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Solid catalysts are crucial in industry for producing a diverse range of chemical compounds. However, their 

working mechanisms are complex, influenced by many variables across different spatial and temporal scales. This has 

prevented rational catalyst design based on researchers’ understanding; historically, most practical catalysts have been 

developed through empirical trials and errors, often accompanied by serendipitous discoveries. However, the traditional 

trial-and-error method of catalyst development is essentially ad hoc and cost intensive. In this thesis, I attempted to 

systematize catalyst discoveries based on a strategy of elemental substitution in a data-driven manner, aiming at 

establishing a reproducible and generalizable method for discovering high-performance catalysts. In doing so, a catalyst 

dataset featured with both high quality and high quantity was essential. A dataset for oxidative coupling of methane, 

previously acquired by us through high-throughput experimentation, was adopted as a training dataset [1]. The same 

experimental system was also used to validate concepts for individual chapters. 

In Chapter 2, combinatorial rules for superior methane conversion under mild conditions and those for 

suppressing deep oxidation under severe conditions were extracted from the training data. These rules were successfully 

combined to design novel OCM catalysts. Key findings include temperature-dependent catalyst design guidelines, the 

importance of support properties, and the effectiveness of mixed supports like La2O3 and BaO. This chapter validated the 

effectiveness of catalyst design based on combinations of catalyst components.  

In Chapter 3, to systematize catalyst discovery based on component combinations, an adaptive sampling loop 

has been designed with implementing a catalyst recommender system which can estimate catalyst performance through 

the substitution of component combinations. The system is based on the evidence theory, a mathematical framework to 

quantify the certainty of a hypothesis by combining multiple pieces of evidence and capable of managing uncertainties. 

It recommends catalysts according to the degree of belief that the catalyst is good or uncertain, which is equal to 

controlling the exploration/exploitation trade-off. The adaptive sampling led to the discovery of various high-performing 

catalysts. Moreover, by finding discernible patterns within serendipitous catalysts (unexpectedly high-performing 

catalysts), a catalyst serendipiter system was developed. The serendipiter system was designed to predict the occurrence 

of serendipity based on catalyst compositions and prediction outcomes from various classifiers, working in tandem with 

the recommender system. The system was exploited to induce serendipitous catalysts.  

In Chapter 4, a method to visually extract the combinatorial knowledge for catalyst design from a set of data 

with different backgrounds was introduced based on a phylogenetic tree. The developed method was not only able to 

visualize the history of catalyst development in OCM, but also clarified a significant contribution of my research (Chapters 

2 and 3) to widen the scope of high-performing catalysts. Moreover, these visualizations highlighted that each catalyst 

system follows different rules of elemental combinations to achieve good performance. The insights gained from this 

analysis were exploited to design promising mixed oxide-based catalysts, a category that has been relatively 

underexplored in the history of OCM catalyst development.  

 

In this thesis, systematic and efficient methods for data-driven catalyst discovery based on combinatorial rules 

have been developed. Due to the un-necessity of specific descriptors, the methods are generally applicable to other 

catalysis, and any cases where materials are developed from combinations of components. 

[1] T. N. Nguyen, S. Nakanowatari, T. P. N. Tran, A. Thakur, L. Takahashi, K. Takahashi, T. Taniike. ACS Catal., 

2021, 11, 3, 1797–1809. 

Keywords: Catalyst informatics, Catalyst discovery, Combinatorial rule, Substitution of component combination, 

Oxidative coupling of methane   
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Preface 

The present thesis is submitted for the Degree of Doctor of Philosophy at 

Japan Advanced Institute of Science and Technology, Japan. The thesis is 

consolidation of results of the research work on the topic “Catalyst Informatics 

Based on Element Substitution Strategies for Systematic Catalyst Development” 

under the supervision of Prof. Toshiaki Taniike during April 2021– March 2024 at 

Graduate School of Advanced Science and Technology, Japan Advanced Institute 

of Science and Technology. 

Chapter 1 describes a general introduction and the purpose of this thesis.  

Chapter 2 focuses on the selection and combination of supported elements and 

supports to enhance catalyst selectivity at high temperatures and activity at low 

temperatures. In Chapter 3, a catalyst recommender system which can balance 

exploration/exploitation trade-off using evidence theory was developed for 

estimating the performance of catalysts through elemental substitution and a 

serendipiter system for unexpected discoveries, both working together to enhance 

catalyst development by combining performance prediction and serendipitous 

findings. In Chapter 4, I developed a method to visualize historical catalyst data 

using a phylogenetic tree to discern the history of catalyst development, highlighting 

underexplored combinations and aiding the design of new catalysts through 

horizontal propagation strategies. Chapter 5 describes the summary and general 

conclusion of this thesis. 

The work is original and no part of this thesis has been plagiarized.  

 

Sunao Nakanowatari 

Graduate School of Advanced Science and Technology 
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Chapter 1 

General introduction



6 

 

1.1. Development of solid catalysts 

Solid catalysts are substances that control rates of chemical reactions without 

their being explicitly consumed. Their ability to efficiently transform large amounts of 

compounds with minimal quantities makes them vital to modern industry[1]. In many 

catalytic reactions, multiple products are formed. Usually, the most thermodynamically 

stable product is favored when the reaction is hastened. However, there are instances 

where the desired product is not the most stable one[2,3]. In these cases, catalysts are 

crucial for quickly activating the starting material while also slowing down the 

formation of the most stable product, allowing the less stable product to form[1]. 

Developing solid catalysts involves numerous challenges. These catalysts work 

through complex interactions between solid surfaces and reactants, making it difficult 

to fully understand and predict their behavior[4–7]. The surface properties, defects, and 

morphology of the catalyst have a significant impact on the efficiency of the reaction, 

requiring precise design for optimal performance[8,9]. Choosing the right materials and 

creating them is another major obstacle. With a wide range of potential materials like 

metals, metal oxides, zeolites, and metal-organic frameworks, finding the perfect match 

for specific requirements is challenging. Solid catalysts are further complicated by 

combinatorial or synergistic effects between their components[10–12]. The impact of 

combining multiple elements on catalysts is varied and largely unpredictable. This 

includes instances where specific structures are formed through the combination of 

certain elements, or cases where certain elements play a key role in stabilizing specific 

structures. Additionally, solid catalysts can undergo surface changes over time, which 

can degrade their performance. This degradation can be due to factors like carbide 

formation, contamination by harmful substances, or damage from thermal cycles. This 

dynamic property is a major obstacle to understanding catalysis[13]. Another key 
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challenge is enhancing the selectivity of reactions. In cases where multiple products 

come from a single starting material, it is crucial to precisely control the reaction 

pathways to obtain the desired product. This requires sophisticated technology to 

accurately adjust the catalyst's surface chemistry. Furthermore, optimizing the 

conditions of the reaction, such as temperature, pressure, and the concentration of 

reactants, is essential for activating the catalyst. Finding these optimal conditions often 

requires extensive experimentation and time[14,15]. 

Catalyst development can be divided into two main approaches: the knowledge-

based approach and the Edisonian approach. The knowledge-based approach aims to 

deeply understand catalysis and design catalysts based on the understanding[16–18]. It 

involves extensive studies of simplified model catalysts through in situ and kinetic 

analyses, and the obtained insights are used to design catalysts for specific performance 

targets. However, this approach has limitations, as insights from simpler systems may 

not always apply accurately to more complex ones. The complexity in real-world 

catalytic systems, often intensified by the synergistic effect and other unexpected things, 

can significantly diverge from these simpler models[10–12]. On the other hand, the 

Edisonian approach relies on trials and errors, focusing on practical optimization by 

testing different compositions and combinations of elements. This method is widely 

used in the industry today. Its advantage is that complex solid catalysts can be processed 

in their complexity. However, unlike the knowledge-based approach, the insights 

gained during the catalyst development process are not readily shared among 

researchers. The accumulation of such tacit knowledge is leading to a lack of collective 

knowledge building in the field. As a result, the Edisonian approach does not establish 

a foundation for future development with leaving no unified framework for catalyst 
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design. Therefore, there is an increasing need for a new catalyst development approach 

that combines the advantages of both the knowledge-based and Edisonian approaches. 

 

1.2. Oxidative coupling of methane 

1.2.1. Fundamentals 

The shale gas revolution has substantially increased global natural gas 

reserves[19]. Methane, the main component of natural gas, is a crucial source for 

producing fuels and chemicals[20]. However, these natural gas reserves are often found 

in remote areas, making methane transportation economically unfeasible. As a result, 

methane that cannot be converted on-site into more easily transportable hydrocarbons 

and chemicals is frequently burned off as the fuel. This process releases greenhouse 

gases, primarily CO and CO2, into the atmosphere[2]. Therefore, there is an urgent need 

to develop efficient technologies for upgrading methane. These technologies would 

enable the economical use of natural gas and help make the petroleum industry more 

environmentally friendly. This necessity has reignited interest in exploring catalytic 

methods and new reactor designs for methane upgrading. 

Industrial conversion of methane usually follows an indirect route, where 

methane is first converted into syngas which is a mixture of carbon monoxide and 

hydrogen[2]. This process begins with methane reforming into syngas, which is 

subsequently used to produce olefins, petrol, diesel, or oxygenates through Fischer-

Tropsch synthesis. However, this indirect route has several drawbacks. Firstly, methane 

reforming is highly energy-intensive, requiring high temperatures and pressures (900-

1200 K; 15-40 atm)[21]. Additionally, the hydrogen needed for this process is often 

supplied from naphtha cracking, which releases a significant amount of CO2. There are 
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also operational challenges, such as the formation of carbonaceous deposits and 

sintering, that lead to the deactivation of catalysts[21]. 

Direct methods for converting methane present more cost-effective and simpler 

alternatives compared to the indirect syngas route[22]. These involves non-oxidative 

processes such as methane to olefins, aromatics, and hydrogen (MTOAH), and methane 

dehydrogenation (MDA), and oxidative processes such as oxidative coupling of 

methane (OCM). In particular, OCM directly converts methane into ethane and 

ethylene, the latter being an essential precursor for a variety of chemicals and 

polymers[23,24]. Although the potential of the OCM process has been recognized since 

its discovery in 1982 as a way to supply raw materials to the chemical industry and 

reduce dependence on crude oil, its industrial use is still limited. This limitation is due 

to challenges such as low selectivity and the formation of unwanted deep oxidation 

byproducts (COx), which are thermodynamically more favored than C2 

hydrocarbons[25,26]. Possible reactions that can occur during the OCM process are 

outlined in Table 1.1[27]. 

 

Table 1.1. Possible reactions that can occur during the oxidative coupling of methane 

process [27]. 
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Among the potential reactions, reactions (2) and (5) are the targeted, desired 

reactions. These reactions are characterized by negative ΔH values, indicating that they 

are exothermic and can proceed easily under mild reaction conditions. However, there 

is a challenge posed by competing reactions, specifically reactions (1) and (8). The ΔH 

values for these competing reactions are three to four times more negative than those 

for reactions (2) and (5), making them more thermodynamically favorable, thus leading 

to the formation of deep oxidation products like CO and CO2. This tendency towards 

the formation of COx reduces the selectivity for the desired C2 hydrocarbons in the 

process. 

The initial step in the relevant reactions, methane activation, involves breaking 

C-H bonds to remove one hydrogen atom. The methane molecule is highly stable due 

to its strong (with a first bond dissociation energy of 439.3 kJ/mol) and weakly 

polarized (2.84 × 10-40 C2 m2 J-1) C-H bonds[28]. This stability is attributed to the 

molecule's geometry, where the central carbon atom is tetrahedrally coordinated to four 

hydrogen atoms with the C-H bond length of 1.090 Å, and the H-C-H angle of 
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109.47 °[29]. With this symmetry methane has no dipole moment, making it resistant 

to nucleophilic and electrophilic attacks [29]. 

This high stability of methane's C-H bond, combined with the energetic favorability of 

forming COx compounds, is a significant barrier to adopting the OCM process in 

industry. Techno-economic analyses indicate that for an OCM process targeting C2 

hydrocarbons to be economically viable, it would need a single-pass yield of 25-

30%[30]. Despite extensive research since its discovery in 1982, this techno-economic 

target is not achieved[22]. 

1.2.2. Catalysts for OCM 

OCM requires high temperatures ranging from 973 to 1123 K and oxidizing 

agents to break the strong C-H bonds in methane. However, COx compounds are 

thermodynamically favored and form more rapidly than ethylene and other C2 

hydrocarbons. Therefore, the principal challenge in developing OCM catalysts lies in 

effectively activating methane while minimizing the subsequent combustion reaction 

that produces COx. There are several well-studied OCM catalysts in the 40-year history 

of OCM. They are briefly discussed hereafter. 

1.2.2.1.Alkaline earth oxide-based catalysts 

In the early 1990s, alkaline earth metal oxides were evaluated as potential 

catalysts for the OCM reaction. It was discovered that the C2+ selectivity of these oxides 

increased with their basicity, in the order of BeO < MgO < CaO < SrO. Among them, 

MgO-based catalysts, particularly Li/MgO (MgO doped with Li), have received great 

attention. Catalysts with 3 wt.% Li added to MgO exhibited an initial methane 

conversion and C2+ selectivity of 30% and 62%, respectively, at 780 °C[31], as 

compared to 23% conversion and 43% selectivity achieved by pure MgO at the same 
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temperature. However, Li/MgO catalysts exhibited a drawback in maintaining catalytic 

stability during the reaction, as Li atoms tended to sublimate under the operational 

conditions[32,33]. 

1.2.2.2.Rare earth oxide-based catalysts 

La2O3-based catalysts demonstrate superior catalytic activity and stability in 

OCM reactions at low temperatures[34–37]. Recent studies involving doped and 

undoped lanthanide catalysts have indicated that Sr-doped La2O3 is the most promising 

rare earth oxide-based catalyst for OCM[7,38,39]. The catalytic performance of rare-

earth oxide-based catalysts is linked to the strength of the surface basicity, similar to 

that observed with alkaline earth oxide-based catalysts, where lanthanum exhibits the 

highest basicity[40].  

1.2.2.3.Mn-Na2WO4/SiO2 catalyst 

Mn-Na2WO4/SiO2 is known for its high C2 production and high thermal stability, 

being regarded as a kind of benchmarking catalysts in the community. The structure of 

this catalyst remains a subject of debate due to the co-presence of Mn2O3, MnWO4, 

Na2WO4, MnO2, and various Na-W oxides[27,41]. A variety of species such as 

distorted WO4
2-, α-cristobalite SiO2-stabilized WO4

2-, and so on were previously 

posited as a potential active site of this catalyst. But these proposals were based on 

characterization conducted at room temperature[42–45]. Recent advancements in in-

situ and operando techniques have revealed that most of structures previously believed 

actually melt at the high temperatures of the reaction, allowing only the presence of a 

β-cristobalite structure [46]. What remains clear is the catalyst's synergistic effect: the 

removal of any component significantly reduces its performance[41,47]. This 

observation underscores the complexity and fascination of solid-state catalysis. The 
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Mn-Na2WO4/SiO2 catalyst, with its intricate structure and performance characteristics, 

continues to be a subject of intense interest and study in the field of OCM. 

 

1.3. Machine learning 

1.3.1. Fundamentals 

Machine learning (ML) is a field of artificial intelligence that focuses on 

creating systems that can learn from and make decisions based on data. It includes 

various types of learning, such as supervised, unsupervised, and reinforcement learning, 

each suitable for different kinds of tasks. ML is used in numerous applications like 

speech recognition, medical diagnosis, and self-driving cars, employing algorithms like 

decision trees and neural networks. Assessing the accuracy and reliability of the 

obtained models is crucial, where accuracy validation methods come into play. 

Accuracy validation methods in ML evaluate a model's performance, ensuring 

its reliability and effectiveness on unseen data. Popular methods include cross-

validation, where the data is divided into subsets to train and test the model multiple 

times; train/test split, which separates the data into training and testing sets; and the use 

of a confusion matrix to understand classification performance. Metrics like precision, 

recall, and the receiver operating characteristic (ROC) curve help in assessing aspects 

beyond mere accuracy, especially in contexts where data imbalance might skew simple 

accuracy metrics. These methods are essential in guiding the development of robust 

ML models, addressing challenges like overfitting and ensuring that models perform 

well across diverse scenarios. Here, several machine learning methods and algorithms 

are explained.  
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1.3.2. Evidence theory 

Dempster-Shafer Theory, also known as the Theory of Evidence, is a 

mathematical framework for modeling uncertainty and combining evidence from 

different sources[48]. It has evolved around the concept of Basic Belief Assignments 

(BBAs), which allocate belief mass to subsets of a frame of discernment (the set of all 

possible outcomes). The theory distinguishes between belief and plausibility functions: 

belief measures the minimum belief committed to a set, while plausibility reflects the 

maximum possible belief given current knowledge. A key feature of this theory is 

Dempster’s Rule of Combination, allowing the integration of independent pieces of 

evidence to update beliefs. Unlike Bayesian probability, Dempster-Shafer theory does 

not require prior probabilities for all hypotheses and allows for expressing uncertainty 

and ambiguity by assigning belief to sets of possibilities[49]. This makes it particularly 

useful in fields like artificial intelligence, decision making, and statistics, especially for 

decision support systems and applications involving incomplete or uncertain 

information. 

1.3.3. Logistic regression 

Logistic regression is a statistical method used primarily for binary 

classification tasks. It predicts the probability of an outcome that is categorically 

dichotomous – such as 'yes' or 'no', 'spam' or 'not spam'. The core of logistic regression 

is the logistic or sigmoid function, which maps any real-valued number into a value 

between 0 and 1, representing the probability of the dependent variable belonging to a 

certain class. This model computes the log odds of the probability as a linear 

combination of the independent variables and is particularly noted for its ease of 

interpretation and efficiency in classification tasks. While logistic regression is simple 

and fast, making it widely used in fields like medicine, finance, and marketing, it 
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assumes a linear response for the explanatory variables, which can be a limitation in 

complex scenarios where this linearity does not hold. 

1.3.4. Support vector machine 

Support vector machine (SVM) is a versatile supervised machine learning 

algorithm mainly used for classification and regression tasks. It excels in high-

dimensional spaces, identifying a hyperplane that maximally separates classes by 

maximizing the margin, the distance between the hyperplane and the nearest data points 

(support vectors) from each class. SVM is effective for both linear classification and, 

using the kernel trick, nonlinear classification, where it transforms data into a higher 

dimension for separability. This algorithm balances margin maximization and 

classification error through a regularization parameter, allowing for some 

misclassifications (soft margin). While SVMs are powerful in handling complex 

datasets and are memory efficient, they require careful parameter tuning and can be 

computationally demanding for very large datasets. They are widely used in 

applications like image and text classification, bioinformatics, and more. 

1.3.5. Random forest 

Random forest is a prime example of ensemble learning, a machine learning 

technique that combines the predictions of multiple models to achieve greater accuracy 

and robustness than separate models. In the case of random forest, it constructs a 

"forest" of decision trees, each trained on random subsets of the data. Ensemble learning 

in random forest is realized through a method called bootstrap aggregating or bagging, 

where each decision tree is built on a different subset of the data and considers a random 

subset of features at each split. This approach ensures diversity among the trees, 

enhancing the model's overall performance and reducing the risk of overfitting, a 

common problem in individual decision trees. Random forest excels in both 
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classification and regression tasks, handling large datasets with high dimensionality 

efficiently. It also provides insights into feature importance but can be computationally 

demanding and less interpretable due to its complexity. Ensemble learning, as 

demonstrated by random forest, is particularly effective in situations where a single 

model is insufficient to capture complex patterns in data, making it a widely used 

technique in various applications. 

1.3.6. Naïve Bayes 

Naive Bayes is a straightforward and efficient probabilistic machine learning 

algorithm based on Bayes' Theorem, with the key assumption that features in a dataset 

are independent of each other given the class label. This "naive" assumption of feature 

independence simplifies calculations, enabling the algorithm to perform well even 

when this condition is not strictly met. It calculates the conditional probability of each 

class given each feature and is commonly used in applications like spam filtering, text 

classification, and sentiment analysis. There are different variants of Naive Bayes, such 

as Gaussian, multinomial, and Bernoulli, each tailored to different data distributions. 

Despite its simplicity, Naive Bayes is known for its efficiency, requiring relatively little 

training data to estimate parameters. However, its reliance on the independence 

assumption can be a limitation in complex real-world scenarios where features are often 

interdependent. Overall, Naive Bayes is valued for its ease of implementation and 

effectiveness, particularly in scenarios with high-dimensional data. 

 

1.4. High-throughput experimentation 

The development of new materials, including catalysts, involves exploring 

unknown materials and improving known ones[50,51]. This process often requires a 
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balance between trial and error, with more complex materials needing more time for 

development. High-throughput experimentation (HTE) has emerged as an effective 

method to expedite this process. HTE integrates the parallel production of diverse 

material sets with advanced measurement techniques to evaluate their intrinsic and 

performance characteristics[52]. This ability to simultaneously test multiple parameters 

allows for easy comparison of results. However, having numerous experiments alone 

doesn't speed up research unless these experiments are thoughtfully chosen. This is 

where the Design of Experiments (DoE) plays a crucial role[50].  

The high-throughput or combinatorial approach in materials research was first 

demonstrated easily by Thomas A. Edison in 1878[50]. Edison's use of parallel and 

combinatorial methods led to the discovery that carbonized cotton yarn was an ideal 

material for light bulb filaments, a finding that revolutionized electric lighting. Later, 

massive high-throughput methods were primarily used in medicinal research, where 

their success was attributed to the relative simplicity of experimental manipulations 

required[53].  

In the late 1990s, the method was adopted in catalysis research, particularly for 

homogeneous catalysts, which are generally used in liquid-phase reactions, allowing 

for smaller-scale experiments[54,55]. On the other hand, for the heterogeneous 

catalysts, developments in heterogeneous catalysis have mainly occurred in industrial 

settings over the past 15 years. The preparation of the catalyst is a critical step in high-

throughput screening (HTS). Preparation time is essential for efficient HTS, with 

impregnation and precipitation being key methods for accelerating catalyst synthesis. 

These methods can be scaled up for miniaturization to handle numerous samples. 

Additionally, the use of synthetic robots has significantly enhanced the catalyst 

preparation process by automating it and reducing human error. Another important 
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aspect of high-throughput experimentation in catalysis is evaluating the catalysts, with 

spectroscopy now being the primary method for assessing HTS catalysts[56,57]. 

 

1.5. Catalysts informatics  

1.5.1. Fundamentals 

 

Figure 1.1. (0) A heterogeneous catalyst sample within catalyst space – containing 

catalysts with different composition, support type, and particle size – can be described 

by its (1) features within feature space, which is made up of electronic-structure 

properties, physical properties, and atomic properties. Machine learning can (2) build 

models or find descriptors that map the features describing the catalysts to their figures 

of merit. Reproduced from Ref.[58]. 

 

As shown in Figure 1.1, the final outputs of a catalyst, such as yield and 

selectivity, are determined by its physical properties, atomic properties, and electronic 

structure[58]. Additionally, these properties are shaped by various interacting factors, 

including the type and amount of the active metal, the promoter's type and quantity, the 

support type, and the methods used for preparation and pretreatment[59]. Subsequently, 

another dimension of variables, the process conditions such as temperature and pressure 

for the catalytic reaction to take place, is also added. Moreover, the non-linear nature 
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of catalytic performance, owing to unexpected synergistic effects, complicates the 

ability to directly influence outcomes during the catalyst preparation stage. As a result, 

achieving precise control and intentional design of catalysts is extremely 

challenging[11,12,60]. This complexity has led to the current reliance on empirical trial 

and error to develop most practical catalysts in industrial use[61,62]. 

Catalyst informatics is an initiative that aims to expedite catalyst development 

by applying data science and statistical methods to catalyst big data, which includes 

experimental, computational, and accumulated literature data[63,64]. In the initial 

stages of catalyst informatics, literature and computational data are often 

utilized[8,9,65–69]. However, machine learning analyses of literature data have 

indicated that such data exhibit low homogeneity, attributed to inconsistencies in data 

acquisition methods among different researchers and the reflection of historical trends 

in the field[70,71]. If possible, generating experimental data in-house is considered the 

most beneficial approach for catalyst informatics. 

1.5.2. Random catalyst dataset for OCM 

Catalyst informatics in OCM was pioneered in 2011 by Zavyalova et al. when 

catalytic reaction data appearing in the literature published from the discovery of OCM 

in 1982 to that point were compiled and statistical analyses performed on them[65]. A 

unified HTE framework was then developed by us in 2020[70]. We obtained bias-free 

catalyst big data of sufficient quality and quantity as training data for machine learning 

by this HTS system and random sampling from a predefined catalyst composition 

space[71]. Various catalysts have been developed by machine learning trained on this 

data[72–75], and the learners constructed in this thesis have all been trained on that 

data. This section describes in detail how it was obtained.  
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Figure 1.2. Illustration of the developed HTS system. Reproduced from ref.[71]. 

 

Figure 1.2 depicts the High-Throughput Screening (HTS) system developed in 

our previous study[70]. This system comprises several components: a mixed gas 

generator, a flow distributor, reaction tubes, an electric furnace, an auto-sampler, a 

quadrupole mass spectrometer (QMS), and an exhaust system. The gas generator mixes 

methane, oxygen, and argon in varying volumes, maintaining a total flow volume 

typically between 200 and 400 mL/min. The flow distributor which distribute the gas 

mixture into 20 reaction tubes is constructing with 20 capillaries. The reaction tubes, 

made of quartz with stepwise varying internal diameters, are designed to prevent gas-

phase reactions on the effluent side and are filled with a specific amount of catalyst 

powder on the part changing the diameter. These tubes are placed symmetrically in a 
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hollow electric furnace with three temperature zones, each controlled by a 

thermocouple and ceramic heater. The middle zone, where the catalyst beds are located, 

is stabilized by the other two zones. The effluent gas from the reaction tubes is directed 

to the auto-sampler connected to the QMS for analysis. The auto-sampling involves a 

programmed sequence of valve operations, allowing for precise gas sampling and 

analysis. The QMS records mass spectra of the effluent gas, identifying various gas 

species. The mass signal intensities are converted to relative pressures for individual 

gas species using external calibration. This allows for dealing with overlapping 

fragments by obtaining scaling factors for major fragments. The system's design 

enables full automation in evaluating the performance of 20 catalysts under pre-set 

reaction conditions. The consistency of results across the 20 channels was verified 

using a Mn-Na2WO4/SiO2 catalyst. 

The catalyst library was created by preparing 300 catalysts. The catalysts were 

expressed in the form of M1–M2–M3/Support. The three active elements (M1–M3) 

were chosen randomly from a group consisting of Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, 

Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, and an option 

for "none," with the possibility of selecting the same element more than once. These 

elements were paired with a support material, randomly picked from MgO, Al2O3, SiO2, 

CaO, TiO2, ZrO2, BaO, La2O3, and CeO2. It's important to note that CaO and BaO were 

derived from their respective hydroxides through calcination. The potential 

combinations of three elements (including "none") and nine supports lead to a total of 

36,540 possible catalysts. While the 300 chosen catalysts may not cover all significant 

trends in the entire parameter space, they ensure that each element and support is 

sampled at least 20 times. 
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The catalysts were prepared using a co-impregnation method. Each support (1.0 

g) was impregnated with 4–5 mL of a metal precursor solution at 50 °C for 6 hours. 

Following vacuum drying at 110 °C, the product was calcined at 1000 °C in the air for 

3 hours to yield the catalyst. When using water-sensitive metal alkoxides, impregnation 

was done sequentially, starting with an aqueous tungstate solution followed by an 

ethanol solution of the metal alkoxide. The catalysts were ground thoroughly before 

use. The loading of each element was standardized at 0.37 mmol per gram of support, 

with double the loading for repeated elements and no addition for "none." The catalysts 

were impregnated and processed as described, with twenty catalysts produced in a 

single experiment using a parallel hot stirrer and a centrifugal evaporator. 

The height of the catalyst bed was set at 10 mm, considering the gas hourly 

space velocity (GHSV) as a key factor in OCM[65]. Catalysts were first activated at 

1000 °C for 160 minutes under O2, then the temperature was gradually reduced from 

900 to 700 °C in steps. Catalysts were first activated at 1000 °C for 160 min under O2. 

Then, the temperature was stepwise decreased from 900 to 850, 800, 750, and 700 °C. 

At each temperature, the total flow volume (10, 15, 20 mL/min/channel, corresponding 

to the contact time of 0.75, 0.50, 0.38 s, respectively), the CH4/O2 ratio (2, 4, 6 mol/mol), 

and the Ar concentration (PAr = 0.15, 0.40, 0.70 atm) were stepwise varied. This 

resulted in 135 conditions per catalyst and a total of 2700 observations for 20 catalysts 

in a single automated operation. 

1.5.3. Catalyst informatics based on this dataset 

Several studies have utilized the random catalyst dataset for catalyst 

informatics research. They are outlined here. K. Takahashi et al. introduced a novel 

method for representing catalysts by defining 'catalytic genes' using data that includes 

by-products from catalytic reactions[73]. Utilizing 300 quaternary catalyst data, they 
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employed hierarchical clustering and natural language processing to identify similar 

catalysts based on edit distance. They also demonstrated the potential for designing 

new catalysts by altering these catalytic genes, with validation experiments conducted 

via high-throughput methods. L. Takahashi et al proposed a technique to leverage this 

extensive catalytic dataset for constructing an ontology-based catalytic knowledge 

network[74]. This network aims to represent the performance and properties of 

catalysts for OCM and to elucidate their interactions. By clarifying structural 

relationships within the catalyst data, this network provides valuable direction and 

insights for the design of new catalysts.  S. Nishimura et al.'s research focused on 

enhancing catalytic performance by adding Mn as a fourth element to the top ten 

three-element catalysts, selected based on their high C2 yield and selectivity [76]. 

Experimental results verified that adding Mn improved the C2 yield for several 

catalysts. Notably, the LiFeBa/La2O3 and LiBaLa/La2O3 catalysts with 5 wt% Mn 

showed significant performance enhancements. This study underscores the efficacy of 

machine learning in developing OCM catalysts. 

 

1.6. Adaptive sampling 

In the creation of new materials, the challenge of efficiently obtaining materials 

with desired properties through experimentation becomes more pronounced as the 

exploration space expands. This increase in complexity arises because, as previously 

mentioned, a larger search space not only multiplies the number of potential 

complementary materials but also compounds the intricacies of the materials 

themselves, complicating the establishment of reliable experimental guidelines. 

Conventionally, researchers have successfully developed desired materials through trial 

and error, based on accumulated experience in material development that enables them 
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to classify or regress materials against target properties, or occasionally by serendipity. 

Techniques such as adaptive sampling and black-box optimization are employed to 

codify the implicit knowledge about the input-output relationships of the target 

material—knowledge that is typically gained through iterative processes—using 

machine learning and statistical methods for an efficient and systematic exploration[64], 

[69]. This paper standardizes the terminology to "adaptive sampling." This approach 

facilitates research across vast material spaces, a feat that is challenging with traditional 

methods. However, machine learning, akin to human researchers, can exhibit prediction 

instability in data-sparse material spaces. Therefore, this instability in predictions is 

quantified as uncertainty, which reflects the extent to which a material is unknown and 

guides the selection of materials for further exploration. This is because, as mentioned 

in the section on HTE, material development has traditionally involved exploring 

uncharted materials and refining those already known. It is also recognized from a 

machine learning standpoint that balancing the predictive value with uncertainty—a 

concept known as the trade-off between exploration and exploitation—tends to yield 

optimal results[70]. The main algorithms employed in adaptive sampling include 

Bayesian optimization, best-arm identification, Monte Carlo tree search, and active 

learning[71–74]. 

If HTE is a strategy that increases the volume of hypothesis testing in iterative 

trials within the materials development process, then adaptive sampling enhances the 

quality of those tests. Utilizing both strategies in tandem can synergistically accelerate 

the pace of material discovery.  
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1.7. Objective 

Solid catalysts with complicated compositions embody a complexity due to the 

numerous variables that constitute their makeup. Given this complexity, theoretical or 

computational approaches are hardly applicable, leading to most practical catalysts 

having being developed through trials and errors. However, with the increasing 

demands on catalysts, it has become necessary to navigate a vast material space that the 

traditional trial-and-error method cannot sufficiently address due to resource 

constraints. This thesis aims at the extraction of catalyst design rules and the 

systematization of the catalyst discoveries  within the framework of catalyst informatics. 

For this, the OCM process, a catalytic reaction that has been a target of extensive trials 

and errors for more than 40 years with the goal of industrialization yet remains 

unrealized, was chosen as a case study. 

Chapter 2 examines a dataset from high-throughput experimentation to derive 

heuristics for catalyst design in OCM, balancing activation and selectivity. It finds a 

mixed La2O3 and BaO support enhances low-temperature activity and high-temperature 

selectivity for C2 compounds, with La2O3 boosting BaO's low-temperature performance. 

In Chapter 3, a pioneering catalyst recommender system employing elemental 

substitution and adaptive sampling predicts catalyst performance, with a novel 

'serendipiter' feature that strategically increases the discovery of serendipitous catalysts. 

Validated by high-throughput experiments, this approach led to identifying unique 

catalysts, showcasing the system's potential to harness serendipity systematically in 

catalyst development. 

In Chapter 4, I tackled solid catalyst design, employing phylogenetic trees to 

visualize catalyst evolution and guide design. This approach successfully identifies 
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high-performance catalysts, demonstrating the technique's value in catalyst 

development. 

Based on all of the above-explained researches and achievements, I believe the 

thesis made a substantial progress in the field of catalyst informatics.  
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Chapter 2 

Extraction of catalyst design heuristics 

from random catalyst dataset and their utilization 

in catalyst development for oxidative coupling of methane
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Abstract: In the oxidative coupling of methane (OCM), the activation of methane and 

the suppression of deep oxidation are in a persistent trade-off relationship, and a catalyst 

design strategy that balances the activity and the selectivity is desired. In this chapter, 

I analyzed a random catalyst dataset for OCM that was earlier obtained by high-

throughput experimentation, and extracted heuristics such as elements, supports, and 

their combinations related to methane activation at a low temperature and selective 

formation of C2 compounds at a high temperature. The obtained heuristics were used 

for catalyst development. The most effective was the use of a mixed support between 

La2O3 and BaO, which improved the low-temperature activity, the high-temperature 

selectivity, as well as the maximum C2 yield. It was considered that La2O3 acted as a 

heater and helped low-temperature operation of BaO, which is highly selective but not 

active at a low temperature.  

 

Keywords: Oxidative coupling of methane, catalyst informatics, high-throughput 

experimentation 
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2.1. Introduction 

In recent years, catalyst informatics has received a great deal of attention for its 

use in accelerated catalyst discoveries and mechanistic elucidation[1–5]. However, its 

implementation to literature data has been greatly restricted by the nature of the data 

itself[6,7]. An irreplaceable role of the Edisonian approach, which comes from 

difficulties to generalize combinatorial design of solid catalysts, has more or less biased 

exploration of catalytic materials to past discoveries. Another problem is related to the 

lack of standard processes for the evaluation of catalyst performances. The biased 

sampling and the process inconsistency in literature data have made the outcome of 

machine learning much less fruitful than expected[8–10].  

The oxidative coupling of methane (OCM) is a reaction that directly converts 

methane to ethane or ethylene without mediating syngas. Motivated by the expected 

shortage of petroleum and the abundance of natural gas, catalyst research has been 

continued over three decades[11–13]. However, few catalysts are known that can 

steadily achieve an C2 yield over 30% or even 25% in a fixed-bed reactor 

configuration[8,14,15]. A grand challenge lies in the fact that methane is chemically 

more stable than the C2 products against oxidation. Mild conditions (e.g. a lower 

temperature, a lower concentration of an oxidant) lead to insufficient activation of 

methane i.e. low conversion, while severe conditions promote mineralization of the C2 

products i.e. low selectivity. Thus, activation of methane at milder conditions and 

suppression of the secondary oxidation at severer conditions are important directions 

for catalyst development[16,17]. 

Recently, we have developed a high-throughput screening (HTS) instrument, 

which enables fully automated performance evaluation for 20 catalysts placed in 
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parallelized fixed-bed reactors at a predefined series of reaction conditions[18]. It 

allows an access to large, uniform, and process-consistent catalyst data in a realistic 

timeframe. Using this instrument, we created a bias-free catalyst dataset, where 300 

quaternary catalysts were randomly sampled from a huge material space and their OCM 

performances were acquired at 135 reaction conditions[19]. In our previous research, 

the best C2 yield data points were extracted for the individual catalysts from 135 

conditions, and the extracted data were used to learn combinatorial rules for improving 

the C2 yield as well as for predicting promising catalysts[19]. Here, the same dataset is 

further analyzed in terms of the activation of methane at milder conditions and the 

suppression of the secondary oxidation at severer conditions. The obtained heuristics 

are then employed to develop novel OCM catalysts. 
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2.2. Method 

2.2.1. Catalyst dataset 

The original dataset is a collection of OCM performance of 300 catalysts 

acquired at 135 conditions using the HTS instrument[18]. The catalysts are generally 

represented as M1–M2–M3/Support, consisting of three active elements (0.37 mmol 

for each) and a support (1.0 g). M1–M3 were randomly selected from either of Li, Na, 

Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, 

Tb, Hf, W, and none with repetitive selection allowed. The support was also randomly 

selected from either of MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, La2O3, and CeO2. 

Each of the elements and supports were selected at least 20 times in the 300 catalysts. 

The 135 conditions consist of combinations of 5 temperatures (700, 750, 800, 850, 

900 °C), 3 CH4/O2 ratios (2, 4, 6 mol/mol), 3 partial pressures of Ar as a carrier (0.15, 

0.40, 0.70 atm), and 3 total flow volumes (10, 15, 20 mL/min/channel). 

In the previous paper, the data points with the maximum C2 yield were extracted 

for each of the catalysts, and catalyst design for increasing the C2 yield regardless of 

the conditions was investigated. On the other hand, in this paper, four conditions were 

selected as representative conditions: (Temperature, CH4/O2 ratio) = (700 °C, 2 

mol/mol), (700 °C, 6 mol/mol), (900 °C, 2 mol/mol), (900 °C, 2 mol/mol). No limits 

were set on the partial pressure of Ar (PAr) and total flow volume (Q). Note that the 

reaction temperature and the CH4/O2 ratio are the most impactful parameters in 

OCM[18],[41]. By analyzing composition-performance relationships at each of these 

conditions, catalyst design for the activation of methane at milder conditions and the 

suppression of the secondary oxidation at severer conditions would be derived. 
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2.2.2. Validation experiments 

Based on heuristics obtained from the analysis, 20 catalysts were newly 

prepared and their OCM performances were evaluated. The methods and conditions for 

catalyst preparation and evaluation were exactly the same as those described in the 

previous paper[19].  

Briefly, catalysts were prepared based on an impregnation method. Support 

powder was impregnated with an aqueous or ethanol solution of metal precursors (0.37 

mmol for each of three active elements per unit gram of the support). The powder was 

vacuum dried and calcined in air at 1000 °C for 3 h.  

The HTS instrument works with cooperative actions of a mixed gas generator, 

a flow distributor, reaction tubes, an electric furnace, an autosampler, and a quadrupole 

mass spectrometer (QMS). The gas mixer provides a gas mixture of CH4/O2/Ar with 

controlled flow volumes. The generated gas mixture is equally split into 20 reaction 

tubes at the flow distributor. A reaction tube is made of quartz, whose internal diameter 

reduces from 4 mm in the feed side to 2 mm in the effluent side. A catalyst bed of 10 

mm in height was fixed at the neck position of the tube with the aid of quartz wool. The 

20 reaction tubes are placed in a hollow electric furnace. The furnace equips three 

temperature zones (T1–T3), where the catalyst beds are placed in the center zone (T2). 

The effluent gas from the 20 reaction tubes is sequentially transferred to the 

autosampler and analyzed by the QMS so as to obtain the conversion of methane and 

the yields of products using external calibration. Similar to the previous paper, the 

catalytic performance was automatically acquired under 135 conditions[19]. The 

catalysts were first activated at 1000 °C under O2. Then, the temperature of the catalyst 

beds (T2) was stepwise decreased from 900 to 850, 800, 750, and 700 °C. T1 and T3 
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were set 100 °C lower than T2 in order to minimize excessive oxidation in gas phase[18]. 

At each temperature, the total flow volume (Q = 10, 15, 20 mL/min/channel), the 

CH4/O2 ratio (2, 4, 6 mol/mol), and the Ar concentration (PAr = 0.15, 0.40, 0.70 atm) 

were stepwise varied. Each steady state is held for 6–7 min, which allows 2–3 sampling 

per catalyst.   
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2.3. Results 

2.3.1. Data analysis for mild conditions and severe conditions 

In this chapter catalyst design heuristics were extracted with focus on methane 

activation under mild conditions and high C2 selectivity under severe conditions. Four 

subsets were newly created from the original dataset by extracting data points related 

to each of (temperature, CH4/O2 ratio) = (700 °C, 2 mol/mol), (700 °C, 6 mol/mol), 

(900 °C, 2 mol/mol), and (900 °C, 2 mol/mol). Figure 2.1a–d collects the best 20 

catalysts at the four condition sets in terms of the C2 yield. Note that one catalyst 

possesses nine data points at a specific set of the temperature and CH4/O2 ratio, which 

corresponds to the variation in the partial pressure of Ar (PAr) and total flow volume 

(Q). The performance of the catalyst corresponds to the highest C2 yield among the nine 

data points.  

Here, active elements and supports that frequently appear in the best 20 catalysts 

are analyzed for each condition set. At 700 °C, basic oxide-forming elements such as 

alkali metals, alkaline-earth metals, and lanthanides were found to be important (Figure 

2.1a,b), while La2O3 was far the most selected support. La2O3 is known to be OCM-

active by alone at low temperatures[20–22]. It was reported that La2O3 surfaces allow 

oxygen to be present as various anion species, (some of) which are highly active for 

methane activation[22,23]. Moreover, La2O3 has been frequently coupled with Sr and 

Ce[24–27], which is likely consistent with the observed importance of basic oxide-

forming elements. At 900 °C, high performing catalysts often contained both basic 

oxide-forming elements and early transition metals as active elements (Figure 2.1c,d).  
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Figure 2.1. Best 20 catalysts at (Temp., CH4/O2 ratio) = (a) (700 °C, 2 mol/mol), (b) 

(700 °C, 6 mol/mol), (c) (900 °C, 2 mol/mol), and (d) (900 °C, 6 mol/mol). The data 

are extracted from a random catalyst dataset published in our previous paper[19]. 

 

This observation suggests the importance of oxometalate anions (e.g. WO4
2–) 

as highly selective species at high temperatures[28,29]. On the other hand, the 

commonly selected supports were BaO and TiO2. TiO2-supported catalysts mostly 

accompanied basic oxide-forming elements as active elements, which suggests the 

formation of TiO3
2– as an oxometalate anion. BaO has not been known to be a good 

support for OCM, especially at high temperatures. Here, it is important to note that 

MgO and CaO performed much better at 700 °C than at 900 °C. One potential way to 

explain the different behavior of these alkaline earth metal oxides is the difference in 

the thermal stability of their carbonates: CO2, a major by-product of OCM, can react 

with these oxides to in-situ form carbonates. BaCO3 has a much higher decomposition 

temperature than MgCO3 and CaCO3 (1350 °C vs. 350 °C and 825 °C). Note that the 

decomposition temperature of a carbonate significantly decreases in the presence of 

CH4, e.g. 800–1100 °C for BaCO3[30]. Hence, only BaO likely exists (partly) as BaCO3. 
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The presence of BaCO3 in the used catalyst was confirmed by FT-IR in Figure 2.2. 

Meanwhile, MgO and CaO exist as basic oxides, being suitable for low-temperature 

activation of CH4. An oxometalate anion works as an active site that selectively 

mediates the coupling of CH4. The same role can be played by oxoanions of typical 

elements such as PO4
3– and SO4

2–[31], i.e. CO3
2– of BaCO3 is considered to be similarly 

selective. Besides, in-situ formed BaCO3 might be decomposed by the exotherm of the 

reactions to suppress the formation of hot spots[32–34]. 

 

 

Figure 2.2. IR spectra of BaO before and after the use in OCM. After the use, new 

characteristic peaks appeared at around 2450 cm–1 (BaCO3), 1755 cm–1 (C=O of CO3
2–), 

857 cm–1, and 692 cm–1 (in-plane and out-of-plane bending of CO3
2–). 
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In our previous paper, it was found that the OCM performance of a catalyst is hardly 

described only by the presence or absence of a specific component, but the combination 

is very critical[19]. For example, in Figure 2.1a, basic oxide-forming elements appear 

frequently in combination with La2O3. This means that these elements are 

synergistically combined with La2O3 rather than they are superior in low-temperature 

activation by their own. Thus, I analyzed binary combinations for the four condition 

sets, where the performance of a binary combination (A*B) is defined by averaging the 

C2 yield over catalysts which contain both A and B. A combination was not considered 

unless more than one catalyst contains the combination. The best 20 binary 

combinations are summarized at each condition set in Figure 2.3. At 700 °C, the 

majority of the high performing combinations are pairs of active elements and supports 

(Figure 2.3a,b). They are subclassified into combinations of La2O3 with basic oxide-

forming elements and those of CaO with redox oxide-forming elements (Ti, Ce, Hf). In 

the case of combination between active elements, the majority of the combinations were 

of between basic oxide-forming elements. At 900 °C, one half of the high performing 

combinations were of between active elements, and the other half were of between 

active elements and supports (Figure 2.3c,d). In the former case, most of the 

combinations arose from pairs of basic oxide-forming elements and early transition 

metals, validating the importance of oxometalate anions for high-temperature C2 

selectivity. In the latter case, the combinations mostly came from BaO with basic oxide-

forming elements or early transition metals. These results suggest BaO, a basic oxide-

forming element, and an early transition metal as a promising ternary combination. 
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Figure 2.3. Best 20 binary combinations at (Temp., CH4/O2 ratio) = (a) (700 °C, 2 

mol/mol), (b) (700 °C, 6 mol/mol), (c) (900 °C, 2 mol/mol), and (d) (900 °C, 6 mol/mol). 

The C2 yields are averaged among catalysts containing a specific combination (A*B). 

The numbers in the parentheses correspond to the frequency of appearance of specific 

combinations within the dataset. 

 

2.3.2. Catalyst development based on extracted heuristics 

The analysis of the random catalyst dataset revealed that low-temperature 

activity and high-temperature selectivity could be associated with specific components 

and their combinations in the catalysts. Here, I aimed to develop catalysts by combining 

the heuristics related to the low-temperature activity and high-temperature selectivity. 

In detail, 20 catalysts were prepared based on the following four strategies. 

1. Starting from Tb–Hf–W/La2O3, one or two active elements are replaced with other 

elements. Out of the La2O3-supported catalysts, Tb–Hf–W/La2O3 was ranked in the 

top 20 at 700 °C irrespective of the CH4/O2 ratio, and showed the highest C2 yield 

at 900 °C. A quaternary catalyst, M1–M2–M3/Support, consists of 6 binary 
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combinations. The replacement of the active elements is carried out in a way to 

maximize the sum of the calculated average yield over the 6 binary combinations. 

2. Starting from Li–Mg–Zr/BaO, one or two active elements are replaced with other 

elements. Li–Mg–Zr/BaO is selected and modified in a similar fashion to that 

described in the strategy 1. 

3. La2O3-supported catalysts with the highest C2 yields at 700 °C and the CH4/O2 ratio 

of 2 mol/mol are selected. Catalysts are prepared using a mixed support of BaO (0.5 

g) and La2O3 (0.5 g) instead of La2O3 (1.0 g), while keeping the active elements.  

4. BaO-supported catalysts with the highest C2 yields at 900 °C and the CH4/O2 ratio 

of 2 are selected. Catalysts are prepared using a mixed support of BaO (0.5 g) and 

La2O3 (0.5 g) instead of BaO (1.0 g), while keeping the active elements.  

These strategies are more or less based on the heuristics that La2O3 is a major 

cause of low-temperature activity and BaO is a major cause of high-temperature 

selectivity. The strategies 1 and 2 aim to impart high-temperature selectivity to La2O3 

and low-temperature activity to BaO by judiciously combining active elements. The 

strategies 3 and 4 aim to combine the low-temperature activity of La2O3 and the high-

temperature selectivity of BaO by means of a mixed support. 

Table 2.1 summarizes the composition and the performance of the 20 catalysts 

that were prepared based on the above-mentioned strategies. Note that the performance 

is shown for only two representative conditions, but the catalysis was actually evaluated 

under the 135 conditions as described in Experimental (the full data is available in a 

web platform, Catalyst Acquisition by Data Science[35]). Also note that the 

performance at each specified temperature and CH4/O2 ratio corresponds to the data 

point showing the highest C2 yield in terms of the variations of Q and PAr. Table 2.1 
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also includes catalysts that serve as references for each catalyst design strategy. The 

sample code is as described in the footnote. 

 

Table 2.1. Performance of catalysts prepared based on four different strategies.a,b,c 

Code Name 

700 ˚C, CH4/O2 = 2 mol/mol 900 ˚C, CH4/O2 = 2 mol/mol 

C2 yield (%) 
CH4 conversion 

(%) 

C2 selectivity 

(%) 
C2 yield (%) 

CH4 conversion 

(%) 

C2 selectivity 

(%) 

1-1 Zn–Mo–Hf/La2O3 8.6 30.1 28.4 3.8 35.1 10.8 

1-2 Zn–Cs–Hf/La2O3 13.1 33.9 38.7 4.2 36.2 11.5 

1-3 Zn–Eu–Hf/La2O3 16.3 36.0 45.2 6.0 35.1 17.2 

1-4 Zn–Hf–W/La2O3 9.6 32.5 29.4 1.3 33.8 4.0 

1-5 Zn–Hf–none/La2O3 8.4 50.1 16.8 2.8 38.3  7.3 

R1 Tb–Hf–W/La2O3 14.5 41.4 35.1 9.7 35.3 27.5 

2-1 Li–Y–Eu/BaO 1.6 3.7 42.7 14.9 41.0 36.4 

2-2 Li–Mo–Ba/BaO 5.3 10.2 52.4 13.4 39.9 33.6 

2-3 Li–Mo–Nd/BaO 2.5 7.1 34.7 14.0 39.3 35.6 

2-4 Li–Ba–Nd/BaO 5.0 15.2 32.5 10.6 38.7 27.4 

2-5 Li–Nd–Tb/BaO 2.8 10.0 27.6 13.2 37.8 34.9 

R2 Li–Mg–Zr/BaO 4.0 15.1 26.3 11.5 36.8 31.1 

3-1 Mg–Ca–Nd/BaO–La2O3 19.5 39.9 48.7 10.1 34.0 29.6 

3-2 Li–Y–Eu/BaO–La2O3 19.0 39.3 48.3 8.9 37.4 23.9 

3-3 Na–Ca–none/BaO–La2O3 18.1 37.7 47.9 10.1 34.0 29.6 

3-4 Li–Fe–Ba/BaO–La2O3 16.9 36.1 46.7 7.6 31.9 24.0 

3-5 Sr–Y–Ce/BaO–La2O3 18.2 37.9 48.0 12.6 39.1 32.1 

R3-1 Mg–Ca–Nd/La2O3 16.0 43.5 36.9 3.0 33.0 9.2 

R3-2 Li–Y–Eu/La2O3 15.4 35.9 42.8 6.4 35.5 18.1 

R3-3 Na–Ca–none/La2O3 15.4 33.5 45.9 5.0 32.2 15.4 

R3-4 Li–Fe–Ba/La2O3 15.2 35.5 43.0 5.1 34.1 14.9 

R3-5 Sr–Y–Ce/La2O3 14.8 37.1 39.9 6.2 33.4 18.4 

4-1 K–V–Mo/BaO–La2O3 17.7 35.9 49.4 8.7 35.9 24.1 

4-2 Mo–Cs–W/BaO–La2O3 19.1 41.3 46.3 5.7 32.4 17.7 

4-3 V–Fe–none/BaO–La2O3 17.4 38.0 45.8 3.3 34.5 9.5 

4-4 V–Zr–Eu/BaO–La2O3 17.4 39.1 44.5 4.3 32.6 13.3 

4-5 Mg–K–Y/BaO–La2O3 20.3 40.8 49.7 10.6 37.4 28.2 

R4-1 K–V–Mo/BaO 0 0 n.d. 15.9 38.2 41.6 

R4-2 Mo–Cs–W/BaO 0 0 n.d. 15.2 39.3 38.7 

R4-3 V–Fe–none/BaO 0.9 3.7 24.9 13.7 37.7 36.3 

R4-4 V–Zr–Eu/BaO 0.9 1.9 45.2 12.9 36.2 35.6 

R4-5 Mg–K–Y/BaO 1.8 5.4 34.0 12.7 35.8 35.6 

aLiNO3, NaNO3, Mg(NO3)2, KNO3, Ca(NO3)2·4H2O, VOSO4·xH2O (x = 3–5), Fe(NO3)3·9H2O, 

Zn(NO3)2·6H2O, Sr(NO3)2, Y(NO3)3·6H2O, ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, CsNO3, 

Ba(NO3)2, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(CH3COO)3·xH2O (x = 4), Tb(NO3)3·5H2O, Hf(OEt)4, 

and (NH4)10H2(W2O7)6 were used as metal precursors. These reagents were purchased from either 

Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, or Alfa-Aesar. Barium hydroxide 

(Ba(OH)2·8H2O, 1.1 m2/g, Wako Pure Chemical Industries), and lanthanum(III) oxide (La2O3, 8.3 

m2/g, Wako Pure Chemical Industries) were used as a support precursor or a support.  
bThe sample code, x-y, means the y-th catalyst in the x-th strategy. Rx-(y) corresponds to the 

reference catalyst for the catalyst x-y: e.g. The catalysts from 1-1 to 1-5 were derived from R1 by 

replacing one or two active elements. 
cThe performance at each specified temperature and CH4/O2 ratio corresponds to the data point 

showing the highest C2 yield in terms of the variations of Q and PAr. 
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Figure 2.4. Performance of catalysts that are derived based on (a) the strategy 1 and (b) 

the strategy 2. The C2 yield is plotted against the reaction temperature. The performance 

of reference catalysts is also shown for comparison (dashed lines).  

 

Figure 2.4 compares the performance of the catalysts that were derived based 

on the strategies 1 and 2 for the replacement of active elements. Here, the C2 yield 

corresponds to the highest value at each temperature in terms of the variations of Q, the 

CH4/O2 ratio, and PAr (i.e. among 27 conditions). The results for the CH4 conversion 

and the C2 selectivity and the distribution of the C2 yield irrespective of reaction 

conditions are also shown in Figures 2.5 and 2.6.  
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Figure 2.5. Performance of catalysts that are derived based on (a,b) the strategy 1 and 

(c,d) the strategy 2. The performance of reference catalysts is also shown for 

comparison (dashed lines). 



53 
 

 

Figure 2.6. Violin plot of the C2 yield for the catalysts derived based on the strategies 

1 and 2. 

 

The As shown in Figure 2.4, the response of the catalysts to the temperature was 

largely determined by the choice of the supports. When La2O3 was used as a support, 

the maximum yield was achieved at 700–750 °C, and an increase in the temperature 

caused a decrease in the C2 selectivity and the C2 yield. On the other hand, the 

maximum yield was achieved at 800–850 °C when BaO was used as a support, and the 

decrease in the temperature led to a significant decrease in the conversion and the C2 

yield. The choice of active elements did not significantly alter these support-specific 

responses, but greatly affected the yield level. For example, the lack of alkali metal or 

lanthanide group elements as M1–M3 significantly lowered the C2 yield for the La2O3-

supported catalysts. The presence of an alkaline earth metal element was essential for 

the BaO-supported catalysts, especially at lower temperatures. Here, one can see that 

most of the derived catalysts exhibited the performance inferior to that of the 

corresponding reference catalysts. Thus, the strategies 1 and 2 were judged to be 
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ineffective. The failure of these strategies is plausibly related to the lack of interaction 

among more than two components, e.g. interaction between two elements depends on 

the choice of the other element and the support. 

 

 

Figure 2.7. Performance of catalysts that are derived based on (a) the strategy 3 and (b) 

the strategy 4. The C2 yield is plotted against the reaction temperature. Catalyst names 

are expressed based on active elements. Solid lines correspond to the use of BaO–La2O3 

as a support while dashed lines correspond to the use of either (a) La2O3 or (b) BaO. 

 

 Figure 2.7 compares the performance of the catalysts that were derived based 

on the strategies 3 and 4 for the mixed support. The results for the CH4 conversion and 

the C2 selectivity and the distribution of the C2 yield irrespective of reaction conditions 

are also shown in Figures 2.8 and 2.9. 
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Figure 2.8. Performance of catalysts that are derived based on (a,b) the strategy 3 and 

(c,d) the strategy 4. Catalyst names are expressed based on active elements. Solid lines 

correspond to the use of BaO–La2O3 as a support while dashed lines correspond to the 

use of either (a,b) La2O3 or (c,d) BaO.  
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Figure 2.9. Violin plot of the C2 yield for the catalysts derived based on the strategies 

3 and 4. 

 

 The performance of the reference catalysts is also shown for comparison. The choice 

of supports is a major factor of the catalytic behavior. Hence, the effect of the mixed 

support was found to be dramatic. The addition of BaO to La2O3-supported catalysts 

significantly improved the C2 selectivity at 900 °C. It also caused slight improvements 

in the conversion and the selectivity at lower temperatures. Consequently, the derived 

catalysts exhibited higher C2 yields as compared to the corresponding reference 

catalysts at individual temperatures (Figure 2.7a). The addition of La2O3 to BaO-

supported catalysts conferred high activity at 700 °C, as expected. Note that BaO alone 

exhibited almost no ability to activate CH4 at 700 °C. On the other hand, the poor 

selectivity of La2O3 was also introduced, and this limited the advantage of the mixed 

support at higher temperatures (Figure 2.7b). In summary, it was found that the mixed 

support strategies are effective in improving the C2 yield when applied to La2O3-
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supported catalysts, and in lowering the operation temperature of the catalysts when 

applied to BaO-supported catalysts. 

 Based on the success of the mixed support strategy, additional experiments were 

carried out on the way of combining BaO and La2O3. In literature, it has been reported 

that the use of a two-layer bed with two different catalysts is effective for improving 

the C2 yield[36–39]. Especially, Liang et al. adopted the same strategy in view of 

product concentration profiles along a flow direction[39]. Their aim was to enable the 

catalysis at a lower temperature while suppressing deep oxidation in the effluent side 

by using a more active catalyst as the first layer in the influencer side and a more 

selective catalyst as the second layer in the effluent side. In this light, 5 kinds of catalyst 

beds were prepared by using pristine supports without active elements: Single-layer 

beds of BaO and La2O3, a single-layer bed of a mixed support (denoted as BaO–La2O3), 

a two-layer bed of La2O3 as the first layer and BaO as the second layer (denoted as 

La2O3→BaO), and a two-layer bed with the opposite layer order (BaO→La2O3). The 

bed height was fixed at 10 mm, and in case of a two-layer bed, a 10 mm bed was 

composed of two layers of 5 mm.  
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Figure 2.10. Effect of combining two supports on the OCM performance. BaO and 

La2O3 were combined in three different ways. BaO–La2O3: Single-layer bed of slurry-

mixed powder; BaO→La2O3: Two-layer bed with BaO powder placed in the influent 

side; La2O3→BaO: Two-layer bed with La2O3 powder placed in the influent side.  

 

 The performance of the 5 catalyst beds is compared at different temperatures in 

Figure 2.10. Figure 2.11 is showing their CH4 conversion and the C2 selectivity. 
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Figure 2.11. Effect of combining two supports on (a) the CH4 conversion and (b) the 

C2 selectivity. BaO and La2O3 were combined in three different ways. BaO–La2O3: 

Single-layer bed of slurry-mixed powder; BaO→La2O3: Two-layer bed with BaO 

powder placed in the influent side; La2O3→BaO: Two-layer bed with La2O3 powder 

placed in the influent side. 

 

 To start, the single-layer beds of La2O3 and BaO exhibited reasonably high C2 yields 

even without active elements. This means that these supports are active for OCM by 

themselves while M1–M3 play a promoting role, which is in line with the observed 

consistent behaviors of various BaO- and La2O3-supported catalysts in response to the 

reaction temperature (Figure 2.4). The two-layer bed of La2O3→BaO showed almost 

the identical performance to the single-layer bed of La2O3 at each temperature. This is 

because La2O3, which is sufficiently active at 700 °C, fully consumed O2 regardless of 

the temperature. In fact, a similar result was reported by Liang et al. when a large 

amount of a La–Ce mixed oxide was used in the first layer[39]. Contrary to 

La2O3→BaO, BaO→La2O3 revealed an advantage of using a two-layer bed. Its 
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performance at 700 °C was almost the same as that of the La2O3 single-layer bed, where 

BaO was inactive and hardly affected the operation of the La2O3 layer. However, the 

C2 yields at 750 and 800 °C significantly exceeded those of La2O3 and BaO. It seemed 

that BaO partly consumed CH4 and O2 in a selective fashion, and this resulted in more 

selective catalysis in the following La2O3 layer. Note that lower concentrations of CH4 

and O2 generally enhance the C2 selectivity[18,40]. The performance at 900 °C was 

similar to that of BaO due to the complete consumption of O2 in the first layer. The 

performance of the BaO–La2O3 mixed support was in between those of BaO and La2O3 

at 700 °C, since the dilution of La2O3 by BaO partly suppressed the ignition. On the 

other hand, far greater C2 yields were observed at 750 and 800 °C as compared to BaO 

and La2O3. It was considered that La2O3 acted as a heater, lowering the operating 

temperature of highly selective BaO[39]. The loss of the selectivity at 850 °C supports 

this consideration, while BaO alone still kept high selectivity at the same temperature. 

In summary, I demonstrated that the activity of La2O3 and the selectivity of BaO can 

be complementarily used when BaO and La2O3 are layered in this order, and when BaO 

and La2O3 are mixed within a single bed. Both of the combination methods led to 

improved C2 yields, while the mechanisms of the improvements were seemingly 

different. 
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Figure 2.12. Best 20 catalysts at (Temp., CH4/O2 ratio) = (a) (700 ˚C, 2 mol/mol), (b) 

(700 ̊ C, 6 mol/mol), (c) (900 ̊ C, 2 mol/mol), and (d) (900 ̊ C, 6 mol/mol). (e) The same 

in the absence of conditional restrictions. Filled and unfilled bars correspond to 

catalysts derived in this chapter and catalysts that were present in the original dataset, 

respectively. 

 

 To the end, the effectiveness of the heuristics-based catalyst design is illustrated 

in terms of the C2 yield improvement from the original data. For this, the best 20 

catalysts are extracted at specified conditions from a combined dataset of the 20 

catalysts derived in this chapter and the 291 catalysts in the original dataset (Figure 

2.12), where the new catalysts and the original catalysts are displayed as filled and 

unfilled bars, respectively. It can be seen that many of the new catalysts are ranked 

within the top 20 at each of the specified conditions (Figure 2.12a–d) and even without 

specifying conditions (Figure 2.12e), which clarifies the effectiveness of the heuristics-

based catalyst design in improving the low-temperature activity, the high-temperature 

selectivity, as well as the maximum C2 yield. The effectiveness is more evident at 

700 °C, where more than half of the entries come from the new catalysts. This fact 

suggests that improving the selectivity of highly active catalysts is more feasible than 

improving the activity of selective catalysts without deteriorating the selectivity. The 

observations of Figure 2.12e are also confirmed in the scatter plot in Figure 2.13, where 

the horizontal axis is CH4 conversion and the vertical axis is C2 selectivity. 
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Figure 2.13. Scatter plot of the best C2 yield data points for the CH4 conversion and the 

C2 selectivity. Filled makers represent catalysts derived in this chapter, while unfilled 

makers represent those in the original dataset.  
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2.4. Conclusions 

In this chapter, catalyst design heuristics were extracted for methane activation at 

mild conditions and for suppression of the secondary oxidation at severe conditions by 

analyzing a dataset previously obtained in our group.[19] These heuristics were then 

combined to design better performing catalysts. The major conclusions are summarized 

below:  

⚫ Catalyst design guidelines vary greatly depending on the reaction temperature. At 

low temperatures, a combination of basic oxide-forming elements and La2O3 as a 

support tends to result in high performance. At high temperatures, BaO, which can 

in-situ form a stable carbonate, and/or a combination between basic oxide-forming 

elements and early transition metals, which can form an oxometalate anion, tends 

to result in high performance.  

⚫ Catalyst design guidelines are rather specific to the properties of supports, i.e. it is 

not possible to dramatically alter the catalytic behavior by the selection of active 

elements when the same support is used.  

⚫ A mixed support is an effective strategy to pursue both the activity and selectivity. 

In fact, by combining La2O3 and BaO, I succeeded in simultaneously improving 

the CH4 conversion, C2 selectivity, and C2 yield. 

⚫ Various methods of combining La2O3 and BaO were evaluated, and it was found 

that the mixed support led to improved performance based on a different 

mechanism from that of a two-layer bed. It was considered that La2O3, which 

possesses an ability for low-temperature methane activation, works as a heater for 

highly selective BaO, and reduces its apparent operational temperature.  



64 
 

In the implementation of catalyst informatics, it is important to have data that is 

acquired uniformly across both materials and process conditions without placing 

anthropogenic bias. I have demonstrated here that once such data is obtained, various 

insights useful for catalyst development can be obtained by how the data is projected 

onto a materials space, i.e., how subsets are extracted. 

In order to control complex chemical reactions, the development of solid catalysts 

often premises combinatorial design, which is effective to balance different aspects of 

the performance. Hence, the strategy of finding heuristics for improving individual 

aspects of the performance from data analysis and combining them in the framework 

of combinatorial design is believed to be widely applicable to any other catalysis as 

long as combinatorial design is effective. 
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Chapter 3 

Adaptive sampling for catalyst discovery  

incorporating artificial serendipity 
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Abstract:  

This chapter introduces a novel algorithmic approach to catalyst development, 

leveraging elemental substitution to guide the creation of a sophisticated catalyst 

recommender system. Integrating adaptive sampling, this system efficiently predicts 

catalyst performance, subsequently verified through high-throughput experimentation. 

A significant innovation of this work is a catalyst serendipiter system, which anticipates 

the occurrence of serendipitous catalysts within the development process—a 

phenomenon previously considered a product of chance. This results reveal that the 

serendipiter system increases the likelihood of serendipity to 43.8%, significantly 

outperforming the baseline adaptive sampling serendipity rate of 8.1%. Through this 

predictive model, I discovered catalysts with enhanced performances without any 

known performant counterparts, demonstrating the model's effectiveness in identifying 

novel catalyst combinations. This approach not only provides a structured framework 

for catalyst exploration and exploitation but also harnesses the unpredictable nature of 

serendipity, offering a new frontier in the systematic development of catalysts. 

 

Keywords: Adaptive sampling, serendipity, evidence theory, oxidative coupling of 

methane, high-throughput experimentation. 
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3.1. Introduction 

The challenge in developing solid catalysts often lies in diversifying their 

elemental combinations to achieve multifunctionality[1]. Catalytic reactions involve 

multiple elementary steps, and even a partial change in a catalyst’s composition can 

affect all these stages[2,3]. Additionally, it's not only the individual elements that are 

important; the interactions between these elements can lead to unexpected effects on 

each elementary reaction, a phenomenon known as synergistic effects[4–6]. As the 

number of components in a catalyst increases, the potential combinations grow 

exponentially, making it impractical to explore all possible catalysts due to time and 

resource constraints. Researchers in solid catalysts frequently rely on trial-and-error 

methods to identify optimal catalysts from a vast pool of candidates[7,8]. Their 

approach is informed by a combination of past experience, insights from literature and 

analyses, and curiosity about unexplored combinations. Serendipity, or the unexpected 

discovery occurring during trial and error, has been a key driver in significant 

advancements for catalyst development[9–11]. However, these conventional manual 

methodologies, despite their high costs, do not guarantee success. Furthermore, as the 

complexity of the system increases, making groundbreaking developments becomes 

increasingly challenging. Moreover, knowledge-based approaches that aim for rational 

catalyst design find their applicability diminishing with the increasing complexity of 

the target system[1]. Developing a reproducible methodology that systematizes and 

streamlines the trial-and-error process and effectively harnesses serendipity could not 

only reduce costs but also expedite the achievement of objectives. Such a development 

could significantly speed up catalyst development and enhance the understanding of 

the principles governing catalyst design. 
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Catalyst informatics leverages statistical analysis and machine learning to 

accelerate catalyst development and understanding their mechanisms[12–15]. The 

advent of machine learning techniques like adaptive sampling and black-box 

optimization has transformed the approach to informatics in recent years[16,17]. These 

techniques are adept at efficiently labeling samples in previously undefined regions or 

iteratively converging on an optimal composition. This is achieved by incorporating 

unknown data points suggested by a surrogate model—trained on existing data—into 

the training set and then updating the model with this enhanced dataset. A crucial 

technique in reinforcement learning applied within this context is the 

exploration/exploitation trade-off[18]. Exploration is considered as a 'high-risk, high-

return' strategy, where one learns about the potential reward of an untried option 

through direct experimentation. Conversely, exploitation is a 'low-risk, low-return' 

strategy that involves selecting the option with the highest predicted reward based on 

current knowledge. Effective decision-making in actual catalyst development often 

requires a balance between these strategies, especially when operating under constraints 

of limited time, resources, and budgets. When modeling the catalyst development 

process itself, incorporating the exploration/exploitation concept is essential. Several 

materials informatics (MI) studies exemplify the application of this concept, utilizing 

methods like Bayesian optimization[19,20], best-arm identification[21], and active 

learning[16,22,23]. However, despite these advancements, the occurrence of 

serendipity, which has historically been crucial in catalyst and material discovery, is 

still underrepresented[24,25]. Additionally, while some studies have acknowledged the 

importance of combinatorial effects in catalyst design, the causal modeling of these 

synergistic effects is still a challenge[26,27]. Developing an algorithm that can assess 

predictive uncertainties, elemental combination effects, and serendipitous interactions 
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would represent a significant breakthrough. Coupling with an adaptive sampling loop 

and such an algorithm could refine the precision of catalyst development methodologies. 

 In this chapter, I present a catalyst recommendation system that is adept at 

handling uncertainty and considers synergistic effects in its predictive model. This 

system is used in conjunction with adaptive sampling. Additionally, by gathering and 

incorporating unexpected findings from the system during the adaptive sampling 

process as training data, an another-layer machine learning has been introduced. This 

new layer is specifically designed to identify the conditions under which serendipitous 

discoveries are likely to occur, which this has been named the 'catalyst serendipiter 

system.' By integrating the recommendation system with the serendipiter system, I have 

established a reproducible method for catalyst development. This approach effectively 

systematizes and streamlines both the trial-and-error process and the harnessing of 

serendipitous discoveries, which are common in traditional catalyst development.  
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3.2. Methods 

3.2.1. Catalyst preparation and evaluation 

All catalysts were prepared using a parallelized co-impregnation method and 

evaluated with a high-throughput screening system[28]. The catalysts comprised 

quaternary compositions of M1-M2-M3/support, using elements selected from a 

predefined library of supported elements and oxides. These are briefly mentioned here; 

for detailed information, please refer to our previous publications.  

The supported elements library includes 27 elements: Li, Na, Mg, K, Ca, Ti, 

V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, and W, 

with an additional 'none' option to indicate no selection, totaling 28 options. The oxide 

library consists of nine species: MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, La2O3, and 

CeO2. As precursors to each of these, LiNO3, NaNO3, Mg(NO3)2, KNO3, 

Ca(NO3)2·4H2O, Ti(OiPr)4, VOSO4·xH2O (x = 3-5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, 

Co(NO3)2·6H2O, Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, 

Y(NO3)3·6H2O, ZrO(NO3)2·xH2O (x=2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, 

Ba(NO3)2, La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, 

Tb(NO3)3·5H2O, Hf(OEt)4, (NH4)10H2(W2O7)6, MgO, γ-Al2O3, SiO2, Ca(OH)2, TiO2, 

ZrO2 , Ba(OH)2-8H2O, La2O3 and CeO2 were used. These reagents were purchased 

from Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, Alfa-Aesar or 

Sumitomo Chemical Industry. Each element from M1 to M3 was loaded onto 1.0 g of 

support at 0.371 mmol. The carrier powder was impregnated with an aqueous solution 

containing the metal precursor at 50 °C for 6 h, followed by drying under reduced 

pressure at 90 °C for 4 h. The dried material was then placed in ceramic cups and 

calcined at 1000 °C for 3 h under air.  
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All prepared catalysts underwent testing in a high-throughput screening 

system under 135 distinct conditions, varying temperature (700 °C, 750 °C, 800 °C, 

850 °C, and 900 °C), gas contact time (0.75 s, 0.50 s, and 0.38 s), CH4/O2 ratios (2, 4, 

and 6), and carrier gas partial pressures (0.15, 0.4, 0.7)[28]. The screening system 

consisted of a gas mixer, distributor, quartz reaction tubes, an electric furnace, an 

autosampler, and a quadrupole mass spectrometer (QMS)[29]. The mixer controlled the 

flow rates of methane, oxygen, and the carrier gas argon, distributing them evenly into 

20 reaction tubes. The reaction tubes had a 4 mm internal diameter at the inlet and 2 

mm at the outlet. Inside the electric furnace, 20 tubes each contained a 10 mm catalyst 

bed. The outlet gases were sampled in sequence by the autosampler and analyzed by 

the QMS. Argon was used as the internal standard, and the calibration curve was 

derived from signal ratios at specific argon partial pressures and those of the target 

gases. Using these ratios, the relative pressures of the gases compared to argon was 

back-calculated. This information, along with the theoretical argon partial pressure 

from the set reaction conditions, allowed us to calculate methane conversion and 

product yield. These values were then used to determine the selectivity. 

𝐶𝐻4 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝑃𝐶𝐻4 𝐴𝑟⁄ 𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙

− 𝑃𝐶𝐻4 𝐴𝑟⁄ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝐶𝐻4 𝐴𝑟⁄ 𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙

× 100 

𝐶2𝐻4 𝑜𝑟 𝐶2𝐻6 𝑦𝑖𝑒𝑙𝑑 (%) =
2 × 𝑃𝐶2𝐻4 𝑜𝑟 𝐶2𝐻6 𝐴𝑟⁄ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝐶𝐻4 𝐴𝑟⁄ 𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙

× 100 

𝐶2 𝑦𝑖𝑒𝑙𝑑 (%) = 𝐶2𝐻4 𝑦𝑖𝑒𝑙𝑑 +  𝐶2𝐻6 𝑦𝑖𝑒𝑙𝑑  

𝐶𝑂 𝑜𝑟 𝐶𝑂2 𝑦𝑖𝑒𝑙𝑑 (%) =
𝑃𝐶𝑂 𝑜𝑟 𝐶𝑂2 𝐴𝑟⁄

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝐶𝐻4 𝐴𝑟⁄ 𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙

× 100 

𝑋 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑋 𝑦𝑖𝑒𝑙𝑑

𝐶𝐻4 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
× 100 
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3.2.2. Prediction accuracy metric calculation 

When comparing predicted and measured values in building a machine 

learning model, there are four possible patterns of consistency: (1) Both predictions and 

measurements are positive; (2) predictions are positive but measurements are negative; 

(3) predictions are negative but measurements are positive; and (4) both are negative. 

Correct predictions occur in cases (1) and (4), while incorrect predictions are seen in 

(2) and (3). These outcomes are referred to as (1) True Positive (TP), (2) False Positive 

(FP), (3) False Negative (FN), and (4) True Negative (TN), respectively. These 

categories form the basis for calculating indicators of a machine learning model’s 

accuracy. In this chapter, the performance metrics used - namely, accuracy, precision, 

recall, and the F1 score - are derived from these fundamental outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 

The general meanings of these indicators are as follows: 'Accuracy' measures 

the model's overall predictive correctness across both classes; 'Precision' assesses the 

model's accuracy specifically for the positive (target) class predictions; 'Recall' gauges 

the model's ability to correctly identify all relevant instances of the positive (target) 

class (i.e., its capacity to avoid false negatives); and the 'F1 Score' is the harmonic mean 

of precision and recall, providing a balance between them. 
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3.2.3. Generating phylogenetic tree using the neighbor-joining method 

The neighbor-joining method is a bottom-up clustering approach utilized for 

generating phylogenetic trees in molecular biology and bioinformatics[30]. This 

method begins by calculating the pairwise distances between all sequences (or 

catalysts), which are then arranged into a distance matrix. A phylogenetic tree is 

incrementally constructed by repeatedly connecting the pair of entities with the smallest 

distance. The ultimate goal is to produce a phylogenetic tree with the minimum possible 

sum of branch distances[31]. 

For the construction of the phylogenetic tree, I utilized the scikit-bio library 

within the Python programming environment to apply the neighbor-joining method. 

Subsequently, the ETE3 library was employed for the visualization of the phylogenetic 

tree. 

 

3.2.4. Implementation of a catalyst serendipiter system 

In implementing the catalyst serendipiter system, four distinct learner 

characterizations were trained in parallel, and their predictions were utilized as 

descriptors. Each learner was trained using catalyst composition as the explanatory 

variable and catalyst performance as the response variable. To designate catalyst 

performance as the objective for the classifiers, a threshold value was established and 

subsequently binarized. This threshold was set at a 13% C2 yield; catalysts exceeding 

this value were labeled as 'positive,' while those falling short were labeled as 'non-

positive.' For the explanatory variable of catalyst composition, one-hot encoding was 

applied. Below is a brief description of the training instruments used. 
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Logistic regression, despite its nomenclature, is a linear classifier for 

classification tasks, predicting outputs between 0 and 1 from continuous input data. It 

is commonly used in binary classification problems, with its outputs derived via a 

sigmoid function, allowing interpretation as probabilities. However, logistic 

regression's susceptibility to overfitting may increase with high-dimensional datasets. 

Support vector machines (SVM) are algorithms designed to identify optimal 

data separation boundaries. They can handle both linear and non-linear datasets by 

utilizing the 'kernel trick.' SVMs are known for their effectiveness with small datasets. 

Random forests, an ensemble method, combines multiple decision trees to 

enhance prediction accuracy and mitigate the risk of overfitting. This approach 

effectively captures feature interactions and non-linear relationships within the data. 

Naive Bayes is a probabilistic classifier based on Bayes' theorem. Apt for tasks 

like spam mail detection due to its speed in training and prediction, it operates under 

the 'naive' assumption of feature independence. This assumption, while facilitating 

efficiency, may not yield high performance across all datasets. 

These algorithms were implemented using the Python library, scikit-learn. 

Hyperparameters were optimized through grid search. For the catalyst serendipiter 

system, descriptors included the catalyst recommender system predictions, the four 

traditional learners' predictions for each candidate catalyst, and the one-hot encoding 

of catalyst compositions. The correspondence between the catalyst recommender 

system predictions and the actual measurements served as the objective variables. It is 

important to note that the hyperparameters for each learner were fine-tuned for 

comparative analysis. 
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3.3. Results 

In the context of adaptive sampling, it's crucial for the learning model to 

quantify uncertainty effectively to enable both exploration and exploitation strategies. 

To this end, I have developed a catalyst recommendation system, depicted in figure 

3.1a, which employs evidence theory[32]. Evidence theory is a generalization of the 

Bayesian approach for dealing with situations of incomplete information and 

data[33,34]. Unlike Bayesian theory, which assigns weights to individual events, 

evidence theory allocates non-negative weights to subsets of possibilities within the 

framework of discernment. In the field of solid catalysts, the effectiveness of an active 

component can be significantly influenced by the presence of other elements[5,6]. The 

characteristics of evidence theory are particularly beneficial in depicting this 

phenomenon from a machine learning perspective. For example, consider a situation 

where there are two conflicting observations about a catalyst's performance, one 

positive and one negative. In Bayesian terms, this would be treated as two mutually 

exclusive events: 'the catalyst is positive' and 'the catalyst is negative.' Predictions 

would be made accordingly, but the contradicting observations would cancel each other 

out, leading the probability to revert to its prior value. Conversely, evidence theory 

considers three possibilities: the fundamental hypothesis that a catalyst is positive, that 

a catalyst is negative, and a combined hypothesis that acknowledges the catalyst could 

be either positive or negative. Here, 'the catalyst is positive or negative' represents 

uncertainty. The conflicting observations, in evidence theory, provide a measure of 

belief for each of the first two hypotheses while reducing confidence in the uncertainty. 

This approach allows for distinguishing between uncertainty due to contradictory 

information and uncertainty from a lack of information.  Such a distinction is crucial 
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for maintaining specific catalytic information that arises from synergistic effects, hence 

preserving the nuances of catalyst performance prediction. 

 

 

Figure 3.1. Implementation of catalyst recommender system. a, Developed algorithm for 

catalyst recommendation. Two catalysts, Ci and Cj, are compared. If they share common 

components, observations on performance changes due to the substitution of differing 

components are collected as evidence, denoted as mct, cv. This evidence and the third catalyst, 

Ck, are then used to make performance predictions. The performances of all catalysts within the 

configuration space are predicted, and weights calculated from these predictions are used to 

recommend the next catalyst for evaluation. b. Efficiency of performance prediction for each 

algorithm. The graph plots the average beliefs for both positive and non-positive across all 

36,540 catalysts in the configuration space. These predictions are based on the 376 catalysts 

that have been evaluated at our previous study. c, Comparison of prediction abilities for all 

developed algorithms when varying the number of elements substituted or be common. 

"Accuracy" refers to the overall prediction rate, including both positive and non-positive results. 

"Precision" is defined as the proportion of true positives among the predicted positives, while 

"Recall" is the proportion of true positives among the actual positives. “F1 score” is the 

harmonic mean of precision and recall, serving as a measure of prediction accuracy specifically 

for positive cases. 
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In this approach to modeling catalyst development using evidence theory, I 

sought to replicate and algorithmize the human thought process used in developing new 

catalysts through elemental substitution[32]. This process involves two crucial steps, 

each crafted into an algorithm. The step 1 is 'compiling data on performance variations 

resulting from the substitution of non-common elements within two catalysts that share 

some elements in their composition.' This step aims to generate insights that can inform 

future catalyst designs. The step 2 is 'projecting the performance of a novel catalyst by 

applying these insights to existing data.' Both of these steps are meticulously structured 

into a comprehensive algorithm, which is described in detail in the subsequent 

paragraph.  

The structure of the algorithm used in the catalyst recommender system is 

detailed in figure 3.1a. The process begins with the system categorizing the 

performance of evaluated catalysts into bins, based on a predefined threshold value. For 

clarity, I will describe the binarized implementation used in practice, where catalysts 

are classified as either 'positive' or 'non-positive' according to the threshold. The system 

then compares the compositions of two catalysts, Ci and Cj. If they share a common 

element, the system assesses the impact on performance resulting from the substitution 

of differing elements, ct and cv (e.g., improve, disimprove, or no change). This 

assessment is conducted using the belief mass function 𝑚𝐶𝑖,𝐶𝑗

𝑐𝑡,𝑐𝑣  for the ct, cv substitution. 

This part corresponds to step 1 of the algorithm. Initially, all basic belief masses, m, are 

set to 1 for uncertainty and 0 otherwise. An observation increases the belief in the 

corresponding certainty hypothesis by a value x and decreases the uncertainty by the 

same amount. The optimal value for x is determined through cross-validation. Step 2 
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begins with the application of the belief mass function 𝑚
𝑐𝑡,𝑐𝑣 for catalyst Ck, which 

contains element ct. This application calculates the belief mass function  𝑚𝐶𝑘,𝑐𝑡→𝑐𝑣

𝐶𝑛𝑒𝑤  for 

the performance of a new catalyst, Cnew, after the replacement using the original 

performance of Ck and 𝑚
𝑐𝑡,𝑐𝑣 . It's important to note that when similar evidence is 

obtained from different observations for both the belief mass function in steps 1 and 2, 

these beliefs are combined using Dempster's rule of combination[33]. Beliefs related to 

both 'positive' and 'uncertain' outcomes are considered as weights for selection and 

exploration, respectively. These weights are calculated for all potential catalyst 

candidates. Catalyst recommendations are then made using a roulette selection method, 

where the calculated 'weight' forms the basis for selection. The balance between 

exploitation and exploration, as determined by these weights, is adjusted according to 

the specific goals and context of the research.  

The recommender system developed in this chapter was trained using catalyst 

reaction data on the oxidative coupling of methane (OCM) reaction, comprising results 

from 376 catalysts[28,35–37]. OCM is a reaction that directly converts methane, the 

main component of natural gas, into ethylene, a key petrochemical material[38]. The 

difficulty of OCM lies in the fact that the reactants (methane) are chemically more 

stable than the main products (ethylene and ethane), leading to a kinetic trade-off [1,39–

41]. The reaction must be conducted under conditions harsh enough to convert methane, 

but mild enough to avoid deep oxidation of ethylene. Our dataset for OCM includes 

results using a quaternary catalyst system consisting of M1-M2-M3/support[28]. M1 to 

M3 were chosen from a 'supported element set' of 27 elements (from Lithium to 

Tungsten) plus "none," allowing for overlap, and the support was selected from a 

'support metal set' of nine different oxides. These oxides include three with acidic 

surfaces (TiO2, ZrO2, and CeO2), four with basic surfaces (MgO, CaO, BaO, and La2O3), 
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and two with both acidic and basic properties (Al2O3 and SiO2). The choice of 

components was informed by their frequent mention in previous OCM studies or their 

similar properties but lesser usage. Out of 36,540 potential catalyst combinations, 300 

were randomly selected, and 76 had been proposed by machine learning using the 300 

as training data in our previous study[28,35–37]. All catalysts were evaluated under 

135 uniform reaction conditions using a high-throughput screening system[29]. The 

condition that yielded the highest C2 yield for each catalyst was identified as a unique 

point for system training. A threshold value of 13% for C2 yield was set for performance 

dichotomization, based on the highest yield achieved without a catalyst under these 

conditions. Catalysts exceeding this threshold were classified as positive, and those 

below as non-positive[28]. The belief mass function assigned a belief degree of 0.2 for 

a single observation. Considering that 51 out of the 300 randomly evaluated catalysts 

were positive, a similar proportion of positive catalysts was assumed within the entire 

candidate population. This proportion (approximately 0.2 ≈ 51/300) was used as the 

value of α in calculating the weights[28].  

In the targeted quaternary catalysts, the dimensions that can be considered for 

elemental combinations to be substituted include unary substitution, binary substitution, 

and ternary substitution. While all these could be employed simultaneously, integrating 

and employing the prediction results of all substitution dimensionalities should be 

avoided when generalizing this system for all types of catalyst development. For 

instance, if the system were to be applied to develop a catalyst for a ten-element system, 

there would be approximately 0.8 billion nine-element combinations, assuming the 

supported element and support library remain the same as in this chapter. Furthermore, 

the number of feasible substitutions among the nine-element combinations would surge 

to about 23 quadrillion. If eight-element and seven-element combinations and so on 
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were to be considered additionally, the system would become impractical from a 

computational cost standpoint. 

To ascertain the optimal dimensionality for each number of terms, the average 

acquisition certainty of the performance belief functions for each of the 36,540 

candidate catalysts was compared. These results are displayed in figure 3.1b. Although 

the focus of this chapter has been primarily on performance estimation methods based 

on the substitution of non-common elements, consideration was also given to methods 

attributing performance directly to the common part, rather than the non-common part. 

Consequently, results for the former are presented as "substitution" and for the latter as 

"direct." Please note that in figure 3.1b, only binary results for the direct algorithm are 

shown. For results concerning unary and ternary approaches, as well as a detailed 

flowchart of the algorithm, reference is made to figure 3.2.  
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Figure 3.2. Implementation of catalyst recommender system based on direct algorithm 

for comparison with the substitution algorithm. a. Developed algorithm for catalyst 

recommendation based on direct estimation method. Two catalysts, Ci and Cj, are 

compared. If they share common components and their performances are the same class, 

evidence will be collected as the common part cc is having the performance. This 

evidence and the third catalyst, Ck, which is having its common part cc in the 

composition are then used to make performance predictions. b. Comparison of 

prediction abilities for all developed algorithms when varying the number of elements 

substituted or be common. c. Efficiency of performance prediction for each algorithm. 
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A comparison within the substitution algorithms reveals mostly same in the 

total amount of certainty acquired between unary and ternary substitution. This is 

attributed to the inherent connection between unary and ternary substitutions; unary 

substitution requires common elements of ternary to gather substitution evidence, 

resulting in fewer opportunities to acquire certainty and thus being less efficient in 

certainty acquisition. In contrast, for operating substitution evidence, only unary 

elements are needed as the source, offering more opportunities for evidence 

manipulation and hence greater efficiency in evidence operation. Ternary substitution, 

on the other hand, is characterized by high efficiency in certainty acquisition but low 

efficiency in evidence operation. Binary substitution has respective efficiencies 

between unary and ternary. The total number of combinations derivable from a single 

catalyst is four for both unary and ternary, but six for binary, leading to more 

opportunities for certainty acquisition and, therefore, a higher total amount of certainty 

acquired. When comparing the binary results of the substitution and direct methods, it 

becomes evident that the direct method yields more instances of performance inference 

formation and almost completely eliminates uncertainty. The ratio between positive 

certainty and non-positive certainty is almost consistent with the class balance in the 

training data; only 105 out of 376 catalysts in the training data are positive. The result 

is like conventional machine learning that does not account for uncertainty classes.  

In the analysis of substitution algorithms—unary, binary, and ternary—it was 

observed that the binary dimension exhibited the highest efficiency in certainty 

acquisition. However, the value of this finding hinges on the accompanying prediction 

accuracy. Therefore, the prediction accuracy of each dimension was evaluated using 

10-fold cross-validation, with the results displayed in figure 3.1c. For this validation, 

only catalysts obtained two or more evidence during performance estimation (where 
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uncertain confidence was less than 0.8) were included, and the higher of the two belief 

masses was selected as the prediction outcome. Additionally, a baseline method was 

considered, where the prediction outcome was randomly determined based on the class 

balance of the training data. A comparison between the Baseline and the substitution 

algorithms revealed that the algorithms surpassed the Baseline across all metrics—

accuracy, precision, recall, and F1 score. This improvement is mainly attributed to the 

fact that most random predictions are non-positive according to the training data's low 

number of positive cases. When analyzing the substitution algorithms by the number of 

replacement dimensions, it was found that unary substitution exhibits high precision 

but low recall. In contrast, ternary substitution shows the opposite trend, while binary 

substitution lies between the two. This pattern emerges because unary substitution only 

predicts a catalyst as positive when there is a strong active component performing well 

independently. On the other hand, ternary substitution tends to generalize, identifying 

specific combinations that perform well and extrapolating those observations to predict 

other catalysts as positive. It issues a positive decision even with minimal evidence of 

a positive outcome, due to its specificity and a tendency toward generalization. The 

same logic applies to the binary dimension in the direct algorithm, where prediction 

accuracy follows a similar calculation. As shown in figure 3.1b, when extending 

performance prediction to candidate catalysts, the direct method mirrors the class 

balance of the training data and show the same trend with the baseline. Here, it is the 

positive class for which prediction accuracy is primarily sought. Precision, recall, and 

the F1 score, which reflect accuracy for this class, are lower in the direct method 

compared to substitution method. Based on these findings, the binary substitution 

algorithm was chosen as the practical recommender system.  
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 Using the trained system, adaptive sampling was carried out. In each iteration, 

twenty catalysts were recommended through weighted roulette sampling and then 

evaluated under 135 uniform reaction conditions using a high-throughput catalyst 

screening system. This adaptive sampling loop, driven by the system, was repeated 

eight times, leading to the development of 160 catalysts. Figure 3.3a shows both the 

belief degrees and the actual performance data of these 160 recommended catalysts at 

the time of their recommendation. In the recommendation for roulette sampling, a 

catalyst was classified as recommended by the exploitation strategy if, at the time of 

recommendation, its positive certainty was greater than its uncertainty multiplied by 

0.2. All other recommendations were considered as stemming from the exploration 

strategy. Following this criterion, 59 out of the 160 catalysts were categorized as 

exploitation catalysts, and the remaining 101 as exploration catalysts. Upon evaluation, 

35 exploitation catalysts and 22 exploration catalysts demonstrated Positive 

performance. Of particular interest are catalysts with C2 yields above 20% and 

exploration catalysts that exhibited positive performance despite a higher non-positive 

certainty than positive certainty. These catalysts are highlighted with green and red stars, 

respectively, in figure 3.3a, marking them as catalysts of interest. The red-starred 

catalysts, considered as 'serendipitous catalysts,' are those whose performance stems 

from synergies evident only in specific ternary or higher combinations because of the 

binary algorithm for estimation. These catalysts are difficult to predict but offer 

significant value due to their unexpected positive performance. They are also marked 

in the same way in figure 3.3b, which provides further details. 
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Figure 3.3. Developed catalyst by active learning. a, Prediction and testing results for each 

catalyst during active learning. The color of the background represents the degree of belief, and 

the color of the dots shows whether the catalyst was found from strategy of exploitation or 

exploration. The stars were marker for positive catalysts that is discovered from exploration 

strategy, especially degree of belief for non-positive catalyst is higher than degree of belief for 

positive. b, Catalyst phylogenetic tree for this chapter. Out of all 536 evaluated catalysts, only 

the positive ones were included here. Catalysts with similar physical properties are displayed 

adjacent to each other on the phylogenetic tree. Catalysts with more similar catalysts are placed 

at the center of the tree, while less similar ones are placed on the periphery. The branches are 

color-coded based on the type of catalyst support and controlled thickness by its C2 yield. 
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Catalyst names with no background color indicate those developed in our previous study, while 

those with red and blue backgrounds signify catalysts developed in this chapter. Specifically, 

catalysts with red backgrounds correspond to those developed using exploitation strategies, and 

those with blue backgrounds were developed using exploration strategies. Among the catalysts 

developed in this chapter, serendipitous catalysts were marked with stars.  

 

To enhance catalyst chemists' intuitive understanding of the catalysts 

developed in this chapter from a chemical viewpoint, I constructed a catalysis 

phylogenetic tree[30,31]. This tree was developed by first calculating a distance matrix 

based on predefined distances between catalysts, followed by hierarchical clustering. 

The matrix for the phylogenetic tree was compiled by exhaustively calculating the 

distances between pairs of catalysts across 19 physicochemical properties that are 

crucial in catalytic chemistry[44]. These distances were then clustered using the 

neighbor-joining method, a technique commonly used in molecular biology for creating 

phylogenetic trees. The 19 attributes considered in this analysis included atomic 

number, atomic radius, atomic weight, boiling point, density, electron affinity, 

Pauling's electronegativity, first ionization energy, molar heat capacity, melting point, 

molar volume, total valence electrons, valence electrons in the d, f, p, and s shells, 

period, thermal conductivity at 25°C, and Van der Waals radius. These features were 

sourced from the XenonPy library in Python and were standardized for consistency[45]. 

The distance between the components of two catalysts, A (represented as A{aA, bA, cA, 

dA, ...}) and B (represented as B{aB, bB, cB, dB, ...}), was calculated using a following 

formula. This formula took into account the differences in the aforementioned 

physicochemical properties between each pair of catalysts, allowing for a systematic 

and quantitative comparison of their chemical characteristics. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝐵 = ∑ min (∑ √ ∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑘,𝐴𝑖
− 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑘,𝐵𝑗

)
2

|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|

𝑘

|𝐵|

𝑗

)

|𝐴|

𝑖
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The distances are calculated by identifying and summing the distances 

between each component of Catalyst A and its closest corresponding component in 

Catalyst B. The identification of the closest corresponding component is conducted 

separately for each of the supporting metal and the support. For example, when 

comparing Catalyst A (K-Cs-W/SiO2) with Catalyst B (Na-Zr-Mo/SiO2), distances are 

computed and summed between K and Na, Cs and Na, W and Mo, and SiO2 and SiO2. 

This approach ensures that catalysts with similar properties are grouped closely on 

adjacent branches of the phylogenetic tree, while those with differing properties are 

placed further apart. Catalysts sharing more properties are positioned nearer to the 

center of the tree, and those with more unique compositions are placed further outwards. 

For the analysis, only catalysts yielding over 13% C2 were included, totaling 160 out 

of the 536 evaluated (376 original plus 160 additional). The tree is color-coded based 

on the type of catalyst support, with thicker branches indicating higher C2 yields. 

Catalysts designed using exploitation strategies are indicated with an orange 

background, while those from exploration strategies have a blue background.  

BaO-supported catalysts represent approximately 44% of the total, with La2O3-

supported catalysts at about 19% and CaO-supported catalysts at 15%. In comparison, 

Al2O3-, CeO2-, and ZrO2-supported catalysts account for only 2%, 3%, and 6% of the 

entries, respectively. The solid surface acid-base properties of the aforementioned oxide 

supports and their distribution in the entries are strongly correlated. The trend in the 

number of entries suggests that solid bases are more prevalent than solid acids, which 

in turn are more common than amphoteric solids. Indeed, the surface basicity of the 

catalyst is a crucial factor in OCM, aligning with these findings[46–48]. On the 

supported element side, acidic and amphoteric solid-based catalysts mainly feature 

alkali metals, alkaline earth metals, or lanthanides, as well as early transition metals. 
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Basic solid-based catalysts also exhibit similar combinations but perform well even 

solely with strongly basic metals. Catalysts exclusively using early transition metals are 

primarily found in basic solid-based catalysts. This suggests that basic solids are 

intrinsically active and accommodate various combinations, whereas acidic and 

amphoteric solids are more inert and admit fewer applicable combination rules. 

Activation of the supported elements often requires the combination of basic metals 

and early transition metals. An example is the Mn-Na2WO4/SiO2 catalyst, a high-

performing standard in the OCM field, which combines a basic metal with early 

transition metal elements in the form of Na2WO4. Some researchers posit that the active 

site is the tetrahedral WO4
2-[40,41]. This phylogenetic tree analysis offers a 

comprehensive view of the catalysts' properties, supporting elements, and their impact 

on OCM performance. 

Next, I focus on catalysts denoted with stars. Two outstanding catalysts 

marked with green stars are found on BaO supports and one each on CeO2, CaO, and 

SiO2 supports. Among all five catalysts, three—Sr-Zr-La/BaO, K-Mo-Mo/BaO, and 

Na-Mn-W/CeO2—were developed using the exploitation strategy. In contrast, the two 

exceptional catalysts created using the exploration strategy, K-Cs-W/SiO2 and Zn-La-

Tb/CaO, can be identified as both superior and serendipitous. These two catalysts are 

unique in that they exhibit extremely high performance unexpectedly, despite the non-

positive performance of analogous catalysts. Examining the composition of each of the 

four catalysts, it is apparent that Sr-Zr-La/BaO, K-Mo-Mo/BaO, Na-Mn-W/CeO2, and 

K-Cs-W/SiO2 include the previously mentioned combinations of basic metals and pre-

transition metals as support elements. The latter two catalysts' compositions closely 

resemble those of the standard catalysts mentioned earlier, while Zn-La-Tb/CaO does 

not contain any early transition metals. 
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Shifting focus to serendipitous catalysts as a whole, discoveries include one 

each from CeO2-supported, SiO2-supported, and MgO-supported catalysts, as well as 

three from CaO-supported catalysts. Among the serendipitous catalysts, Na-K-

Mo/CeO2 and Ca-Zr-La/CaO closely resemble the superior catalysts Na-Mn-W/CeO2 

and Sr-Zr-La/BaO, respectively, in terms of composition. Among the six serendipitous 

catalysts, Zn-La-Tb/CaO, Mo-Ba-Tb/CaO, Ca-Zr-La/CaO, and Li-La-Tb/MgO all 

share the commonality of being "lanthanide-supported alkaline earth metal oxides." 

Serendipitous catalysts exhibit a synergistic effect, distinguishing them from analogous 

catalysts, and may serve as a stepping stone to discovering superior catalysts. Predicting 

the occurrence of serendipity could therefore be invaluable for catalyst development. 

To closely examine the conditions that give rise to serendipity, Table 3.1 presents the 

prediction results for developed catalysts using catalyst recommendation systems and 

traditional classifiers, each with varying numbers of substitution dimensions during 

elemental substitution.  

 

Table 3.1. Difference of character of various classifiers 

 

 

It appears that two out of six catalysts can predict the true class with some 

classifiers, while the remaining four catalysts still fail to predict the true class accurately. 

However, it may be possible to identify common features of serendipitous catalysts, 

such as 'lanthanide-supported alkaline earth metal oxides,' within the composition of 
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the catalysts. Therefore, a machine learning system has been developed to predict the 

occurrence of serendipity, which utilizes the following four descriptors: (1) predictions 

from the main recommender, (2) predictions from a recommender with an algorithm 

slightly different from the main one, (3) predictions from traditional classifiers, and (4) 

the catalyst's composition. This system, termed the catalyst serendipiter system, is 

depicted in figure 3.4a. 
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Figure 3.4. Catalyst serendipiter system and serendipity induction. a, Concept of serendipity 

detection. Prediction errors during active learning are considered serendipitous events and serve 

as the objective variable. I categorize these serendipities into three patterns: under-estimation, 

correct estimation, and over-estimation by the main recommender system, relative to actual 

measurements. To predict these occurrences, I use catalyst composition and prediction results 

from various learners as the explanatory variables. This approach enables us to predict 

serendipity based on both the common catalyst composition and the unique characteristics of 

each learner's algorithm. b, Each evaluation function of candidate classifiers for catalyst 

serendipiter. Four candidates were used: logistic regression, support vector machine, random 

forest classification, and naïve Bayes. Performance measures of precision, recall, and F1 score 

were computed for each of the three prediction classes of serendipiter. c, Model of model for 

catalyst serendipiter system. It is a decision tree constructed with descriptors which are same 

with setendipiter and target valuable which is prediction results of serendipiter. d, Prediction 

and testing results of recommended catalyst. 7 case of serendipities were actually induced.  

 

The alignment of the recommender system's predictions with actual 

measurements is classified as "correct," "over-estimation," or "under-estimation." A 

"correct" classification means the recommender's prediction matched the actual result. 

"Over-estimation" occurs when the recommender predicts a positive outcome, but the 

actual result is non-positive. "Under-estimation," which is defined as serendipity, is the 

reverse scenario of over-estimation, where the recommender predicts a non-positive 

outcome, but the result is positive. The serendipiter system then categorizes each 

prediction from the main recommender as over-estimation, correct, or under-estimation. 

In cross-validating the serendipiter, samples with an uncertainty of 1 at the time of 

recommendation were excluded. Among the 160 catalysts evaluated during adaptive 

sampling, 74 were relevant for this analysis, including 6 under-estimations, 18 over-

estimations, and 50 correct predictions. To increase the instances of under-estimation, 

an additional 80 catalysts were assessed using the serendipiter, thus augmenting the 

training data. This additional evaluation selected catalysts with an uncertainty not equal 

to 1, aiming for a balanced distribution among under-estimation, over-estimation, and 

correct categories. With this expansion, the training data included 16 under-estimations, 

31 over-estimations, and 102 correct classifications. Leave-one-out cross-validation 



96 
 

results with this enlarged dataset are presented in figure 3.4b. A baseline, established 

based on class balance for comparison, is also shown in figure 3.4b. While the baseline 

scores are slightly higher than the serendipiter for correct recall, this is primarily due to 

the predominance of correct cases in the sample. The serendipiter exhibits superior 

performance in predicting both under-estimations and over-estimations. 

To understand how the serendipiter system predicts serendipitous discoveries, 

a 'model of model' approach was introduced[49]. The model of model is a method used 

to interpret the prediction process of a highly opaque learning unit, such as a neural 

network. It involves using the inputs and outputs of this complex learning unit as 

training and target data, respectively, for decision tree analysis. This approach helps to 

shed light on how predictions are made by the original learning unit. Decision tree 

classification is an algorithm that classifies data by dividing it into increasingly specific 

subsets. It uses a tree-like structure where each internal node denotes a separation based 

on a particular feature, and each leaf node corresponds to a class label. The partitioning 

process is designed to either maximize or minimize specific criteria, such as Gini 

impurity or information gain, to optimize the classification. Figure 3.4c illustrates this 

constructed model of model, showcasing the decision-making process of the 

serendipiter system. 

Initially, classification starts based on the prediction results from the main 

recommender. Given that over-estimations usually arise from positive predictions, and 

under-estimations from non-positive predictions, this initial classification is a logical 

step. Subsequently, within the branch of positive predictions, logistic regression 

outcomes are employed for further branching. This indicates that logistic regression is 

notably effective among various learners and catalyst compositions, particularly in 

predicting over-estimation. It also visualizes how other predictors refine the 
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recommender's initial predictions. Moving to the non-positive predictive branch of the 

main recommender, the first adjustment is made based on the presence of potassium. If 

potassium is included, the purity of under-estimation predictions is enhanced at the next 

node by the absence of group 10 elements. In contrast, in the branch where potassium 

is not included, the unary recommender steps in to correct the prediction. Each 

algorithm learns different rules for catalyst design, and the serendipiter leverages these 

to predict the occurrence of serendipity. Essentially, a decision based on elemental 

composition reveals that the main recommender is more accurate with catalysts 

containing a specific element, as evidenced by a higher number of correct predictions 

on the 'with' side. This implies that the main recommender has a better understanding 

of catalysts containing that element, resulting in fewer errors. From this observation, I 

infer that the main recommender is more susceptible to prediction errors when elements 

such as potassium or lanthanum are present. Catalysts with combinations of three or 

more elements that include them are more likely to exhibit altered catalytic performance 

due to synergistic effects. 

An attempt was made to practically induce serendipity using the Serendipiter. 

Sixteen catalysts were chosen by roulette sampling based on their recommendation 

weight among those predicted as under-estimation. The degree of belief and actual 

performances of these 16 catalysts are depicted in figure 3.4d. Successfully, serendipity 

was induced in 7 out of the 16 cases, demonstrating that serendipity, typically a chance 

occurrence, could be artificially induced with a probability of 43.8%. This induction 

rate represents a fivefold increase in efficiency compared to the serendipity probability 

during adaptive sampling, which was 8.1% (approximately 6 out of 74). Moreover, 

focusing on the seven serendipitous catalysts identified, I note that three were 

discovered using Al2O3 and ZrO2 catalysts, substances are sensitive to the 
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combinatorial law. Notably, the Serendipiter's effectiveness is confirmed for Na-Y-

Tb/Al2O3 and Ti-Y-La/ZrO2, as these combinations were not paralleled by any similar 

catalysts on the same supports in the phylogenetic tree presented in figure 3.3b. 

3.4. Conclusion 

In summary, this chapter has developed a framework for accelerated catalyst 

discovery by combining the evidence theory and ideas of elemental substitution to 

develop an algorithm for catalyst performance estimation, which is then used in 

conjunction with adaptive sampling. The algorithm, named the catalyst recommender 

system, is able to balance exploration and exploitation strategies by quantifying 

uncertainties. This feature has led to the development of several high-performance 

catalysts that have been difficult to find in our data so far. 

Additionally, a supplementary layer of learning, the catalyst serendipiter system, 

was established. This system focuses on learning the emergence of high-performance 

catalysts that were challenging for the recommender system to predict. It enables the 

artificial reproduction of serendipity, a traditionally unpredictable but vital element in 

catalyst development. A practical outcome of this methodology is the successful 

identification of promising and unfamiliar OCM catalyst candidates such as Na-Y-

Tb/Al2O3 and Ti-Y-La/ZrO2. 
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Chapter 4 

Visualization for Evolutionary History of Catalysis 
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Abstract: The design of solid catalysts is a complex challenge, heavily reliant on 

uncovering synergistic component combinations where individual elements contribute 

to the reaction cycle by their own, stabilize each other, and/or generate specific 

structures. The prediction of such combinatorial effects spans multiple spatiotemporal 

scales, rendering it a formidable task given the historically trial-and-error nature of 

catalyst development. Data science holds promise for discerning these combinatorial 

laws, yet the small, inconsistent, and often incomplete datasets present obstacles for 

deploying robust machine learning predictions. To address these challenges, this 

chapter introduces a method that employs phylogenetic trees—traditionally used in 

biology and linguistics—to map the evolutionary development of catalysts. This 

method calculates catalyst "distances" to visualize incremental advancements in the 

field, leveraging data from literature and high-throughput experiments. By creating a 

catalytic phylogenetic tree, I trace the lineage of catalyst development and introduce a 

horizontal propagation strategy for catalyst design. The application of this strategy to 

oxidative coupling of methane has yielded high-performing catalysts at low 

temperatures, underscoring the potential of phylogenetic trees as a powerful tool in 

navigating combinatorial catalyst designs. 

 

Keywords: Data visualization, Phylogenetic tree, Catalyst informatics, Catalyst design, 

Oxidative coupling of methane. 
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4.1. Introduction  

One of the keys to solid catalyst design lies in the discovery of synergistic 

combinations of components[1–3]. In these combinations, each component plays a 

distinct role in the overall reaction cycle[4–7], specific structures are generated upon 

combining components[8–12], and one component may stabilize another[13,14]. On 

the other hand, the combinatorial effect arises from a complex interplay across multiple 

spatiotemporal scales with other catalyst components and all elementary reactions 

present in the system, making the prediction of the combinatorial effect extremely 

challenging[15,16]. Historically, the development of solid catalysts has relied heavily 

on trial and error[17]. Currently, attempts to statistically model the combinatorial laws 

of catalysts using data science techniques are yielding promising results[18–20]. In this 

context, several datasets compiling catalytic data from the literature have been 

published[21–24]. However, the data science approach has unveiled critical issues: the 

datasets' small size, the low homogeneity in the data acquisition process, and the 

scarcity of negative results, which significantly limit the application of reliable and 

meaningful machine learning techniques[25,26]. Approaches to this problem include 

using homogeneous and naturally distributed data from laboratory notebooks and high-

throughput experiments, and, in the long term, efforts to standardize the data[27–31]. 

Alternatively, literature data could also serve as input for supervised machine learning 

as it stands — not for quantitative prediction of unknown catalysts, but to provide useful 

hints for researchers contemplating their next experiments, such as combination rules 

or overlooked ideas. 

The phylogenetic tree is technique developed in molecular biology and 

bioinformatics to represent the evolutionary pathways of organisms in the form of a 

tree[32]. They infer the phylogeny of organisms through cluster analysis, using 



108 
 

distances calculated between organisms based on gene and amino acid sequences. 

These trees operate under the assumption that by connecting closely related species 

among existing organisms, one can infer their differentiation or evolutionary processes. 

The concept of phylogenetic trees, which presupposes a common ancestor from which 

all diversification has occurred, is also applied in the field of linguistics[33]. In 

linguistics, phylogenetic trees are used to trace the evolution of languages by assuming 

a common origin and comparing features such as phonology, lexicon, and grammar. 

Furthermore, the principles of phylogenetic trees are adaptable for tracing processes in 

areas where developments are thought to have emerged through incremental changes. 

For instance, combination searches in catalyst development are conducted through 

stepwise modifications to existing combinations, making the research framework 

particularly amenable to visualization using phylogenetic trees. Additionally, unlike in 

biology and linguistics, it is relatively straightforward to branch out new lineages on 

the phylogenetic tree in catalytic chemistry. This characteristic may provide a valuable 

roadmap for strategizing in the design of new catalysts. 

I therefore propose a method to visualize the development history of solid 

catalysts using phylogenetic trees, based on combinatorial laws. By establishing a 

method to calculate distances between catalysts and creating a catalytic phylogenetic 

tree from the publicly available catalytic reaction literature database, I can visualize the 

incremental improvements that have occurred throughout the history of catalyst 

development. Furthermore, by incorporating our large-scale catalytic data obtained 

from high-throughput experiments into the catalytic reaction database, I facilitate a 

phylogenetic tree-based comparison between historical data and data self-generated by 

individual laboratories. I aim to demonstrate the utility of phylogenetic trees in catalytic 

chemistry by designing and evaluating catalysts based on the insights gained. 
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4.2. Methods 

4.2.1. Data pretreatment 

The OCM literature database, initially constructed by Zavyalova et al.[21] and 

later re-edited by Mine et al.[22], was utilized in this chapter. This database compiles 

all published catalytic reaction data from articles spanning from 1982 to 2019, 

comprising a total of 4,759 data points. Each data point includes detailed information 

on the catalyst, such as the type and compositional ratio of the catalyst components 

(precursor cations, anions, promoters, and supports) and the active elements of the 

catalyst. It also encompasses process condition information like the catalyst preparation 

method and reaction temperature. This is linked to the output data on conversion, 

selectivity, and yield when the catalyst is assessed under these specified conditions. 

However, some data, such as certain process conditions or output information, may be 

missing depending on the source article. In this chapter, yield was considered the most 

critical output information. Therefore, data points lacking yield information were 

omitted from this analysis. Consequently, 44 data points were removed, resulting in a 

revised total of 4,715 data points. Moreover, discrepancies exist in the database 

regarding the presence of supports or active elements in some catalysts. To standardize 

the comparison, I temporarily disregarded the predefined framework of active elements 

and supports. The element with the highest compositional ratio was designated as the 

main component, i.e., the support, while others were considered modifiers. Elements 

with a compositional ratio exceeding half of that considered a support were also 

categorized as supports. Precursor anions were excluded from the catalyst composition, 

as they are typically replaced by oxygen during the sintering process. 

Catalyst improvement can be categorized into two screening approaches: one in which 

the elements constituting the catalyst are varied to search for new combinations, and 
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another where the types of elements are fixed, focusing on optimizing their 

compositional ratios and process conditions. The latter approach is often undertaken 

after a promising elemental composition has been identified by the former. In this 

chapter, results from catalysts with identical elemental compositions are aggregated and 

treated as outcomes from a single catalyst to visualize the screening direction process. 

When integrating results from catalysts of the same composition, the median yield from 

a set of catalysts with a specific elemental combination was used as the performance 

representative for that composition. Additionally, the number of overlap on a single 

catalyst was recorded, as it can serve as an indicator of the level of attention that the 

catalyst has garnered in the particular catalytic reaction. 

 

4.2.2. Distance definition 

To generate the phylogenetic tree, I first defined a method for calculating the 

distance between catalysts. In molecular phylogenetics, phylogenetic trees utilize the 

"edit distance" to calculate the distance between two gene sequences or amino acid 

sequences. For instance, with genes, the simplest method involves counting the number 

of substitutions, insertions, or deletions of adenine (A), thymine (T), guanine (G), and 

cytosine (C) required to make two gene sequences identical. Inspired by this concept, I 

calculate the distance between two catalysts based on their non-common elements. 

Instead of merely tallying the number of substitutions and other operations, I 

incorporated 19 chemical parameters traditionally considered significant in catalysis 

into the distance calculation. These 19 parameters are listed in Table 1. It's important 

to note that these values were sourced from the Python library XenonPy and were 

standardized for each parameter[34]. Utilizing these parameters to calculate the 

distance allows for catalysts that are perceived as similar by catalysis researchers to be 
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placed in close proximity on the phylogenetic tree, even if they have undergone the 

same number of substitutions. The specific method to determine the distance involves 

calculating the sum of the Euclidean distances for the 19 parameters for the non-

common elements of each modifier and main component, respectively, applying 

appropriate weightings, and then combining these sums. The weights are determined 

based on the visualization objective. If catalyst A is represented by A{aA, bA, cA, dA, ...} 

and catalyst B by B{aB, bB, cB, dB, ...}, the distanceAB is calculated as follows: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝐵 = ∑ min (∑ √ ∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑘,𝐴𝑖
− 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑘,𝐵𝑗

)
2

|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|

𝑘

|𝐵|

𝑗

)

|𝐴|

𝑖

 

 

Table 1. Employed features 

k Featurek 

1 Atomic number 

2 Atomic radius 

3 Atomic weight 

4 Boiling point 

5 Density 

6 Electron affinity 

7 Pauling’s electron negativity 

8 First ion energy 

9 Molar heat capacity 

10 Melting point 

11 Molar volume 

12 Total valance electron 

13 Valance electron in d shell 

14 Valance electron in f shell 
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15 Valance electron in p shell 

16 Valance electron in s shell 

17 period 

18 Thermal conductivity at 25 ℃ 

19 Van der Waals radius 

 

4.2.3. Construction of phylogenetic trees 

After exhaustively calculating the distances between all catalyst combinations 

and compiling the distance matrix, a phylogenetic tree was constructed using the 

neighbor-joining (NJ) method[35]. The NJ method constructs the phylogenetic tree 

based on the premise that the most accurate phylogenetic tree has the shortest total 

branch length. It is a greedy algorithm that, unlike other methods, does not assume a 

constant rate of evolution. Instead, it identifies the pair of leaves (defined as neighbors) 

that adhere to the principle of minimum evolution at each step of the phylogenetic tree 

construction. It should be noted that, due to considerations of data reliability and the 

size of the phylogenetic tree, only catalysts with an overlap count of five or more are 

displayed. 

Catalysts that are frequently investigated in the targeted catalytic reaction are 

considered mainstream within that context. I posit that the support, which constitutes 

the main component of the catalyst, dictates the broad behavior of the catalyst. A 

support represented by two or more catalysts with an overlap count of 30 or more was 

designated as the main catalytic system within that catalytic reaction. Branches linked 

to catalysts identified as part of the major catalytic system were color-coded 

accordingly. The thickness of the branches was modulated to reflect the number of 

overlaps, facilitating an intuitive discernment of the major catalysts in a given catalytic 
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reaction. Additionally, to depict the performance of catalysts on the phylogenetic tree, 

the background color of the catalyst names was varied on a gradient from white to red 

to represent increasing performance. 

 

4.2.4. Catalyst preparation and evaluation 

All catalysts were prepared using the co-impregnation method. Precisely 0.37 

mmol of the modifier precursor was measured and added to 1 g of support and 5 mL of 

H2O, then stirred at 50 °C for 6 hours. The mixture was subsequently dried under 

reduced pressure at 90 °C for 4 hours. If necessary, the process of impregnation and 

reduced pressure drying was repeated with a metal alkoxide-type precursor in ethanol. 

Following this, the catalyst was calcined at 1000°C for 4 hours. The produced catalysts 

were evaluated under 135 different conditions using a high-throughput catalyst 

evaluation system. For the preparation of Ca-La catalysts, equimolar amounts of 

Ca(OH)2 and La2O3 were used and impregnated.  

Metal precursors used in this chapter were LiNO3, NaNO3, Mg(NO3)2, KNO3, 

Ca(NO3)2·4H2O, Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, 

Co(NO3)2·6H2O, Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, 

Y(NO3)3·6H2O, ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, 

Ba(NO3)2, La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(CH3COO)3·5H2O, 

Tb(NO3)3·5H2O, Hf(OEt)4, and (NH4)10H2(W2O7)6. They were purchased from either 

of Sigma–Aldrich, Kanto Chemical, Wako Pure Chemical Industries, and Alfa-Aesar. 

The following solid powders were used as supports or as support precursors: Calcium 

hydroxide (Ca(OH)2, Wako Pure Chemical Industries), titanium(IV) oxide (TiO2, 

anatase, Kanto Chemical), barium hydroxide (Ba(OH)2·8H2O, Wako Pure Chemical 
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Industries), lanthanum(III) oxide (La2O3, Wako Pure Chemical Industries), and Tin(IV) 

oxide (SnO2, Wako Pure Chemical Industries).  

 

4.2.5. Synthesis of Ti-Sn-Ba Support 

Ba(OH)2·8H2O, TiO2, and SnO2 were measured out in a 1:1:1 molar ratio, 

moistured, and ground in an agate mortar for 20 minutes. The resulting paste was dried 

at 110 °C overnight. The dried material was then reground in an agate mortar for an 

additional 20 minutes. Subsequently, the resulting powder was calcined at 1000 °C for 

5 hours. After calcination, it was ground again using a mortar and used for catalyst 

preparation. The XRD pattern of the synthesized material, presented in figure 4.1, 

confirms the presence of BaTiO3 and SnO2, with minimal contributions from the 

starting materials Ba(OH)2 and TiO2. It is noted that no halide precursor was utilized in 

the synthesis to prevent potential damage to the reactor. 

 

Figure S4.1. XRD pattern of prepared Ti-Sn-Ba support. measured from 3° to 90° by 

0.01° at 5 degree/min; the small peak overlapping BaTiO3(110) near 30° is 

BaSnO3(110) (perovskite-type compound) is possible. 



115 
 

4.3. Results 

4.3.1. Visualizing history using phylogenetic trees 

 

Figure 4.2. Catalyst phylogenetic tree for OCM literature data. In the phylogenetic tree, 

only catalysts with an overlap count of five or more are included. The thickness of a 

branch correlates with the number of overlaps—the thicker the branch, the higher the 

overlap count. A total of 198 catalysts met the criteria for inclusion. The median 

performance representation is limited to a maximum of 20% C2 yield.  
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In the OCM literature database[22], there were 198 catalysts with more than 

five overlaps. The phylogenetic tree generated using the 198 catalysts is shown in figure 

4.2. Based on the defined criteria of a support having two or more catalysts with an 

overlap frequency of thirty or more as indicative of the main catalytic family for a given 

reaction, four main families of OCM have been identified.  

The first family is characterized by Mg as the support, corresponding to the 

catalysts linked to the purple branch in the lower right region of the phylogenetic tree. 

The four most extensively studied catalysts in this category are Mg, Li/Mg, La/Mg, and 

Li-Sm/Mg, with support metals primarily comprising alkali metals, alkaline earth 

metals, and lanthanides. Performance trends suggest that high efficiency is often 

achieved with at least two supporting elements, forming a ternary system. However, 

the introduction of transition metal elements into a ternary system seems to adversely 

affect performance. Combinations of alkali or alkaline earth metals with lanthanides 

are common, with Ba-La/Mg displaying particularly high efficacy. The most notable 

Mg-based catalyst in the literature is Li/Mg, recognized as one of the top-performing 

catalysts in OCM[36]. Discovered by Ito and Lunsford in 1985[37], the active site of 

this catalyst is believed to be the locally generated O- by the doping of Li+ into Mg2+O2-

[36]. However, the Li+ that contributes to the active site is considered highly volatile 

at elevated temperatures, leading to deactivation through evaporation as LiOH or 

migration into the quartz reactor tube as Li2SiO3[36]. 

The second group of catalysts that have been extensively investigated in the 

context of OCM is the Ca-supported catalysts. These are associated with the yellow-

green branch located to the left of the Mg family on the phylogenetic tree. The names 

of the catalysts suggests that there has been limited exploration in diversifying the 

combinatorial rule for Ca-based systems. However, several catalysts within this group, 
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such as Ca, La/Ca, Na/Ca, and Pb/Ca, are evidenced by thick branches on the tree, 

indicating substantial research focused on their compositional ratios or reaction 

conditions. Indeed, Ca-supported catalysts are recognized in the literature for their high 

methane conversion capacity and their exceptional performance at low 

temperatures[38]. 

The third phylogenetic lineage is the La-supported catalyst group. These 

catalysts are identified by a red branch in the top right-hand corner of the phylogenetic 

tree. In contrast to the other catalytic systems discussed, this group appears less 

clustered, suggesting a broader consideration of rare-earth metal oxides, like La, in 

OCM research. Within this category, Sm and Nd are frequently used as catalysts[39]. 

On the combinatorial development front, Li-Mg-Mn/La stands out as the sole higher-

order combination designed among lanthanide-based catalysts, while the rest are either 

only the support or feature a single element on the support. Typically, alkali metals and 

alkaline earth metals are chosen for combination with lanthanide supports. Literature 

reports lanthanide oxide catalysts, particularly La2O3, as being highly active at low 

temperatures[36,39]. Contrary to most OCM catalysts that exhibit methane conversion 

capacity only between 700 °C and 900 °C, La2O3's activity is notable even below 

600°C[40], [41]. This high methane conversion capacity is attributed to the ability of 

the catalyst to stabilize oxygen adsorbed from the gas phase onto the catalyst surface in 

various ionic forms, including O-[36,39]. Surface basicity among lanthanide supports 

is regarded as a parameter closely related to catalytic activity[7,42]. 

The fourth phylogenetic group of catalysts employs Si as a support. This group 

is linked to the light blue branch situated in the bottom left area of the phylogenetic tree. 

Within this group, one particular catalyst, Na-Mn-W/Si, is distinguished by a thicker 

branch, signifying its status as the catalyst with the highest performance and stability 
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currently known in OCM[43,44]. It is hypothesized that the collective action of all 

components of this catalyst is essential for its performance, and the absence of any 

component leads to an immediate decline in efficacy[43,44]. This is corroborated by 

the background colors of Mn-W/Si, Na-W/Si, and Na-Mn/Si on the phylogenetic tree. 

The tree facilitates a gradual examination of the composition of the present catalyst. 

For instance, in Na-Mn-W/Si, replacing Na with another alkali metal is a common 

research focus. When substituting alkali metals, performance generally improves with 

the heavier substitutes. With the addition of another supporting element, it is noted that 

elements such as Ti, Zr, Ce, La, Ga, Mg, and Ag have been explored. From the 

phylogenetic tree, it is evident that the addition of Ga significantly hinders catalytic 

performance, while the incorporation of La leads to the most notable performance 

enhancement. Ti, Zr, and Ce are elements known for their multiple electronic states. In 

OCM, the transformation of methane into methyl radicals is a crucial initial reaction 

step that involves electron transfer, suggesting that these elements might be added to 

the catalyst to facilitate a redox reaction with methane on the catalyst's surface. The 

standard catalyst in OCM is recognized for its high selectivity at elevated temperatures, 

and introducing La to the current catalyst likely aims to combine this selectivity with 

lanthanum's low-temperature activity. For a catalyst with five elements loaded onto Si, 

the selection of combinations draws from those elements considered at the four-element 

stage. As the number of components reaches this level, the surface phenomena become 

exceedingly complex, rendering it challenging to deduce the processes at play. Thus, 

similar to the stage with four elements supported, catalyst design must rely on empirical 

combinations of the elements used to date. 

A notable group of catalysts that has not yet been mentioned includes those 

with supports composed of two or more metals. These are typically referred to as mixed 
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oxide or perovskite-type catalysts. Mixed oxide catalysts essentially aim to combine 

two catalyst systems. In contrast, perovskite-type catalysts serve as model systems for 

understanding OCM due to their simple and definitive structure compared to other solid 

catalysts, such as Mn-Na2WO4/SiO2[45,46]. Moreover, when used in conjunction with 

certain dopants or halogen-based precursors, these catalysts are also recognized for 

their considerable performance[47–49]. These catalysts are said to perform by 

producing electron holes in the perovskite due to the influence of dopants and 

precursors, causing the catalyst itself to behave like a p-type semiconductor and 

adsorbing gas-phase oxygen to the surface with form for high C2 selectivity by electron 

holes moving across the surface[48]. 

In general, it is apparent that the standard OCM catalyst leads the way in terms 

of combinatory development compared to other catalyst families. The challenge in 

understanding combination development within OCM reactions is largely due to the 

extremely high reaction temperatures, typically around 800 °C, which complicates in 

situ or operando analysis. Consequently, development strategies have been 

predominantly empirical. To break through these challenges, there is a need to either 

refine analytical techniques for a deeper understanding or to establish statistical 

methods that can navigate the complexity of catalyst combinations as they currently 

exist. As discussed, the deployment of phylogenetic trees has allowed us to visualize 

the evolutionary history of OCM catalysts effectively. 

 

4.3.2. Phylogenetic tree reconstructed with the addition of  our catalysts 

Our group, inclusive of my contributions, has integrated a total of 636 catalysts 

into the phylogenetic tree[26,50–52]. It is important to note that all catalysts developed 
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by our group were assessed under 135 uniform reaction conditions. However, for the 

sake of equity in the representation on the tree, the branch thickness has been 

normalized to the finest level. This adjustment is due to the fact that occurrences from 

a single research group should not be weighted equally with those more widely reported. 

To maintain clarity and prevent the tree from becoming overwhelmingly large, data 

representing less than 15% C2 yield were omitted prior to determining the median 

catalytic performance. Subsequently, only those catalysts with an overlap occurrence 

of five or more were included in the tree. Out of the historically measured catalysts, and 

those evaluated in our study, 115 catalysts fulfilled these criteria. A phylogenetic tree 

was constructed using the selected catalysts, with those developed by our team denoted 

by a red star next to the catalyst name. 
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Figure 4.3. Catalyst phylogenetic tree featuring our catalysts. 

 

 Among the existing catalyst systems, I have successfully developed a 

number of catalysts based on Mg, Ca, and La. For Mg-based catalysts, I have reinforced 

the general rule that a binary support combining an alkali or alkaline earth metal with 

a lanthanide tends to perform well, as evidenced by our development of the Li-Eu/Mg 

catalyst. The Sr-Cs/Mg catalyst deviates slightly from this rule, as it does not 

incorporate lanthanides. Mg-based catalysts with three supported elements are scarce 

in published data, suggesting that our study has pioneered the discovery of numerous 
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such catalysts. Catalysts like Ca-Sr-Eu/Mg, Na-Eu-Hf/Mg, and Li-Ba-Hf/Mg all adhere 

to the general rule for binary support. The latter two, which include Hf, hint at the 

potential for higher-order combinations. Regarding Ca-based catalysts, prior to our 

study, the phylogenetic tree in figure 4.2 displayed only K-Ni/Ca as a catalyst with 

more than two supported elements. Our research has expanded this category 

significantly. Two noteworthy binary-supported catalysts are Ba-Eu/Ca and Ti-Tb/Ca, 

both lanthanide-supported. The addition of Cs to create Ti-Cs-Tb/Ca seemed promising, 

but a comparison of the background colors indicates superior performance without Cs. 

Other ternary-supported catalysts primarily incorporate alkali metals, alkaline earth 

metals, and lanthanides, following a combination rule similar to that for Mg. Unlike 

Mg, however, many Ca-based catalysts include group 4 elements like Ti and Zr, besides 

Hf. La-based catalysts, which were previously not represented in the phylogenetic tree 

with binary element combinations, have now been included thanks to our research. 

Generally, the performance follows rules akin to the historical design principles for 

Mg-based catalysts, with the exception of Ti-W/La, which appears to obey a different 

rule. For ternary combinations, Hf is a common inclusion, as seen in the previously 

mentioned examples. In the existing catalyst system based on Si, I have successfully 

developed Na-Mo/Si and K-Cs-W/Si. Both of these align with the Na-W component 

found in standard catalysts. 

In beyond existing catalyst systems, a number of catalysts have been 

successfully developed using Ba as a support. In total, there are 45 Ba catalysts that 

meet the criteria displayed on the phylogenetic tree. Historically, Ba-based catalysts 

have not been extensively explored in the context of OCM, except for the Ti-Sn-Ba 

system. Considering that catalyst surface basicity is linked to performance, it would be 

expected that alkaline earth metals like Mg, Ca, Sr, and Ba would be ideal; however, 
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Sr and Ba tend to form stable carbonates under OCM conditions, which are thought to 

cover the active sites, hindering their effectiveness as catalysts[36]. Given that the 

OCM reaction is exothermic, the temperature at the reaction site is likely higher than 

the set reaction conditions[36]. Conversely, the endothermic decomposition of BaCO3 

could mitigate excessive temperatures by cooling the reaction zone, potentially 

preventing deep oxidation of C2 products. Indeed, the catalytic system demonstrates 

remarkable selectivity at elevated temperatures. When examining the combination rule, 

a significant number of Ba-based catalysts are found to support group 6 elements, 

diverging from Mg and Ca catalysts. Conversely, there are scarce instances where the 

supported elements are solely alkali metals, alkaline earth metals, and lanthanides, with 

just three cases being Li-Nd/Ba, Li-Nd-Tb/Ba, and La-Ce-Nd/Ba. The incorporation of 

group 6 elements such as Mo and W, also present in standard OCM catalysts, indicates 

a shared design principle. Additionally, the performance of Si-based catalysts hinges 

on the inclusion of alkali metals and group 6 elements or Mn, suggesting that Ba-based 

catalysts are amenable to a broader array of combination possibilities. Beyond Ba-based 

catalysts, two catalysts were identified with Ti, Zr, and Ce as supports. The Ti-based 

system's Cs-W/Ti and Ca-Cs-W/Ti catalysts both feature a Cs-W/Ti ternary 

combination. Similarly, the historically high-performing Na-Ce-W/Ti catalyst also 

exhibits a combination of alkali metals and group 6 elements. It is notable that catalysts 

with Zr and Ce supports have been seldom investigated, with the only one meeting the 

criteria for inclusion on the phylogenetic tree being one I developed. The Zr-based 

system includes the Na-Eu-W/Zr and Li-Mo-Nd/Zr catalysts, both demonstrating 

lanthanide support alongside alkali metals and group 6 elements. In the Ce system, the 

Na-K-Mo/Ce and Na-Mn-W/Ce catalysts were developed. These three systems exhibit 

design rules highly akin to those of standard catalysts. 
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In summary, there are shared design principles across Mg-, Ca-, and La-based 

catalysts, where a foundational rule involves supporting alkali metals, alkaline earth 

metals, and lanthanides. The inclusion of group 4 elements is also effective once these 

basic criteria are satisfied. In the systems involving Si, Ti, Zr, and Ce, the combination 

rules differ from those for Mg, Ca, and La systems. The essential combination rule for 

high performance is the presence of an alkali metal coupled with a redox-active 

transition metal from a prior period. Ba-based catalysts conform to both aforementioned 

sets of combination rules; however, the first rule's applicability is more limited, while 

the second rule enjoys broader applicability. 

 

4.3.3. Catalyst discoveries based on phylogenetic tree 

The phylogenetic tree facilitates a detailed visual exploration of the 

development history of OCM catalysts. Reviewing the high-performance catalysts, 

examples such as Na-Mn-W/Si-Ti-Sn-Ba, and Na-Ce-W/Ti, Na-Mn-La-W/Si emerge, 

which were conceived by applying combination rules and empirical knowledge derived 

from other catalyst systems. Hence, the combination rules for supported metals 

identified through historical OCM catalyst development and this doctoral research had 

been employed for the design of catalysts, through lateral application across different 

supports. The catalyst design is concentrated on mixed oxide support catalysts, which 

are relatively under-explored in OCM history. Special attention was given to Ca-La and 

Ti-Sn-Ba, which show promising performance on the phylogenetic tree. I restricted the 

investigation to these supports, assessing whether the design rules established for each 

catalyst system could be extrapolated to these mixed oxides. The designed catalysts, 

their reference, and design strategies are summarized in Table 4.2. 
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Table 4.2. Designed catalysts based on the extracted knowledge from the phylogenetic 

tree. 

 
Designed 

catalysts 

Reference 

catalysts 

comment 

1 Mg-Zr-Hf/Ca-

La 

Mg-Zr-Hf/Ca our Ca catalyst supporting Hf 

2 Zn-Eu-Hf/Ca-

La 

Zn-Eu-Hf/La our La catalyst supporting Hf 

3 Mg-Sr-Ba/Ca-

La 

Mg-Sr-Ba/Ca our Ca catalyst not to support Hf 

4 Mg-Ca-Nd/Ca-

La 

Mg-Ca-Nd/La our La catalyst not to support Hf 

5 Ti-W/Ca-La Ti-W-W/La our La catalyst supporting only transition 

metal 

6 - Ca-La for comparison 

7 La-Ce-Nd/Ti-

Sn-Ba 

La-Ce-Nd/Ba our Ba catalyst supporting only 

lanthanides 

8 Ca-Cs-W/Ti-Sn-

Ba 

Ca-Cs-W/Ti our Ti catalyst 

9 Zr-Cs-W/Ti-Sn-

Ba 

Zr-Cs-W/Ba our Ba catalyst supporting 2 transition 

metals 

10 Na-Y-W/Ti-Sn-

Ba 

Na-Y-W/Ba our Ba catalyst supporting Na-W 

11 Na-Eu-W/Ti-

Sn-Ba 

Na-Eu-W/Zr our Zr catalyst 

12 Na-Eu-Hf/Ti-

Sn-Ba 

Na-Eu-Hf/Mg our Mg catalyst 

13 Mg-Zr-Hf/Ti-

Sn-Ba 

Mg-Zr-Hf/Ca our Ca catalyst 

14 - Ti-Sn-Ba for comparison 
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Figure 4.4. Relationship between temperature and performance of Ca-La-based 

catalysts 

 

 The results for catalysts with a Ca-La support are summarized in figure 4.4, and 

those for the Ti-Sn-Ba catalyst are outlined in figure 4.5. Figure 4.4 displays the points 

of highest yield at each temperature for each catalyst, with varying colors indicating the 

support material of the reference catalysts. A distinct divergence in the behavior of the 

catalysts is observed, contingent on whether the reference catalyst support was Ca or 

La. The Mg-Zr-Hf/Ca-La and Mg-Sr-Ba/Ca-La catalysts, referencing Ca-based 

supports, exhibited enhanced performance at lower temperatures, with their peak 

performance at 700 °C. Notably, Mg-Zr-Hf/Ca-La achieved a yield of 20.96% at this 

temperature. In the case of Zn-Eu-Hf/Ca-La, Mg-Ca-Nd/Ca-La, and Ti-W/Ca-La, 
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where the reference catalyst support was La-based, the temperature range for optimal 

performance shifts to higher temperatures with an increasing count of supported all-

period transition metal elements. This shift could be ascribed to the selective formation 

of active sites akin to those in standard catalysts through the incorporation of early 

transition metal elements. Another explanation could be that the increased selectivity 

at higher temperatures results from the supported metal partially blending with the 

support to create a perovskite-like structure, thereby inducing electron holes. In either 

case, the low-temperature activity instead be reduced due to a decrease in the La 

contribution on the surface. 

 

 

Figure 4.5. Relationship between temperature and performance of Ca-La-based 

catalysts 
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Figure 4.5 similarly illustrates the maximum performance of each catalyst 

across various temperature ranges. Due to the large number of reference catalyst 

supports in figure 4.5, the colors are categorized based on similarities in temperature 

response. This response suggests that the catalysts can be classified into four types, with 

discernible commonalities among them. Firstly, the two catalysts highlighted in orange, 

which represent the cluster with the highest performance, are both loaded with Cs-W. 

Our studies have revealed that the Cs-W/Ti combination exhibits high performance. 

The next two catalysts, displayed in green and offering medium performance, are Na-

Y-W/Ti-Sn-Ba and Na-Eu-W/Ti-Sn-Ba, both incorporating Na-W. While Na-W is 

acknowledged as an active site in standard catalysts, its performance was inferior to 

that of Cs-W. This may be attributed to the ionic radius of Cs being more similar to that 

of Ba than Na is, enhancing the likelihood of substitution or doping between lattice Ba 

and Cs on the catalyst surface. The introduction of Cs+ ions, which differ in valence 

from Ba2+ sites, might induce an electronic distortion that enhances OCM selectivity 

and contributes to heightened activity at elevated temperatures[48]. Our attention then 

shifts to the two light blue catalysts, La-Ce-Nd/Ti-Sn-Ba and Mg-Zr-Hf/Ti-Sn-Ba. The 

reference catalyst for the former is Ba-based, with support comprised solely of 

lanthanides. This suggests that the design rule for basic metal-based catalysts may also 

be applicable to Ba. Conversely, the Mg-Zr-Hf/Ti-Sn-Ba catalyst, with its reference 

being Ca-based, implies that the design rule for basic metal supports is not transferable 

to the Ti-Sn-Ba support. The Na-Eu-Hf/Ti-Sn-Ba, depicted with a black line, was 

initially a Mg-based catalyst; hence, the performance improvement was not as 

pronounced as it might have been.  
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4.4. Conclusions 

In this chapter, I demonstrated a new method for visualizing the development 

of elemental combinations in catalysts using a phylogenetic tree approach. This method 

was applied to the study of OCM, enabling a representation of the historical progression 

in the development of these combinations. Additionally, the integration of their 

distinctive catalysts into the existing framework of OCM development helped the 

researchers to modestly demonstrate the uniqueness of their contributions. Building on 

these insights, I implemented a horizontal propagation strategy for the design of new 

catalysts, which resulted in catalysts showing promising performance at lower 

temperatures. 
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Chapter 5 

General conclusion
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The historical development of solid catalysts has largely depended on trials and 

errors, along with occasional serendipitous discoveries, due to their inherent complexity. 

In this traditional approach, researchers tend to focus on superior catalysts that have 

been discovered in the course of the research Unfortunately, the valuable tacit 

knowledge that researchers accumulate during the discovering process often goes 

unshared. This lack of sharing the knowledge makes it challenging to establish 

guidelines for future catalyst development, trapping the field in a continuous cycle of 

trials and errors. In the current era, with increasing demands for catalysts, there is a 

push to develop catalysts with more intricate compositions. This necessitates exploring 

a vast search space, making the traditional approach not anymore feasible in the face of 

time and resource constraints. My thesis challenged this limitation by establishing a 

reproducible and efficient method for catalyst development, which is based on element 

substitution-centered catalyst informatics . The following is a summary of the work 

conducted in each chapter. 

In Chapter 2, the development of catalysts focused on enhancing low-

temperature activity and high-temperature selectivity, employing four strategies. The 

first strategy involved modifying the La2O3 catalyst by replacing active elements to 

optimize performance. The second strategy followed a similar modification approach 

with BaO. The third and fourth strategies involved selecting the best performing La2O3 

and BaO-supported catalysts, respectively, and substituting their supports with a mix 

of BaO and La2O3, while retaining the active elements. These approaches are rooted in 

the heuristic that La2O3 boosts low-temperature activity and BaO enhances high-

temperature selectivity. The aim was to improve selectivity in La2O3 and activity in 

BaO by combining active elements or using mixed supports. In addition, the OCM 
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activity of the supports alone was also assessed to determine the most effective way to 

combine them. 

In Chapter 3, I presented a significant advancement in catalyst development 

with an algorithm focusing on elemental substitution. This algorithm is a key 

component of a newly designed catalyst recommender system, which is further 

enhanced by integrating an adaptive sampling strategy. The system’s catalyst 

recommendations were tested through high-throughput experimentation. A notable 

point introduced in this chapter is the 'catalyst serendipiter system.' This advanced 

feature within the recommender system is adept at predicting serendipitous discoveries, 

which, while rare, can occur during adaptive sampling. This development marks a 

comprehensive and systematic approach to catalyst development, uniquely combining 

exploration, exploitation, and the serendipity. A practical outcome of this methodology 

was the identification of promising and novel OCM catalyst candidates, such as Na-Y-

Tb/Al2O3 and Ti-Y-La/ZrO2. This chapter showed the potential of this integrated 

approach in discovering innovative catalysts, showcasing how combining systematic 

algorithms with an element of unpredictability can lead to groundbreaking results in 

catalyst research. 

Chapter 4 introduced a methodology that traces the evolutionary path of 

elemental combinations in catalysts using a phylogenetic tree approach. This novel 

method was applied to the study of OCM, providing a clear and detailed visual 

representation of the historical development of elemental combinations in OCM 

catalysts. Additionally, the set of catalysts developed in this thesis was incorporated 

into the analysis to visualize the contribution of this study to the field of OCM. Building 

upon the insights from phylogenetic tree, the catalyst design focused on mixed oxide 

support catalysts, which have historically not been examined very much. This approach 
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resulted in the creation of catalysts that exhibit superior performance at lower 

temperatures.  

I believe that the research conducted in this thesis demonstrates the benefits of 

using catalyst informatics based on the elemental substitution strategy for catalyst 

development. This concept has broad applicability across various catalyst systems. The 

thesis is poised to offer a novel direction in catalyst research and development, 

potentially transforming how we approach and innovate in this field. 
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