore,
(M,w) |= Ψm implies (M,w) |= Ψn. □

Lemma 7.2.3. Let N ⊆ N\{0, 1} be a finite set of natural numbers. Then,∪
k∈N Ψk is finite satisfiable.

Proof. Let N ⊆ N\{0, 1} be a finite set of natural numbers. Given any
epistemic awareness model M = ⟨W,∼,A , V ⟩ and any w ∈ W .

Take the natural number k ∈ N such that k′ ≤ k for all k′ ∈ N . Then,
(M,w) |= Ψk implies (M,w) |= Psik′ for all k

′ ∈ N . Therefore, (M,w) |= Ψk

implies (M,w) |=
∪
k∈N Ψk. By the lemma 7.2.1, Ψk is finite satisfiable.

Therefore,
∪
k∈N Ψk is finite satisfiable, too. □

Now, Ψn be extended to Ψ′
n such that

Ψ′
n = Ψn∪{

∧
r∈P\{p,q}

(□er∧¬Air)}∪{□iφ↔ □eφ | φ ∈ LALGP , i′ ∈ G\{i, j}}

Ψ′
n is satisfiable, too.
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Lemma 7.2.4.
∪
n∈N\{0,1} Ψ

′
n is unsatisfiable.

Proof. Suppose that
∪
n∈N\{0,1} Ψ

′
n is satisfiable. Then, there is a (M,w)

such that (M,w) |= ψ for all ψ ∈
∪
n∈N\{0,1} Ψ

′
n. Then, (M,w) |= [≈]iq ∧

(KiKj)
kp, [≈]iq ∧ (KjKi)

kp, [≈]iq ∧ Kj(KiKj)
kp, [≈]iq ∧ Ki(KjKi)

kp for all
k ∈ N.

Also, there is a (M, v) such that (M, v) |= ¬[≈]iq ∧ (KiKj)
kp),¬[≈]iq ∧

(KjKi)
kp,¬[≈]iq ∧Kj(KiKj)

kp,¬[≈]iq ∧Ki(KjKi)
kp for all k ∈ N.

Since w ≈i v, (M,w) |= ¬[≈]iq. This is a contradiction. Therefore,∪
k∈N\{0} Ψ

′
k is unsatisfiable. □

Theorem 7.2.5.
∪
n∈N\{0,1} Ψ

′
n is not compact.

Proof.
By the lemma 7.2.3, Ψ is satisfiable for all finite subset Ψ ⊆

∪
n∈N\{0,1} Ψ

′
n.

By the lemma 7.2.4,
∪
n∈N\{0,1} Ψ

′
n is unsatisfiable.

Therefore,
∪
n∈N\{0,1} Ψ

′
n is not compact. □

7.3 When Abstraction Operator Can Be Re-

duced?

The previous section shows the non-compactness of Awareness Logic of Ab-
straction. This section investigates a condition of reduction from ALF to
ALGP. ALF is the logic extended from ALGP by introducing the implicit
abstraction operators [≈]a for each a ∈ A.

Definition 7.3.1. (Paths)
Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Let n ∈ N. Suppose
w1, w2, ... ∈ W . A path from w1 is a sequence w1, w2, ... such that wk ∼i wk+1

for some i ∈ G\{e} for all k ∈ N with 1 ≤ k.
The number of terms in a path is called the path length.
Also, if a path from w1 and a path from v1 satisfy wk ∼i wk+1 ⇔ vk ∼i

vk+1 for all i ∈ G and all k ∈ N with 1 ≤ k, then both paths are called
equivalent to each other.

Definition 7.3.2. (Simple Paths)
Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Suppose w1, w2, ... ∈
W . A simple path from w1 is a sequence w1, w2, ... such that wk ∼i wk+1

for some i ∈ G\{e} for all k ∈ N with 1 ≤ k and wk ̸= wk′ for all k, k
′ ∈ N

with 1 ≤ k < k′.
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Definition 7.3.3. (Simple-Path-Length-Bounded)
An epistemic awareness model M = ⟨W,∼,A , V ⟩ is simple-path-length-
bounded by n ∈ N\{0} if there is a positive number n such that n is larger
than any simple path length.

M is called simple-path-length-bounded model if M is simple-path-
length-bounded.

Lemma 7.3.4. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. If
M is simple-path-length-bounded, then M is image-finite.

Proof. By the contraposition. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩. Suppose M is not image-finite. Then, there is a possible
world w ∈ W and an agent i ∈ G such that {v | w ∼i v} is infinite. Since
∼i is an equivalence relation, there is an infinite simple path from w via ∼i.
Therefore, M is not simple-path-length-bounded. □

Lemma 7.3.5. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Let
n be a positive integer. If M is simple-path-length-bounded by n and there
is a path from w to w′ in M , then there is a path from w to w′ such that the
path length is n.

Proof. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. Let n ∈ N.
Suppose that M is simple-path-length-bounded by n. Take an arbitrary
w1 ∈ W .

Take an arbitrary wk ∈ W such that there is a path from w1 to wk and
the path length is k ≤ n. Since ∼i is reflexive for all i ∈ G, there is a path
from w1 to wk and the path length is n.

Take an arbitrary wk ∈ W such that there is a path from w1 to wk and
the length is n < k. This path is not simple because M is simple-path-
length-bounded by n. Take any wk′ , wk′′ in the path such that wk′ = wk′′
and 1 ≤ k′ < k′′ ≤ k. Then, We can remove the path from wk′ to wk′′ and
connect the path from w1 to wk′ and the path from wk′′ to wk. By such
transformations, there is a path from w1 to wk such that the path length is
at most n. □

Let (♢in)
n be the abbreviation for n diamond operators ♢i1♢i2 ...♢in

where ik ∈ G\{e} for all k ∈ N such that 1 ≤ k ≤ n.

Lemma 7.3.6. Fix a ∈ A. Let n be a positive integer. Given an epistemic
awareness model M = ⟨W,∼,A , V ⟩. Suppose that M is simple-path-length-
bounded by n. They are equivalent for all wn, vn ∈ W .

1. wn ≈a vn
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2. For all w1 ∈ W such that there is a path from wn to w1 and the path
length is n, there is a v1 ∈ W such that there is an equivalent path
from vn to v1 and for all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p).

Proof. Fix a ∈ A. Take an arbitrary positive integer n. Given an epistemic
awareness modelM = ⟨W,∼,A , V ⟩ where w1, ..., wn, v1, ..., vn ∈ W . Suppose
that M is simple-path-length-bounded by n. Then, M is image-finite by the
lemma 7.3.4.

• (1 ⇒ 2): Take an arbitrary w1, wn ∈ W such that there is a path from
wn to w1 and the path length is n. Take an arbitrary vn ∈ W such
that wn ≈a vn. Suppose that there is no v1 ∈ W such that there is
an equivalent path from vn to v1 and w1 ∈ V (p) ⇔ v1 ∈ V (p) for all
p ∈ A (a).

Let in−1, in−2, ...i1 ∈ G be agents such that wk+1 ∼ik wk and wk, wk+1 ∈
W is terms of the path from wn to w1 for all k ∈ N with 1 ≤ k < n.
Then, (M,wn) |= (♢in)

np ̸⇔ (M, vn) |= (♢in)
np and At((♢in)

np) ⊆
A (a) for all p ∈ A (a). Therefore, wn ̸≈a vn. This is a contradiction.
Then, there is v1 ∈ W such that there is an equivalent path from vn to
v1 and w1 ∈ V (p) ⇔ v1 ∈ V (p) for all p ∈ A (a).

• (2 ⇒ 1): Take an arbitrary wn, vn ∈ W . Suppose that for all w1 ∈ W
such that there is a path from wn to w1 and the path length is n,
there is a v1 ∈ W such that there is an equivalent path from vn to
v1 and w1 ∈ V (p) ⇔ v1 ∈ V (p) for all p ∈ A (a). By the lemma
7.3.5, for all w1 ∈ W such that there is a path from wn to w1, there
is a v1 ∈ W such that there is an equivalent path from vn to v1 and
w1 ∈ V (p) ⇔ v1 ∈ V (p) for all p ∈ A (a). Take an arbitrary world
w1 ∈ W . Then, there is v1 ∈ W such that there is an equivalent path
from vn to v1 for some path from wn to w1 and w1 ∈ V (p) ⇔ v1 ∈ V (p)
for all p ∈ A (a). Then, the following holds: for all positive numbers k
with 1 < k ≤ n and for all (wk, vk) ∈ W ×W such that wk and vk are
k-th terms of the path from wn and vn to w1 and v1, respectively,

– (atoms): for all p ∈ A (a), wk ∈ V (p) ⇔ vk ∈ V (p),

– (forth): for all i ∈ G, if wk−1 is a term of the path from wn to w1

and wk ∼i wk−1, then there is a vk ∈ W such that vk−1 is a term
of the path from vn to v1 and vk ∼i vk−1,

– (back): for all i ∈ G, if vk−1 is a term of the path from vn to v1
and vk ∼i vk−1, then there is a wk ∈ W such that wk−1 is a term
of the path from wn to w1 and wk ∼i wk−1.
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Since w1 ∈ W are arbitrary, (M,wn) and (M, vn) are A (a) standard
bisimilar for ALF. By the theorem 6.2.6, wn ≈a vn.

□

Definition 7.3.7. Let P and Q be finite sets of atomic propositions and
agents, respectively. Suppose they are mutually disjoint. Fix a ∈ A. Let Σa

n

be a set of formulas defined inductively for each positive integer n:

Σa
1 :=

∪
P ′⊆P

{
∧

AaP
′ ∧

∧
¬Aa(P\P ′) ∧

∧
Q ∧

∧
¬(P ′\Q) | Q ⊆ P ′}.

Σa
n := {ψ ∧

∧
i∈G

(
∧
ψ′∈Σ′

i

♢iψ
′ ∧

∧
ψ′′∈Σ′′

i

¬♢iψ
′′) | ψ ∈ Σa

1,

for each i ∈ G there is a subset Σ′
i ⊆ Σa

n−1,Σ
′′
i = Σa

n−1\Σ′
i}

φ ≡ ψ means that φ is a formula that has the same form as ψ.

Lemma 7.3.8. Fix a ∈ A. Then, |= φ∧φ′ ↔ ⊥ for all φ, φ′ ∈ Σa
n such that

φ ̸≡ φ′ for all positive integer n ∈ N\{0}.

Proof. Fix a ∈ A.

• (The case for n = 1): Take two arbitrary P ′, P ′′ ⊆ P such that
P ′ ̸= P ′′. Take two arbitrary formulas φ′ ∈ {

∧
AaP

′ ∧
∧
¬Aa(P\P ′) ∧∧

Q ∧
∧
¬(P ′\Q) | Q ⊆ P ′} and φ′′ ∈ {

∧
AaP

′′ ∧
∧
¬Aa(P\P ′′) ∧∧

Q ∧
∧

¬(P ′′\Q) | Q ⊆ P ′′}. Then, |= φ′ → Aap ̸⇔|= φ′′ → Aap for
some p ∈ P . Therefore, |= φ′ ∧ φ′′ → ⊥.

Take an arbitrary ψ ∈ {
∧
AaP

′ ∧
∧

¬Aa(P\P ′) ∧
∧
Q ∧

∧
¬(P ′\Q) |

Q ⊆ P ′} such that φ′ ̸≡ ψ. Then, |= φ′ → p ̸⇔|= ψ → p for some
p ∈ P ′. Therefore, |= φ′ ∧ ψ → ⊥.

• (The case for n ̸= 1): Take an arbitrary positive integer n ∈ N\{0}
with n ̸= 1 and two arbitrary formulas φn, φ

′
n ∈ Σa

n such that φn ̸≡ φ′
n.

Then,

φn ≡ ψ1 ∧
∧
i∈G

(
∧
ψ′∈Σ′

i

♢iψ
′ ∧

∧
ψ′′∈Σ′′

i

¬♢iψ
′′)

where ψ1 ∈ Σa
1, Σ

′
i ⊆ Σa

n−1 and Σ′′
i = Σa

n−1\Σ′
i for each i ∈ G. Also,

φ′
n ≡ ψ2 ∧

∧
i∈G

(
∧
ψ′∈Π′

i

♢iψ
′ ∧

∧
ψ′′∈Π′′

i

¬♢iψ
′′)

where ψ2 ∈ Σa
1, Π

′
i ⊆ Σa

n−1, and Π′′
i = Σa

n−1\Π′
i for each i ∈ G.

65



If ψ1 ̸≡ ψ2, then |= φn ∧ φ′
n → ⊥ because |= ψ1 ∧ ψ2 → ⊥ by the proof

of the case for n = 1.

Suppose ψ1 ≡ ψ2. By φn ̸≡ φ′
n, Σ′

i ̸= Π′
i for some i ∈ G. Then,

|= φn → ♢iψ
′ ̸⇔|= φ′

n → ♢iψ
′ for some ψ′ ∈ Σa

n−1.

Therefore, |= φn ∧ φ′
n → ⊥. Since n is an arbitrary positive integer

with n ̸= 1, |= φ ∧ φ′ ↔ ⊥ for all φ, φ′ ∈ Σa
n such that φ ̸≡ φ′ for all

n ∈ N\{0, 1}.

Thus, this lemma is valid. □

Lemma 7.3.9. Fix a ∈ A. Let n be a positive integer. Given an epistemic
awareness modelM = ⟨W,∼,A , V ⟩. They are equivalent for all wn, vn ∈ W .

1. (M,wn) |= φ⇔ (M, vn) |= φ for all φ ∈ Σa
n.

2. For all w1 such that there is a path from wn to w1 and the path length
is n, there is a v1 such that there is an equivalent path from vn to v1
and for all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p).

Proof. Fix a ∈ A. Take an arbitrary positive integer n. Given an epistemic
awareness model M = ⟨W,∼,A , V ⟩.

• (Base Case): Suppose n = 1. Take an arbitrary w1 ∈ W . Let
Q = {p | (M,w1) |= p∧Aap} and φ ≡

∧
AaA (a)∧

∧
¬Aa(P\A (a))∧∧

Q ∧
∧
¬(A (a)\Q). Then, (M,w1) |= φ and φ ∈ Σa

1.

Then, (M,w1) |= φ ⇔ (M, v1) |= φ is equivalent to (M,w1) |= p ⇔
(M, v1) |= p for all p ∈ A (a) becauseM |=

∧
AaA (a)∧

∧
¬Aa(P\A (a)).

– (1 ⇒ 2): Suppose (M,w1) |= φ′ ⇔ (M, v1) |= φ′ for all φ′ ∈ Σa
1.

Then (M,w1) |= φ ⇔ (M, v1) |= φ. Therefore, (M,w1) |= p ⇔
(M, v1) |= p for all p ∈ A (a).

– (2 ⇒ 1): Suppose (M,w1) |= p ⇔ (M, v1) |= p for all p ∈ A (a).
Then, (M,w1) |= φ ⇔ (M, v1) |= φ. Since (M,w′) |= φ ⇔
(M,w′) ̸|= ψ for all ψ ∈ Σa

1\{φ} for all w′ ∈ W by the lemma
7.3.8, (M,w1) |= φ′ ⇔ (M, v1) |= φ′ for all φ′ ∈ Σa

1.

Then, the lemma holds if n = 1.

• (Induction Hypothesis): for all positive number k such that k ≤
n− 1, they are equivalent for all wk, vk,

1. (M,wk) |= φ⇔ (M, vk) |= φ for all φ ∈ Σa
k.
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2. For all w1 such that there is a path from wk to w1 and the path
length is k, there is a v1 such that there is an equivalent path from
vk to v1 and for all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p).

• (Induction Step): Suppose n = k + 1. Take arbitrary worlds wk+1 ∈
W . Let φ ∈ LALGP be a formula such that (M,wk+1) |= φ and φ ∈
Σa
k+1. For each i ∈ G, let Σ′

i be the set of formulas such that Σ′
i ⊆ Σa

k

and ψ′ ∈ Σ′
i iff (M,wk) |= ψ′ for some wk ∈ W with wk+1 ∼i wk.

Also, let ψ be a formula such that ψ ∈ Σa
1 and (M,wk+1) |= ψ. Then,

φ ≡ ψ∧
∧
i∈G(

∧
ψ′∈Σ′

i
♢iψ

′∧
∧
ψ′′∈Σ′′

i
¬♢iψ

′′) where Σ′′
i = Σa

k\Σ′
i for each

i ∈ G.

– (1 ⇒ 2): Take an arbitrary vk+1 ∈ W . Suppose (M,wk+1) |=
φ′ ⇔ (M, vk+1) |= φ′ for all φ′ ∈ Σa

k+1. Then, (M,wk+1) |= φ ⇔
(M, vk+1) |= φ. Since φ ≡ ψ ∧

∧
i∈G(

∧
ψ′∈Σ′

i
♢iψ

′ ∧
∧
ψ′′∈Σ′′

i
¬♢iψ

′′)

where Σ′′
i = Σa

k\Σ′
i for each i ∈ G, for all wk ∈ W , there is a

vk ∈ W such that wk+1 ∼i wk ⇔ vk+1 ∼i vk for all i ∈ G and
(M,wk) |= φk ⇔ (M, vk) |= φk for all φk ∈ Σa

k.

By the induction hypothesis, for all w1 such that there is a path
from wk to w1 and the path length is k, there is a v1 such that
there is an equivalent path from vk to v1 and for all p ∈ A (a),
w1 ∈ V (p) ⇔ v1 ∈ V (p).

Since wk+1 ∼i wk ⇔ vk+1 ∼i vk for all i ∈ G and wk is an arbitrary
world, for all w1 such that there is a path from wk+1 to w1 and the
path length is k + 1, there is a v1 such that there is an equivalent
path from vk+1 to v1 and for all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p).

– (2 ⇒ 1): Take an arbitrary vk+1 ∈ W . Suppose for all w1 such that
there is a path from wk+1 to w1 and the path length is k+1, there
is a v1 such that there is an equivalent path from vk+1 to v1 and for
all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p). Take two arbitrary worlds
wk, vk ∈ W such that wk+1 ∼i wk ⇔ vk+1 ∼i vk for all i ∈ G.
Then, for all w1 such that there is a path from wk to w1 and the
path length is k, there is a v1 such that there is an equivalent path
from vk to v1 and for all p ∈ A (a), w1 ∈ V (p) ⇔ v1 ∈ V (p).

By the induction hypothesis, (M,wk) |= φk ⇔ (M, vk) |= φk for
all φk ∈ Σa

k. Since wk, vk ∈ W are two arbitrary worlds such
that wk+1 ∼i wk ⇔ vk+1 ∼i vk for all i ∈ G, (M,wk+1) |=
φ ⇔ (M, vk+1) |= φ. By the lemma 7.3.8, (M,wk+1) |= φ′ ⇔
(M, vk+1) |= φ′ for all φ′ ∈ Σa

k+1.

Therefore, this lemma holds. □
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Theorem 7.3.10. Fix a ∈ A. Let n be a positive integer. Given an epistemic
awareness model M = ⟨W,∼,A , V ⟩. Suppose that M is simple-path-length-
bounded by n. They are equivalent:

1. (M,w) |= φ⇔ (M, v) |= φ for all φ ∈ Σa
n.

2. w ≈a v.

Proof. It holds by the lemma 7.3.6 and 7.3.9. □

Theorem 7.3.11. Fix a ∈ A. Let n be a positive integer. Given an epistemic
awareness model M = ⟨W,∼,A , V ⟩. Suppose that M is simple-path-length-
bounded by n. Then,

(M,w) |= ⟨≈⟩aφ ⇔ (M,w) |=
∨
ψ∈Σa

n

(ψ ∧ ♢e(ψ ∧ φ)).

Proof. Fix a ∈ A. Let n be a positive integer. Take an arbitrary epistemic
awareness model M = ⟨W,∼,A , V ⟩. Suppose that M is simple-path-length-
bounded by n.

• (⇒): Suppose that (M,w) |= ⟨≈⟩aφ. Take a ψ ∈ Σa
n such that

(M,w) |= ψ.

Since (M, v) |= ψ for all v ∈ wa by the theorem 7.3.10, (M,w) |=
ψ ∧ ♢e(ψ ∧ φ).
Therefore, (M,w) |=

∨
ψ∈Σa

n
(ψ ∧ ♢e(ψ ∧ φ)).

• (⇐): Suppose that (M,w) |=
∨
ψ∈Σa

n
(ψ ∧ ♢e(ψ ∧ φ)). Then, (M,w) |=

ψ∧♢e(ψ∧φ) for some ψ ∈ Σa
n. By the theorem 7.3.10, w ≈a v for some

v ∈ W such that (M, v) |= ψ ∧ φ. By the semantics, (M,w) |= ⟨≈⟩aφ.

□
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Chapter 8

Quotient Model

This chapter introduces an abstract model called “the quotient model”. This
chapter introduces two abstract models called “the nested quotient model”
and “the product quotient model” for nested abstraction and mutually com-
plementary concretization, respectively.

8.1 Quotient Model with Agent Expression

This section introduces quotient models with agent expressions. By adding
agent expressions to quotient models, we can consider reductions from nested
abstraction and mutually complementary concretization to one-time abstrac-
tion in the chapter 9.

Definition 8.1.1. (Equivalence class with respect to ≈a)
Given an a ∈ A and an epistemic awareness model M = ⟨W,∼,A , V ⟩. The
equivalence class of w ∈ W with respect to ≈a is denoted in the following:

wa := {v ∈ W | w ≈a v}.

Theorem 8.1.2.
For all w ∈ W and all a, b ∈ A,

wa+b ⊆ wa ∩ wb ⊆ wa ⊆ wa ∪ wb ⊆ wa·b.

Theorem 8.1.3.
For all w ∈ W and all a, b ∈ A such that A (a) ⊆ A (b),

wa+b = wa ∩ wb = wb ⊆ wa = wa ∪ wb = wa·b.
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Example 8.1.4.
There is an epistemic awareness model M = ⟨W,∼,A , V ⟩ for some w ∈ W
and some a, b ∈ A,

wa ∪ wb = wa·b ̸⇔ A (a) ⊆ A (b) or A (b) ⊆ A (a)

wa ∩ wb = wa+b ̸⇔ A (a) ⊆ A (b) or A (b) ⊆ A (a)

Let G = {i, j} and P = {p, q}. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩ consisting of:

1. W = {w};

2. ∼i=∼j=∼e= {(w,w)}.

3. A (i) = {p} and A (j) = {q}.

4. V (p) = {w} and V (q) = ∅.

Then, wi ∪ wj = wi·j and wi ∩ wj = wi+j (See Figure 8.1).

w

p,¬q

Figure 8.1: wi ∪ wj = wi·j, wi ∩ wj = wi+j and A (a) ∩ A (b) = ∅

Definition 8.1.5. (Quotient Frame)
Given an agent expression a, a finite set of agents G, and an epistemic aware-
ness model M = ⟨W,∼,A , V ⟩. A quotient frame based on M is a pair
⟨W/ ≈a,∼ / ≈a⟩ consisting of:

1. W/ ≈a := {wa | w ∈ W};

2. ∼ / ≈a: G −→ 2(W/≈a)×(W/≈a), where for each i ∈ G
(∼ / ≈a)i := {(wa, va) | (w, v) ∈ (∼i ◦ ≈a)

+, w, v ∈ W}.

W/ ≈a and (∼ / ≈a)i are denoted as W a and ∼a
i respectively, too.
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Definition 8.1.6. (Quotient Model)
Given a set of agent expressions A, an agent expression a ∈ A, an epistemic
awareness model M = ⟨W,∼,A , V ⟩ and the quotient frame ⟨W a,∼a⟩ of a
based on M .
The quotient model of a based on M is a tuple ⟨W a,∼a,A / ≈a, V/ ≈a⟩
where

• A / ≈a : G −→ 2A (a) with A / ≈a (i) := A (a) ∩ A (i);

• V/ ≈a : A (a) −→ 2W
a
with V/ ≈a (p) := {wa | w ∈ V (p)} for all

p ∈ P ;

A / ≈a and V/ ≈a are denoted as A a and V a respectively, too.

Definition 8.1.7. (The Satisfaction Relation of LALGP in Quotient
Model Ma)
Fix a ∈ A. Given epistemic state (Ma, wa) with Ma = ⟨W a,∼a,A a, V a⟩,
wa ∈ W a and. For all φ ∈ LALGP |A (a),

(Ma, wa) |=a
ALGP ⊤ ;

(Ma, wa) |=a
ALGP p ⇐⇒ wa ∈ V a(p);

(Ma, wa) |=a
ALGP ¬φ ⇐⇒ (Ma, wa) ̸|=a

ALGP φ;

(Ma, wa) |=a
ALGP φ ∧ ψ ⇐⇒ (Ma, wa) |=a

ALGP φ and (Ma, wa) |=a
ALGP ψ;

(Ma, wa) |=a
ALGP Aiφ ⇐⇒ At(φ) ⊆ A a(i);

(Ma, wa) |=a
ALGP □iφ ⇐⇒ for all va ∈ W a, wa ∼a

i v
a implies (Ma, va) |=a

ALGP φ;

By the definition, the satisfaction relation for ⊥,∨,→,♢i, Ki, Ab is de-
rived as follows: Given epistemic state (Ma, wa) withMa = ⟨W a,∼a,A a, V a⟩
and wa ∈ W a.

(Ma, wa) ̸|=a
ALGP ⊥ ;

(Ma, wa) |=a
ALGP φ ∨ ψ ⇐⇒ (Ma, wa) |=a

ALGP φ or (Ma, wa) |=a
ALGP ψ;

(Ma, wa) |=a
ALGP φ→ ψ ⇐⇒ (Ma, wa) |=a

ALGP φ implies (Ma, wa) |=a
ALGP ψ;

(Ma, wa) |=a
ALGP ♢iφ ⇐⇒ for some va ∈ W a, wa ∼a

i v
a and (Ma, va) |=a

ALGP φ;

(Ma, wa) |=a
ALGP Kiφ ⇐⇒ (Ma, wa) |=a

ALGP □iφ and (Ma, wa) |=a
ALGP Aiφ;

(Ma, wa) |=a
ALGP Abφ ⇐⇒ At(φ) ⊆ A a(b);

Next, we show the lemma to prove that any accessibility relation on W a

is an equivalence relation.
Since ∼i and ≈a are equivalence relations, ∼a

i is an equivalence relation.
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Theorem 8.1.8.
Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For all
w ∈ W ,

for all φ ∈ LALGP |A (a), ((M,w) |=ALGP φ ⇐⇒ (Ma, wa) |=a
ALGP φ).

Proof. Given an arbitrary epistemic awareness model M = ⟨W,∼,A , V ⟩, an
w ∈ W ,and an a ∈ A. Let Ma = ⟨W a,∼a,A a, V a⟩ be the quotient model
of a based on M .

• Base Case : Take an arbitrary atomic proposition p ∈ A (a). By the

definition of ≈a, if x ≈a y, then x ∈ V (p) iff y ∈ V (p) for all p ∈ A (a).

Then, for all x, y ∈ wa, x ∈ V (p) iff y ∈ V (p) for all p ∈ A (a). By

the definition of V a and w ∈ wa, wa ∈ V a(p) iff w ∈ V (p). Then,

(M,w) |=ALGP p⇔ (Ma, wa) |=a
ALGP p.

• Induction Hypothesis : (M,w) |=ALGP φ ⇐⇒ (Ma, wa) |=a
ALGP

φ.

• Induction Step : Take two arbitrary φ, ψ ∈ LALGP |A (a) and (M,w) |=ALGP

φ ⇐⇒ (Ma, wa) |=a
ALGP φ and (M,w) |=ALGP ψ ⇐⇒ (Ma, wa) |=a

ALGP

ψ.

– The case for φ ∧ ψ:
By the semantics, (M,w) |=ALGP φ ∧ ψ ⇐⇒ (M,w) |=ALGP φ

and (M,w) |=ALGP ψ. By the induction hypothesis, (M,w) |=ALGP

φ and (M,w) |=ALGP ψ if and only if (Ma, wa) |=a
ALGP φ and

(Ma, wa) |=a
ALGP ψ. By the semantics, (Ma, wa) |=a

ALGP φ and

(Ma, wa) |=a
ALGP ψ ⇐⇒ (Ma, wa) |=a

ALGP φ∧ψ. Then, (M,w) |=ALGP

φ ∧ ψ ⇐⇒ (Ma, wa) |=a
ALGP φ ∧ ψ.

– The case for ¬φ:
By the semantics, (M,w) |=ALGP ¬φ ⇐⇒ (M,w) ̸|=ALGP φ.

By the induction hypothesis, (M,w) ̸|=ALGP φ if and only if

(Ma, wa) ̸|=a
ALGP φ. By the semantics, (Ma, wa) ̸|=a

ALGP φ ⇐⇒
(Ma, wa) |=a

ALGP ¬φ. Then, (M,w) |=ALGP ¬φ ⇐⇒ (Ma, wa) |=a
ALGP

¬φ.
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– The case for Abφ:

By the semantics, (M,w) |=ALGP Abφ iff At(φ) ⊆ A (b). Since

At(φ) ⊆ A (a), At(φ) ⊆ A (b) iff At(φ) ⊆ A (a) ∩ A (b). By the

definition of A a, At(φ) ⊆ A (a) ∩ A (b) iff At(φ) ⊆ A a(b). By

the semantics, At(φ) ⊆ A a(b) iff (Ma, wa) |=a
ALGP Abφ. Then,

(M,w) |=ALGP Abφ ⇐⇒ (Ma, wa) |=a
ALGP Abφ.

– The case for □iφ: Take an arbitrary i ∈ G.

∗ (⇒):

Suppose (M,w) |=ALGP □iφ. Since ∼i is an equivalence re-

lation, for all v ∈ W such that w ∼i v, (M, v) |=ALGP □iφ.

By φ ∈ LALGP |A (a), for all v′ ∈ W such that v ≈a v′,

(M, v′) |= □iφ. Then, (M, v′) |= □iφ for all v′ ∈ W such

that (w, v′) ∈ (∼i ◦ ≈a). Similarly, (M,w′) |= □iφ for all

w′ ∈ W such that (w,w′) ∈ (∼i ◦ ≈a)
+. By the definition of

∼a
i , (M

a, wa) |=a
ALGP □iφ.

∗ (⇐):

By the contradiction. Suppose (M,w) ̸|=ALGP □iφ. Then,

there is a world v ∈ W such that (M, v) ̸|=ALGP φ and

w ∼i v. By (M, v) ̸|=ALGP φ and w ∼i v, (M
a, va) ̸|=a

ALGP φ

and (w, v) ∈ (∼i ◦ ≈a)
+. Then, there is a va ∈ W a such

that (Ma, va) ̸|=a
ALGP φ and wa ∼a

i v
a. By the semantics,

(Ma, wa) ̸|=ALGP □iφ.

□
So, (M,w) |= [≈]aφ∧Aaφ stands for ‘φ holds’ at wa. We can introduce an

explicit abstraction operator [≈]Ea by expressing [≈]Ea φ with [≈]aφ∧Aaφ.

Example 8.1.9. There are three children i1, i2, i3. Let p1, p2 and p3 be
atomic propositions standing for “agents i1, i2, and i3 have mud on their
faces”, respectively. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
consisting of (See Figure 8.2):

1. W = {w1, w2, w3, w4, w5, w6},

2. ∼i1= {(w, v) | w, v ∈ {w1, w3}} ∪ {(w, v) | w, v ∈ {w2, w4}} ∪ {(w, v) |
w, v ∈ {w5, w6}},
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∼i2= {(w, v) | w, v ∈ {w2, w5}} ∪ {(w, v) | w, v ∈ {w4, w6}} ∪ {(w,w) |
w ∈ W},
∼i3= {(w, v) | w, v ∈ {w1, w5}} ∪ {(w, v) | w, v ∈ {w3, w6}} ∪ {(w,w) |
w ∈ W},
∼e= {(w, v) | w, v ∈ W},

3. A (i1) = {p1}, A (i2) = {p2}, A (i3) = {p3},A (e) = {p1, p2, p3},

4. V (p1) = {w3, w4, w6}, V (p2) = {w1, w3, w5, w6}, V (p3) = {w2, w4, w5, w6}.

w1 w2

w3 w4 w5

w6

¬p1, p2,¬p3 ¬p1,¬p2, p3

p1, p2,¬p3

p1
¬p2, p3

¬p1, p2, p3

p1, p2, p3

i1

i1

i1

i3

i3

i2

i2

Figure 8.2: Kripke Model represented knowledge of i1, i2, and i3

Then, M i1 ,M i2 , and M i3 are given as Figure 8.3, respectively.

wi11

wi13

¬p1

p1

i1

wi22

wi25 wi21

¬p2

p2
p2i2

i3

wi31

wi35 wi32

¬p3

p3
p3i3

i2

Figure 8.3: The Quotient Models M i1 ,M i2 , and M i3

For example, (M,w5) |=ALGP ¬□i3¬□i2 p2 and (M i2 , wi25 ) |=i2
ALGP ¬□i3¬□i2 p2.
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Definition 8.1.10. (b-equivalent of the quotient model Ma)
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. Let
Ma = ⟨W a,∼a,A a, V a⟩ be the quotient model of a based onM . Then, agent
expression b induces an equivalence relation ≈a

b on W a: for all wa, va ∈ W a,

wa ≈a
b v

a iff for all φ ∈ LALGP |A a(b), ((Ma, wa) |=a
ALGP φ iff (Ma, va) |=a

ALGP φ).

In other words, two equivalence classes are b-equivalent of the quotient model
of a iff they satisfy the same formulas φ ∈ LALGP |A a(b).

Let LALF |Q mean the language LALF with the set of atomic propositions
restricted to Q ⊆ P .

Definition 8.1.11. (The Satisfaction Relation of LALF in Quotient
Model Ma)
Fix a ∈ A. Given epistemic state (Ma, wa) with Ma = ⟨W a,∼a,A a, V a⟩,
wa ∈ W a. For all φ ∈ LALF |A (a),

(Ma, wa) |=a ⊤ ;

(Ma, wa) |=a p ⇐⇒ wa ∈ V a(p);

(Ma, wa) |=a ¬φ ⇐⇒ (Ma, wa) ̸|=a φ;

(Ma, wa) |=a φ ∧ ψ ⇐⇒ (Ma, wa) |=a φ and (Ma, wa) |=a ψ;

(Ma, wa) |=a Aiφ ⇐⇒ At(φ) ⊆ A a(i);

(Ma, wa) |=a □iφ ⇐⇒ for all va ∈ W a, wa ∼a
i v

a implies (Ma, va) |=a φ;

(Ma, wa) |=a [≈]bφ ⇐⇒ for all va ∈ W a, wa ≈a
b v

a implies (Ma, va) |=a φ.

By the definition, the satisfaction relation for ⊥,∨,→,♢i, Ki, Ab, ⟨≈⟩b
is derived as follows: Given epistemic state (Ma, wa) with Ma = ⟨W a,∼a

,A a, V a⟩ and wa ∈ W a.

(Ma, wa) ̸|=a ⊥ ;

(Ma, wa) |=a φ ∨ ψ ⇐⇒ (Ma, wa) |=a φ or (Ma, wa) |=a ψ;

(Ma, wa) |=a φ→ ψ ⇐⇒ (Ma, wa) |=a φ implies (Ma, wa) |=a ψ;

(Ma, wa) |=a ♢iφ ⇐⇒ for some va ∈ W a, wa ∼a
i v

a and (Ma, va) |=a φ;

(Ma, wa) |=a Kiφ ⇐⇒ (Ma, wa) |=a □iφ and (Ma, wa) |=a Aiφ;

(Ma, wa) |=a Abφ ⇐⇒ At(φ) ⊆ A a(b);

(Ma, wa) |=a ⟨≈⟩bφ ⇐⇒ for some va ∈ W a, wa ≈a
b v

a and (Ma, va) |=a φ.

We are motivated to share a mutually comprehensible model among differ-
ent reasoning abilities. For this motivation, we introduce an abstract model
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called “a nested quotient model”.

Definitions of an equivalence class, a nested quotient frame, a nested
quotient model, and the satisfaction relation are the same as those of a
quotient model, respectively. The denotations are listed as follows if we hope
further abstraction by b’s awareness of a quotient model Ma = ⟨W a,∼a

,A a, V a⟩.:

• Equivalence Class: (wa)b and wa,b;

• Nested Quotient Frame: (F a)b = ⟨(W a)b, (∼a)b⟩ and
F a,b = ⟨W a,b,∼a,b⟩;

• Nested Quotient Model: (Ma)b = ⟨(W a)b, (∼a)b, (A a)b, (V a)b⟩ and
Ma,b = ⟨W a,b,∼a,b,A a,b, V a,b⟩;

• Satisfaction Relation: |=a,b
ALGP

For example, (wa)b is given in the same way as Definition 8.1.1.:

(wa)b := {va ∈ W a | wa ≈a
b v

a}.

A nested quotient model is also given in the same way as Definition 8.1.5
and 8.1.6 if two a, b ∈ A and a quotient model Ma = ⟨W a,∼a,A a, V a⟩ of a
are given.:

1. (W a)b := {wa,b | wa ∈ W a};

2. (∼a)b : G −→ 2(W
a)b×(Wa)b where for each i ∈ G,

(∼a)bi := {(wa,b, va,b) | (wa, va) ∈ (∼a
i ◦ ≈a

b )
+, wa, va ∈ W a}.

3. (A a)b : G −→ 2A a(b) with (A a)b(i) := A a(i) ∩ A a(b);

4. (V a)b : A a(b) −→ 2(W
a)b with (V a)b(p) := {(wa)b | wa ∈ V a(p)} for all

p ∈ A a(b).

The Satisfaction Relation of LALGP of (Ma)b is given for the truth of
all formulas containing occurrences of (A a)b in the same way as Definition
8.1.11.
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8.2 Product Quotient Model

The intuition that the product of models represents mutual complement is
based on the idea of considering a Kripke model as a perspective view. For
example, there is a cube and there are two agents who can only observe
different projections of the cube. At this time, it is possible to grasp the
perspective view of the cube by combining the information they have. When
the Kripke model is considered as a perspective view of a cube, the quotient
model by an agent’s awareness can be considered as a projection of the cube
that is visible to that agent. In this way, a mutual complement sometimes
corresponds to the operation of the product of the quotient model.

Definition 8.2.1. (Product Quotient Model)
Given two agent expressions a, b ∈ A, an epistemic awareness model M =
⟨W,∼,A , V ⟩ and two quotient model Ma = ⟨W a,∼a,A a, V a⟩ and M b =
⟨W b,∼b,A b, V b⟩ of a and b based on M , respectively. The product quotient
model of a and b based on M is a tuple Ma⊗b = ⟨W a⊗b,∼a⊗b,A a⊗b, V a⊗b⟩
consisting of:

1. W a⊗b ⊆ W a ×W b where (wa, vb) ∈ W a⊗b iff

for all φ ∈ LALGP |A (a · b), (Ma, wa) |=a
ALGP φ⇔ (M b, vb) |=b

ALGP φ

2. ∼a⊗b : G −→ 2W
a⊗b×Wa⊗b

with
For all wa, sa ∈ W a, vb, tb ∈ W b and i ∈ G,
(wa, vb) ∼a⊗b

i (sa, tb) iff wa ∼a
i s

a and vb ∼b
i t

b;

3. A a⊗b : G −→ 2A (a)∪A (b) with
A a⊗b(i) := A a(i) ∪ A b(i) for all i ∈ G;

4. V a⊗b : A (a) ∪ A (b) −→ 2W
a⊗b

with
V a⊗b(p) := {(wa, vb) | wa ∈ V a(p) or vb ∈ V b(p)} for all p ∈ A (a+ b).

Definition 8.2.2. (The Satisfaction Relation of LALGP in Product
Quotient Model Ma⊗b)
Fix a, b ∈ A. Given epistemic state (Ma⊗b, wa⊗b) with Ma⊗b = ⟨W a⊗b,∼a⊗b
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,A a⊗b, V a⊗b⟩, wa⊗b ∈ W a⊗b. For all φ ∈ LALGP |A (a+ b),

(Ma⊗b, wa⊗b) |=a⊗b
ALGP ⊤ ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP p ⇐⇒ wa⊗b ∈ V a⊗b(p);

(Ma⊗b, wa⊗b) |=a⊗b
ALGP ¬φ ⇐⇒ (Ma⊗b, wa⊗b)) ̸|=a⊗b

ALGP φ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP φ ∧ ψ ⇐⇒ (Ma⊗b, wa⊗b) |=a⊗b

ALGP φ

and (Ma⊗b, wa⊗b) |=a⊗b
ALGP ψ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP Aiφ ⇐⇒ At(φ) ⊆ A a⊗b(i);

(Ma⊗b, wa⊗b) |=a⊗b
ALGP □iφ ⇐⇒ for all va⊗b ∈ W a⊗b, wa⊗b ∼a⊗b

i va⊗b

implies (Ma⊗b, wa⊗b) |=a⊗b
ALGP φ;

By the definition, the satisfaction relation for ⊥,∨,→,♢i, Ki, Ac is de-
rived as follows: Given epistemic state (Ma⊗b, wa⊗b) withMa⊗b = ⟨W a⊗b,∼a⊗b

,A a⊗b, V a⊗b⟩ and wa⊗b ∈ W a⊗b.

(Ma⊗b, wa⊗b) ̸|=a⊗b
ALGP ⊥ ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP φ ∨ ψ ⇐⇒ (Ma⊗b, wa⊗b) |=a⊗b

ALGP φ

or (Ma⊗b, wa⊗b) |=a⊗b
ALGP ψ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP φ→ ψ ⇐⇒ (Ma⊗b, wa⊗b) |=a⊗b

ALGP φ

implies (Ma⊗b, wa⊗b) |=a⊗b
ALGP ψ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP ♢iφ ⇐⇒ for some va⊗b ∈ W a⊗b,

wa⊗b ∼a⊗b
i va⊗b and (Ma⊗b, wa⊗b) |=a⊗b

ALGP φ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP Kiφ ⇐⇒ (Ma⊗b, wa⊗b) |=a⊗b

ALGP □iφ

and (Ma⊗b, wa⊗b) |=a⊗b
ALGP Aiφ;

(Ma⊗b, wa⊗b) |=a⊗b
ALGP Acφ ⇐⇒ At(φ) ⊆ A a⊗b(c);

Next, we prove ∼a⊗b
i is an equivalence relation for all i ∈ G and all

a, b ∈ A.

Theorem 8.2.3. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩. Then, ∼a⊗b

i is an equivalence relation for all i ∈ G.

Proof. Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
and an arbitrary agent i ∈ G.

• (Reflexive) : Take an arbitrary world (wa, vb) ∈ W a⊗b. Since wa ∼a
i

wa and vb ∼b
i v

b, (wa, vb) ∼a⊗b
i (wa, vb). Since (wa, vb) ∈ W a⊗b is an

arbitrary world, ∼a⊗b
i is reflexive.
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• (Transitive) : Take three arbitrary worlds (wa1 , w
b
2), (v

a
1 , v

b
2), (u

a
1, u

b
2) ∈

W a⊗b. Suppose (wa1 , w
b
2) ∼a⊗b

i (va1 , v
b
2) and (va1 , v

b
2) ∼a⊗b

i (ua1, u
b
2). Then,

wa1 ∼a
i v

a
1 and va1 ∼a

i u
a
1. Since ∼a

i is transitive, wa1 ∼a ua1. Similarly,
wb2 ∼a ub2. By the definition of ∼a⊗b

i , (wa1 , w
a
2) ∼a⊗b

i (ua1, u
b
2). Since

(wa1 , w
b
2), (v

a
1 , v

b
2), (u

a
1, u

b
2) ∈ W a⊗b are arbitrary worlds, ∼a⊗b

i is transi-
tive.

• (Symmetric) : Take three arbitrary worlds (wa1 , w
b
2), (v

a
1 , v

b
2) ∈ W a⊗b.

Suppose (wa1 , w
b
2) ∼a⊗b

i (va1 , v
b
2). By the definition of ∼a⊗b

i , wa1 ∼a
i v

a
1 and

wb2 ∼b
i v

b
2. Since ∼a

i and ∼b
i are symmetric, va1 ∼a

i w
a
1 and vb2 ∼b

i w
b
2. By

the definition of ∼a⊗b
i , (va1 , v

b
2) ∼a⊗b

i (wa1 , w
b
2). Since (wa1 , w

b
2), (v

a
1 , v

b
2) ∈

W a⊗b are two arbitrary worlds, ∼a⊗b
i is symmetric.

Since i ∈ G is an arbitrary agent, ∼a⊗b
i is an equivalence relation for all

i ∈ G. □

Theorem 8.2.4. Fix a ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩, three arbitrary worlds w,w′, v ∈ W , and an agent i ∈ G.
Suppose M is image-finite. If w ∼i v and w ≈a w

′, then there is a world
v′ ∈ W such that w′ ∼i v

′ and v ≈a v
′.

Proof. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩,
an agent i ∈ G and two worlds w, v ∈ W such that w ∼i v. Suppose M
is image-finite. By the Hennessy–Milner style contradiction. Suppose there
is no v′ ∈ va with w′ ∼i v

′ for some w′ ∈ wa . Take an arbitrary w′ ∈ wa

such that w′ ̸∼i v
′ for all v′ ∈ va. Let n be a positive integer such that

n = #{v′′ | w′ ∼i v
′′} and v′k ∈ {v′′ | w′ ∼i v

′′} be a possible world for
each positive integer k ≤ n. By the assumption, v′k /∈ va. Then, there is a
φk ∈ LALGP |A (a) such that (M, v) |= φk and (M, v′k) ̸|= φk for every positive
integer k ≤ n. Since M is image-finite, ♢i(φ1 ∧ φ2 ∧ ... ∧ φn) is a formula.
Then, (M,w) |= ♢i(φ1 ∧φ2 ∧ ...∧φn). and (M,w′) ̸|= ♢i(φ1 ∧φ2 ∧ ...∧φn).
Since w ≈a w

′, this is a contradiction. Therefore, If w ∼i v, then for all
w′ ∈ wa, there is a world v′ ∈ W such that w′ ∼i v

′ and v ≈a v
′. □

Theorem 8.2.5. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩, two arbitrary worlds w, v ∈ W , and an agent i ∈ G. If A (b) ⊆
A (a), then

wa ∼a
i v

a implies wb ∼b
i v

b

Proof. Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
and an agent i ∈ G. Take two arbitrary worlds w, v ∈ W . Suppose A (b) ⊆
A (a) and wa ∼a

i v
a. By the definition of ∼a

i , (w, v) ∈ (∼i ◦ ≈a)
+. By the

lemma 5.3.1, (w, v) ∈ (∼i ◦ ≈b)
+. Then, wb ∼b

i v
b. □
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Theorem 8.2.6. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩, two arbitrary worlds w, v ∈ W , and an agent i ∈ G. Suppose
A (a) ⊆ A (b) andM is image-finite. If wa1 ∼a

i v
a
1 , then for all wb2 ⊆ wa1 , there

is a vb2 ⊆ va1 such that wb2 ∼b
i v

b
2.

Proof. Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
and an agent i ∈ G. Suppose A (a) ⊆ A (b) and M is image-finite. Take
three arbitrary worlds w1, w2 ∈ W such that wb2 ⊆ wa1 .

Take arbitrary worlds w1.1, w1.2, w1.3, ... ∈ W such that w1 ≈a w1.1, w1.2k+1 ∼i

w1.2k+2, and w1.2k+2 ≈a w1.2k+3 for all k ≥ 0.

• Base Case: Take an arbitrary w2.1 ∈ wb2. By the theorem 8.2.4 and
w1.1 ∼i w1.2, there is w2.2 ∈ wa1.2 such that w2.1 ∼i w2.2. Then, there is
wb2.2 ⊆ wa1.2 such that wb2 ∼b

i w
b
2.2.

• Induction Hypothesis: There is wb2.2k ⊆ wa1.2k such that wb2 ∼b
i w

b
2.2k

for all k ∈ N such that 1 ≤ k ≤ n.

• Induction Step: Take an arbitrary w2.2k+1 ∈ wb2.2k. By the theo-
rem 8.2.4 and w1.2k+1 ∼i w1.2k+2, there is w2.2k+2 ∈ wa1.2k+2 such that
w2.2k+1 ∼i w2.2(k+1). By (w2.2k, w2.2(k+1)) ∈ (∼i ◦ ≈a), w

b
2 ∼b

i w
b
2.2(k+1).

Since w1.1, w1.2, w1.3, ... ∈ W are arbitrary worlds such that w1 ≈a w1.1,
w1.2k+1 ∼i w1.2k+2, and w1.2k+2 ≈a w1.2k+3 for all k ≥ 0, for all va1 such
that w1 ∼a

i v
a
1 , there is vb2 ⊆ va1 such that wb2 ∼b

i v
b
2. □

Lemma 8.2.7. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩, three arbitrary worlds w1, w2, v1 ∈ W , and an agent i ∈ G. Suppose
M is image-finite. If (wa1 , w

b
2) ∈ W a⊗b and wa1 ∼a

i v
a
1 , then there is vb2 ⊆ va·b1

such that (wa1 , w
b
2) ∼a⊗b

i (va1 , v
b
2).

Proof. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩,
an agent i ∈ G and three worlds w1, w2, v1 ∈ W such that (wa1 , w

b
2) ∈ W a⊗b

and wa1 ∼a
i v

a
1 . Suppose M is image-finite.

By the lemma 8.2.5, wa·b1 ∼a·b
i va·b1 . Since M is image-finite and the

lemma 8.2.6, there is vb2 ⊆ va·b1 such that wb2 ∼b
i v

b
2. By the definition of ∼a⊗b

i ,
(wa1 , w

b
2) ∼a⊗b

i (va1 , v
b
2). Therefore, there is vb2 ⊆ va·b1 such that (wa1 , w

b
2) ∼a⊗b

i

(va1 , v
b
2). □

Theorem 8.2.8.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
If W is a image-finite set, then for all wa ∈ W a, all vb ∈ W b such that
(wa, vb) ∈ W a⊗b,

for all φ ∈ LALGP |A (a), ((Ma, wa) |=a
ALGP φ ⇐⇒ (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ).
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Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose M is image-finite.

• Base Case: Take an arbitrary atomic proposition p ∈ A (a). Suppose
that there is a wa ∈ W a such that (wa, vb) ∈ V a⊗b(p) and wa /∈ V a(p).
By the definition of V a⊗b, vb ∈ V b(p). Then, p ∈ A (a) ∩ A (b). By
the definition of W a⊗b and p ∈ A (a) ∩ A (b), (Ma, wa) |=a

ALGP p ⇔
(M b, wb) |=b p. Then, wa ∈ V a(p). This is a contradiction. By the
definition of V a⊗b, there is no (wa, vb) ∈ W a⊗b(p) such that (wa, vb) /∈
V a⊗b(p) and wa ∈ V a(p).
Thus, (wa, vb) ∈ V (p) if and only if wa ∈ V (p).

• Induction Hypothesis: (Ma, wa) |=a
ALGP φ ⇐⇒ (Ma⊗b, (wa, vb)) |=a⊗b

ALGP

φ for all vb ∈ W b.

• Induction Step: Take an arbitrary φ ∈ LALGP |A (a) and wa ∈ W a

such that (Ma, wa) |=a
ALGP φ ⇐⇒ (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ for all
vb ∈ W b.

– (The case for φ ∧ ψ) : By the semantics, (Ma, wa) |=a
ALGP φ ∧

ψ ⇔ (Ma, wa) |=a
ALGP φ and (Ma, wa) |=a

ALGP ψ. By the induc-
tion hypothesis, (Ma, wa) |=a

ALGP φ and (Ma, wa) |=a
ALGP ψ if and

only if (Ma⊗b, (wa, vb)) |=a⊗b
ALGP φ and (Ma⊗b, (wa, vb)) |=a⊗b

ALGP ψ.
By the semantics, (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ ∧ ψ.
– (The case for ¬φ) : By the semantics, (Ma, wa) |=a

ALGP ¬φ ⇔
(Ma, wa) ̸|=a

ALGP φ. By the induction hypothesis, (Ma, wa) ̸|=a
ALGP

φ⇔ (Ma⊗b, (wa, vb)) ̸|=a⊗b
ALGP φ. By the semantics,

(Ma⊗b, (wa, vb)) ̸|=a⊗b
ALGP φ ⇔ (Ma⊗b, (wa, vb)) |=a⊗b

ALGP ¬φ. Then,
(Ma, wa) |=a

ALGP ¬φ⇔ (Ma⊗a, (wa, vb)) |=a⊗b
ALGP ¬φ.

– (The case for Acφ) : By the semantics, (Ma, wa) |=a
ALGP Acφ

if and only if At(φ) ⊆ A a(c). Since A a(c) = A (a) ∩ A (c),
At(φ) ⊆ A a(c) if and only if At(φ) ⊆ A a⊗b(c) for all φ such that
At(φ) ⊆ A (a).
Then, (Ma, wa) |=a

ALGP Acφ if and only if (Ma⊗b, (wa, vb)) |=a⊗b
ALGP

Acφ.

– (The case for □iφ) :

∗ (⇒):
Suppose that (Ma, wa) |=a

ALGP □iφ.
Suppose that there is a (sa, tb) ∈ W a⊗b such that (wa, vb) ∼a⊗b

i

(sa, tb) and (Ma⊗b, (sa, tb)) ̸|=a⊗b
ALGP φ. By the definition of
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∼a⊗b, wa ∼a
i s

a. By the induction hypothesis, (Ma, sa) ̸|=a
ALGP

φ. By the semantics, (Ma, wa) |=a
ALGP ¬□iφ. This is a

contradiction. Then, there is no (sa, tb) ∈ W a⊗b such that
(wa, vb) ∼a⊗b

i (sa, tb) and (Ma⊗b, (sa, tb)) ̸|=a⊗b
ALGP φ. Then,

(Ma⊗b, (wa, vb)) |=a⊗b
ALGP □iφ.

∗ (⇐):
By the contraposition. Suppose (Ma, wa) |=a ¬□iφ. Then,
there is a sa ∈ W a where wa ∼a

i s
a and (Ma, sa) ̸|=a

ALGP φ.
By the lemma 8.2.7, there is a ta ∈ W b such that (wa, vb) ∼a⊗b

i

(sa, tb). By the induction hypothesis, (Ma⊗b, (sa, tb)) |=a⊗b
ALGP

¬φ. So, (Ma⊗b, (wa, vb)) |=a⊗b ¬□iφ.

□
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Chapter 9

Reduction to Quotient Model
with Agent Expression

9.1 Reduction of Nested Quotient Model by

Common Awareness

We introduced the definition of a nested quotient model by transforming a
quotient model. However, we want to represent nested abstractions in the
semantics defined by the original epistemic awareness model. For this reason,
this section shows a reduction from a nested quotient model to a quotient
model.

Theorem 9.1.1. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩. For all w, v ∈ W ,

w ≈a·b v ⇐⇒ wa ≈a
b v

a

Proof. Given two agent expressions a, b ∈ A and any epistemic awareness
model M = ⟨W,∼,A , V ⟩. Take two arbitrary worlds w, v ∈ W .

By the definition of ≈a·b, w ≈a·b v if and only if (M,w) |=ALGP φ ⇔
(M, v) |=ALGP φ for all φ ∈ LALGP |A (a · b). By the definition of A for agent
expressions, A (a·b) = A (a)∩A (b). By the definition of A a, A (a)∩A (b) =
A a(b). Then, w ≈a·b v if and only if (M,w) |=ALGP φ ⇔ (M, v) |=ALGP φ
for all φ ∈ LALGP |A a(b).

Take an arbitrary φ ∈ LALGP such that At(φ) ⊆ A a(b). By the theorem
8.1.8, (M,w) |=ALGP φ ⇔ (Ma, wa) |=a

ALGP φ and (M, v) |=ALGP φ ⇔
(Ma, va) |=a

ALGP φ. Then, (M,w) |=ALGP φ ⇔ (M, v) |=ALGP φ if and
only if (Ma, wa) |=a

ALGP φ ⇔ (Ma, va) |=a
ALGP φ. By the definition of ≈a

b ,
(M,w) |=ALGP φ⇔ (M, v) |=ALGP φ if and only if wa ≈a

b v
a. Since w, v ∈ W

are arbitrary worlds, w ≈a·b v if and only if wa ≈a
b v

a for all w, v ∈ W . □
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Correspondence of Cardinality

Lemma 9.1.2.
Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Then,

#W a,b = #W a·b.

Proof. By the lemma 9.1.1, w ≈a·b v ⇔ wa ≈a
b v

a for all w, v ∈ W . Then,
s ∈ wa·b ⇔ s ∈ sa ∈ wa,b for all s, w ∈ W . Therefore, #W a,b = #W a·b. □

Correspondence of Relation

Lemma 9.1.3. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩. For all i ∈ G and all w, v ∈ W ,

wa,b ∼a,b
i va,b ⇔ wa·b ∼a·b

i va·b.

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. Take
an arbitrary i ∈ G and two arbitrary worlds w, v ∈ W .

• (⇒): Suppose that wa,b ∼a,b
i va,b. By the definition of ∼a,b

i , (wa, va) ∈
(∼a

i ◦ ≈a
b )

+. By the lemma 9.1.1 and definition of ∼a
i , (w, v) ∈ ((∼i

◦ ≈a)
+◦ ≈a·b)

+. Then, (w, v) ∈ (∼i ◦ ≈a·b)
+. Therefore, wa·b ∼a·b

i va·b.

• (⇐): Suppose that wa·b ∼a·b
i va·b. By the definition of ∼a·b

i , (w, v) ∈
(∼i ◦ ≈a·b)

+. Then, (w, v) ∈ ((∼i ◦ ≈a)
+◦ ≈a·b)

+. By the lemma 9.1.1
and definition of ∼a

i , (w
a, va) ∈ (∼a

i ◦ ≈a
b )

+. By the definition of ∼a,b
i ,

wa,b ∼a,b
i va,b.

Since i ∈ G and w, v ∈ W are arbitrary, for all i ∈ G and all w, v ∈ W ,
wa,b ∼a,b

i va,b ⇔ wa·b ∼a·b
i va·b. □

Correspondence of Truth

Theorem 9.1.4.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For
all w ∈ W ,

for all φ ∈ LALGP |A a(b), ((Ma, wa) |=a
ALGP φ ⇐⇒ (Ma,b, wa,b) |=a,b

ALGP φ).

Proof. The proof is similar to the proof of the theorem 8.1.8. □
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Theorem 9.1.5.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. For
all w ∈ W ,

for all φ ∈ LALGP |A (a · b), ((M,w) |=ALGP φ ⇐⇒ ((Ma)b, wa,b) |=a,b
ALGP φ).

Proof. Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩.
By the theorem 8.1.8, (M,w) |=ALGP φ⇔ (Ma, wa) |=a

ALGP φ for all w ∈ W
and all φ ∈ LALGP |A (a · b).

By the theorem 9.1.4, (Ma, wa) |=a
ALGP φ ⇔ (Ma,b, wa,b) |=a,b φ for all

w ∈ W and all φ ∈ LALGP |A a(b).
Since A a(b) = A (a) ∩ A (b), (M,w) |=ALGP φ ⇔ (Ma,b, wa,b) |=a,b φ for

all w ∈ W and all φ ∈ LALGP |A (a · b). □

Existence of Isomorphism

Now, M ∼= M ′ represents that there is an isomorphism between two models
M and M ′.

Theorem 9.1.6. (Isomorphism between Quotient Model and Nested
Quotient Model)
Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Then,

(Ma)b ∼= Ma·b

Proof. Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩.
It is shown that there is an isomorphism f from (W a)b to W a·b with

1. wa,b ∼i v
a,b ⇔ f(wa,b) ∼a·b

i f(va,b),

2. (Ma,b, wa,b) |=a,b φ ⇔ (Ma·b, f(wa,b)) |=a·b φ for all φ ∈ LALGP |A (a ·
b).

Let f : (W a)b −→ W a·b be a function with f(wa,b) = wa·b for each w ∈ W .
By the lemma 9.1.5, (Ma,b, wa,b) |=a,b φ ⇔ (Ma·b, f(wa,b)) |=a·b φ for all
w ∈ W and all φ ∈ LALGP |A (a · b). By the lemma 9.1.3, wa,b ∼i v

a,b ⇔
f(wa,b) ∼a·b

i f(va,b) for all i ∈ G and all w, v ∈ W .
By the lemma 9.1.2, f is a bijection function. Since f is an isomorphism
from (W a)b to W a·b, (Ma)b ∼= Ma·b. □

Example 9.1.7. There are three children i1, i2, i3. Let p1, p2 and p3 be
atomic propositions standing for “agents i1, i2, and i3 have mud on their
faces”, respectively. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩
consisting of (See Figure 9.1):
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1. W = {w1, w2, w3, w4, w5, w6},

2. ∼i1= {(w, v) | w, v ∈ {w1, w3}} ∪ {(w, v) | w, v ∈ {w2, w4}} ∪ {(w, v) |
w, v ∈ {w5, w6}},
∼i2= {(w, v) | w, v ∈ {w2, w5}} ∪ {(w, v) | w, v ∈ {w4, w6}} ∪ {(w,w) |
w ∈ W},
∼i3= {(w, v) | w, v ∈ {w1, w5}} ∪ {(w, v) | w, v ∈ {w3, w6}} ∪ {(w,w) |
w ∈ W},
∼e= {(w, v) | w, v ∈ W},

3. A (i1) = {p1, p2}, A (i2) = {p2, p3}, A (i3) = A (e) = {p1, p2, p3},

4. V (p1) = {w3, w4, w6}, V (p2) = {w1, w3, w5, w6}, V (p3) = {w2, w4, w5, w6}.

w1 w2

w3 w4 w5

w6

¬p1, p2,¬p3 ¬p1,¬p2, p3

p1, p2,¬p3

p1
¬p2, p3

¬p1, p2, p3

p1, p2, p3

i1

i1

i1

i3

i3

i2

i2

Figure 9.1: Kripke model represented knowledge of i1, i2, and i3(Repeat)

Then, M i1 is given as the Figure 9.2.
Since A i1(i2) = {p2}, (M i1)i2 is given as Figure 9.3.
Since A (i1) = {p1, p2} and A (i2) = {p2, p3}, then A (i1 · i2) = {p2}.

Then M i1·i2 is given as Figure 9.4.
Obviously, (M i1)i2 ∼= M i1·i2 .
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w1 w2

w3 w4 w5

w6

¬p1, p2 ¬p1,¬p2

p1, p2

p1,¬p2
¬p1, p2

p1, p2

i1

i1

i1

i3

i3

i2

i2

Figure 9.2: The Quotient Model M i1

wi1,i22

wi1,i25 wi1,i21

¬p2

p2 p2
i2

i3

Figure 9.3: The Nested Quotient Model (M i1)i2
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wi1·i22

wi1·i25 wi1·i21

¬p2

p2 p2
i2

i3

Figure 9.4: The Quotient Model M i1·i2

9.2 Reduction of Product Quotient Model by

Distributed Awareness

The section 8.2 introduced the definition of a product quotient model by
transforming two quotient models. However, we want to represent mutually
complementary concretizations in the semantics defined by the original epis-
temic awareness model. For this reason, this section shows a reduction from
a product quotient model to a quotient model.

Correspondence of Cardinality

Lemma 9.2.1.
Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩. Then,
for all w, v ∈ W , if wa ∩ vb ̸= ∅, then (wa, vb) ∈ W a⊗b.

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩ and
two worlds w, v ∈ W . Suppose wa ∩ vb ̸= ∅. Take an arbitrary s ∈ wa ∩ vb.

By the theorem 8.1.8, (Ma, sa) |=a
ALGP φ ⇔ (M, s) |= φ for all φ ∈

LALGP |A (a), and (M b, sb) |=b ψ ⇔ (M, s) |= ψ for all ψ ∈ LALGP |A (b).
Then, (Ma, sa) |=a

ALGP φ ⇔ (M, s) |= φ and (M b, sb) |=b φ ⇔ (M, s) |= φ
for all φ ∈ LALGP |(A (a)∩A (b)). Thus, (Ma, sa) |=a

ALGP φ⇔ (M b, sb) |=b φ
for all φ ∈ LALGP |A (a · b). Therefore, (sa, sb) ∈ W a⊗b. Since s ∈ wa ∩ vb,
sa = wa and sb = vb. Then, (wa, vb) ∈ W a⊗b. □

Theorem 9.2.2.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. Let
W ′ be a set of paired equivalence classes such that W ′ = {(wa, vb) ∈ W a⊗b |
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wa ∩ vb = ∅, w, v ∈ W}.
If wa ∩ wb = wa+b for all w ∈ W , then

#W a+b = #W a⊗b −#W ′.

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose that wa ∩ wb = wa+b for all w ∈ W .

• #W a+b ≤ #W a⊗b −#W ′:
Take an arbitrary sa+b ∈ W a+b. By the theorem 8.1.2, sa+b ⊆ wa, vb.
Then, s ∈ W a∩ vb. By the lemma 9.2.1, (wa, vb) ∈ W a⊗b. Then, for all
sa+b ∈ W a+b, there is just one (wa, vb) ∈ W a⊗b such that sa+b ⊆ wa, vb.
Therefore, #W a+b ≤ #W a⊗b −#W ′.

• #W a+b ≥ #W a⊗b −#W ′:
Take an arbitrary (wa, vb) ∈ W a⊗b such that wa ∩ vb ̸= ∅. Take an
arbitrary s ∈ wa ∩ vb. By wa = sa and vb = sb and sa ∩ sb = sa+b,
sa+b = wa∩vb. Since s ∈ sa+b is an arbitrary, for all t ∈ wa∩vb, sa+b =
ta+b. Then, for all (wa, vb) ∈ W a⊗b, there is just one sa+b ∈ W a+b such
that sa+b = wa ∩ vb.Therefore, #W a+b ≥ #W a⊗b −#W ′.

Thus, #W a+b = #W a⊗b −#W ′. □

Correspondence of Relation

Lemma 9.2.3. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩, an agent i ∈ G, and two arbitrary worlds s, t ∈ W . If sa+b ∼a+b

i ta+b,
then (wa1 , v

b
1) ∼a⊗b

i (wa2 , v
b
2) for all w1, w2, v1, v2 ∈ W such that sa+b ⊆ wa1 ∩ vb1

and ta+b ⊆ wa2 ∩ vb2.

Proof. Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩,
an agent i ∈ G, and two arbitrary worlds s, t ∈ W . Suppose sa+b ∼a+b

i ta+b.
By the lemma 8.2.5, sa ∼a

i ta and sb ∼b
i tb. Take arbitrary worlds

w1, w2, v1, v2 ∈ W such that sa+b ⊆ wa1 ∩ vb1 and ta+b ⊆ wa2 ∩ vb2. Then,
wa1 ∼a

i w
a
2 and v

b
1 ∼b

i v
b
2. By the definition of ∼a⊗b

i , (wa1 , v
b
1) ∼a⊗b (wa2 , v

b
2). □

Lemma 9.2.4. Fix a ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩, an agent i ∈ G, and arbitrary worlds w1, w2, v1, v2 ∈ W . Suppose M
is image-finite. If (wa1 , v

b
1) ∼a⊗b (wa2 , v

b
2), then for all sa+b ⊆ wa1 ∩ vb1, there is

ta+b ⊆ wa2 ∩ vb2 such that sa+b ∼a+b
i ta+b.
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Proof. Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼
,A , V ⟩, an agent i ∈ G, and arbitrary worlds w1, w2, v1, v2 ∈ W such that
(wa1 , v

b
1), (w

a
2 , v

b
2) ∈ W a⊗b and (wa1 , v

b
1) ∼a⊗b (wa2 , v

b
2). Then, wa1 ∼a

i w
a
2 and

vb1 ∼b
i v

b
2. Suppose M is image-finite. Take an arbitrary sa+b ⊆ wa1 ∩ vb1.

By the lemma 8.2.6, there is ta+b ⊆ wa2 ∩ vb2 such that sa+b ∼a+b
i ta+b. Since

sa+b ⊆ wa1∩vb1 is arbitrary world, for all sa+b ⊆ wa1∩vb1, there is ta+b ⊆ wa2∩vb2
such that sa+b ∼a+b

i ta+b. □

Lemma 9.2.5. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩ and an agent i ∈ G. Suppose M is image-finite. Suppose that

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

2. for all w ∈ W , wa ∩ wb = wa+b.

Then, for all w1, w2, v1, v2 ∈ W ,

(wa1 , w
b
2) ∼a⊗b

i (va1 , v
b
2) ⇐⇒ wa1 ∩ wb2 ∼a+b

i va1 ∩ vb2.

Proof. Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩.
Suppose that

1. M is image-finite,

2. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

3. for all w ∈ W , wa ∩ wb = wa+b. Take arbitrary worlds w1, w2, v1, v2 ∈
W .

• (⇒):
Suppose that (wa1 , w

b
2) ∼a⊗b

i (va1 , v
b
2). Then, w

a
1 ∼a

i v
a
1 and wb2 ∼b

i v
b
2. By

the lemma 9.2.4, for all sa+b ⊆ wa1 ∩wb2, there is ta+b ⊆ va1 ∩vb2 such that
sa+b ∼a+b

i ta+b. By sa+b = sa∩sb = wa1 ∩wb2 and ta+b = ta∩ tb = va1 ∩vb2,
wa1 ∩ wb2 ∼a+b

i va1 ∩ vb2.

• (⇐):
Suppose that wa1∩wb2 ∼a+b

i va1 ∩vb2. Take arbitrary worlds s, t ∈ W such
that sa+b ⊆ wa1 ∩ wb2 and ta+b ⊆ va1 ∩ vb2. By sa+b = sa ∩ sb = wa1 ∩ wb2
and ta+b = ta ∩ tb = va1 ∩ vb2, s

a+b ∼a+b
i ta+b. By the lemma 8.2.5,

sa ∼a
i t

a and sb ∼b
i t

b. By the definition of ∼a⊗b
i , (sa, sb) ∼a⊗b

i (ta, tb).
By sa+b ⊆ wa1 ∩ wb2 and ta+b ⊆ va1 ∩ vb2, (wa1 , wb2) ∼a⊗b

i (va1 , v
b
2).

Therefore, (wa1 , w
b
2) ∼a⊗b

i (va1 , v
b
2) if and only if wa1 ∩ wb2 ∼a+b

i va1 ∩ vb2 for all
w1, w2, v1, v2 ∈ W . □
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Correspondence of Truth

Lemma 9.2.6.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩ and
two worlds w, v ∈ W . If M is a image-finite set and wa ∩ vb ̸= ∅, then for
all s ∈ wa ∩ vb,

for all φ ∈ LALGP |A (a) ∪ LALGP |A (b),
((Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ⇔ (M, s) |= φ).

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩ and
two worlds w, v ∈ W . Suppose M is image-finite.

By the theorem 8.2.8,
(Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ⇔ (Ma, wa) |=a
ALGP φ for all φ ∈ LALGP |A (a)

and (Ma⊗b, (wa, vb)) |=a⊗b
ALGP φ⇔ (M b, vb) |=b φ for all φ ∈ LALGP |A (b).

Take an arbitrary s ∈ wa ∩ vb. By the theorem 8.1.8, for all φ ∈
LALGP |A (a), (Ma, wa) |=a

ALGP φ ⇔ (M, s) |= φ. By the theorem 8.1.8,
for all φ ∈ LALGP |A (b), (M b, vb) |=b φ⇔ (M, s) |= φ. Therefore, for all φ ∈
LALGP |A (a) ∪ LALGP |A (b), (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ⇔ (M, s) |= φ. □
Theorem 9.2.7.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose that M is image-finite. Suppose that

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

2. for all w ∈ W , wa ∩ wb = wa+b.

Then,

for all φ ∈ LALGP |A (a+b), ((Ma⊗b, (wa, vb)) |=a⊗b
ALGP φ⇔ (Ma+b, sa+b) |=a+b

ALGP φ)

where wa ∩ vb = sa+b.

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose M is image-finite. By the lemma 9.2.6, (Ma⊗b, (wa, vb)) |=a⊗b

ALGP

φ ⇔ (M, s) |= φ for all s ∈ wa ∩ vb and φ ∈ LALGP |A (a) ∪ LALGP |A (b).
Since sa+b = wa∩vb, (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ⇔ (Ma+b, sa+b) |=a+b
ALGP φ for

all φ ∈ LALGP |A (a) ∪ LALGP |A (b).
By the theorem 9.2.5, (wa, vb) ∼a⊗b

i (sa, tb) ⇐⇒ wa ∩ vb ∼a+b
i sa ∩ tb

for all w, v, s, t ∈ W .
Therefore, (Ma⊗b, (wa, vb)) |=a⊗b

ALGP φ ⇔ (Ma+b, sa+b) |=a+b
ALGP φ for all

φ ∈ LALGP |A (a+ b). □
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Existence of Isomorphism

Theorem 9.2.8.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose that M is image-finite. Suppose that

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

2. for all w ∈ W , wa ∩ wb = wa+b.

Then,
Ma⊗b ∼= Ma+b.

Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose M is image-finite. It is shown that there is an isomorphism f :
W a⊗b −→ W a+b with

• f((wa, vb)) = sa+b with wa ∩ vb = sa+b,

• wa⊗b ∼a⊗b
i va⊗b if and only if f(wa⊗b) ∼a+b

i f(va⊗b) and

• for all φ ∈ LALGP |A (a+ b),
(Ma⊗b, wa⊗b) |=a⊗b

ALGP φ ⇔ (Ma+b, f(wa⊗b)) |=a+b
ALGP φ.

Let f be a function from W a⊗b to W a+b such that f((wa, vb)) = sa+b for all
w, v, s ∈ W with wa ∩ vb = sa+b. By the Theorem 9.2.2, f is a bijective
function.
By the theorem 9.2.5, wa⊗b ∼a⊗b

i va⊗b if and only if f(wa⊗b) ∼a+b
i f(va⊗b)

for all w, v ∈ W .
By the theorem 9.2.7, for all w ∈ W and all φ ∈ LALGP |A (a+b), (Ma⊗b, wa⊗b) |=a⊗b

ALGP

φ ⇔ (Ma+b, f(wa⊗b) |=a+b
ALGP φ.

Therefore, f is an isomorphism from W a⊗b to W a+b. Thus, Ma⊗b ∼= Ma+b.
□

Theorem 9.2.9.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩.
Suppose that M is image-finite. If

Ma⊗b ∼= Ma+b,

then

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

2. for all w ∈ W , wa ∩ wb = wa+b.
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Proof.
Fix a, b ∈ A. Given an epistemic awareness model M = ⟨W,∼,A , V ⟩. Sup-
pose thatM is image-finite and there is no s /∈ wa∩vb with (Ma⊗b, (wa, vb)) |=a⊗b

ALGP

φ ⇔ (Ma+b, sa+b) |=a+b
ALGP φ for all w, v ∈ W and all φ ∈ LALGP |A (a + b).

Then, f((wa, vb)) ⊆ wa ∩ vb or f((wa, vb)) /∈ W a+b.

1. Suppose that for some w, v ∈ W , (wa, vb) ∈ W a⊗b and wa ∩ vb = ∅.
Since f((wa, vb)) ∈ wa ∩ vb or f((wa, vb)) /∈ W a+b, f((wa, vb)) /∈ W a+b.
Then, f is not a morphism.

2. Suppose that wa ∩ wb ̸= wa+b for some w ∈ W . By the theorem 8.1.2,
wa+b ⊊ wa ∩ wb. Then, there are va+b ⊊ wa ∩ wb such that wa+b ̸=
va+b. Then, for some φ ∈ LALGP |A (a + b), (Ma+b, wa+b) |=a+b

ALGP φ ̸⇔
(Ma+b, va+b) |=a+b

ALGP φ. Since f((wa, vb)) ⊆ wa ∩ wb or f((wa, vb)) /∈
W a+b, f is not an isomorphism.

By the contraposition, if there is an isomorphism f : W a⊗b −→ W a+b with

• wa⊗b ∼a⊗b
i va⊗b if and only if f(wa⊗b) ∼a+b

i f(va⊗b) and

• for all φ ∈ LALGP |A (a+ b),
(Ma⊗b, wa⊗b) |=a⊗b

ALGP φ ⇔ (Ma+b, f(wa⊗b)) |=a+b
ALGP φ.

, then

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅, and

2. wa ∩ wb = wa+b for all w ∈ W .

□

Example 9.2.10. Let G = {e, i, j} and P = {p, q, r}. Given an epistemic
awareness model M1 = ⟨W,∼,A , V ⟩ consisting of (See the left model in
Figure 9.5):

1. W = {w1, w2, w3, w4};

2. ∼i= {(w, v) | w, v ∈ {w1, w2}} ∪ {(w, v) | w, v ∈ {w3, w4}},
∼j= {(w,w) | w ∈ W}, and ∼e= {(w, v) | w, v ∈ W}.

3. A (i) = {p, q}, A (j) = {q, r}, and A (e) = P .

4. V (p) = {w1, w3, w4}, V (q) = {w1, w2}, and V (r) = {w1, w2, w3}.
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Further, given another epistemic awareness model M2 = ⟨W ′,∼′,A ′, V ′⟩
consisting of (See the right model in Figure 9.5):

1. W ′ = {w5, w6, w7},

2. ∼′
i= {(w,w) | w ∈ W ′},∼′

j= {(w,w) | w ∈ W ′}, and ∼′
e= {(w, v) |

w, v ∈ W ′}.

3. A ′(i) = {p}, A ′(j) = {q}, and A ′(e) = P .

4. V ′(p) = {w5, w7}, V ′(q) = {w5, w6}.

w1

w2

w3

w4

p, q, r

¬p, q, r

p,¬q, r

p,¬q,¬r

i i

w5

w6

w7

∅

p, q

¬p, q

p,¬q

wi6

wj7

Figure 9.5: M1 and M2

94



Then, each quotient model M i
1 and M j

1 is given, respectively (See Figure
9.6).

wi1

wi2

wi3p, q

¬p, q

p,¬qi

wj1 wj3

wj4

q, r

¬q, r

¬q,¬r

i

Figure 9.6: The Quotient Models M i
1 and M j

2 of The Left in Figure 9.5

Then, the product quotient model M i⊗j
1 is given as Figure 9.7.

(wi1.w
j
1)

(wi2, w
j
1)

(wi3, w
j
3)

(wi3, w
j
4)

p, q, r

¬p, q, r

p,¬q, r

p,¬q,¬r

i i

Figure 9.7: The Product Quotient Model M i⊗j
1 of Figure 9.5

Since A (i+ j) = {p, q, r}, the quotient model of i+ j is given as Figure
9.8.

Obviously, M i⊗j
1

∼= M i+j
1 .

95



wi+j1

wi+j2

wi+j3

wi+j4

p, q, r

¬p, q, r

p,¬q, r

p,¬q,¬r

i i

Figure 9.8: The Quotient Model M i+j
1 of The Left in Figure 9.5

M i⊗j
2 is shown in Figure 9.9:

(wi5, w
j
5)

(wi6, w
j
6)

(wi7, w
j
7)

(wi6, w
j
7)

p, q

¬p, q

p,¬q

¬p,¬q

Figure 9.9: The Product Quotient Model M i⊗j
2 of The Right in Figure 9.5

Since A (i+ j) = {p, q}, M i⊗j ̸∼= M i+j.

9.3 Correspondence between Formulas and Re-

duction of Product Quotient Model

A product quotient model does not always correspond to a quotient model
with distributed awareness. However, the conditions of reduction from a
product quotient model to a quotient model with distributed awareness hold
if and only if the following formulas are valid on a given model.:

1. ⟨≈⟩aφ ∧ ⟨≈⟩bφ→ ⟨≈⟩a+bφ, and
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2. ⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ.

⟨≈⟩aφ ∧ ⟨≈⟩bφ → ⟨≈⟩a+bφ is valid if and only if wa ∩ wb ⊆ wa+b for
all w ∈ W . Also, ⟨≈⟩a·bφ → ⟨≈⟩a⟨≈⟩bφ is valid if and only if va ∩ ub ̸=
∅ for all va, ub ⊆ wa·b.

Since ⟨≈⟩a+bφ → ⟨≈⟩aφ ∧ ⟨≈⟩bφ and ⟨≈⟩a⟨≈⟩bφ → ⟨≈⟩a·bφ are valid on
all epistemic awareness model, ⟨≈⟩aφ∧ ⟨≈⟩bφ↔ ⟨≈⟩a+bφ and ⟨≈⟩a·bφ↔ ⟨≈
⟩a⟨≈⟩bφ are valid on a given image-finite model if and only if the conditions of
reduction from a product quotient model to a quotient model with distributed
awareness hold.

The following theorem shows the correspondence between the condition
and the above formula ⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ.

Theorem 9.3.1. Fix a, b ∈ A. Given an epistemic awareness model M =
⟨W,∼,A , V ⟩. They are equivalent to each other.

1. for all w, v ∈ W , if (wa, vb) ∈ W a⊗b, then wa ∩ vb ̸= ∅.

2. for all w, v ∈ W , if w ≈a·b v, then there is a x ∈ W such that w ≈a x
and x ≈b v.

3. ⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ is valid for all φ ∈ LALGP .

Proof. Fix a, b ∈ A. Given an epistemic awareness modelM = ⟨W,∼,A , V ⟩.

• (1 ⇒ 2): By the contraposition. Suppose that for some w ∈ wa and
v ∈ vb such that w ≈a·b v, there is no x ∈ W such that w ≈a x and
x ≈b v. Then, wa ∩ vb = ∅. Since wa, vb ∈ wa·b, for all φ ∈ LALGP
such that At(φ) ⊆ A (a) ∩ A (b), (M,w) |=ALF φ ⇔ (M, v) |=ALF φ.
Then, (wa, vb) ∈ W a⊗b. Then, for some w, v ∈ W , (wa, vb) ∈ W a⊗b and
wa ∩ vb = ∅.

• (2 ⇒ 3): Suppose that for all w, v ∈ W , if w ≈a·b v, then there is
a x ∈ W such that w ≈a x and x ≈b v. Take an arbitrary w ∈ W .
Suppose that (M,w) |=ALF ⟨≈⟩a·bφ. Then, (M, v) |=ALF φ for some
v ∈ W such that w ≈a·b v. Since there is a x ∈ W such that w ≈a x
and x ≈b v, (M,w) |=ALF ⟨≈⟩a⟨≈⟩bφ. Since w is an arbitrary world,
⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ is valid.

• (3 ⇒ 1): Suppose that ⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ is valid for all φ ∈ LALGP .
Take two arbitrary possible worlds w, v ∈ W such that (wa, vb) ∈ W a⊗b.
Take an arbitrary ψ ∈ LALGP such that (M, v) |=ALF ψ. By the
definition of W a⊗b, w ∈ va·b. Then, (M,w) |=ALF ⟨≈⟩a·bψ. Since
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⟨≈⟩a·bφ→ ⟨≈⟩a⟨≈⟩bφ is valid for all φ ∈ LALGP , (M,w) |= ⟨≈⟩a⟨≈⟩bψ.
By the semantics, there are two possible worlds x, y ∈ wa·b such that
w ≈a x, x ≈b y, and (M, y) |=ALF ψ. Since ψ ∈ LALGP is an arbi-
trary formula such that (M, v) |=ALF ψ, v ≈b y. ≈b is an equivalence
relation, x ≈b v. Then, x ∈ wa ∩ vb. Therefore, wa ∩ vb ̸= ∅.

□
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Chapter 10

Conclusions and Further
Directions

10.1 Conclusions

This thesis introduced Awareness Logic with Global Propositional
Awareness(ALGP) and Awareness Logic of Filtration(ALF). In sum-
mary. this study has contributed to the following.:

1. A sound and complete axiomatization of ALGP is given.

2. Common awareness and distributed awareness can be introduced to
ALGP as a macro.

3. The non-compactness in ALF is shown.

4. A filtration of ALF corresponds to a restricted bisimulation(See Defi-
nition 6.2.1).

5. If all simple paths are bounded in a model, We can transform each
formula in LALF to some equivalent formula in LALGP .

6. A nested quotient model corresponds to a quotient model with common
awareness.

7. For image-finite models, the condition of correspondence between a
product quotient model and a quotient model with distributed aware-
ness is shown.

Regarding the motivation of what kind of mutually comprehensible model
for agents with different reasoning abilities, the answer to this thesis is to
provide a quotient model based on the common awareness among the agents.
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10.2 Future Directions

Currently, four main possible directions for the development of Awareness
Logic of Abstraction are considered.

1. A sound and complete axiomatization of Awareness Logic of Abstrac-
tion.

2. Formalization of abstraction tailored to local awareness.

3. Development into dynamic epistemic logic.

4. Formalization of concretization as a dual of abstraction.

First, the details of item 1 are described. We suspect a complete axiom-
atization of ALF would not be shown because a canonical model covering
all maximally consistent sets cannot be given without an axiom regarding
image-finite. Currently, two directions to avoid this approach are consid-
ered.:

(a) Replacing filtration-based abstraction with bisimulation-based abstrac-
tion.

(b) Relax from propositional awareness to awareness closed under subfor-
mulas.

A fixed-point axiom would be needed for item (a). To give the fixed-point
axiom, we expect it is better to formalize abstraction by bisimulation than
filtration. There are two techniques for the proof of the completeness theorem
of the modal logic without compactness. The first technique is the proof by
constructing a finite canonical model tailored to a formula φ [10]. The second
technique is to introduce inference rules deducing from infinite formulas to a
formula [9]. We will mainly work on proof using those techniques.

For (b), global awareness closed under subformulas is considered a com-
patible restriction with filtration-based abstraction (Theorem 2.39 [8] p.79).
If an agent’s awareness set is finite, the results in [1] would be useful for ALF
with global awareness closed under subformulas. Otherwise, a condition of
compactness will be investigated.

We need to be very careful when introducing a new dynamic operator and
providing a reduction axiom for it. For example, a complete axiomatization
of Public Announcement Logic is shown by viewing updates as transitions
among models in a “supermodel” [12]. A supermodel of Awareness Logic of
Abstraction will be needed to consider, too.
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Second, the details of item 2 are described. By restriction to global aware-
ness, ♢iAjp ∧ ♢i¬Ajp is always false for all agents i, j ∈ G and all atomic
propositions p ∈ P in the semantics, i.e., global awareness cannot deal with
“An agent is aware of p and does not know whether others are aware of p or
not”. Global awareness is non-standard. We hope ALF is closer to that of
traditional awareness logic. We consider that we cannot define the semantics
of ALF with a local definition in the standard Kripke model. We would
need to investigate semantics more generally in terms of the neighborhood
model and coalgebras.

Third, the details of item 3 are described. When considering system
behavior, the equality of behaviors that can be observed from outside the
system is called observational equivalence. We consider that abstraction
can give models regarding only behaviors that can be observed from outside
the system. Further, we expect that awareness logic can be applied to formal
verification or testing of black boxes. To bring ALF closer to program se-
mantics, it is necessary to aim for development into dynamic epistemic logic.

Finally, the details of item 4 are described. It is motivated to understand
more concrete information than what we are aware of. We often compre-
hend more concrete knowledge through mutual complement among different
reasoning abilities. Currently, we could consider two approaches as formal-
ization of concretization.: The first approach is research on a quotient model
with distributed awareness. The second approach is research on a product
quotient model. Section 9.2 showed that a quotient model with distributed
awareness does not always correspond to a product quotient model. We con-
sider a product of quotient models does not represent a mutual complement
among agents with different reasoning abilities because an agent’s knowledge
and awareness do not interfere with the others in an operation represented
by a product of models. We would investigate operations of awareness and
models for non-interfering concretization and mutual complement.
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