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Abstract

Extracting entities and relations from raw texts is a crucial and challenging
task in the field of Information Extraction. Despite the successes achieved
by the traditional approaches, fundamental research questions remain open.
First, the subject and the object are assumed to have the same impact on
their corresponding relation, ignoring the possibility of their differences when
either the subject or the object is a complex entity, such as polysemous words,
pronouns, and abbreviations. For instance, given a relational triple <Apple,
isHeadquarteredIn, Cupertino>. The polysemous entity “Apple” may have a
more important impact on the definition of the relation “isHeadquarteredIn”
than the object “Cupertino”. Because, if the “Apple” refers to the fruit,
their relation will be of a “isProducedIn” type. Second, the information
interaction mainly occurs between the subtasks of extracting the entity and
relation, leaving the fine-grained interaction among the task-specific features
of subjects, relations, and objects unexplored.

Motivated by the aforementioned limitations, we propose a novel model
to jointly extract entities and relations. The main novelties are as follows:
(1) During the encoding phase, we decouple the whole task of jointly extract-
ing entities and relations into three subtasks, namely named subject recog-
nition, relation extraction and named object recognition. Thanks to this, we
are able to use fine-grained subtask-specific features. (2) We propose novel
inter-aggregation and intra-aggregation strategies to enhance the information
interaction and construct individual fine-grained subtask-specific features, re-
spectively. (3) In the decoding phase, we combine subtask-specific features
of the subject and the object to predict entities and incorporate them to
enhance entity representation in the relation extraction subtask.

In order to well evaluate the effectiveness of the proposed method for
jointly extracting entities and relations, we conducted a series of experiments
based on seven benchmark datasets by comparing with many representative
approaches. The experimental results demonstrate that: (1) when either
the subject or the object is a complex entity, it has a greater impact on
their corresponding relations than a normal entity. (2) Constructing fine-
grained subtask-specific features for extracting the subject, the object, and
their relation can improve the extraction ability. (3) Our model outperforms
several previous state-of-the-art models. In specific, we increase the accuracy
score by +2.7%, +0.1%, +0.6%, and +0.6% in the relation extraction task
on ACE2004, ACE2005, ADE, and CoNLL04 datasets and +0.3%, +0.6%,
+0.5%, +0.1%, and +0.1% in the entity extraction task on ACE2004, ADE,
SciERC, NYT, and WebNLG datasets, respectively.
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Chapter 1

Introduction

1.1 Research Background

Sentence: Also the Pentagon is seeing lighter than expected resistance
indicating at least that they may have really seriously degraded those Re-
publican Guard divisions before the U.S. troops arrived, both in Karbala
and also in Al Kut.

NER
Normal (Pentagon, ORG), (Republican Guard, ORG),

(U.S, GPE), (troops, PER), (Karbala, GPE),
(Al Kut, GPE)

Polysemous (they, ORG), (divisions, PER)

RE
Normal (troops, PHYS, Karbala), (troops, PHYS, Al),

(troops, ORG-AFF, U.S)

Polysemous (divisions, ORG-AFF, Republican)

Table 1.1: An example sentence with normal and complex entities. Detailed
meanings of the abbreviations of entity and relation types are shown in Table
4.3.

Named Entity Recognition (NER) and Relation Extraction (RE), as two
essential subtasks in information extraction, aim to extract entities and
relations from semi-structured and unstructured texts. They are used in
many downstream applications in different domains, such as knowledge graph
construction (38; 39), Question-Answering (36; 37), and knowledge graph-
based recommendation system (40; 41). Most traditional models and some
methods used in specialized areas (43; 9; 46; 35) construct separate mod-
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els for NER and RE to extract entities and relations in a pipelined man-
ner. This type of method suffers from error propagation and unilateral in-
formation interaction. Thus, many works adopt joint extraction strategy
(1; 25; 16; 28; 2; 3; 4; 5; 32; 42; 27) that constructs a unified model to jointly
extract entities and relations in recent years, effectively alleviating the error
propagation. However, information interaction in these methods mainly fo-
cuses on parameter sharing, feature sharing, or distinct interactive features
between NER and RE, which leads to two problems.

First, they (16; 28; 4) default to the same impact of the subject and the
object on their relations, ignoring the possibility of differences between them.
This issue is crucial for determining relational types. For example, Table 1.1
provides a sentence containing normal and complex entities. Some normal
entities’ types are relatively simple, which plays little role in the judgment
of relational types. However, some complex entities, such as polysemous
words, pronouns, and abbreviations, may have multiple types, the judgment
of their types will largely determine the relational types. The polysemous
word “divisions” has multiple meanings and can refer to an institution (or-
ganization) or troopers (person). When determining the relation between
“divisions” and “Republican Guard”, if the entity “division” is determined
as an “ORG” (organization) type, then the relation between them will be
the “PART-WHOLE” (subsidiary) type. If the “divisions” entity is of type
“PER” (person), their relation will type “ORG-AFF” (ownership or founder).

Second, since these researches default to the same impact of the subject
and the object on their relations, lacking fine-grained feature construction
and information interaction among them. This is crucial to determine the
entity and relation types. In the example sentence, the single “divisions”
entity is less likely to express its accurate type of semantic information (or-
ganization or persons), which makes it difficult to determine its involved
relations. The information interaction with the object “Republican Guard”
may help determine its type “person” and relation type “ORG-AFF”.

1.2 Research Objectives

To address the above issues, we propose a novel joint model to construct
fine-grained task-specific features for relational triples and enhance the infor-
mation interaction among subjects, relations, and objects. Our main works
are as follows:

First, in the encoding phase, to construct fine-grained semantic represen-
tations, we decouple the task into three subtasks: named subject recognition
(NSR), named object recognition (NOR), and RE. Then, we design three
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task-specific cells that serve the functions of acquiring, storing, and inter-
acting information for individual subtasks to construct the task-specific fea-
tures for each subtask, respectively. Next, we design an aggregating method
to perform and enhance fine-grained information interaction among NSR,
NOR, and RE. It contains two parts: inter-aggregation and intra-aggregation.
Inter-aggregation combines the features of different task-specific cells, such as
the features of NSR-NOR, NOR-RE, and NSR-RE subtasks, which aims to
realize the mutual information interaction among different subtasks. Intra-
aggregation incorporates the mutually interacted features into each task-
specific cell to enhance the context semantics and enable differentiated inter-
action information in three task-specific cells.

Second, in the decoding phase, the NSR and NOR task-specific features
are combined to create the NER features. We continue to aggregate and
incorporate them to enhance the entity semantics for the RE task.

Third, we conduct extensive experiments to validate whether construct-
ing independent subtasks for subjects, relations, and objects is an excellent
way to capture the semantic difference between task-specific features and
whether an impact difference exists between the subject and the object for
their relations.

Finally, we also analyze the limitations and shortcomings of our research
through the experimental results. In addition, we also show our contributions
to this research direction and future works.

1.3 Thesis Organization

We organize this study into five chapters. The first chapter introduces the
remaining unexplored questions of the previous research. Then, we describe
the objective of this study. The rest of the chapters are summarized as
follows:

• Chapter 2: Literature Review We introduce and compare the rep-
resentative or newly proposed pipeline and joint approaches in the field
of entity and relation extractions. Then, we introduce the related back-
ground knowledge that is used in our proposed method.

• Chapter 3: Methodologies We define the research problem and
describe our proposed method in detail. We also introduce the training
strategy in our model.

• Chapter 4: Experiments and Analysis First, We introduce the
experimental datasets and count the number of various types to show
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the individual characteristics of every dataset. Second, we describe
the baseline models that exist for the unexplored questions we will
solve. Third, we introduce the experimental settings and the training
details. Finally, we conduct extensive experiments and deeply analyze
the results to evaluate the effectiveness and limitations of our model in
various dimensions.

• Chapter 5: Conclusion We summarize the contributions of this
study and analyze some potential research questions in future works.
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Chapter 2

Literature Review

2.1 Related Works

In this chapter, we introduce some related research in the field of entity and
relation extractions. According to the extraction procedure, it can be divided
into two classes: Pipeline extraction and joint extraction.

2.1.1 Pipeline Extraction Methods

Pipeline extraction method construct construct two separate models to en-
code NER and RE in a sequential manner. It is mainly used in many tradi-
tional models. Their information interaction is unilateral as it passes from
the NER to the RE model. For example, (9) proposed a pipelined model that
consists of a NER model and a RE model. The NER model first predicts the
span and type of entities. Then, the RE model inserts extra marker tokens to
highlight the subject and object and their types of all candidate entities out-
put from the NER model. (46) proposed a pattern-first pipeline approach
that contains three steps. It first uses a machine reading comprehension-
based method to identify potential patterns to facilitate the construction of
refined questions in the subsequent entity extraction stage. Then, a span-
based method is used to extract all the entities. Finally, an error elimination
strategy is applied to eliminate falsely extracted candidate entity-relation
triples. Although these methods achieved high scores in NER and RE, they
still suffer from the error propagation problem. The extracted wrong entities
pass into the RE model, resulting in wrong relation triples. Thus, many re-
searchers proposed a joint model to extract entities and relations to alleviate
this problem.
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2.1.2 Joint Extraction Methods

Another type is the joint extraction method, which extracts entities and
relations simultaneously in a unified model. For example, (1) proposed a
joint model, which incorporates entity information into the RE task through
the copying mechanism. (25) designed a cascading sequential annotation
model that extracts relational triples by mapping (subject entities, relations)
to object entities. (20) proposed a joint extraction model based on a span
schema. It first uses a span classifier to segment sentences. Then use a
span filter to determine the entity. Finally, a relation classifier is used to
predict relational triples. These models establish a unidirectional interaction
between NER and RE tasks, where entity tasks cannot acquire features from
relation tasks during encoding.

(19) proposed a task-specific bidirectional RNN model that emphasizes
the significance of shared and task-specific parameters for relation extraction.
(10) designed two separate encoders to generate task-specific features for en-
tities and relations, enabling mutual interaction and enhancement between
the two tasks. (29) introduced a recurrent interaction network for NER and
RE, extending the encoding structure to a graph structure that facilitates
interaction between the two tasks through a shared network. Building upon
Sun’s model (29), (30) added a cross-attention interaction network to en-
hance the information interaction of entity and relation types. (4) proposed
a translating schema-based model that infers object entities by constructing
a self-attention mechanism between the features of subjects-relations and ob-
ject entities. However, the information interaction in this model is limited to
parameter sharing and does not fully leverage the interconnections between
NER and RE tasks. (32) proposed a joint model that decomposes the en-
tity relational triple extraction into three subtasks: relation judgment, entity
extraction, and subject-object alignment. These tree subtasks serve the pre-
diction of relational types, relation-involved potential entities, and relational
triples. (5) proposed a joint encoding model highlighting the importance of
shared features between NER and RE tasks. (42) proposed a joint extraction
method using a sampling and interaction method. It divides negative sam-
ples into sentences based on whether they overlap with positive samples to
enhance the accuracy of the NER task. Then, it introduces a GNN model to
enhance the interaction between NER and RE modules. (27) proposed a joint
model that adopts a boundary regression mechanism to enhance the extrac-
tion of possible entities. However, the information interaction in encoding
is still a sequential order. (33) proposed to encode semantic representation
with different granularities for NER and RE tasks and perform information
interaction between them by a cross-attention approach.
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However, these models do not consider the different impacts of the sub-
ject and object on their relations when either the subject or the object is a
complex entity. Moreover, they mainly focus on the information interaction
between NER and RE tasks, overriding fine-grained feature construction and
interaction among subjects, relations, and objects.

2.2 Background Knowledge

2.2.1 Long Short-Term Memory Model

Long Short-Term Memory (LSTM) is a type of recurrent neural network
(RNN), which is proposed to overcome the vanishing gradient problem in
traditional sequence-to-sequence models. The LSTM model processes infor-
mation based on LSTM cells. Every LSTM cell is composed of a cell state,
a hidden state, and three gates. The following are the equations of each
component:

it = σ(Wiixt + bii +Whiht−1 + bhi) (2.1)

ft = σ(Wifxt + bif +Whfht−1 + bhf ) (2.2)

c̃t = tanh(Wigxt + big +Whght−1 + bhg) (2.3)

ct = ft � ct−1 + it � c̃t (2.4)

ot = σ(Wioxt + bio +Whoht−1 + bho) (2.5)

ht = ot � tanh(ct) (2.6)

where xt, ht, and ct are input, hidden state, and the cell state at time step t.
it, ft, and ot denote the input gate, forget gate and output gate. c̃t represents
the current candidate cell state that is used to build the current cell state. σ,
tanh, and � denote the sigmoid activation function, the hyperbolic tangent
activation function, and the element-wise multiplication, respectively.

The cell state ct, as the long-term memory of the network, allows the
model to capture the long-range dependencies. The hidden state, serving as
the short-term memory of the network, captures the related information from
the current input. Then, the forget gate decides what information from the
cell state should be thrown away or kept. Next, the input gate determines
what new information can be stored in the cell state. Then, the information
update module c̃t computes the new candidate values for the cell state by
combining the current input xt and the previous hidden state ht−1. The
output gate ot computes the current hidden state based on the current cell
state and decides what to output. Finally, the current hidden state ht is
computed and passed into the next LSTM cell to transfer the information.
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Through these mechanism, LSTM model is used to encode features in various
tasks, such as Relation Extraction (3), Entity Alignment (47), and Question
Answering (48).

2.2.2 BERT Model: Bidirectional Encoder Represen-
tations from Transformers

The BERT model (11) is designed to pretrain deep bidirectional represen-
tations from unlabeled text. It can be fine-tuned with only an additional
output layer for a wide range of tasks, such as Question Answering (49) and
Nature Language Inference (50), without substantial task-specific architec-
ture modifications. Additionally, it also has the following characteristics:

• High efficiency: BERT is built on the Transformer encoder. Since it
is based on self-attention mechanisms, it allows for parallel process-
ing of input sequences, making them highly efficient for training and
inference.

• Large-Scale Training: BERT is pre-trained on an enormous 3.3 billion
word dataset, including Wikipedia and Google’s BooksCorpus.

• Birectional encoding: It considers the entire context of a word by look-
ing at it from both directions, which significantly improves the under-
standing of context and semantics.

• BERT provides contextualized word representations. The representa-
tion of a word depends not only on its context but also on the sur-
rounding words in a sentence. This allows BERT to capture nuances
and polysemy in language.

Additionally it also contains two main unsupervised pretraining objectives:
Masked Language Model (MLM) and Next Sentence Prediction (NSP).

MLM: Masked Language Model

The MLM aims to randomly make some of the words in a sentence and
train the model to predict the masked words based on the context provided
by the surrounding words. In training sentences, about 15% of the words
(tokens) are randomly selected and replaced with a special “[MASK]” token.
The model is then tasked with predicting the original identity of the masked
words. Since there is no Token like “[MASK]” in the input sequence during
fine-tuning, this will lead to a mismatch between pre-training and fine-tuning.
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To address this problem, 15% tokens are selected, then among them, 80%
of them are replaced with “[MASK]”, 10% of them are replaced with other
tokens, and the resting tokens are unchanged. Finally, the corresponding
output of these tokens is used for classification.

NSP: Next Sentence Prediction

Some downstream tasks need to analyze the relations between two sentences,
such as Question Answering and Semantic Similarity. In order to enable the
model to have this ability, This strategy is proposed to predict whether the
second sentence is a consecutive sentence following the first or a randomly
chosen sentence unrelated to the first.

Both the MLM and the NSP contribute to the creation of a powerful
contextualized language model. Pretraining BERT with these objectives al-
lows it to capture rich contextual information, making it highly effective for
a wide range of downstream natural language processing tasks.

10



Chapter 3

Methodologies

3.1 Problem Statement

Training the model involves two tasks: NER and RE. Let E and R represent
the predicted entities and relations sets, respectively. Let K and L denote
the pre-defined entity types and relation types with total numbers of u and v.
Given a sentence s = {w1, ..., wt} consisting of t words. The NER task focuses
on extracting entities ekij = {(wi, wj, k) | e ε E , 1 ≤ i, j ≤ t, k ε K}, where
i and j denote the head and tail positions of an entity in a sentence, while k
denotes its type. The RE task aims to identify relation types between sub-
jects and objects. Formally, rlim = {(wi, wm, l) | r ε R, 1 ≤ m,n ≤ t, l ε L},
where i and m represent the head position of the subject and object, and
l represents their relation type. In joint extraction, the final set of pre-
dicted relational triples is denoted as 〈ek1ij , rlim, ek2mn〉, where ek1ij , e

k2
mn ε E ;

rlim ε R; k1, k2 ε K. For any sentence that does not contain entities or
relations, their labels will be empty.

3.2 Proposed Model

Figure 3.1 illustrates the overall structure of our model called DArtER,
which stands for Decoupling and Aggregating Network for Joint extraction
of Entities and Relations. It consists of three main components: an en-
coder and two decoders for NER and RE. The encoder comprises several
Decoupling and Aggregation Modules known as DAM. Every DAM con-
tains three task-specific cells for NSR, NOR, and RE, which serve the func-
tions of information interaction and fine-grained feature construction. Each
DAM module generates three outputs: task-specific features, hidden, and
cell states. The decoder uses the task-specific features for prediction, while
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Figure 3.1: The overall framework of the DArtER model.

the others are passed on to the next DAM for feature construction.

3.2.1 Encoder

Let X = {x1, · · · , xt} , X ∈ R
dt×p denote the feature matrix of a sentence ex-

tracted by a pre-trained language model. The transformation is implemented
by feeding X into three linear layers. The process is formalized as:

Zs = XWz s + bz s; Zr = XWz r + bz r; Zo = XWz o + bz o (3.1)

where W{·} and b{·} are learnable parameters. The outputs Zs, Zr, Zo ∈
R

dt×h are three representations that are used in each task-specific cells of
subjects, relations, and objects in DAM, respectively. In every task-specific
cell of each DAM, we perform the linear transformation of the hidden features
hp
t−1 ∈ R

dh from the previous DAM, then combine its output with the current
token embeddings zpt to generate the current individual task-specific features
f p
t ∈ R

dh and the candidate cell state c̃pt ∈ R
dh .

fpt = zpt + (hp
t−1Wf p + bf p)

c̃pt = Tanh(zpt + (hp
t−1Wc p + bc p))

(3.2)

where p ∈ {s, r, o}, denoting subjects, relations, and objects. Then, we use
an inter-aggregating method to enable mutual information interaction among
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task-specific cells as follows.

f ro
t = f o

t − f r
t

f so
t = f o

t − f s
t

f sr
t = f s

t + f r
t

(3.3)

f ro
t , f so

t and f sr
t ∈ R

dh are the inter-aggregated features of RE-NOR, NSR-
NOR, and NSR-RE at the current time. To enhance semantic context and
enable differentiated interaction information in three task-specific cells, we
perform an intra-aggregating approach within every task-specific cell by in-
corporating the inter-aggregated features into the individual original features
from both the previous and current time steps. This results in three enhanced
task-specific features: ast , a

r
t , and aot ∈ R

dh .

ast = (f s
t−1 + f ro

t−1)� cst−1 + (f s
t + f ro

t )� c̃st
art = (f r

t−1 + f so
t−1)� crt−1 + (f r

t + f so
t )� c̃rt

aot = (f o
t−1 + f sr

t−1)� cot−1 + (f o
t + f sr

t )� c̃ot

(3.4)

The symbol � denotes element-wise multiplication. c̃st , c̃
r
t , and c̃ot are

generated in Equation 3.2. cst−1, c
r
t−1, and cot−1 are come from the previous

DAM. Finally, the aggregated features are utilized to create the final task-
specific features h̃p

t ∈ R
dh , hidden states hp

t ∈ R
dh , and cell states cpt ∈ R

dh .
The following equation shows the formalization where p ∈ {s, r, o}.

h̃p
t = Tanh(atp)

cpt = atp Wa p + ba p

hp
t = Tanh(cpt )

(3.5)

3.2.2 Decoder

In the NER decoder, we combine the NSR and NOR features to form the
NER features h̃e

t ∈ R
dh . We apply a linear transformation to all the possible

entity span features [h̃e
i ; h̃

e
j ] and then normalize them, enabling the integration

of features among different words. ; denotes the vector concatenation. The
resulting features are output through the ELU activation function, which
aids the model’s quick convergence.

h̃e
t = h̃s

t + h̃o
t

he
ij = ELU(Norm([h̃e

i ; h̃
e
j ]Wh e + bh e))

ẽkij = Sigmoid(he
ijWe + be)

(3.6)
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Finally, the probabilities of the entities ẽkij ∈ R
dt×t×u (〈i, k, j〉) with the

start word i, end word j, and type k are predicted by feeding the features
into a fully connected layer with a sigmoid activation function.

For the RE decoder, we inter-aggregate the features of subjects and ob-
jects by computing the element-wise subtraction between them. In Equa-
tion 3.7, constants α, β ∈ {−1, 0.5, 1} are aggregating parameters obtained
through grid search on the validation set. Then, we incorporate the aggre-
gated features into the RE decoder. Finally, we predict the probabilities of
the relations r̃lim ∈ R

dt×t×v (〈i, l,m〉) with the type l, as well as the start word
i and m for both the subjects and objects, respectively.

h̃r
t = h̃r

t + (αh̃o
t − βh̃s

t)

hr
im = ELU(Norm([h̃r

i ; h̃
r
m]Wh r + bh r))

r̃lim = Sigmoid(hr
imWr + br)

(3.7)

3.2.3 Bi-Encoder

DAM DAM DAM DAM

x1                    x2                    x3                    x4                   

Subject-specific Feature

Relation-specific Feature

Object-specific Feature

DAM DAM DAM DAM

Figure 3.2: The overall framework of the BiDArtER model.

We also design an extension model called BiDArtER to extract features
bi-directionally. As shown in Figure 3.2, the first-layer encoder captures
features from left to right, while the second-layer from right to left within a
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sentence. The obtained features from the individual tasks of both encoders
are combined and simultaneously fed into the decoders. Consequently, the
decoding formulas for NER and RE are adjusted as follows: For NER:

−→̃
he
t =

−→̃
hs
t +

−→̃
ho
t←−̃

he
t =

←−̃
hs
t +

←−̃
ho
t

he
ij = ELU(Norm([

−→̃
he
i ;
−→̃
he
j ;
←−̃
he
i ;
←−̃
he
j ]Wh e + bh e))

ẽkij = Sigmoid(he
ijWe + be)

(3.8)

For RE:

−→̃
hr
t =

−→̃
hr
t + (α

−→̃
ho
t − β

−→̃
hs
t )←−̃

h′r
t =

←−̃
hr
t + (α

←−̃
ho
t − β

←−̃
hs
t )

hr
im = ELU(Norm([

−→̃
hr
i ;
−→̃
hr
m;

←−̃
hr
i ;
←−
h̃r
m]Wh r + bh r))

r̃lim = Sigmoid(hr
imWr + br)

(3.9)

where −→ and ←− represent the left-to-right and right-to-left encodings, re-
spectively.

3.2.4 Training

We threshold at 0.5 for the NER and RE tasks: ekij := (ẽkij > 0.5) and
rlim := (r̃lim > 0.5). Here, ekij and rlim represent the predicted entities and
relations, respectively. The model is trained using the binary cross-entropy
loss function. The total loss Ltotal is composed of Lner and Lre as follows,
where êkij and r̂lim represent the gold labels of the entities and relations, re-
spectively. E and R denote the entity and relation sets. We determine the
constants γ and δ through grid search on the validation set, testing different
values such as 0.75, 0.85, and 1.0 to find the best weights for each task.

Ltotal = γLner + δLre

where Lner = −
∑

êkij∈E
êkijlog(e

k
ij) + (1− êkij)log(1− ekij)

Lre = −
∑

r̂lim∈R
r̂limlog(r

l
im) + (1− r̂lim)log(1− rlim)

(3.10)
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Chapter 4

Experiments and Analysis

4.1 Datasets

Dataset Train Dev Test Typee Typer

CONLL04 922 231 288 4 5

ADE 4,272 10-fold cross-validation 2 1

SciERC 1,861 275 551 6 7

ACE2004 8,683 5-fold cross-validation 7 6

ACE2005 10,051 2,424 2,050 7 6

NYT 56,196 5,000 5,000 1 24

WebNLG 5,019 500 703 1 170

Table 4.1: Statistics of all datasets.

We conducted experiments on seven benchmark datasets: the CoNLL04
dataset (7), the ADE dataset (8), the SciERC dataset (6), the ACE2004
dataset (24), and the ACE2005 dataset (23), the NYT dataset (21), the
WebNLG dataset (22). The NYT and WebNLG datasets are partially an-
notated, where only the tail positions of entities are annotated. This means
that the datasets provide information about where entities are mentioned but
do not include annotations for their specific roles or relations. Other datasets
are fully annotated, meaning an entity’s head and tail positions are labeled.
The statistics of the number of entities, relations, entity types (Typee), and
relation types (Typer) are shown in Table 4.1. BERT (11), SciBERT (13),
and ALBERT (12) are the pre-trained language models used for different
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datasets in our work. The details of each dataset are described as follows.

• The SciERC dataset is extensively used for relation extraction and
named entity recognition tasks in scientific papers. It contains six en-
tity types (e.g., task, method, and material) and eight relation types,
including ordinary and co-referential relations. Our experiments focus
on general relations, which consist of seven relation types.

• The CoNLL04 dataset is extracted from news articles and contains
five relation types and four entity types.

• The ADE dataset is related to the biomedical domain and focuses on
extracting the adverse effects of drugs and diseases. It consists of two
entity types (drug, Adverse-Effect) and one relation type (Adverse-
Effect).

• The ACE2004 dataset is a benchmark dataset developed by the Lin-
guistic Data Consortium (LDC) for evaluating NLP systems in 2004. It
contains 8683 sentences with seven entity types and six relation types.
We use the English version of this dataset for training, validation, and
testing.

• The ACE2005 dataset is an extended version of ACE2004. It contains
10,051 training, 2,424 development, and 2,050 test sentences. ACE2005
is a larger dataset compared to ACE2004 regarding the number of
sentences.

• The NYT dataset is obtained from the New York Times Corpus using
distantly supervised methods and is aligned with Freebase.

• The WebNLG dataset was initially extracted using natural language
generation and has become a commonly used dataset for relation ex-
traction tasks.

Table 4.2 provides the statistics of different types of entities and relations
on the train, dev, and test datasets. For example, in the CoNLL04 dataset,
the entity type “Peop” contains 318 entities, and the relation type “kill”
includes 47 relational triples in the test dataset. As for the NYT dataset, we
categorized it into two classes: one containing relational types starting with
“people/*” and the other containing the remaining types (“Others” type).
For the WebNLG dataset, we counted only the total number of entities and
relational triples. For the other datasets, we counted the number of all entity
and relational types. In addition, Table 4.3 explains the abbreviation of entity
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Dataset Entity type Train Dev Test Relation Type Train Dev Test

WebNLG None 15854 2187 1536 Total 11687 1581 1112

NYT
None 120776 10777 10794 Total 88253 8110 7976
- - - - /people/* 17713 1582 1528
- - - - Others 70540 6528 6448

CONLL04

Total 3315 875 1059 Total 1254 331 402
Peop 1066 278 318 Kill 179 42 47
Org 602 168 195 OrgBased In 260 71 93
Other 453 116 132 Work For 249 69 76
Loc 1194 313 414 Live In 322 84 97
- - - - Located In 244 65 89

ADE
Total 7891 1400 1032 Total 4867 875 636
Drug 3650 640 477 Adverse-Effect 4867 875 636

Adverse-Effect 4241 760 555 - - - -

SciERC

Total 4877 678 1445 Total 3196 453 970
OtherScientificTerm 1245 166 413 Used-for 1678 212 529

Generic 835 116 209 Feature-of 173 32 59
Task 806 112 239 Evaluate-for 309 50 91

Method 1289 189 377 Conjunction 400 59 123
Metric 213 36 67 Part-of 177 27 63
Material 489 59 140 Hyponym-of 294 44 67

- - - - Compare 165 29 38

ACE2004

Total 14732 2567 4351 Total 2778 480 815
ORG 2811 514 846 OTHER-AFF 97 20 28
GPE 2765 460 818 EMP-ORG 1108 194 325
VEH 140 22 41 GPE-AFF 355 60 105
FAC 465 80 135 PER-SOC 246 40 73
LOC 416 65 121 PHYS 823 143 242
PER 8059 1416 2366 ART 149 23 42
WEA 76 10 24 - - - -

ACE2005

Total 25165 6049 4492 Total 4766 1123 795
ORG 3647 954 1014 ORG-AFF 1469 365 26
GPE 4980 1207 847 PART-WHOLE 772 160 319
VEH 659 123 47 GEN-AFF 509 123 84
FAC 896 243 110 PER-SOC 432 102 81
LOC 809 153 94 PHYS 1095 277 247
PER 13526 3247 2337 ART 489 96 38
WEA 648 122 43 - - - -

Table 4.2: Statistics of all datasets, where the type “Total” is the sum of all
types.

and relation types on ACE2004 and ACE2005 datasets. Every relation type
represents multiple sub-types. RE task is to predict the coarse type instead
of the sub-types.
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Entity Relation

Type Meaning Type Sub-Type

ORG organization PHYS Located, Near
GPE geopolitical PART-WHOLE Geographical, Subsidiary, Arti-

fact
VEH vehicle PER-SOC Lasting-Personal,

Business, Family
FAC facility ORG-AFF Employment, Ownership,

Founder, Student-Alum, Sports-
Affiliation, Investor-Shareholder,
Membership

LOC location ART User-Owner-Inventor-
Manufacturer

PER person GEN-AFF Citizen-Resident-Religion-
Ethnicity, Org-Location

WEA weapons OTHER-AFF Ethnic, Ideology, Other
- - EMP-ORG Employ-Exec, Employ-Staff,

Employ-Undetermined,
Member-of-Group, Subsidiary,
Partner*, Other*

- - GPE-AFF Citizen-Resident,
Based-In, Other

Table 4.3: Detailed entity and relation types on ACE2004 and ACE2005
datasets.

4.2 Baseline Models

To demonstrate the different semantic granularities between the subject and
the object and the impact difference of them on their relations, we compare
our results with the following related models.

• TpLinker (26) proposed a one-stage joint extraction model with a novel
handshaking tagging scheme.

• PURE (9) proposed a simple pipelined approach that uses the NER
model to construct the input for the RE model.

• TDEER (4) proposed a novel translating decoding schema for joint
extraction of entities and relations.
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• RIFRE (31) proposed a representation iterative fusion based on het-
erogeneous graph neural networks for relation extraction.

• PRGC (32) proposed a joint relational triple extraction framework
based on Potential Relation and Global Correspondence, which con-
structs three subtasks to enhance extraction: relation judgment, entity
extraction, and subject-object alignment from a novel perspective.

• BR (27) proposed a boundary regression model for joint NER and RE
with a boundary regression mechanism to learn the offset of possible
entities to enhance the RE task.

• Table-Sequence (10) proposed a joint extraction model with two differ-
ent encoders designed to interact with each other.

• PFN (5) proposed a partition filter network to properly model two-way
interaction between NER and RE tasks.

• UNIRE (17) proposed a unified classifier to predict each cell’s label,
which unifies and enhances the learning of two subtasks.

• TablERT (15) proposed a method to extract entities and relations based
on table representation, which enables information interaction between
NER and RE by a beam search approach.

• IEER (34) proposed a joint entity and relation extraction method based
on information enhancement. It uses a special marking strategy to
mark and integrate NER and RE features and enhance their mutual
interaction to address the discriminative problem of entity and relation
in the triple overlapping problem.

• (33) proposed a novel joint extraction model with two independent
token embedding modules for encoding features about entities and re-
lations, respectively. It enables the encoding of semantic representation
with different granularities for NER and RE and uses a cross-attention
approach to capture the interaction between them.

Additionally, we also add some previously proposed State-of-the-Art mod-
els in this field, such as CAMFF (18), TAGPRIME (44), and CRFIE (45).
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4.3 Experimental Settings

We use the exact match principle to predict entities’ head and tail positions
for fully annotated datasets such as SciERC, ACE05, ACE04, ADE, and
CoNLL04. The evaluation metric for CoNLL04, SciERC, ACE2004, and
ACE2005 is the Micro-F1 score, and for ADE is the Macro-F1 score. In order
to prevent model overfitting and make the trained models more accurate and
credible, we perform five-fold cross-validation on the ACE2004 dataset and
ten-fold cross-validation on the ADE dataset. The ALBERT (12) pre-trained
language model is used for the ACE2004, ACE2005, and CoNLL04 datasets,
and SciBERT (13) for the SciERC dataset. For the ADE dataset, we use
both the BERT (11) and ALBERT (12) pretrained language models during
training. For half-annotated datasets, we evaluate our model on two datasets,
NYT and WebNLG, using the partial matching principle, where the entity
task only predicts the tail position of an entity. The evaluation metric is
the Micro-F1 score. The pre-trained language model is the BERT (11). All
datasets are trained in the single-sentence setting in our model.

4.4 Implementation Details

Table 4.4 provides the implementation details as depicted in the figure. The
parameters for DArtER are slightly different from the BiDArtER model. We
set the batch size to 20 and the learning rate to 2e-5 for the NYT, WebNLG,
CoNLL04, and ADE datasets. For the SciERC and ACE2005 datasets, the
batch size is set to 4, and the learning rate is set to 1e-5. Regarding the
ACE2004 dataset, which contains 5 folds, we customize the batch size and
learning rate for each fold. The selection of hyperparameter settings is based
on the test results on the validation set. To ensure a fair comparison with
the baseline model, we use the BERT (11) pre-trained language model for
prediction on the NYT and WebNLG datasets, employ ALBERT (12) as
the pre-trained language model for CoNLL04, ACE2004, and ACE2005, and
utilize the SciBERT (13) model for the SciERC dataset. The maximum input
length for words is set to 128. Our model is trained on an NVIDIA Tesla
P100, an NVIDIA A40, and an NVIDIA A100 for each dataset, regardless of
the graphics card model.
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Datasets Model Type Batch Size LR α β γ δ

NYT
DArtER Total 20 2e-5 1 1 1 1
BiDArtER Total 20 2e-5 -1 1 1 1

WebNLG
DArtER Total 20 2e-5 1 1 1 1
BiDArtER Total 20 2e-5 -1 1 1 1

CONLL04
DArtER Total 20 2e-5 1 1 1 1
BiDArtER Total 20 2e-5 -1 1 1 1

ADE
DArtER Total 20 2e-5 1 1 1 1
BiDArtER Total 20 2e-5 -1 1 1 1

SciERC
DArtER Total 4 1e-5 1 1 1 1
BiDArtER Total 4 1e-5 -1 1 1 1

ACE2004

DArtER

0 20 2e-5 1 1 0.75 1
1 4 1e-5 1 1 1 1
2 4 1e-5 1 1 0.75 1
3 4 1e-5 1 1 1 1
4 4 1e-5 1 1 1 1

BiDArtER

0 4 1e-5 1 1 0.75 1
1 8 1.5e-5 -1 1 1 1
2 4 1e-5 -1 1 1 1
3 4 1e-5 -1 1 0.75 1
4 4 1e-5 -1 1 1 1

ACE2005
DArtER total 4 1e-5 1 1 0.85 1
BiDArtER total 4 1e-5 -1 1 0.75 1

Table 4.4: Parameter settings in our experiments. α and β are the fusing
parameters between subjects and objects in the decoder. γ and δ are the loss
weights for the NER and RE tasks in the training process.

4.5 Results and Analysis

Table 4.5, 4.6, 4.7, 4.8, and 4.9 present comparisons of our proposed model
with previous related approaches on five fully-annotated public datasets. On
the ACE2004 dataset, our model outperforms the best results by +0.1%/+2.7%
in NER and RE tasks. On the ACE2005 dataset, our model performs slightly
weaker than the BR model in the NER task (-1.0%) but achieves a higher
score of +0.1% in the RE task. On the ADE dataset, when using BERT
(11) as the pre-trained language model, our model shows a slight decrease of
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Method PLM NER RE

Table-Sequence (10) ALBERT 88.6 59.6
PURE (9) ALBERT 88.8 60.2
UNIRE (17) ALBERT 89.5 63.0
PFN (5) ALBERT 89.3 62.5
TAGPRIME (44) ALBERT 89.0 62.3
BR(27) ALBERT 88.7 62.3

DArtER ALBERT 89.6 64.6
BiDArtER ALBERT 89.3 65.7

Table 4.5: Comparison of the proposed model with the prior works on the
ACE2004 dataset.

Method PLM NER RE

Table-Sequence (10) ALBERT 89.5 64.3
PURE (9) ALBERT 89.7 65.6
UNIRE (17) ALBERT 90.2 66.0
PFN (5) ALBERT 89.0 66.8
TablERT (15) ALBERT 89.8 65.2
TAGPRIME (44) ALBERT 89.6 68.1
CRFIE (45) ALBERT 90.1 68.3
BR(27) ALBERT 90.8 66.0

DArtER ALBERT 89.5 68.3
BiDArtER ALBERT 89.8 68.4

Table 4.6: Comparison of the proposed model with the prior works on the
ACE2005 dataset.
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Method PLM NER RE

Table-Sequence (10) ALBERT 89.7 80.1
PFN (5) BERT 89.6 80.0
PFN (5) ALBERT 91.3 83.2
IEER (34) BERT 90.1 82.5
(33) ALBERT 91.6 83.7
BR (27) BERT 91.0 82.9
BR (27) ALBERT 91.7 84.8

DArtER BERT 90.3 82.0
BiDArtER BERT 90.6 82.5
DArtER ALBERT 92.3 85.4
BiDArtER ALBERT 92.2 85.4

Table 4.7: Comparison of the proposed model with the prior works on the
ADE dataset.

Method PLM NER RE

PURE (9) SciBERT 66.6 35.6
UNIRE (17) SciBERT 68.4 36.9
PFN (5) SciBERT 66.8 38.4
UIE (14) T5-v1.1-large - 36.53
CAMFF (18) SciBERT 68.9 -
IEER (34) BERT 68.4 40.0

DArtER SciBERT 69.1 39.1
BiDArtER SciBERT 69.4 39.9

Table 4.8: Comparison of the proposed model with the prior works on the
SciERC dataset.
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Method PLM NER RE

Table-Sequence (10) ALBERT 90.1 73.6
PFN (5) ALBERT 89.6 75.0
TablERT (15) ALBERT 89.7 73.7
(33) ALBERT 90.2 74.4
BR(27) ALBERT 90.3 74.9

DArtER ALBERT 89.6 75.3
BiDArtER ALBERT 89.7 75.6

Table 4.9: Comparison of the proposed model with the prior works on the
CoNLL04 dataset.

-0.4% compared to the previous state-of-the-art model BR in both NER and
RE tasks. However, when using ALBERT (12) as the pre-trained language
model, our model surpasses the previous highest score by +0.6% in both
NER and RE tasks, respectively. Additionally, on the SciERC dataset, our
model demonstrates good accuracy in the NER task with an improvement
of +0.5% but decreases slightly in the RE task by -0.1%. On the CoNLL04
dataset, our model performs slightly weaker than the BR model in the NER
task by -0.6% but achieves a higher score of +0.2% in the RE task.

By analyzing the experimental results, we can draw the following two
conclusions. (1). Compared with the models that are mainly based on con-
structing distinct subtasks of NER and RE, e.g., (34) and (27), our approach
proposes to consider the different impact of the subject and the object on
their relations. Our model significantly improves the results on these five
datasets. In particular, many subjects and objects in the ACE2004, AcE2005,
ADE, and SciERC datasets are complex entities. Treating both the complex
and the normal entities as the same entities in feature representations weak-
ens the performance of the RE task. Our model facilitates the differentiation
of semantic differences between subjects and objects by encoding fine-grained
relational triple information, thus better-defining relation types.

(2). Regarding information interaction, previous models, either param-
eter sharing (27), or the shared features (10; 5), or the mutual information
interaction of NER and RE (33; 34), do not consider the information inter-
action among subjects, relations, and objects. Our model builds three sub-
tasks to construct differentiated task-specific features of subjects, objects,
and relations and enhance their mutual interaction. The experimental re-
sults demonstrate that fine-grained information interaction can improve task
recognition.
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Method PLM
NYT WebNLG

NER RE NER RE

TpLinker (26) BERT - 91.9 - 91.9
TDEER (4) BERT - 92.5 - 93.1
PFN (5) BERT 95.8 92.4 98.0 93.6
RIFRE (31) BERT - 92.0 - 92.6
PRGC (32) BERT - 92.6 - 93.0
IEER (34) BERT - - 98.1 94.1
(33) BERT - 93.0 - 91.2

DArtER BERT 95.8 92.4 98.2 93.7
BiDArtER BERT 95.9 92.6 98.1 94.1

Table 4.10: Comparison of the proposed model with the prior works on the
NYT and WebNLG datasets.

To evaluate our model’s effectiveness on datasets containing more over-
lapping relations, we conduct experiments on two half-annotated datasets:
NYT and WebNLG. Overall, compared with the five fully-annotated datasets
above, the performance improvement of our model is relatively small. How-
ever, compared with the models (5) that focus on constructing the sharing
features, we demonstrate the effectiveness of building differentiated task-
specific features for subjects, objects, and relations. Compared with the
model (33) that is built with differentiated features of NER and RE tasks,
our model is slightly weaker in the RE task on the NYT dataset by -0.4%,
but outperforms it by +2.9% in the WebNLG dataset. This may be because
the NYT dataset differs from the five fully annotated datasets above in that
it contains many normal-type entities with relatively few complex entities.
So, there is little reliance on constructing differentiated task-specific features
for subjects and objects.

4.6 Ablation Study

We conducted an ablation study (see Table 4.11) to assess the contribution
of each component in our model on the SciERC dataset. For this purpose, we
performed experiments on a subset of the data using the following options:
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Ablation Settings NER RE

Number of Layers

N=1
N=2
N=3
N=4

69.1
69.4
68.9
69.2

39.1
39.9
38.4
39.0

Information Interaction
F=Y
F=N

69.1
68.1

39.1
38.1

Encoder Strategy
DAM
LSTM
PFN (5)

69.1
68.7
66.8

39.1
38.8
38.4

Decoding Strategy
RE+NER

RE
69.1
68.0

39.1
37.0

Table 4.11: Ablation study results.

4.6.1 Number of the DAM Encoder Layers

We conducted experiments on different DAM encoder layers in the ablation
study. The first layer represents the left-to-right encoder, and when the
second layer is added, the direction becomes right-to-left. For three layers
and four layers, we followed the same rules as for one layer and two layers. We
tested up to four layers on the SciERC dataset. Results shown in Table 4.11
indicate that the two-layer model performs better than the one-layer model.
However, the three-layer and four-layer models perform worse than the lower-
layer models. This may be attributed to the increase in dimensionality of
the relation features as the number of layers increases. Therefore, important
information may be lost when using sigmoid to compress high-dimensional
features.

4.6.2 Bidirection VS Unidirection

To determine whether the bidirectional model outperforms the unidirectional
model, we conducted testing using a two-layer network. The unidirectional
network encodes sentences from left to right in both layers. In contrast,
the bidirectional network considers information from both directions during
encoding. As shown in Table 4.11, the extraction accuracy of the BiDArtER
model is generally higher than that of the DArtER model. This indicates that
the bidirectional encoder can capture more semantic information, thereby
facilitating the extraction of more accurate entities and relations.

27



4.6.3 Information Interaction VS No Information In-
teraction

To evaluate the importance of the encoder modules for semantic information
aggregation of different task-specific cells, we conducted an experiment where
we removed the inter-aggregated features in the encoder. In terms of the
relation decoder, we removed the aggregated entity features. After making
these modifications, we performed experiments and obtained the subsequent
results. The results indicate that the model with the aggregating strategy
(F=Y) performs better than the one without the aggregating schema. It
demonstrates that information interaction among different subtasks can help
build differentiated task-specific features and information transfer.

4.6.4 Encoder Strategy

To evaluate the effectiveness of the DAM module and the decoupling strategy
used to construct fine-grained task-specific features in the encoding phase,
we employed three LSTM models to replace the three subtasks to construct
task-specific features of the subjects, relations, and objects, respectively. The
LSTM-based model lacks information aggregation in the encoding phase,
while the decoder part remains unchanged. The experimental results show
that our model performs better in entities (+0.4%) and relations (+0.3%)
than the LSTM-based model. This highlights the crucial role of information
interaction and aggregation in the DAM module. Additionally, compared
to the baseline model (5) that builds sharing features among NER and RE,
the LSTM-based model achieves a higher F1-score (+1.9% and +0.4%) for
NER and RE tasks, respectively. We can draw two conclusions. (1). The
impact of the subject and the object on their relations may have difference.
(2). Building fine-grained task-specific features for subjects, relations, and
objects can effectively improve the task prediction.

4.6.5 Decoder Strategy

We removed the entity features in the RE decoder to examine the necessity
of incorporating entity features into the RE task. The experimental results
show that introducing entity features improves the NER and RE tasks by
+1.1% and +2.1%, respectively. This indicates that the entity features in
our model help enhance the context information to improve the RE task.
Since our model is a joint training model, enhancing the RE task can also
contribute to the NER task.
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Dataset Type Train Dev Test Ratio(%)

SciERC
OOT 495 88 154 28.0
IT 1366 187 397 72.0

ACE2004
OOT 4276 727 1250 72.0
IT 1668 276 486 28.0

ACE2005
OOT 7408 1793 1453 70.9
IT 2643 631 597 29.1

Table 4.12: Statistics of OOT and IT sentences.

Datasets Model PLM
OOT IT

P R F1 P R F1

SciERC
PFN (5) SciBERT 53.9 65.7 59.2 66.9 69.5 68.2

DArtER SciBERT 52.7 66.1 58.7 70.2 71.8 71.0
BiDArtER SciBERT 58.3 69.5 63.4 69.6 71.0 70.3

ACE2004
PFN (5) ALBERT 87.4 89.0 88.2 90.3 90.0 90.1

DArtER ALBERT 87.1 89.4 88.2 91.3 91.0 91.2
BiDArtER ALBERT 86.9 88.85 87.9 90.3 90.5 91.2

ACE2005
PFN (5) ALBERT 85.8 86.1 85.9 91.5 90.4 91.0

DArtER ALBERT 85.8 86.9 86.3 91.6 91.3 91.5
BiDArtER ALBERT 85.2 87.7 86.4 90.5 92.1 91.3

Table 4.13: NER Results on In-triple (IT) and Out-of-triple (OOT) sen-
tences.

4.6.6 NER Performance on Different Sentence Types

For the SciERC, ACE2004, and ACE2005 datasets, which include both Out-
of-triple (OOT) and In-triple (IT) sentences, as discussed in (5), we con-
ducted the same experiment to test the model’s performance on different
types of sentences. OOT sentences refer to sentences that do not contain
triples, while IT sentences represent sentences with triples. The statistics of
sentence count in the train, dev, and test sets for SciERC, ACE2004, and
ACE2005 datasets are shown in Table 4.12. The sentence counts we ob-
tained differ slightly from those reported in the PFN model paper, so the
scores reported for the PFN model (5) are the ones we retested.

The results are presented in Table 4.13. In the case of OOT sentences, our
model achieves a higher F1 score on SciERC and ACE 2005 datasets while
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performing comparably to the baseline model on the ACE2004 dataset. For
IT sentences, our model outperforms the baseline on all datasets. However,
the DArtER model performs slightly lower for OOT sentences, with a de-
crease of -0.5% on the SciERC dataset. The BiDArtER model performs
slightly lower than the baseline model by -0.3% on the ACE2004 dataset.
We speculate that because the original dataset contains a small portion of
OOT sentences, it may not be conducive to our model’s training and param-
eter updating based on triple interactions. Moreover, it may be ineffective
for constructing fine-grained features for subjects and objects since OOT
sentences do not contain relations. That is why our model outperforms the
baseline model on all datasets in the case of IT sentences. We can draw two
conclusions compared with the baseline model. (1). Regarding the results
on IT sentences, we can demonstrate that building fine-grained task-specific
features of subjects, relations, and objects and enabling task interaction are
conducive to the NER task. (2) With more fine-grained task interactions,
the RE task is more helpful for the NER task.

4.7 Error Analysis

To investigate the factors that influence the extraction of entity types and
relation types in our model, we analyze the performance of jointly predicting
different elements of the entity and triple (〈E,Et〉, 〈S,R,O〉) on ACE2005
dataset. 〈E,Et〉 represents the entity E with its type Et, 〈S,R,O〉 represents
the relational triple with the subject S, the relation R, and the object O.
Each type of error is shown in Table 4.14.

For NER, we divided it into three types: ET indicates that the entity span
and type are predicted correctly. EN means that the entity span is correctly
predicted, but the entity type is incorrectly predicted. ET NP means that
the entity is presented in the gold label but not predicted.

For RE, there are three types: SOR indicates that the head positions of
the subject and object entities and the relation type are predicted correctly.
SON means that the head positions of the subject and object entities are
correct, but their relation type is incorrectly predicted. SOR NP indicates
that the relational triples existing in the gold label are not predicted.

For joint prediction, there are two cases: ETSOR indicates that both
the span and type of the subject and object entities are predicted correctly,
and the relation triples are also predicted correctly. ETSON indicates that
the entity span and type are predicted correctly, and the head position of
the subject entity and the object entity in the relational triple are predicted
correctly, but their relation type is mispredicted.
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Type E Et 〈S, O〉 R Model Predicted Numbers

ET � � - -
PFN (5) 4443

Our Model 4510

EN � � - -
PFN (5) 289

Our Model 256

ET NP � � - -
PFN (5) 438

Our Model 404

SOR
- -

� �
PFN (5) 708

Our Model 727

SON - - � � PFN (5) 46
Our Model 37

SOR NP � � � �
PFN (5) 393

Our Model 383

ETSOR � � � �
PFN (5) 676

Our Model 691

ETSON � � � �
PFN (5) 43

Our Model 33

Table 4.14: The classification of Error study. The predicted numbers re-
ported for the PFN model are re-implemented.

Table 4.14 displays the predicted numbers for different NER, RE, and
joint prediction settings. Our model outperforms the baseline PFN model
regarding entity type (ET) and relation prediction (SOR). We also exhibit
fewer errors in predicting wrong entity types (EN) and relationship types
(SON). When comparing the scores of ET NP and SOR NP, we observe
that our model has lower scores, indicating a higher ability to predict entity
spans and relational triples. In joint prediction, our model has ten fewer
errors than the PFN model for the ETSON cases. This indicates that our
model is less likely to predict the wrong relation type when the entity span
and type are predicted correctly. In addition, the experimental results can
also demonstrate that building fine-grained task-specific features of subjects,
relations, and objects is more effective in predicting entities and relational
triples.
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4.8 Case Study

We conducted a case study experiment as shown in Table 4.15 and 4.16 to
investigate the effectiveness of constructing fine-grained task-specific features
and whether there exist the impact difference of the subject and the object
on their relations. We compared our results with the baseline model PFN
(5) that constructs sharing features between NER and RE tasks and does
not differentiate semantic differences between subjects and objects. Thus,
we chose some sentences containing complex entities for comparison.

Sentence 1 shows that our model effectively identifies the term “divisions”
as referring to the type of people (PER) rather than branches of organiza-
tions. In the RE task, through information interactions of the task-specific
features of the subjects and objects, our model prefers the “ORG-AFF” re-
lation type over the “PART-WHOLE” relation type. This indicates that the
subject and the object have different impacts on their relations. The type of
subject “divisions” has a more significant impact on the RE task than the
object “Republican”.

Sentence 2 reveals that our model and the baseline model correctly de-
termine the type of “people” as “PER”. However, when extracting relations,
our model can build fine-grained task-specific features for the subject “peo-
ple” and the object “United States”, then aggregate them into the RE task
to enhance the prediction of their type of “GEN-AFF” (e.g., citizen, resi-
dent) instead of “ORG-AFF”. Another relational triple (it, ART (e.g., owner,
manufacturer), nukes) is also predicted in our results. In this triple, all the
entities and their types are extracted correctly in both models, but the base-
line model does not predict their relations. Thus, constructing task-specific
features of subjects and objects separately can help determine their relation
types. Furthermore, sentences 3, 4, and 5 show the ability of our model to
extract entities’ span, determine their types, and predict their relations.

Overall, we can draw three conclusions as follows: (1). when the entity
is predicted correctly, our model is more likely to predict their relations.
(2). Due to the presence of complex entities, which have different effects on
relations than normal types of entity words, we need to encode them at a
fine-grained level to ensure semantic differences. (3). Information interaction
among task-specific features of subjects, relations, and objects contributes to
the RE task.
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Sentence 1: As shown in Table 1.1

(PFN) Entities: (Pentagon, ORG), (they, ORG), (divisions, ORG),
(Republican Guard, ORG), (U.S, GPE), (troops, PER), (Karbala, GPE),
(Al Kut, GPE)
Relations: (troops, PHYS, Karbala), (troops, PHYS, Al), (divisions,
PART-WHOLE, Republican), (troops, ORG-AFF, U.S)

(Our) Entities: (Pentagon, ORG), (they, ORG), (divisions, PER),
(Republican Guard, ORG), (U.S, GPE), (troops, PER), (Karbala, GPE),
(Al Kut, GPE)
Relations: (troops, PHYS, Karbala), (troops, PHYS, Al), (divisions,
ORG-AFF, Republican), (troops, ORG-AFF, U.S)

Sentence 2: North Korea has told important people of the United States
that it has developed nukes and reprocessed spent fuel rods.
Entities: (United States, GPE), (North Korea, GPE), (it, GPE), (peo-
ple, PER), (nukes, WEA)
Relations: (it, ART, nukes), (people, GEN-AFF, United States)

(PFN) Entities: (United States, GPE), (North Korea, GPE), (it,
GPE), (people, PER), (nukes, WEA)
Relations: (people, ORG-AFF, United States)

(Our) Entities: (United States, GPE), (North Korea, GPE), (it, GPE),
(people, PER), (nukes, WEA)
Relations: (it, ART, nukes), (people, GEN-AFF, United States)

Sentence 3: Nic, we’re getting information in bits and pieces about the
incursion by coalition land forces, about air flights over the city.
Entities: (coalition, GPE), (Nic, PER), (we, ORG), (forces, PER), (city,
GPE)
Relations: (forces, coalition, ORG-AFF)

(PFN) Entities: (coalition, GPE), (Nic, PER), (we, PER), (forces,
PER), (city, GPE)
Relations: (forces, coalition, ORG-AFF)

(Our) Entities: (coalition, GPE), (Nic, PER), (we, ORG), (forces,
PER), (city, GPE)
Relations: (forces, coalition, ORG-AFF)

Table 4.15: Case Study of our NER and RE results. Table 4.3 shows the
detailed meanings of the entity and relation types.
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Sentence 4: Soldiers are here to tear down the regime and all it stands
for.
Entities: (here, GPE), (Soldiers, PER), (regime, ORG), (it, ORG)
Relations: (Soldiers, here, PHYS)

(PFN) Entities: (Soldiers, PER), (regime, ORG), (it, ORG)
Relations: none

(Our) Entities: (here, GPE), (Soldiers, PER), (regime, ORG), (it,
ORG)
Relations: (Soldiers, here, PHYS)

Sentence 5: a man on a motorcycle was killed while being chased about
i police, the violence broke out.
Entities: (man, PER), (motorcycle, VEH), (police, PER)
Relations: (man, motorcycle, ART)

(PFN) Entities: (man, PER), (police, PER) Relations: none

(Our) Entities: (man, PER), (motorcycle, VEH), (police, PER)
Relations: (man, motorcycle, ART)

Table 4.16: Case Study of our NER and RE results. Table 4.3 shows the
detailed meanings of the entity and relation types.

4.9 Analysis on Different Relation Types

In addition, our model exhibits weaker performance improvements on the
NYT dataset than other datasets. This section aims to explore the possible
reasons behind this observation. We speculate that our model may heavily
rely on the semantic interactions to construct NER and RE features. Con-
sequently, semantically rich words in the pre-trained language model, such
as city names and country names, may contain a more informative semantic
context, leading to relatively more accurate predictions of the corresponding
relations. On the other hand, long-tail words with limited semantic informa-
tion, such as common person names, may not be as well-predicted. Thus,
we conduct an experiment to test the RE performance of our model in dif-
ferent relational types. We tested on three datasets. For the ACE2004 and
ACE2005 datasets, we calculated the F1 scores for relation extraction in each
relation type. For the NYT dataset, we divided the sentences into two sub-
sets: one subset contained relation types with the start word “/people/*”,
while the other subset did not. The relation types with a start word of
“/people/*” contained more entities of people’s names, and we believe that
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Figure 4.1: Comparison of different relational types on ACE2004 dataset.
The scores reported for the PFN model (5) are re-implemented.

extracting their relation types is relatively more challenging. Table 4.2 shows
the detailed statistics of the different entity and relation types.

Figure 4.1, 4.2 and 4.3 compares the experimental results between the
baseline and our models. On the ACE2004 dataset, our model is -0.4%
lower than the baseline model for the type “PER-SOC” (business, family,
other). On the ACE2005 dataset, our model scores lower in the case of the
“OTHER-AFF” (ethnic, ideology, other) type and has the same score in the
“PER-SOC” type. The NYT dataset also exhibits relatively low scores for
the “PEOPLE/” type. These results indicate that our model achieves higher
accuracy in extracting relation types that are richer in semantic informa-
tion. However, the extraction accuracy is relatively lower for relation triples
involving long-tailed entities. The reason may be that our model interacts
among NSR, RE, and NOR when building their task-specific features; the
entities with rich semantic entities may override the long-tailed entities with
fewer semantics during information interaction, leading to problems in fea-
ture construction. To effectively improve the extraction accuracy of these
types, exploring other methods to enhance their semantic information is nec-
essary in the future.
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Figure 4.2: Comparison of different relational types on ACE2005 dataset.
The scores reported for the PFN model (5) are re-implemented.
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Figure 4.3: Comparison of different relational types on NYT dataset. The
scores reported for the PFN model (5) are re-implemented.
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4.10 Detailed Results on Overlapping Pat-

tern and Different Triple Number

We also conducted experiments to address the overlapping problem and
tested sentences containing different numbers of triples. The overlapping
problem is categorized into three classes: normal sentences, SEO sentences,
and EPO sentences. Specific examples and introductions can be found in
(25). As shown in Table 4.17, Our model outperforms the baseline models
by +1.1% and +0.5% for the normal and SEO classes on the NYT dataset.
However, our model performs slightly worse by -0.6% on EPO sentences. On
the WebNLG dataset, our model increases by +0.6% and +0.1% for the SEO
and EPO classes, respectively. However, our model’s performance is slightly
lower by -0.1% for the normal class.

Our model performs better than the baseline models in several categories
for sentences with different numbers of triples (see Table 4.18). On the NYT
dataset, our model achieves higher scores by +0.3% and +0.5% on the N=2
and N=3 types of sentences, respectively. However, our model’s performance
is slightly lower by -0.8% and -0.5% on the N=1 and N≥5 types of sentences.
On the WebNLG dataset, our model outperforms the baseline models by
+0.1%, +0.9%, and +1.3% on the N=1, N=3, and N≥5 classes, respectively.
However, our model’s performance is -0.1% and -0.8% lower on the N=2 and
N=4 classes.

Even though our model is not specifically designed to address overlapping
problems, our model has relatively higher scores on several types compared
with the baseline models. However, the improvement of our model is not
significant. Thus, we plan to design other methods to address these issues
further in future work.

Method
NYT WebNLG

Normal SEO EPO Normal SEO EPO

TDEER (4) 90.8 94.1 94.5 90.7 93.5 95.4
RIFRE (31) 90.7 93.2 93.5 90.1 93.1 94.7
PFN (5) 90.2 94.1 95.3 91.6 94.0 94.7
PRGC (32) 91.0 94.0 94.5 90.4 93.6 95.9

Our Mdoel 92.1 94.6 94.7 91.5 94.6 96.0

Gap with baseline models +1.1 +0.5 -0.6 -0.1 +0.6 +0.1

Table 4.17: F1 score of predicting relational triples on overlapping problems
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Method
NYT WebNLG

N=1 N=2 N=3 N=4 N≥5 N=1 N=2 N=3 N=4 N≥5

TDEER (4) 90.8 92.8 94.1 95.9 92.8 90.5 93.2 94.6 93.8 92.3
RIFRE (31) 90.7 92.8 93.4 94.8 89.6 90.2 92.0 94.8 93.0 92.0
PFN (5) 90.5 92.9 93.7 96.3 92.6 91.3 92.4 95.6 94.7 93.3
PRGC (32) 91.1 93.0 93.5 95.5 93.0 89.9 91.6 95.0 94.8 92.8

Our Mdoel 90.3 93.3 94.6 96.3 92.5 91.4 93.1 96.5 94.0 94.6

Gap with baseline models -0.8 +0.3 +0.5 0 -0.5 +0.1 -0.1 +0.9 -0.8 +1.3

Table 4.18: F1 score of predicting relational triples on sentences with different
number of triples

39



Chapter 5

Conclusion

5.1 Summary

This work proposes a new joint model that enables efficient interaction among
triple subtasks. Our approach recognizes the difference in the impact of the
subject and the object on their relations when either the subject or the ob-
ject is a complex entity. By decoupling the extraction task and aggregating
information, we construct the fine-grained task-specific features and enhance
the information interaction among each sub-task. Experimental results vali-
date the effectiveness of our approach. Our contributions are summarized as
follows:

• We propose a novel joint extraction model of entities and relations. Our
model leverages three subtasks of extracting the subject, the object,
and their corresponding relation to build their differentiated features
and propose an aggregating strategy to enable fine-grained information
interaction among each subtask-specific feature, addressing the previ-
ous limitations of (1) ignoring the possibility of the impact difference
between the subject and the object on their relation when either of
them is a complex entity; (2) information interaction mainly based on
the subtasks of extracting entities and relations. Additionally, we also
design a BiDArtER model that can capture richer context semantics of
each word in a bi-directional way.

• Our model outperforms several state-of-the-art models. In specific, we
increase the accuracy score by +2.7%, +0.1%, +0.6%, and +0.6% in the
relation extraction task on ACE2004, ACE2005, ADE, and CoNLL04
datasets and +0.3%, +0.6%, +0.5%, +0.1%, and +0.1% in the en-
tity extraction task on ACE2004, ADE, SciERC, NYT, and WebNLG
datasets, respectively.
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• Compared with the models that are mainly based on constructing sub-
tasks of extracting entities and relations without differentiated rep-
resentation of the subject and the object, our approach proposes to
consider the different impacts of the subject and the object on their re-
lations. The experimental results demonstrate that our approach can
effectively improve the task recognition ability.

• Regarding information interaction, previous models, either based on
parameter and feature sharing, or on mutual interaction between sub-
tasks of extracting entities and relations, do not consider the informa-
tion interaction among the subtask features of extracting the subject,
the object, and their relations. Our model enhances their information
interaction. The experimental results demonstrate that fine-grained
information interaction can improve task recognition.

• Compared with the baseline models on the case of the OOT sentences,
we also verify that building differentiated featurs for the subject, the
object, and their relation can improve the NER task. Moreover, with
fine-grained information interaction, the RE task is more helpful for
the NER task.

5.2 Future Works

There are several promising improvements and extensions to the current
method for future work.

• Concerning the encoding method, since our model is a type of RNN
architecture, there may be some similar limitations when dealing with
long sentences, such as sequential encoding or vanishing Gradients.
Thus, future works will based on the parallel encoding of a sentence,
which may improve the efficiency and deal with the limitations of the
RNN-based model.

• As to the entity and relation types, it is necessary to delve into more
complex scenarios. For example, (1). determining the relational type
when both the subject and object types are complex entities; (2). for
some specialized domain datasets, where the concepts of entities and
relationships are quite abstract, how to conduct effective information
interaction and subtask-specific feature construction is also a worth-
while research question.
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• Furthermore, there is a need to explore ways to enhance the semantics
of long-tail entities, such as the names of ordinary people. Our model
performs poorly on long-tail entities relative to semantically rich reg-
ular entities. We speculate that this is mainly due to the problem of
insufficient semantic features. Thus, how to effectively enhance the
semantics of long-tail keywords is also an important issue.

• Finally, in specific domain datasets, such as SciERC and ADE, there
is still much room for improvement in the existing methods that need
to be addressed.
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