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Abstract—This letter proposes a novel anti-interference tech-
nique, semantic interference cancellation (SemantIC), for en-
hancing information quality towards the sixth-generation (6G)
wireless networks. SemantIC only requires the receiver to con-
catenate the channel decoder with a semantic auto-encoder.
This constructs a turbo loop which iteratively and alternately
eliminates noise in the signal domain and the semantic domain.
From the viewpoint of network information theory, the neural
network of the semantic auto-encoder stores side information by
training, and provides side information in iterative decoding, as
an implementation of the Wyner-Ziv theorem. Simulation results
verify the performance improvement by SemantIC without extra
channel resource cost.

Index Terms—Semantic interference cancellation, Wyner-Ziv
theorem, anti-interference, side information, turbo principle.

I. INTRODUCTION

How to implement the Wyner-Ziv theorem [1] in practical
coding design? Academia and industry have struggled with this
question for several decades, although the Wyner-Ziv theorem
provides a prospect to enhance the information quality by
providing side information at the decoder only. The challenge
of practical implementation is to find a method to manage side
information.

Thanks to recent development of semantic communications
[2], which is a promising technological basis for the oncoming
sixth-generation (6G) wireless networks [3], we can obtain
the solution to representing side information by semantic
neural networks. In semantic communications, the semantic
encoder extracts and transmits the semantic information, i.e.,
the feature of the original information. Then, the receiver
generates and reconstructs the original information from the
semantic information by the semantic decoder [4]. By this
means, the payload transmitted through the channel can be
significantly reduced. From the viewpoint of network infor-
mation theory, the semantic encoder/decoder pair learns and
shares the same side information by joint training. Hence,
when separately deploying the semantic encoder and decoder,
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Fig. 1. The system model from the viewpoint of network information theory.
X™, Y™ and X" stand for the source information, the side information and
the reconstructed information, respectively, with the sequence length of n. M
is the codeword satisfying the coding rate R.

the transmitter can compress the source information according
to side information, and the decoder can recover the source
information with the assistance of side information.

It is noticed that the function of semantic decoder can
be regarded as generative artificial intelligence (AI) [5], [6].
The diffusion model [7] is a generative Al method effective
for achieving super-resolution, which can be also regarded
as a process of eliminating noise. Particularly, in the reverse
diffusion process, noise is predicted by neural networks and
subtracted from the image. Therefore, generative Al implicitly
contains the capability for eliminating noise. Similarly, if
we train the semantic encoder and decoder by adding noise
between them, the semantic encoder and decoder will also
work better in denoising.

Inspired by the Wyner-Ziv theorem and semantic communi-
cations, this letter proposes a breakthrough technique, namely
semantic interference cancellation (SemantIC), to improve the
information quality by updating the receiver structure only.
The theoretical model of SemantIC is exactly the Wyner-Ziv
model as illustrated in Fig. 1, where the side information (in
practice, the knowledge of source) is learned by neural net-
works and stored in the form of the neural network parameters
at the decoder. The proposed SemantIC technique naturally
exploits the semantic information contained in the data, and
hence it well matches the feature of 6G which focuses more
on the semantic information of data.

In practical implementation, the SemantIC receiver concate-
nates a pair of semantic encoder/decoder with the channel de-
coder. The semantic encoder extracts the semantic information
of the channel decoder output. In this way, the noise and inter-
ference can be eliminated to a certain extent when extracting
information features. From the viewpoint of machine learning,
the concatenated semantic encoder/decoder pair constructs an
auto-encoder [8], [9], which has also been verified to be able
to eliminate noise [10]. Subsequently, based on the denoised
information features, the semantic decoder reconstructs the
original information to input into the channel decoder as the



a priori information for the next round of iterative decoding.
Note that the channel decoder concatenated with the seman-
tic auto-encoder composes a turbo loop. Owing to the turbo
principle [11], the decoding gain is alternately enhanced by the
channel decoder and the semantic auto-encoder. Furthermore,
since the side information is introduced into the turbo loop by
the semantic auto-encoder, the final decoding output contains
more information and hence achieves a higher quality. The
contributions of this letter is summarized as follows.

« We propose a novel anti-interference technique, i.e., Se-
mantIC, which can improve the recovered information
quality without extra cost of channel resources.

o We design an iterative decoding algorithm for image
transmissions with SemantIC by constructing a turbo loop
concatenating the channel decoder and the semantic auto-
encoder, which alternately eliminates noise in the signal
domain and the semantic domain.

o Simulation results show that the system with SemantIC
has a better performance in terms of bit error rate (BER),
Euclidean distance (ED), and peak signal-to-noise ratio
(PSNR), even with a very light neural network (42.1 kB).

II. SEMANTIC INTERFERENCE CANCELLATION PRINCIPLE
A. Theoretical Basis

The theoretical basis of SemantIC is the Wyner-Ziv theorem.
As illustrated in Fig. 1, the Wyner-Ziv system is required to
transmit a source sequence X" under the rate constraint .
Therefore, an encoder compresses the source sequence X"
into a codeword M before transmission. Then, at the decoder,
the noncausal side information sequence Y™ is available to
help better reconstruct the source sequence. The recovery
Xn may be lossy if both the channel capacity and the side
information is insufficient. Mathematically, the link rate R
should satisfy the rate-distortion function given a distortion
requirement D, well known as the Wyner-Ziv theorem:

R(D) z I(X; U[Y), (1

where U represents the compress information of X.
In practical systems, the mutual information gain provided
by the knowledge base can be mathematically evaluated as

Tyain = 1(X; Xs) — I(X; Xc), )

where X is the information recovered with the help of the
semantic auto-encoder, and Xc is the information indepen-
dently recovered by the channel decoder only. Both I(X; X s)
and I(X; X¢) can be calculated from the mutual information
between the transmitted and the recovered information.

Although Wyner and Ziv have presented a coding scheme in
the proof of the rate-distortion function in (1), their proposed
algorithm requires the sequence length tends to co. Moreover,
since their coding scheme utilizes a random codebook, it
requires a huge memory to store the codebook, and the
encoding/decoding process is of very high time-complexity
due to exhaustive search over the random codebook.

To implement the Wyner-Ziv theorem in practical systems,
we have to solve many tricky problems including how to
obtain, store and represent side information, as well as how to
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Fig. 2. The structure of SemantIC system.

exploit side information in decoding without using a random
codebook. We find that neural networks can automatically
learn the knowledge about the source by training, which is
essentially the same as obtaining, storing and representing side
information. It is also noticed that the side information stored
in the form of neural network parameters is noncausal, which
satisfies the condition of the Wyner-Ziv theorem. Now, we
need to find the last piece of the puzzle, i.e., decoding with
the side information stored in neural networks.

B. Decoder Structure

To provide side information by neural networks for decod-
ing, we need to design the decoder structure. Therefore, we
propose the structure of the SemantIC system in Fig. 2, where
the transmitter has a general structure without constraint. At
the receiver, the channel decoder F¢(-) processes the a priori
log-likelihood ratio (LLR) to output the a posteriori LLR as

LLR? = Fo(LLR®). 3)

The SemantIC decoder contains two key elements as follows.

1) Auto-Encoder: The auto-encoder is a neural network
having the function to extract information features and then
recover information from features. By this method, the se-
mantic noise is filtered by the neural network. In the SemantIC
system, the receiver utilizes a semantic auto-encoder, consists
of a pair of semantic encoder/decoder, to eliminate the interfer-
ence and noise contained in the channel decoder output. This
process is referred to as denoising in the semantic domain.

2) Turbo Loop: To enhance the decoding gain, the structure
of iterative decoding is necessary. Therefore, we connect the
output of the semantic auto-encoder Fg(-) back to the channel
decoder F¢(-) as the a priori information.

LLR" = Fg(LLRP). “4)

The structure of (3) and (4) composes a turbo loop for
eliminating noise and interference in the signal domain and
the semantic domain alternately. The semantic auto-encoder
performs semantic denoising from the input LLRP, and then
output LLR® to the channel decoder for denoising of signals
in the following iteration round of decoding.

Based on the semantic auto-encoder and the turbo loop,
the SemantIC system can further improve the reconstructed
information quality without any change outside the receiver.
The turbo loop reduces noise at the cost of introducing extra
latency in each round of iterations by the semantic auto-
encoder depending on the complexity of the neural networks.
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Fig. 3. A simple structure of semantic encoder/decoder.

III. DECODER IMPLEMENTATION DESIGN

In order to evaluate the performance of the SemantIC sys-
tem, we design a decoding algorithm for image transmission
simulations. Since the semantic encoder/decoder requires a
dataset for training, we select the CIFAR-10 dataset [12] for
performance evaluation. The CIFAR-10 dataset comprises a
collection of 60,000 pictures, consisting of 50,000 training
images and an additional set of 10,000 images specifically
designed for testing purposes. The image size is scaled to
3 x 96 x 96, i.e., 3 color channels, and 96 pixels in both
width and height.

As depicted in Fig. 3, we concatenate two-dimensional (2D)
convolutional layers (Conv2Ds) as the semantic encoder, and
2D transpose convolutional layers (TranConv2Ds) are con-
catenated to be the semantic decoder. Let {np, (wk,hk), s}
specify the parameters of Conv2D and TranConv2D, with
np denoting the number of filters, (wg,hk) denoting the
kernel size, and s denoting the stride. The parameters are
configured to gradually extract the semantic features with a
rate approximate to 0.3, i.e., the output size is 16 x 23 x 23. As
will be shown in the simulation results, even with such simple
semantic encoder/decoder structure, the SemantIC decoder is
effective with respect to improving information quality.

Our model is implemented using Pytorch, with training
conducted on the NVIDIA GeForce RTX 3060 Ti by the Adam
optimizer [13]. Compared to the 163 MB size of the CIFAR-
10 dataset, the file for storing the semantic auto-encoder
parameter only has a size of 42.1 kB.

Low-density parity-check (LDPC) codes [14] are selected
as the channel code, with the codeword length being 900.
The number of parity-check equations including a certain bit
is set at 2, and the number of bits in the same parity-check
equation is set at 3. The maximum iteration round is set at 7.
The information of each image is divide into groups to match
the LDPC codeword length for transmission. Since the LDPC
codes work for binary sequences, the image information in
the form of pixels is quantized into binary sequences before
inputting into the channel decoder. After channel decoding,
the output should also be dequantized back to pixels.

An example source code for the implementation of the
proposed SemantIC system is presented in [15].

IV. SIMULATION RESULTS

In this section, we conduct a comparative analysis between
the system with and without SemantIC by simulations. We
employ the BER, the ED, and the PSNR as evaluation metrics
to quantify the distortion between the original images X and
the reconstructed images X . Additionally, we set the learning
rate to 0.003, the batch size to 64, and the maximum training
epoch to 200.
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Fig. 4. The impact of SNR on BER, ED, and PSNR.

1) Anti-Interference Performance: As shown in Fig. 4, we
demonstrate the relationship between the BER, ED, PSNR and
SNR of the proposed method in an additive white Gaussian
noise (AWGN) channel. It is easy to observe from the figure
that the SemantIC system outperforms the system without
SemantIC in terms of lower BER and ED as well as higher
PSNR at different SNR values. It is observed that the BER
performance gain seems less visible than ED. This is because
the loss function for training the semantic auto-encoder is
designed based on ED instead of BER. Although the BER
performance seems to be very small, this performance gain
is obtained without extra channel resource cost, and the
SemantIC neural network has a very simple structure and with
a very small size of parameters. The system is expected to have
a better anti-interference performance, if the neural network
is sophisticatedly designed, e.g., introducing the attention
mechanism to enlarge receptive field, and/or utilizing the
diffusion model to predict the noise.

Particularly, SemantIC performs better in low SNR scenar-
ios. This can be attributed to the fact that higher-level semantic



features are more resilient to channel noise and fluctuations
compared to lower-level semantic features. By extracting high-
level semantic features through the semantic encoder/decoder,
SemantIC aids the channel decoder in recovering lost semantic
information during the physical channel transmission process,
thereby enhancing system robustness. Another factor for lower
gain by SemantIC is that LDPC codes have a strong capability
for enhancing decoding gain. Hence, when SNR is large,
LDPC codes have already significantly eliminated noise and
interference. Especially when SNR> 8 dB, the BER by
channel decoding only has reduced to 0 at the first round of
iteration. Therefore, no gain can be obtained for SNR> 8 dB.

2) Iterative Gain: Fig. 5 demonstrates the performance
gain achieved through iterative decoding without extra channel
resource cost. It is evident that as the number of itera-
tions increases, SemantIC consistently outperforms the method
without SemantIC, and the performance gap gradually be-
comes significant. This is because during the iterative decoding
process, the semantic auto-encoder can filter out noise and
interference to a certain extent and provide additional semantic
information through multiple interactions. This observation
verifies the effectiveness of the turbo loop in the SemantIC
decoder. Consequently, it effectively reduces error propagation
and enhances overall decoding performance. Moreover, the
performance converges fast at the fourth round of iteration.
This is due to the strong error correcting capability of LDPC
codes. Hence, practical systems can adopt early stopping
strategy to balance computational complexity with latency.
Interestingly, as SNR becomes larger, the BER performance
gain increases, while the performance gain of the ED and
PSNR decreases.

3) Visual Effect: For the comparison of visual effect, we
utilize the original image presented in Fig. 6(a) as an example,
and the semantic image is obtained by inputting the original
image to the semantic encoder concatenated with the semantic
decoder. Fig. 6 visualizes the results of image reconstruction
with and without SemantIC, subjectively verifying the fidelity
of semantic information. In Fig. 6, Iter, IC/nolC, Sem, ED
represent the iteration rounds, the image with/without inter-
ference cancellation, the image reconstructed by the semantic
decoder, and ED.

In Fig. 6(b), the method without SemantIC fails to clearly
depict the shape of the car window, whereas our approach
successfully recovers some details of the window from the
blurred original image. In Fig. 6(c), SemantIC enhances both
the visual quality and semantic information of the image.
Traditional algorithms often focus solely on visual quality,
neglecting the preservation of semantic information. However,
SemantIC simultaneously considers both image quality and
semantic information, rendering objects and scenes in the
image more realistic, recognizable, and comprehensible. If we
zoom-in and compare the image of IC/nolC with Iter= 7,
we can see that hot pixels within the yellow circle is less
for the IC case. The semantic image also gradually becomes
clearer as the iteration round increases. In Fig. 6(d), as channel
conditions improve, the reconstructed image becomes highly
realistic, making it difficult to discern from the original image.
Although the image quality is already very high without
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Fig. 6. Comparisons of the reconstructed image quality.

SemantIC, our approach can still further eliminate some noise.
For example, if we zoom-in the image with Iter= 7, we can

see that one hot pixel pointed by the yellow arrow is corrected.

V. CONCLUSION

This letter has proposed a breakthrough technique, referred
to as SemantIC, for anti-interference towards the 6G wireless
communications. The SemantIC decoder contains a turbo loop
consists of concatenated channel decoder and semantic auto-
encoder, which eliminate the noise and interference alternately
in signal domain and semantic domain. We have also designed
a decoding algorithm and implemented the SemantIC system
for image transmissions. The simulation results indicate that
the SemantIC system can enhance the reconstructed informa-
tion quality without extra cost of channel resources, although
we only utilize a very simple neural network structure. Even
with a very low SNR, the image recovered by SemantIC shows
a clearer object shape than that without SemantIC.
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