JAIST Repository

https://dspace.jaist.ac.jp/

(GRS & ] Maudez W 2 A ERRAE R E5 0

e Bt DT
Author(s) W,

Citation

Issue Date 2024-03

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/18917
Rights

_ Supervisor: # /3 FI1#, SeimPl 2 pfsimt, &1 (R
Description

B¥)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Formal specification and model checking studies using Maude
2130012 Tsuyoshi Nakamura

In recent years, everything has become digitalized. Furthermore, techno-
logical innovation is accelerating, and new technologies such as Al and IoT
are emerging, making systems even more important. In addition, software
systems are becoming increasingly complex and large-scale, making it dif-
ficult to verify all cases through conventional review and testing. In such
a situation, it is very important to ensure that systems operate safely as
they evolve through continuous system updates. Model checking is one of
the methods to achieve this. The purpose of this research project report is
to enable the use of Maude to correctly handle model checking for invari-
ance. For this purpose, we investigated the creation of formal specifications,
description in Maude, and operation of model checking for invariance using
several examples. We also used cases with intentionally injected errors to
extract counterexamples, investigated the transitions leading up to the oc-
currence of counterexamples, and deepened our understandings of how the
state explosion problem, one of the challenges in model checking, occurs and
how to deal with it. The report also describes the issues (state explosion)
and phenomena (phenomenon of infinite state creation) encountered in the
course of the investigation and research, and summarizes them while apply-
ing countermeasures. We also discuss the challenges and considerations we
felt as we proceeded, and summarize the challenges we will face in the near
future.

This research project report consists of seven chapters. Chapter 1 de-
scribes the background and purpose of this project research and summarizes
the structure of the following chapters. Chapter 2 defines the state machine
and summarizes the set of reachable states of the state machine. There are
a number of ways to represent states, but in this report, we represent a state
as a soup of observable components by enclosing them in braces { and }.
We describe the creation of formal specifications, description in Maude, and
model checking for invariance using a mutual exclusion protocol based on
test&set, which is an indivisible instruction. We also describe the behavior
of invariant model checking using test&set with intentionally embedded er-
rors. The transition process from the inclusion of errors to the extraction of
counterexamples and the generation of counterexamples is also described. In
Chapter 3, we describe the creation of formal specifications, description in
Maude, and model checking for invariance using Qlock, a mutual exclusion
protocol using indivisible queues. In this chapter, we describe the creation
of formal specifications, description in Maude, and model checking for in-



variance using Qlock (FQlock), which does not satisfy mutual exclusion and
intentionally embeds the following errors.

e Enqueuing a process identifier to the end of the shared queue is not
done atomic

e Dequeuing the head (or top) element from the shared queue is not done
atomic

Focusing on a single process, the report uses illustrations to explain how the
state changes when a state transition is made. The structure of the infinite
number of reachable states, which is one of the causes of state explosion
in FQlock, is also described. Even if the structure of FQlock is such that
an infinite number of reachable states are created, it is avoided by utilizing
Maude’s search command, which employs width-first search. We confirmed
that even with Qlock that satisfies mutual exclusion, state explosion occurs
when the number of processes is increased without completing model check-
ing. We also surveyed the Divide & Conquer Approach, which is one of the
existing studies on the state explosion problem. In Chapter 4, we describe
the formal specification, description in Maude, and model checking using the
Identity-Friend-or-Foe Authentication Protocol (IFF), which is a protocol for
identifying friend and foe. In this chapter, we describe the creation of for-
mal specifications, descriptions in Maude, and model checking for invariance
using the following intentionally embedded adversary-identity-friend-or-foe
(FIFF) protocols.

e Encryption without including the sender’s identifier

This error causes the IFF (FIFF), which does not satisfy the discriminability
of friend and foe, to be misidentified as a friend, even though it is originally
an enemy. The state explosion problem was not avoided simply by reduc-
ing the number of variables used in Maude’s code or by utilizing JAIST’s
Large Memory PC Cluster (LMPCC), which is a large memory computer.
However, by explicitly classifying participants (or principals) of IFF into ini-
tiators (those who initiate IFF) and responders (those who receive the first
message of IFF), it is now possible to deal with this problem on an indi-
vidual PC without using the Large Memory PC Cluster (LMPCC), which
is a large memory computer. In Chapter 5, based on the knowledge gained
in the previous chapters, we describe the creation of formal specifications,
description in Maude, and model checking for protocols using public keys
and nonce using the Needham-Schroeder Public Key Authentication Pro-
tocol (NSPK). Here, we check whether the confidentiality of the nonce is



maintained. The transitions in which impersonation was established are de-
scribed based on counterexamples. In Chapter 6, we describe the creation
of formal specifications, description in Maude, and model checking using the
Needham-Schroeder-Lowe Public Key Authentication Protocol (NSLPK), an
improved version of NSPK, based on the countermeasures against the state
explosion problem developed in the previous chapters. Model checking is then
conducted. Here, the encryption pattern is used to simultaneously express
who sent the message and to whom, and the number of message transmission
functions and variables used in NSPK are reduced. After explicitly classify-
ing participants (or principals) of NSPK into initiators (those who initiate
NSPK) and responders (those who receive the first message of NSPK), the
model checking experiments are conducted to conform whether the confiden-
tiality of the nonce is maintained. Chapter 7 summarizes the findings of the
project research. We took up the following two issues that we felt through
the preparation of the research project report, and studied the outline of
related existing research as well as the countermeasures.

e To counter the state explosion problem, it is necessary to reduce the
number of reachable states. Reduction requires modification of the
code, but it is dependent on the developer’s understanding of the nature
of the verification target and the level of modeling understanding.

e Although there are many proposals on the effectiveness and application
of model checking, there are few cases where model checking is used in
actual system development sites.

We should investigate liveness properties in addition to invariant properties,
which were not covered in this report. Maude, which was used in this report,
is capable of linear temporal logic (LTL) model checking and can also verify
liveness properties. We also discuss what elements need to be studied when
verifying the liveness properties, and survey the existing research.



