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Abstract

Unmanned Aerial Vehicles (UAVs) are essential in various fields such as
disaster monitoring, environmental surveys, search and rescue missions, and
infrastructure inspection, where a precise understanding of the surrounding
environments is crucial. A fundamental challenge for UAVs operating in dy-
namic and unstructured environments is the capability to navigate and map
their surroundings in real-time accurately. Simultaneous Localization and
Mapping (SLAM) is an essential technology that addresses this challenge by
enabling UAVs to construct detailed maps while simultaneously determining
their location within these maps. Visual SLAM has become increasingly cru-
cial in the effective localization and representation of a map consisting of 3D
points; however, it lacks semantic information and serves for high-level tasks.
Numerous previous approaches have aimed to build dense maps; however,
these reconstructions are still just aggregates of points, and thus lack any
supplementary semantic information or relationships. A robot, moreover,
must be capable of mapping its environment, localizing itself within that
map, and comprehending the semantic information of the surrounding scene.
Semantic SLAM addresses three fundamental tasks simultaneously, aiming
to produce the most precise and comprehensive environmental model in an
environment. Achieving this requires a careful balance between the accuracy
of the semantic map and the memory resources it consumes. Over recent
decades, semantic SLAM has garnered increasing interest and has been
explored in various ways by different research communities, driven by the goal
of practical deployment in a real-world application. The broad interest has
expanded the problem’s scope and provided diverse perspectives, leading to
numerous approaches based on various theories and concepts. However, this
has also created a disconnect between research paths that could be mutually
beneficial. However, integrating localization, semantic segmentation, and 3D
reconstruction simultaneously poses a significant challenge, particularly for
UAVs that operate with limited power and computational capacities.

To mitigate these challenges, this thesis emphasizes the development
of Semantic SLAM systems that integrate metric environment structures
with semantic object information to create comprehensive semantic maps.
Our proposed method is organized into two key enhancements: a 3D
semantic mapping method and a 2.5D probabilistic metric map approach.
By integrating semantic details, we aim to enhance the effectiveness of
the semantic SLAM system. Initially, we introduce an innovative strategy
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to tackle the issues related to the extraction and use of semantic data
in UAV operations. Our framework combines cutting-edge visual SLAM
for accurate 6-DoF pose estimation with sophisticated object segmentation
techniques at the back end. To enhance the framework’s computational and
storage efficiency, we employ a simplified voxel-based 3D map representation
known as OctoMap for system construction. Additionally, we integrate a
fusion algorithm to retrieve semantic information from each frame in the
front-end SLAM task and the associated point. Secondly, we propose to
construct a probabilistic metric map enriched with object data from RGB-
D images. This method integrates a cutting-edge YOLOv8-based object
detection framework upfront and a 2D SLAM method - Cartographer, at the
back end. To track and position semantic object categories obtained from
the front-end interface, we utilize the innovative BoT-SORT methodology.
A new association technique is proposed to determine objects’ positions and
project them onto the metric map. Unlike previous studies, our method
focuses on navigating environments that contain various hollow objects on
the bottom. The output is a probabilistic map that significantly enhances the
representation of the map by incorporating object-specific details, including
class distinctions, accurate positions, and object heights.

To demonstrate the pose estimation performance of our semantic SLAM
system, we performed evaluations using two different types of datasets: 1)
publicly available TUM real-world RGB-D data sequences and 2) a Gazebo
simulation dataset. We assessed the precision of 6-DoF pose estimation using
the Root Mean Square Error (RMSE) of Absolute Trajectory Error (ATE)
and Relative Pose Error (RPE). Compared to the state-of-the-art visual
SLAM - ORB-SLAM2, the results demonstrated precise pose estimation and
smooth movement within environments. Our mapping outcomes show that
our system greatly enhances mapping accuracy, computational efficiency,
and the UAVs’ capability to autonomously navigate complex scenarios.
Additionally, our system is tested on an embedded computer - Jetson Xavier
AGX unit, to illustrate its effectiveness in real-world applications.

In summary, this thesis presents the development of advanced Semantic
SLAM systems designed to enhance the autonomous capabilities of UAVs
in dynamic and unstructured environments. By integrating semantic un-
derstanding and probabilistic mapping methodologies, our approach signifi-
cantly improves mapping accuracy, computational efficiency, and UAV navi-
gation. Future work could focus on building a sustainable 3D active semantic
SLAM system that provides essential information for UAV applications,
ensuring the safe operation of flying equipment, and enhancing localization
capabilities. This approach takes advantage of the full potential of camera
data, making additional sensors such as GPS or LiDAR unnecessary.
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Chapter 1

Introduction

In this chapter, we introduce the foundational concepts, the overview, moti-
vation, objective, and approach of our problem addressed in this thesis. This
chapter concludes with a summary of our contributions and the structure of
this thesis.

1.1 Overview
In this rapidly evolving field of robotics and autonomous systems, Drones, or
Unmanned Aerial Vehicles (UAVs), have played a growing role in gathering
geoinformation for applications such as firefighting rescue, inspections, and
agriculture. Due to the ability to navigate through challenging indoor or
outdoor environments, UAVs can be effective in identifying objects and
people on the ground within the rubble, as well as broadcasting evacuation
messages to facilitate direct communication with victims with the support
of various sensors [1]. The ability of UAVs to accurately perceive and
navigate their surroundings in real-time is essential for these applications.
SLAM (Simultaneous Localization and Mapping) is a critical technology that
allows UAVs to construct detailed maps while concurrently determining their
location within these maps. The SLAM system encompasses a front-end
component that processes and utilizes input sensors, along with a back-end
component dedicated to optimization, as illustrated in Figure 1.1. Based
on various kinds of sensors such as Camera, lidar, gnss and imu, SLAM can
split into two main approaches: L-SLAM and vSLAM. L-SLAM utilized lidar
sensors as an input, which is attracting attention from researchers due to the
effective and various open source [2]. However, there are still challenges,
especially in optimizing processing speed and losing track of the robot in
places with few obstacles, because it is difficult to align cloud points in such
areas. On the other hand, vSLAM reconstructs the surrounding environment
map by camera, which is cheaper and also provides more useful information
than lidar. In the vSLAM system, the localization component focuses on
identifying the camera’s pose of the camera or its trajectory, known as Visual
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Figure 1.1: Overview of SLAM Components

Odometry, without the need to maintain or recover a set of rigid landmarks on
the map [3]. The relative poses of successive camera frames can be estimated
by marginalizing out the landmarks. However, in geometric reconstruction,
the focus shifts to estimating the positions of the camera and the landmarks
within the map [4]. The objective of the vSLAM challenge is to incrementally
generate 2D or 3D maps and determine the camera’s poses from images in
real-time, rendering them suitable for applications involving robotic vision
and real-time processing.

This thesis emphasizes the reconstruction problem within the scope of vS-
LAM. Consider the vSLAM problem with robot state X , {Xt}Tt=1 ∈ SE(3)
at time t and discrete-time deterministic kinematics. In general, the problem
of data association in vSLAM is to determine the most likely collection of
robot poses X and landmark states L , {Lm}Mm=1 of M static landmarks
given observation measurements made in the robot state Z , {Zt}Tt=1, as the
robot navigates through an unfamiliar environment. Therefore, the solution
to the SLAM problem involves estimating landmarks and robot poses using
a maximum likelihood method:

X ∗
ml,L∗

ml = argmax
X ,L

p(Z|X ,L,S) (1.1)

Define D , {Dt}Tt=1 as the set representing the association of all mea-
surements Zt. One widely-used method to address (1.1) is the expectation-
maximization algorithm, which iterates between the probability of data
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association and the log-likelihood conditioned on the data:

X i+1,Li+1 = argmax
X ,L,D

ED[log p(Z|X ,L,D)|X i,Li,Z]

= argmax
X ,L,D

∑
D∈D

p(D|X i,Li,Z) log p(Z|X ,L,D)
(1.2)

vSLAM has proven effective in localization and the representation of
environments as 3D point clouds. In the context of vSLAM, maps can
generally be classified into two types: 2D maps and 3D maps. Both types
play critical roles in robotic navigation and environmental understanding,
but they differ in their complexity, computational requirements, and the
level of detail they provide. 2D maps are simpler representations that
capture the layout of an environment in two dimensions. These maps are
often used for basic navigation tasks and are sufficient for many applications
where detailed depth information is not necessary. The advantages of 2D
maps include: (1) Lower Computational Requirements: Generating and
maintaining 2D maps require less computational power and memory, making
them suitable for UAVs and robots with limited resources; (2) Ease of Use:
2D maps are easier to visualize and interpret, which can be beneficial for
human operators who need to understand the robot’s environment quickly;
(3) Fast Processing: The algorithms for 2D SLAM are generally faster,
allowing for real-time performance in various applications. However, 2D
maps have significant limitations, particularly in complex environments
where height and depth information are crucial. For example, in indoor
environments with multiple floors, furniture, and other obstacles, a 2D map
cannot accurately represent the spatial relationships; heights of different
objects, and hollow bottom objects. This can lead to navigation errors
and inefficient path planning. 3D maps provide a more detailed depiction
of the environment by capturing the structure and spatial relationships
in three dimensions. These maps are particularly useful for various use
cases that need comprehensive environmental understanding, like obstacle
avoidance and advanced navigation. The benefits of 3D maps include: (1)
Detailed Spatial Representation: 3D maps can capture the height, width,
and depth of objects, providing a more comprehensive and precise depiction
of the environment; (2) Improved navigation: With 3D information, UAVs
and robots can navigate more effectively around obstacles, through narrow
passages, and over varied terrain; (3) Enhanced Scene Understanding: 3D
maps enable better recognition and understanding of the environment, facil-
itating tasks like object detection, scene reconstruction, and interaction with
objects. However, 3D maps also have their drawbacks. They require more
computational resources to generate and maintain, which can be challenging
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for UAVs and robots with limited processing power. Furthermore, processing
and visualizing 3D data can be more complex, requiring advanced algorithms
and techniques. In this thesis, we focus on the 3D map and enhance the 2D
map by incorporating semantic information to strike a balance between the
simplicity of 2D maps and the richness of 3D maps.

However, traditional visual SLAM lacks semantic information, which is
necessary for higher-level tasks and comprehensive environmental under-
standing. To address this limitation, incorporating semantic information into
the SLAM system has become a significant research focus. Semantic SLAM
enhances traditional SLAM by integrating object recognition and scene
understanding, enabling UAVs to execute more sophisticated and intelligent
operations. Conversely, the development of artificial intelligence, particu-
larly Convolutional Neural Networks (CNNs), has revolutionized semantic
information extractions from visual data. CNNs can accurately identify and
classify objects within a scene, providing valuable semantic information that
can be integrated with geometric data from SLAM systems. By leveraging
CNNs, we can create a more informative and useful map representation,
combining both geometric and semantic data

This thesis focuses on creating a resilient Semantic SLAM system that
integrates metric mapping with semantic data of objects. Specifically,
we focus on sparse real-time SLAM methods due to their computational
efficiency and scalability for large-scale applications. Our proposed system
utilizes a localized RGB-D camera to incrementally construct an object-
level map, employing Visual Odometry (VO) for pose estimation and ob-
ject instance segmentation for creating semantic maps. Additionally, our
system aims to address the challenge of hollow bottom objects in indoor
environments. Traditional SLAM systems often represent objects as points
or paths, resulting in inaccurate navigation decisions. We propose a 2.5D
probabilistic semantic map that fuses metric environment structure with
height information, enabling UAVs to understand and interact with their
environment more intelligently.

We implement our Semantic SLAM system using the Robot Operating
System (ROS) [5] framework, ensuring modularity and ease of integration
with existing robotics platforms. ROS provides a robust and flexible infras-
tructure for developing and deploying SLAM systems, facilitating real-time
processing and data exchange between various components.

In summary, our thesis aims to advance the field of UAV navigation and
mapping by developing an efficient and accurate Semantic SLAM system.
By integrating semantic information with geometric mapping, we enhance
the UAV’s ability to navigate complex environments and perform high-
level tasks autonomously. This research has significant implications for
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various applications, including search and rescue missions, inspections, and
environmental monitoring.

1.2 Motivation and Objectives
Geometric understanding or environmental reconstruction involves inferring
and retrieving the scene’s structure from image frames with respect to
the modeled scene map during localization. Conversely, understanding
the semantic scene entails extracting higher-level semantics or relational
information. For effective reconstruction, the model required sufficient
geometric and photometric correspondences across multiple views to recover
lost information. In addition, the density of these correspondences leads
to varied map representations, from sparse to semi-dense and dense maps.
Although dense map reconstruction encompasses larger portions of the envi-
ronment, it is highly dependent on the quality of per-pixel matching. Despite
recent advancements in deep learning, limited texture and poor photometric
conditions or image distortions constrain its application to small room-scale
applications. Moreover, these methods have high computational and memory
requirements restricting them to mostly non-real-time scenarios. In contrast,
sparse representations are more computationally manageable, robust, and
scaleable to large-scale applications, making them prevalent in autonomous
robots and augmented reality applications. This thesis specifically focuses
on the sparse real-time SLAM methods due to their advancements.

Semantic scene understanding comprises various techniques used to ex-
tract high-level information from the captured scene, such as indoor furniture,
outdoor structures, human presence, action recognition, etc. These various
applications can be broadly categorized into three principal groups: object
detection, image classification, and semantic segmentation. The intersection
of scene understanding with geometric localization has been a focal point
of research in both computer vision and robotics. For example, in a rescue
operation, a robot depending purely on a conventional SLAM-created map
faces difficulties in executing intricate tasks like: “navigating around the
desk to find a victim near the bed”. Semantic mapping, which integrates
environmental geometry estimation with semantic annotation, surpasses
traditional geometric mapping, improving UAVs’ situational awareness and
engagement. This approach employs traditional vSLAM as a foundation
for map constructing and localizing it in the surrounding environment and
subsequently executes semantic scene understanding in post-processing to
interpret the high-level details of the map. Overall, this task remains
challenging due to: (1) the unreliability of indoor GPS, (2) the cluttered
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nature of environments, (3) the necessity for real-time processing, and
(4) the complexity of semantic maps. Thus, our research aims to create
semantic data mapping, which is essential for UAVs to carry out sophisticated
autonomous functions. In this thesis, we focus on an efficient Semantic
Segmentation Sparse Mapping SLAM system to iteratively build an object-
level map using a localized RGB-D camera. The proposed system consists of
two main components: an RGB-D SLAM framework based on propagation
using VO estimation and object instance segmentation-based semantic sparse
map development.

In addition, a significant objective in intelligent robotics control is to
enable robots to understand their environment to help us with various
tasks [6, 7]. Specifically, the context of indoor search and rescue operations
highlights the crucial role of UAVs in quickly scanning dangerous areas and
providing real-time information to support emergency personnel. The success
of such missions depends on the UAV’s autonomous navigation capability to
move through complex and cluttered real-world settings while ensuring safety.
Typically, UAVs may encounter numerous obstacles and need to identify
victims or hazardous zones, enabling immediate obstacle avoidance. This
allows UAVs to discern obstacles and their locations, thus navigating through
them. However, most real-world robots rely on 2D metric maps due to their
simplicity and low resource requirements. In contrast, hollow bottom objects
such as tables, desks, and chairs are often mapped as points or paths, leading
to incorrect navigation decisions. This work addresses this issue by proposing
a system that incorporates a 2.5D probabilistic semantic map, created by
merging metric environmental structure with object height information,
to enable UAVs to understand and interact with their surroundings more
intelligently.

In general, in this thesis, we aim to achieve the following objectives:

• To develop a Semantic SLAM system that combines metric
mapping with semantic object information: Our system will
integrate geometric and semantic data to offer a more detailed com-
prehension of the environment.

• To create an effective 3D map representation and provide a
probabilistic semantic map: We aim to enhance UAV navigation
and mapping accuracy through detailed and probabilistic map repre-
sentations.

• To improve the accuracy and efficiency of UAV navigation
and mapping in environments with hollow-bottom objects:
Our system will address the specific challenges posed by these types
of objects.
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• To ensure the developed system is computationally efficient
and suitable for deployment on UAVs with limited power
and computational resources: Ensuring efficiency is vital for real-
time use and implementation on platforms with limited power and
computational capacity.

1.3 Thesis Approach

To achieve these objectives, this thesis proposes a dual-approach Semantic
SLAM system to address the problem of extracting and utilizing semantic
information in UAV operations. The two approaches focus on 3D semantic
mapping and 2.5D semantic mapping, respectively. The first approach
focuses on 3D semantic mapping that merges cutting-edge visual SLAM
to estimate a complete 6-DoF pose and sophisticated object segmentation
techniques at the back end. To enhance the computational and storage
efficiency of the framework, we adopt OctoMap, a streamlined voxel-based
3D map representation, to construct a functional system. In addition, we
incorporate a fusion algorithm to acquire the semantic information from
each frame in the SLAM task on the front end and the corresponding point.
This integration of semantic data significantly improves the UAV’s ability
to perceive and navigate indoor environments, addressing challenges in pose
estimation accuracy and uncertainty reduction. The second approach inte-
grates a state-of-the-art Convolutional Neural Network (CNN) object detec-
tion framework at the front end and a 2D SLAM method - CartoGrapher [8]
at the back end. We leverage the innovative BoT-SORT [9] methodology
to effectively track and position semantic object classes extracted from the
front-end interface [9] methodology. A novel association method is introduced
to extract objects’ positions and project them onto the metric map. In
contrast to previous research, our approach focuses on ensuring reliable
navigation in the environment with various hollow-bottom objects. The
system output is a probabilistic map that significantly enhances the map’s
representation by incorporating object-specific attributes, including class
distinctions, accurate positioning, and object heights. Finally, we evaluate
our system by conducting comprehensive experiments using both publicly
available datasets and simulation datasets.
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1.4 Thesis Contributions
The main contribution of this thesis is to introduce a novel semantic SLAM
framework to directly integrate high-level semantically significant entities
(objects and structures) of the spare semantic SLAM system. By proposing a
SLAM framework, we refer not only to the introduction of new mathematical
representations suitable for merging semantics with visual SLAM, but also to
leveraging object information in the front-end to develop new components for
detecting and matching observations and hypothesizing constraints to create
a more resilient topology for the underlying vSLAM.

The key contributions of this thesis are outlined as follows:
• Proposing a 3D Semantic SLAM system: We develop a system

with faster 6-DoF pose tracking and the capability to construct a
semantic sparse map based on object segmentation information.

• Introducing an efficient representation and storage method
using OctoMap: This memory-efficient alternative to point cloud
data enhances the front-end system

• Implementing a 3D semantic mapping method: Our method
improves the extraction and utilization of semantic information in UAV
operations.

• Presenting a probabilistic metric map approach: This approach
incorporates localization and metric mapping with object tracking
to enhance scene understanding, map accuracy, and UAV navigation
capabilities.

• Proposing a method to fuse extracted object information with
a 2D map: This creates a meaningful 2.5D map for obstacle avoidance.

• Evaluating our SLAM system comprehensively: We use public
available SLAM benchmarks (TUM) and Gazebo simulation datasets.
Additionally, we demonstrate the system’s capability to construct
semantically sparse maps in real-time on a compact, computation-
limited platform via experiments on the Jetson Xavier AGX embedded
computer.

1.5 Thesis Outline
The organization of this thesis is as outlined below:

• Chapter 2: In this chapter, we introduce an extensive review of
the literature in the fields of SLAM, visual SLAM, and Semantic
SLAM. This review covers the historical development and foundational
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concepts of SLAM, discussing both traditional and modern approaches.
We explore various methodologies for integrating semantic information
into SLAM frameworks, highlighting key advancements and ongoing
challenges. In addition, we examine cutting-edge techniques in object
detection and object segmentation, which form the basis for the seman-
tic understanding component of our proposed system.

• Chapter 3: This chapter provides an in-depth overview of the design
and implementation of our proposed Semantic SLAM system. We
begin with the theoretical underpinnings of SLAM and its extension
to incorporate semantic data. The chapter elaborates on the system
architecture, including the front-end and back-end components. We
describe the integration of object segmentation and instance detection
with traditional visual SLAM methods. Key innovations such as the as-
sociation method and efficient mapping representation using OctoMap
are discussed in detail. The chapter also covers the implementation
aspects, including algorithms used for 6-DoF pose tracking, object
detection, and map fusion techniques.

• Chapter 4: In this chapter, we outline the experimental setup em-
ployed to evaluate the performance of the proposed Semantic SLAM
system. We describe the datasets employed, including both real-world
and simulated environments, and the evaluation metrics used to assess
system performance. The chapter presents an in-depth evaluation of
experimental outcomes, contrasting our approach with existing state-
of-the-art approaches. We evaluate the system’s accuracy, computa-
tional efficiency, and robustness in different scenarios. Detailed insights
into the advantages and disadvantages of the proposed system are
provided based on empirical evidence.

• Chapter 5: This chapter concludes the thesis by summarizing the
key findings and contributions of the research. We reflect on the
implications of integrating semantic information into SLAM systems
for UAV navigation and mapping. We also discuss potential future
research directions, including enhancements to the semantic segmenta-
tion algorithms, real-time processing capabilities, and explore the use
of this technology in broader fields like self-driving cars and industrial
automation. Finally, we consider the feasibility of implementing the
system on UAVs with constrained computational resources and suggest
improvements for future iterations.
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Chapter 2

Literature Review

In this chapter, we offer a comprehensive overview of the literature in the
SLAM, visual SLAM, and Semantic SLAM fields. This review covers the
historical development and foundational concepts of SLAM, discussing both
traditional and modern approaches. We explore various methodologies for
integrating semantic information into SLAM frameworks, highlighting key
advancements and ongoing challenges. Additionally, we examine state-of-
the-art techniques in object detection, image classification, and semantic
segmentation, which form the basis for the semantic understanding component
of our proposed system.

2.1 Fundamentals

2.1.1 3D Geometry
3D geometry is fundamental to various computer vision and robotics tasks,
including SLAM, 3D reconstruction, and object recognition. This subsection
outlines the essential concepts and equations that underpin 3D geometric
transformations and representations. SO(3), which denotes rotations, repre-
sents the special orthogonal group and can be expressed as:

SO(3) =
{
R ∈ R3×3 | RRT = 1, det(R) = 1

}
(2.1)

The three-dimensional special Euclidean group SE(3) can be described
as:

SE(3) =

{
T =

[
R t
0T 1

]
∈ R4×4

∣∣∣∣R ∈ SO(3), t ∈ R3

}
(2.2)

where R denotes the 3×3 rotation matrix, t represents the translation vector,
and T is the 4× 4 transformation matrix, respectively.

Closure for SE(3) from the first frame into the second frame can be seen
simply by multiplying:
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1T2 = T1T2 =

[
R1 t1
0T 1

] [
R2 t2
0T 1

]
=

[
R1R2 R1t2 + t1
0T 1

]
(2.3)

where, R1R2 ∈ SO(3) and R1t2 + t1 ∈ R3.
The inverse of SE(3) can be expressed as:

2T1 =

[
R t
0T 1

]−1

=

[
RT −RT r
0T 1

]
(2.4)

On the other hand, quaternions provide an alternative and effective
method for depicting rotations in three-dimensional space. They avoid some
of the pitfalls of rotation matrices, such as gimbal lock, and provide smoother
interpolations. A quaternion q = (x, y, z, w)T with w =

√
1− x2 − y2 − z2,

has an equivalent rotation matrix given by:

R =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2zw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

 (2.5)

Bundle Adjustment
Bundle adjustment is an optimization technique used to refine the 3D

coordinates of points and the parameters of the camera models to minimize
the re-projection error. The projection error e for a point p2

cj
observed in

image i is given by:
epij = p2

cij
− π(Ri, ti,p

3
cj
) (2.6)

where π(·) is the projection function
The objective is to reduce the total of squared re-projection errors to a

minimum:

min
Ri,ti,p3

cj

∑
i,j

||epij||2 (2.7)

2.1.2 Mathematical Formulation of vSLAM
Visual SLAM (vSLAM) involves estimating the pose of the camera and
constructing an environmental map using visual information. This procedure
can be expressed as an optimization problem with the objective of minimizing
the error between the observed and predicted feature positions. Non-linear
least-squares optimization is frequently applied to address this issue.

State Representation and Observation Model
The state in vSLAM consists of the positions of the cameras and the

three-dimensional coordinates of the observed landmarks. Let X , {Xt}Tt=1
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be the set of camera poses and L , {lm}Mm=1 be the set of 3D landmarks.
Each landmark lm is represented as:

lm =
[
xm ym zm

]T (2.8)

The observation model Z , {Z} describes the relationship between
the 3D landmarks and their 2D projections in the image. Let Zij be the
observation of the j − th landmark in the i − th camera frame. This
relationship can be formulated as:

Zij = π(Ri, ti, lj) (2.9)

Error Function
The error function measures the discrepancy between the observed feature

positions and their predicted positions according to the current estimates
of the camera poses and landmarks. The reprojection error eij for the
observation Zij is given by:

ezij = Zij − π(Ri, ti, lj) (2.10)

The total error function E is the sum of squared reprojection errors for
all observations:

E(X ,L) =
∑
i,j

||ezij||2 (2.11)

Non-linear Least-squares Optimization
The goal of non-linear least-squares optimization is to find the camera

poses X and landmarks l that minimize the total error function E. This
optimization problem is non-linear due to the projection function π. It
can be solved using iterative methods such as Gauss-Newton or Levenberg-
Marquardt algorithms.

The Gauss-Newton algorithm approximates the error function by lineariz-
ing the projection function around the current estimate. Let ∆Xi and ∆lj
be small increments to the camera pose Xi and landmark jj, respectively.
The linearized error function is:

eij ≈ e0ij + Jij

[
∆Xi

∆lj

]
(2.12)

where e0ij is the initial error and Jij is the Jacobian matrix of partial
derivatives of the error with respect to the camera pose and landmark. The
update step in the Gauss-Newton algorithm is obtained by solving the normal
equations:
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H∆θ = −g (2.13)
where H is the Hessian matrix and g is the gradient of the error function:

H =
∑
ij

JT
ijJij

g =
∑
ij

JT
ije

0
ij

(2.14)

The parameters are updated as:

θ ← θ +∆θ (2.15)

The Levenberg-Marquardt algorithm is an extension of the Gauss-Newton
algorithm that incorporates a damping factor to ensure convergence. The
update step is modified as:

(H+ λI)∆θ = −h (2.16)
with θ representing the damping factor and I denoting the identity matrix.
The damping factor λ is dynamically adjusted based on the reduction in the
error function. If the error decreases, λ is decreased; otherwise, λ is increased.

Belief Inference
In the context of SLAM, belief inference refers to estimating the posterior

distribution of the robot’s state and the map given the observations. The
belief bel(X ,L) represents the probability distribution over the possible states
of the camera poses and landmarks. The belief is updated using Bayes’
theorem:

bel(X ,L) = ηp(Zt)|X ,L)bel(X ,L) (2.17)
The goal is to maximize the posterior probability:

max
X ,L

p(X ,L|Zt) (2.18)

which can be transformed into a minimization problem by taking the negative
logarithm:

min
X ,L
−logp(X ,L|Zt) (2.19)

Assuming Gaussian noise, the negative log-likelihood is proportional to
the sum of squared errors:

−logp(X ,L|Zt) ∝
∑
t

||ezt ||2 (2.20)
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Thus, the optimization problem in belief inference aligns with the non-
linear least-squares optimization problem, where the objective is to find the
MAP (Maximum A Posteriori) estimate of the camera poses and landmarks.
The optimization proceeds iteratively, updating the camera poses and land-
marks until the change in the error function is below a predefined threshold
or a maximum number of iterations is reached. The estimates of the camera
poses and landmarks are refined through this process, resulting in a precise
reconstruction of both the environment and the camera path.

2.1.3 Semantic Information
The term ”semantic refers to the meaning or context of information within
a given domain. In the context of SLAM, semantic information refers
to the identification and categorization of objects and features within the
environment, providing a richer understanding beyond a mere geometric
representation. In our case, we call semantic information object-level data
that enable a more comprehensive interpretation of the scene, such as
recognizing furniture, distinguishing between different types of obstacles, and
identifying points of interest.

Integrating semantic information into SLAM frameworks presents a sig-
nificant challenge due to the intricacies involved in real-world environments
and the need for accurate the efficient algorithms to process and understand
the data. However, the development of deep learning, particularly CNN,
has transformed the field by offering robust methods for object detection
and object segmentation. These advances have enabled the incorporation of
high-level semantic data into SLAM systems, enhancing their functionality
and robustness.

Object Detection
Object detection entails the process of identifying and localizing objects

within an image, providing essential information for semantic mapping. This
process is fundamental for semantic mapping, as it provides the necessary
information to label and categorize different elements in the environment.
Early object detection methods relied on hand-crafted features and classifiers.
The Deformable Part Model (DPM), proposed by Felzenszwalb et al. [10]
(2008) was one of the most influential models, utilizing a combination of
HOG (Histogram of Oriented Gradients) features and a linear SVM (Support
Vector Machine) for object detection. Deep learning has revolutionized
object detection, with CNNs becoming the benchmark because they can au-
tomatically learn hierarchical features from raw data. R-CNN (Region-based
CNN) is introduced by Girshick et al. [11] (2014), R-CNN employs selective
search to produce region proposals and a CNN to classify these regions.
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Despite its high accuracy, R-CNN is computationally expensive as it requires
running a CNN on each region proposal. Spatial Pyramid Pooling Network
(SSP Net), proposed by He et al. [12] (2014), integrates a spatial pyramid
pooling layer, which eliminates the fixed-size limitation of the input image,
enabling the network to create fixed-length representations irrespective of
the image’s dimensions. While SSP Net improved detection accuracy, it also
introduced computational complexity, which can be a limitation for real-time
applications. Girshick [13] (2015) proposed Fast R-CNN, which improves
speed by sharing convolutional features across proposals. Ren et al. [14]
(2015) further optimized this approach with Faster R-CNN, introducing the
Regional Proposal Network (RPN) that generates regional proposals within
the network. However, these models continue to face challenges in real-time
applications because of their comparatively high computational expense.

In addition, Redmon et al. [15] (2016) proposed YOLO, which formulates
object detection as a unified regression task, estimating bounding boxes and
class probabilities straight from the entire image. YOLO is known for its real-
time performance and has seen several improvements, but initially struggled
with small object detection and localization accuracy. Subsequent versions
of YOLOv2 to YOLOv10 have addressed many of these issues, but can still
be challenged by high-resolution images. Liu et al. [16] (2016) introduced
SSD, which eliminates the need for region proposals by predicting bounding
boxes and class scores for multiple default boxes of different aspect ratios
at each location in several feature maps. SSD balances speed and accuracy
effectively, though it can struggle with detecting small objects compared
to region-based methods. FPN (Feature Pyramid Networks)is introduced by
Lin et al. [17] (2017), which enhances object detection performance, especially
for small objects, by constructing feature pyramids with lateral connections.
The downside is the increased computational cost and complexity, which can
affect real-time performance. Finally, He et al. [18] (2017) extended Faster
R-CNN to include a branch for estimating segmentation masks within each
region of interest, resulting in Mask R-CNN. This approach significantly im-
proves instance segmentation accuracy but comes with higher computational
demands, reducing its suitability for real-time applications.

Object Segmentation
Object segmentation entails labeling every pixel in an image with prede-

fined categories, thereby creating detailed semantic maps that add to the
robot’s comprehension of its surroundings. Before deep learning, object
segmentation methods relied on techniques such as graph cutting, conditional
random fields (CRFs) [19], and manual feature engineering. These methods
struggled with the complexity and variability of real-world scenes. On the
other hand, deep learning has significantly advanced object segmentation.
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CNNs have been adapted for pixel-wise classification, leading to several
state-of-the-art models. Fully Convolutional Networks (FCN)is proposed by
Long et al. [20] (2015), FCNs substitute fully connected layers in traditional
CNNs with convolutional layers, allowing the network to output spatial maps
instead of class scores for end-to-end segmentation training. However, FCNs
can suffer from coarse segmentation outputs due to downsampling in the
network. Badrinarayanan et al. [21] (2017) introduced SegNet, using an
encoder-decoder architecture where the encoder extracts features and the
decoder upsamples the feature maps to produce the final segmentation.
SegNet is known for its efficient memory usage, but it can be less accurate
than other deep learning models. Ronneberger et al. [22] (2015) developed
U-Net for biomedical image segmentation. It uses an encoder-decoder
architecture with skip connections linking corresponding layers, preserving
spatial information and improving accuracy. U-Net is highly effective but
can be computationally intensive due to its complex architecture.

Chen et al. [23] (2018) introduced DeepLab, incorporating atrous (di-
lated) convolutions for multi-scale context and Conditional Random Fields
(CRFs) for precise boundary localization. DeepLab has evolved through
versions, including DeepLabv2 and DeepLabv3. While DeepLab achieves
high accuracy, it requires significant computational resources. Pohlen et
al. [24] (2017) introduced FRRN (Full Resolution Residual Networks), which
combines multi-scale context aggregation with residual connections to main-
tain high-resolution information throughout the network. FRRN is effective
for semantic segmentation, but it can be computationally intensive. ICNet
(Image Cascade Network) is introduced by Zhao et al. [25] (2018), designed
for real-time semantic segmentation by cascading feature maps of different
resolutions. ICNet achieves a good balance between accuracy and speed, but
can still be less accurate than more complex models. PSPNet (Pyramid
Scene Parsing Network) is proposed by Zhao et al. [26] (2017), PSPNet
uses pyramid pooling to capture global context information, enhancing
segmentation performance in complex scenes. PSPNet delivers state-of-the-
art results, but at the cost of increased computational demand.

2.2 Related Works
The evolution of vSLAM has been marked by significant advancements in
algorithms, sensor integration, and computational efficiency. This section
reviews the progression of vSLAM techniques, from early methods to state-
of-the-art approaches, highlighting key developments and their contributions
to the field.
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2.2.1 Visual SLAM Evolution

Early vSLAM methods focused on feature extraction and matching to
determine the camera’s pose and construct a map of the surroundings. These
techniques relied heavily on handcrafted features and geometric transforma-
tions. Among the earliest real-time vSLAM systems using a single camera
was MonoSLAM, introduced by Davison et al. [27] in 2007. MonoSLAM
used an Extended Kalman Filter (EKF) to estimate the camera trajectory
and map the environment. Around the same time, Klein and Murray [28]
proposed PTAM (Parallel Tracking and Mapping), which separated tracking
and mapping into parallel processes, improving the system’s robustness and
real-time performance.

Feature-based methods soon became popular due to their robustness
in various environments. These methods detect and match key points
across frames to estimate motion and build maps. In 2015, Mur-Artal
et al. [29] introduced ORB-SLAM, which uses ORB (Oriented FAST and
Rotated BRIEF) features for tracking, mapping, and loop closure detection.
ORB-SLAM is highly efficient and works well in large-scale environments.
Another significant contribution was LSD-SLAM [30] (Large-Scale Direct
SLAM), developed by Engel et al. in 2014. LSD-SLAM performs direct
image alignment without explicit feature extraction, allowing for dense 3D
reconstruction. More recently, Wu et al. [31] (2020) introduced CubeSLAM, a
feature-based SLAM system that integrates object detection with traditional
feature-based SLAM to improve robustness in complex environments by
leveraging the geometric information of cuboid shapes.

Direct methods, in contrast to feature-based methods, use the intensity
information of the pixels directly to estimate the camera motion and build
maps. Forster et al. [32] introduced SVO (Semi-Direct Visual Odometry) in
2014, which combines the efficiency of direct methods with the robustness of
feature-based methods, optimizing the pose using both direct and indirect
(feature-based) measurements. Engel et al. [33] proposed DSO (Direct Sparse
Odometry) in 2017, a direct method that optimizes photometric error over
a sparse set of pixels, providing high-precision camera tracking. The inte-
gration of deep learning into vSLAM has led to significant improvements in
accuracy and robustness, particularly in dynamic and unstructured environ-
ments. Wang et al. [34] introduced DeepVO (Deep Visual Odometry) in 2017,
leveraging recurrent neural networks (RNNs) to learn motion patterns from
sequences of images, providing robust pose estimation in challenging condi-
tions. Teed and Deng developed DeepV2D [35] in 2018, a deep learning-based
approach that integrates differentiable rendering with pose estimation to
achieve high accuracy in dynamic and challenging environments. Czarnowski
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et al. [36] proposed DeepFactors in 2020, which combines traditional factor
graph optimization with learned dense feature representations to improve
robustness and accuracy in vSLAM.

Recent advancements in vSLAM have focused on improving robustness,
efficiency, and the ability to handle dynamic environments. Qin et al. [37]
proposed VINS-Mono in 2018, a tightly-coupled visual-inertial odometry
system that integrates IMU data with visual information to improve ro-
bustness and accuracy, particularly in scenarios with rapid motion. Schops
et al. [38] proposed BAD-SLAM in 2019, combining bundle adjustment
with deep learning features for dense SLAM, improving the accuracy and
efficiency of 3D reconstruction. Mur-Artal et al. [39] extended ORB-SLAM
to support monocular, stereo, and RGB-D cameras with ORB-SLAM3 in
2021, introducing improved tracking, mapping, and loop closure capabilities,
making it one of the most versatile vSLAM systems available. Teed and
Deng [40] introduced DROID-SLAM in 2021, which employs recurrent neural
networks to perform both dense and sparse visual SLAM, achieving state-of-
the-art performance in various benchmarks.

The advent of new sensors, such as RGB-D, stereo, and event cameras,
has further advanced the field of vSLAM by providing richer and more diverse
data for mapping and localization.

• RGB-D Cameras: These cameras provide synchronized RGB and
depth data, enabling more accurate and detailed environmental map-
ping. Examples include ElasticFusion (2015) by Whelan et al. [41],
which uses a surfel-based fusion method for dense SLAM, and ORB-
SLAM2 (2017) by Mur-Artal et al. [42], which extends ORB-SLAM to
support RGB-D cameras.

• Stereo Cameras: These cameras use two lenses to capture 3D
information through the disparity between images. Stereo ORB-SLAM
(2017) by Mur-Artal et al. [42] and VINS-Fusion (2018) by Qin et
al. [43] are notable examples that leverage stereo vision for robust
SLAM.

The following table 2.1 summarizes and compares various traditional
vSLAM approaches based on their key attributes and performance metrics.
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2.2.2 From Traditonal SLAM to Semantic SLAM

The transition from traditional SLAM to Semantic SLAM represents a signif-
icant advancement in robotic perception and navigation. Traditional SLAM
systems focus primarily on geometric reconstruction and pose estimation,
often lacking contextual comprehension of the surroundings. Conversely,
Semantic SLAM, integrates high-level semantic information, such as object
recognition and scene understanding, into the SLAM framework. Traditional
SLAM systems are designed to estimate the robot’s pose and construct
a map of the environment simultaneously. These systems rely heavily on
feature extraction, matching, and geometric transformations. While they
are effective in building accurate maps and tracking the robot’s movement,
they do not provide details regarding the categories and identities of items
in the surroundings.

Semantic SLAM builds upon traditional SLAM by incorporating semantic
information into the mapping and localization process. This integration
enhances the robot’s understanding of its surroundings, enabling it to rec-
ognize and categorize objects, understand their relationships, and perform
higher-level tasks. Frank Dellaert and David Bruemmer [44] were pioneers
in investigating and interpreting the issue of semantic mapping. Recent
advancements in deep learning technologies have empowered researchers
to tackle the conventional SLAM problem. By employing deep learning
techniques, researchers are able to extract feature points, generate descrip-
tors, obtain semantic information, and estimate poses. Integrating semantic
information into standard vSLAM improves the understanding of image
features and results in highly accurate semantic maps. [45–47]. When the
aim is to enhance localization, mapping, or both, these challenges are termed
semantic localization, semantic mapping, and semantic SLAM, respectively.
SemanticFusion, introduced by McCormac et al. [46] in 2017, combines dense
RGB-D SLAM with real-time semantic segmentation to create a semantically
annotated 3D map. This approach leverages deep learning to perform pixel-
wise segmentation, integrating the results into the SLAM pipeline. Similarly,
Co-Fusion [48], Mask Fusion [49], DS-SLAM [50], and SCFusion [51], extend-
ing the SLAM system with instance-level segmentation using Mask R-CNN.
These methods not only reconstructs the 3D environment but also identifies
and labels individual objects, providing a detailed semantic map.

Current research efforts have focused mainly on creating 3D semantic
maps using technologies such as depth cameras [6], [52], stereo cameras [53],
3D LiDAR [54], or fusion sensors [55]. However, these methods frequently
require significant computational power and storage, rendering them less
appropriate for UAVs with strict weight and computational limitations and
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complicating their use during UAV navigation. Various studies have also
applied semantic mapping for tasks like room classification [56] and dynamic
object detection [57]. However, most practical robots use 2D metric maps
due to their simplicity and low resource requirements. Furthermore, the
mapping of hollow bottom objects like tables, desks, and chairs are usually
mapped on the map as points or paths leading to wrong navigation decisions.
Further advancements include Fusion++, proposed by McCormac et al. [58]
in 2018, which integrates semantic segmentation and object recognition into
a dense SLAM system. Fusion++ uses CNNs to segment images and fuse
the semantic labels into the 3D map, enhancing the robot’s environmental
understanding. These developments have greatly enhanced the precision
and reliability of SLAM systems, enabling them to handle complex dynamic
environments more effectively.

Despite these advancements, Semantic SLAM faces several challenges,
including computational complexity, real-time performance, and robustness
in dynamic environments. Future research focuses on overcoming these
obstacles by creating more efficient algorithms, leveraging advanced machine
learning techniques, and improving sensor integration. Enhancing the ca-
pabilities of Semantic SLAM systems will enable more sophisticated and
autonomous robotic applications, driving further innovation in the field. The
evolution from traditional SLAM to Semantic SLAM represents a paradigm
shift in robotic perception. By integrating semantic information, these
systems provide a richer, more comprehensive understanding of the sur-
roundings, allowing robots to execute complex tasks with greater autonomy
and intelligence. The advancements in deep learning and sensor technology
continue to drive this field forward, promising exciting developments in the
future.

In this thesis, our aim is to advance the field of Semantic SLAM by
developing a system that combines metric mapping with semantic object
information. Our approach involves improving the precision and effectiveness
of UAV navigation and mapping in environments with hollow-bottom objects,
ensuring computational efficiency suitable for deployment on UAVs with
limited power and computational resources. By integrating state-of-the-art
object detection and segmentation techniques with robust SLAM algorithms,
our system aspires to achieve real-time, semantically-rich mapping capabili-
ties.

21



Chapter 3

Methodology

This chapter presents the detailed design and implementation of the proposed
Semantic SLAM system. We begin with the theoretical underpinnings
of vSLAM and its extension to incorporate semantic data. The chapter
elaborates on the system architecture, including the front-end and back-end
components. We describe the integration of semantic segmentation and object
detection with traditional vSLAM methods. Key innovations such as the
association method and efficient mapping representation using OctoMap are
discussed in detail. The chapter also covers the implementation aspects,
including algorithms used for 6-DoF pose tracking, object detection, and map
fusion techniques.

3.1 System Overview
The proposed semantic SLAM is illustrated in Fig. 3.1, which includes
three main components: Localization modules, 3D Semantic Map creator
module and 2.5D Semantic Map creator module. Our system utilizes RGB
color information and depth information from a single depth camera. The
Localization module is responsible for tracking, local mapping, and loop
closing. Tracking ensures continuous pose estimation; local mapping creates
a local representation of the environment, and loop closing corrects drifts
by recognizing previously visited locations. The 2.5D Semantic Map creator
focuses on integrating semantic information into a 2D map. This process
involves object positioning, where detected objects are located within the
environment, and projection, which maps these objects onto a 2D plane.
The module then creates a 2.5D semantic probability map by combining
the projected data with metric mapping, resulting in a detailed 2D map with
semantic information. The 3D Semantic Map creator performs more complex
operations to generate a 3D map. It begins with semantic segmentation,
which categorizes different regions of the RGB-D images. Semantic point
cloud generation then creates a 3D point cloud with semantic labels. This
point cloud undergoes semantic fusion, integrating multiple observations to
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Figure 3.1: Proposed Semantic SLAM Architecture: The system is
composed of three units: a full 6 DoF pose estimation of the drone, a 3D
semantic mapping branch, and a 2.5D semantic mapping branch.

build a consistent model. The final step, Octomap generations, constructs a
spare map that represents the 3D structure of the environment, The resulting
3D maps is then visualized for interpretation and analysis. This architecture
ensures robust and precise environmental understanding by combining real-
time localization with detailed 2D and 3D semantic mapping, enhancing the
capabilities of autonomous systems in complex environments.

3.2 Visual Localization
Visual Localization is a crucial component of our proposed Semantic SLAM
system, enabling UAVs to navigate and map their environment using visual
information. This section delves into the theoretical foundations of visual
localization, highlighting the key mathematical concepts and equations that
underpin this technology.

3.2.1 Pose Estimation
Pose estimation in our system involves determining the position and orienta-
tion of the UAV in 6 DoF (degrees of freedom) from visual input. This can be
formulated as an optimization problem, where the objective is to minimize
the reprojection error between the observed features in the image and their
corresponding 3D points in the map.

We utilize the ORB-SLAM3 algorithm [39] for accurate and real-time
estimation of camera poses from RGB-D images. ORB-SLAM3 leverages a
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monocular camera model, extending its capabilities to support both stereo
and RGB-D configurations, making it idea for our UAV’s sensor setup. It
include three concurrent parts: (1) Tracking, (2) Local Mapping, and (3)
Loop Closing [59]. The challenge of estimating pose involves determining
the UAV’s position (x, y, z) and orientation (φ, θ, ψ) in a global frame of
reference. ORB-SLAM3 addresses this by tracking a collection of distinctive
features across successive frames and establishing the correspondences among
them. The estimated pose is derived by minimizing the re-projection error
between the observed feature positions and their predicted positions in the
camera frame. Mathematically, given a set of N observed 2D feature points
p2
i in the current RGB-D frame and their corresponding 3D points p3

i in the
world frame, the estimated camera pose ōTc ∈ SE(3) with:

ōTc =

[
ōRc

ōtc
01×3 1

]
=


ōrc00

ōrc01
ōrc02

ōtc00
ōrc10

ōrc11
ōrc12

ōtc10
ōrc22

ōrc22
ōrc22

ōtc20
0 0 0 1


can be obtained by solving the optimization problem:

ōTc = argmin
ōTc

N∑
i=1

||p2
i − π(ōTc × p3

i )||2 (3.1)

where ōRc,
ō tc,

ō Tc represent the rotation matrix, the translation matrix,
and the transformation matrix, respectively, between the world coordinate
frame (Ōxyz) and the camera coordinate frame. The function π(·) is the
projection function from 3D to 2D points and || · || indicates the Euclidean
distance.

Since camera odometry obtained from Eq. 3.1 and robot odometry utilize
different world coordinates, a calibration process was carried out. Let
oTr,

oTc denote the transformation matrix representing the robot pose and
camera pose relative to the robot’s world frame (Oxyz), respectively. The
transformation oTc is consequently calculated as:

oTc =


ōrc00

ōrc02
ōrc21

ōtc20
ōrc20

ōrc11
ōrc01

ōtc00
ōrc12

ōrc10
ōrc22

ōtc10
0 0 0 1

 (3.2)

Consider cTr as the transformation matrix from the camera frame to the
UAV frame. The pose of the UAV is expressed by:

oTr =
o Tc ×c Tr (3.3)
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3.2.2 Feature Matching
Feature matching is essential for establishing correspondences between suc-
cessive frames. Common feature descriptors such as SIFT, SURF, or ORB
are used to detect and describe key points in images. The matching process
can be formulated as finding pairs of key points (pi,pj) between frames Ii
and Ij that satisfy certain similarity criteria. Illustrated in Fig. 3.2 are the
outcomes of feature extraction and pose tracking.

(a) ORB Feature Extraction (b) UAV Pose Tracking

Figure 3.2: An Example of feature extraction and pose tracking.

3.2.3 Motion Model
The UAV’s motion can be described by a kinematic model. Assuming
a constant velocity model, the motion between two time steps can be
represented as:

Xt+1 = f(Xt,ut) + wt (3.4)
where, Xt is the UAV reference state matrix at time t„ ut is the control
input, wt is the process noise. Xt typically include the UAV’s position and
orientation

[
xt yt zt θt φt ψt.

]
In our system, motion control is managed through waypoint navigation.

This approach involves defining a set of goals or waypoint that the UAV must
reach, which allows for structured and efficient path planning. A waypoint
Wk ∈ SE(3) can be defined as a position and orientation in the 3D space.
The control objective is to navigate the UAV from its current state Xt to the
next waypoint Wk=1. The control law can be designed using a Proportional-
Intergral (PI) controller and a SO(3) control for orientation. The PID control
law is formulated as follows:
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ut = kpet + ki

∫ t

0

eτdτ (3.5)

where et =
[
xWk+1 − xt yWk+1 − yt zWk+1 − zt

]T is the error between the
desired waypoint and the current position, kd and ki are proportional and
integral gains, respectively.

∫ T

0
eτdτ is the integral of the error over time.

The PI controller adjusts the UAV’s control input ut to minimize the error
et, ensuring that the UAV follows the desired trajectory.

The orientation of the UAV is controlled using an SO(3) controller
to ensure smooth and accurate rotations. The special orthogonal SO(3)
represents the space of all possible rotations in three dimensions. Given a
desired orientation Rd ∈ SO(3) and the current orientation R ∈ SO(3), the
error in orientation eR can be defined as:

eR =
1

2
(RT

dR−RTRd)
∨ (3.6)

where (·)∨ denotes the vee operation, which maps a skew-symmetric matrix
to a vector in R3

The control law for the orientation is given by the following:

uR = kreR + kΩ(Ωd − Ω) (3.7)
where kR and kΩ are the orientation and angular velocity gains, respectively.
Ωd is the desired angular velocity and Ω is the current angular velocity.

The integrated control system leverages the PI controller for position and
the SO(3) controller for orientation to navigate the UAV through a sequence
of waypoints. The overall path can be represented as a sequence of waypoints
W = {W1,W2, . . . ,WN}, with each waypoint specifying both position and
orientation goals: Wk =

(
[xk, yk, zk]

T ,Rk

)
.

3.2.4 Loop Closure
Loop closure is a critical component of vSLAM, helping to correct drift in
the UAV’s trajectory by recognizing previously visited locations. When a
loop closure is detected, a constraint is added between the current pose and
the pose corresponding to the previously visited location. The formulation
of loop closure can be represent as: Z

Xt = g(Xk,Ztk) +wm
tk (3.8)

where g is a function that transforms the pose Xk to Xt based on the observed
loop closure measurement Ztk and wm

tk is the measurement noise.
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The optimization problem with loop closure can be expressed as:

min
X,L

∑
i

∑
j

||xij −K(RiLj + ti)||2 +
∑
(t,k

||Xt − g(Xk,Ztk)||2 (3.9)

where, K is the camera intrinsic matrix, t is translation vector, and xij is
the observed image point corresponding to landmark Lj in pose Xi.

3.2.5 Probabilistic Formulation
In this thesis, we formulate this problem as a probabilistic perspective,
where the objective is to estimate the posterior distribution of the UAV’s
trajectory and map given the observations. Using Bayes’ theorem, the
posterior distribution is:

p(X ,L|Z,U) ∝ p(Z|X ,L)p(X|U)p(L) (3.10)

where U denotes set of all control input, p(Z|X ,L) is the likelihood of the
observations given the trajectory and map, p(X|U) is the prior distribution
of the trajectory given the control inputs, and p(L) is the prior distribution
of the map. The estimation process involves maximizing the posterior distri-
bution, we implemented using Graph-Based Optimization [60] technique. By
grounding our Semantic SLAM system in these theoretical underpinnings of
vSLAM, we leverage robust techniques for pose estimation, feature matching,
motion modeling, map representation, and loop closure detection. These
components work together to enable accurate and efficient mapping and
navigation for UAVs in complex environments.

3.3 3D Semantic SLAM with Object Segmen-
tation

The proposed 3D semantic SLAM methodology takes RGB-D sequences
as input and incrementally constructs a volumetric map augmented with
object instances. Initially, RGB-D images undergo preprocessing through
a UAV pose tracking framework (Section 3.2). Subsequently, an object
segmentation method is employed to identify and extract semantic 3D
objects from individual frames (Section 3.3.1). These extracted objects are
then associated with a volumetric mapping framework to generate a dense
object-level map (Section 3.3.3). To further refine map quality, Octomap is
utilized for noise attenuation and voxel grid downsampling to conserve spatial
resources, and optimization for enhance visual representation (Section 3.3.4).
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Figure 3.3: Structure of semantic segmentation model

The system is implemented within the ROS framework, a widely adopted
platform in the robotics domain, leveraging open-source tools, libraries, and
interoperability to facilitate the development of complex and robust robotic
behaviors.

3.3.1 Semantic segmentation
Semantic segmentation is a crucial component in our methodology, re-
sponsible for extracting meaningful object instances from RGB-D images.
This section elaborates on the process, utilizing the Pyramid Scene Parsing
Network (PSPNet) [26] for its robust performance in semantic segmentation
tasks, which is illustrated in Fig. 3.3. The input to the semantic segmentation
module consists of color images, where each image undergoes an initial
resizing step to fit the input dimensions required by the PSPNet. The
resizing process ensures that the images are compatible with the network
architecture, which is essential for maintaining the accuracy and efficiency of
the segmentation process. Let I ∈ RH×W×3 represent an RGB image of height
H and with W . The image is resized to the input size I′ ∈ RH′×W ′×3, where
H ′ and W ′ are the height an width dimensions specified by the PSPNet.

PSPNet employs a deep convolutional neural network, ResNet, for feature
extraction. ResNet processes the resized image I′ to extract high-level
features, resulting in a feature map F ∈ RH′×W ′×C , where C is the number
of channels in the feature map. The feature extraction process can be
mathematically expressed as:

F = ResNet(I′) (3.11)

The core innovation of PSPNet lies in its pyramid pooling module, which
captures contextual information at multiple scales. The feature map F is
divided into several sub-regions, and average pooling is applied to each region.
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This process generates pooled feature maps at different scales represented
as {P1,P2,P3,P4}, where each Pi ∈ Rhi×wi×C corresponds to a different
pyramid level. The pooled features are then upsampled to the original feature
map size:

P′
i = Upsample(Pi) (3.12)

The upsampled pooled feature maps are concatenated with the original
feature map F, resulting in a fused feature map F′:

F′ = Concat(F,P′
1,P

′
2,P

′
3,P

′
4) (3.13)

The fused feature map F′ undergoes additional convolutional layers to
refine the features and generate a class score map S ∈ RH′×W ′×K , where K
is the number of semantic classes. The class score for each pixel is computed
as:

Sijk = (We
k)

TFij + bk (3.14)

where We
k and bk are the weights and biases associated with class k.

To obtain a probability distribution over the classes for each pixel, a
softmax activation function is applied to the class score map S:

pijk =
eSijk∑K

k′=1 e
Sijk′

(3.15)

Each pixel, along with its probability, is then selected and fused with the
point cloud’s pose.

3.3.2 Pointcloud generation and Semantic Pointcloud
structure

The process begins with the acquisition of RGB-D images from the UAV’s
onboard sensors. These images provide both color (RGB) and depth infor-
mation, crucial for generating a 3D point cloud. Each pixel in the depth
image corresponds to a point in the 3D space, with its coordinates calculated
using the camera’s intrinsic parameters. The transformation from a 2D pixel
(u, v) in the image plane to a 3D point (X,Y, Z)) in the camera coordinate
system is given by XY

Z

 =

fx 0 fy
0 fy cy
0 0 1

−1  u
v

d(u, v)

 (3.16)

29



Figure 3.4: Illustration of semantic point cloud structure

where cx, cy) are the principal point coordinates, (fx, fy) are the focal lengths,
and d(u, v) is the depth value at pixel (u, v). By iterating through each
pixel, a dense point cloud is generated that represents the 3D structure of the
environment. This point cloud serves as the foundational layer for subsequent
semantic processing.

The semantic point cloud structure builds upon the basic point cloud
by incorporating semantic labels obtained from the semantic segmentation
process. Each point in the cloud is enriched with semantic information,
allowing the SLAM system to not only map the environment geometrically
but also understand the types of objects present within it. Once the semantic
labels are obtained, they are merged with the 3D point cloud. Each point
p3
i in the cloud is now associated with semantic labels si1, si2, si3 and their

corresponding confidence scores pi1, pi2, pi3 resulting in a semantic point cloud
{(p3

i , (si1, pi1), (si2, pi2), (si3, pi3))}Ni=1. This semantic enrichment enables the
system to differentiate between various objects, such as furniture, walls,
and other obstacles, within the mapped environment. The structure of the
semantic point cloud is illustrated in Figure 3.4. Each point in the semantic
point cloud is represented with the following attributes:

• X,Y, Z coordinates (float32): 3D spatial information.
• RGB color values (unit8): Color information from the RGB image.
• Semantic colors (unit8): Three top class labels assigned by the semantic

segmentation network.
• Semantic confidence (float32): Confidence scores of the three assigned

labels.
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This structured representation ensures that the semantic point cloud
contains comprehensive information about the environment, combining geo-
metric, color, and semantic data.

3.3.3 Semanic fusion
To enhance the quality and robustness of the semantic point cloud, the
semantic information is fused across multiple views. As the UAV moves and
captures new RGB-D frames, each frame’s semantic point cloud is integrated
into a global point cloud. This fusion process helps in refining the semantic
labels and confidence scores by considering the consistency of labels across
different views. This data is characterized by the vector Q =

[
t c s p

]T ,
where t ∈ R3 represents the 3D spatial coordinates, and c ∈ R1 corresponds
to the RGB color of the point cloud. In addition, s ∈ Rk and p ∈ Rk indicate
the k most probable semantic colors and their respective confidence scores
associated with a point cloud.

For each observation Oi, we determine the probability of every semantic
color within a specified semantic set. Then, the point with the highest
probability is chosen as the final decision. This method guarantees that
semantic information is thoroughly integrated into the point cloud, allowing
for a more detailed and nuanced comprehension of the scene across various
viewpoints and translations. The algorithm 3.1 illustrates the semantic fusion
procedure.

Following the above process, our proposed semantic SLAM system ef-
fectively integrates semantic information across multiple views, enhancing
the richness and accuracy of the generated semantic point cloud. This
integration not only improves the understanding of the scene but also aids in
better decision-making for UAV navigation and interaction within complex
environments.

3.3.4 Semantic map creation
In our method, each keyframe stores the 3D point clouds, while the segmented
point clouds are maintained corresponding to their respective objects. How-
ever, point cloud-based maps typically require significant storage capacity,
making them impractical for large-scale environment modeling with limited
memory. Moreover, the absence of efficient structures to store each point
complicates search operations. Moreover, they lack structures to efficiently
store each point, hindering search operations, and failing to provide volume
information for individual points, limiting their usefulness for advanced tasks
like path planning or grasp point selection.
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Algorithm 3.1 Semantic Fusion Approach
Input: Q1 . Point cloud in Oservation 1

Q2 . Point cloud in Oservation 2
α . Trade of coefficient

Output: Qfusion

1: if Q1.s = Q2.s then
2: Qfusion = Q1

3: else
. Probability for other unknown colors

4: p̄1 = 1−
∑

(Q1.p)
5: p̄2 = 1−

∑
(Q2.p)

. Synchronize data from Q1 to Q2

6: for each label in Q1.s not in Q2.s do
7: (Q2.s).push_back(label)
8: (Q2.p).push_back(α× p̄2)
9: p̄2 = 1−

∑
(Q2.p)

10: end for
. Synchronize data from Q2 to Q1

11: for each label in Q2.s not in Q1.s do
12: (Q1.s).push_back(label)
13: (Q1.p).push_back(α× p̄1)
14: p̄1 = 1−

∑
(Q1.p)

15: end for
16: Qfusion = Q1

. Nomalize to probability distribution
17: Qfusion.p =

(
Q1.p×Q2.p

)/(∑
(Q1.p×Q2.p

)
18: end if
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Figure 3.5: Geometric representation of Semantic Octomap (left) and Exam-
ple of Octree structure (right): A gray circle signifies an inner node whose
child nodes jointly span the same physical area as the inner node. A colored
square indicates occupancy values sharing the same semantic, and black dots
denote areas that have not been explored.

To overcome these challenges, we utilized OctoMap [61], a probabilistic
3D mapping framework that leverages an Octree data structure allowing for
adaptive resolution. Compared to point cloud maps, OctoMap offers a more
efficient method for storing occupancy status, thereby significantly reducing
storage requirements. An Octree is a layered data structure consisting of
nodes that symbolize segments of the spatial environment. Each node can
have 0 or 8 child nodes, which align with the 8 subdivisions in the Euclidean
3D coordinate system [62]. Fig. 3.5 illustrates an example of a Semantic
Octree data structure. Leaf nodes denote the smallest voxels, and a proba-
bilistic model deals with issues such as noise and range measurement errors by
assigning probabilities to states of occupancy or vacancy. A Semantic Octree
instance stores the occupancy, color, and semantic information related to its
corresponding physical space. This data structure is organized as a Semantic
point cloud, further elaborated in Section 3.3.2. OctoMap is thus a preferred
option for constructing maps in our system, as it addresses the drawbacks
of conventional point cloud approaches. When a new 3D point is added, the
log odds value for voxel i at time t (L(i|Z1:t−1) is determined by leveraging
the log odds value up to time t− 1 (L(i|Z1:t−1):

L(i|Z1:t) = L(i|Z1:t−1) + L(i|Zt) (3.17)

where,
L(i) = log

[ p(i)

1− p(i)

]
(3.18)
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In this context, Zt denotes the observation for a voxel at time t, while p(i)
represents the probability that the voxel i contains an object or obstacle. By
integrating OctoMap with our semantic point cloud structure, the resulting
semantic map is both memory efficient and semantically rich. This enhanced
map provides a detailed understanding of the environment, enabling ad-
vanced applications such as semantic-aware navigation and task planning.
The combination of probabilistic occupancy mapping with semantic fusion
ensures robustness and adaptability in dynamic and unstructured environ-
ments.

3.4 2.5D Semantic SLAM with Object Detec-
tion

2.5D Semantic SLAM with Object Detection combines the capabilities of
simultaneous localization and mapping (SLAM) with object detection to
create a detailed, semantically enriched representation of the environment.
This approach leverages both geometric and semantic information to enhance
the accuracy and utility of generated maps. The system can identify
and localize objects within the environment, providing a richer context for
navigation and interaction. Our main objective is to utilize the RGB-D
images to build a semantic probability map from these grid maps. Firstly,
RGB images are processed for object detection using a neural network model.
For this purpose, we have selected the highly accurate and real-time YOLOv8
architecture. YOLOv8 is known for its fast and reliable object detection,
which makes it ideal for real-time applications in dynamic environments.
Subsequently, the detected objects are tracked with the BoT-SORT [63] al-
gorithm, which ensures consistent identification over different time intervals.
BoT-SORT enhances the tracking reliability by associating detected objects
across frames, thereby maintaining consistent object identities over time.

Secondly, we transform the depth images into point clouds and extract
the point cloud data of the detected objects. This transformation involves
converting depth information into a three-dimensional spatial representation,
enabling precise localization and mapping of objects within the environment.
To improve data quality, we applied a clustering method to eliminate outlier
point clouds. This step is crucial for ensuring the accuracy and reliability of
the point cloud data by removing noise and irrelevant points. The core pro-
cess of semantic map creation involves the Cartographer method [8], which
monitors the robot’s pose within the environment and produces a 2D metric
map using 2D scan data obtained from the point cloud. Cartographer is an
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advanced SLAM algorithm known for its real-time performance and accuracy
in pose estimation and map generation. Afterward, we compute object
positions and project the relevant semantic information onto the robot’s
coordinate system. This involves integrating the detected object positions
with the robot’s pose to accurately place objects within the generated map.
Finally, we augment the metric map by integrating semantic information
and associated projection data, adopting a probabilistic approach. This
probabilistic integration ensures that the semantic map reflects the uncer-
tainties and variations in the environment, providing a robust and reliable
representation.

3.4.1 Semantic knowledge understanding

(a) Raw point cloud of object class (b) Remove background step

(c) Cluster point cloud step

Figure 3.6: Steps and outcomes of semantic knowledge comprehension. The
red dot represents a point cloud derived from RGB images, while the green
rectangle signifies a 3D bounding box indicator.

The identification of object categories within the RGB-D camera’s field-
of-view (FOV) is an essential step in our approach. To achieve this, we
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utilize a neural network capable of extracting semantic information on a pixel
level from the images. In our study, we use the You Only Look Once [15]
(YOLO) algorithm, recognized as the leading model for object detection and
real-time performance, even on affordable embedded devices. Specifically,
we have chosen Yolov8, which is the fastest, lightest, and has the highest
precision-recall scores.

YOLOv8 processes the input RGB image to produce bounding boxes and
probability scores for each category of identified objects. Each bounding box
is defined by four parameters: the center coordinates x(i), y(i), the width
w(i), and the height h(i). YOLOv8 is highly efficient due to its backbone
network, which is designed for both speed and accuracy, making it suitable for
real-time applications. The network architecture includes several innovations
such as CSPDarknet53 as the backbone, PANet as the path-aggregation
network, and the YOLOv3 head for detection, ensuring high performance
across various scenarios.

After detecting the classes of objects, we utilize BoT-SORT [63] to
monitor multiple objects over different observations. BoT-SORT consists
of three main components:

1. Discrete Kalman Filter: This models the object’s motion in the image
plane, predicting the future positions of objects based on their past
states.

2. Camera Motion Compensation: This compensates for the rigid camera
motion, ensuring that object tracking remains accurate even when the
camera is moving.

3. IoU-Re-ID Fusion: This integrates appearance features into the tracker,
combining intersection over union (IoU) with re-identification (Re-ID)
metrics to maintain consistent object identities across frames.

The model objects of class i are described as follows:

xi =
[
x(i) y(i) w(i) h(i) ˙x(i) ˙y(i) ˙w(i) ˙h(i)

]T
(3.19)

zi =
[
zx(i) zy(i) zw(i) zh(i)

]T (3.20)

Simultaneously, we obtain point clouds using the RGB-D camera. Let us
denote the depth at pixel (x, y) as D(x, y). Assuming the RGB-D camera
follows a pin-hole model with focal lengths (fx, fy) and optical center (cx, cy),
the intrinsic camera matrix K ∈ R3×3, along with the extrinsic parameters
(R ∈ R3×3, t ∈ R3×1), the 3D coordinates of point k in the world coordinate
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system are given by:

pk =


Xk

Yk
ZK

1

 =

[
R t
00×3 1

]
∗


D(x, y)K−1x
D(x, y)K−1y
D(x, y)

1

 (3.21)

In the next step, we begin by extracting complete point clouds P from
within the object’s bounding box, as determined by the object detection
model. To ensure both robustness and efficiency, the point cloud P undergoes
a pre-processing phase that includes two main steps: Euclidean-based clus-
tering and background removal. Euclidean-based clustering is based on the
concept of spatial proximity. Points that fall within a predefined Euclidean
distance threshold ε are clustered together, as they are likely to belong to the
same object or surface. The Euclidean distance deuclidean between any two
points (x1, y1, z1) and (x2, y2, z2) is calculated as:

deuclidean =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3.22)

After segmenting the point cloud into clusters, we select the largest cluster
based on the number of points it contains. Fig. 3.6 illustrates the steps
involved in point cloud processing.

3.4.2 Localization and mapping
To achieve robust and precise localization along with comprehensive map-
ping, our research uses CartoGrapher, an advanced 2D SLAM solution
smoothly integrated within the Robot Operating System (ROS). This strate-
gic combination empowers our robotic system to perform simultaneous
localization and mapping, thus creating detailed representations of the
surrounding environment. CartoGrapher is a powerful 2D SLAM algorithm
known for its capability to produce highly accurate maps of both indoor and
outdoor settings. Key aspects of CartoGrapher include:

• Real-Time Correlative Scan Matching (RTCSM): RTCSM
aligns incoming laser scan data with the existing map to estimate
the robot’s pose. This method computes the transform that best
matches the current scan to the submap, providing a robust initial
pose estimate. This process involves correlating the scan against
a probability grid, evaluating multiple possible transformations, and
selecting the one with the highest matching score.
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• Pose Graph Optimization: After initial pose estimation via RTCSM,
Cartographer refines the pose estimate through pose graph optimiza-
tion. This global optimization step minimizes the overall error by
adjusting the poses of all nodes in the graph, ensuring a consistent
and accurate map. Constraints between nodes are established based
on scan-to-submap matches, loop closures, and odometry, forming a
connected graph structure. Optimization algorithms, such as Ceres
Solver, are employed to solve this non-linear least squares problem.

The resulting output is a two-dimensional metric map that depicts the
environment, derived from the grid M and the robot’s pose pr ∈ R3 within
the map:

pr =
M Tr =

[
x y θ

]T (3.23)

where (x, y) and θ represent the position and orientation, respectively,
and MTr is the transformation matrix between map coordinates and robot
coordinates.

3.4.3 Semantic association
After extracting the point cloud of the object class, the next step is to
determine the position of the object in the coordinates of the map. This
process is critical to accurately integrate semantic information into the overall
map. We denote the object position in the camera frame as po ∈ R4×4,
calculated as the mean position of the points in the object’s point cloud set
Po :

po =
c To = mean(Po) (3.24)

To transform the position of the object from the camera frame to the
map frame, we use the transformation matrix, the translation matrix, and
the rotation matrix between the robot and camera coordinates, denoted as
rtc, rRc. The position of object in the map frame pm =M To ∈ R3 is
computed as follows:

pm =M To =
M Tr +

r Tc ×c To (3.25)

where, rTc =

[
rRc

rtc
00×3 1

]
is the transformation matrix between robot

coordinates and camera coordinates
To ensure reliable navigation, it is crucial that robots maneuver gracefully

around obstacles within their environment. However, traditional mapping
techniques frequently cause robots to collide with objects that have hol-
low bases, since these are usually depicted as unoccupied grid spaces in
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(a) Before projection (b) After projection

Figure 3.7: Projection of the 3D detected object point clouds

metric maps. To overcome this challenge, we utilize the RANdom-SAmple
Consensus (RANSAC) [64] for the projection approach. RANSAC is an
iterative method for estimating the parameters of a mathematical model
from a set of observed data points that contain outliers. The fundamental
idea behind RANSAC involves repetitively selecting random subsets of data
points, proposing models, and assessing how well these models agree with
the data.The steps in RANSAC include:

1. Random Sampling: Randomly select a subset of the original data
points. This subset should be as small as possible while allowing the
model parameters to be computed.

2. Model Fitting: Fit the model to the selected subset of data points.
3. Consensus Evaluation: Determine how many of the data points fit

the model within a predefined tolerance. These points are considered
inliers.

4. Iteration: Repeat the above steps for a fixed number of iterations or
until a model with a satisfactory consensus is found.

5. Model Refinement: Once the best model is found, refine the model
parameters using all inliers.

For example, to represent a plane P that could correspond to a ”chair
seat” or a ”table top,” RANSAC helps to identify this plane amidst noise
and outliers. The plane can be defined by the equation:

P : nTpm +D = 0 (3.26)

where n ∈ R3 is the normal vector to the plane, and D is the distance from
the origin to the plane along the normal vector, determining the plane’s
offset.
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Once the plane P has been segmented using RANSAC, each point pk on
this plane is expressed in the camera frame with the z axis oriented upward.
Therefore, the projection onto the map plane can be achieved by aligning
the z coordinate of the detected plane with that of the map plane. This
projection process ensures that the object is correctly represented in the
map, improving navigation and obstacle avoidance. Fig.
reffig:project illustrates the projection process.

3.4.4 Probabilistic map representation

Figure 3.8: Probabilistic map representation

To improve scene understanding and decision-making in real-world set-
tings, we present a probabilistic semantic representation framework that
effortlessly integrates with the 2D costmap. The 2D costmap provides a basic
grid-based depiction of the environment, incorporating crucial navigation
details like obstacle positions and movement costs. Fig. 3.8 illustrates a
grid costmap where each cell is assigned a value from 0 to 255, indicating
the probability—ranging from 0% to 100%—of the cell being occupied.
Expanding on this, our system adds a layer of semantic depth to the costmap
by associating each grid cell with probabilistic semantic properties. Rather
than just marking cells as obstacles or free space, we assign probabilities
to indicate the likelihood of various object classes within each cell. This
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flexible representation allows our autonomous system to not only recognize
the spatial distribution of objects but also assess the uncertainty tied to
each detection. By combining costmap data with probabilistic semantics,
our system can make well-informed navigation decisions that consider the
probability of encountering specific objects, thereby improving safety and
flexibility in complex, dynamic environments. This method enhances the
traditional 2D costmap with semantic insights, opening up new possibilities
for dependable and context-aware navigation.

In summary, the integration of probabilistic semantics with the 2D
costmap transforms it from a simple grid-based representation into a sophis-
ticated tool that reflects both spatial and semantic attributes. This approach
unlocks new capabilities for autonomous systems, improving their ability to
navigate and interact intelligently in various real-world scenarios.
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Chapter 4

Experimental Results

Within chapter, we outline the experimental setup used to evaluate the per-
formance of the proposed Semantic SLAM system. We describe the datasets
employed, including both real-world and simulated environments, and the
evaluation metrics used to assess system performance. The chapter presents
an in-depth examination of the results obtained from various experiments,
comparing our method with existing state-of-the-art approaches. We explore
the precision, computational efficiency, and robustness of the system in
different scenarios. Based on empirical data, we offer insight into the
strengths and limitations of the proposed system.

4.1 Experimental Setup
Our experimental setup is designed to assess the efficacy of our proposed
Semantic SLAM solution, with a focus on both semantic mapping and pose
estimation accuracy. We utilize the NVIDIA Jetson Xavier AGX as the
primary processing unit, chosen for its high computational power and energy
efficiency, which are crucial for real-time processing on UAV platforms.

4.1.1 UAVs and Gazebo Simulation
As shown in Fig. 4.1, we conducted the experimental tests of our proposed
system utilizing the Hummingbird UAV platform, which features a RealSense
D455 camera. The Hummingbird UAV is noted for its light construction,
enabling swift flight maneuvers and precise navigation in intricate and chang-
ing scenarios, like those seen in challenging search and rescue operations.
It features advanced flight control algorithms, which guarantee steady and
regulated flight performance throughout the experiments. The RealSense
D455 camera improves the UAV’s functionality by providing RGB-D data.
It has a horizontal field of view (FOV) of 90 degrees, a vertical FOV of 58
degrees, a depth FOV of 98 degrees, an image resolution of 640× 480, and a
frame rate of 60 Hz.
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(a) Home environment

(b) Office environment with hollow objects

Figure 4.1: UAV and Gazebo environment simulation

Our experiments were conducted in two distinct environments to test the
versatility and robustness of the system. The first environment (Fig.4.1a)
simulates an office setting with various rooms that contain tables, chairs,
and other office furniture. This setup is designed to mimic an indoor search
and rescue scenario where the UAV must navigate through narrow spaces
and identify objects such as desks and chairs. The second environment
(Fig.4.1b) represents a home setting with a bedroom, living room, kitchen,
and dining area. This environment tests the UAV’s ability to navigate and
map a more residential and varied setting, ensuring the system’s effectiveness
in different real-world applications. Both environments were modeled in
Gazebo, a versatile simulation tool that provides realistic physics and sensor
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data, allowing for comprehensive testing of UAV systems in various scenarios.
The UAV’s path was planned and executed to cover all accessible areas within
these environments, and its performance was evaluated based on navigation
accuracy, object detection, and mapping fidelity.

4.1.2 Datasets

4.1.2.1 Real Publicly Available Dataset

We employed the TUM publicly available RGB-D dataset [65] for bench-
marking our system. The TUM dataset provides high-quality, synchronized
RGB-D data collected from various indoor environments. This dataset is
widely used for evaluating SLAM algorithms due to its extensive and diverse
scenarios, which include office environments, living rooms, and more. The
TUM dataset’s comprehensive annotations and ground truth data enable us
to perform rigorous quantitative evaluations of our system’s effectiveness
regarding precision and stability in practical scenarios. The trajectory
concludes where it started, creating a significant loop closure. Several
important aspects such as:

• Duration: 87.09s

• Duration with ground-truth: 87.10s

• Ground-truth trajectory length: 21.455m

• Avg. translational velocity: 0.249m/s

• Avg. angular velocity: 10.188deg/s

• Trajectory dimension: 5.12m× 4.89m× 0.54m

4.1.2.2 Object Segmentation Dataset

For object segmentation tasks, we leveraged the SUNRGBD dataset [66], a
large-scale dataset containing RGB-D images from indoor scenes. The SUN-
RGBD dataset is specifically designed for semantic segmentation, providing
pixel-wise annotations for a wide range of object classes commonly found
in indoor environments. This dataset allows us to train and validate our
segmentation algorithms, ensuring that our system can accurately identify
and segment objects in various complex settings. The dataset includes a
total of 10, 335 images spanning 38 semantic categories, with 5, 285 images
dedicated to training and 5, 050 reserved for validation.
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4.1.2.3 Object Detection Dataset

In addition to using publicly available datasets, we collected and annotated
our own dataset for object detection tasks. This custom dataset was created
by capturing RGB-D images in various indoor environments and manually
labeling the objects present in the scenes. Within the scope of this thesis,
the training images encompass 6 categories of objects: chair, coffee table,
conference table, sofa, whiteboard, and desk. The chair, desk, coffee table,
and whiteboard are all characterized by fully hollow bottoms; the conference
table features a partially hollow bottom, and the sofa displays a non-hollow
bottom. To enhance the diversity and robustness of our object detection
models, we augmented the dataset using RoboFlow, a powerful tool for data
augmentation and dataset management. The augmentation process included
transformations such as rotation, scaling, and flipping, which help to improve
the generalization capability of our detection models. Thus, we trained the
YOLOv8 object detector using over 500+ distinct images.

4.1.3 Evaluation Metrics
To rigorously assess the performance of our semantic SLAM system, we em-
ploy a combination of quantitative and qualitative evaluation metrics. These
metrics provide a comprehensive understanding of the system’s accuracy,
robustness, and overall effectiveness in various scenarios.

1. Quantitative Metrics: The error between the aligned estimation X̂′ and
the ground truth Xgt can be expressed as:

∆Xi = {∆Ri,∆pi,∆vi} (4.1)

satisfies:
Ri = ∆RiR̂

′
i

pi = ∆Rip̂
′
i +∆pi

vi = ∆Riv̂
′
i +∆vi

(4.2)

the error ∆xi can be calculated by:

∆Ri = Ri(R̂
′
i)
T

∆pi = pi −∆Rip̂
′
i

∆vi = vi −∆Riv̂
′
i

(4.3)

• Root Mean Square Error (RMSE) of Absolute Trajectory Error
(ATE): The ATE measures the deviation between the predicted
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trajectory and the ground truth trajectory. The RMSE of ATE is
determined using the following formula:

ATErot =

√√√√ 1

N − 1

N−1∑
i=1

||∠∆Ri||2

ATEpos =

√√√√ 1

N − 1

N−1∑
i=1

||∆pi||2

(4.4)

where ∠(·) signifies converting the rotation matrix into an angle-
axis representation and using the rotation angle as the error
metric.

• Relative Pose Error (RPE): The RPE evaluates the local accuracy
of the estimated trajectory by comparing the relative motion
between K pairs of poses from X̂. The deviation δdk for the
pair of states dk = {x̂s, x̂e} is calculated using the initial state x̂s

and the adjusted second state x̂e is:

δφk = ∠δRk = ∠Re(R̂
′
e)

T

δpk = ||pe − δRkp̂
′
e||2

(4.5)

RPE is computed as follows:

RErot = {δφk}K−1
k=0

REpos = {δpk}K−1
k=0

(4.6)

• Mean Average Precision (mAP): The mAP is utilized to assess the
effectiveness of object detection, determined by taking the average
of precision values across various recall levels:

mAP =
1

N

N∑
i=1

AP (i) (4.7)

where AP (I) represents the mean precision for the i-th object
class, where N denotes the total count of object classes.

• Precision and Recall: Precision and recall are essential measures
for evaluating the effectiveness of object detection and segmenta-
tion. Precision is defined as the proportion of correctly identified
positive detections to all identified positive detections, whereas
recall is the proportion of correctly identified positive detections
to all actual positive instances ground truth positives:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(4.8)
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where TP represents the count of true positives, FP represents
the count of false positives, and FN represents the count of false
negatives.

2. Qualitative Metric: Qualitative metrics involve visual inspection and
analysis of the system’s output. This includes evaluating the quality of
the produced maps, the precision of object segmentation, point cloud
projection, and the overall navigation behavior of the UAV in different
environments.

4.2 Experimental Resuls
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Figure 4.2: The comparison of trajectory for ORB-SLAM2, Our system and
ground truth in X-Y axis

4.2.1 Pose Estimation Results
Figs. 4.2 and 4.3 show the trajectory comparison for the ORB-SLAM2, our
proposed system, and the ground truth in the X-Y and X-Z axes respectively
for the TUM and Gazebo datasets. In the trajectory comparison within the
X-Y axis, our method demonstrated a mean deviation from the ground truth
of 0.15(m) for the TUM data set and 0.12(m) for the Gazebo data set,
compared to ORB-SLAM2 deviations of 0.20(m) and 0.18 (m), respectively.
Similarly, on the X-Z axis, our method showed mean deviations of 0.10(m)
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Figure 4.3: The comparison of trajectory for ORB-SLAM2, our sytem and
ground truth in X-Z axis

(TUM) and 0.08(m) (Gazebo), while ORB-SLAM2 recorded 0.15(m) and
0.14(m). The proposed system tends to show better adherence to the ground
truth, especially in areas where the path changes direction sharply.
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Figure 4.4: Comparison of Relative Rose Error (RPE) between ORB-SLAM2
and Our system

For translation error (RPE), Fig. 4.4 illustrates that our system and ORB-
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Figure 4.5: The comparison of ORB-SLAM2 and Our system based on the
RMSE of ATE

SLAM2 exhibited accurate pose estimation and smooth motion throughout
the environments. Our method maintained lower error percentages across all
distances. Specifically, at a distance of 11.09(m) in the TUM dataset, our
method had a 0.27% error compared to ORB-SLAM2’s 0.32%. This trend
of lower translation errors for the proposed system is consistent across all
measured distances, indicating its superior accuracy. The translation errors
in the Gazebo dataset are generally higher than those in the TUM dataset.
Despite this, the proposed system still exhibits lower errors compared to
ORB-SLAM2 across all distances. For example, at 12.4(m) in the Gazebo
dataset, our method exhibited a 2.17% error against ORB-SLAM2’s 2.22%.
This suggests that the proposed system maintains a better accuracy even
in more challenging conditions. The rotation error analysis in the TUM
dataset highlights that the proposed system has lower errors compared to
ORB-SLAM2. At a distance of 11.09(m) ORB-SLAM2 has a rotation error
of approximately 0.09(deg/m), whereas the proposed system’s error is about
0.08(deg/m). Similarly to translation errors, rotation errors are higher in
the Gazebo dataset. However, the proposed system consistently shows lower
rotation errors. For instance, at a distance of 12.4(m), the rotation error
for ORB-SLAM2 is around 0.69(deg/m), while for the proposed system, it
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is approximately 0.65(deg/m). This further confirms the robustness and
accuracy of the proposed system.

In addition, Fig. 4.5 illustrates the RMSE of ATE for all frames across
both frameworks, confirming that our system maintains consistent pose
estimation performance. For translation error, our method achieved 0.10(m)
in the Gazebo dataset and 0.09(m) in the TUM dataset, compared to
ORB-SLAM2 0.33(m) and 0.11(m). In rotation error, our method recorded
5.93(deg) (Gazebo) and 3.50(deg) (TUM), while ORB-SLAM2 had 6.15(deg)
and 3.86(deg). These results collectively affirm that our proposed method
delivers improved precision and robustness in pose estimation over ORB-
SLAM2, as evidenced by lower deviations from ground truth, reduced
translation and rotation errors, and lower RMSE of ATE across different
datasets.

4.2.2 Semantic Extraction Results
The training process of various segmentation networks is depicted in 4.6,
showcasing the performance of six different networks: PSPNet [26], IC-
Net [25], SegNet [21], UNet [22], FRRNs [24], and FCNs [20], each trained
over 100 epochs using a batch size of 2 on a Nvidia T4. Among these, PSPNet
demonstrates the highest performance, achieving an accuracy of approxi-
mately 0.78 by the end of the training period. This superior performance
highlights PSPNet’s effectiveness in capturing and segmenting semantic
information, making it a reliable choice for our application. ICNet follows
with an accuracy of around 0.70, achieving a balance between accuracy and
computational efficiency, essential for real-time tasks. The optimization
process employed standard stochastic gradient descent, with parameters
including a weight decay of 1e− 3, a momentum value of 0.9, and a learning
rate set at 0.01. The best-performing model was chosen based on these
training parameters.

4.2.2.1 Semantic Segmentation

SegNet and Unet show steady improvements throughout the training, reach-
ing accuracies of about 0.66 and 0.68, respectively. These networks, with
their encoder-decoder architectures and symmetric designs, are well suited
for segmentation tasks and show potential for further improvement with addi-
tional fine-tuning. The FRRNs (A & B) exhibit moderate performance, with
accuracy of approximately 0.65 and 0.63, respectively. While they handle
high-resolution images efficiently, their complex architectures might benefit
from more extensive training. The FNC models, FCN-16s and FCN-8s,

50



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy
Training process of Segmentation network

icnet

pspnet

frrnA

frrnB

unet

segnet

fcn16s

fcn8s

Figure 4.6: Training Models Assessment

achieve lower accuracies of around 0.50 and 0.55, respectively, indicating that
while foundational, they are outperformed by newer architectures like PSP-
Net and ICNet. Overall, these results validate PSPNet as the leading network
for our semantic segmentation tasks, with ICNet as a viable alternative,
while SegNet and Unet also show promise for further development. Among
the models, PSPNet exhibited superior accuracy performance, prompting its
selection as the segmentation model for integration into our system.

4.2.2.2 Object Detection

Table 4.1 provides a comprehensive comparison of the performance metrics
of various detection models, including our model. In particular, we evaluate
our methodology with Yolov3, which was used in a previous work by D.
Bersan [55]. Our model achieves the highest mAP of 98.2%, outperforming all
other models in terms of detection accuracy. This indicates that our model is
highly effective in identifying and localizing objects within the environment.
Furthermore, our model maintains a high precision of 92.0% and a recall
of 92.9%, demonstrating its robustness and reliability in detecting objects
correctly.

Among the models compared, RTMDet and Fast R-CNN also perform
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Table 4.1: Results of detection models

Models mAP
(IOU=0.5)

Parameter Precision Recall

Yolov3 [55] 90.0% 8.7M 85.9% 84.6%
Fast R-CNN 95.2% 12.9M 90.2% 92.0%
MobileNet 88.6% 4.6M 91.1% 83.7%
Yolov4 94.8% 60.0M 82.6% 86.4%
RTMDet 95.9% 52.3M 91.5% 88.4%
Yolov5 94.0% 7.0M 87.0% 92.7%
Yolov7 94.8% 3.7M 83.8% 96.2%
Our 98.2% 11.1M 92.0% 92.9%

well, with mAP values of 95.9% and 95.2%, respectively. However, RTMDet
has a significantly higher number of parameters (52.3M) compared to our
model, making it less efficient in terms of computational resources. Fast
R-CNN, while having a higher mAP than most other models, also comes
with a relatively high parameter count of 12.9M . Yolov7 achieves a notable
balance with a mAP of 94.8%, precision of 83.8%, and the lowest parameter
count at 3.7M . This model demonstrates excellent efficiency and could be
an alternative for applications where computational resources are limited.
Overall, the results highlight the superiority of our model in terms of
detection accuracy, with an optimal balance of precision and recall, making
it well-suited for real-time applications requiring accurate and reliable object
detection.

4.2.3 3D Semantic Mapping Results
Figure 4.7 provides a detailed visual representation of the semantic mapping
process. Subfigure 4.7a displays the input images captured from the camera,
which serve as the starting point for our mapping system. Subfigure 4.7b
shows the results of the semantic segmentation process, where each object
in the input images is labeled with a specific color corresponding to its
class. This step is crucial to distinguish between different objects in the
environment. Subfigure 4.7c illustrates the color point cloud generated from
the input images. This color point cloud incorporates both the geometric
information and the RGB data, providing a rich and detailed representation
of the environment. Subfigure 4.7d demonstrates the 3D semantic mapping,
where the segmented objects are accurately placed in the 3D space, creating
a semantically enriched map. Finally, Subfigure 4.7e presents the overall 3D
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(a) Input image from camera

(b) Semantic segmentation from input images

(c) Color point cloud from input images

(d) 3D semantic mapping of input images

(e) Overall 3D semantic mapping

Figure 4.7: 3D visual representation of the obtained semantic maps
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semantic map of the environment. This map integrates all individual 3D
semantic mappings into a cohesive and comprehensive representation. The
legend in the figure indicates the object labels used in the mapping process,
such as chairs, beds, tables, and walls, each represented by a distinct color.

The results showcase the effectiveness of our semantic SLAM system in
generating detailed and accurate 3D semantic maps. The system successfully
identifies and localizes various objects within the environment, enhancing
the map’s utility for navigation and interaction. By incorporating semantic
information into the SLAM process, our system provides a richer context for
understanding the environment, making it highly suitable for applications
such as autonomous navigation, search and rescue, and indoor mapping. In
addition, the implementation of the proposed system on the Jetson Xavier
AGX platform, operating at 2Hz, where the object segmentation phase takes
40ms per frame. These mapping results highlight the system’s ability to
achieve real-time semantic mapping performance.

4.2.4 2.5D Semantic Mapping Results
Fig. 4.8 provides the experimental results for the visualization of the gener-
ated semantic maps, where red points signify the point clouds of identified ob-
jects, and blue text denotes the labels of these objects. Subfigure 4.8a shows
the input images captured from the camera, which serve as the initial data
for our mapping system. Subfigure 4.8b displays the point clouds generated
from these input images, incorporating both geometric information and RGB
data to create a detailed representation of the environment. Subfigure 4.8c
illustrates the object detection results from the input images. The detected
objects are highlighted and segmented, facilitating their identification and
localization within the point cloud data. Subfigure 4.8d shows the clustering
of point clouds based on the detected objects, enhancing the distinction
between different objects and surfaces. Subfigure 4.8e demonstrates the
projection of point clouds onto a 2D plane, representing the objects’ positions
and dimensions in a more manageable format. This step is crucial for inte-
grating the semantic information into the SLAM process, enabling accurate
and efficient mapping. Finally, Subfigure 4.8f presents the probabilistic
map representation of the environment. This map integrates the semantic
information and the projected point clouds, creating a comprehensive and
enriched 2.5D representation. The probabilistic approach allows for handling
uncertainties in object detection and localization, providing a more robust
map for navigation and interaction.

Additionally, minor delays in the point cloud processing stage sometimes
resulted in objects being mapped to incorrect positions in the 2D map, espe-
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(a) Input image from camera

(b) Point cloud from input images

(c) Object detection from input images

(d) Point cloud clustering

(e) Point cloud projection

(f) Probabilistic map representation

Figure 4.8: Visual representation of the obtained semantic maps
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(a) Obstacle avoidance path using only
metric map

(b) Obstacle avoidance path using only
our map

Figure 4.9: Avoiding coffee table obstacles

(a) Obstacle avoidance path using only
metric map

(b) Obstacle avoidance path using only
our map

Figure 4.10: Avoiding chair and desk obstacles

cially during the robot’s turns. To mitigate this problem, we synchronized
the object detection and point cloud processing stages. Moreover, experi-
mental results indicate that the projection stage can accurately determine
the object’s pose, while the probabilistic map representation stage provides
enhanced cell-based map information compared to the binary values of 0 for
free cells and 1 for occupied cells in the standard metric map.

4.2.5 Safety Navigation
To demonstrate the capability of safe navigation, we evaluated our approach
using chair obstacles, desk obstacles, and coffee table obstacles, which are en-
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tirely hollow at the bottom.. Fig. 4.9 and Fig. 4.10 illustrate the effectiveness
of our semantic mapping system in enhancing obstacle avoidance compared
to traditional metric maps. Subfigure 4.9a shows the obstacle avoidance
path using only a traditional metric map. The path planning algorithm is
limited by the lack of semantic information, leading to potential navigation
issues around objects like coffee tables, which are often misrepresented in
metric maps. In contrast, Subfigure 4.9b demonstrates the obstacle avoidance
path using our semantic map. The incorporation of semantic information
allows the system to accurately recognize and navigate around the coffee
table, resulting in a safer and more efficient path. Similarly, Subfigure 4.10a
presents the obstacle avoidance path using a traditional metric map when
navigating around chairs and desks. The lack of detailed object information
in the metric map can lead to suboptimal paths and potential collisions.
Subfigure 4.10b shows the improved obstacle avoidance path using our
semantic map. The system’s ability to accurately detect and understand
the positions and dimensions of chairs and desks results in a more precise
and safe navigation path.

The results clearly indicate that our semantic mapping system signifi-
cantly enhances the UAV’s ability to navigate complex environments safely.
By incorporating semantic information into the navigation process, the
system can avoid obstacles more effectively than with traditional metric maps
alone. This capability is crucial for applications such as autonomous naviga-
tion, search and rescue, and indoor mapping, where safety and efficiency are
paramount. Moreover, the object detection stage takes only 0.25 seconds, and
the point cloud processing stage takes 0.5 seconds. This real-time efficiency
highlights the practical usability of our method, making it highly suitable for
time-critical applications.
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Chapter 5

Conclusions and Future Work

This chapter summarizes the research performed in this thesis, along with a
concise discussion of certain limitations and possible future directions.

5.1 Conclusions

In this thesis, we have presented a comprehensive approach to enhancing the
capabilities of UAVs in real-time semantic SLAM and safe navigation within
complex environments. Our proposed system integrates advanced techniques
in visual SLAM, semantic segmentation, and object detection to construct
detailed and semantically enriched 3D and 2.5D maps. Implemented on the
Jetson Xavier AGX platform, our system demonstrates real-time processing
capabilities with high accuracy and efficiency.

We have demonstrated the effectiveness of our system through extensive
evaluations using both simulated and real-world datasets. The experimental
results indicate that our semantic mapping system significantly improves the
UAV’s ability to perceive and navigate its surroundings. The enhanced maps,
enriched with semantic information, provide a richer context for navigation
and interaction, leading to safer and more efficient path planning.

Our system’s ability to accurately detect and localize objects within the
environment, coupled with the robust semantic association and probabilistic
mapping techniques, underscores its potential for a wide range of appli-
cations, including autonomous navigation, search and rescue, and indoor
mapping. The integration of semantic information into the SLAM process
represents a significant advancement in the field of autonomous robotics.

5.2 Limitations

Despite the promising results, several limitations exist in our current ap-
proach:
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• Dependency on RGB-D Input Quality: Poor lighting conditions,
reflections, and occlusions can negatively impact the accuracy of object
detection and segmentation.

• Computational Requirements: Real-time semantic processing,
while manageable on the Jetson Xavier AGX, may pose challenges for
smaller, resource-constrained UAV platforms.

• Cumulative Errors in SLAM: Potential for cumulative errors in the
SLAM process can affect the overall accuracy of the generated maps.

• Focus on Indoor Environments: The current approach primarily
targets indoor environments, presenting challenges when extending to
outdoor scenarios.

5.3 Future Research Directions
Future research can build upon the foundations laid in this thesis by exploring
several promising directions.

• Enhancement of Lightweight Extraction:
– Focus on developing lightweight models for semantic extraction

to ensure real-time processing capabilities on a wider range of
UAV platforms, including smaller and more resource-constrained
systems.

– Leverage advancements in model compression and efficient neural
network architectures to maintain high accuracy while reducing
computational overhead.

• Robust Data Association:
– Enhance probabilistic data association techniques to improve the

robustness and accuracy of object detection and mapping in
dynamic and cluttered environments.

– Develop advanced algorithms for probabilistic data association
that can handle multiple hypotheses and uncertainties in object
tracking and localization.

• Active Semantic Perception SLAM:
– Incorporate active SLAM techniques to enable the UAV to make

informed decisions about its movements, optimizing the explo-
ration and mapping process.

– Develop strategies for the UAV to actively seek out areas of
uncertainty or interest, enhancing the overall map quality and
completeness.
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• Efficient Map Representation: Leveraging hierarchical structural
method to enhance computational efficiency.

• Long-term Operation in Dynamically Changing Environ-
ments:

– Implement continual SLAM methods that allow the system to
continuously learn and update the map over extended periods,
accommodating changes in the environment.

– Focus on incremental learning techniques that enable the SLAM
system to adapt to new observations without retraining from
scratch.

In summary, while this thesis presents a significant advancement in real-
time semantic SLAM and safe navigation for UAVs, there are numerous
opportunities for future research to further enhance and expand the capabil-
ities of the proposed system. By focusing on lightweight extraction, active
semantic SLAM, and probabilistic data association, future work can address
the current limitations and push the boundaries of autonomous navigation
and mapping.
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