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Abstract

The high-pressure phase diagram of hydrogen has garnered much research interest
ever since it came to light that hydrogen might transition into a metallic state at high
pressure. Nowadays, the relevance of studying hydrogen under high pressure also comes
from astrophysics as hydrogen is the largest constituent of most of the stars and gaseous
planets, and is subject to extreme pressure and temperature in the interior of those
celestial objects.

Hydrogen is believed to transform into its atomic metallic phase with a crystal struc-
ture belonging to the I41/amd space group (also often called Cs-IV structure) at around
500 GPa. Said pressure is already near the limit of what is currently achievable by the
experimental apparatus such as the diamond anvil cells. Consequently, one has to rely
on computational methods for investigating the hydrogen phase diagram in the pressure
regime beyond 500 GPa.

Previous computational studies employing a crystal structure search together with the
density functional theory (DFT) method predicted that Cs-IV phase is stable up to 2000
GPa. Their structure search also uncovered some novel structures such as the oC12 and
cI16 structures that are predicted to become more stable than Cs-IV above 2000 GPa.

In this thesis, the phase diagram of high-pressure solid hydrogen is investigated within
the pressure range of 500 GPa to 2000 GPa. The diffusion quantum Monte Carlo (QMC)
method is employed to evaluate the static enthalpy of candidate structures, while their
zero-point energy is calculated via harmonic approximation from DFT forces. DMC is
known to be more reliable in its treatment of electronic structure than DFT, at the cost of
being more computationally heavy. Additionally, an evolutionary crystal structure search
is employed to obtain more candidate structures that are energetically competitive.

This study revealed that the Pnma structure discovered by the previous study is
already more stable than Cs-IV at 2000 GPa. Two of the new candidate structures
discovered in this work managed to become more stable than Cs-IV at some point within
500 GPa to 2000 GPa. The inclusion of the aforementioned structures modified the phase
diagram of solid hydrogen in said pressure range. Hydrogen is predicted to undergo phase
transitions in the order of Cs-IV → C2/c-6 → Cs-IV → C2/c-10 → Pnma, where the
transitions happen at 800 GPa, 900 GPa, 1000 GPa, and 2000 GPa.

Keywords: First-principles calculation, High-pressure hydrogen phases, Crystal struc-
ture search, Diffusion Monte Carlo

i



Acknowledgments

I would like to express my gratitude to my thesis advisors, Prof. Ryo Maezono and
Associate Prof. Kenta Hongo for their advice, support, and the opportunities they have
given to me during my Master’s year in JAIST.

This research topic on high-pressure solid hydrogen was brought to me by Assistant
Prof. Ichiba Tomohiro, so I would also like to thank him for introducing me to this
research field and for the guidance he provided. I am also thankful for his tutorial on
running QMC simulations with QMCPACK and Nexus and many other things in other
projects.

I would like to thank everyone in Maezono and Hongo laboratory, fellow students and
the laboratory staff, for helping me out whenever I run into trouble in research or with
the administrative documents.

And to all my friends in JAIST, thanks for making these past 2 years more epic and
fun.

Lastly, I wish to thank my parents for their neverending support, motivation, and
phone calls, and for helping me to stay connected with my family and friends at home.

ii



Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Theories 7
2.1 Many-body Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Variational Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Diffusion Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Evolutionary Crystal Structure Search . . . . . . . . . . . . . . . . . . . . 22
2.6 Phonon Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methods and Computational Details 25
3.1 Outline of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 General Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Known Candidate Structures . . . . . . . . . . . . . . . . . . . . . 26

3.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Crystal Structure Search . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Density Functional Theory Calculations . . . . . . . . . . . . . . . 27
3.2.3 Quantum Monte Carlo Calculations . . . . . . . . . . . . . . . . . . 28
3.2.4 Phonon Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results and Discussion 30
4.1 DFT Static Enthalpy of Known Structures . . . . . . . . . . . . . . . . . . 30
4.2 Crystal Structure Search Results . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Structure Search at 500 GPa . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Structure Search at 800 GPa . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Structure Search at 1100 GPa to 1700 GPa . . . . . . . . . . . . . . 35

4.3 Quantum Monte Carlo Static Enthalpy . . . . . . . . . . . . . . . . . . . . 38

iii



4.3.1 For Known Candidate Structures . . . . . . . . . . . . . . . . . . . 38
4.3.2 For Found Candidate Structures . . . . . . . . . . . . . . . . . . . . 41

4.4 Phonon Calculation for Known Candidate Structures . . . . . . . . . . . . 45
4.5 Phonon Calculation for Found Structures . . . . . . . . . . . . . . . . . . . 47

5 Conclusion and Future Works 51
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Biblography 53

iv



List of Figures

1.1 The left panel shows the schematics of the DAC while the center panel
shows the more detailed parts around the metal casket encapsulating the
studied material. The types of diamond cutlet designs are shown on the
right panel. (Figure adapted from ref [1]) . . . . . . . . . . . . . . . . . . 2

1.2 The known phase diagram of high-pressure hydrogen. In the figure, the low-
temperature phase VI is labeled as H2-PRE (Figure adapted from ref [2])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The flowchart of self-consistent calculation for solving the Kohn-Sham equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Some of the known candidate structures, from left to right: Cs-IV, oC12,
and cI16. Fictitious bonds were added for clarity. . . . . . . . . . . . . . 27

4.1 The relative DFT static enthalpies per atom of known candidate structures
with respect to Cs-IV phase. Note the sudden termination on the enthalpy
line for some structures due to structural transformation. . . . . . . . . . 31

4.2 The relative static enthalpies per atom of found candidate structures from
500 GPa structure search with respect to Cs-IV phase. The relative static
enthalpy of mC24-low, Cmca-4-low, and Cmca-12-low are also shown. . . 33

4.3 The relative static enthalpies per atom of found candidate structures from
800 GPa structure search with respect to Cs-IV phase. The static relative
enthalpy of mC24-low, Cmca-4-low, and Cmca-12-low are also shown. . . 34

4.4 The relative static enthalpies per atom of found candidate structures from
1100 GPa structure search with respect to Cs-IV phase. The relative static
enthalpy of mC24-low, Cmca-4-low, and mC24-high, and C2/m-3-low are
also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 The relative static enthalpies per atom of found candidate structures from
1400 GPa structure search with respect to Cs-IV phase. The relative static
enthalpy of mC24-high is also shown. . . . . . . . . . . . . . . . . . . . . 37

4.6 The relative static enthalpies per atom of found candidate structures from
1700 GPa structure search with respect to Cs-IV phase. The relative static
enthalpy of mC24-high, oC12, cI16, and Pnma are also shown. . . . . . . 38

4.7 The relative DMC static enthalpies of known candidate structures within
500 GPa to 900 GPa, plotted with respect to that of C2/c-24 structure. . 39

4.8 The relative DMC static enthalpies of known candidate structures within
1400 GPa to 2000 GPa plotted with respect to that of Cs-IV structure. . 40

4.9 The relative DMC static enthalpies of found candidate structures from 500
GPa structure search plotted with respect to that of Cs-IV structure. . . 41

v



4.10 The relative DMC static enthalpies of found candidate structures from 800
GPa structure search plotted with respect to that of Cs-IV structure. . . 42

4.11 The relative DMC static enthalpies of found candidate structures from 1100
GPa structure search plotted with respect to that of Cs-IV structure. . . 43

4.12 The relative DMC static enthalpies of found candidate structures from 1400
GPa structure search plotted with respect to that of Cs-IV structure. . . 44

4.13 The relative DMC static enthalpies of found candidate structures from 1700
GPa structure search plotted with respect to that of Cs-IV structure. . . 45

4.14 The phonon density of states of the optimized R3̄m structure at 1800 GPa
(green line) and 2000 GPa (purple line). The graph shows a smaller magni-
tude of negative frequencies at higher pressure, indicating a more dynami-
cally stable structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.15 The relative dynamic enthalpies of dynamically stable known candidate
structures plotted with respect to that of Cs-IV structure for the low-
pressure side (top), and high-pressure side (bottom). . . . . . . . . . . . . 47

4.16 The relative DMC dynamic enthalpies of dynamically stable found struc-
tures from 500 GPa, 800 GPa, and 1100 GPa structure searches plotted
with respect to that of Cs-IV structure. . . . . . . . . . . . . . . . . . . . 49

4.17 The relative DMC dynamic enthalpies of dynamically stable found struc-
tures from 1400 GPa and 1700 GPa structure search plotted with respect
to that of Cs-IV structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.18 The C2/c-6 structure (left) and C2/c-10 structure (right). Fictitious bonds
were drawn for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



Chapter 1

Introduction

1.1 Background

Hydrogen is the first element in the periodic table. Owing to its simplicity, the hydrogen

atom has been central to the early development of quantum mechanics which was heav-

ily focused on explaining its experimentally observed emission spectra. The interest in

its high-pressure phase was sparked by a series of theoretical studies that hinted at the

interesting properties dense hydrogen might possess. In 1935, E. Wigner and H. B. Hunt-

ington predicted that hydrogen could undergo metallization at a pressure of 25 GPa [3].

Thirty years later in 1968, N.W. Ashcroft predicted that metallic hydrogen might be a

high-temperature superconductor [4]. These predictions fascinated many physicists to in-

vestigate the possible transitions between the insulating, conducting, and the speculated

superconducting phase of hydrogen.

The study of high-pressure hydrogen phases also holds great significance in astro-

physics. As the most abundant element in the universe, hydrogen, together with helium

are the main components of many celestial objects such as gaseous planets and stars.

These two elements alone comprise around 85% and 75% of the total mass of Jupiter and

Saturn, respectively [5]. Much of the knowledge on these gas giants comes from the data

collected by past spacecraft flyby missions. For Jupiter, a very accurate measurement

of its gravitational field was obtained by the Juno spacecraft in 2016 [6]. Unfortunately,
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even with much available data on gravitational and magnetic fields, inferring the internal

structure of gaseous planets is not possible without any accurate knowledge of the behav-

ior of hydrogen, helium, and their mixture under high pressure and temperature that exist

in the interior of such planets. For instance, the pressure-temperature profile of the plan-

ets depends heavily on the predicted compressibility and specific heat of those elements.

The percentage by mass of heavier elements also needs to be inferred from the pressure-

temperature chart under the constraints imposed by the recorded gravity data [5]. It is

evident that gaining a more in-depth understanding of high-pressure hydrogen phases will

have a significant impact on the modeling of many celestial objects.

Figure 1.1: The left panel shows the schematics of the DAC while the center panel shows
the more detailed parts around the metal casket encapsulating the studied material. The
types of diamond cutlet designs are shown on the right panel. (Figure adapted from
ref [1])

The need for high-pressure studies in general, not just for hydrogen, brought a lot

of progress in the development of experimental apparatus to accommodate high-pressure

material research in laboratory settings. Such a pressure regime is currently achievable

with the aid of diamond anvil cells (DACs). In DACs, the sample to be studied is com-

pressed between the sharp tips of two opposing diamonds (Fig. 1.1). Due to diamond

being the hardest known material, a very high pressure could be achieved without break-

ing the anvil. Furthermore, the desirable optical properties of diamonds made DACs even

more versatile. Diamond is transparent for a wide range of electromagnetic spectrum, not
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only towards visible light but also for X-rays. This accommodates the utilization of many

spectroscopy techniques to measure the properties of the sample as the pressure is being

exerted. X-ray diffraction, in particular, is a popular method to determine the structure

of the materials. Raman spectroscopy and reflectance measurement are also often incor-

porated into experimental research with DACs to observe the change in the characteristics

of the sample. Such measurements are crucial to detect the phase transition in materials,

as it is often accompanied by a sudden change in optical properties.

The advancement in DACs technology has increased the achievable pressure up to

400 GPa for conventional DACs [7], while the recently developed toroidal diamond anvil

cell (T-DAC) can reach a pressure up to 600 GPa [8]. Thus, extensive experimental

studies of high-pressure hydrogen phases have been conducted up to almost 500 GPa.

These studies revealed the richness and the complexity of the hydrogen phase diagram,

while also showing that the existence of metallic hydrogen was at a much higher pressure

than the previous theoretical prediction. Solid hydrogen is known to have 6 different

phases which are labeled as phase I to VI (Fig. 1.2). In phase I, solid hydrogen takes the

hexagonal close-packed structure with a freely rotating hydrogen molecule on its lattice

points [9]. The transition to phase II (often called the broken symmetry phase) happens

at around 110 GPa, at which each hydrogen molecule loses its rotational freedom and is

uniformly aligned in the same orientation.

As the pressure accessible by DACs increased, the discovery of phase transition to

phase II and phase III revealed the inadequacy of the characterization methods to deter-

mine the structure of hydrogen. The difficulty arises from the hydrogen’s small scattering

efficiency, which produces a weak diffraction intensity that can be easily obscured by

the background noise. In fact, among all the discovered solid hydrogen phases, only the

structure of phase I was able to be identified experimentally. For the others, it was nec-

essary to consider the computational methods. These approaches work by considering

some proposed structures or candidate structures of a given phase for evaluation. Such

evaluations will produce some predictions regarding the candidate structure’s properties

that can be compared with the results from experiments. The investigation of phase III
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Figure 1.2: The known phase diagram of high-pressure hydrogen. In the figure, the low-
temperature phase VI is labeled as H2-PRE (Figure adapted from ref [2])

using computational methods of density functional theory (DFT) and a random crystal

structure search yielded the C2/c-24 and Cmca-12 structures [10] which are still believed

to be the most suitable candidates for phase III. At an even higher pressure, the transi-

tion into metallic hydrogen has been observed. An experiment conducted by Loubeyre,

et al reported the transition to metallic hydrogen which they attributed to the transition

from the C2/c-24 phase to the molecular metallic Cmca-12 phase at the pressure of 425

GPa [11]. Earlier in 2017, Dias, et al claimed to have finally realized the atomic metallic

hydrogen predicted by Wigner and Huntington from the observed transition at 495 GPa

in their experiment [12]. So far, the best candidate structure for the atomic metallic

hydrogen phase is presumed to be the I41/amd structure (Cs-IV) [13, 14].

Due to the limitations of current DACs capabilities, the pressure regime beyond 500

GPa has been much left untouched by researchers. This attainable pressure might be

enough to crack the mystery of insulator-to-metal transition in high-pressure hydrogen.

However, much less is understood about the hydrogen phase diagram above 500 GPa.

There is still no consensus about how much higher in pressure the Cs-IV phase will still

be the most stable, and what kind of phase it will transition into. Some computational

studies using density functional theory, however, have predicted that Cs-IV is stable up
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to around 2000 GPa, at which pressure the DFT results also uncovered some more stable

structures [15]. Consequently, the hydrogen phase diagram beyond 500 GPa still has

much room to be explored.

1.2 Motivation

The technological advancement in high-pressure material research has no doubt shed some

light on the high-pressure phase of hydrogen. However, as previously stated, the achievable

pressure is still far from the condition that exists in the interior of gaseous planets and

stars. Therefore, there is no choice but to rely on computational methods in investigating

such pressure regimes. With no experimental data to confirm or deny the results, there is

no way to verify the accuracy of the findings. Hence, it becomes very crucial to choose a

reliable method in computational research. Up until now, the atomic metallic hydrogen

(Cs-IV) phase is believed to be stable up until around 2 TPa. Further than that, previous

DFT studies have uncovered some novel structures such as oC12, R3̄m, and cI16, which

are expected to be more stable than Cs-IV. However, DFT is known to be unreliable in

its treatment of electronic structure and sometimes produces contradictory results due to

the approximations in its implementation. As such, this research tries to asses the phase

diagram of solid hydrogen between 500 GPa to 2000 GPa more accurately by employing

the quantum Monte Carlo (QMC) method. QMC method could yield much more accurate

calculations at the expense of larger computational costs.

Another challenge in the computational research of high-pressure hydrogen phases

comes during the exploration of the candidate structures. Previous research has uncov-

ered the fact that hydrogen possesses a complex energy landscape, with many kinds of

structures differing so slightly in energy. As such, the crystal structure search algorithm

has become vital to acquire competitive candidate structures. Due to the lack of previ-

ous research effort directed at the pressure range considered in this work, there is a high

possibility of undiscovered structures. Therefore, this research will also employ a crystal

structure search algorithm to find new candidate structures.
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1.3 Chapter Organization

This master’s thesis is organized as follows:

• Chapter 1 provides an introduction to high-pressure hydrogen research as well as

the motivation for this master’s thesis

• Chapter 2 explains the basic theories related to the methods utilized in this thesis,

which mainly covers the crystal structure search based on the evolutionary algorithm

and the electronic structure computational methods of DFT and QMC.

• Chapter 3 gives a more detailed description of the system considered in this thesis

and the technical settings of the calculations.

• Chapter 4 presents the main results of this thesis followed by discussions.

• Chapter 5 concludes the discussion from the previous chapter and explores some

possible future studies.
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Chapter 2

Background Theories

2.1 Many-body Schrödinger Equation

The main problem of electronic structure calculations is to solve or find the approximate

solution to the Schrödinger equation governing the time evolution of any quantum system:

iℏ
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ (2.1)

where Ψ(t) is the wavefunction or the quantum state, Ĥ is the Hamiltonian which

depends on the quantum system in question, and t is time. If the Hamiltonian does not

explicitly depend on time, the solution to the above time-dependent Schrödinger equation

can be separated into the spatial and temporal parts, that is, Ψ(r, t) = ψ(r)T (t). The

temporal part takes the form of T (t) = e−iEt/ℏ, while the spatial part has to satisfy the

time-independent Schrödinger equation that is essentially an eigenvalue problem:

Ĥψ(r) = Eψ(r) (2.2)

where E is the energy of the system. The time-dependent Schrödinger equation admits

many pairs of eigenvectors and eigenvalues {ψn(r), En}. These eigenvectors are complete,

in the sense that they can be used as a basis set to construct any solution of the time-
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dependent Schrödinger equation. In general, the state vector |Ψ(t)⟩ can be written as

|Ψ(t)⟩ =
∑
n

cne
−iEnt/ℏ |ψn⟩ (2.3)

When considering a many-body system made of multiple atoms and electrons, the

Born-Oppenheimer approximation which treats the nuclei as stationary objects is often

invoked. The motivation for such an assumption comes from the fact that the nucleus

is around 1000 times heavier than electrons. The dynamics of electrons are much faster

than the nucleus and from the electron’s point of view, the nuclei are pretty much frozen.

In the same way, the electrons appear to instantaneously relax to the equilibrium state

from the perspective of the nuclei. This leads to the separation of the wavefunction into

the ionic and electronic parts, as well as to the decoupling of the Schrödinger equation

into 2 equations, one for the electrons and another one for the nuclei. Upon considering

frozen nuclei, only the equation for the electrons needs to be considered and the electronic

equation now takes the nuclei’s positions as a set of parameters. Under this scheme, the

Hamiltonian can be expanded as:

Ĥ = −1

2

∑
i

∇2
i +

∑
i<j

1

|ri − rj|
−
∑
i,j

Zi

|ri −Rj|
+
∑
i<j

ZiZj

|Ri −Rj|
(2.4)

where ri denotes the position of the i-th electron, while Ri and Zi denote the position

and charge of the i-th nucleus. The first term on the right-hand side of Equation (2.4)

is the kinetic energy operator of the electrons. The second, third, and fourth terms are

the electron-electron, electron-ion, and ion-ion Coulomb interaction terms, respectively.

In Equation (2.4) above, the Hamiltonian is expressed in the atomic units, in which the

mass of the electron, the reduced Planck constant, and the electric charge of the electron

are equal to 1.
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2.2 Density Functional Theory

Density functional theory has gained much popularity as an ab initio method for assessing

the properties of materials. Its good predictive capabilities across various materials and

low computational cost have made DFT a standard technique in computational material

science and chemistry. As the name suggests, DFT revolves around finding the electron

density ρ(r) as opposed to finding the electronic wavefunction Ψ(r, t) directly by solving

the many-body Schrödinger equation. This approach simplifies the task greatly as density

is a three-dimensional quantity and the wavefunction is 3N -dimensional, where N is the

number of electrons in the system.

Hohenberg-Kohn Theorem

The Hohenberg-Kohn (HK) theorem [16] serves as a theoretical basis of DFT, which

consists of two parts:

1. The first part of the theorem states that the external potential vext(r) is a functional

of the ground-state electron density ρ(r) (up to a constant). Since this external

potential fixes the form of the Hamiltonian, any property of the ground state such

as its energy is also a functional of the ground-state electron density. In terms of

ρ(r), the functional of ground-state energy E[ρ(r)] can be written as:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)] (2.5)

where T [ρ(r)] is the kinetic energy functional, Vee[ρ(r)] is the electron-electron in-

teraction energy functional, and Vext[ρ(r)] is the functional of the energy from an

external potential.

2. The second part of the theorem states that the ground-state energy functional will

evaluate to its minimum value if and only if the correct ground-state density is

inserted. This is essentially the variational principle obeyed by the energy functional
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with respect to electron density. Mathematically, for any trial electron density ρ′(r),

the energy functional satisfies:

E[ρ(r)] ≤ E[ρ′(r)] (2.6)

The equality will only be satisfied when ρ′(r) = ρ(r). The trial electron density

should follow the same constraint imposed by the ground-state density, that is, the

trial density is always positive and integrates to the correct number of electrons N .

These two statements solidify the theoretical foundation of the modern density func-

tional theory with electronic density as the principal quantity. At first glance, it seems as

if solving the Schrödinger equation can now be achieved by applying variational calculus

to find the electronic density ρ(r) that minimizes the energy functional E[ρ(r)]. However,

this approach is hindered by the very fact that the exact form of the functionals, T [ρ(r)]

and Vee[ρ(r)], are still unknown. These two functionals are "universal" in the sense that

their form does not depend on the system. Hence, they are often lumped together as a

single universal functional F [ρ(r)] = T [ρ(r)]+Vee[ρ(r)]. On the other hand, the Vext[ρ(r)]

can be expressed as

Vext[ρ(r)] =

∫
vext(r)ρ(r)dr (2.7)

which depends on the system in question. For instance, if the external potential is

due to the electron-nuclei interaction, then Vext[ρ(r)] would depend on the positions of

the nuclei and their charges.

Kohn-Sham Equation

The problem now turned to finding an accurate approximation of the universal functional.

In practice, however, it was very difficult to formulate a satisfactory approximation for

the kinetic energy functional T [ρ(r)] of interacting electrons. In 1965, Kohn and Sham

proposed a way to side-step such a problem by mapping the system of interacting particles

(called the reference system) into a fictitious system of non-interacting particles with the
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same density as the reference system [17]. The idea is to separate F [ρ(r)] into 3 parts:

F [ρ(r)] = Ts[ρ(r)] + VH [ρ(r)] + EXC [ρ(r)] (2.8)

where Ts[ρ(r)] is the kinetic energy of a non-interacting system with density ρ(r) and

VH [ρ(r)] is classical electrostatic energy:

VH [ρ(r)] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
(2.9)

The third term, EXC [ρ(r)], is called the exchange-correlation energy which encom-

passes the energy contribution that is not covered by Ts[ρ(r)] and VH [ρ(r)]. By minimiz-

ing Equation (2.8) with respect to electronic density, one can obtain the Kohn-Sham (KS)

equation:

[
− 1

2
∇2 + vKS(r)

]
ψi(r) = ϵiψi(r) (2.10)

where ψi(r) and ϵi are the single-particle orbital and its eigenvalue. The Equation

(2.10) above is exactly the time-independent Schrödinger equation of a particle moving

under the external potential vKS(r) called the Kohn-Sham potential, which is given by

vKS(r) =

∫
dr′

ρ(r′)

|r− r′|
+ vXC(r) + vext(r) (2.11)

By definition, the exchange-correlation potential vXC(r) can be written as:

vXC(r) =
δEXC [ρ(r)]

δρ(r)
(2.12)

Solving the Kohn-Sham equation yields a set of single orbital wavefunctions that repro-

duces the electronic density ρ(r) of the reference system:

N∑
i=1

|ψi(r)| 2 = ρ(r) (2.13)
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Figure 2.1: The flowchart of self-consistent calculation for solving the Kohn-Sham equa-
tion

The complexity of the problem has been yet again reduced to tackling a set of equations

of a single non-interacting particle. In calculating the electronic density, the Kohn-Sham

equation needs to be solved. However, to construct the Kohn-Sham equation, vKS(r)

needs to be calculated first from the electronic density. Consequently, the Kohn-Sham

equation is solved in a self-consistent manner. By first using a trial density, one can begin

the process of using the newly obtained density as the input to the Kohn-Sham equation

repeatedly until the results converge within the desired criteria. This iterative method

is often called the self-consistent field (SCF) calculation, and the algorithm is shown in

Fig. 2.1.

Exchange-Correlation Functional

Among the 3 functionals appearing on the right-hand side of Equation (2.8), only the

exact form of exchange-correlation functional is unknown and needs to be approximated.

The accuracy of DFT calculations depends heavily on the form of exchange-correlation

functional employed. The simplest approximation of exchange-correlation functional is
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the local-density approximation (LDA):

ELDA
XC [ρ(r)] =

∫
ϵhomxc [ρ(r)]ρ(r)dr (2.14)

where ϵhomxc [ρ(r)] is the exchange-correlation energy per particle of an electron gas

with uniform density ρ. As such, LDA is expected to be accurate only when describing

a system with slowly varying electronic density. Despite this assumption, LDA has been

found to be surprisingly reliable for a wide range of systems. Further improvement in the

exchange-correlation functional can be achieved by including the gradient of the density.

This approach is called the generalized gradient approximation (GGA), for which the

functional takes the form:

EGGA
XC [ρ(r)] =

∫
f(ρ(r),∇ρ(r))dr (2.15)

In practice, the functions ϵhomxc and f inside the LDA and GGA functionals need to be

parametrized by either experimental data or by very accurate ab initio calculations. An

example of such parametrized functionals is the Perdew and Zunger LDA [18]. Over the

years, many exchange-correlation functionals have been proposed as further improvements

from the GGA functionals. As one example, the so-called Meta-GGA improves upon

GGA functional by including higher derivatives of electron density and kinetic energy

density [19].

2.3 Variational Quantum Monte Carlo

The variational quantum Monte Carlo (VMC) is a method based on the variational prin-

ciple and the Monte Carlo integration. In the following section, the vector R is a 3N -

dimensional vector containing the positions of all the electrons in the system:

R =
(
r1, r2, r3....., rN

)
(2.16)
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where ri is the position of the i-th electron. In the context of quantum Monte Carlo,

the vector R is often referred to as a walker.

Monte Carlo Integration

The Monte Carlo integration is a method to approximate integrals via random sampling.

Suppose the following integral of multivariate function g(R) needs to be evaluated:

I =

∫
g(R)dR (2.17)

The above integral can be transformed by introducing an importance function P(R)

so that it becomes

I =

∫
f(R)P(R)dR (2.18)

where f(R) = g(R)/P(R). If P(R) satisfies the constraints of a probability density

function, that is, P(R) ≥ 0 and
∫
P(R)dR = 1, then I can be interpreted as the ex-

pectation value of f(R). Such expectation value can be approximated by calculating the

average of a finite number of samples:

I ≈ 1

M

M∑
m=1

f(Rm) (2.19)

From the central limit theorem, as the sample size increases, the distribution of the

sample mean will get arbitrarily close to a normal distribution with mean µf and variance

σ2
f/M , where µf and σ2

f are the mean and variance of f(R), respectively. This means

that the error bar of the approximation decays as 1/
√
M regardless of the dimension of

the integral.

In principle, reducing the variance of f(Rm) would lead to a smaller error bar for a

given sample size. Therefore, it is important the choose a suitable importance function

P(R) to make the Monte Carlo integration converge faster. It can be shown that the

smallest variance is obtained when P(R) = |g(R)/I| , for which f(R) becomes a constant

and σ2
f becomes zero. However, this is meaningless as I is the quantity that needs to be
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evaluated. Hence another method is needed to make an importance function P(R) that

is close to g(R)/I.

Variational Principle

The variational principle states that the expectation value of an observable ⟨O⟩ corre-

sponding to the operator Ô with respect to a trial wavefunction ΨT (R) is greater or equal

to that evaluated by using the exact ground state wavefunction. Taking the energy as the

observable with Hamiltonian as the corresponding operator, the variational principle can

be expressed as:

E0 ≤ EV =

∫
Ψ∗

T (R)ĤΨT (R)dR∫
Ψ∗

T (R)ΨT (R)dR

(2.20)

where E0 is the ground-state energy. The above equation can be rewritten into a form

suitable for Monte Carlo integration by multiplying the numerator with ΨT (R)/ΨT (R)

which leads to:

EV =

∫
|ΨT (R)| 2 ĤΨT (R)

ΨT (R)
dR∫

|ΨT (R)| 2dR
=

∫
P(R)EL(R)dR (2.21)

The energy can now be interpreted as the expectation value of the "local energy"

EL(R):

EL(R) =
ĤΨT (R)

ΨT (R)
(2.22)

from the probability density P(R) shown below:

P(R) =
|ΨT (R)| 2∫
|ΨT (R)| 2dR

(2.23)
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The Monte Carlo integration can finally be applied:

EV ≈
1

M

M∑
m=1

EL(Rm) (2.24)

Within the VMC framework, the variational principle is also used to optimize the

initial wavefunction over a set of parameters to make it closer to the actual ground-state

wavefunction. From the perspective of variational principle, the energy EV in Equation

(2.24) is a suitable choice of cost function to be minimized for optimizing the wavefunction.

From the perspective of Monte Carlo integration, however, the quality of the wavefunction

can be evaluated by the variance of the local energy (σ2
E). Choosing said variance to be

minimized will also improve the convergence of the Monte Carlo integration. Alternatively,

one can also choose to optimize a combination them both, such as σ2
E/E2

V .

Metropolis Algorithm

To calculate the expectation value of EL(R), a set of points {Rm} needs to be sampled

from the high-dimensional probability density function. Direct sampling is rendered im-

possible due to the complexity of said function. In such cases, the metropolis algorithm

is often used to provide an accurate sampling of any probability function without know-

ing its normalization factor [20]. The algorithm generates a series of sampling points by

propagating a walker according to the following procedure:

1. Initialize a walker to position R.

2. Propose a trial move of the walker to a new position R′. The probability of proposing

a move is taken from a probability density function T (R′ ← R).

3. Accept the trial move to the new position R′ with the probability

A(R′ ← R) = min

(
1,
T (R← R′)P(R′)

T (R′ ← R)P(R)

)
(2.25)

If the trial move is accepted, R′ becomes the next sampling point. If the trial move
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is rejected, R becomes the next sampling point.

4. Return to step 2 and repeat the process over again.

The acceptance probability in Equation (2.25) is high whenever the trial move is

proposed to a region with a higher probability density than the initial position. As such,

the walker will tend to aggregate in the region with high probability density. Initially, the

random walk undergoes an equilibration period where the initial points of the walk still

depend on the starting point. However, the random walk will eventually settle down to a

unique probability distribution mimicking the probability density to be sampled.

2.4 Diffusion Quantum Monte Carlo

The diffusion quantum Monte Carlo (DMC) method is based on the imaginary time

Schrödinger equation, which can be obtained by rewriting the time-dependent Schrödinger

equation using imaginary time τ = it:

−∂ |Φ⟩
∂τ

= (Ĥ − ET ) |Φ⟩ (2.26)

where ET is the energy offset. The addition of energy offset to the imaginary time

Schrodinger equation allows the extraction of the ground-state wavefunction |Ψ0⟩ from

|Φ⟩. To see this, consider the effect of applying (imaginary) time evolution operator on

the initial wavefunction |Φ(τ = 0)⟩:

|Φ(τ)⟩ = e−(Ĥ−ET )τ |Φ(τ = 0)⟩ (2.27)

Decomposing |Φ⟩ using the eigenvectors of Ĥ (labeled as {Ψi}), and taking the long

imaginary time limit give:

lim
τ→∞

e−(Ĥ−ET )τ |Φ(τ = 0)⟩ = lim
τ→∞

∑
i

ci |Ψi⟩ e−(Ei−ET )τ (2.28)
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Where Ei is the eigenvalue of the eigenvector |Ψi⟩. It is evident that by setting ET =

E0, every contribution other than that from the ground-state wavefunction |Ψ0⟩ decays

exponentially because their energies are higher than the ground-state energy. Hence, as

τ → ∞, the operator e−(Ĥ−ET )τ effectively projects out the ground state wavefunction

|Ψ0⟩. This is in contrast with the wavefunction optimization in VMC where the excited

states do not disappear completely and still contribute to the energy.

Diffusion Equation

Equation (2.26) in position basis can be expressed as:

−∂Φ(R, τ)
∂τ

=

[
−1

2

∑
i

∇2
i + V (R)− ET

]
Φ(R, τ) (2.29)

Without the potential term [V (R)− ET ], the above equation becomes the diffusion

equation in a 3N -dimensional space, and Φ(R, τ) can be interpreted as the particle density.

Such an equation can be simulated by an ensemble of particles performing a random

walk. In contrast, if the laplacian term was absent, the Equation (2.29) reduces to a rate

equation that describes the growth or decay of the particle density. Hence, the evolution

of Φ(R, τ) governed by Equation (2.29) can be simulated by a random walk of particles

combined with a branching process to account for the growth and decay in the number of

particles. To propagate the density into a later imaginary time, it is essential to transform

Equation (2.29) into its integral form. This can be done directly by taking the position

representation of Equation (2.27):

Φ(R, τ0 + τ) =

∫
G(R← R′, τ)Φ(R′, τ0)dR

′ (2.30)

where the Green’s function G(R← R′, τ) is:

G(R← R′, τ) = ⟨R| e−(Ĥ−ET )τ |R′⟩ (2.31)
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The exact form of the Green’s function is unknown. However, if the time step τ

is small, it can be approximated using the Trotter-Suzuki formula which leads to its

factorization into the diffusion and branching term [21]:

G(R← R′, τ) ≈ Gd(R← R′, τ)Gb(R← R′, τ) (2.32)

with an error proportional to τ 3. The first factor on the right-hand side of Equation

(2.32) is the diffusion term:

Gd(R← R′, τ) = (2πτ)−3N/2 exp

[
−(R−R′)2

2τ

]
(2.33)

which takes the form of a Gaussian function. It is the exact Green’s function for the

diffusion equation and is taken to be the transition probability of a walker to move from

R′ to R within a timespan of τ . The second exponential factor:

Gb(R← R′, τ) = exp [−τ (V (R) + V (R′)− 2ET ) /2] (2.34)

is called the branching term and it governs the death or birth of a walker according

to the following procedure:

1. if Gb(R← R′, τ) < 1 then the branching term serves as the probability of the walker

continuing its walk.

2. if Gb(R← R′, τ) ≥ 1 then the walker continues its walk, and a new walker is created

in the same position with a probability of Gb(R← R′, τ)− 1.

Since only the short-time approximation of Green’s function is known, propagating the

initial wavefunction into a large enough imaginary time is done by repeatedly applying

Equation (2.30) over a small time step τ . The realization of such a process using a set

of diffusing walkers is done by a repeated operation of moving each walker based on

transition probability Gd(R ← R′, τ) and incorporating the branching process governed

by Gb(R← R′, τ) after each step.
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Importance Sampling

The branching term (Equation 2.34) is controlled by V (R), which could blow up whenever

the electrons are too close to each other or to the nucleus. This causes the simulation to

be inefficient and impractical as the number of walkers in the simulation will fluctuate

rapidly. This problem is mitigated by performing an importance-sampling transformation.

The transformation is done by multiplying Equation (2.29) with a "guiding" or "trial"

wavefunction ΨT (R):

−ΨT (R)
∂Φ(R, τ)

∂τ
= ΨT (R)

[
−1

2
∇2 + V (R)− ET

]
Φ(R, τ) (2.35)

Upon rearranging the terms on the above equation, one ends up with:

−∂f(R, τ)
∂τ

= −1

2
∇2f(R, τ) +∇ · [vD(R)f(R, τ)] + [EL(R)− ET ] f(R, τ) (2.36)

where ∇ = (∇1,∇2, . . . ,∇N) is the 3N -dimensional gradient operator, f(R, τ) =

Φ(R, τ)ΨT (R) is the importance-sampled or mixed wavefunction, and EL is the local

energy computed by using ΨT (R) only. The term vD(R) is called the drift velocity, and

is defined as:

vD(R) = ∇ ln |ΨT (R)| = Ψ−1
T (R)∇ΨT (R) (2.37)

After performing the importance-sampling transformation, EL(R) appears in the place

of V (R). As long as the guiding wavefunction is close enough to the actual ground state

wavefunction, the variance of the local energy is guaranteed to be minimal. In the infinity

time limit, f(R, τ) becomes the mixed distribution Ψ0(R)ΨT (R). The integral form of

Equation (2.36) is

f(R, τ0 + τ) =

∫
G̃(R← R′, τ)f(R′, τ0)dR

′ (2.38)

where the importance-sample Green’s function can also be factorized into the diffu-

sion and branching parts G̃(R ← R′, τ) ≈ G̃d(R ← R′, τ)G̃b(R ← R′, τ), that can be
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expressed as:

G̃d(R← R′, τ) = (2πτ)−3N/2 exp

[
−(R−R′ − τvD(R

′))2

2τ

]
(2.39)

G̃b(R← R′, τ) = exp [−τ (EL(R) + EL(R
′)− 2ET ) /2] (2.40)

The approximation assumes that the drift velocity is constant between R and R′. This

is a reasonable assumption except in the case where the guiding wavefunction ΨT (R) varies

rapidly. It is preferable to incorporate a rejection step similar to the Metropolis algorithm

to reduce the time step error. When a move is proposed for the walker, the acceptance

probability of that move is formulated as:

paccept(R← R′) = min

(
1,
G̃d(R

′ ← R, τ)ΨT (R)2

G̃d(R← R′, τ)ΨT (R′)2

)
(2.41)

The diffusion quantum Monte Carlo method described so far relies on the assumption

that the wavefunction is positive definite and thus can be interpreted as a particle density.

However, this is not the case when dealing with fermions for which the wavefunction

can take both negative and positive values. To circumvent this problem, the fixed-node

approximation is often utilized. The approximation works by placing absorbing barriers

at the location of the nodes of the trial wavefunction ΨT (R, τ). Whenever a walker

tries to cross the barrier, the walker is either deleted or the move is rejected. Hence,

each nodal pocket is isolated from each other and the DMC simulation can be run on

each nodal pocket separately. Since the trial wavefunction is not exactly the ground-state

wavefunction, their nodes might not completely coincide with each other. This introduces

another source of error in the DMC calculations.
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2.5 Evolutionary Crystal Structure Search

Crystal structure search or prediction tackles the problem of finding the most stable

crystal structure for a given chemical composition and environment, such as tempera-

ture or pressure. It has been critical for the computational investigation and discovery

of novel materials. In recent years, many efforts have been directed at applying known

optimization algorithms for the crystal structure search. One of such attempts combined

the well-known evolutionary algorithms into the context of structure search. This evolu-

tionary crystal structure prediction still retains the general procedure of the evolutionary

algorithm as follows:

1. Generate initial candidate structures to initialize the population.

2. Evaluate each structure in the population using some fitness criteria.

3. Select a subset of the population based on their fitness value to create new structures.

4. Generate new candidate structures from the selected population in step (3) via

evolutionary operators.

5. Replace some or all of the population with the newly generated structures from step

(4).

6. Repeat steps (2) to (5) until the convergence threshold is reached.

The evolutionary algorithm mimics the process of natural evolution where individuals

with better qualities have more chance to pass their genes to the next generation. The

later generations will be populated with individuals of high fitness value. Within the

context of crystal structure prediction, the fitness value is usually the energy or enthalpy

of the structures, which are evaluated by ab initio methods such as DFT. The evolutionary

operators such as the hereditary (crossover) and mutation operators are also modified to be

more suitable for crystal structure prediction. The crossover process can be implemented

by combining matching slab cuts from parent structures in a meaningful way to create

a child structure. Meanwhile, the mutation can be introduced by random distortion in
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the cell dimension and atomic position of the structure, or by permutations of different

atomic species within the cell.

2.6 Phonon Calculations

Phonon describes the collective vibration of atoms inside a crystal structure. Calculating

phonon properties is relevant in the study of crystals as it allows the investigation of many

crystal properties such as thermal capacity, thermal expansion, and zero-point energy.

Most importantly, the dynamical stability of the crystal can also be inspected via such

calculations, which is crucial for studies utilizing crystal structure search techniques. Any

dynamical instability exhibited by a crystal structure would make it impossible to exist

as it would transform into another structure.

The theory behind phonon calculations starts from the expression of the energy of the

system as a function of atomic positions E({rj,l,α}), where rj,l,α denotes the α cartesian

component (x, y, or z direction) of the position vector of j-th atom in the l-th unit cell.

If the atoms are displaced by a small amount around their equilibrium positions, the

resulting energy can be written using the Taylor expansion as:

E = E0 +
∑
j,l,α

∂E

∂uj,l,α
uj,l,α +

∑
j,l,α

∑
j′,l′,β

1

2

∂2E

∂uj,l,α∂uj′,l′,β
uj,l,αuj′,l′,β + . . . (2.42)

where E0 is the energy when each atom is at its equilibrium position and uj,l,α is the

displacement of an atom indexed by j, l in α cartesian direction. Using the harmonic

approximation, only up to the second-order terms of the Taylor expansion are consid-

ered. The first-order derivative of E with respect to u in Equation (2.42) is the negative

of atomic force, which vanishes when every atom is at its equilibrium position. The

second-order derivative on said equation is called the force constant Φα,j,l;β,j′l′ , and can

be approximated by using the finite displacement method:

Φα,j,l;β,j′l′ =
∂2E

∂uj,l,α∂uj′,l′,β
≈ −Fj′,l′,β(uj,l,α)− Fj′,l′,β

uj,l,α
(2.43)
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where Fj′,l′,β(uj,l,α) is the force acting on j′-th atom of l′-th unit cell when an atom

with index j, l is displaced by u in α direction. From the force constant matrix, the

dynamical matrix Dα,j;β,j′(q) can be obtained by taking its Fourier transform:

Dα,j;β,j′(q) =
1

√
mjmj′

∑
l′

Φα,j,0;β,j′l′ exp (iq · rl′) (2.44)

where m is the atomic mass, rl is the vector defining the position of l-th unit cell,

and q is the wavevector. The dynamical matrix satisfies an eigenvalue equation that

yields a set of phonon frequencies ω(q) and phonon eigenvectors η(q). Once the atomic

forces for a crystal with displaced atoms have been calculated from DFT or other meth-

ods, the dynamical matrix can readily be constructed and its eigenvalue equation can be

solved. From the obtained phonon frequencies, the phonon density of states (DOS) can

be constructed and any dynamical stability in the crystal is signified by the existence of

imaginary phonon frequencies.
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Chapter 3

Methods and Computational Details

3.1 Outline of Methods

3.1.1 General Workflow

The main equation used to assess the stability of a structure relative to the others is the

enthalpy (H), which is defined as

H = E + PV + EZPE (3.1)

where E is the energy to be evaluated by the electronic structure calculation, P is the

pressure, V is the volume, and EZPE is the zero-point energy (ZPE) of the system. The

above equation contains the EZPE term which is not often included in the definition of

enthalpy. When studying a hydrogen system, its small atomic mass makes the ZPE large

enough to disrupt the relative stability of the structures and thus needs to be included.

We will strictly refer to the enthalpy without the inclusion of ZPE as static enthalpy,

while that with the inclusion of ZPE as dynamic enthalpy. The most stable structure at a

given pressure corresponds to the structure with the lowest enthalpy. Whenever the most

stable structure changes due to a change in pressure, a phase transition happens.

The nature of the stability evaluation makes it necessary to consider many candidate

structures and rank them in terms of their enthalpies. We considered the already-known
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candidate structures discovered in previous research for evaluation. Additional candidate

structures were obtained by employing a crystal structure search. All these structures

were optimized using DFT. We chose to carry out this optimization step with DFT since

doing so using QMC would be too computationally heavy and therefore impractical. The

QMC was only used to calculate the static enthalpy from the DFT-optimized structures.

Finally, the zero-point energy was calculated using the harmonic approximation from the

DFT force to obtain the dynamic enthalpy.

3.1.2 Known Candidate Structures

From the literature, we have obtained known candidate structures from the low-pressure

side around 500 GPa and from the high-pressure side around 2000 GPa. The low-pressure

structures considered in this work are C2/c-24 [10], C2/c-12 [10], Cmca-4 [10], Cmca-

12 [10], and mC24 [15]. Meanwhile, for the high-pressure side, the following were consid-

ered: oC12 [15], cI16 [15], R3̄m [14], R3m [14], C2/m-3 [14], and Pnma [15]. The mC24,

oC12, and cI16 structures belong to C2/c, Cmcm, and I 4̄3d space groups, respectively.

Some of these candidate structures are shown in Fig. 3.1. All structures including Cs-IV

were optimized in the pressure range of 500 GPa to 2000 GPa. Upon optimization, some

of the structures transformed into previously undiscovered structures. For those with

transformation, we added "-low" and "-high" suffixes in their name to distinguish the

low-pressure and high-pressure counterparts of the structure.

3.2 Computational Details

3.2.1 Crystal Structure Search

In this thesis, the USPEX code [22–24] was employed for the evolutionary crystal structure

search. The main objective of the search was to minimize the static enthalpy. The

structure search was run by constraining the number of atoms in the unit cell to be

within 12 to 48 atoms and limiting the population size of each generation to contain
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Figure 3.1: Some of the known candidate structures, from left to right: Cs-IV, oC12, and
cI16. Fictitious bonds were added for clarity.

only 100 structures. We chose the top 50% of the current generation to create the next

generation by applying the genetic operator. The heredity operation, random structure

generation, lattice mutation, and atomic position mutation were responsible for creating

30%, 50%, 10%, and 10% of the new generation. The process was stopped until the 40th

generation was achieved or if no improvement was observed for more than 10 generations.

This crystal structure search works in conjunction with DFT to optimize each structure

within each generation. The structural optimization was carried out using the Perdew-

Burke-Ernzerhof (PBE) [25] DFT method implemented within the Vienna ab initio simu-

lation package (VASP) [26–29]. A three-stage relaxation was employed, where each stage

utilized finer calculation settings than the previous stage to steadily increase the accuracy.

In the final stage, the plane wave basis cutoff energy was set to 600 eV and the structural

optimizations were carried out until the energy converged within 1 × 10 −4 eV and the

SCF calculation converged within 1 × 10 −5 eV. For all stages, the k -mesh was set with

a default spacing of 0.5 Å−1.

3.2.2 Density Functional Theory Calculations

The obtained candidate structures from the literature and from the crystal structure

search were re-optimized in varying pressure with more accurate DFT calculations. This

section does not describe the DFT calculations used in the creation of DMC trial wave-

function. Here, the DFT calculations were also performed using the VASP package. The
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exchange-correlation functional was replaced by Van der Waals density functional (vdW-

DF) [30–32], which is known to be able to accurately estimate the hydrogen molecular

bond length and its pressure dependence that ultimately affects the calculated value of

ZPE. The plane wave basis energy cutoff was set to 1500 eV and the spacing of k -point

mesh was set to 0.17 Å−1. This value of k-spacing was enough to assure the SCF conver-

gence within 1 meV/atom for the Cs-IV, mC24-low, and two random P1 structures from

the structure search conducted at 500 GPa. The structure optimizations were carried

out until the atomic force was converged within 1 × 10−3 eV/Å and each SCF itera-

tion converged within 1 × 10−6 eV. We used the hard projector-augmented wave (PAW)

pseudopotential to represent the ionic core.

We have also investigated the validity of using pseudopotential on such a high-pressure

region. There was a concern about the hydrogen atoms becoming too close to each

other under a pressure as high as 2000 GPa, which would break the validity of using

a pseudopotential. Investigation of all known candidate structures revealed that the

shortest bond length was around 0.71 Å, which was only a 4% decrease from the molecular

hydrogen bond length of 0.74 Å.

3.2.3 Quantum Monte Carlo Calculations

The quantum Monte Carlo calculations were performed by using the QMCPACK simula-

tion code [33, 34] with Nexus workflow management system [35]. We used the fixed-node

trial wavefunction in the form of Slater-Jastow type. The orbitals used to construct

the Slater determinant were supplied from DFT calculations implemented in Quantum

Espresso [36, 37]. In the following text, unless specified otherwise, every convergence test

was done for all known candidate structures aside from C2/c − 24, R3̄m, R3m, C2/m-

3-low, and Pnma. The plane wave basis cutoff energy was set to 350 eV, which was

sufficient to make the energy converge within 1 meV/atom. For the Jastrow function,

we included one-, two-, and three-body terms and the parameters were optimized using

the linear optimization algorithm. The twist-averaged boundary condition with a 5×5×5
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twist grid size was employed for systems with 200 atoms. This was enough to make the

VMC energy converge within 2.7 meV/atom (0.1 mHa/atom) for Cs-IV, mC24-low, and

mC24-high structures. The timestep was set to 0.005 Ha−1, which was enough to make

the energy converge within 1.36 meV/atom (0.05 mHa/atom), except in cI16-high which

was only converged within 1.6 meV/atom. To reduce the finite size effect, we ran 2 QMC

calculations for each structure using a system size of around 200 atoms and 400 atoms.

Unfortunately, the extrapolation of the energy to an infinite system size resulted in an

undesirable relative static enthalpy graph. Hence, we ignored the extrapolated energy

and reported the DMC static enthalpy from the 400 atoms system only.

3.2.4 Phonon Calculations

The phonon calculations were carried out under the harmonic approximation implemented

in the Phonopy package [38, 39], which used the force from DFT calculations executed

with VASP. The SCF-only DFT calculations were done under the same settings described

in section 3.2.2. We employed a supercell for the structures so that the cell lattice vectors

were at least 10 Å in magnitude. This made the number of atoms in the simulations vary

from around 1000 atoms to 2000 atoms.
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Chapter 4

Results and Discussion

4.1 DFT Static Enthalpy of Known Structures

We have optimized the candidate structures in the whole pressure range considered in this

work, and their DFT static enthalpies have been calculated (Fig. 4.1). As stated in Chap-

ter 3, we found that some of these structures transformed into previously undiscovered

structures. Two of the low-pressure known structures, the mC24-low and Cmca-12-low,

transformed at 1300 GPa and 1800 GPa into mC24-high and Cmca-12-high, respectively.

Similarly, the cI16-high and C2/m-3-high from the high-pressure side both transformed

when the pressure was lowered to 900 GPa. Two other structures with transformation

were Cmca-4-low and C2/c-24. For the former, its high and low-pressure counterparts

had already been discovered in previous studies [10]. While for the latter, it underwent

transformation 8 times between 1000 GPa and 2000 GPa. Those 8 new structures from

C2/c-24 were excluded in this thesis.

Among these new structures, mC24-high has the lowest static enthalpy that is rel-

atively constant at 6 to 7 meV/atom above Cs-IV within 1100 GPa to 2000 GPa. In

contrast, the static enthalpies of known high-pressure structures at 2000 GPa are in the

range of 26 to 33 meV/atom higher than Cs-IV, but they possess a steeper downward trend

with increasing pressure compared to mC24-high. On the other hand, the low-pressure

counterparts of the high-pressure known structures are not energetically competitive with
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the low-pressure known structures. At DFT static enthalpy level, hydrogen undergoes

phase transitions in the order of Cmca-12-low → Cmca-4-low → mC24-low → Cs-IV,

which happen at 520 GPa, 744 GPa, and 950 GPa, respectively. The Cs-IV phase is

predicted to be stable up to 2000 GPa.

Figure 4.1: The relative DFT static enthalpies per atom of known candidate structures
with respect to Cs-IV phase. Note the sudden termination on the enthalpy line for some
structures due to structural transformation.

The relative DFT static enthalpy of C2/c-24, Cs-IV, Cmca-12-low, and Cmca-4-low

and their transition pressure are consistent with the DFT results of previous work by

McMinis, et al [40], which used the same vdW-DF functional as the one considered in

this work. However, the static enthalpy difference between Cs-IV and the high-pressure

known structures in this work is larger than what was reported in the previous DFT study

by Liu, et al [15]. The reason for this discrepancy might be the difference in the DFT

exchange-correlation functional employed, as said reference used the PBE functional. To
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confirm this, the oC12, R3̄m, Cs-IV, and Pnma structures were optimized using the

PBE functional at 2000 GPa. Upon recalculating their relative DFT static enthalpy with

respect to Cs-IV, the oC12, Pnma, and R3̄m, were 4.8 meV/atom, 7.91 meV/atom,

and 9.5 meV/atom above Cs-IV. This result is more consistent with the previous work,

however, oC12, and Pnma were still a few meV/atom higher in static enthalpy than the

reference.

4.2 Crystal Structure Search Results

The structure search was conducted at five different pressures: 500 GPa, 800 GPa, 1100

GPa, 1400 GPa, and 1700 GPa. After re-optimization using DFT, some of the found

structures underwent noticeable changes in their space group. Most of the time, the

Phonopy package did not deem the resulting structure as that from a different symmetry

due to the strict default symmetry criteria. Hence, we will report the symmetry of the

structure after the symmetry tolerance was loosened to 1.e-3 or 1.e-2. For the naming,

we adopted the common convention of using its space group number and the number of

atoms in the primitive cell, separated by a dash (-).

Even though the maximum number of generations in the structure search was set to

40, every structure search found its best structure quite early and the searches were ter-

minated within 12 to 18 generations. This led to around 1 thousand discovered structures

for each search. We discarded those with the lowest symmetry of P1 and P 1̄ space groups

as every single known candidate structure belongs to a space group with higher symmetry.

This reduced the number of structures from each structure search to around 100 to 200

structures. In the discussion that follows, only the enthalpy graph for a few structures

with the lowest static enthalpy will be shown.

4.2.1 Structure Search at 500 GPa

The 500 GPa structure search found many structures that were more stable than Cs-

IV in terms of static enthalpy. This was expected as 500 GPa is at the border of the
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stability region of the Cs-IV phase. The Cmca-4-low, Cmca-4-high, mC24-low, and Cs-

IV structures were rediscovered by this structure search. However, nothing resembling

the Cmca-12-low, C2/c-12 and C2/c-24 structures were found. By excluding the already

known structure, the 13 lowest enthalpy found structures at 500 GPa were in the Pbam,

Fmmm, P21/m, Fddd, P21, C2/m, C2, and C2/c space groups, whose relative static

enthalpies varies between 45 meV/atom to 23 meV/atom lower than Cs-IV. Their enthalpy

is shown in Fig. 4.2 below. Among them, the lowest one in static enthalpy at 500 GPa is

the Pbam-8. However, this structure has been previously found as the slightly dynamically

unstable version of the candidate structure for H2-PRE phase [41].

Figure 4.2: The relative static enthalpies per atom of found candidate structures from
500 GPa structure search with respect to Cs-IV phase. The relative static enthalpy of
mC24-low, Cmca-4-low, and Cmca-12-low are also shown.

As can be seen in Fig. 4.2, within 500 GPa to 1100 GPa, none of the found structures
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managed to get under the static enthalpy of the most stable known structure at any given

pressure. Hence, the phase transitions of hydrogen remain unchanged from the conclusion

of section 4.1.

4.2.2 Structure Search at 800 GPa

The 800 GPa structure search yielded the mC24-low, mC24-high and Cs-IV structures.

Furthermore, this structure search rediscovered the Cmca-12-low structure that was not

discovered by the 500 GPa structure search. However, no Cmca-4-low and Cmca-4-high

structures were found from the search, even though their static enthalpies lie between that

of mC24-low and Cmca-12-low at 800 GPa. The enthalpy graphs of the found structures

are shown in Fig. 4.3.

Figure 4.3: The relative static enthalpies per atom of found candidate structures from
800 GPa structure search with respect to Cs-IV phase. The static relative enthalpy of
mC24-low, Cmca-4-low, and Cmca-12-low are also shown.
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The structures with the lowest static enthalpy at 800 GPa are found to be in the

Cmc21, P21, Cc, C2/m, C2/c, C2, Pbcm, and Pnma space groups. The static enthalpy

of the Cmc21-12 structure is nearly identical to that of mC24-low. At 700 GPa, it is only

0.5 meV/atom lower in static enthalpy than mC24-low, but becomes 0.8 meV/atom higher

at 900 GPa. They both are also structurally similar, with some slight differences in the

orientation of the H2 molecules. The inclusion of Cmc21-12 structure slightly modifies the

phase diagram of solid hydrogen, making it the most stable phase between Cmca-4-low

and mC24-low phase with a region of stability from 740 GPa to 800 GPa.

By inspecting the results of 500 GPa and 800 GPa structure searches, it can be con-

cluded that the structure searches conducted in this thesis were not exhaustive. For one

thing, both structure searches failed to discover the C2/c-12 and C2/c-24 structures.

Furthermore, the 500 GPa structure missed the most stable structure at 500 GPa, the

Cmca-12-low, which was fortunately discovered by the 800 GPa search. The situation

is reversed for the Cmca-4-low and Cmca-4-high, where they were not found by the 800

GPa search.

4.2.3 Structure Search at 1100 GPa to 1700 GPa

Unlike the previous two structure searches, the searches at 1100 GPa, 1400 GPa, and

1700 GPa yielded no structures with lower static enthalpy than Cs-IV. While it initially

appeared as if those searches found some structures with static enthalpies below Cs-

IV, those structures were found to be identical to Cs-IV upon inspection, up to a little

difference in cell dimensions.

1100 GPa Structure Search

The static enthalpies of the found structures are shown in Fig 4.4. As can be seen on the

graph, the lowest enthalpy found structure after Cs-IV is the C2/c-6 structure, whose

relative static enthalpy with respect to Cs-IV is around 6 to 7 meV/atom. Such a value

is very similar to the relative static enthalpy of mC24-high. This C2/c-6 structure is
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identical to the one found in the 800 GPa structure search. The rest of the most stable

found structures are around 10 meV/atom to 20 meV/atom higher in static enthalpy than

Cs-IV, belonging to P21, C2, P2/c, and C2/c space groups.

Figure 4.4: The relative static enthalpies per atom of found candidate structures from
1100 GPa structure search with respect to Cs-IV phase. The relative static enthalpy of
mC24-low, Cmca-4-low, and mC24-high, and C2/m-3-low are also shown.

1400 GPa Structure Search

The 1400 GPa structure search rediscovered the C2/c-6 structure, identical to the one

found in 1100 GPa and 800 GPa searches, as the most stable structure after Cs-IV. This

search also found the I422-10 structure that was discovered by the 1700 GPa structure

search. In the graph, the enthalpy plot of I422-10 is not shown as it is considerably

more stable in higher pressure. However, the C2/c-6 structure is still shown as its static
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enthalpy value is relatively constant from 800 GPa to 1700 GPa. Other than those, the

lowest-enthalpy found structures were in the P2/c, P21, C2/c and C2 space groups. The

plot of their enthalpies is shown in Fig 4.5.

Figure 4.5: The relative static enthalpies per atom of found candidate structures from
1400 GPa structure search with respect to Cs-IV phase. The relative static enthalpy of
mC24-high is also shown.

Structure Search at 1700 GPa

At 1700 GPa, we found structures with P21/m, C2/c, P212121, P21, Cm, I422, Pmmn,

Cmcm, P2/c, Cmca, Pbca, and C2 space groups among the low-enthalpy structures.

All of those are higher in static enthalpy compared to our mC24-high structure. Only

the I422-10 and C2/c-10 are very close in static enthalpy at 2000 GPa with mC24-high

(Fig. 4.6). Above them, the next 3 lowest static enthalpy structures are the P21/m-10,

Pbca-16, and Cmcm-6 structures, in ascending order.
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Figure 4.6: The relative static enthalpies per atom of found candidate structures from
1700 GPa structure search with respect to Cs-IV phase. The relative static enthalpy of
mC24-high, oC12, cI16, and Pnma are also shown.

4.3 Quantum Monte Carlo Static Enthalpy

4.3.1 For Known Candidate Structures

In Fig. 4.7 below, the DMC static enthalpies of the low-pressure structures are shown

with respect to the C2/c-24 phase, meanwhile, those for the high-pressure structures are

plotted with respect to the Cs-IV phase in Fig. 4.8. In both figures, the error bars are

very small, with a maximum value of ±0.26 meV/atom. Hence, they are often obscured

by the marker in the plot.

There were some notable differences compared to the DFT static enthalpy results. The

phase transition order after Cmca-12-low still follows the Cmca-12-low→ Cmca-4-low→

mC24-low→ Cs-IV ordering. However, the DMC calculations predict the C2/c-12 phase

to be the most stable up to 534 GPa, placing it before the Cmca-12 phase. The stability
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region of mC24 also becomes narrower, ranging only from 810 GPa and 886 GPa. This

puts the transition to the Cs-IV phase at about 70 GPa lower than the DFT results.

Figure 4.7: The relative DMC static enthalpies of known candidate structures within 500
GPa to 900 GPa, plotted with respect to that of C2/c-24 structure.

On the high-pressure structures side, the DMC static enthalpy results also possess

some differences when compared to the DFT results. First, the relative static enthalpy of

mC24-high and C2/m-3-low becomes larger and seems to increase with increasing pres-

sure. Second, the gaps between the static enthalpy of known high-pressure structures

seem to become larger than the DFT counterparts. At 2000 GPa, both DMC and DFT

predicted that among those structures, the C2/m-3-high has the lowest relative static

enthalpy and cI16 has the highest one. However the difference between those 2 structures

is 14.5 meV/atom from DMC calculations, but only 6.7 meV/atom from DFT calcu-

lations. Furthermore, the next 3 lowest-enthalpy high-pressure known structures from

DMC calculations are the Pnma, R3m, and R3̄m whose enthalpies lie 3.4 meV/atom,

4.5 meV/atom, 5.6 meV/atom higher than C2/m-3-high, respectively. Meanwhile, DFT
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predicted the next 3 most stable structures to be R3m, Pnma, and oC12, which have 0.3

meV/atom, 1 meV/atom, and 2.2 meV/atom higher enthalpy than C2/m-3-high. Hence,

the DMC calculations made the oC12 structure less favorable compared to the DFT

prediction.

Figure 4.8: The relative DMC static enthalpies of known candidate structures within 1400
GPa to 2000 GPa plotted with respect to that of Cs-IV structure.

For the low-pressure known candidate structures, the DMC static enthalpy calculations

in this work resulted in higher transition pressures compared to what was reported in the

work of McMinis, et al [40]. Under the absence ofmC24-low, they predicted the transitions

to Cmca-12-low and Cs-IV phases to happen at 440 GPa and 684 GPa, respectively,

without any Cmca-4-low phase between them. The pressures for the aforementioned

transitions in our work are more consistent with the results of Monacelli, et al [42].

However, said study also did not predict any Cmca-12-low → Cmca-4-low transition, at

least not below 650 GPa. Other than that, this work’s DMC relative static enthalpy results

for high-pressure known structures (Fig. 4.8) exhibit a "bump" at 1800 GPa to 1900 GPa.
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This undesirable feature in the graphs and the discrepancy with previous DMC studies

could be attributed to the difference in methods of estimating the pressure. This work

used the pressure specified in DFT calculations to calculate the enthalpy. Meanwhile, the

common approach is to use the pressure obtained from fitting the DMC energy, or to use

the pressure estimated from VMC and DMC calculations.

4.3.2 For Found Candidate Structures

For found candidate structures, the DMC calculations were run with a smaller number of

steps compared to the calculations for the known structures in order to save time. This

increased the uncertainty of the results, with the error bars reaching up to around ±

1 meV/atom. Generally, the DMC static enthalpy graphs are rougher than their DFT

counterparts due to the same reasons explained previously at the end of section 4.3.1.

Figure 4.9: The relative DMC static enthalpies of found candidate structures from 500
GPa structure search plotted with respect to that of Cs-IV structure.
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The results for 500 GPa and 800 GPa found structure are shown in Fig. 4.9 and

Fig. 4.10, respectively. For the 500 GPa found structures, the DMC static enthalpy results

did not change the phase diagram of hydrogen within 500 to 1100 GPa. The 5 lowest-

enthalpy found structures at 500 GPa are the Pbam-8, C2/m-6, Fmmm-2, P21/m-14,

and C2/c-44 structures, whose static enthalpies are within 51 meV/atom to 27 meV/atom

lower than that of Cs-IV. These DMC results increased the enthalpy difference between

Pbam-8 and C2/m-6 to 14 meV/atom from 4 meV/atom in the DFT results.

Figure 4.10: The relative DMC static enthalpies of found candidate structures from 800
GPa structure search plotted with respect to that of Cs-IV structure.

For the 800 GPa found structures, the Cmc21-12 structure remained to have the lowest

static enthalpy among the found structures. However, the DMC calculation made its static

enthalpy around 7 meV/atom below that of mC24-low at 800 GPa. The 5 lowest-enthalpy

found structures at 800 GPa are the Cmc21-12, P21-12, Cc-26, P21-30, and C2/m-12.

One of the found structures, the C2/m-24, managed to become as competitive as the
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lowest-enthalpy found structures from the 500 GPa structure search. At 500 GPa, its

static enthalpy is 29 meV/atom below Cs-IV. Note that the result for C2/c-6 structure is

not shown in Fig 4.10 since it is not stable below 800 GPa, and the pressure range above

800 GPa will be covered by the plot of the next structure searches.

The results for found structures from 1100 GPa, 1400 GPa, and 1700 GPa are shown

in Fig 4.11, Fig 4.12, and Fig 4.13, respectively. From the 1100 GPa and 1400 GPa found

structures, the only significant change from DFT results is that the DMC calculations

made the C2/c-6 structure go below mC24-low and Cs-IV in static enthalpy at 800 GPa

to 900 GPa.

Figure 4.11: The relative DMC static enthalpies of found candidate structures from 1100
GPa structure search plotted with respect to that of Cs-IV structure.
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Figure 4.12: The relative DMC static enthalpies of found candidate structures from 1400
GPa structure search plotted with respect to that of Cs-IV structure.

For the 1700 GPa found structures, the DMC calculation made the C2/c-10 consid-

erably more stable than mC24-high. The static enthalpy of I422-10, P21/m-10, and

Pbca-16 were also lowered with respect to mC24-high and managed to become more sta-

ble than mC24-high at some point within 1700 GPa to 2000 GPa. These four found

structures are also consistently the lowest-enthalpy structure within the pressure range of

1500 GPa to 2000 GPa.
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Figure 4.13: The relative DMC static enthalpies of found candidate structures from 1700
GPa structure search plotted with respect to that of Cs-IV structure.

4.4 Phonon Calculation for Known Candidate Struc-

tures

The phonon calculations revealed that most of the high-pressures known structures were

dynamically unstable. Only two among those structures, the mC24-high and Pnma, were

found to be dynamically stable. The mC24-high is stable throughout 1100 GPa to 2000

GPa, meanwhile, Pnma is only stable at 2000 GPa, and starts to exhibit small imaginary

phonon modes at 1900 GPa. All of the dynamically unstable high-pressure structures

become more stable with increasing pressure, however, there were still some imaginary

phonon modes left even at 2000 GPa. Hence, they will be suitable candidate structures

in a pressure range beyond 2000 GPa. In Fig. 4.14, the phonon density of state of R3̄m

structure is shown, showing how the structure gets more stable with increasing pressure.

From the low-pressure side, the Cmca-4-low, Cmca-12-low, and C2/c-24 were not

evaluated by phonon calculations because they are known to be dynamically stable but
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Figure 4.14: The phonon density of states of the optimized R3̄m structure at 1800 GPa
(green line) and 2000 GPa (purple line). The graph shows a smaller magnitude of negative
frequencies at higher pressure, indicating a more dynamically stable structure.

the inclusion of their ZPE made Cs-IV to be lower in enthalpy at 500 GPa and higher.

Among the rest of the low-pressure structures, cI16-low, Cmca-4-high, and C2/m-3-low

were found to be dynamically unstable. The former two structures become more stable

with decreasing pressure, but the C2/m-3-low does not seem to become any less or more

stable within 500 GPa to 2000 GPa. This left the mC24-low and C2/c-12 to be the only

dynamically stable low-pressure known structures.

The plot of the relative dynamic enthalpy of mC24-low, C2/c-12, mC24-low, and

Pnma is shown in Fig. 4.15. Every single one of them except Pnma becomes much less

stable than Cs-IV after the inclusion of the zero-point energy. The C2/c-12 structure

is very close in enthalpy with Cs-IV at 500 GPa. However, at such pressure, it is still

less stable the H2-PRE phase candidate structure [41], which is around 10 meV/atom

lower than Cs-IV dynamic enthalpy. For the Pnma structure, even though its DMC

static enthalpy is 22 meV/atom above Cs-IV at 2000 GPa, the ZPE is 33 meV/atom

lower which makes it more stable. Hence, there is a new phase transition from Cs-IV

to Pnma at somewhere between 1900 GPa and 2000 GPa. Seeing how the other high-

pressure known structures are becoming more dynamically stable with increasing pressure,
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it would be interesting to investigate how their dynamic enthalpy competes with Pnma

at a pressure regime beyond 2000 GPa. Similar to Pnma, the R3m and oC12 structures

are also made up of triangular H3 clusters and could have a ZPE as low as Pnma itself.

Figure 4.15: The relative dynamic enthalpies of dynamically stable known candidate
structures plotted with respect to that of Cs-IV structure for the low-pressure side (top),
and high-pressure side (bottom).

4.5 Phonon Calculation for Found Structures

For found structures, only a few of them have been evaluated with phonon calculations.

The list is as follows:
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1. Six lowest-enthalpy structures at 500 GPa, which consist of: Pbam-8, C2/m-6,

Fmmm-2, P21/m-14, and C2/c-44 from 500 GPa structure search, plus the C2/m-

24 structure from 800 GPa structure search.

2. Two lowest-enthalpy structures at 800 GPa which are the Cmc21-12 and P21-12

from 800 GPa structure search.

3. The C2/c-6 structure from 1100 GPa structure search. As mentioned before, this

structure is the only one from 1100 GPa search that managed to become lower in

DMC static enthalpy thanmC24 and Cs-IV, and hence we prioritized its evaluation.

4. The C2-10 from 1400 GPa structure search. This structure was prioritized as its

DMC static enthalpy graph has a downward trend with increasing pressure and

becomes comparable with the lowest-enthalpy structures from 1700 GPa search.

5. Seven lowest-enthalpy structures from 1700 GPa structure search, which are C2/c-

10, I422-10, P21/m-10, Pbca-16, Cmcm-6, P212121-16, and P21-30.

Phonon calculations for categories (1), (2), and (3) in the list above were done at

2 pressure points within 500 GPa to 1000 GPa. For the chosen structures from the 500

GPa search, only two structures, the P21/m-14 and C2/c-44 were found to be dynamically

stable, with the former being only stable at 1000 GPa. All the considered structures from

800 GPa and 1100 GPa search were dynamically stable except for C2/m-24 which was

only stable at 500 GPa. The dynamical enthalpy for the dynamically stable structures is

shown in Fig. 4.16. As can be seen in the figure, the C2/c-6 structure is more stable than

Cs-IV in the pressure region of 800 GPa to 900 GPa.

The found structures that fall into categories (4) and (5) were evaluated with phonon

calculation within 1500 GPa to 2000 GPa. Among those structures, only the P21/m-

10 and the P21-30 were found to be dynamically unstable. The dynamic enthalpies of

dynamically stable structures are shown in Fig. 4.17. The inclusion of zero-point energy

made the C2/c-10 structure more stable than Cs-IV within 1500 GPa to 2000 GPa. At

1500 GPa, its dynamic enthalpy is 6 meV/atom lower than Cs-IV. To estimate at which
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Figure 4.16: The relative DMC dynamic enthalpies of dynamically stable found structures
from 500 GPa, 800 GPa, and 1100 GPa structure searches plotted with respect to that of
Cs-IV structure.

pressure the Cs-IV transforms into C2/c-10, other ZPE evaluations were conducted at

1200 GPa and 1000 GPa. At 1200 GPa, C2/c-10 was still 3 meV/atom lower than Cs-IV,

however, at 1000 GPa it has already started exhibiting a very small amount of imaginary

modes. Hence, we concluded that the transition from Cs-IV → C2/c-10 happens at a

pressure around 1000 GPa.
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Figure 4.17: The relative DMC dynamic enthalpies of dynamically stable found structures
from 1400 GPa and 1700 GPa structure search plotted with respect to that of Cs-IV
structure.

Upon combining all the results in this thesis, the final phase diagram of solid hydrogen

between 500 GPa to 2000 GPa was modified due to the newly discovered phase transitions.

The transition sequence happens in the following order Cs-IV → C2/c-6 → Cs-IV →

C2/c-10 → Pnma, which happen at 800 GPa, 900 GPa, 1000 GPa, and 2000 GPa. The

resulting phase diagram is kind of unusual as after being replaced by C2/c-6, the Cs-IV

phase becomes the most stable phase again at 900 GPa, only to be taken shortly after by

C2/c-10 at 1000 GPa. The structure of C2/c-6 and C2/c-10 can be seen in Fig. 4.18

Figure 4.18: The C2/c-6 structure (left) and C2/c-10 structure (right). Fictitious bonds
were drawn for clarity.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In summary, the phase diagram of solid hydrogen between 500 GPa and 2000 GPa was

investigated by using the diffusion quantum Monte Carlo calculation for static enthalpy

combined with the zero-point energy evaluated by utilizing harmonic approximation ob-

tained with density functional theory force. An evolutionary crystal structure search was

carried out at 500 GPa, 800 GPa, 1100 GPa, 1400 GPa, and 1700 GPa.

Among all the considered known candidate structures, only one of them, namely the

Pnma structure, was found to be more stable than Cs-IV at 2000 GPa. From the structure

searches, two of the discovered candidate structures were found to be more stable than

Cs-IV at some pressure regions within the considered pressure range. The inclusion of

this work’s results considerably altered the phase diagram of hydrogen. Within 500 GPa

to 2000 GPa, hydrogen undergoes 4 phase transitions: Cs-IV → C2/c-6 → Cs-IV →

C2/c-10 → Pnma, at 800 GPa, 900 GPa, 1000 Gpa, and 2000 GPa, respectively. The

Cs-IV phase curiously becomes the most stable phase for the second time between 800

GPa to 900 GPa, after overtaking the short-lived C2/c-6 phase.
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5.2 Future Works

In this section, we address the possible future study based on the results and challenges

encountered in this thesis:

1. First of all, the straightforward extension to this study would be to consider a

pressure regime beyond 2000 GPa. Previous DFT studies have considered a pressure

as high as 3 to 5 TPa, which is far beyond the range considered in this thesis, but

still nevertheless relevant in the context of astrophysics.

2. Investigating the physical properties such as the optical and thermal properties

of the most promising candidate structures discovered in this work could also be

considered for future studies.

3. The main bottleneck for this thesis comes from the phonon calculations and the

DMC calculations. In the future, it is preferable to apply material informatics

techniques such as machine learning to accelerate those calculations to significantly

increase the number of structures that can be evaluated.

4. The machine learning techniques could also be used to accelerate the structural

search. For example, the DFT structural optimization can be replaced by an ac-

curate neural network potential to allow a more thorough exploration of candidate

structures. The fact that only a single element needs to be considered should de-

crease the complexity of designing the neural network.
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