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ABSTRACT This paper proposes a distributed sensor-based RECursive Subspace and Factor Graph (REC-
SaFG) framework for direction-of-arrival (DoA) estimation and geolocation of a fast-moving target. The
whole framework includes two recursive processes: (1) DoA estimation and tracking by 2-dimensional (2D)
smoothing-based recursive subspace technique using low rank adaptive filter (LORAF); (2) Factor graph
(FG)-based geolocation and tracking network utilizing an extended Kalman filter (EKF) which takes into
account the target’s position and velocity, and updates them as well as the acceleration information. In (1),
the recursive subspace technique aims to fully utilize sample size insufficiency due to the fast-moving target
and to recover the rank deficiency incurred by the coherent signal components. In (2), the estimated DoA
and target velocity information obtained by (1) is considered as input to the unified FG implemented by
EKF for geolocation and tracking (FG-GE-TR) of the target position. By integrating these two processes,
the REC-SaFG framework promises significant improvements in the accuracy and efficiency of geolocation
and tracking systems, particularly in environments characterized by a fast-moving target and the need for
high-resolution tracking.

INDEX TERMS Direction-of-arrival (DoA), geolocation, tracking, extended Kalman filter (EKF), subspace,
eigenvalue decomposition (EVD), factor graph (FG), distributed sensors, low-rank adaptive filter (LORAF).

I. INTRODUCTION

RECENTLY, distributed sensor-based wireless geoloca-
tion has played significant roles in fifth-generation (5G)

communications and is expected to be of even greater sig-
nificance in beyond 5G (B5G) communications and sensing
systems [1], [2]. In a distributed sensor network, unified
location and communication services encompass signal pro-
cessing at the sensing level, geolocation algorithm design at
the fusion level, and decision-making based on geolocation
at the decision level. The incorporation of edge computing in
distributed sensor networks paves the way for the progression
towards increasingly sophisticated geolocation services [3].
Edge computing, which processes data near the source instead
of centralized data centers, aligns with advanced wireless
geolocation needs. By distributing the computational load
across the network, edge computing not only reduces latency
and bandwidth usage but also enhances the reliability and
speed of decision-making processes [4]. Recognizing the ef-
fectiveness of the edge computing principle, the three levels
are distributed yet play their roles in a unifiedmanner in many

applications, such as autonomous driving systems, modern
aviation navigation and control systems, emergency services
in Enhanced 911 (E911), and drones or unmanned aerial
vehicles (UAVs) for smart cities [5]- [8].
The conventional technique used in geolocation systems,

such as the Global Positioning System (GPS) [9], utilizes
trilateration. This technique determines the position of the
target by measuring the distances between the target and at
least three distinct satellites. This method, typically associ-
ated with time-of-arrival (ToA) techniques, requires precise
temporal synchronization between the sensor network and the
target to ensure the accuracy of geolocation [10], [11]. The
challenge of maintaining such perfect synchronization across
various devices is a significant limitation of ToA-based sys-
tems. In contrast, some systems use time difference-of-arrival
(TDoA) techniques [12], [13], which compare the arrival time
of a signal in different sensors to determine the location of
the target. Although TDoA-based methods alleviate some of
the synchronization burdens by focusing on the difference in
signal arrival time rather than their absolute time, they often
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require complex calculations involving hyperbolic equations
and root analysis [14], [15]. This complexity can lead to
constraints in estimation performance, particularly in the
environments where signal propagation may be affected by
various factors, such as obstacles or atmospheric conditions.

Given the limitations of trilateration-based geolocation
methodologies, triangulation techniques that utilize the
direction-of-arrival (DoA) of signals present a compelling
alternative. The DoA-based geolocation methodology [16],
[17] determines the angle at which a sensor receives a sig-
nal, enabling the calculation of the target position relative
to the known sensor coordinates. Unlike ToA-based tech-
niques, DoA-based geolocation significantly simplifies the
synchronization requirement, making it necessary only at the
sensor level [18]. This advantage is of particular significance
in distributed sensor networks, where managing time syn-
chronization among a large number of sensor nodes may be
impractical. Furthermore, DoAmethods focus on the angle of
signal arrival rather than the distance. This approach makes
them inherently less susceptible to errors caused by signal
delay or distortion.

Over the past few decades, traditional block-wise
subspace-basedmethods for DoA estimation, such asMUSIC
and ESPRIT [19] - [22], have relied on the assumptions of
the time-domain stationarity and incoherent signals to ensure
the estimation accuracy. However, these assumptions do not
hold in high mobility scenarios [23], resulting in a trade-off
between accuracy and measurement duration. Furthermore,
the block-wise process is computationally inefficient for
continuous DoA tracking due to the necessity of performing
repeatedly the eigenvalue decomposition (EVD) on empirical
covariance matrices [24]. Recently, it has been shown that
machine learning approaches, using architectures such as
ResNet and CNN [25], [26], can improve the DoA estimation
accuracy and robustness but they face challenges such as
high computational demands and sensitivity to training data
quality.

In DoA-based geolocation systems, the mathematical
framework is nonlinear, which makes the direct computation
complicated. To address the nonlinear trigonometric rela-
tionship between DoA measurements and position estimates,
[27] introduces a maximum likelihood (ML) method, which
maximizes a likelihood function derived from DoA measure-
ments to determine the target position. Although accurate
estimation can be achieved under ideal conditions, the ML
method requires significant computational effort. To reduce
complexity, [28] proposes a Taylor series (TS) linearization-
based method to calculate the least squares (LS) solution
using an initial guess. However, this method struggles with
convergence if the initial guess is far from the true value. To
balance accuracy and computational burden, [29] proposes a
factor graph (FG)-based probabilistic model that iteratively
computes the most probable locations using message passing
algorithms.

To compensate for the disadvantages commonly found in
conventional DOA estimation and geolocation algorithms,

this paper proposes a RECursive Subspace and Factor Graph-
based (REC-SaFG) framework. The whole framework in-
cludes two steps: (1) DoA estimation and tracking using
recursive two-dimensional (2D) smoothing-based subspace
techniques; (2) geolocation and tracking using a unified FG
integrating DoA estimates from (1). In (1), the recursive 2D
smoothing method first restructures the empirical covariance
matrix into a smaller rectangular form by merging samples
from the spatial and temporal domains [24]. This process aims
to decorrelate coherent signals by using finite snapshots in
empirical nonstationarity environments. Given the large size
of the 2D smoothed covariance matrix due to the merging
process and the relatively small number of signal sources,
the problem turns into a classic low-rank case. Therefore,
we integrate a low-rank adaptive filter (LORAF) algorithm
[31] for consistently tracking the subspace structure, enabling
continuous DoA tracking of a high mobility target.

In the geolocation and tracking part of REC-SaFG, a uni-
fied FG implemented with an extended Kalman filter (EKF)
[16], [32] is proposed for the geolocation part (FG-GE) and
tracking part (FG-GE-TR). The estimated DoA and velocity
information obtained by the recursive subspace technique are
used as input to FG-GE. After the recursive processing in FG-
GE, the output position message is utilized as the observa-
tion state to refine the prediction state obtained from the a
prior information by EKF, as in [5], [16]. The acceleration
component is integrated into FG-GE-TR, enabling it to not
only predict but also dynamically update the velocity. This
technique effectively mitigates the limitations associated with
slow motion tracking, as highlighted in [5], [16]. To ensure
system stability during the high mobility tracking phase, FG-
GE-TR incorporates two types of forgetting factors. One is
designed to balance the weight between changes in distance
and velocity. The other aims to equilibrate the significance
between the velocity as an observational state derived from
the recursive subspace method and the velocity as a previous
state from FG-GE-TR. The values of these forgetting factors
can be flexibly adjusted to accommodate various practical
scenarios. The main contribution of this paper is summarized
as follows:

• A two-step recursive framework, REC-SaFG, is pro-
posed for DoA estimation and geolocation of a fast-
moving target. The first step uses a recursive subspace
algorithm to estimate and trackDoA at each sensor. Then
the estimated DoA of each sensor is sent to the fusion
center for geolocation and tracking in the second step.

• In the DoA estimation and tracking part, a recursive 2D
smoothing is used to decorrelate the coherent multipath
components. By combining with the LORAF algorithm,
the recursive subspace technique can dynamically track
the DoA and minimize the smoothing effort.

• In the geolocation and tracking part, a unified FG com-
bined with the EKF is proposed. The accuracy is im-
proved by taking into account the updated velocity as
well as the acceleration. The stability of the FG structure
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FIGURE 1. 2D geolocation of one aircraft with I distributed sensors

is maintained by introducing two forgetting factors to
balance the output of the EKF and new observations.

The organization of this paper is as follows. The signal
model for theDoA estimation and trackingmodel is described
in Section II. In Section III, the proposed recursive DoA es-
timation and geolocation framework, REC-SaFG, is detailed
with a recursive 2D smoothing-based subspace technique and
the iteration process in FG-GE-TR. The proposed recursive
framework is evaluated by a series of simulations, and the
results are presented in Section IV. Finally, the conclusion of
this contribution is provided in Section V.

II. SYSTEM MODEL
A geolocation and tracking system for a fast-moving aircraft
located with a two-dimensional (2D) coordinate (xt , yt)

T is
considered, as shown in Fig. 1, where [·]T denotes matrix
transportation and t is the time index in the tracking phase.
I distributed sensors, each with anM -element uniform linear
array (ULA), are located at [Xi,Yi]

T , where i ∈ (1, · · · , I) is
the sensor index. Distributed sensors are managed to detect
the narrowband signal with two coherent paths1 sent from
the aircraft. The estimated DoAs of two paths are denoted as
(ϕi,D, ϕi,R), where subscriptsD and R refer as direct path and
reflect path.

A. SIGNAL MODEL
For the simplicity, the sensor index i is omitted unless re-
quired. At m-th element of the ULA in each sensor, the
received signal is given by:

rm(n1, n△T ) = sfdD
(n1, n△T )e−j2(m−1)π d

λ
sinϕD + wD(n△T )

+ sfdR
(n1, n△T )e−j2(m−1)π d

λ
sinϕR + wR(n△T )

(1)

1To theoretically analyze the impact of the empirical nonstationarity in
[23], the propagation model of the two-path, one direct, and the other
coherent reflect path is used. To keep consistency of the whole framework,
the same two-path model is used in this paper as well.

where n ∈ {1, · · · ,N} and △T denote the snapshot index
and the sampling interval, respectively. n1 is the initial sam-
pling point that is used to evaluate the impact of empirical
nonstationarity in [23]. d and λ present the element spac-
ing and the wavelength, respectively. w{D,R}(n∆T ) is the
additional white Gaussian noise (AWGN). sfdD

(n1, n△T ) is
the wavefront corresponding to the Doppler frequency of the
direct path, defined as:

sfdD
(n1, n△T ) = βDe−jΦDej2πfdD

(n1+n)△T (2)

where βD is the amplitude,ΦD is the phase reference, and fdD

is the Doppler frequency. The wavefront of the reflect path
can be defined in the same way. Consider allM elements and
use the vector to present (1):

r(n1, n△T ,m) = A(ϕ)β(n1)A(fd) (3)

where [·]H denotes the Hermitian transform, A(ϕ) =
[a(ϕD),a(ϕR)] and A(fd) = [a(fdD),a(fdR)]

H are steering
vectors correspond to the DoAs and the Doppler frequency,
respectively, and

β(n1) =
[

βDe−jΦDej2πfdD
n1△t

βRe−jΦRej2πfdR
n1△t

]
(4)

denotes the residual part including the amplitude, the initial
sampling point components. Note that the recursive subspace-
based technique is provided for estimating the DoA of each
path in the next section. In triangulation-based geolocation
techniques, only the DoA of the direct path is useful because
it provides the most accurate and unambiguous information
about the target position, avoiding errors introduced by mul-
tipath signals. Therefore, an association technique used to
identify the DoA of the direct path is provided in the next
section as well.

B. INTEGRATING DOA TO GEOLOCATION
The trigonometric express between the estimated DoA of the
direct path and the aircraft location is given by:

ϕi,D = hi(xt , yt) + ui,t (5)

with the DoA estimation error ui,t ∼ N (0, σ2
ϕ) and hi(xt , yt)

the true DoA, given by:

hi(xt , yt) = arctan

(
Yi − yt
Xi − xt

)
(6)

Note that the DoA estimation error is assumed to be Gaussian
distributed from the MUSIC algorithm which is used in this
paper. It is difficult to provide strict proof due to the peak
search process of theMUSIC algorithm. Instead, we provided
the empirical results by performing a Monte Carlo simulation
in Chapter IV.
For the aircraft tracking phase, a nonlinear discrete state-

space model (SSM) is used in this paper. The current state of
the target at time t = {1, · · · ,T} is st = [xt , yt ]T . Similar to
[16], the dynamic SSM is given by:

st = f (st−1) + et (7)
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where f (·) denotes the nonlinear function between two adja-
cent states, and et = [ex,t , ey,t ]T is the AWGN vector. The
first-order Taylor series (TS) expansion is first of all used to
approximate f (·) to keep the message over FG Gaussianity,
given by:

f (st−1) ≈ f (γ) + f
′
(γ)(st−1 − γ) (8)

with γ the center point of TS expansion. f (γ) corresponds to
the previous state st−1 and the derivative f

′
(γ)(st−1 − γ) is

the relative distance between st−1 and st , given by:

f
′
(γ)(st−1 − γ) = vt−1 · △t (9)

where vt−1 = [vx,t−1, vy,t−1]
T is the velocity, given by:

vt−1 = vt−2 + at−1 · △t (10)

where at−1 denotes the acceleration components. The veloc-
ity and the acceleration are updated by the EKF.We normalize
the relative time△t = 1, then (7) can be further expressed as:

st ≈ st−1 + vt−1 + et (11)

In the FG-GE-TR framework, the output of FG-GE is used
as the observation to refine the prediction of FG-EKF. The
observation jt is then given by:

jt = g(st) + zt , (12)

where g(st) returns the output of the FG-GE and zt ∼
N (0, σ2

z ) denotes the observation noise which is unknown
to the system. Instead, the smallest value of σ2

z achieved
analytically by calculating the CRLB [16] is used in the FG.

III. RECURSIVE FRAMEWORK REC-SAFG
In this paper, we propose a recursive framework that connects
DoA estimation, geolocation, and tracking together, as shown
in Fig. 2. The whole framework includes two parts: (1) recur-
sive DoA estimation and tracking; (2) recursive geolocation
and tracking. To capture the signals from the target aircraft,
distributed sensors consisting of the ULA are utilized. The 2D
smoothing technique, which performs smoothing processes in
both the spatial and the time domains, is used to decorrelate
the coherent signal components. A recursive subspace tech-
nique with the LORAF algorithm, LORAF-MUSIC, is used
to estimate and track the DoAs. Next, to extract the DoAs
of the direct path from the multipath, a distance-angle-based
association method is utilized. The output of the LORAF-
MUSIC algorithm is then sent to the fusion center where the
FG-GE-TR is performed to update the location, velocity, and
acceleration information of the target.

A. RECURSIVE 2D SMOOTHING-BASED SUBSPACE
TECHNIQUE FOR DOA ESTIMATION
To realize the recursion, the totalN snapshots are divided into
N

′
segments. Each segment has N

N ′ snapshots. Next, perform
smoothing processes both in the spatial and temporal domains
in the n

′
-th segment by setting the smoothing subrectangular

size to M0 × N0, as shown in Fig. 3. In total, there are

P × Q subrectangulars, which P = M − M0 + 1 is the
number of subarrays and Q = N

N ′ − N0 + 1 is the number
of subsnapshots, respectively. The received signal at the p, q-
th (p = 1, · · · ,P; q = 1, · · · ,Q) subrectangular is given by:

rn
′

p,q (n1) = A(ϕ)D(p−1)β(n1)
[
A (fd)C

(q−1)
]H

(13)

whereD(p) andC(q) are the p-th power of the shift matrixD
and the q-th power of the shift matrix C, respectively, given
by:

D = diag(dD, dR), (14a)

C = diag(cD, cR), (14b)

where

dD = e−j2π d
λ sinϕD , (15a)

cD = e−j2πfdD△T . (15b)

In order to conduct smoothing in two different domains,
the vectorization operation is utilized to combine the spatial
steering vectorA(ϕ) and the temporal steering vectorA (fd)
together, given by:

rn
′

2D(p,q)(n1) = A(θ)♢A(fd)diag
(
D(p−1)β(n1)C(q−1)

)
≜ A(θ, fd)α(n1)

(16)
where♢ denotes the column-wise Kronecker product, diag(·)
is the diagonalization. The MN

N ′ × 2 vectorized steering vec-
tor A(θ, fd) is parameterized by the DoA and the Doppler
frequency.
The covariance matrix at the p, q-th subrectangular is given

by:

Rn
′

2D(p,q)(n1) = rn
′

2D(p,q)(n1)r
n
′
H

2D(p,q)(n1). (17)

Then take average over all subrectangulars to calculate 2D
smoothed covariance in n

′
-th segment, given by:

R
n
′

2D(n1) =
1

PQ

P∑
p=1

Q∑
q=1

Rn
′

2D(p,q)(n1)

= A(θ, fd)S2D(n1)AH (ϕ, fd)

(18)

where

S2D(n1) =
1

PQ

P∑
p=1

Q∑
q=1

α(n1)αH (n1). (19)

Consider a recursion form of R
n
′

2D(n1) on each segment,
given by:

R
n
′

2D(n1) = ωR
n
′
−1

2D (n1)

+
1

PQ

P∑
p=1

Q∑
q=1

rn
′

2D(p,q)(n1)r
n
′
H

2D(p,q)(n1)
(20)

where ω is the forgetting factor.
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FIGURE 2. REC-SaFG framework for DoA estimation and geolocation

FIGURE 3. Recursive 2D smoothing

Next, define a simultaneous iteration in the LORAF al-
gorithm by introducing a recursive vector U to track the
subspace, given by:

Z n
′

(n1) = R
n
′

2D(n1)U
n
′
−1(n1), (21a)

Z n
′

(n1) = Un
′

(n1)Vn
′

(n1) (21b)

where Un
′

(n1) and Vn
′

(n1) are the components of QR-
decomposition. It should be noted that once iteration is over,
the matrix Un

′

(n1) and Vn
′

(n1) converge toward the princi-
pal eigenvectors and the corresponding eigenvalues. Hence,
the approximation of EVD of the 2D smoothed covariance

matrix can be expressed as:

R̂
n
′

2D(n1) = Un
′

(n1)Vn
′

(n1)Un
′
−1(n1)H . (22)

After completing the iteration process, the subspace-based
methods can be employed to estimate the DoAs using the con-
verged eigenvector. It is important to recognize the trade-off
between the number of iterations and the estimation accuracy:
as the number of iterations increases, so does the accuracy of
the estimation. This trade-off is determined by the signal-to-
noise ratio (SNR), the variation speed, and the required level
of the estimation accuracy.

B. DISTANCE AND ANGLE BASED ASSOCIATION
TECHNIQUE
In [5], we have introduced an association technique for multi-
target identification that uses both the TOA and the DoA
measurements. However, employing TOA requires maintain-
ing system synchronization between targets and sensors. This
implies that not only the TOA but also the time-of-departure
(TOD) must be known to the fusion center. To improve ro-
bustness, we propose a novel association method that utilizes
the DoA and the TDoA and a manually established dummy
TOD to identify the direct path in this paper, as shown in Fig.
4. Note that the dummy TOD can be set arbitrarily since only
the intersection clusters need to be identified rather than the
accurate positions of the target.
Based on the DoA and the relative distance calculated by

the time difference between the dummy TOD and the TOA,
the location of the dummy target from i-th sensor is given by:[

x̂i,dummy
ŷi,dummy

]
=

 c×
(
ti − t

′

0

)
× cosϕi ± Xi

c×
(
ti − t

′

0

)
× sinϕi ± Yi

 (23)
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(a) Dummy TOD setting

(b) Majority vote for identifying the direct path

FIGURE 4. Distance and angle-based association technique

where c is the speed of light, ti is the measured signal arriving
time at i-th sensor and t

′

0 is the dummy signal departure time
manually set since the real departure time t0 is unknown
to the system. Note that DoA ϕi denotes the DoA of the
direct path or the reflect path. According to the trigonometry
relationship, all clusters related to the direct path or the reflect
path are found.

The whole association can be organized as following steps:

• Step 1: Setting a dummy timing of the TOD t
′

0 manually;
• Step 2: Calculate the dummy target location based on the

angle and the time difference between the TOA and the
dummy TOD;

• Step 3: Extend the dummy target location along each
angle;

• Step 4: Use majority vote to find the intersection cluster
by I clusters to identify the direct path;

• Step 5: Label all I clusters which each can be extended
to the major intersection;

• Step 6: Label the DoA range of each cluster with the

FIGURE 5. Proposed FG-GE for geolocation

direct path.
It should be noted that this technique is the pre-procedure to
identify the direct path. The DoA range of each direct path is
roughly estimated by the trigonometric function. This roughly
estimated DoA range cannot be used for geolocation. Other
clustering methods, such as k-means [33], can also be used.

C. UNIFIED FG-GE-TR FOR GEOLOCATION AND TRACKING
1) FG-GE for geolocation
An important prerequisite for the FG is that all messages
that are exchanged and updated obey a Gaussian distribution.
Therefore, to satisfy such prerequisite, the first-order TS ex-
pansion [16] is used to approximate the nonlinear integration
relationship between the true DoA and the target location,
defined in (6), given by:

ϕt ≈ η1x + η2y+ η (24)

where η1, η2 and η3 are constants, given by:

η1 =
Y − yt|t−1

(X − xt|t−1)2 + (Y − yt|t−1)2
, (25)

η2 =
−(X − xt|t−1)

(X − xt|t−1)2 + (Y − yt|t−1)2
, (26)

η3 =
(X − xt|t−1) · yt|t−1 − (Y − yt|t−1) · xt|t−1

(X − xt|t−1)2 + (Y − yt|t−1)2

+ arctan

(
Y − yt|t−1

X − xt|t−1

)
.

(27)

From (24), we can derive the location of the target, express
as:

xt =
ϕt − η2y− η3

η1
, (28a)

yt =
ϕt − η1x − η3

η2
. (28b)

6 VOLUME 11, 2023
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Based on (28) and considering all distributed sensors, the
FG-GE is constructed for geolocation, as shown in Fig. 5.
In the FG-GE, the function node Si is the measurement node
for the DoA estimation by the recursive subspace-based tech-
nique in Section III-A. The estimated DoAs are sent to the
next function node Di, the compression node, to calculate
the mean and the variance, i.e., (mϕi , σ

2
ϕi
). The mean and

the variance of the DoAs are sent to the estimation node
xt and yt , for iteration. Let ξDi,t→xt and ξDi,t→yt denote the
downward message from the compression node Di to the
estimation nodes xt and yt , respectively. The message ρxt→Di,t

and ρyt→Di,t are the upward message from the estimation node
to the compression node. The iteration process is given by:

• Downward message flow:

mξDi,t→xt
=

1

η1
mϕi −

η2
η1
mρyt→Di,t

− η3
η1

, (29)

σ2
ξDi,t→xt

=
1

η21
σ2
ϕi
+

(
η2
η1

)2

σ2
ρyt→Di,t

, (30)

mξDi,t→yt
=

1

η2
mϕi −

η1
η2
mρxt→Di,t

− η3
η2

, (31)

σ2
ξDi,t→yt

=
1

η22
σ2
ϕi
+

(
η1
η2

)2

σ2
ρxt→Di,t

. (32)

• Upward message flow:

1

σ2
xt→Di,t

=

I∑
k=1,k ̸=i

1

σ2
ξDk,t→xt

, (33)

mρxt→Di,t
= σ2

xt→Di,t
·

I∑
k=1,k ̸=i

mξDk,t→xt

σ2
ξDk,t→xt

, (34)

1

σ2
yt→Di,t

=

I∑
k=1,k ̸=i

1

σ2
ξDk,t→yt

, (35)

mρyt→Di,t
= σ2

yt→Di,t
·

I∑
k=1,k ̸=i

mξDk,t→yt

σ2
ξDk,t→yt

. (36)

The iteration process ends either when the estimates are
converged or when the maximum iteration time is reached.
The final output (mjxt ,mjyt ) from the converged estimates is
the target’s location, given by:

1

σ2
jxt

=

I∑
k=1

1

σ2
ξDk,t→xt

, (37)

1

σ2
jyt

=

I∑
k=1

1

σ2
ξDk,t→yt

, (38)

mjxt = σ2
jxt
·

I∑
k=1

mξDk,t→xt

σ2
ξDk,t→xt

, (39)

mjyt = σ2
jyt
·

I∑
k=1

mξDk,t→yt

σ2
ξDk,t→yt

. (40)

FIGURE 6. FG-GE-TR for tracking

The final output, denoted as (mjxt ,mjyt ), of the FG-GE serves
as the observation state to refine the predicted state in the
tracking phase. However, the variance (σ2

jxt
, σ2

jyt
) cannot be

used as observation noise in accordance with the definition
provided in (12). Instead, the observation noise is determined
by the smallest value of σ2

j , which is computed using the
CRLB, as detailed in the Appendix.

2) FG-GE-TR for tracking
In this subsection, the tracking phase is detailed, including the
state prediction, the state update, and the gradient update. The
FG for tracking is constructed, as shown in Fig. 6. To predict
the next state of the target, the proposed estimator aims to find
the maximum posterior probability as in [16], given by:

p(st ,vt ,at |j1:t) =
∑

∼st ,∼vt ,∼at

p(s1:t ,v1:t ,a1:t |j1:t) (41)

where the subscript 1:t denotes the time series and ∼ is the
exclusion operation. As in [5], [16], based on the Bayes’s
theorem, (41) can be recursively updated from the previous
state, given by:

p(s1:t ,v1:t ,a1:t |j1:t)

∝
∏
1:t

p(st |st−1,vt−1)p(vt |vt−1,at−1)p(at |at−1)p(jt |st)

(42)
where

∏
denotes iteration steps from 1 to t . Based on (42),

the whole tracking phase can be summarized as three steps:
• Step 1: State prediction

As shown in Fig. 6, the prediction state st|t−1 is obtained
from the previous state, which is the output of FG-GE-
TR at the time t − 1. The message flow of st|t−1 in the
FG is given by:

ςf (st|t−1)

=
∑
st−1

∑
v̂t−1

f1(st |st−1, v̂t−1)ςa(st−1)ςc(v̂t−1) (43)
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where the message flow ςa(st−1) and ςc(v̂t−1) are the
output of the previous state, f1(st |st−1, v̂t−1) is the state
prediction function with the forgetting factor α1, given
by:

f1(st |st−1, v̂t−1) = α1 · st−1 + v̂t−1 (44)

It should be noted that our focus is on the tracking of
an aircraft, which inherently involves high velocity and
long-range detection during the tracking phase. Despite
the DoA output from the recursive subspace-based tech-
niques having minimal estimation errors, the geoloca-
tion error turns into magnificent due to the extensive
distances. Therefore, to balance the effect between the
large state difference due to the long range and the
velocity change, the forgetting factor α1 is introduced
in the prediction function.

• Step 2: State update
To obtain the current state st , the FG-GE output jt is used
as an observation to refine the prediction state st |st−1. st
is thereby given as:

ςg(st) = ςf (st |st−1)ςn(jt) (45)

• Step 3: Gradient update
In this step, two gradient vectors, vt and at , are updated
in each tracking state. The velocity is obtained from
the Doppler frequency which is the output of the recur-
sive subspace-based techniques. The velocity is thereby
given by:

ςq(vd,t−1) =
∑
fd,t−1

f2(fd,t−1)ςb(fd,t−1) (46)

where the function f2(fd,t−1) is given by:

f2(fd,t−1) =
fD · λ
cos ϕ̂

(47)

with ϕ̂ the DoA output from the recursive subspace-
based techniques. The velocity can be updated using a
correction term v̂t to refine the predicted velocity vt|t−1

that is determined by the previous velocity vector v̂t−1

and the acceleration vector at−1. Therefore, the current
velocity vt is given by:

ςl(vt) = ςj(v̂t)ςk(vt|t−1) (48)

where the message flow ςj(v̂t) is obtained by letting the
state difference between two adjacent locations divided
by time unit, given by:

ςj(v̂t) =
∑
st−1

∑
st

f4(v̂t |st , st−1)ςa(st−1)ςg(st) (49)

where the function f4(v̂t |st , st−1) is given by:

f4(v̂t |st , st−1) = st − st−1 (50)

The message flow ςk(vt|t−1) is calculated from the pre-
vious velocity plus the product of acceleration and unit
time, given by:

ςk(vt|t−1)

=
∑
v̂t−1

∑
at−1

f3(vt|t−1|v̂t−1,at−1)ςc(v̂t−1)ςD(at−1)

(51)
where the function f3(vt|t−1|v̂t−1,at−1) is given by:

f3(vt|t−1|v̂t−1,at−1) = v̂t−1 + at−1 (52)

The velocity vector v̂t−1 is the combination of the pre-
vious velocity state vt−1 of the FG-GE-TR and the in-
put velocity vd,t−1 from the recursive MUSIC-LORAF,
given by:

v̂t−1 = α2 · vd,t−1 + vt−1 (53)

It should be noted that the coefficient α2 acts as a
forgetting factor, helping to mitigate the impact of the
high mobility. This is because the input velocity vd,t−1,
derived from the recursive MUSIC-LORAF at each time
step, lacks memory of the previous state. In high mobil-
ity scenarios, abrupt changes in the value of vd,t−1 can
compromise the stability of the tracking phase.
To update the acceleration component, a correction term
ât is introduced, which is calculated by the subtract of
two adjacent velocity divided by the unit time, given by:

ςm(ât) =
∑
vt−1

∑
vt

f5(ât)ςc(vt−1)ςl(vt) (54)

where the function f5(ât) is given by:

f5(ât) = vt − vt−1 (55)

Thereby, the updated acceleration is given by:

ςo(at) = ςe(at−1)ςm(ât) (56)

IV. RESULTS AND DISCUSSION
Numerical simulation results are provided to illustrate the
performance of the proposed Rec-SaFG framework. TheDoA
estimation by the recursive subspace-based technique is first
evaluated. Then the accuracy of the geolocation and the track-
ing, that is, FG-GE and FG-GE-TR, is analyzed as well.

A. DOA ESTIMATION AND TRACKING BY RECURSIVE
MUSIC-LORAF
Similar to [23], [24], the signal model in terms of two co-
herent paths is used, one direct path and one reflect path with
empirical nonstationarity. The parameters setting for the DoA
estimation by recursive MUSIC-LORAF are summarized in
the TABLE. 1.
The accuracy of the DoA estimation is evaluated by calcu-

lating the root mean square error (RMSE), defined as:

RMSEDoA =

√√√√ K∑
k=1

ϕ̂iD,k − ϕiD
K

(57)
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TABLE 1. Parameters setting of DoA estimation by recursive
MUSIC-LORAF

Symbol Quantity Value
βD;βR amplitude of direct path and reflect path 1
M number of elements of the array 8
N snapshot 100
N

′
number of segments of snapshot 10

△T sampling interval 1/1000 s
fdD Doppler frequency of direct path 10 Hz
fdR Doppler frequency of reflect path 7 Hz
d element spacing 1.5 m
λ wave length 3
M0 number of element in each sub-array 3
N0 number of snapshot in each sub-snapshot 50
P number of subarrays 6
Q number of subsnapshots 51
I number of sensors 3
(X1, Y1) position of sensor 1 (0,−1) km
(X2, Y2) position of sensor 2 (8, 10) km
(X3, Y3) position of sensor 3 (15,−2) km

where K is the times of Monte Carlo simulation. The RMSE
of the DoA of the reflect path can be calculated in the
same way. The performance of the DoA estimation versus
different SNR is shown in Fig. 7. According to the simu-
lation results, the proposed recursive MUSIC-LORAF can
decorrelate the two coherent paths and achieve high DoA
estimation accuracy for the direct path and the reflect path.
Although the machine learning-based techniques, as in [25],
[26], can achieve higher accuracy in the DoA estimation,
the proposed recursive subspace-based technique provides
sufficiently accurate DoA estimates with greater simplicity
and computational efficiency for the FG-GE. Due to the
fact that the estimation performance is also dependent on
the recursive time, the convergence performance is evaluated
through the iterative steps (n

′
-th segment of all N

′
segments)

with SNR = 20 dB, as shown in Fig. 8. Clearly, the accuracy
of the estimation improves with an increase in the recursion
time. The analysis of convergence is crucial for balancing
the accuracy of the estimation against the processing time
in practical applications. The implications of this trade-off
on geolocation and tracking are analyzed in the following
subsection.

For the DoA tracking scenario, the trajectory of an aircraft
is designed in the same way as in [24], given by:

xn = xn−1 + a cos (n ·ϖ) + υx,n (58a)

yn = yn−1 + a sin (n ·ϖ) + υy,n (58b)

where t = {1, 2, · · · , 40} is the measurement time, a = 1km
is the radius of the motion, ϖ = π

50 rad/s is the angular ve-
locity, υn = [υx,n, υy,n]

T denotes the random deviation of the
trajectory from the ideal path which is Gaussian distribution
υ ∼ (0, σ2

v ), σv = 0.32km/s. The average RMSE of the DoA
tracking over the trajectory is calculated to evaluate the DoA
tracking performance, given by:

RMSEDoA =

√√√√ T∑
t=1

ϕ̂iD,t − ϕiD,t

T
(59)

FIGURE 7. RMSE of DoA estimation vs. SNR

FIGURE 8. Convergence analysis of recursive MUSIC-LORAF with SNR=20
dB

where T is the trajectory time of the moving target. The aver-
age RMSE for tracking of the DoA vs. SNR is summarized in
TABLE 2. The simulation results indicate that the proposed
recursive MUSIC-LORAF technique is capable of achieving
high accuracy in the DoA tracking scenarios.

TABLE 2. Average RMSE (◦) of DoA tracking via SNR

DoA
SNR (dB)

-20 -10 0 10 20

ϕ1
D 35.39 19.21 12.84 4.84 2.28

ϕ1
R 39.77 21.89 14.01 5.01 2.82

ϕ2
D 47.11 23.47 17.30 5.39 3.10

ϕ2
R 49.31 25.02 19.78 7.78 3.99

ϕ3
D 36.21 21.16 15.25 5.22 2.61

ϕ3
R 37.42 22.16 16.41 5.41 2.72

B. GEOLOCATION BY FG-GE
The position of the target is estimated by inputting the DoA of
the direct path, which is determined by the recursive MUSIC-
LORAF algorithm, into the FG-GE for iterative processing. It

VOLUME 11, 2023 9



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

should be noted that the FG’s input must follow the Gaussian
distribution. The probability density function (pdf) of the
DoA message is empirically obtained by the Monte Carlo
simulation. The pdf of the DoA of the direct path between the
target and sensor 1 is depicted in Fig. 9. It can be easily found
that the DoA estimated by the recursive MUSIC-LORAF
follows the Gaussian distribution, with a mean of 14.63◦ and
a variance of 0.0071◦. The pdf of the DOA of the direct path
in other sensors can be achieved similarly.

FIGURE 9. PDF of ϕ1
D with confidence bound 95% with SNR = 20 dB

The pdf message of the DoA from each sensor is input
into the FG-GE fusion for exchanging and updating. Let the
iteration times for FG-GE be 20 and the initial guess of the
target be (0, 0) for iteration. The convergence behavior of the
FG-GE is evaluated by calculating the RMSE of estimated
position, given by:

RMSEx,y =

√√√√√ K ′∑
k′=1

(x̂k′ − x)
2
+ (ŷk′ − y)

2

K ′ (60)

As shown in Fig. 10(a), the position estimates of the FG-
GE rapidly converge within just 5 iterations. Furthermore,
as demonstrated in Fig. 10(b), the estimated target position
approaches very close to the true value, even when the initial
guess is significantly far away from the true position.

In the Rec-SaFG framework, the first-step approach, recur-
sive MUSIC-LORAF, has an important effect on the second-
step approach, the FG-GE. To evaluate the trade-off between
the accuracy and the fast estimation process, the effect of
the number of recursion steps in recursive MUSIC-LORAF
on the target position estimation is evaluated. The simulation
results are shown in Fig. 11. As we expected in Chapter. III,
the target geolocation performance improves with an increase
in recursion steps.

C. TRACKING BY FG-GE-TR
The same trajectory of the aircraft, defined in (58), is used to
evaluate the performance of FG-GE-TR. The tracking perfor-

(a) RMSE of FG-GE vs. iteration number

(b) Trajectory of convergence

FIGURE 10. Convergence behavior analysis of FG-GE with SNR = 20 dB

FIGURE 11. RMSE of FG-GE vs. iteration number of MUSIC-LORAF with
SNR = 20 dB
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mance of the proposed method, which includes an accelera-
tion update component within the FG framework, is evaluated
against a prior technique that lacks this feature, as referenced
in [5]. The geolocation and trajectory tracking enabled by the
FG-GE and the FG-GE-TR are shown in Fig. 12. The average
RMSE for the tracking phase is calculated for comparison.
The simulation results reveal that the FG-GE-TR achieves
superior tracking accuracy for fast-moving targets when the
acceleration component is incorporated. This enhancement
is also attributed to the acceleration being updated at each
iteration, helping to track the velocity and minimizing the
cumulative error in the velocity update process.

(a) Without acceleration

(b) With acceleration

FIGURE 12. Trajectory tracking by FG-GE-TR with SNR=20 dB

D. OPTIMAL FORGETTING FACTOR SELECTION
As discussed in Chapter III, in the scenarios involving the
high mobility tracking, forgetting factors within the FG-GE-
TR play crucial roles in improving the tracking performance.
This significance stems from the fact that the forgetting
factors largely depend on the target’s velocity. Our goal is
to empirically determine the optimal forgetting factor for
different velocity scenarios. First, we set the forgetting factors

FIGURE 13. RMSE of tracking vs. SNR

at α1 = α2 = 0.95 to demonstrate the improvement of the
forgetting factor in the FG-GE-TR framework. The tracking
accuracy, as shown in Fig. 13, shows a clear improvement in
both the acceleration and the non-acceleration cases upon in-
corporating forgetting factors. This improvement is attributed
to the forgetting factors’ ability to balance the influence of the
previous states and the new observations, thereby enhancing
the prediction of the state in cases of the high mobility.
Next, to evaluate the effect of the forgetting factors on the

tracking part, the average speed is used and given by:

v =
T∑
t=1

√
(xt − xt−1)

2
+ (yt − yt−1)

2

T · △t
(61)

The simulation results are shown in Fig. 14. Note that the
optimal forgetting factors are empirically identified by mini-
mizing the RMSE of FG-GE-TR in various speed scenarios.
The simulation results indicate a trend where higher speeds
correlate with lower optimal forgetting factors. This trend
arises because, in cases of high-speed movement, the influ-
ence of the previous state on the current state diminishes.
Consequently, the current observations are of greater signifi-
cance in predicting the state.
Furthermore, the two forgetting factors, α1 and α2, serve

different purposes. α1 is designed to mediate the impact
between the position and the velocity states. Given the longer
measurement range, the difference between two consecutive
positions tends to be greater than that in the velocity state.
Hence, the forgetting factor α1 should place greater emphasis
on the position state. Its value should not be excessively
reduced, even with increasing speed, as illustrated in Fig.
14(a).
The forgetting factor α2 aims to balance the two velocities:

(1) estimated from the recursive MUSIC-LORAF algorithm
and (2) output from the FG-GE-TR. The velocity from the
recursive MUSIC-LORAF, serving as the observation state
without historical memory, can introduce instability to the
overall FG structure, particularly in the high mobility sce-
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narios. To maintain the stability, α2 is adjusted downward
to diminish the influence of the observation state’s velocity.
This adjustment allows the previous velocity state of the FG-
GE-TR to provide a greater influence on the prediction of the
subsequent state’s velocity, as shown in Fig. 14(b).

(a) Tendency of α1

(b) Tendency of α2

FIGURE 14. Optimal forgetting factor vs. speed with SNR=20 dB

V. CONCLUSION
This paper has proposedREC-SaFG, a recursive subspace and
factor graph framework for DoA estimation and geolocation
of a fast-moving target. A generic received signal model was
first introduced for the case of a fast-moving target with mul-
tiple coherent propagation paths. It has been shown that the
proposed 2D smoothing solution is effective for decorrelating
the coherent signals in the presence of empirical nonstation-
arity due to the insufficient sample size compared to the
target moving speeds. A subspace algorithm combined with
a recursive subspace tracking algorithm, MUSIC-LORAF,
has been used for DoA estimation and tracking iteratively.
Moreover, it has been shown that the proposed framework
can combine geolocation and tracking into one single factor
graph. In the unified FG, the velocity difference in the present

and past states is taken into account, resulting in tracking
performance enhancement without sacrificing the tracking
stability. Extension of the proposed technique to multiple
target cases is left for future research.

VI. APPENDIX
A. LORAF-BASED SUBSPACE TRACKING OF 2D
SMOOTHED COVARIANCE MATRIX
The EVD approximation of the 2D smoothed covariance
matrix can be used to track the corresponding eigenvectors
and eigenvalues related to the signal subspace. Substituting
(20) into (21a), we can rewrite (21a) as:

Z n
′

(n1) = ωR
n
′
−1

2D (n1)Un
′
−1(n1)+rn

′

2D(n1)h
n
′

(n1)H (62)

where
hn

′

(n1) = Un
′
−1(n1)Hrn

′

2D(n1). (63)

Furthermore, the approximation R̂
n
′

2D(n1) is used to replace

the true value R
n
′

2D(n1). Then (62) can be derived as:

Z n
′

(n1) = ωZ n
′
−1(n1)Θ

n
′

(n1)

+ rn
′

2D(n1)r
n
′

2D(n1)
HUn

′
−1(n1)

(64)

where Θn
′

(n1) = Un
′
−1(n1)HUn

′
−1(n1) is the rotation ma-

trix. The whole subspace tracking algorithm is summarized
in Algorithm 1.

Algorithm 1 LORAF-based subspace tracking of 2D
smoothed covariance matrix

Initialization: U1(n1) =

[
I
0

]
MN
N
′ ×2

; Θ1(n1) = I2×2;

ω : 0 ≤ ω ≤ 1; N
′
: Segments; rank: 2

Require: rn
′

2D(n1)
Subspace tracking
for n

′ ← 1 to N
′
do

hn
′

(n1)2×1 = Un
′
−1(n1)Hrn

′

2D(n1)

Z n
′

(n1)MN
N
′ ×2 = ωZ n

′
−1(n1)Θ

n
′
−1(n1)

+rn
′

2D(n1)h
n
′

(n1)
Z n

′

(n1) = Un
′

(n1)MN
N
′ ×2V

n
′

(n1)2×2

Θn
′

(n1) = Un
′
−1(n1)HUn

′

(n1)
end for

Ensure: Un
′

(n1)

B. DERIVATION OF POSTERIOR PROBABILITY
According to the Bayes’s theorem, (41) can be further ex-
pressed as:

p(s1:t ,v1:t ,a1:t |j1:t)

=
p(jt |s1:t ,v1:t ,a1:t , j1:t−1)p(s1:t ,v1:t ,a1:t , j1:t−1)

p(j1:t)
(65)
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Due to the fact that jt only depends on st , the term
p(jt |s1:t ,v1:t ,a1:t , j1:t−1) = p(jt |st). The probability p(j1:t)
is constant. Therefore, (65) can be further expressed as:

p(s1:t ,v1:t ,a1:t |j1:t) ∝ p(jt |st)p(s1:t ,v1:t ,a1:t , j1:t−1)
(66)

The joint probability p(s1:t ,v1:t ,a1:t , j1:t−1) can be further
derived as:

p(s1:t ,v1:t ,a1:t , j1:t−1)

=p(st |st−1,vt−1)p(vt |vt−1,at−1)p(at |at−1)

· p(s1:t−1,v1:t−1|j1:t−1)p(j1:t−1)

(67)

where the term p(j1:t−1) is constant, vt is determined by vt−1

and at−1, at is determined by at−1. therefore, (67) is further
given by:

p(s1:t ,v1:t ,a1:t , j1:t−1)

∝ p(st |st−1,vt−1)p(vt |vt−1,at−1)p(at |at−1)

· p(s1:t−1,v1:t−1,a1:t−1|j1:k−1)

(68)

Note that p(s1:t−1,v1:t−1,a1:t−1|j1:k−1) is updated recur-
sively from the previous state. Combining (66) and (68), the
posterior probability is given by:

p(s1:t ,v1:t ,a1:t |j1:t)

∝
∏
1:t

p(st |st−1,vt−1)p(vt |vt−1,at−1)p(at |at−1)p(jt |st)

(69)

C. CALCULATION OF THE OBSERVATION NOISE
The CRLB derivation is used to derive the smallest value of
σ2
z to present as observation noise in FG-GE-TR. The value of

σ2
z is derived from the DoA ϕD of the direct path obtained by

the recursive MUSIC-LORAF method. Note that the sensor
index is omitted for simplicity unless necessary. According to
[29], the CRLB is given by

CRLB = trace[F−1(s)], (70)

where F is the Fisher information matrix (FIM). Given the
pdf of the variable ϕD with K samples, the FIM is then given
by

F(s) = E

[(
∂

∂s
ln p(ϕ̂D)

)2
]
, (71)

where the pdf function p(·) is given by

p(ϕ̂D) =

K∏
k=1

1√
2πσ2

ϕD

exp

[
− 1

2σ2
ϕD

(ϕ̂Dk − ϕD)
2

]
. (72)

Next, (71) is given by

E

[(
∂

∂s
ln p(ϕ̂D)

)2
]
= −E

[
∂2

∂ϕ2
D

ln p(ϕ̂D)

]
. (73)

According to [16],

∂2

∂ϕ2
D

ln p(ϕ̂D) = −
K
σ2
ϕD

. (74)

Then, the FIM is further expressed as

F(s) =
∂ϕD

∂s

T

E

[(
∂

∂ϕD
ln p(ϕ̂D)

)T (
∂

∂ϕD
ln p(ϕ̂D)

)]
∂ϕD

∂s

=
∂ϕD

∂s

T

E

[(
∂

∂ϕD
ln p(ϕ̂D)

)2
]
∂ϕD

∂s

=
∂ϕD

∂s

T
[
K
σ2
ϕD

]
∂ϕD

∂s
.

(75)

where ∂ϕD

∂s is the Jacobin matrix, which is given by

J = ∂ϕD

∂s
=


∂ϕD1
∂x

∂ϕD1
∂y

∂ϕD2
∂x

∂ϕD2
∂y

...
...

∂ϕDI
∂x

∂ϕDI
∂y

, (76)

with
∂ϕDI

∂x
=
Yi − y
d2i

, (77)

∂ϕDI

∂y
=
−(Xi − x)

d2i
, (78)

where di is the Euclidean distance between target and sensor i.
Due to the fact that the real position is unknown to the system,
the prediction state xt|t−1 and yt|t−1 is used to calculate the
CRLB. The Jacobin matrix is thereby given by

Jt|t−1 =


Y1−yt|t−1

d21

−(X1−xt|t−1)

d21
Y2−yt|t−1

d22

−(X2−xt|t−1)

d22
...

...
YI−yt|t−1

d2I

−(XI−xt|t−1)

d2I

. (79)

Finally, the CRLB is given by

CRLB = {diag[(JTt|t−1

∑−1

ϕD

Jt|t−1)K ]}−1. (80)

D. DERIVATION OF OPTIMAL FORGETTING FACTOR
To determine the optimal forgetting factor α1, the pdfs of the
target’s position and velocity are assumed to be the Gaus-
sian distribution, A ∼ N

(
α1ms,t−1, α

2
1σ

2
s,t−1

)
and B ∼

N
(
mv,t−1, σ

2
v,t−1

)
. In FG-GE-TR, the Gaussian message of

position and velocity is merged and sent to the next node.
Therefore, the joint pdf of position and velocity is given by:

C ∼

N

ms,t−1σ
2
v,t−1 + mv,t−1α

2
1σ

2
s,t−1

α2
1σ

2
s,t−1 + σ2

v,t−1

,
1

1
α2

1σ
2
s,t−1

+ 1
σ2
v,t−1


(81)
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The optimal forgetting factor α1 can be found by minimizing
the variance of the joint pdf, σ2

C,t−1, given by:

dσ2
C,t−1

dα1
=

d
(

1
α2

1σ
2
s,t−1

+ 1
σ2
v,t−1

)
dα1

=
2α1σs,t−1σ

2
v,t−1

(α2
1σs,t−1 + σv,t−1)

2

(82)

Theminimum value can be achieved by letting the differential
(82) equal to 0. However, this differential cannot provide
a meaningful solution unless α1 = 0. Therefore, in this
paper, the value of the forgetting factor α1 is obtained using
empirical methods. The value of the forgetting factor α2 can
be obtained in the same way.
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