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Abstract

The accelerating evolution of societal dynamics has brought forth an increas-
ingly diverse array of information types. Of particular significance is the bur-
geoning interest in sentiment analysis, spurred by its versatile applications
across various domains. The discernment of sentiments holds particular rel-
evance, given its potential utility in numerous applications. Consequently,
there has been a concerted effort to delve into the intricacies of multiple
modalities to unearth latent information. This has given rise to a spectrum
of methodologies aimed at effectively handling the complexities inherent in
the amalgamation of diverse modalities. This has given rise to a spectrum
of methodologies aimed at effectively handling the complexities inherent in
the amalgamation of diverse modalities.

Concurrently, the societal discourse on mental health has manifested in
an upsurge of applications pertaining to sentiment analysis and emotion de-
tection. This evolving landscape has witnessed the trajectory of sentiment
analysis tasks, progressing from unimodal and bimodal to the contempo-
rary trimodal paradigm. The concomitant escalation in the demand for
adeptly managing multiple modalities has been a discernible trend in re-
cent years. Within this overarching milieu, this research introduces a text
prompt-based fine-tuning method designed to address the challenges posed
by distinct modalities within the framework of multimodal sentiment analy-
sis.

The research objective is the pursuit of an interpretable and simplified
approach for alleviate the gap between disparate modalities in a natural
language manner. In this pursuit, an initial recourse is made to a prompt-
based methodology during the fine-tuning phase. This methodological choice
is grounded in its transformative capacity, recasting downstream tasks as
cloze-filling exercises—a format inherently conducive to enhanced human
comprehension. However, the matter lies in generating semantically rich
representation from modalities beyond textual data.

To achieve this goal, a text prompt-based fine-tuning method is proposed
in this research. This approach hinges on the meticulous application of man-
ually crafted rules to generate textual descriptions from visual and auditory
modalities. Consequently, the semantic descriptions is combined with textual
information in a natural language fomrat with a fixed template. Due to its
interpretability in natural language, this method is capable to understand by
human beings. In other words, it also is able to make an adaption to different
task. Subsequently, the process entails the formulation of a prompt function,



which is fed into a pre-trained language model and make the prediction. In
the validation of this methodology, experiments are conducted leveraging the
MELD dataset. Comparative analyses juxtaposing baseline results with an
augmented baseline featuring attention mechanisms underscore the efficacy
of the proposed method.

In conclusion, this research propose a method applying with the prompt-
based fine-tuning method to navigate the intricate landscape of multimodal
sentiment analysis. The fusion method between different modalities of inter-
pretability and simplification is shown.
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Chapter 1

Introduction

Within the ever-expanding realm of big data, which encompasses a myriad
of information types such as audio, image, and text. Besides, the potential
to uncover hidden insights grows exponentially. This expansion has concur-
rently led to the emergence and development of the research field in Multi-
modal Sentiment Analysis (MSA). This specialized field addresses the com-
plexities introduced by the coexistence of various modalities and finds appli-
cation in diverse fields such as opinion mining[1, 2], depression detection[3, 4],
recommendation systems[5], and more.

The task of sentiment analysis initially emerged in the research field of
natural language processing, primarily relying on textual modalities for anal-
ysis. Over time, this task evolved from an unimodal modality to encompass-
ing multiple modalities. This shift was based on the assumption that explor-
ing various cues could contribute significantly to sentiment analysis within
a multimodal scenario. In MSA tasks, addressing the gap between multiple
modalities emerges as a primary challenge. The most prevalent modalities
include text (e.g., spoken words), audio (e.g., pitch, tone, intensity), and im-
age (e.g., facial expression, eye gaze). Each modality is accompanied by its
unique data format. Consequently, when dealing with multiple modalities
simultaneously, direct combination of raw data and feeding it into a model
is not feasible. Fusion work becomes imperative, aiming to project these
diverse modalities into a unified feature space – a common vector space that
the model can recognize.

To tackle the fusion issue, extensive efforts towards developing fusion
networks within model architectures are required to effectively combine dif-
ferent modalities. Conventional approaches to address this challenge include
a number of fusion techniques, such as early fusion[6], late fusion[7], and ten-
sor fusion[8]. Early fusion initially combines all features from each modality
into a single feature vector, followed by the application of a classification al-
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gorithm. This method ensures the early identification of correlations between
multiple modalities but comes with the disadvantage of lacking the represen-
tation of intra-modality dynamics. On the other hand, late fusion involves
fusion at a later stage, specifically during the classification stage. Prior to
this stage, a dedicated model is designed for each modality. However, this
approach has the drawback of being time-consuming as different models must
be trained separately for each modality. Tensor fusion represents an approach
that employs the model to learn interactions from unimodal, bimodal, and
trimodal data. While each of these approaches has its own merits and draw-
backs, a common issue persists—learning the correlation between different
modalities.

Although these methodologies have demonstrated enhanced performance
in downstream classification tasks, they still exhibit common limitations.
Conventional fusion techniques predominantly require the implementation of
a neutral fusion layer to learn the relationship between different modalities
with updating numbers of parameters for model. Hence, with the aim of
alleviating the burden on the fine-tuning phase on downstream tasks while
effectively harnessing the capabilities of pre-trained models, we advocate for
a more simplified and interpretable approach in MSA tasks. Furthermore,
our current focus is on uncovering the interpretability of models, given that
models often appear as black boxes, making them unclear for human compre-
hension, especially with the gradual complexity of deep neural networks[9].
There is a growing need to discern the rationale behind the decisions made by
models. Within real conversations, humans typically gauge the sentiments
of others through voice tones, facial expressions, and spoken words. These
human judgments are intuitive, contrasting with the minuscule features de-
tected by neural networks. The surge in research emphasizes the importance
of interpretability in multimodal analysis[10]. For instance, [10] introduced
a method that analyzes textual explanations as counterfactual explanations
derived from images. It is crucial to note that interpretability predominantly
centers on textual information, as text inherently provides clear and explicit
explanatory features from the perspective of natural language. To facilitate
the model’s understanding of this process, we posit that the conversion be-
tween modalities other than text and text can offer humans an intuitive and
lucid comprehension of the model functioning.

Aligns with the rapid development of large language models (LLMs), such
as GPT-3[11] and LLaMA[12], Prompt-based method is proposed as a essen-
tial product as a recent advanced method in the research field of natural lan-
guage processing(NLP). Prompt-based method involves providing prompts
to Language Models (LMs) and having them make predictions for specific
words in a Masked Language Model (MLM). This approach transforms the
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downstream task into a cloze-filling task, offering improved adaptability to
new scenarios compared to traditional fine-tuning methods[13]. The use of
prompts makes the process more explainable for human comprehension, pro-
viding clearer guidance in a natural language manner. In response to the
merits of prompts, the application of this method in MSA tasks has been
vigorously promoted in recent years[14, 15]. Indeed, within the MSA re-
search domain, enhancing the applicability of models to wild data poses a
significant challenge. The utilization of prompts, in contrast to traditional
methods, offers the advantage of achieving improved applicability without
the necessity of updating a substantial number of model parameters. In-
stead, this can be accomplished by altering the prompt embedding with less
parameter update in fine-tuning step.

Leveraging the advantages of the prompt-based method, this study aims
to apply it to MSA tasks in an interpretable and simplified manner. In
contemplating this, natural language descriptions are deemed essential for
interpretability. Considering the text-dominant phenomenon[16], which sug-
gests that the most substantial contribution to the final result originates
from the text modality, we posit that integrating information from other
modalities through the translation to textual descriptions is a promising av-
enue in MSA. In essence, this involves adding visual and acoustic cues by
generating semantic descriptions and fusing them into a multimodal prompt
for fine-tuning PLM. In light of these considerations, we introduce a text
prompt-based tuning approach through the way of generating textual infor-
mation from extracted features in a manual setting rules in this study.

Within the scope of this research, we propose a text prompt-based fine-
tuning method with semantic descriptions for MSA tasks. The objective of
this study is to elucidate a simplified and interpretable method for modality
fusion. Through the generation of textual descriptions from both acoustic
and visual modalities, our method aims to bridge the gap between different
modalities, thereby optimizing the utilization of LLM.
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Chapter 2

Related Works

2.1 Multimodal Sentiment Analysis

For multimodal sentiment classification tasks, the focal point often revolves
around the fusion technique, a topic frequently discussed within the litera-
ture. The overarching objective of MSA tasks is to extract latent cues from
diverse modalities and fuse them cohesively to predict sentimental labels,
such as positive, negative, and neutral. The efficacy of the extraction method
is indispensable when dealing with disparate data types. To address the fu-
sion challenge, a multitude of fusion techniques have been proposed in recent
years. This evolutionary progression extends from uni-modal (text) method-
ologies to bi-modal (combinations of text, audio, and visual) approaches,
culminating in tri-modal (text-audio-visual) models.

Concurrently, the majority of fusion studies have predominantly focused
on the application of enhanced attention-based or Long Short-Term Mem-
ory (LSTM)-based components. These components are considered state-of-
the-art mechanisms for handling multiple modalities, given their proficiency
in unraveling intricate interactions. Therefore, through the introduction of
these models, we can gain a brief understanding of how conventional networks
operate. In the case of attention-based methods, the work of MARN[6] stands
out, wherein researchers proposed multi-attention-based neural components
to align features from diverse modalities. In [17], the authors employed an
ABS-LSTM structure to generate local and global embeddings. Additionally,
[18] proposed a Bi-LSTM, coupled with an attention model, adeptly extracts
contextual information from utterances, leveraging both types of compo-
nents. Undoubtedly, the conventional fusion networks mentioned above con-
sistently yield commendable performance across various datasets[19, 20, 21].
However, it is imperative to acknowledge that these enhanced components
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necessitate significant computing resources for learning how to align multi-
modal features. Furthermore, when it comes to feature alignment, discerning
which specific components contribute most significantly to the final classifi-
cation result poses a substantial challenge. The intricacies of detecting the
pivotal contributors to the final classification outcome underscore the need
for further research and methodological refinements in the domain of feature
alignment within MSA tasks.

2.2 Prompt-based Method

Prompting, originally a popular topic in natural language processing (NLP),
has gained renewed attention due to advancements in large language mod-
els. The prompt-based method capitalizes on the capabilities of pre-trained
language models, enabling the downstream task to model the probability of
text directly[13]. In comparison with conventional fine-tuning methods, it of-
fers greater parameter efficiency and eliminates the need to train additional
layers for the downstream task. The prompt-based method transforms the
classification task into a cloze-filling problem, introducing prompts with a
slot to be completed by a masked language model(MLM). From [13], two
pivotal components characterize the prompt-based method: template and
verbalizer. The impact of different templates and verbalizers on results has
been emphasized by [22].

Extensive efforts have been devoted to automatically generating tem-
plates and verbalizers, as explored by LM-BFF[23], AutoPrompt[24], and
LAMA[25]. Studies from [26] have delved into the comparison of manu-
ally picked prompts with automated ones, concluding that manually selected
prompts may not achieve the performance of automated alternatives. For
example, [27] aided language models in understanding a given task through
the approach that involves rephrasing input examples into cloze-style phrases.
This consideration underlies our approach in this research, where we employ
both manual and automated prompts to strike a balance in results.

The application of the prompting-based method extends into the research
domain of MSA. Several studies, such as [28], have showcased its effectiveness
in MSA tasks. In their work, [28] employed multimodal prompts, utilizing
the NF-ResNet architecture [29] to project image representations into text
feature space and leveraging ClipCap [30] to generate semantic descriptions
for images. Similarly, [31] utilized ResNet [32] to generate image embed-
dings, subsequently fusing them with textual modality. These approaches
commonly leverage neural networks to project image representations into
text feature space. However, the persisting issue of interpretability remains
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a challenge in these models. In particular, existing models, including those
referenced above, often include exact embeddings with tokens, resulting in a
lack of interpretability. The inclusion of non-textual information alongside
textual data poses challenges in adopting the prompt-based method in a fully
interpretable natural language manner.

To address this interpretability issue, our research explores the possibil-
ity of a simplified and interpretable approach to fusing multiple modalities
based on natural language templates. This approach aims to overcome the
challenges posed by current models and enhance the interpretability of mul-
timodal sentiment analysis systems.
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Chapter 3

Methodology

3.1 Task Formulation

Applying with prompt-based method in MSA, the classification task is gen-
erally formatted as follows. Access to a PLM, denoted as M , with a con-
structed prompt function fprompt(·), template T with a masked slot and a
verbalizer(label mapping) space V. Both the template and verbalizer could
be generated by MLM automatically or manually. The output is obtained
from:

M(fprompt(xi, T, L)) (3.1)

where xi indicates the ith sample from train dataset Dtrain.

3.2 Proposed Method

In this research, our goal is to fine-tune the PLM M for the multimodal
sentiment classification task on the prompt-based approach, the task is for-
mulated in the last subsection. The whole architecture is illustrated in Fig-
ure 3.1. There are two primary phases:1) Constructing appropriate prompt
function with auto verbalizer searching; 2) Making the prediction with the
prompt-based fine-tuning method.

3.2.1 Data Processing

To prepare for the subsequent stages of constructing prompts, the initial step
involves processing all raw data available in textual format. Specifically, for
textual information, the primary selection consists of opting for the original
utterance sentences directly from the dataset. This approach ensures that the
foundation of the dataset is rooted in the authentic expressions and linguistic
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Figure 3.1: : Three primary steps are involved in: 1) Data processing. Man-
ually setting rules for generating textual information from audio features
and visual features. 2) Verbalizer Search: Searching appropriate label map-
ping space for multimodal prompt. Specifically, the label mapping posi-
tive:great, negative: terrible, neutral: temporarily is solely an exmaple for
clarify the process, not the true label space utilized in this research. 3)
Prompt-based Fine-tuning: During the fine-tuning step, we first feed the
constructed prompt, with replacements from the [Mask] slot based on the
label mapping space generated in the verbalizer search step, into PLM to
update the MLM head applying with the CrossEntropy loss function. 4) In-
ference: multimodal prompt with [Mask] slot is fed into PLM with updated
MLM head, then predict the logits for mapping words and project them back
to label.
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nuances present in the raw data. Moving beyond text, for other modalities, a
crucial undertaking involves the manual generation of semantic descriptions.
This manual rule-based generation process aims to extract the essence and
meaning embedded in each modality distinct from the text. By employing a
manual rule-based approach, we ensure precision and intentionality in craft-
ing semantic descriptions that align with the inherent characteristics of each
modality.

Ensuring comprehensive information from various modalities is included
in the prompt is a key step. For visual modality, facial expressions have been
underscored their pivotal roles in numerous studies in the research field of
MSA. Furthermore, human sentiment is able to be detected by additional
cues, such as head pose, facial action unit(AU), and eye gaze. Of partic-
ular note, AU presents merit due to its fixed combination and well-defined
framework. In this context, we utilize OpenFace[33] to detect valuable vi-
sual features for constructing detailed and informative textual descriptions,
especially the AUs and its corresponding intensity. In the context of textual
description generation from visual modality, the mapping rule comprises two
components: AU name and its associated intensity word. Employing an av-
erage approach for each sample, the action units are mapped in accordance
with the Facial Action Coding System(FACS)[34]. The comprehensive list of
AUs and their corresponding mapping names are delineated in Table 3.1.

While the second facet of intensity word translation adheres to a pre-
defined rule as elucidated in Table 3.2. The intensity values detected by
OpenFace span a range from 0 to 5, where a higher value signify a more pro-
nounced intensity. Corresponding emotional words are used to express the
intensity of each detected AU. Notably, for each value range, the intensity
word is randomly selected from the available candidates in the corresponding
word group. This method ensures a diversified and contextually appropriate
expression of intensity across the detected values.

In examining the acoustic modality, textual descriptions rely on feature
extraction through OpenSmile[35]. Initially, we extracted features following
the IS09 feature set rule. This choice was motivated by the recognition of
the significance of vocal parameters, including pitch and intensity, in emotion
detection and sentiment analysis, as emphasized in [36]. These vocal param-
eters serve as crucial components influencing the accurate interpretation of
emotional nuances within spoken content. From the feature extracted on the
feature set of IS09, three fundamental elements are selected: pitch, intensity,
and zero-crossing rate. The specific values of these features are chosen in an
average manner for each video.
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AUs Full Name
AU1 INNER BROW RAISER
AU2 OUTER BROW RAISER
AU4 BROW LOWERER
AU5 UPPER LID RAISER
AU6 CHEEK RAISER
AU7 LID TIGHTENER
AU9 NOSE WRINKLER
AU10 UPPER LIP RAISER
AU12 LIP CORNER PULLER
AU14 DIMPLER
AU15 LIP CORNER DEPRESSOR
AU17 CHIN RAISER
AU20 LIP STRETCHED
AU23 LIP TIGHTENER
AU25 LIPS PART
AU26 JAW DROP
AU28 LIP SUCK
AU45 BLINK

Table 3.1: Action unit and its full name

3.2.2 Prompt Construction

As depicted in 3.1, after generating semantic descriptions Tv for visual modal-
ity and Ta for acoustic modality and make a combination between them and
textual information from dataset. With a fixed template of with the intensity
of Vi and pitch of Vp and zero-crossing rate of Vz , where Vi, Vp, Vz should
be replaced by its specific value in an average manner for each video. The
manual setting rule governing the combination is formulated as:

T i
c = TP (T i

t , T
i
a, T

i
v) (3.2)

, where i represents the ith sample, Tt denotes the original utterance from
dataset, Tv refers to linguistic descriptions for visual features, Ta represents to
generated text description for audio features, TP stands for a manual natural
language template utilized to seamlessly integrate all the descriptions.

Consequently, to create a comprehensive and fitting prompt for input
during the fine-tuning phase, we adopt a prompt-based approach treating
multimodal classification as a cloze-filling task. This approach involves two
primary steps: template design and answer mapping. Starting with the tem-
plate, we leverage a general template commonly used in sentiment analysis
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Intensity1 Mapping Word Candidates
(0,2] “slightly”,“somewhat”,“a little”,“minially”
(2,3] ”moderately”,”fairly”,”reasonably”,”quite”,”in part”

(3-5]
”extremely”,”intensely”,”passionately”,”overwhelmingly”

”exceedingly”,”profoundly”,”fiercely”
1 Specifically, ’(’ denotes open interval, ’]’ denotes close interval.

Table 3.2: Words mapping rules for AU intensity.

tasks: ”It is.”. This template serves as the foundational structure for con-
structing prompts, providing a consistent and adaptable framework. In terms
of the second step of answer mapping, the objective is to establish a suitable
label mapping space from the downstream task’s label space to the specific
vocabulary of the PLM. In essence, this step entails replacing the [mask ] po-
sition in the prompt with individual vocabulary. Drawing inspiration from
recent studies of prompt tuning, such as LM-BFF[23] and AutoPrompt[24].
These studies applied with various of ways to do the label mapping search
in PLM automatically. In this study, we employ a label searching approach
inspired by the concept from LM-BFF. To mitigate the risk of overfitting and
enhance generalization, we exclusively input textual prompts—solely derived
from the utterances—using the uniform template ’It is’ into the PLM. This
step aims to identify a suitable label space for the prompting process.

The initial phase involves the construction of the label mapping space,
denoted as V. This space is fashioned by a pruned set, combined with the
top k vocabulary words. The selection criteria for these words are based on
the evaluation of their conditional likelihood using the initial label set L. The
process of searching for the label space V for each class c belonging to the
original label set L is formulated as follows:

Top(k)v∈V

 ∑
xi∈Dc

train

logPL([Mask] = v | Template(xi))

 , (3.3)

where k is set to 10 in this research, xi represents the i
th sample, L signifies

the initial label space, and Template denotes the combination of the original
utterance with the template ’It is’ and the masked slot. Subsequently, we
fine-tune all assignments, and based on the dev dataset Ddev, we rerank to
determine the best one. The resultant configuration is utilized as the label
mapping space V. This method, inspired by LM-BFF, proves to be highly
effective in searching for the label mapping space, offering significant utility
in the subsequent steps of constructing the prompt function.
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Finally, we construct prompt function as:

Pm(T
i
c) = It is [Mask] + T i

c (3.4)

where Pm(·) denotes the prompt function applied in, ”It is” is a general tem-
plate for prompt in sentiment classification task and is fixed in this research,
[Mask] should be replaced by specific word in label mapping space generated
by the language model or designed manually.

3.2.3 Prompt-based Fine-tuning

For the downstream task, the constructed prompt function would be set as
input to the language model M and make the prediction for its sentiment
label. In this step, we combine all semantic descriptions for each modality
with the static template of The man is saying ”Tt” with Tv and Ta. Adding
with the text template It is as a prefix prompt. The complete multimodal
prompt Pm for input should be:

P i
m = It is [Mask].T i

c (3.5)

The incorporation of the multimodal prompt P i
m proves pivotal in the

fine-tuning stage when introduced to the PLM M. The BERT[37] serves as
the foundational architecture for our approach, and we execute prompt-based
fine-tuning. The determination of the optimal candidate, based on superior
performance on the dev dataset, guides the construction of the prompt within
the generated label mapping space. After feeding the prompt P i

m into M,
the hidden vectors would be computed as shown in 3.2, and probability is
calculated according to specific word tokens from label mapping space V.
The formula of probability is denoted as:

p(y|xin) = p([Mask] = M(y)|Pm) =
exp(wM(y)∗h[Mask]

)

Σy′∈yexp(wM(y′)∗h[Mask]
)
, (3.6)

where h[Mask] is the hidden vector of [Mask] and w denotes the pre-softmax
vector, M indicates the mapping rule from label space to specific words in
the LM. M can be fine-tuned to minimize the cross-entropy loss.

The classification mechanism is deeply rooted in BERT. In this process,
the slot in the constructed prompt is replaced with the corresponding word
from the selected label space. Following this substitution, the entire input
is presented to the PLM, yielding the prediction for the label. Figure 3.4
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Figure 3.2: The representation generated by BERT

provides an illustrative representation of this stage. The representations of
the input, augmented with the masked token, undergo processing through
the 24 encoders with the detailed structure shown in Figure. 3.3, and apply
with the loss function of CrossEntropy, defined as:

−
3∑

c=1

yxi,l log(pxi,l) (3.7)

where xi denotes the ith sample and l represents the label, and the optimizer
of AdamW[38].

Besides, our chosen label space is based on the search from PLM automat-
ically, but also several studies have highlighted that both manual prompts
and auto prompts possess their own merits. In general, manual prompts
are informed by expert knowledge within a specific research domain and
are highly regarded for their interpretability from the perspective of natural
language. While auto prompts are automatically generated by LMs with
seemingly a lack of explication in natural language. Thus, we also test the
manual prompt result in our experiments.

13



Figure 3.3: Encoder structure in BERT

Figure 3.4: Fine-tuning based on prompt in BERTLARGE
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Chapter 4

Experiments

4.1 Dataset

The Multimodal EmotionLines Dataset(MELD)[21] is widely recognized and
frequently employed for MSA, featuring annotations for both sentiment and
emotion. In our experiments, we exclusively focus on utilizing sentiment
annotations, specifically categorizing instances into positive, negative, and
neutral labels. The samples from the dataset comprise a rich combination of
audio, visual, and textual modalities, incorporating content from over 1400
dialogues and encompassing more than 13,000 utterances extracted from the
popular ”Friends” TV series. A comprehensive statistical summary detailing
the distribution of the dataset across different modalities and sentiments is
provided in Table 4.1. This table encapsulates essential information regarding
the dataset split.

#utterance
Sentiment Train Dev Test
positive 2334 233 521
negative 2945 406 833
neutral 4710 470 1256

9989 1109 2610

Table 4.1: Data split on MELD

4.2 Experimental Setup

At first, since BERT[37], is a PLM renowned for its robust capabilities, we
choose it as the foundational architecture for our experimental framework.
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Specifically, we build upon the BERTLARGE variant to harness its extensive
pre-trained knowledge. The figurations of BERTLARGE are: 24 layers, 1024
hidden dimensions, 16 attention heads, and 340M parameters. Our proposed
method involves fine-tuning the model on the training dataset sourced from
the MELD corpus.

In terms of hyperparameter settings, we adopt a thoughtful approach to
ensure optimal training. The number of epochs is set to 50, providing a
balance between convergence and computational efficiency. Additionally, the
learning rate is configured at 1e-5, a common choice that facilitates steady
convergence during the fine-tuning process.

To ensure the robustness and reliability of our results, we conduct mul-
tiple experiments using three distinct random seeds, e.g. 16, 30, and 56.
This repetition allows us to account for variations introduced by different
initializations. The final reported results are derived from the average per-
formance across these experiments, providing a comprehensive assessment of
the model’s efficacy under diverse conditions on the test dataset. Our chosen
evaluation metric is the averaged weighted F1 score (F1), a well-established
measure for assessing the precision and recall of our model. The following
formulas define key metrics:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (4.1)

F1 =
2× Precision× Recall

Precision + Recall
=

2× TP

2× TP + FP + FN
(4.2)

Where “TP” is the number of true positives, “FN” is the number of false
negatives, and “FP” is the number of false positives.

Averaged Weighted F1 =

∑
i Wi × F1i

n
, (4.3)

where i denotes the ith class, Wi represents the percentage of the number
of class i in all classes, and n represents the total number of class labels.

This metric takes into account both false positives and false negatives,
offering a comprehensive evaluation of the model’s performance.

4.3 Baseline

We conduct a comparative analysis between our proposed method and the
original baseline outlined in [21]. Recognizing the temporal aspect of the
published paper, which may not capture recent advancements, we introduce
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an additional baseline for an updated evaluation. This baseline is called as
Ubaseline in the following section. Since the baseline from original of MELD,
published in 2019. The baselines applied with LSTM or RNN model architec-
ture, are not fair to be compared with recent enhanced attention mechanism
based on PLM. We set an supplementary baseline to make a fair compari-
son to our proposed method. For this supplementary baseline, we adopt a
fundamental approach in MSA. Modalities are individually processed, with
the following feature extractors employed: SentenceTransformer[39] for text,
OpenFace[33] and MANet[40] for visual data, and OpenSmile[35] using the
IS09 feature set for audio. The visual and audio feature extractor are the
same as what we employ in our proposed method to keep a balance on com-
parison. The text feature extractor applied with a enhanced tranformer-
based extractor. At the fusion stage, multimodal features are generated
through the concatenation of embeddings produced by each extractor di-
rectly. Subsequently, these multimodal features are fed into an attention
mechanism classifier for evaluation. This comparison enables a comprehen-
sive assessment of the proposed method against both the original baseline and
a contemporary basic MSA approach, facilitating a thorough understanding
of its performance across different experimental settings.

4.4 Result

The performance comparison between our proposed model and the baseline
is presented in Table 4.2. Unless explicitly specified, the designation ’A’ sig-
nifies textual information derived from audio features, ’V’ denotes textual
information extracted from visual features, and ’T’ represents textual infor-
mation derived from utterances in all subsequent tables. In [21], the baselines
outlined are bcLSTM[41] and DialogueRNN[42]. However, it is important to
note that these baselines, while effective for their time, exclusively handle
audio and text modalities, as the management of visual modality presented
challenges during that period.

Model Mode F1-score
bcLSTM T+A 66.68

DialogueRNN A+T 67.56
Ubaseline T+V+A 61.58

Proposed model T+V+A 71.17

Table 4.2: Test set average weighted F1-score results on MELD

The bcLSTMmodel generates representations by employing a bi-directional
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Recurrent Neural Network (RNN) with a hierarchical process. This approach
initially models unimodal context and subsequently incorporates bi-modal
context features. DialogueRNN adopts a model architecture that utilizes
Gated Recurrent Units (GRU) across three stages to capture emotional con-
text in conversations. Utterances undergo processing through both global
and part GRUs to update states, and an emotion GRU is employed to model
emotional information for classification based on the updated state by the
other two GRUs. These baseline models serve as benchmarks for our pro-
posed model’s performance, allowing for a comprehensive evaluation across
different modalities and contextual considerations.

In evaluating the outcomes of our proposed method, it is imperative to
articulate a precise statement outlining the procedures employed. During the
label search phase, we meticulously select ten candidate groups based on their
efficacy in mapping label words to alternative terms, thereby demonstrating
superior performance on the development dataset ranking. Subsequently,
we identify the group that attains the highest level of performance. This
selected group is then utilized to substitute the [Mask] slot in our input when
interfacing with BERT. The specific words constituting this optimal group
are as follows: ”neutral”: ”stitches”, ”positive”: ”Automatic”, ”negative”:
”portfolio”. This group means that each senimental ananotation in dataset
is replaced to its corresponding word in this word group. This is also the
group we utilized for our main result, as shown in above table.

Examining these terms from the standpoint of natural language may raise
concerns about apparent dissimilarities. To address this, we acknowledge
the need for an in-depth discussion within the realms of the Discussion sec-
tion. In this subsequent discourse, we aim to delve into the intricacies of
this issue, presenting additional experimental results derived from diverse
mapping rules. These findings will contribute to a nuanced understanding
of the observed semantic variations and inform potential refinements to our
methodology.

The empirical findings of our study unequivocally demonstrate the supe-
rior performance of our proposed method when juxtaposed with the results
obtained from baseline models. Specifically, our method exhibits a remark-
able improvement, surpassing the performance of established baselines.

Notably, our approach outperforms bcLSTM by a margin of 5 percent,
DialogueRNN by 3 percent, and Ubaseline by 10 percent, respectively. The
discernible effectiveness of our proposed method can be attributed to the in-
novative integration of the prompt-based approach. This methodology proves
instrumental in mitigating performance gaps between different modalities. In
particular, our approach focuses on generating semantic descriptions, thereby
leveraging the latent power embedded within Large Language Models (LLM).
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This strategic incorporation of prompt-based techniques contributes signifi-
cantly to the heightened performance observed across various metrics.

The key to our method’s success lies in its ability to bridge the dispari-
ties inherent in multimodal sentiment analysis. By employing prompt-based
techniques, we alleviate the challenges associated with diverse modalities and
enhance the model’s capacity to discern intricate nuances within the data.
The generation of semantic descriptions not only serves as a unifying bridge
but also facilitates a more comprehensive understanding of sentiment expres-
sions across different modalities.

Furthermore, the utilization of Large Language Models adds an additional
layer of sophistication to our method. The inherent capabilities of LLM,
including contextual understanding and semantic richness, synergize with the
prompt-based approach to yield a holistic and effective solution. The synergy
between these components is pivotal in achieving the observed performance
enhancement, providing a promising avenue for future research in multimodal
sentiment analysis.

In essence, our proposed method stands as a testament to the efficacy
of prompt-based techniques in addressing the challenges posed by diverse
modalities. The notable improvements over baseline models underscore the
significance of our method in advancing the state-of-the-art in multimodal
sentiment analysis. Looking forward, our research paves the way for further
exploration and refinement of prompt-based methodologies in the dynamic
landscape of multimodal analysis.

4.5 Ablation Analysis

We conduct ablation studies for each modality, and the results are presented
in Table 4.3. It is important to note that our proposed method primarily
handles visual and acoustic modalities in a textual manner, thus all results
are based on text alone. The findings from the unimodal results indicate
that using solely semantic descriptions from audio features yields the lowest
evaluation, while textual information achieves the highest evaluation. This
aligns with our expectations, as our proposed method is built upon text, and
text modality inherently contains the most information compared to other
modalities. The comparatively lower performance of audio can be attributed
to our extraction of audio features limited to three types, including only nu-
merical data. Additionally, PLM exhibit reduced sensitivity when handling
data with numerical types, contributing to the observed results. In the bi-
modal analysis, the combination of textual (T) and visual (V) modalities
achieves the highest evaluation. This result suggests that, in the context of
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this research, these two modalities contribute more significantly compared to
the audio feature.

Mode F1-score
T 61.68
V 57.56
A 54.05

T+A 62.47
T+V 63.03
A+V 60.78

T+V+A 71.17

Table 4.3: Results on combination of unimodal and bimodal

Moreover, to analyze the contribution from each phase in our proposed
method, we conduct an ablation study in this section. We divide our pro-
posed method into two main phases. The first phase involves using a ver-
balizer to construct a label mapping space with assistance from PLM. The
second phase entails feeding the completed prompt function, along with the
extracted data, into the PLM to make predictions. These phases are corre-
spondingly referred to as P1 and P2 in the following statements. The exper-
imental results are presented in Table 4.4. From these results, we observe
that if we fine-tune our model without the verbalizer (P1), the performance
significantly decreases. At P1, we solely apply with the original label word as
verbalizer with exact label mapping. This finding underscores the essential
role of the verbalizer in the prompt-based fine-tuning method.

Phase Mode F1-score
P2 T+A+V 63.68

P1+P2 T+A+V 71.17

Table 4.4: Results on phases
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Chapter 5

Discussion

This section extends the discussion by presenting additional experimental
results, providing insights into how our model performs under varied set-
tings. In our primary results, we emphasize the utilization of the Best word
mapping. However, in this section, we broaden the scope by showcasing
experimental outcomes for multiple label mapping groups, as illustrated in
Table 5.1. All the results are obtained under the same experimental setting
as the main results, ensuring consistency. Furthermore, the reported results
in the following table are based on averaging across three distinct random
seeds to enhance robustness.

To elucidate the specificities of each label mapping group, Table 5.2
presents the extracted words corresponding to each group. This compre-
hensive overview not only enriches our understanding of the experimental
outcomes but also facilitates a comparative analysis of the performance across
diverse label mappings.

Label Mapping Mode F1-score
Mapping1 T+A+V 71.17
Mapping2 T+A+V 64.68
Mapping3 T+A+V 63.35
Mapping4 T+A+V 63.47
Mapping5 T+A+V 67.27

Table 5.1: Test result on different label mapping group

From the result for different label mapping group as shown in Table 5.1,
We observe that different groups exhibit varying impacts on the predictive
outcomes, with certain groups demonstrating differences of up to 4 percent-
age points. Notably, the first group corresponds to the set employed in
our primary experimental results. The highest value is evident in the first
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Label Mapping Words Group
Mapping1 ”neutral”: ”stitches”, ”positive”: ”Automatic”, ”negative”: ”portfolio”
Mapping2 ”negative”: ”protested”, ”neutral”: ”investigator”, ”positive”: ”concede”
Mapping3 ”negative”: ”aspire”, ”neutral”: ”investigator”, ”positive”: ”frowned”
Mapping4 ”negative”: ”ingest”, ”neutral”: ”investigator”, ”positive”: ”absorb”
Mapping5 ”negative”: ”protested”, ”neutral”: ”temporarily”, ”positive”: ”pH”

Table 5.2: Label mapping groups

group, with a specific F1 score exceeding 71, while the lowest value is as-
sociated with the third group with the performance of 63.35. Respectively,
the label mapping groups corresponding to:”neutral”: ”stitches”, ”positive”:
”Automatic”, ”negative”: ”portfolio” and ”negative”: ”aspire”, ”neutral”:
”investigator”, ”positive”: ”frowned”.

From the perspective of natural language semantics, there appears to
be limited similarity between the label words and their corresponding terms.
However, during the generation of verbalizers by Pre-trained Language Mod-
els (PLM), these results emerge. We posit that this outcome may be at-
tributed to the inherent contextual coherence of these words in the original
training corpus of BERT. In other words, words with semantic proximity to
the original label terms within the semantic space of the training corpus tend
to yield superior classification results when employed in the method proposed
in this study.

In the course of this research, certain limitations have surfaced, war-
ranting careful consideration within specific domains. Firstly, an inherent
challenge lies in the labels generated by the language model. It is observed
that certain terms lack semantic coherence when examined from the stand-
point of natural language. More precisely, these terms do not align closely
with the definitions encapsulated by the designated label words. Remarkably,
despite this semantic incongruity, the model manages to yield commendable
results. The interpretability of the model, however, becomes a focal point for
improvement. Addressing this issue is imperative for enhancing the trans-
parency of the model’s decision-making process. Subsequent investigations
in future research endeavors are anticipated to delve deeper into unraveling
the intricacies of this particular challenge.

Another pertinent limitation pertains to the static nature of the templates
employed throughout our experimental design. The fixed template structure
constrains the breadth of our discourse on the prompt-based methodology.
Future research initiatives are envisioned to involve a more dynamic explo-
ration of varied templates. This methodological refinement aims to unlock
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a richer understanding of the nuances associated with the prompt-based ap-
proach, thereby contributing to a more comprehensive and nuanced interpre-
tation of the method’s efficacy.
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Chapter 6

Conclusion

In summary, we introduced a text prompt-based approach for addressing the
challenges posed by multimodal sentiment analysis tasks. Our experiments,
conducted on the MELD dataset, showcase the effectiveness of this method.
This innovative approach capitalizes on the substantial advancements in pre-
trained language models, tapping into a rich source of information. The uti-
lization of a prompt-based strategy not only facilitates a more interpretable
and streamlined model architecture but also serves to alleviate disparities
between different modalities, expediting the fine-tuning step in multimodal
sentiment classification tasks.

Particularly noteworthy is the demonstrated interpretability in handling
various modalities and orchestrating their combination. Despite the manual
generation of most combination rules, the final results exhibit a commendable
level of performance at this stage. Furthermore, our findings strongly suggest
untapped potential within pretrained language models.

Lastly, an overarching aspiration involves expanding our understanding
of the prompt-based fine-tuning method beyond the confines of the current
research scope. This aspiration stems from the recognition that the method
may harbor untapped potential in diverse research domains. Unraveling and
harnessing this latent potential requires future investigations to extend be-
yond the immediate scope of this research. The prospect of discovering novel
applications and refining the method’s adaptability in hitherto unexplored
fields remains a focal point for subsequent research endeavors.

In summation, while this research has yielded valuable insights, the iden-
tified limitations underscore the need for ongoing refinement and expansion.
Addressing these limitations will not only bolster the internal validity of our
findings but also serve as a catalyst for future explorations in the evolving
landscape of prompt-based fine-tuning methodologies.
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[25] E. M. Ponti, G. Glavaš, O. Majewska, Q. Liu, I. Vulić, and A. Korhonen,
“Xcopa: A multilingual dataset for causal commonsense reasoning,”
arXiv preprint arXiv:2005.00333, 2020.

[26] R. Shin, C. H. Lin, S. Thomson, C. Chen, S. Roy, E. A. Platan-
ios, A. Pauls, D. Klein, J. Eisner, and B. Van Durme, “Constrained
language models yield few-shot semantic parsers,” arXiv preprint
arXiv:2104.08768, 2021.

27



[27] T. Schick and H. Schütze, “Exploiting cloze questions for few shot
text classification and natural language inference,” arXiv preprint
arXiv:2001.07676, 2020.

[28] X. Yang, S. Feng, D. Wang, Y. Zhang, and S. Poria, “Few-shot mul-
timodal sentiment analysis based on multimodal probabilistic fusion
prompts,” in Proceedings of the 31st ACM International Conference on
Multimedia, 2023, pp. 6045–6053.

[29] A. Brock, S. De, and S. L. Smith, “Characterizing signal propagation
to close the performance gap in unnormalized resnets,” arXiv preprint
arXiv:2101.08692, 2021.

[30] R. Mokady, A. Hertz, and A. H. Bermano, “Clipcap: Clip prefix for
image captioning,” arXiv preprint arXiv:2111.09734, 2021.

[31] Y. Yu and D. Zhang, “Few-shot multi-modal sentiment analysis with
prompt-based vision-aware language modeling,” in 2022 IEEE Interna-
tional Conference on Multimedia and Expo (ICME). IEEE, 2022, pp.
1–6.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface
2.0: Facial behavior analysis toolkit,” in 2018 13th IEEE international
conference on automatic face & gesture recognition (FG 2018). IEEE,
2018, pp. 59–66.

[34] E. Friesen and P. Ekman, “Facial action coding system: a technique
for the measurement of facial movement,” Palo Alto, vol. 3, no. 2, p. 5,
1978.
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