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Abstract

The rise of the Internet of Things (IoT) has revolutionized various human
life aspects by interconnecting numerous information devices, but this has also
increased the cyber attack surface to more sophisticated intrusions. An intru-
sion is defined as any activity that attempts to compromise the CIA characteris-
tics (confidentiality, integrity, and availability) or bypass the security of a com-
puter or network. The intrusion detection system is one of the most popular
and effective solutions to secure modern information systems. Host-based and
network-based approaches are the main categories of intrusion detection sys-
tems. In which, a host-based method observes the information on individual
computers in the system. Meanwhile, a network-based method captures and
analyzes network traffic to protect multiple hosts in network segments. Lever-
aging the outbreak of machine learning, there are so many studies trying to
improve the performance in IoT intrusion detection, which can be categorized
as supervised, semi-supervised, and unsupervised approaches depending on
the availability of training data. To tackle the existing challenges such as the
evolution of attacking techniques, and the lack of labeled anomalous data, the
semi-supervised and unsupervised approaches are adopted more popularly.

Besides developing an effective learning data model, addressing resource
constraints and ensuring privacy preservation are critical concerns in modern
IoT networks. Traditional machine learning methods operate within a central-
ized paradigm, where a single model is trained on a server using all the data col-
lected from connected devices. This faces challenges related to computational
resources, data latency, data transfer cost, and particularly privacy preservation
when collecting all data to a single server.

This thesis addresses these problems of IoT intrusion detection by propos-
ing a novel network-based approach based on federated learning that leverages
the computational power of distributed IoT devices while training the local
model itself and protecting the local data from being accessed directly. I pro-
pose a semi-supervised federated learning approach using the combination of
the Shrink Autoencoder model and Centroid one-class classifier (SAE-CEN) to
enhance IoT intrusion detection. The Shrink Autoencoder tries to represent the
normal network data in a new optimal data space around the origin in the latent
layer, then, the Centroid algorithm can detect the unseen data point based on its
distance to the origin. This makes the detection task more effective and efficient.
I develop a novel mean square error-based aggregation algorithm (MSEAvg) to
improve global model performance when prioritizing the more accurate local
model in aggregating the global model. Our approach aims to address issues



such as data heterogeneity, unbalanced and noisy data, and the scarcity of la-
beled abnormal data, which are prevalent in IoT environments.

One of the most important aspects is applying the experimental study to
real-world scenarios. Some existing research using federated learning creates
experimental environments that do not accurately reflect real-world conditions.
An IoT network is divided into multiple sub-networks, each having some IoT
devices of different types and innovating over time. During the lifetime, some
new devices are added or removed, changing seriously the network topology,
and leading to a change in the data distribution. In this thesis, I construct the
experimental scenarios to be more practical by including both IID (Independent
and Identically Distributed) and non-IID settings using the N-BaIoT dataset and
the Dirichlet distribution.

The experimental outcomes in this setup demonstrate that our SAE-CEN
model, combined with the MSEAvg aggregation algorithm, significantly im-
proves detection accuracy and robustness in heterogeneous IoT networks. I also
conduct some investigations in different federated learning settings to examine
the robustness of my approach. The results also expose that my approach not
only can boost the performance but also reduce the learning costs of federated
intrusion detection and adapt strongly in large-scale IoT networks.

This work contributes to the field by presenting a practical federated learn-
ing framework for IoT intrusion detection, highlighting the capability of tai-
lored aggregation methods and the potential of semi-supervised learning tech-
niques in addressing real-world cybersecurity challenges.

Keywords. IoT, Intrusion Detection, Machine Learning, Federated Learning.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) has emerged as a trendy technology because of
its enormous potential in a variety of industries, including transportation [1],
healthcare [2], and smart cities [3]. IoT is the interconnected network of nu-
merous physical objects, often known as things [4]. IoT systems are increasing
dramatically with new, sophisticated, and modern devices being produced ev-
ery day. The data generated by an enormous number of interconnected devices
is heterogeneous, diverse, and complex. Result in increasing the cyber attack
surface which is affected by several novel IoT anomalies [5], such as botnet,
DoS, DDoS, and Spoofing. Thus, IoT anomaly detection is a very essential task
in new-fashioned IoT networks.

To secure system networks and privacy in deployment against cyber risks,
an intrusion detection system (IDS) by analyzing and monitoring network traf-
fic is one of the most efficient solutions [4, 6], these approaches are also known
as anomaly detection systems in some research. Modern IDSs that leverage
machine learning (ML) techniques to detect unseen threats in IoT networks
have been studied and adopted widely [4, 5, 7]. Besides developing effective
data learning models, it is also very important to choose and define learning
and deployment strategies to face new challenges when IoT networks scale
up continuously. Traditional ML methods work in a centralized paradigm, in
which, one model is trained in a single server using all data collected from
connected agents [8]. In the modern IoT context, this approach depicts some
challenges such as computational resource requirements for training and serv-
ing the models; data latency when the data transmission distance may be hun-
dreds, even thousand miles to the server; data transfer cost; particularly data
privacy preserving issues due to data leakage when sharing data among agents
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and server [9]. Therefore, Federated Learning (FL) has emerged recently as a
cutting-edge approach to solving these problems. Rather than collecting data,
training, and serving ML models in a single high-performance computer, FL
takes advantage of the network client’s computing capabilities in the distributed
mechanism to train the local model itself and protect the local data from be-
ing accessed directly [9]. Then, the local models will be aggregated to a global
model in the server for serving by some methodologies.

In recent years, many approaches have been released to leverage the power
of federated learning to solve network anomaly detection [10, 6, 11, 12]. How-
ever, several issues have been making this task challenging, such as the ex-
perimental scenarios are not able to present practical problems well when the
IoT intrusion is evolving day by day; the traffic collected from large-scale IoT
networks with different application scenarios is unbalanced, sparse, diverse,
high-dimensional, and noisy; the abnormal data is not sufficient for training
process; the aggregation method of the global model is still not optimal to get a
robust model to detect novel attacks effectively. In this thesis, I propose a semi-
supervised federated learning approach based on the Autoencoder model. This
is expected to increase the effectiveness of detecting IoT intrusion.

1.2 Problem definition

My thesis addresses the problem of improving the effectiveness of machine
learning in IoT intrusion detection, where the IoT network is changed hetero-
geneously over time; the lack of anomalies, resource constraints, and privacy
preservation are crucial.

An IoT network is typically divided into multiple network areas, each has a
gateway, also known as an edge server, that manages various types of IoT de-
vices and evolves heterogeneously over time, as described in Figure 1.1. These
devices generate diverse amounts of data, depending on their functions. There-
fore, the data statistical characteristics of each subnetwork are very different.
Machine learning models are usually trained on data of a period from the ini-
tial state of the IoT network. However, after deployment, over the network’s
lifetime, some new devices are added or removed, changing significantly the
network topology. This makes the machine learning model perform poorly in
unseen data. Some research, such as [6] and [11], create IoT networks by ran-
domly creating data partitions from existing datasets without control to eval-
uate the performance of their approaches. This may not ensure the practical
characteristics of the scenarios. The goal of this research is to design and do
experiments on dynamic scenarios to ensure that the experimental models can
adapt to real-world conditions and maintain their effectiveness over acceptable
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Figure 1.1: Changes in IoT networks over time

Another critical challenge is the lack of labeled abnormal data. Despite the
vast amount of network traffic data generated by modern, complex IoT net-
works, there is a notable lack of labeled abnormal data due to expert knowledge
limitations and labeling expenses. This absence makes it difficult to use super-
vised machine learning models to learn the characteristics of available data. To
address this, the thesis leverages the power of semi-supervised learning tech-
niques by learning from the available normal data, which helps detect anoma-
lies in the network. I use a hybrid approach combining an Autoencoder-based
model with a one-class classification model to enhance the detection of anoma-
lies.

Resource constraints and privacy preservation are also significant concerns
in modern IoT networks. When all devices are connected via the Internet, it
is very essential to protect private data to prevent data leakage or any other
threats. Additionally, IoT gateways often have insufficient computational power
required to process the vast amounts of network data they collect. FL has
emerged as a promising solution to these problems, enabling decentralized model
training without sharing raw data, thereby preserving privacy and reducing the
computational expense on individual edge devices. However, while current FL
algorithms like FedAvg [13] and FedProx [14] weight contributions based on
the number of data samples each participant has, they still face challenges in
dynamic environments where participant availability and data characteristics
can vary significantly. Both of these two algorithms update the global model
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based on the size of the data partition in each client. This makes them act poorly
in the complex distributed network when the client that has a large number of
data samples may not represent well for the whole network. This thesis aims
to propose a new approach in FL that considers the role of each client in the
training process, improving the performance of the global model. Furthermore,
I also investigate the robustness of my proposed approach in different federated
learning settings to pose outstanding effectiveness.

1.3 Research approach

This is the research approach I have taken in this thesis to address the above
three problems.

Firstly, I do a literature review on some existing research related to intru-
sion detection and federated learning to pinpoint some challenges and draw a
solution for these problems. This aims to get the background, recent trends,
and existing approaches in IoT intrusion detection. I then identify remaining
challenges and draw potential solutions.

To address the problem related to the experimental scenarios, I next con-
struct distributed IoT networks using an existing IoT network traffic, called
NBa-IoT [15], and control the heterogeneity using the Dirichlet distribution.

To address resting challenges, I deploy a hybrid approach combining the
Shrink Autoencoder (SAE) with the Centroid algorithm (CEN) within a feder-
ated learning framework. I next design and develop a new federated learning
algorithm, MSEAvg, based on mean square error, to enhance the performance
of this hybrid model. My algorithm prioritizes the more accurate local models
for updating. Various hyperparameters need to be set up in federated learning
and the client selection ratio is one of the most important ones that affects both
model accuracy and computational expense. In my experimental study, I in-
vestigate the model’s effectiveness under different client ratios and evaluate its
performance on large-scale IoT networks to find a setting that is good enough
for this task.

1.4 Contributions

The main contributions of this thesis include:

• I do the literature review on network intrusion detection and IoT intrusion
detection to show recent trends and pinpoint some challenges in these
topics.

7



• Leverage a lightweight semi-supervised hybrid model of Shrink Autoen-
coder and Centroid model in the federated learning scheme.

• Propose a novel aggregation algorithm based on the mean square error to
improve the accuracy of the above approach.

• Illustrate a practical scenario for studying federated learning in IoT intru-
sion detection

• Investigate the model’s performance in different scenarios to find a suit-
able setting.

1.5 Thesis structure

The rest of this thesis is structured as follows:

• Chapter 2 provides some background knowledge on modern intrusion
detection systems using machine learning and federated learning.

• Chapter 3 describes my approach to address the problems mentioned in
Chapter 1.

• Chapter 4 describes the evaluation process and analyzes the results of ex-
periments. Also points out some limitations of the research.

• Chapter 5 summarizes my research and points out some future directions
to develop this study.
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Chapter 2

Background and related work

2.1 Background

This section briefly introduces the background knowledge related to the in-
trusion detection system with machine learning, federated learning, the NBa-
IoT network dataset, and some existing research in this domain.

2.1.1 Machine learning for intrusion detection systems

In information systems, an intrusion is defined as any activity that attempts
to compromise the CIA characteristics (confidentiality, integrity, and availabil-
ity) or bypass the security of a computer or network [16]. These activities can
be caused by attackers or by inside users trying to gain additional unauthorized
privileges.

To protect systems, Intrusion Detection Systems (IDS) have been developed
as hardware or software products to automatically monitor and analyze the
events inside a computer or network to recognize intrusions [16]. With the
advancement of information systems, cyber threats have become increasingly
sophisticated. Therefore, IDSs become more necessary for the information in-
frastructure of most organizations.

The IDS is often distinguished based on the target or the detection method.
By the target, there are two types of IDS, host-based IDS (HIDS) and network-
based IDS (NIDS) [16, 17]. HIDS inspects the information collected on indi-
vidual machines in the system, such as resource metrics, and operating sys-
tem audits. This makes them work accurately and reliably, determining exactly
the behavior of attackers in a low lever, even the outcome of intrusion. How-
ever, HIDS has some downsides: When it resides on a computer targeted by
attackers, the IDS itself may be compromised and disabled. Additionally, HIDS
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consumes host resources for its operations, which can negatively affect system
performance. In contrast, NIDS detects intrusion by capturing and analyzing
network packets. These IDS are placed beside a router or a switch to monitor
a network segment, which enables it to protect multiple hosts in this segment.
The network sniffer of this IDS type is often set up in the "stealth" mode, which
makes them more secure against attackers and does not affect the host activities.
However, the evolvement of network scale and attacking techniques pose chal-
lenges to NIDSs. The huge amount of data generated from large-scale networks
makes it increasingly difficult to process all traffic.

Another way to categorize IDS is based on the detection method: signature-
based IDS and anomaly-based IDS [17, 18]. Signature-based IDS, also known
as rule-based IDS, relies on predefined rules and patterns derived from known
threats. This method uses a database of known intrusion patterns to identify
malicious activities. This approach is highly effective at detecting previously
identified threats and providing detailed contextual information about the na-
ture of the attack. Signature-based IDS is straightforward to implement and
provides precise identification of known threats, but it struggles with detecting
new, unknown attacks that are not defined in the database. On the other hand,
anomaly-based IDS, aka. behavior-based IDS in some articles, focuses on de-
tecting deviations from established norms of behavior within the network or
system. Instead of relying on predefined rules, this method builds a model of
normal activity and monitors for any behavior that significantly deviates from
this baseline. Anomaly-based IDS can identify unknown or new types of at-
tacks that do not match any existing signatures, but it requires careful tuning to
reduce false positives and maintain accuracy. NIDS can not recognize the en-
crypted packets, and leave opportunities for sophisticated attacks. In this thesis,
I focus on improving the NIDS abilities using flow-based analysis.

The challenges of traditional IDS highlight the requirement for more sophis-
ticated and adaptive approaches. With its ability to learn from data, detect pat-
terns, and make intelligent decisions, Machine Learning (ML) is a promising
solution. An ML approach consists of three phases: Training, validation, and
testing. In the training phase, some ML models are initialized and trained on
an available dataset. Then, to decide which model is the most suitable one, we
use a known sub-dataset, validation set, to validate the performance of these
models. The model with the highest performance should be chosen to use in
the testing phase [17].

In IDS development, there are three primary types of ML approaches: su-
pervised, semi-supervised, and unsupervised learning [19]. In the supervised
learning problems, there is an assumption that all available data is labeled for
building the model. Any new data are fed into the trained model and classified
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as normal or abnormal. The big challenge of supervised methods is the lack
of anomalous data, leading to the class imbalance problem. Additionally, this
approach is ineffective in detecting novel anomalies that are not learned in the
model. The authors in [20] evaluated some supervised learning models applied
in IoT intrusion detection, such as Random Forest, Support Vector Machine
(SVM), Naive Bayes, and Multi-Layer Perception. The semi-supervised learn-
ing methods suppose that there is only normal data available to construct the
model. They infer the unseen data based on the deviation from normal data. By
leveraging the huge amount of labeled normal data, semi-supervised learning
can effectively detect unseen or unknown anomalies. Some well-known models
of this type are One-class SVM [21], and Autoencoder and its variants [15, 22].
The last type of ML is unsupervised learning which works under the implicit
assumption that the normal data points are far from anomalous ones [19]. Some
famous models are Local Outlier Factor (LOF) [23], K-means [24].

In this thesis, I focus on improving the accuracy of network-based IoT intru-
sion detection with semi-supervised learning approaches.

2.1.2 Federated learning

This section introduces the background principle of FL and pinpoints some
challenges in FL.

Overview

Federated Learning (FL) [13] is a novel approach to train machine learning
models in a decentralized manner, aiming to address the growing concerns over
data privacy and the increasing computational power available on edge devices
such as smartphones and IoT devices. FL enables the development of machine
learning models by leveraging data distributed across multiple devices, referred
to clients, without transferring the data to a central server. The model on each
client device is called the local model, while the aggregated model, obtained by
combining updates from clients, is known as the global model.

Concept

The training process is conducted in several consecutive communication
rounds until the global model reaches the desired accuracy or meets the spec-
ified training criteria [9]. Figure 2.1 depicts the steps of how a communication
round occurs:
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1. Model initialization: Firstly, a subset of clients is selected in the global model
with a client selection ratio. A global model is initialized and sent to all
selected clients. This is the starting point for the training process.

2. Local training: Each client receives the global model and trains it using its
local data. This results in a set of updated local models, each adapted to
the data from its respective devices.

3. Send optimized parameters: Once all selected clients have done the local
training process, optimized weights are sent to the global server.

4. Global model aggregation: The server aggregates the updates from all local
models to form a new global model that has the knowledge of all partici-
pants.

5. Send the new model: The updated global model is then sent back to all
clients in the network. This updated model now reflects a more compre-
hensive understanding based on the combined data from all gateways.

Challenges

One of the fundamental challenges in FL is the handling of non-IID (non-
Independent and Identically Distributed) data [13]. In traditional centralized
machine learning, data is typically assumed to be IID, meaning that each data
point is independent of the others and drawn from the same distribution. How-
ever, in FL, the data on each client device is inherently linked to the user’s be-
havior and usage patterns, which means that it can vary significantly from one
device to another. This heterogeneity can lead to local models that are poorly
representative of the overall population. Another significant challenge is the
unbalanced nature of the data [13]. In a federated setting, some users will gen-
erate large amounts of data while others contribute very little. Addressing this
issue requires careful consideration of how to weigh contributions from differ-
ent clients to ensure that the global model remains fair and representative of all
users. This is called the non-IID issue.

In the experimental environment, to better simulate practical scenarios, the
Dirichlet distribution is often employed to construct the experiment evaluation.
This statistical technique allows for the generation of data distributions that
can reflect the non-IID (non-Independent and Identically Distributed) nature of
real-world data [25, 26, 27].
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Aggregation algorithms

To achieve the objectives of federated learning, the federated aggregation
algorithm plays a crucial role. Researchers have studied and proposed numer-
ous algorithms for various applications. Among these, FedAvg [13] and Fed-
Prox [14] are the most widely adopted and popular ones.

FedAvg is a straightforward algorithm that constructs a global model by
calculating the weighted average of parameters from the client’s models based
on the number of data samples they hold. The process occurs until get the
desired model. This algorithm is simple to implement and suitable for large-
scale networks with a lot of participants [6].

FedProx is similar to FedAvg but introduces a regularization term to each
client’s loss function. This term, denoted as γ, acts as a proximal constraint, pe-
nalizing significant deviations of the client model parameters from the previous
global model.

2.1.3 Machine learning IoT dataset

This section provides the details of an existing IoT dataset - N-BaIoT. The N-
BaIoT dataset [15] is designed to aid in the detection of IoT botnet attacks. The
dataset was collected from nine commercial IoT devices that were intentionally
infected with two prevalent IoT-based botnets: Mirai and Gatfyt. The details of
this dataset are described in Table 2.1.

Table 2.1: N-BaIoT network traffic dataset

ID Device name Normal Gatfyt Mirai
0 Danmini_Doorbell 49548 652100 316650
1 Ecobee_Thermostat 13113 512133 310630
2 Philips_B120N10_Baby_Monitor 175240 312273 610714
3 Provision_PT_737E_Security_Camera 62154 330096
4 Provision_PT_838_Security_Camera 98514 309040 429337
5 Samsung_SNH_1011_N_Webcam 52150 323072
6 SimpleHome_XCS7_1002_WHT_Security_Camera 46585 303223 513248
7 SimpleHome_XCS7_1003_WHT_Security_Camera 19528 316438 514860
8 Ennio_Doorbell 39100 316400

The dataset comprises raw network traffic data captured in pcap format.
Traffic data was collected using port mirroring on a network switch through
which organizational traffic flows as described in Figure 2.2. This setup ensures
that the dataset reflects realistic network conditions in an enterprise environ-
ment. The IoT devices used in the dataset include various types, each providing
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a diverse set of data representative of typical IoT device behavior.

Figure 2.2: N-BaIoT network dataset topology [15]

The dataset includes 115 statistical features extracted over several temporal
windows to capture the behavior of the IoT devices. These features are divided
into four main categories based on the source of the traffic:

• Source IP: Traffic statistics for packets originating from the same IP ad-
dress.

• Source MAC-IP: Traffic statistics for packets originating from the same
MAC and IP address.

• Channel: Traffic statistics for packets sent between specific source and
destination IP addresses.

• Socket: Traffic statistics for packets sent between specific TCP/UDP sock-
ets.

The features (Table 2.2) are computed over five different time windows: 5
seconds, 3 seconds, 1 second, 0.1 seconds, and 0.01 seconds. This multi-scale
approach enables the detection of both rapid and prolonged anomalous behav-
iors.
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Table 2.2: Summary of NBa-IoT dataset features

Feature Name Description

MI_dir_Lx_weight
Mutual Information (MI) directional data weight
over a time window x. Indicates the importance or
contribution of the MI feature.

MI_dir_Lx_mean
Mutual Information (MI) directional data mean value
over time window x. Represents the average value of
the MI feature.

MI_dir_Lx_variance
Mutual Information (MI) directional data variance
over time window x. Indicates the variability or dis-
persion of the MI feature values.

H_Lx_weight Entropy (H) weight over time window x. Indicates
the importance or contribution of the entropy feature.

H_Lx_mean Entropy (H) mean value over time window x. Repre-
sents the average value of the entropy feature.

H_Lx_variance
Entropy (H) variance over time window x. Indicates
the variability or dispersion of the entropy feature
values.

HH_Lx_weight
Hierarchical entropy (HH) weight over a time win-
dow x. Indicates the importance or contribution of
the hierarchical entropy feature.

HH_Lx_mean
Hierarchical entropy (HH) mean value over time
window x. Represents the average value of the hi-
erarchical entropy feature.

HH_Lx_std
Hierarchical entropy (HH) standard deviation over
time window x. Measures the dispersion or variabil-
ity of the values.

HH_Lx_magnitude
Hierarchical entropy (HH) magnitude over time win-
dow x. Indicates the size or extent of the feature val-
ues.

HH_Lx_radius Hierarchical entropy (HH) radius over time window
x. Indicates the radius in the feature space.

HH_Lx_covariance
Hierarchical entropy (HH) covariance over time win-
dow x. Measures the joint variability of two random
variables.

HH_Lx_pcc
Hierarchical entropy (HH) Pearson Correlation Co-
efficient (PCC) over a time window x. Measures the
linear correlation between two variables.
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Feature Name Description

HH_jit_Lx_weight
Hierarchical entropy jitter (HH_jit) weight over time
window x. Indicates the importance or contribution
of the hierarchical entropy jitter feature.

HH_jit_Lx_mean
Hierarchical entropy jitter (HH_jit) mean value over
time window x. Represents the average value of the
hierarchical entropy jitter feature.

HH_jit_Lx_variance
Hierarchical entropy jitter (HH_jit) variance over
time window x. Indicates the variability or disper-
sion of the hierarchical entropy jitter values.

HpHp_Lx_weight
Higher-order statistics (HpHp) weight over time
window x. Indicates the importance or contribution
of the higher-order statistics feature.

HpHp_Lx_mean
Higher-order statistics (HpHp) mean value over
time window x. Represents the average value of the
higher-order statistics feature.

HpHp_Lx_std
Higher-order statistics (HpHp) standard deviation
over time window x. Measures the dispersion or
variability of the values.

HpHp_Lx_magnitude
Higher-order statistics (HpHp) magnitude over time
window x. Indicates the size or extent of the feature
values.

HpHp_Lx_radius Higher-order statistics (HpHp) radius over time win-
dow x. Indicates the radius in the feature space.

HpHp_Lx_covariance
Higher-order statistics (HpHp) covariance over time
window x. Measures the joint variability of two ran-
dom variables.

HpHp_Lx_pcc
Higher-order statistics (HpHp) Pearson Correlation
Coefficient (PCC) over a time window x. Measures
the linear correlation between two variables.

2.2 Related work

In this section, I review some recent trends and approaches for IoT intrusion
detection. FL has been successful in various fields, particularly in intrusion
detection. The first research applying FL in IoT intrusion detection is DIoT [10]
which proposed a device-type-specific self-learning framework with a GRU net-
work. It consists of two main components: The security gateway acts as an ac-
cess point for IoT devices and the IoT security service maintains a set of device-
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type-specific models. The system autonomously learns and updates its models
without requiring human intervention or labeled data. This allows DIoT to
adapt to new device behaviors and emerging threats dynamically. The authors
conducted extensive experiments using over 30 IoT devices with Mirai botnet
in both laboratory and real-world smart home deployment settings. The evalu-
ation showed that DIoT achieved a 95.6% detection rate with zero false alarms
in real-world conditions. However, each device type in the system maintains its
model, which can make system management challenging as the scale increases,
and this research is limited to the Mirai botnet threats.

The author of [11] utilized LSTM and GRU with the ensemble learning tech-
nique to enable on-device learning. The predictions from local GRU models are
combined using a Random Forest Classifier (RFC). Each GRU model provides
probability values for each potential label (attack type) for a given input. The
RFC aggregates the probability values from all GRU models. It uses these prob-
abilities as votes to determine the final prediction. The label with the highest
combined probability across all models is selected as the final prediction. Their
evaluation demonstrated the performance of the FL approach compared to the
non-FL approach. However, the ability of this approach to detect unknown in-
trusion is limited due to the supervised learning problem. Furthermore, the
authors construct the experiments without considering the heterogeneity of the
IoT network, making it not close to the practical cases.

Fed-ANIDS [6] is based on the Autoencoder model similar to my proposal,
a semi-supervised learning method. Various autoencoder models, including
simple autoencoders (AE), variational autoencoders (VAE), and adversarial au-
toencoders (AAE), are utilized for anomaly detection based on reconstruction
errors of normal traffic. The FL setting was employed by using FedAvg and
FedProx algorithms. The authors conducted several experiments on some well-
known network traffic datasets such as USTC-TFC2016, CIC-IDS2017, and CSE-
CIC-IDS2018. The results presented the performance of Fed-NIDS in detecting
network intrusions with high accuracy and low false alarms while preserving
privacy and also showed that FedProx has a slightly better accuracy than Fe-
dAvg. However, the experimental scenarios lack practicality as the authors did
not apply any criteria for randomly partitioning the original dataset.

18



Chapter 3

Methodology

3.1 Approach overview

I proposed an IoT intrusion detection approach using federated learning and
a hybrid model that is based on Shrink Autoencoder and Centroid algorithms.
Figure 3.1 presents the overall architecture of my approach. It consists of two
main components as described in the federated learning scheme: (1) Hybrid
intrusion detector, (2) MSEAvg aggregation. The details of these two parts are
explained in the rest of this chapter.

3.2 Hybrid intrusion detection approach

Figure 3.2 depicts the activities completed in the IoT gateways. By modeling
normal network data, an Autoencoder-based model can leverage its latent layer
to transform the original data to a new data space where data has a smaller
number of dimensions and presents the most important characteristics. Hence,
some common traditional one-class classifiers can work effectively on this new
data to detect anomalies. In this part, a hybrid model is constructed by using
Shrink Autoencoder as a data representation method and Centroid anomaly
detection algorithm (CEN) as a detector. This approach is named as SAE-CEN
model.

To feed to the machine learning model, firstly, the network data need to be
preprocessed. I use the Standard Normalization method to normalize the data
to reduce the complexity and ensure all features contribute equally to the train-
ing process. The formula for standard scaling (also known as Z-score normal-
ization) is given by:

z =
x− µ

σ
(3.1)
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Figure 3.1: Proposed approach architecture

where x is the original feature value, µ is the mean of the feature, σ is the stan-
dard deviation of the feature.

3.2.1 Shrink Autoencoder (SAE)

Shrink Autoencoder (SAE) [22] is a powerful data representation model that
helps common network intrusion detection algorithms deal with sparse and
high-dimensional network data, even with a small amount of training data.
This model is an Autoencoder variant since a new regularization term is added
to the Autoencoder objective function (Equation 3.2). This makes it easier to
construct the normal network data in the latent layer.

The objective function of the SAE training process is formulated as follows:

LSAE(θ; xi, z) =
1
n ∑

i=1
∥xi − x̂i∥2 + λ

1
n

n

∑
i=1
∥zi∥2 (3.2)

where x̂i and zi are the reconstruction output and the latent vector of the input
xi, correspondingly. The first term is the reconstruction error (RE), and the sec-
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ond term is the new regularizer. The parameter λ controls the trade-off between
the two terms in the equation. It is optimized using the Algorithm 1.

Figure 3.3b illustrates the SAE behavior. It will try to force the normal latent
data closer to the origin.

x

y

(a) Original space

Abnormal
Normal
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y

(b) SAE latent space
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y

New data 
point
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Figure 3.3: Simulation of data representation and CEN activity

3.2.2 Centroid algorithm (CEN)

Given a normal network data set X0 = {x(1)0 , . . . , x(n)0 } ⊂ Rd, the goal of
intrusion detection is to determine whether a new data point x has the same
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Algorithm 1 ClientUpdate: Optimize local models

Require: Local normal data X = [x0, ..., xN−1] ∼ p(x); Number of local epochs
I; Set of mini-batches B each of size N; Learning rate η; Shrink regularizer
factor λ;

Ensure: Trained Shrink Autoencoder
1: Receive initial weights θe for encoder and θd for decoder from server
2: for epoch = 1 to I do
3: for each mini-batch xi in X do
4: zi ← Encoder(xi; θe)
5: x̂i ← Decoder(zi; θd)
6: LSAE ← 1

N ∑N−1
i=0 ∥xi − x̂i∥2 + λ 1

N ∑N−1
i=0 ∥zi∥2

7: Compute gradients ∇θeLSAE and ∇θdLSAE
8: θe ← θe − η∇θeLSAE
9: θd ← θd − η∇θdLSAE

10: end for
11: end for
12: Send θe, θd to the global server

probability characteristics as the set X0. A straightforward approach to anomaly
detection involves estimating the probability density function (PDF) of the dis-
tribution from which the dataset X0 is derived. If a new instance x is located in
an area of the distribution where the density is low, it is flagged as anomalous.
However, estimating the density of a distribution is a challenging task, particu-
larly in high-dimensional spaces. Another simple way comes from clustering-
based algorithms with the assumption that normal data instances lie close to
their cluster centroid meanwhile abnormal data points are far from the cen-
troid [19], such as the centroid (CEN) algorithm.

The central idea is leveraging the distance from an observation to the cluster
centroid as the abnormality of the observation (Figure 3.3c). This distance is also
known as the anomaly score. A higher score suggests that the data point has a
higher probability of being an anomaly. By specifying a threshold, a query data
point can be classified as either normal or anomalous. The CEN algorithm is a
very simple algorithm with no hyper-parameters and its computational expense
is small.

3.2.3 SAE-CEN combination

After receiving the best SAE model from the server, the decoder part will be
dropped and the encoder will be used as a data manipulator that forms the data
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in a good shape to help CEN work more effectively (Figure 3.2). This also makes
the time of incident response shorter. Therefore, the SAE-CEN combination can
not only work powerfully in detecting anomalies but also respond to incidents
rapidly.

The authors of [22] demonstrated that the CEN performed very accurately
under the SAE representation data in centralized network anomaly detection.
In this research, I conduct a federated learning scheme to evaluate the accuracy
of this solution in the IoT intrusion detection task.

3.3 Mean Square Error-based model aggregation

The core component in all federated learning architectures is the global model
aggregation. How effectively the global model is updated decides the power of
the FL scheme. This section provides the design of a novel FL algorithm that
boosts the performance of an Autoencoder-based model, especially SAE-CEN.

During training a machine learning model, it is necessary to control the con-
vergence of the model on both local and global sides to prevent under-fitting
and over-fitting problems. I assume that there has been a normal network
dataset in the server to validate the global model convergence in each train-
ing round. This dataset contains data of all clients with uniform distribution.
That means all clients have the same amount of normal data in this set and the
representativeness of the whole IoT network will be ensured.

Client 1 Client 2 Client 3

Development dataset

Client ... Development 
data

Client n

Local AE-based models

Weighted average 
using MSE Global 

model

...

MSE 
calculation

Generated 
data

Generated 
data

Generated 
data

Figure 3.4: Global aggregation using MSEAvg

This research leverages as much as possible the strength of the Autoencoder-
based model in modeling normal data. Therefore, I propose the MSEAvg al-
gorithm to aggregate the global model by comparing the ability of each local
model in reconstructing the above validation dataset. The model that works
better will play a more important role in updating the global model.

Figure 3.4 and Algorithm 2 show the principle of MSEAvg and pseudo-code
for the whole operation. Each local model takes development data as input,
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then returns the reconstruction error and is assigned a weight in the updating
process. The smaller error implies a better model in learning normal data which
means a higher weight. After that, the global model will be aggregated by using
the Equation 3.3.

Wglobal =
∑n

i=1 αi ·Wi

∑n
i=1 αi

(3.3)

Where αi is the update weight based on MSE loss; Wi is the local model
weights.

Algorithm 2 GlobalAgg: MSEAvg-based aggregation

Require: Number of global round E; Local models L = {L1, L2, . . . , Ln}; Devel-
opment dataset D;

Ensure: Updated global model M
1: Initialize lists update_weights← []
2: for each local model Li in L do
3: Generate new development data: D̂i ← Li(D)
4: Calculate similarity score between D and D̂: sim_score ←

Mean_Square_Error(D, D̂)
5: Compute update weight wi ← 1/sim_score
6: Append (Li, wi) to update_weights
7: end for
8: for each (Li, α) in update_weight do
9: Compute M← ∑ Li∗α

∑α

10: end for
11: Send updated model M to all clients
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Chapter 4

Evaluation and discussion

4.1 Evaluation overview

This section overviews the background context motivating the further exper-
imental implementation, which includes the scenarios and research questions.

4.1.1 Evaluation scenarios

Relying on the description of IID and Non-IID problems in Chapter 2, I con-
duct experiments on both these scenarios.

• For the IID case, I abstract an IoT network where the clients have indepen-
dent and identically distributed data. In an IoT network, there are several
IoT gateways, and each gateway manages many IoT devices that build
a subnetwork. In this scenario, I assume all IoT subnetworks have the
same network topology and device type. Therefore the data of each net-
work will have the same distribution. Practically, this scenario describes
static IoT networks with similarities between subnetworks, which do not
change throughout their lifetime.

• In contrast, a non-IID IoT network will be illustrated in which the clients
have non-independent and identically distributed data. This means there
are differences among subnetworks in all topologies, IoT device types, and
the number of data records for each device type.

4.1.2 Research questions

I mainly focus on resolving three research questions in each case of the ex-
periments.
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1. RQ1. How does the proposed approach work in IoT federated intrusion
detection?

2. RQ2. How does the client selection ratio affect the federated learning in-
trusion detection?

3. RQ3. How does the proposed approach work on IoT networks of different
scales?

4.2 Experiment settings

Detailed information on how I carry out the experiments will be provided
in this section: IoT network construction and hyperparameters settings.

4.2.1 IoT network construction

To abstract the IoT network for this research, a small partition of the NBa-IoT
dataset is used to make experiments close to practical scenarios. In this research,
I consider a 10-client IoT network, which means there are 10 IoT gateways in
the network. The client data is selected from NBa-IoT data using random algo-
rithms and constraints to ensure the IID and non-IID characteristics of training
data. Following the introduction in Chapter 2, I use the Dirichlet distribution
Dirn(α) with n is the number of clients and α as the concentration parameter
and Jensen-Shannon measurement (JS) to control the non-IID characteristic of
networks. To simulate a homogeneous setting, for each device type k, I sample
pk ∼ Dir10(1000) and allocate the proportion data pk,j of device k for the client
j. The measurement is JS = 0.01. I do the same process for the heterogeneous
setting with the concentration parameter α = 0.1995 and JS = 0.83.

Table 4.1 and Figure 4.1 show the information in the IID context. Each
client contains all nine commercial IoT devices with specific data samples. The
training and testing columns show dataset information of training and test-
ing phases, respectively. The pair of numbers in Normal data and Abnormal
data is formed as (IoT device id - number of data samples). For example, pair
531(5) indicates that the Samsung_SNH_1011_N_Webcam device, index 5, has 531
data samples in Client 1.

Similarly, Table 4.2 and Figure 4.2 describe the data information in a non-IID
scenario with 10 clients. Each client contains some of nine IoT devices and I
depict IoT network innovation when new devices are added to the network in
the testing phase.

To solve the RQ3 when considering the performance of models in different
network scales, I use the same methodology to select the data in both contexts
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for 20-client, 30-client, 40-client, and 50-client networks that have 15 clients, 20
clients, and 50 clients in the topology, correspondingly.
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Figure 4.1: IID scenario
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Figure 4.2: Non-IID scenario
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Table 4.1: Data allocation for the IID scenario.
The pair of numbers in Normal data and Abnormal data columns is formed as

(number of data samples (IoT device id))

Agents Training Testing
Normal data Normal data Abnormal data

Client 1

531(5)
300(0)
200(4)
158(1)
151(8)
142(3)
114(7)
56(2)
39(6)

486(8)
456(5)
432(3)
417(2)
414(6)
375(4)
367(0)
160(1)
159(7)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1691 3266 1108

Client 2

525(5)
299(0)
183(4)
159(1)
142(8)
140(3)
113(7)
53(2)
41(6)

497(8)
472(5)
431(2)
421(3)
410(6)
376(4)
368(0)
173(1)
155(7)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1655 3303 1108

Client 3

535(5)
289(0)
188(4)
160(1)
141(8)
140(3)
118(7)
55(2)
38(6)

471(5)
470(8)
421(2)
415(6)
414(4)
412(3)
374(0)
161(7)
156(1)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1664 3294 1108

28



Agents Training Testing
Normal data Normal data Abnormal data

Client 4

521(5)
285(0)
185(4)
166(1)
153(8)
138(3)
113(7)
54(2)
38(6)

480(8)
452(5)
434(6)
422(3)
404(2)
396(4)
380(0)
164(7)
158(1)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1653 3290 1108

Client 5

498(5)
304(0)
196(4)
156(1)
153(8)
145(3)
106(7)
55(2)
38(6)

493(8)
450(5)
402(2)
395(3)
388(6)
374(4)
367(0)
158(7)
155(1)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1651 3182 1108

Client 6

508(5)
307(0)
194(4)
154(1)
147(3)
141(8)
118(7)
54(2)
40(6)

482(8)
471(5)
432(2)
395(3)
390(6)
389(4)
373(0)
165(1)
150(7)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1663 3247 1108

Client 7

513(5)
297(0)
184(4)
165(1)
152(8)
141(3)
122(7)
56(2)
38(6)

473(8)
461(5)
443(6)
414(2)
391(3)
376(4)
360(0)
162(1)
154(7)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)
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Agents Training Testing
Normal data Normal data Abnormal data

1668 3234 1108

Client 8

533(5)
293(0)
187(4)
155(8)
149(1)
140(3)
122(7)
55(2)
42(6)

479(8)
474(5)
412(6)
410(2)
408(3)
364(4)
352(0)
159(7)
159(1)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1676 3217 1108

Client 9

536(5)
282(0)
186(4)
159(1)
145(8)
134(3)
121(7)
54(2)
38(6)

491(8)
453(5)
420(2)
387(3)
385(6)
377(4)
361(0)
161(7)
159(1)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1655 3194 1108

Client 10

548(5)
305(0)
177(4)
162(1)
150(8)
141(3)
122(7)
54(2)
41(6)

487(8)
452(5)
418(6)
415(3)
400(2)
384(0)
384(4)
166(1)
158(7)

351(5)
196(0)
101(1)
122(4)
92(3)
78(7)
99(8)
43(1)
26(6)

1700 3264 1108
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Table 4.2: Data allocation for the non-IID scenario.
The pair of numbers in Normal data and Abnormal data columns is formed as

(number of data samples (IoT device id))

Agents Training Testing
Normal data Normal data Abnormal data

Client 1

917(0)
166(6)
56(4)
39(5)

1536(2)
1312(0)
405(3)
71(1)

98(0)
50(1)
46(3)
21(2)

1199 3324 215

Client 2

298(8)
220(7)
197(4)
38(5)

1096(8)
941(0)
766(7)
173(1)
102(3)
90(6)
16(2)
13(4)

98(0)
61(4)
50(1)
49(8)
39(7)
46(3)
21(2)
13(6)

753 3197 377

Client 3
225(1)
88(2)

732(7)
326(8)
284(4)
174(6)

61(4)
49(8)
39(7)
13(6)

313 1516 162

Client 4

760(8)
616(7)
285(1)
219(3)
92(0)

3030(6)
438(3)
187(0)
153(1)
30(5)
22(2)

98(0)
50(1)
46(3)
61(4)

175(5)
13(6)
21(2)

1972 3860 403

Client 5

1235(5)
586(0)
239(4)

3400(5)
1364(3)
468(2)
312(4)

175(5)
61(4)
46(3)
21(2)

2060 5544 303
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Agents Training Testing
Normal data Normal data Abnormal data

Client 6

275(7)
266(4)
182(3)
154(6)
39(8)
29(1)
27(0)
17(5)

2628(4)
1060(0)
641(3)
271(2)

98(0)
61(4)
46(3)
21(2)

989 4600 226

Client 7

986(3)
366(2)
116(0)
72(6)
57(7)
38(8)

249(5)
193(6)
105(1)
87(8)
66(7)
39(4)
10(0)

175(5)
50(1)
49(8)
61(4)
46(3)
39(7)
13(6)

1635 749 485

Client 8

1002(1)
514(0)
464(5)
67(2)

920(5)
804(3)
418(4)
379(8)
313(2)
75(6)
13(7)

175(5)
61(4)
49(8)
46(3)
39(7)
21(2)
13(6)

2047 2922 404

Client 9

3213(5)
708(0)
348(4)
14(2)

2949(8)
1524(2)
334(6)
321(3)
44(4)

49(8)
61(4)
46(3)
21(2)
13(6)

4283 5172 190

Client 10

763(4)
326(8)
234(5)
41(1)
20(3)

1109(1)
213(6)
171(0)
86(4)
12(5)

175(5)
98(0)
61(4)
46(3)
50(1)
13(6)

1384 1591 397
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4.2.2 Hyperparameter settings

This research studies the accuracy of Autoencoder and SAE-CEN models
under FedAvg, FedProx, and MSEAvg federated learning algorithms. In intru-
sion detection, it is challenging to determine a threshold that accurately classi-
fies a data point as either normal or anomalous. Thus, the Area Under the ROC
Curve (AUC) metric is adopted to evaluate these models at different thresholds.
I ran each experiment five times and calculated the mean accuracy and standard
deviation of the AUC value.

Due to the lack of anomalies during training, the experiment hyperparame-
ters can not be tuned, which is one of the considerable challenges of this work.
I set up them using common values. The mini-batch size value is chosen as
12, learning rate lr = 0.00001, local epoch I = 100, number of global round
E = 20, µ = 0.001 for the FedProx proximal term. In each round, I select half of
the clients to join the training process based on the majority rule. For the SAE
shrink parameter, I test the values in the set {2, 5, 10, 15, 20} and find value 10
is appropriate for balancing shrink loss and MSE loss. I employ the Adam opti-
mizer [28] along with early stopping techniques [29] to train these local models.
The early stopping techniques are also used in the global server to control the
convergence of the global model on development data. For the number of neu-
rons in the latent layer of the autoencoder-based model, I configure based on
rules of thump as mentioned in [30] with the value m =

[
1 +
√

n
]
, where n is

the original space dimension.
All experiments were implemented in Python language and run on one KA-

GAYAKI high-performance computing GPU server at Japan Advanced Insti-
tute of Science and Technology, which has an Intel Xeon GOLD 5320 52-core 2.2
GHz CPU, 512 GB DDR4/3200 SDRAM memory, and two NVIDIA A100 48 GB
GPUs.

4.3 Experiment results

I do three corresponding experiments to solve research questions as men-
tioned before. To answer RQ1, I experiment on a 10-client IoT network to eval-
uate the model performance for all clients. With RQ2, I conduct the experiments
in different settings of client selection ratio to examine the model robustness and
find an optimal solution. Finally, I investigate the model accuracy in multiple
scales of IoT networks.
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4.3.1 Experiment 1: Federated intrusion detection performance

Tables 4.3 and 4.4 present the AUCs gotten by Autoencoder and SAE-CEN
models under three aggregation algorithms. The results indicate that the non-
IID setting poses greater challenges for machine learning models in detecting
anomalies, leading to less consistency among clients compared to the IID sce-
nario.

Table 4.3: AUCs for different agents in the IID setting

Agent Autoencoder SAE-CEN

FedAvg FedProx MSE-Avg FedAvg FedProx MSE-Avg

Client 1 98.77±0.33 98.53±0.51 98.54±0.42 97.93±0.75 97.67±1.18 98.68±0.64
Client 2 97.81±0.50 97.53±0.59 97.51±0.73 97.73±0.75 97.76±0.73 97.83±0.82
Client 3 98.43±0.47 98.10±0.57 98.02±0.58 97.80±0.55 97.74±0.49 98.26±0.85
Client 4 99.42±0.20 99.39±0.25 99.32±0.30 99.22±1.00 98.52±0.82 99.31±0.70
Client 5 99.75±0.10 99.75±0.04 99.73±0.07 99.84±0.06 99.81±0.07 99.86±0.05
Client 6 99.23±0.26 99.16±0.31 99.09±0.35 98.92±0.92 98.22±0.69 99.16±0.41
Client 7 98.30±0.35 98.08±0.45 98.06±0.39 97.82±0.78 97.59±1.28 98.30±0.79
Client 8 100.00±0.00 100±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Client 9 99.03±0.17 98.94±0.17 98.93±0.20 98.38±0.76 98.06±1.22 98.72±0.54

Client 10 99.97±0.02 99.97±0.02 99.97±0.02 99.95±0.02 99.95±0.03 99.95±0.02
Average 99.07±0.24 98.95±0.29 98.92±0.31 98.76±0.56 98.53±0.65 99.01±0.48
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Figure 4.3: Accuracy for federated intrusion detection in the IID setting
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In the IID context

In the IID case, both Autoencoder and SAE-CEN models have high accuracy
for all clients under all federated learning algorithms, and the Autoencoder is
slightly better than SAE-CEN in some algorithms. This suggests that the Au-
toencoder model can generalize effectively the whole data across clients in this
case. The reason may be due to the variability of training data among clients is
not much, all clients have a similar data distribution, which helps Autoencoder
to easily model the data. However, SAE-CEN does not outperform Autoen-
coder in all algorithms. The root cause is related to the architecture of the SAE
model. During training, the SAE model must balance two objectives: repre-
senting the latent data close to the origin and reconstructing normal data. As
a result, the SAE-CEN model cannot show outstanding performance compared
to Autoencoder in the IID scenario. This signifies that in a simple IID feder-
ated learning case, the Autoencoder model is good enough to detect anomalies
accurately.

Table 4.4: AUCs for different agents in the non-IID setting

Agent Autoencoder SAE-CEN

FedAvg FedProx MSE-Avg FedAvg FedProx MSE-Avg

Client 1 91.00±4.84 87.96±6.25 86.61±1.92 96.65±1.00 97.44±1.62 97.25±1.04
Client 2 99.58±0.03 99.58±0.03 99.56±0.00 99.62±0.05 99.61±0.09 99.64±0.09
Client 3 88.68±5.76 87.70±5.87 86.80±4.84 93.55±1.09 93.82±1.30 94.58±0.89
Client 4 89.42±5.14 88.72±4.93 86.14±2.48 94.40±1.11 94.41±1.66 94.97±1.03
Client 5 97.96±1.19 97.53±1.17 96.91±0.28 98.63±0.47 98.76±0.62 98.69±0.46
Client 6 92.70±3.52 91.75±3.90 89.47±1.13 93.84±2.03 95.38±0.87 94.43±0.25
Client 7 94.62±2.81 93.94±3.25 92.53±0.53 96.18±0.34 96.63±0.94 96.58±0.58
Client 8 95.84±2.14 95.47±2.20 94.18±0.94 97.51±0.55 97.87±0.50 97.73±0.07
Client 9 98.05±1.39 97.65±1.33 97.04±0.50 99.14±0.33 99.02±0.71 99.30±0.42

Client 10 99.52±0.09 99.52±0.09 99.48±0.00 99.77±0.05 99.81±0.10 99.77±0.05
Average 94.74±2.69 93.98±2.90 92.87±1.26 96.93±0.70 97.28±0.84 97.30±0.49

In the non-IID context

However, in the heterogeneous setting, the Autoencoder accuracy drops
dramatically under all aggregation algorithms, meanwhile, SAE-CEN shows
excellent effectiveness across all clients. This can be explained as follows: The
training data distribution across clients is significantly different, and each local
Autoencoder model converges in various directions. Thus, when accumulat-
ing all local models to a unique model and sending them to all gateways, the
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Figure 4.4: Accuracy for federated intrusion detection in the non-IID setting

new model performance will drop substantially. In contrast, each local SAE-
CEN model aims to create a compact latent space for normal data when trying
to force the normal latent data close to the origin. Therefore, the aggregated
model will also represent the latent data approximately near the optimal area,
leading to the ability to detect unseen data effectively.

The results also demonstrate the improvements brought by the MSEAvg al-
gorithm on the SAE-CEN machine learning model, especially in the heteroge-
neous case. The consistency among clients also improves, as evidenced by the
smaller standard deviation. FedAvg and FedProx update the global models
based on the training data size of selected clients. In the non-IID setting, the
client holding larger data may not ensure the representativeness of the whole
data, for example, in this experiment setting (Table 4.2), Client 5 may not be bet-
ter than Client 6. Instead, MSEAvg enhances this by prioritizing updates from
models that better model the normal data. By giving more weight to accurate
models, MSEAvg reduces the influence of noisy updates that might cause the
abnormal data points to be mixed in the normal latent region. Another reason is
the behavior inside the SAE model, the SAE model needs to control the trade-off
between reconstruction error and shrink error. MSEAvg helps the SAE model
form the normal data comprehensively while keeping the latent representation
capability. Therefore SAE model can separate the normal data points better than
FedAvg and FedProx.
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Figure 4.5 visualizes the SAE’s latent data on the testing dataset in 2D and
3D. The normal cluster that is constructed by MSEAvg is smaller, denser, and
closer to the origin than that of FedAvg and FedProx algorithms. This helps the
CEN model work more effectively in detecting abnormal data points, particu-
larly on unseen data when IoT networks innovate.
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Figure 4.5: Latent representation of SAE in the federated learning scheme

4.3.2 Experiment 2: Effects of client selection ratio

In federated learning, the percentage of clients chosen to participate in the
training process can significantly affect the model’s performance, efficiency, and
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communication overhead. There is always a trade-off among these criteria in
choosing an optimal client selection ratio.

Table 4.5 and Table 4.6 present the average accuracy of comparison candi-
dates under different settings of the client selection ratio. The results indicate
that the client selection ratio affects the consistency among clients and the com-
bination of SAE-CEN and MSEAvg still shows outstanding power. This is evi-
denced by changes in the standard deviation and the complexity of algorithms
although the mean accuracy fluctuates slightly and all FedAvg, FedProx, and
MSEAvg help SAE-CEN have comparable accuracy.

Table 4.5: Performance comparison of SAE-CEN and Autoencoder based on
client ratio in the IID scenario

Client ratio Autoencoder SAE-CEN

FedAvg FedProx MSE-Avg FedAvg FedProx MSE-Avg

50% 99.07±0.24 98.95±0.29 98.92±0.31 98.76±0.56 98.53±0.65 99.01±0.48
60% 98.48±0.44 98.12±0.45 98.47±0.37 98.76±0.42 98.85±0.56 98.96±0.68
70% 98.13±0.70 98.17±0.56 98.04±0.54 98.51±0.74 98.69±0.37 98.44±0.67
80% 97.96±0.93 97.77±0.69 97.66±0.78 98.77±0.85 98.79±0.54 98.71±0.80
90% 97.24±0.86 97.27±0.85 97.06±0.89 98.24±1.39 98.70±0.71 98.60±0.56

100% 97.61±0.52 97.34±0.36 97.29±0.63 98.72±0.56 98.61±0.64 98.69±0.69
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Figure 4.6: Accuracy for different client selection ratios in the IID scenario

38



In the IID context

Considering the IID scenario, data is uniformly distributed among clients.
Therefore, each client has similar data characteristics, ensuring that even a sub-
set of clients can provide a representative sample for model training. Therefore,
the standard deviation is relatively low for all client ratios, reflecting consistent
performance among clients. Autoencoder is sensitive to noise, hence, it tends
to drop accuracy when updated by more clients. This is due to a bit of differ-
ence in the data distribution among clients, making more noise and variability
in aggregation compared to a small ratio. The SAE-CEN model performs very
accurately and consistently in all settings because of the representation ability
as discussed in Experiment 1, even in different ratios.

In the non-IID context

It is more clear in the non-IID case that the standard deviation is higher,
indicating more variability in performance due to the non-uniform data distri-
bution. The model accuracy has a trend similar to the IID context, and the SAE-
CEN model outperforms the Autoencoder model in all settings for both accu-
racy and consistency. The standard deviation of the Autoencoder model under
the FedAvg and FedProx tends to be reduced when all clients participate in the
updating process. This behavior occurs because including all clients ensures
that the global model is updated with the complete data distribution, enhanc-
ing generalization and leading to smaller standard deviations. The MSE-Avg
algorithm shows relatively lower standard deviations compared to FedAvg and
FedProx, suggesting more consistent accuracy among clients. I currently select
the clients randomly, which does not ensure the representativeness of clients for
the population. Therefore, with smaller client selection ratios, there is a risk of
over-fitting due to the bias toward the clients that are selected more times than
others in the training process, which causes high variance across clients in the
IoT network. However, effective aggregation strategies like MSEAvg can par-
tially offset this by updating the global model based on a representative dataset
- development dataset and prioritizing more accurate local models. This makes
the global model act more consistently across clients and ensures its generaliza-
tion in small client ratios.

The computational costs aspect also needs to be considered rigorously in
the IoT network where IoT gateways do not have powerful resources. Higher
client ratios mean more clients are participating in each training round, increas-
ing the computational load, communication overhead, and training time. Thus,
it is critical to select an efficient model and client ratio. In the IID case, it is
good enough to choose Autoencoder and FedAvg as a solution for IoT feder-
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Table 4.6: Performance comparison of SAE-CEN and Autoencoder based on
client ratio in the non-IID scenario

Client ratio Autoencoder SAE-CEN

FedAvg FedProx MSE-Avg FedAvg FedProx MSE-Avg

50% 94.74±2.69 93.98±2.90 92.87±1.26 96.93±0.70 97.28±0.84 97.30±0.49
60% 92.85±1.05 93.36±1.26 93.43±1.05 97.31±0.68 96.92±1.10 97.08±0.88
70% 95.28±1.45 94.39±1.36 94.09±1.97 97.04±0.80 97.03±0.74 97.00±1.09
80% 93.14±1.29 92.32±1.22 93.63±1.70 97.06±0.77 97.13±0.81 97.21±0.75
90% 92.83±1.18 92.61±0.97 92.70±1.17 97.24±1.21 97.15±0.73 97.11±0.88

100% 94.06±1.31 93.65±1.35 93.60±1.05 97.30±0.71 97.29±0.46 97.21±0.63
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Figure 4.7: Accuracy for different client selection ratios in the non-IID scenario

ated intrusion detection for even a small client ratio setting as 50%. However,
in more practically heterogeneous scenarios, the SAE-CEN model is the best se-
lection. FedAvg and FedProx also make SAE-CEN have high accuracy in some
settings because they can leverage both the information of the data size and the
data characteristics to update the global model with more participants. Nev-
ertheless, the combination of SAE-CEN and MSEAvg can get the highest accu-
racy and consistency even only with the smallest ratio, half of all clients. This
achieves the goal of both performance and computation expenses. In both set-
tings, it is enough to use a small ratio with 50% of all clients participating in
the training process with suitable models. This improves federated intrusion
detection in all mentioned criteria.

Overall, the combination of SAE-CEN and MSEAvg is the better solution for
practical cases.
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4.3.3 Experiment 3: Accuracy for different IoT network sizes

Table 4.7 and Table 4.8 show the models’ average performance under dif-
ferent settings of IoT network scale with the client ratio of 50% and the similar
hyperparameters to Experiment 1.

When IoT networks scale, federated learning requires careful adjustment to
balance the variability ratio among clients and the ability to generalize knowl-
edge effectively. In this research, I use an IoT device set that includes nine types
of IoT appliances to illustrate practical IoT networks. The data partitions gen-
erated by the same IoT device, also known as the same distribution, may be
similar. Thus, in the same client ratio setting and fixed device set, the selected
data in a larger network provides a better representation of the entire network
compared to a smaller network. However, the noise ratio in the aggregation
process may be increased by more participants, leading to instability in feder-
ated learning.

Table 4.7: Performance comparison of SAE-CEN and Autoencoder based on
network scales in the IID scenario

Network scale Autoencoder SAE-CEN

FedAvg FedProx MSEAvg FedAvg FedProx MSEAvg

10-client 99.07±0.24 98.95±0.29 98.92±0.31 98.76±0.56 98.53±0.65 99.01±0.48
20-client 98.43±0.26 98.51±0.21 98.56±0.31 98.59±0.37 99.02±0.39 98.54±0.37
30-client 97.40±0.67 97.45±0.47 97.37±0.57 98.27±0.43 98.34±0.50 98.34±0.55
40-client 97.05±0.97 97.16±0.66 96.95±0.95 98.38±0.42 98.38±0.42 98.45±0.39
50-client 97.01±0.75 96.74±0.56 97.20±0.82 98.33±0.63 98.16±0.37 98.2±0.56

In the IID context

The Autoencoder performance tends to decrease with the expansion of the
network. The cause may be because of a bit of difference in data distribution
controlled by Dirichlet distribution as discussed in Experiment 2 and the sen-
sitivity of the Autoencoder model to noise. When the network grows, more
clients join in the training process, leading to a gradual increase in noise and
variability. Meanwhile, it can not improve the generalization by the reason of
the uniform distribution among clients. This implies that Autoencoder can not
perform effectively in large-scale networks, even in IID settings. In contrast,
with the powerful representation capability, SAE-CEN still maintains outstand-
ing performance.

41



10-client 20-client 30-client 40-client 50-client
Network Scale

95

100

M
ea

n 
AU

C 
±

 S
td

 D
ev

 (
%

)

Performance comparison between SAE-CEN and Autoencoder on different network scales in the IID scenario

AE+FedAvg
AE+FedProx
AE+MSEAvg
SAE-CEN+FedAvg
SAE-CEN+FedProx
SAE-CEN+MSEAvg

Figure 4.8: Accuracy of SAE-CEN and Autoencoder for different IoT network
sizes in the IID scenario

Table 4.8: Performance comparison of SAE-CEN and Autoencoder based on
network scales in the non-IID scenario

Network scale Autoencoder SAE-CEN

FedAvg FedProx MSEAvg FedAvg FedProx MSEAvg

10-client 94.74±2.69 93.98±2.90 92.87±1.26 96.93±0.7 97.28±0.84 97.30±0.49
20-client 95.72±1.42 95.62±1.18 95.68±1.11 97.17±0.90 97.19±0.83 97.29±0.96
30-client 96.95±1.51 96.96±1.19 96.98±1.43 97.54±0.61 97.65±0.54 97.73±0.56
40-client 95.99±1.83 95.78±1.78 95.72±1.80 97.81±0.94 97.58±0.84 97.77±1.01
50-client 96.30±0.98 96.39±0.85 96.42±2.37 98.41±0.72 98.36±0.65 98.52±0.51
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Performance comparison between SAE-CEN and Autoencoder on different network scales in the non-IID scenario
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Figure 4.9: Accuracy of SAE-CEN and Autoencoder for different IoT network
sizes in the non-IID scenario
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In the non-IID context

The effectiveness of combining SAE-CEN and MSEAvg is more clear in the
non-IID case when it shows the excellent and highest accuracy in most cases
(Table 4.8). Furthermore, the accuracy of SAE-CEN demonstrates an upward
trend as the network scale increases. Due to the heterogeneity of training data
among clients, more joining clients bring more knowledge to the global model.
This enables the SAE-CEN model to more effectively learn the normal data pat-
terns across the entire network, especially under MSEAvg. Hence, the accuracy
of SAE-CEN improves when the network size increases.

The results of this experiment indicate that the SAE-CEN model under MSEAvg
still poses an outstanding power on large-scale networks, particularly in hetero-
geneous scenarios.

43



4.4 Limitations

The proposed approach demonstrates outstanding results in both effective-
ness and efficiency; however, it has several limitations that need to be addressed.

The approach is sensitive to hyperparameters, which poses a significant
challenge. Since there is no abnormal data available for tuning these hyperpa-
rameters, finding the optimal values for model parameters is difficult and may
affect the overall performance. Especially in the scenario that the IoT network
is changing during use. Furthermore, the MSEAvg algorithm requires addi-
tional server-side computations to assign weights to local models, increasing
the training time and computational costs.

The current method of randomly selecting clients to update the global model
is not optimal for federated learning, particularly in heterogeneous data distri-
butions. An improved client selection strategy that ensures a more represen-
tative subset of clients could enhance the effectiveness of the global model up-
dates.
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Chapter 5

Conclusion

5.1 Summary

This thesis presents a novel approach to enhancing intrusion detection in IoT
networks using federated learning. Traditional centralized machine learning
methods are increasingly impractical due to privacy concerns, communication
overheads, and the sheer volume of data generated by IoT devices. Federated
learning (FL) emerges as a promising solution, enabling decentralized model
training while keeping data localized on client devices.

We proposed a semi-supervised federated learning approach utilizing the
Autoencoder model to improve IoT intrusion detection. The core contributions
of this research include the development of a hybrid Shrink Autoencoder with
the Centroid algorithm (SAE-CEN) and a novel mean square error-based ag-
gregation algorithm (MSEAvg). These innovations address critical challenges
such as data heterogeneity, unbalanced data distributions, resource constraints,
and the lack of labeled abnormal data prevalent in IoT environments, especially
the issue of the innovation of IoT networks changing in both topology and data
characteristics.

Our experimental evaluation using the NBa-IoT dataset demonstrated that
the proposed SAE-CEN model, combined with the MSEAvg aggregation algo-
rithm, not only significantly enhances detection accuracy and robustness in het-
erogeneous IoT networks. These findings confirm the both effectiveness and
efficiency of my approach in real-world scenarios, providing a practical frame-
work for IoT intrusion detection.
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5.2 Future work

While the results of this research are already valuable, there are several fu-
ture work directions to further enhance the proposed approach and address the
remaining challenges, as follows:

• It is necessary to implement an experimental framework to evaluate the
prediction performance for malicious activities and bring the experiments
to practical cases.

• My proposed aggregation algorithm still does not outperform the popular
ones in all settings. Therefore, some techniques such as hierarchy learning
could be integrated to boost the performance.

• The hyperparameters tunning is still a challenging task in semi-supervised
learning, especially in this thesis. In the future, I will investigate and find
the optimal set of hyperparameters for real-world cases.

In conclusion, this thesis has provided a solid foundation for using federated
learning in IoT intrusion detection. By addressing the identified future work
areas, the proposed framework can be further refined and adapted to meet the
evolving security needs of IoT networks.
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