
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Decision making via End-to-End Lossy Distributed

Wireless Cooperative Networks - A Distributed

Hypothesis Testing based Formulation -

Author(s) Matsumoto, Tad

Citation

Institute of Electronics, Information and

Communication Engineers Technical Committee on

Radio Communication Systems (IEICE RCS),

RCS2024-23

Issue Date 2024-05-24

Type Presentation

Text version author

URL http://hdl.handle.net/10119/19040

Rights

Copyright (c) Author. Tad Matsumoto, Decision

making via End-to-End Lossy Distributed Wireless

Cooperative Networks - A Distributed Hypothesis

Testing based Formulation -, RCS2024-23, Tutorial

Lecture at IEICE Technical Committee on Radio

Communication Systems (RCS), May 30–31, 2024,

Fukuoka University.

Description

IEICE Technical Committee on Radio

Communication Systems (RCS), May 30–31, 2024,

Fukuoka University　電子情報通信学会 無線通信シス

テム研究会, 2024年5月30日～31日, 福岡大学



Decision making via End-to-End Lossy Distributed 
Wireless Cooperative Networks

- A Distributed Hypothesis Testing based Formulation -
Full Tutorial: MMMM DD, YYYY @ University of ZZZZ 

Tad Matsumoto*, **, ***
IEEE Life Fellow

*International Chair, Invited Professor, IMT -Atlantic
Technopôle Brest-Iroise CS 83818 29238 Brest cedex 03, France

Tadashi.matsumoto@imt-atlantique.fr

** Professor Emeritus, JAIST
matumoto@jaist.ac.jp

*** Professor Emeritus, CWC, University of Oulu,
tadashi.matsumoto@oulu.fi



Tree of Tad’s SISU: Wireless Communications

2

In
du

st
ry

 
(N

TT
/N

TT
 D

oC
oM

o)

ARQ Analysis for 
1G System 
Control.

Soft Decision Decoding of Block Codes

Theoretical Performance Analysis of Coded DPSK

FFH CDMA

Decorrelating MUD for CDMA
Smart Antennas and MIMO

FD Soft Cancellation-MMSE Turbo Equalization

Chained Turbo Equalization

EXIT Analysis

Near Capacity Achieving BICM-ID with Extended Mapping

IDMA

Subspace based Turbo Channel Estimation

Compress Sensing  for Channel Estimation Distributed Turbo Coding

Lossy Forwarding Techniques

CEO Problem
Rate Region and Outage Analyses

Constrained MU-MIMO Precoder Design

FG Geolocation 
and Tracking

f-DMT

Ac
ad

em
ia

 
(F

in
la

nd
an

d 
G

er
m

an
y)

Ac
ad

em
ia

 
(J

ap
an

 a
nd

 
Fi

nl
an

d)

Joined NTT 43 years ago

1980

2007

2002

Lossless/Lossy Distributed Multi-terminal Source Coding Correlated 
MAC

Retired from JAIST @2021

Today



Tree of Tad’s SISU: Wireless Communications

3

In
du

st
ry

 
(N

TT
/N

TT
 D

oC
oM

o)

ARQ Analysis for 1G 
System Control.

Soft Decision Decoding of Block Codes

Theoretical Performance Analysis of Coded DPSK

FFH CDMA

Decorrelating MUD for CDMA
Smart Antennas and MIMO

FD Soft Cancellation-MMSE Turbo Equalization

Chained Turbo Equalization

EXIT Analysis

Near Capacity Achieving BICM-ID with Extended Mapping

IDMA

Subspace based Turbo Channel Estimation

Compress Sensing  for Channel Estimation Distributed Turbo Coding

Lossy Forwarding Techniques

CEO Problem
Rate Region and Outage Analyses

Constrained MU-MIMO Precoder Design

FG Geolocation 
and Tracking

f-DMT

Ac
ad

em
ia

 
(F

in
la

nd
an

d 
G

er
m

an
y)

Ac
ad

em
ia

 
(J

ap
an

 a
nd

 
Fi

nl
an

d)

Joined NTT 43 years ago

1980

2007

2002

Lossless/Lossy Distributed Multi-terminal Source Coding Correlated 
MAC

Retired from JAIST @2021

Today
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Lossy Multi-terminal Cooperative Networks, 
Queueing, and Decision Making: 

Erlang, Shannon, and Neyman-Pearson Meet in 6G Networks
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In what fields are they famous as land-make builders?

Copied from March 27 Seminar Top Page Slide



Shannon: 
Information Theory 

Erlang: 
Queueing Theory 

Neyman-Pearson: 
Hypothesis Testing
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Why “Neyman Pearson” Involved?

Clearer but maybe Too Late to Avoid Accident
Decision: Make left turn!

Unclear but still Accident Avoidable
Make left turn or right turn?

Making correct decision is most important than lossless reconstruction 
of the observation for risk avoidance!



Is Lossless reconstruction Needed?

Time

Risk Level

Risk due to Target Move TM
Time spent due to transmission and queueing
TM =TM(time): Increasing function of time

Risk due to Communication Network and Decision Making CNDM
CNDM=CNDM(time): Decreasing function of time

Risk =Risk(TM(time), CNDM(time))

Minimum Risk

Motivation behind the March 23 Seminar:
Formulate Risk under the Three Landmark Builders’ Framework!



ITW 2024 Category



Chapter 0. Revisit of Fundamental Theorems in Network 
Information Theory
1. Channel Capacity: Point-to-Point Lossless Channel’s Maximum Capability



Gaussian Noise

Gaussian Code book 

2. Rate Region: 
Distributed Multi-Source Lossless Coding

RX > H(X|Y)
RY > H(Y|X)

RX+RY > H(X,Y)

 Slepian-Wolf Theorem:

RX

RY

H(X|Y) H(X)

H(Y|X)

H(Y)

RX+RY=H(X,Y)



Two Sources:



One Source One Helper:

Remember! Coded Side Information=Helper

U

H(X) R1

R2

H(Y)

H(Y |X)

H(X|Y)

Admissible rate 
region

Approximated



3. Lossy Source Coding:

with



4. Source-Channel Separation:
A Connecting point between Source Coding and Channel Coding
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Note: 
Source-Channel Separation applies to: 

- Orthogonal transmission with multiple Point-to-Point links,
- Both Lossless and Lossy, so far as each link is orthogonal,
- Helper link,
- (Experts say it holds with majority of the cases….)

D

S

R

Relaying with orthogonal links

S1

DH

S2

Multiple Access Relaying with orthogonal links
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5. Rate Region: 
Lossy Source Coding with Side information/a Helper 

With Side information:

U
Decoder

Notice: UXY forms a Markov Chain

;U) ;U) ;U) ; U);U|

; U) ; U) ;U |
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With a Helper:

RHelper ≥ I(Y; U)

U
Decoder

Encoder

RSI-D

RHelper

Tad’s Book?

Coded Side Information=Helper
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6. Rate Region: 
Distributed Multipoint-to-Multipoint Lossy Coding

Without Helper:

U1

U2

Notice: 
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With a Helper:

U1

U2

Encoder RHelper

V

R1

R2

Yn

RHelper > I(Y;V)

|U2, V, Q),

V, Q),

V, Q),

Tad’s Book?

Coded Side Information=Helper
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Correlated Sources Transmission over MAC:

7. Multiple Access Channels (MAC)
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D

S

R

Relaying with orthogonal links

There are two regions in this set up: SW and MAC regions.
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Revisit to Source-Channel Separation:   

- Orthogonal transmission with multiple Point-to-Point links,
- Both Lossless and Lossy, so far as orthogonal,
- Helper link,

D

S

R

Relaying with orthogonal links

- MAC transmission when the rates-plot is in intersection
(Sufficient condition, NOT optimal.  Separation vs. Joint),

- (Experts say it holds in many cases….)

Separation holds in:

Region intersection: The rate-pair plot belongs to the both MAC and SW regions.
 Source-channel separation holds!
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A sufficient condition for Lossless Recovery.

.

- Recovery for two sources

- Recovery for one source with one helper

and
R1≥ H(X1|U)

R2≥ I(X2; U)

which can be approximated by

Exact

Approximated

Tad’s Book?
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Region intersection 
 Source-channel separation holds!

and

A sufficient condition for Lossy Recovery.

- Recovery for one source with one helper

R1≥ H(X1;U|V)

R2≥ I(X2; V)

Tad’s Book?



Binary Convolution

 For variables and 

 inherently involves  
 is a monotonically decreasing function of , with a maximum 

 is a linearly increasing function of , with a maximum 

 Recursive structure:

1 1

𝑛 𝑛 − 1 1

27 IoTAD-CEO Chair Lecture Series

Properties of Binary Convolution:

Tad’s Book?



Chapter 1. End-to-End Lossless Relaying: Slepian Wolf Theorem 
with Source-Channel Separation
1.1 EXIT Analysis for Source Bit-Flipped MIMO Transmission  with Turbo Equalization

Turbo Equalization with Horizontal and 
Vertical Iterations

H11
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 Vertical iteration is expected to improve performance because of space diversity gain
from using antenna 1 and 2, and coding gain. Mariella Sarestoniemi, Tad Matsumoto, Kimmo 

Kansanen, and Jari Iinatti, “Turbo Diversity Based on SC/MMSE Equalization”, IEEE Transactions on Vehicular 
Technology, Vol. 54, No. 2, pp. 749-752, March, 2005

 This design is called as Spatial Turbo Code (STC) because coded sequences are 
multiplexed in the spatial domain, not in the time domain as in the Turbo codes.



- We* developed Frequency Domain Turbo Equalization Algorithms
for single carrier signalling: It requires computational complexity of only
”high school levelmath”!

- Convergence property analysis made significantly easy!

”Do you still spread?” Famous words said many times, said by a CWC person.

• Kimmo Kansanen, and Tad Matsumoto, ”An Analytical Method for MMSE MIMO Turbo Equalizer EXIT Chart
Computation”, IEEE Transactions on Wireless Communications, Vol. 6, No.1, pp.59-63, January, 2007



3030
K. Anwar and T. Matsumoto, “Spatially Concatenated Codes with Turbo Equalization for Correlated Sources”, IEEE
Transaction Signal Processing, vol. 60, no. 10, Oct. 2012, pp. 5572-5577

1

ac

ac

(p)=

Source Bit-Flipped MIMO Transmission  with Turbo Equalization:
With the bit flipping e between b1 and b2, b1 can be recovered losslssly by joint 
decoding
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1
SNR= -3.5dB
Interleaver=1024
SRCC-4 (17,15)
Iterations=5x with D-Acc, P=16

Parameters:

 Transmitter:
Encoder: CC 
4(17,15),17
Interleaver=5000 
(random)
Correlation Model: 
Bit-flipping

 Channel:
MIMO 2x2
Equal Power 64-
path

 Receiver:
Decoder: BCJR 
Log-MAP
FFT=512

31

EXIT Chart for Source Bit-Flipped MIMO Transmission  with Turbo Equalization
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0
.01

Parameters:

 Transmitter:
Encoder: CC 
4(17,15),17
Interleaver=1024 
(random)
Correlation Model: 
Bit-flipping

 Channel:
MIMO 2x2
Equal Power 64-path

 Receiver:
Decoder: BCJR 
Log-MAP
FFT=512with D-Acc

without D-Acc

Average BER in Block Frequency-Selective Block Rayleigh Fading Channels:
Source Bit-Flipped MIMO Transmission  with Turbo Equalization
- Bit-flipped sequences are correlated sources!

RX

RY

H(X|Y) H(X)

H(Y|X)

H(Y)

RX+RY=H(X,Y)



Bit-Flipped MIMO TEQ
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Interleaver: 5120
NSNRCC-4 
(17,15)
Iteration: 
50(H1V5)

known  p
unknown  p

p = 0.49
T = 3

p = 0.30
T = 3

p = 0.10
T = 3

p = 0.00
T = 6

p = 0.01
T = 6

64-path Fading

 Transmitter:
Encoder: CC 4(17,15)
Interleaver=10000 
(random)
Correlation Model: 
Bit-flipping

 Channel:
MIMO 2x2
Equal Power 64-path

 Receiver:
Decoder: BCJR 
Log-MAP
FFT=512

1

Comparison in SNR to Slepian-Wolf Bound @ BER=10-5

One Source One Helper 
Slepian Wolf Theorem 
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1.2 Slepian-Wolf Formulation for Lossless Two-Way Relay Networks
Observation on Bit-flipped MIMO TEQ:  BF Model Works as Correlated Sources!

• Scenario Assumption (Lossy-Forward, LF)
1. Source broadcasts information
2. Errors may occur in S-R link
3. Relay still forwards the lossy information
4. Destination recovers the source information by 

joint decoding
5. End-to-End lossless.

SR RD

SD

Destination
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Do we need to recover the relay information bR?

R

S D

First Time Slot

Second Time Slot

Orthogonal Transmission 

Source-Relay Correlation 
(bit-flipping model 
equivalent to BSC, binary 
symmetric channel.

As in Bit-flipped 
MIMO TEQ)

Joint decoding exploiting 
the source-relay 
correlation 

bR

bS

We do not care about the decoding result (=V) of bR, but we can use bR as a helper! 
 One Source One Helper Slepian Wolf  Theorem for Lossless Multi-terminal Source 

Coding

R2

R1

Rate Rc2

R0

Encoder 1 Joint 
Decoder

Encoder 2

R1

R2

Rate Rc1

Y

R0 V

pe 

Zhou, Xiaobo, Meng Cheng, Xin He, and Tad Matsumoto, "Exact and approximated outage probability analyses for decode-and-forward
relaying system allowing intra-link errors," IEEE Transactions on Wireless Communications, vol. 13, no. 12, pp. 7062-7071, Dec. 2014.
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LF Rate Region Analysis: Slepian –Wolf  Theorem for 
Lossless Multi-terminal Source Coding with a helper.

With LF, the S-R link is lossy, the admissible rate region is given by:

H(X1) R1

R2

H(Y)

H(Y|X1)

H(X1|Y)

Admissible
rate region

H(Y)-H(Y|V)

V)
V) V)

This is a general expression.

To calculate the rate region using 
parameters related to the links, we 
use :

(1) Shannon’s Source-Channel Separation 
Theorem, 

(2) Test Channel Model of Binary R(D) function 
to represent each link’s threshold, and

(3) Utilization of Markov Chain. 
 Binary Convolution
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Rate Region Analysis: we need threefold Integral!

H(X1) R1

R2

H(Y)

H(Y |X1)

H(X1|Y)

Admissible rate region RLF

a

b c

d

e

Ra , Rb , Rc , Rd and Re

RLF =Rc Rd Re

To calculation the outage, 
we decompose the region 
into 5 sub-regions.

V)
V) V)

Approximation

=Hb(pe)*

This region is a function of 0, 1, and 2.
(SNR of S-R, S-D and R-D links)

 Threefold integral needed 
with respect to pdf’s of 0, 1, and 2.
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LF Rate Region Analysis: SR Link

How can we combine Shannon’s Separation Theorem and the Rate Region?

By using the lossy Separation theorem

and with Inverse C-1(0) of the Capacity Function C(0), we calculate the 
binary distortion (D=BER) of the S-R link after decoding, as 

and

with

This means that given the instantaneous SNR 0 and Rc,1, we can 
calculate the binary distortion (D=BER=pe) of S-R link after decoding! 

e

Separation Theorem



Binary Source
Consider a Binary source x X,     pxProbpxProb  10,1

Assume that p<1/2.  The rate distortion function is given by:

where Hamming distortion measure is assumed.









)1,min(,0

)1,min(0,)()(
)(

ppD

ppDDHpH
DR

With p=1/2,  R(D)=1-H(D), hence SR test channel 
is BSC with D=pe

Hb(pe)=1-R(pe)

pe=Hb
-1(1- )

LF Rate Region Analysis: Test Channel

Separation Theorem
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LF Rate Region Analysis: RD Link

We also do not need lossless R-D link.  R-D link’s error probability 
after decoding can be calculated in the same way, as

with

By combining all, we have


2 2

2)
2)

2

with

We do not know 0, 1, 2  but we know their distributions.

V)
|V)

V)
, because V->Y->X1 forms Markov Chain.Hb(pe)*

pe=(1- pe  pe*

Separation Theorem



To Calculate the Outage, we need threefold Integrals

Let’s skip the boring threefold integral calculations!
Those who Want to Know the Details of the Calculation, 

please Come to my Place after the Tutorial (TwWKDCpCmPaT).

41
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Comparison of exact and approximated SW 
region with a helper (Orthogonal Case)

[1] X. Zhou, M. Cheng, X. He and T. Matsumoto, "Exact and Approximated Outage Probability Analyses for 
Decode-and- Forward Relaying System Allowing Intra-Link Errors," in IEEE Transactions on Wireless 
Communications, vol. 13, no. 12, pp. 7062-7071, Dec. 2014.

Location A, d0=d1=d2

Location B, d0=(1/4)d1, d2=(3/4)d1

LF-Aprx
LF-Helper
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Chapter 2. End-to-End Lossy Distributed Multi-terminal Networks: 
Rate Distortion Analysis

2.1 Wyner-Ziv Formulation for End-to-End Lossy Two-Way Relay Network

• Internet of Things (IoT)
Connect objects to make Right 
Decisions E2E Lossy

U
Decoder

Encoder

RSI-D

RHelper

WZ with a Helper:



E2E Lossy Communications with LF

44

• Objective of IoT:
• Make a judgement rather than recovering information 

itself
• The picture exemplifies LF for lossy communications: 

NOT necessarily be E2E-lossless as long as 
the system can make right judgement.



Lossy Distributed Multi-terminal Source Coding

45

• S-R link: point-to-point communication.

• S-D and R-D links: distributed lossy multi-terminal source coding problem. 

As a whole, Wyner-Ziv Problem

First slot

Second slot

with distortionS D

R

V

U

Lin Wensheng, Shen Qian, and Tad Matsumoto, “Lossy-Forward Relaying for Lossy Communications: Rate-Distortion and Outage
Probability Analyses”, IEEE Transactions on Wireless Communications, Vol. 18, No. 8, 05 June 2019, pp. pp. 3974-3986, DoI:
10.1109/TWC.2019.2919831
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 WZ R(D) function for general sources

• For binary sources
• S-R link

• R-D link 

• S-D link 

: crossover probability between X and Y
: crossover probability between Y and V

Rate-Distortion Region

because V->Y->X->U forms a Markov Chain. 



I (X ;U |Y )

Outage Event

47

• The link rates ( ) supported by channel capacities 
cannot satisfy the distortion requirement , when they fall 
outside the achievable rate-distortion region. Outage

Outage region

I (X ;U )

Achievable region with Lossy WZ 
is larger than with Lossless helper-SW!

The curve is shifted to the left!
Admissible rate 

region 



48

Again, we need multifold Integrals

TwWKDCpCmPaT!
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Again, we need threefold Integrals!

We calculated, but too boring. Let’s skip it!

We evaluate the outage probability also by chain simulations
using very simple signaling and joint decoding techniques.



Simulation Results

50

1.  Simulation results have the same 
tendency and the slope decay 
(=Diversity Order) as the theoretical 
bound. 
2.   The gap between the simulation 
and theoretical results becomes 
larger as increases. We need  
more efficient rate-distortion code. 
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2.2 Berger-Tung (BT) Formulation for Two Source One Helper Network

U
1

U
2

Encoder RHelper

V

R1

R2

Yn

Multiple Access Relay Channel 
formulated by BT with a Helper:



System Model

52

: optimal helper (it utilizes the useful information at the maximum level, since 

X1, X2: two sources

Y : helper information

, : recovered sequences

D1, D2: distortion requirements

M1, M2, MH: codewords

R1, R2, RH: link rates

and by data processing theorem, )

Lin Wensheng, Qiang Xue, Jiguang He, Markku Juntti, and Tad Matsumoto, “Rate-Distortion and Outage Probability Analyses for
Single Helper Assisted Lossy Communications”, IEEE Transactions on Vehicular Technology, Vol. 68, 2019, No. 11, pp. 10882-
10894, DOI:10.1109/TVT.2019.2939622



Rate-Distortion Analysis

• What is the achievable rate-distortion region?
• Condition for reliable communications: link rates can support the transmissions to satisfy

the distortion requirements.

• Inner bound on the achievable rate-distortion region, given by Berger Tung Bound

53

: compressed information of 
: compressed information of 
: an auxiliary variable resulting from time-sharing scheme

Use Inner bound Upper bound of the outage probability



Rate-Distortion Analysis

• The inner bound for binary sources.
(a) for some ,

(b) for some ,

(c) common case,

54

: crossover probability 
between and 
(representing correlation)

: dummy variable

binary entropy function

a(1 − b) + b(1 − a)

• This is not an inner bound in general. It is only for the case that the following inequality 
holds with equality.

𝑺 𝑺

where , and represents the complementary set of .



Rate-Distortion Analysis

55

1. The achievable rate-distortion region is 
expanded as increases.

2. However, the above part of the region 
for ≥ 1, does not change even if the 
helper rate continues increasing. 

• The shape of achievable rate-distortion region.



Rate-Distortion Analysis

• The achievable rate-distortion region 
projected on the - plane by given .

56

The derived inner bound perfectly coincides 
with the Berger-Tung inner bound when = 0
(equivalent to no helper).



Outage Probability Analysis

Outage event defined as:
• The link rates fall outside the achievable rate-distortion region, i.e., the link 

rates ( ) supported by channel capacities cannot satisfy the distortion 
requirements ( ).

57



Outage Probability Analysis

58

• The outage probability is the multiple integral with respect to ( ) .

• The outage probability can be calculated by the threefold integral with 
respect to SNRs ( ) .

• The instantaneous rates ( ) are supported by the instantaneous 
signal-to-noise ratios (SNRs) ( ).
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Again, we need multifold Integrals

TwWKDCpCmPaT!



Outage Probability Analysis
• Numerical Results ( )

2. Multiterminal Source Coding with a Helper 60

1. The larger the acceptable distortion is, the 
smaller the outage probability is. 
( ).

2. Without a helper, the curves only show first 
order diversity.

3. With a helper, it can achieve second order 
diversity ( decreases faster).

, the    
.  

always exhibit



Comparison to EXOR Helper

61
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2.3 End-to-End Lossless and Lossy Multiple Access Channels

Data gathering should not necessarily be lossless.

MAC!

Distortion is a Decision-Making part Requirement
to information gathering part. 

Lossy 
Joint 

Decode
r

H0/H1

Information gathering

Shulin Song, Meng Cheng, Jiguang He , Xiaobo Zhou, and TadMatsumoto,”Outage Probability of One-Source-with-One-
Helper Sensor Systems in Block Rayleigh Fading Multiple Access Channels”, IEEE Sensor Journal, Accepted date: Aug. 24,
DOI: 10.1109/JSEN.2020.3018787

62



Approximated Slepian-Wolf rate 
region with a helper (h-SW) MAC rate region

63

A sufficient condition of successful transmissions is defined as the case Slepian-Wolf region with 
a helper and MAC rate region intersect, where Source-Channel Separation holds.

Let the transmission rate of the source and the helper to be and , respectively. 

End-to-End Lossless MAC:

it−Fipping Model (as in BF MIMO TEQ) 
with flipping probability pe

Source-Channel Separation 
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Cases where Outage Happens
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Outage Probability Expressions
Outage probability can be calculated by multifold integrals with respect to the instantaneous 
SNR of each link.

TwWKDCpCmPaT!
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Numerical Result

Not fully correlated.
In this case, 
Diversity order 
21 

Fully correlated
Diversity order stays 2.

Lower outage with  smaller pe
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Lossy Case Helper: WZ System 

67In lossy case, admissible rate region is larger.

Lossless (H-SW)

Lossy (WZ) 

Lossy 
recovery

Correlated 
sources

Encoder of 
source

Encoder of 
helper

Joint
decoder

Hypothesis 
testing or 
statistical 
inference

Decision makingData transmission

Correlated 
sources

Encoder of 
source

Encoder of 
helper

Joint
decoder

𝑉

𝑋

𝑌

𝑋 = 𝑋
𝑅

𝑅

Lossless recovery

Hepler Slepian-Wolf
(h-SW) rate region

Wyner-Ziv (WZ) rate 
region

End-to-End Lossy MAC:

Dx =Maximum Acceptable Distortion

DHT
H0/H1

Shulin Song, Jigang He, and Tad Matsumoto, “Rate-Distortion and Outage Probability Analyses of Wyner-Ziv Systems over
Multiple Access Channels” IEEE Trans. On Communications. DOI: 10.1109/TCOMM.2021.3087128
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WZ Region Approximation

68

Exact: 

with:

Approximation:

Approximation

Exact 

Admissible WZ 
rate region

Admissible WZ rate region 

Intersection Analysis
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69

𝑃 , = 𝑃 , + 𝑃 ,Two scenarios that outage happens.

MAC

WZ

MAC

WZ

Cases where Outage Happens
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Twofold Integral Similar to Lossless Case

TwWKDCpCmPaT!
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WZ MAC Outage Probability

71

• Transmission efficiency with MAC 
transmission is twice as large as 
that in orthogonal transmission.

S

H

D
Orthogonal 2 phases

S

H

D
MAC

1 phase

• The results show that the 
difference between Orthogonal 
and MAC is negligibly small. 

pe=0.1

-helper 
bit-flipping probability.

Lower outage with  larger Dx



Extension to Networks
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Stage 1

Stage 2

Lossless 
Observation

Lossy 
Observation

2.4 Two Stage Wyner-Ziv Network: Distortion Transfer Analysis 

Analyze: How Distortion causing at the previous stage is forwarded to the current stage?
Distortion Transfer Function (DTF)

Amin Zribi, Lin Wensheng, Reza Asvadi, Elsa Dupraz, Tad Matsumoto, “Two-stage Successive Wyner-Ziv Lossy Forward
Relaying for Lossy Communications: Rate-distortion and Outage Probability Analyses”, Under Review, IEEE Trans.
Vehcular Technology.



 Mathematical assumptions
 i.i.d Bit-Flipping model for the correlation between the observations
 Hamming distortion measure
 Definition of Admissible rate-distortion (RD) region: 

 Stage 1: static parameters
 Stage 2: block Rayleigh fading

73 IoTAD-CEO Chair Lecture Series

Block Diagram

 →

RH

Stage 1 Stage 2
p

E~Bern(pH)



 Stage-by-stage admissible RD region

74 IoTAD-CEO Chair Lecture Series

Stage 1

Smaller rate R0 is required 
when is larger or is lower

Stage 2

Smaller rates R1 and R2 are required 
when is larger or is smaller

Stage-Independent RD Analysis



 The Recursive Structure of the Binary Convolution is Referred to as: 
Distortion Transfer Function (DTF)

DTF Connects the two stages, as
 Stage 1:

 Assume the required distortion at Helper is given by  ∗

 It is found that Bit-Flipping probability between the observations should satisfy

 When ∗ , using , we have 
 which corresponds to the case no side information is required.

 When decreases, ∗ also decreases, and hence also  
decreases,
 which corresponds to the case higher correlation is needed to satisfy ∗

75 IoTAD-CEO Chair Lecture Series

Stage-Dependent RD Analysis

to distortion requirement 
on Side information

From distortion requirement 
at Helper

DTF

R(D)=Hb(p)-Hb (D)

p =Hb
-1(R +H(D))



 Stage 2 
 Assume the required distortion at Destination 
 It is found that the distortion at Helper should satisfy

 When is large enough, , then using :

∗

 In this case, Stage 2 is equivalent to Stage 1 with distortion requirement on 
Side Information.

 Condition is required to achieve at Destination 

76 IoTAD-CEO Chair Lecture Series

Stage-Dependent RD Analysis: 
Connecting Stages

to distortion 
requirement at Helper

From distortion requirement 
at Destination

DTF



 Connecting Stage 1 and Stage 2
 3D admissible RD region
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Relaxing the requirement with larger 
expands the admissible RD region

Higher observation correlation reduces 
distortion requirement at Helper as well as 
Source-Helper link rate , resulting in 
expands the admissible RD region  

Rate Surface Calculation

𝑿 𝑯 𝑿 𝑯 𝑿 𝑯



 Assumptions: 

 Static stage 1: is a fixed parameter
 Destination is moving: fading variation on S-D and H-D links
 When rates and are in the inadmissible RD region: outage happens

 Case 1:

 Case 2:

78 IoTAD-CEO Chair Lecture Series

𝐿 = 𝐻 𝐷 ∗ 𝐷 − 𝐻 (𝐷 )

1 − 𝐻 (𝐷 )

𝑅

 

 

Outage Probability



 Utilizing Lossy Source-Channel Separation theorem, 

 : the channel capacity function with two dimensional signaling

 Case 1 outage probability:

79 IoTAD-CEO Chair Lecture Series

 Case 2 outage probability:

Twofold Integrals for 
Outage Probability Calculation



 For independent fading on S-D and H-D links

80 IoTAD-CEO Chair Lecture Series

Twofold Integrals for 
Outage Probability Calculation

TwWKDCpCmPaT!



Second-to-first order diversity change 
when first stage is lossy and is low

First order diversity when first stage is 
lossy and high at Helper

Second order diversity achieved when 
Stage 1 is lossless ( )

IoTAD-CEO Chair Lecture Series Amin ZRIBI81

 For independent fading on the S-D and H-D links

Outage Probability



However, has no impact on 
the slope of the outage 
probability (parallel curves) 

Increasing the allowed distortion 
at Destination 𝑿 provides lower 
outage probabilities

IoTAD-CEO Chair Lecture Series Amin ZRIBI82

 For independent fading on the S-D and H-D links

Outage Probability



 For correlated fading on the S-D and H-D links
 ∗ the correlation of the complex channel gains and 
 The joint PDF of the instantaneous SNRs 

 is the zero-order modified Bessel’s function of the first kind

 The outage probability of cases 1 and 2 can be written as

IoTAD-CEO Chair Lecture Series Amin ZRIBI83

Impact of Spatial Correlation on 
Outage Probability

TwWKDCpCmPaT!
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𝑯

Higher fading correlation induces higher
outage probabilities 𝑿

Second order 
diversity is achieved 
with (even 
when , 
independently 
of

Increasing
reduces the 
outage probability

1st order diversity 
is obtained 
asymptotically

For small and 
values, 2nd

order diversity 
can be achieved 
at low average 
SNRs

Fading correlation has no impact on the asymptotic diversity order

IoTAD-CEO Chair Lecture Series Amin ZRIBI84

 For correlated fading on the S-D and H-D links

Impact of Spatial Correlation on 
Outage Probability
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Wyner Ziv Networks:

U
Decoder

Notice: UXY forms a Markov Chain

;U) ;U) ;U) ; U);U|

; U) ; U) ;U |

We have used UXY in the networks of:
- Outage analysis for wireless End-to-End Lossy Communications networks
- A two-stage wireless communications network based on Distortion Transfer Function
- Extension to two-sources one-helper End-to-End Lossy wireless communications network 
- …

Chapter 3   Wyner-Ziv Formulation for Decision Making Process
3.1 Revisit of Helper-aided Lossy Networks

Fact: I(X; U) - I(Y; U) =  I(X; U|Y) can be understood as:

- Y is training sequence for Machine Learning,
- Y is training sequence, maybe followed by online observation, used for the knowledge 

updating of 1st and 2nd order statistics, pdf and Markov dynamics, in Semantic 
Communications.
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3.2 Distributed Hypothesis Testing (DHT)

Landmark Builders for Hypothesis Testing (HT): Neyman-Pearson

Information Theoretic formulation of HT: 
Basically, HT is a Code Design problem: 
Design f(n) and g(n) such that 
Minimize Type II Error Probability n subject to 
Type I Error Probability 𝑛

U

Note: Tradeoff: n    , n

Note further:  Decoder does NOT have to really “decode” to obtain U”.
e.g., by Syndrome check only.

H0: X ~ P0,X                          

H1: X ~ P1,X

under constraint the rate R being given.

f(n) g(n) 

Hypothesis Testing HT



87

With R=1.0, the decision problem boils down to traditional 
Nyman Pearson test using Likelihood: 

Nyman Pearson Test

P0

P1
H0: X ~ P0,X          H1: X ~ P1,XX, and ,

Unconstrained 
R

n   and n are given by 

with

Note: Tradeoff n    , n      still holds with the threshold T.



The objective is that minimize n, subject to 𝑛 .  Tradeoff: n    , n   

.

Decoder g(n) does NOT have to really “decode” to obtain U, 
because the objective is to make a decision under the constraint on rate R.

U

Ismaila Salihou Adamou, Elsa Dupraz1, Amin Zribi1, and Tad Matsumoto, “Error-Exponent of Distributed Hypothesis Testing for Gilbert-Elliot 
Source Models”, to be published, Proc of IEEE ISTC 2023, Brest

Distributed Hypothesis Testing, DHT
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(1) In the same way as HT, again, a DHT problem is a Code Design problem: 
Design f(n) and g(n) such that 

Minimize Type II Error Probability n subject to 
Type I Error Probability 𝑛

U

under constraint on the rate R given.

f(n) g(n) 

DHT Problems:

(2) Find Type-II Error Exponent 
Subject to

and



DHT: Type-II Error Exponent 

It has already been known that:

with the binning-error part being:

and

being Wyner Ziv R(D) function!  The DHT Problem (1) boils down 
to WZ Coding Problem, because UXY forms a Markov Chain.
So far up to this point, formulations are generic, and hence distributions are not 
specified.

We rewrite the binning-error part:

with
min {                                } = min I(X; U| Y} ---(1)

binning-error testing -error



Binary DHT against Independence

X and Y are independent when p1=1/2.

Type-I error and Type-II error:

Objective: Minimize Type II Error Probability n subject to Type I Error 
Probability 𝑛 under constraint on the rate R given.

Y’s view: 
X and Y Correlated

Y’s view: 
X and Y Independent

H0: Correlated=Dangerous!

H1: Independent=Safe!

X’s view

Sensor X

Sensor Y

Decision 
Center

Wireless Link

Rate R
H0/H1



Binary DHT: Recent Results

- Compression of X by Short Linear Block Code
- Y is not compressed.
- Nayman-Pearson Test

Encoding:

Neyman Pearson Test:

t is the threshold that determines the n and the n values.  



School of Information Science

English Letters Appearence Probabilities

Copied from:

P(x, y)

3.3 Semantic Communications



School of Information Science

Conditioned English Letter Appearance 

If we can evaluate conditional probabilities p(xi|xi-1), p(xi|xi-1, xi-2), …, 
p(xi|xi-1, xi-2, …, xi-n), empirically or theoretically and create a Markov 
model of the letter appearances, we can reduce the rate required to 
encode English. 

Shannon’s landmark paper presents artificially created English sentences!

Using empirical 
knowledge p(xi)

p(xi|xi-1)

p(xi|xi-1, xi-2)



School of Information Science

Using empirical 
knowledge of 
p(xi|xi-1, xi-2 , xi-3)

p(wi|wi-1, wi-2)

Using empirical 
knowledge of the 
word appearance
probability p(wi)

With the 4th order model, Shannon showed that 2.8 bits are enough to 
express one English letter! 

Higher-order Conditioning: 
Letter and Word Levels



Adaptive Morse Code

- The higher the appearance probability, the 
shorter the code length, following the Huffman 
coding rule. 

- However, the appearance probabilities should 
change according to the sources, such as 
Book, Video, File type, …., situation, person,
… Semantic Dependency.

- Joint Source and Channel Coding and 
Adaptive, to exploit higher order Markov 
Memory Structure and error correction, 
depending on “Semantics” Learning 
needed to construct Corpus for Natural 
Language Processing!

Semantic Communications



Decoder

Decision 
Making 
System

knowledge
Update

of Statistics

Encoder

Knowledge
sharing

Knowledge updating for Semantic Communications: 
a WZ Problem

Y

X U
R

Remembering Martin Luther King Jr. | Tory Daily (toryburch.jp)

“I have a dream! …..”

By Martin Ruther King Jr.

(2)

(m)

f(n)(X) g (n)(f(n)(X), Y)“I h??e a ?r?am! …..”

Codebook

Share the updated knowledge 
of  pdf, dynamics, …. Share
the updated knowledge of  pdf, 
dynamics, …., representing 
“Personality”.



Decoder

Decision 
Making 
System

knowledge
Update

of Statistics

Encoder

Knowledge
sharing

Updating the knowledge to 
under the rate R given, so that:

Share the updated knowledge of  
pdf, dynamics, …., representing 
“Personality”.

Knowledge updating for Semantic Communications: 
a WZ Problem

Y

X U

Min I(X; U) - I(Y; U) =  Min I(X; U|Y) 

R

Remembering Martin Luther King Jr. | Tory Daily (toryburch.jp)

“I have a dream! …..”

By Martin Ruther King Jr.

(2)

(m)

f(n)(X) g (n)(f(n)(X), Y)

H0|H1

“I h??e a ?r?am! …..”

n, minimized subject to 𝑛

Codebook

n, minimized subject 
to 𝑛



IEEE VTS Magazine Volume 18, No. 1, pp. 100-109



Semantic Forward

We know already (see Lossless Relaying)

With Semantic encoder and decoder,

V reduces the required rate Compression



Semantic Forward



…

Decoder

Decision 
Making 
System

knowledge
Update

of Statistics

Encoder

Knowledge
sharing

Codebook

3.4 Training Process in Machine Learning

Updating the knowledge to 
minimize the rate R so that:

Share the updated 
knowledge of  pdf, dynamics

Min I(X; U) - I(Y; U) =  Min I(X; U|Y) 

n, minimized subject to 𝑛

U
R

f(n)(X) g (n)(f(n)(X), Y)



X corresponding to the Current Observation, U to the Lossy Reconstruction, 
and Y to Data Set for the Learning of Probability Distribution for knowledge updating 
followed by Codebook generation!

Y=(Y1,Y2, ….. , Yn)

R(D)=min{I(X; U) - I(U; Y1,Y2, ….. , Yn)}=min I(X;U| Y1,Y2, ….. , Yn)

…

Decision 
Making 
System
DHT

Knowledge
Update

of Statistics

X
U

Y1

Y2

Yn

Codebook

Learning, in the WZ framework

Question: 
Independent Data or 
Correlated Data for

Learning?



(2) Y is NOT fully covered.  
Yi are overlapping.

Decision on the observation X= being  correct or incorrect  

depends on the generated learning data by (1) or (2).  

Y1Y2

Yn

Y1
Y2

Yn

Probability Space Y

Learning in the WZ framework: Open Questions

(1) Y is fully covered by 
sub-probability space Yi

without overlapping.



Ergodic vs. Instantaneous

(1) is suitable when decision is Ergodic (time average).
Learning requires Large size of training data.  Suitable for pre-training, 

such as ML. 
(2) is suitable when decision is Instantaneous.  Learning data may require only partial data.
 Suitable for online-training by introducing a forgetting factor. 

A similarity to Information Bottleneck!



Connection to Information Bottleneck



Information Bottleneck as a classification problem

What is happening 
in the Organ/Tissue

What we observe

Compressed data including 
as much information Y as possible 

while minimizing the rate.

Reconstructed 
information  
Y, NOT X,

But it may be Lossy

encoder decoder

This term can not be ZERO because X has some information about Y.

Balancing factor

The encoder and decoder need to have some medical factor.  The roles can be performed by DNN. 
They need “training”.

Medical Data Analysis: an Example



Information Bottleneck: 
Formulation under WZ Framework!

with UXY and Lagrange Multiplier.

U

We can use some optimization tools.



ITW 2024 Category



Any Questions?

My SISU Continues.
Thank you!

See you soon again somewhere in the world!

Do they meet 
in 6G Networks?


